WorldWideScience

Sample records for radiation laboratory accreitation

  1. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P.R.

    1993-12-31

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards.

  2. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    International Nuclear Information System (INIS)

    Martin, P.R.

    1993-01-01

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards

  3. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1996-01-01

    The National Institute for Nuclear Research has established a Radiation detector laboratory that has the possibility of providing to the consultants on the handling and applications of the nuclear radiation detectors. It has special equipment to repair the radiation detectors used in spectroscopy as the hyper pure Germanium for gamma radiation and the Lithium-silica for X-rays. There are different facilities in the laboratory that can become useful for other institutions that use radiation detectors. This laboratory was created to satisfy consultant services, training and repairing of the radiation detectors both in national and regional levels for Latin America. The laboratory has the following sections: Nuclear Electronic Instrumentation; where there are all kind of instruments for the measurement and characterization of detectors like multichannel analyzers of pulse height, personal computers, amplifiers and nuclear pulse preamplifiers, nuclear pulses generator, aleatories, computer programs for radiation spectra analysis, etc. High vacuum; there is a vacuum escape measurer, two high vacuum pumps to restore the vacuum of detectors, so the corresponding measurers and the necessary tools. Detectors cleaning; there is an anaerobic chamber for the detectors handling at inert atmosphere, a smoke extraction bell for cleaning with the detector solvents. Cryogenic; there are vessels and tools for handling liquid nitrogen which is used for cooling the detectors when they required it. (Author)

  4. NASA Space Radiation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory is a NASA funded facility, delivering heavy ion beams to a target area where scientists...

  5. Virtual laboratory for radiation experiments

    International Nuclear Information System (INIS)

    Tiftikci, A.; Kocar, C.; Tombakoglu, M.

    2009-01-01

    Simulation of alpha, beta and gamma radiation detection and measurement experiments which are part of real nuclear physics laboratory courses was realized with Monte Carlo method and JAVA Programming Language. As being known, establishing this type of laboratories are very expensive. At the same time, highly radioactive sources used in some experiments carries risk for students and also for experimentalists. By taking into consideration of those problems, the aim of this study is to setup a virtual radiation laboratory with minimum cost and to speed up the training of radiation physics for students with no radiation risk. Software coded possesses the nature of radiation and radiation transport with the help of Monte Carlo method. In this software, experimental parameters can be changed manually by the user and experimental results can be followed synchronous in an MCA (Multi Channel Analyzer) or an SCA (Single Channel Analyzer). Results obtained in experiments can be analyzed by these MCA or SCA panels. Virtual radiation laboratory which is developed in this study with reliable results and unlimited experimentation capability seems as an useful educational material. Moreover, new type of experiments can be integrated to this software easily and as a result, virtual laboratory can be extended.

  6. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1997-01-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  7. Laboratory operation during radiation emergency

    International Nuclear Information System (INIS)

    Bunata, M.; Prouza, Z.; Tecl, J.

    2009-01-01

    During radiation emergency, a special operation mode of laboratories of the Radiation Monitoring Network (hereinafter RMN) is expected. The principal factors differing the emergency mode from the normal one are the following: - significantly higher amount of analyzed samples; - high activities of the majority of the samples; - higher risk of personal and equipment contamination; - higher working and psychological demands on laboratory staff. The assuring of the radiation protection requirements of laboratory staff has to be the primary objective, nevertheless the risk of equipment contamination and of samples cross- contamination of course have to be as well taken into consideration. The presentation describes the experience of the RMN Central Laboratory of the National Radiation Protection Institute in Prague (SURO) which was obtained during realization of field tests, in which a radioactive matter was released. These tests allow us to evaluate the source term or radioactivity dispersal balance based on various detection methods with the aim to estimate exposure of the afflicted persons. Tests provided to simulate emergency working conditions in Central Laboratory - high number of contaminated samples, which have to be analyzed in a short time (short half-time of used radionuclide 99m Tc) using sophisticated laboratory techniques (gamma spectrometers, aerosols collectors, etc.). The testing shows the availability of the SURO laboratory to work during the radiation emergency and to participate on its determination. The suitable settings and the ideal number of staff have been found. The average analysis time was approximately 1 minute per sample and the sample results were available just a few minutes after the counting. Moreover, the settings avoided any danger and kept both the crew and the samples safe and secure from contamination. (authors)

  8. Laboratory operation during radiation emergency

    International Nuclear Information System (INIS)

    Bunata, M.; Tecl, J.; Prouza, Z.

    2008-01-01

    During radiation emergency, a special operation mode of laboratories of the Radiation Monitoring Network (hereinafter RMN) is expected. The principal factors differing the emergency mode from the normal one are the following: - significantly higher amount of analyzed samples; - high activities of the majority of the samples; - higher risk of personal and equipment contamination; - higher working and psychological demands on laboratory staff. The assuring of the radiation protection requirements of laboratory staff has to be the primary objective, nevertheless the risk of equipment contamination and of samples cross- contamination of course have to be as well taken into consideration. The presentation describes the experience of the RMN Central Laboratory of the National Radiation Protection Institute in Prague (SURO) which was obtained during realization of field tests, in which a radioactive matter was released. These tests allow us to evaluate the source term or radioactivity dispersal balance based on various detection methods with the aim to estimate exposure of the afflicted persons. Tests provided to simulate emergency working conditions in Central Laboratory -high number of contaminated samples, which have to be analyzed in a short time (short half-time of used radionuclide 99m Tc) using sophisticated laboratory techniques (gamma spectrometers, aerosols collectors, etc.). The testing shows the availability of the SURO laboratory to work during the radiation emergency and to participate on its determination. The suitable settings and the ideal number of staff have been found. The average analysis time was approximately 1 minute per sample and the sample results were available just a few minutes after the counting. Moreover, the settings avoided any danger and kept both the crew and the samples safe and secure from contamination. (authors)

  9. Radiation safety requirements for radionuclide laboratories

    International Nuclear Information System (INIS)

    1993-01-01

    In accordance with the section 26 of the Finnish Radiation Act (592/91) the safety requirements to be taken into account in planning laboratories and other premises, which affect safety in the use of radioactive materials, are confirmed by the Finnish Centre for Radiation and Nuclear Safety. The guide specifies the requirements for laboratories and storage rooms in which radioactive materials are used or stored as unsealed sources. There are also some general instructions concerning work procedures in a radionuclide laboratory

  10. Code of practice for safety in laboratory - non ionising radiation

    International Nuclear Information System (INIS)

    Ramli Jaya; Mohd Yusof Mohd Ali; Khoo Boo Huat; Khatijah Hashim

    1995-01-01

    The code identifies the non-ionizing radiation encountered in laboratories and the associated hazards. The code is intended as a laboratory standard reference document for general information on safety requirements relating to the usage of non-ionizing radiations in laboratories. The nonionizing radiations cover in this code, namely, are ultraviolet radiation, visible light, radio-frequency radiation, lasers, sound waves and ultrasonic radiation. (author)

  11. Radiation carcinogenesis, laboratory studies

    International Nuclear Information System (INIS)

    Shellabarger, C.J.

    1974-01-01

    Laboratory studies on radioinduced carcinogenesis are reviewed. Some topics discussed are: radioinduced neoplasia in relation to life shortening; dose-response relationships; induction of skin tumors in rats by alpha particles and electrons; effects of hormones on tumor response; effects of low LET radiations delivered at low dose-rates; effects of fractionated neutron radiation; interaction of RBE and dose rate effects; and estimates of risks for humans from animal data. (U.S.)

  12. Review of radiation safety in the cardiac catheterization laboratory

    International Nuclear Information System (INIS)

    Johnson, L.W.; Moore, R.J.; Balter, S.

    1992-01-01

    With the increasing use of coronary arteriography and interventional procedures, radiation exposure to patients and personnel working in cardiac catheterization laboratories has increased. Proper technique to minimize both patient and operator exposure is necessary. A practical approach to radiation safety in the cardiac catheterization laboratory is presented. This discussion should be useful to facilities with well-established radiation safety programs as well as facilities that require restructuring to cope with the radiation environment in a modern cardiac catheterization laboratory

  13. Radiation monitoring programme in a university hot laboratory

    International Nuclear Information System (INIS)

    Tillander, M.; Heinonen, O.J.

    1979-01-01

    The Department of Radiochemistry in the University of Helsinki is the only institute teaching radiochemistry at the university level in Finland. The research programme of the Deparment must therefore include the uses of radiation and radionuclides in many branches of science. The students must receive adequate instruction in radiation protection for safe work in laboratories. This also has the educational benefit that the radiochemists will subsequently be able to observe the necessary safety precautions when employing ionizing radiation professionally. The Department of Radiochemistry consists of the following laboratories: a radiotracer laboratory, a neutron/electron and a gamma irradiation laboratory, an environmental low activity level laboratory, a whole-body counting laboratory, a reactor chemistry laboratory and a waste-treatment facility. The radiation protection organization of the Department is presented. Various methods of monitoring, including advantages and disadvantages are discussed. Emphasis is placed on the reactor chemistry laboratory where transuranic elements are utilized. These elements are highly radiotoxic and their monitoring in most cases requires destructive analysis. Different methods of determining external and internal doses are evaluated with regard to sensitivity and accuracy. Detection limits for radionuclides utilized in the laboratory are presented for different measurement systems, including non-destructive monitoring, spectrometry after chemical analysis, liquid scintillation counting and low-energy gamma spectrometry using a CsI-NaI scintillation detector. The guidelines laid down in the IAEA Safety Series Manuals are discussed in the light of practical experience. (author)

  14. National Laboratory of Synchrotron Radiation: technologic potential

    International Nuclear Information System (INIS)

    Silva, C.E.T.G. da; Rodrigues, A.R.D.

    1987-01-01

    The technological or industrial developments based on the accumulated experience by research group of condensed matter physics, in Brazil, are described. The potential of a National Laboratory of Synchrotron Radiation for personnel training, absorption and adaptation of economically important technologies for Brazil, is presented. Examples of cooperations between the Laboratory and some national interprises, and some industrial applications of the synchrotron radiation are done. (M.C.K.) [pt

  15. Characteristics of the radiation prevention metrology laboratory 'Cajavec' - Banjaluka

    International Nuclear Information System (INIS)

    Tomljenovic, I.; Ninkovic, M.; Kolonic, Dz.

    2004-01-01

    Radiation metrology laboratory built in the factory 'Cajavec' in Banja Luka, planed for gauge the detectors of ionization radiation. Laboratory as part of the large factory building , thus projected and formed according to positive radiation principles. Walls are constructed of basic concrete, main entrance of lead, approaching the radiation bench from the back side. Sound and light signal system connected with dosemeter for showing mini dose of radiation creating conditions for safe work of the dosemeterists. (author) [sr

  16. Conception of CTMSP ionizing radiation calibration laboratory

    International Nuclear Information System (INIS)

    Silva, Raimundo Dias da; Kibrit, Eduardo

    2009-01-01

    The present paper describes the implantation process of an ionizing radiation calibration laboratory in a preexistent installation in CTMSP (bunker) approved by CNEN to operate with gamma-ray for non destructive testing. This laboratory will extend and improve the current metrological capacity for the attendance to the increasing demand for services of calibration of ionizing radiation measuring instruments. Statutory and regulatory requirements for the licensing of the installation are presented and deeply reviewed. (author)

  17. Accreditation of laboratories in the field of radiation protection

    International Nuclear Information System (INIS)

    Galjanic, S.; Franic, Z.

    2005-01-01

    This paper gives a review of requirements and procedures for the accreditation of test and calibration laboratories in the field of radiation protection, paying particular attention to Croatia. General requirements to be met by a testing or calibration laboratory to be accredited are described in the standard HRN EN ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories. The quality of a radiation protection programme can only be as good as the quality of the measurements made to support it. Measurement quality can be assured by participation in measurement assurance programmes that evaluate the appropriateness of procedures, facilities, and equipment and include periodic checks to assure adequate performance. These also include internal consistency checks, proficiency tests, intercomparisons and site visits by technical experts to review operations. In Croatia, laboratories are yet to be accredited in the field of radiation protection. However, harmonisation of technical legislation with the EU legal system will require some changes in laws and regulations in the field of radiation protection, including the ones dealing with the notification of testing laboratories and connected procedures. Regarding the notification procedures for testing laboratories in Croatia, in the regulated area, the existing accreditation infrastructure, i.e. Croatian Accreditation Agency is ready for its implementation, as it has already established and further developed a consistent accreditation system, compatible with international requirements and procedures.(author)

  18. Standards in radiation protection at the IAEA Dosimetry Laboratory

    International Nuclear Information System (INIS)

    Czap, L.; Pernicka, F.; Matscheko, G.; Andreo, P.

    1999-01-01

    Approximately 90% of the Secondary Standard Dosimetry Laboratories (SSDLs) provide users with calibrations of radiation protection instruments, and the Agency is making every necessary effort to insure that SSDLs measurements in radiation protection are traceable to Primary Standards. The IAEA provides traceable calibrations of ionization chambers in terms of air kerma at radiation protection levels and ambient dose equivalent calibrations. SSDLs are encouraged to use the calibrations available from the Agency to provide traceability for their radiation protection measurements. Measurements on diagnostic X ray generators have become increasingly important in radiation protection and some SSDLs are involved in such measurements. The IAEA has proper radiation sources available to provide traceable calibrations to the SSDLs in this field, including an X ray unit specifically for mammography dedicated to standardization procedures. The different photon beam qualities and calibration procedures available in the Agency's Dosimetry Laboratory will be described. (author)

  19. Radiation detectors laboratory; Laboratorio de detectores de radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez J, F.J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  20. Radiation protection calibration facilities at the National Radiation Laboratory, New Zealand

    International Nuclear Information System (INIS)

    Foote, B.J.

    1995-01-01

    The National Radiation Laboratory (NRL), serving under the Ministry of Health, provides radiation protection services to the whole of New Zealand. Consequently it performs many functions that are otherwise spread amongst several organizations in larger countries. It is the national regulatory body for radiation protection. It writes and enforces codes of safe practice, and conducts safety inspections of all workplaces using radiation. It provides a personal monitoring service for radiation workers. It also maintains the national primary standards for x-ray exposure and 60 Co air kerma. These standards are transferred to hospitals through a calibration service. The purpose of this report is to outline the primary standards facilities at NRL, and to discuss the calibration of dosemeters using these facilities. (J.P.N.)

  1. National Laboratory of Ionizing Radiation Metrology - Brazilian CNEN

    International Nuclear Information System (INIS)

    1992-01-01

    The activities of the Brazilian National Laboratory of Ionizing Radiations Metrology are described. They include research and development of metrological techniques and procedures, the calibration of area radiation monitors, clinical dosemeters and other instruments and the preparation and standardization of reference radioactive sources. 4 figs., 13 tabs

  2. Radiation safety. Handbook for laboratory workers in the USA

    International Nuclear Information System (INIS)

    Hotte, E.D.; Krueger, D.J.; Connor, K.

    2000-01-01

    The aim of the Handbook is to provide a source of information on radiation safety for those who are involved in the use of ionizing radiation in the laboratory. The potential reader may be a laboratory worker in the university or biomedical setting or the safety professional who desires a basic understanding of radiation protection within the research environment. The Handbook may be used as a reference by the radiation protection specialist or Radiation Safety Officer. To this end, liberal use is made of Appendices to make the Handbook a source of reference for a wide spectrum of readership while avoiding complicating the main body of the text. Each chapter or appendix is designed to stand alone. A complete reading of the Handbook will show that topics may be covered more than once. For example, one may read about the hazards and protective measures on handling radioiodine in Chapter 5 on Practical Radiation Protection as well as in Appendix 19 on Safe Handling of 125 I. Extensive use of figures, rather than tables has been made to present data, in the belief that these produce a good visual representation to a level of precision which is sufficient for most purposes of radiation protection in laboratories. The reader must remember that this Handbook should be taken as a guide only to the applicable regulations. You must consult the appropriate state or federal regulation directly or receive advice of a qualified radiation safety professional. Also, some information in the Appendices, such as commercially available training institutions or radioactive waste brokers, may change with time. Telephone numbers are given for the reader to call directly and check the services provided

  3. Ambient environmental radiation monitoring at the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Lindeken, C.L.; White, J.H.; Toy, A.J.; Sundbeck, C.W.

    1975-01-01

    Thermoluminescence dosimetry is the principal means of measuring ambient γ radiation at the Lawrence Livermore Laboratory. These dosimeters are used at 12 perimeter locations and 41 locations in the off-site vicinity of the Laboratory, and are exchanged quarterly. Control dosimeters are stored in a 75-mm-thick lead shield located out-of-doors to duplicate temperature cycling of field dosimeters. Effect of dosimeter response to radiation in the shield is determined each quarter. Calibration irradiations are made midway through the exposure cycle to compensate for signal fading. Terrestrial exposure rates calculated from the activities of naturally occurring uranium, thorium, and potassium in Livermore Valley soils vary from 3 to 7 μR/hr. Local inferred exposure rates from cosmic radiation are approximately 4 μR/hr. TLD measurements are in good agreement with these data. Off-site and site perimeter data are compared, and differences related to Laboratory operations are discussed

  4. Design and implementation of a virtual laboratory of radiation measurement

    International Nuclear Information System (INIS)

    Alvarez T, J. R.; Morales S, J. B.

    2009-10-01

    The work involves the implementation of a virtual laboratory, this project is conducted in the Faculty of Engineering of National Autonomous University of Mexico with the name of LANUVI. It is intended that the laboratory can be used by students who have interest in the nuclear radiation knowledge as well as in its detection and attenuation, in addition serve as and introduction to nuclear systems. In the first part of project will conduct a source that can simulate the particle radiation of Alfa, beta, neutrons and gamma rays. The project will take sources used in class laboratories and elements that are dangerous but are used in different practical applications. After taking the source analyzing the particles behaviour in different media like air, animal tissue, aluminium, lead, etc. The analysis is done in different ways in order to know with which material can stop or mitigate the different types of radiation. Finally shall be measure radioactivity with different types of detectors. At this point, has the behaviour of ionization chamber but in the future is expected to make the simulation of some other radiation detectors. The mathematical models we represent the behaviour of these cases were implemented in free software. The program will be used to implement the virtual laboratory with radiation sources, detectors and different types of shields will be Blender which is a free software that is used by many users for the embodiment of games but try to use as a tool to help visualize the different equipment that is widely used in a radioactive materials laboratory. (Author)

  5. Data survey about radiation protection and safety of radiation sources in research laboratories

    International Nuclear Information System (INIS)

    Paura, Clayton L.; Dantas, Ana Leticia A.; Dantas, Bernardo M.

    2005-01-01

    In Brazil, different types of research using unsealed sources are developed with a variety of radioisotopes. In such activities, professionals and students involved are potentially exposed to internal contamination by 14 C, 45 Ca, 51 Cr, 3 H, 125 I, 32 P, 33 P, 35 S, 90 Sr and 99m Tc. The general objective of this work is to evaluate radiological risks associated to these practices in order to supply information for planning actions aimed to improve radiation protection conditions in research laboratories. The criteria for risk evaluation and the safety aspects adopted in this work were based on CNEN Regulation 6.02 and in IAEA and NRPB publications. The survey of data was carried out during visits to laboratories in public Universities located in the city of Rio de Janeiro where unsealed radioactive sources are used in biochemistry, biophysics and genetic studies. According to the criteria adopted in this work, some practices developed in the laboratories require evaluation of risk of internal contamination depending on the conditions of source manipulation. It was verified the need for training of users of radioactive materials in this type of laboratory. This can be facilitated by the use of basic guides for the classification of areas, radiation protection, safety and source security in research laboratories. It was also observed the need for optimization of such practices in order to minimize the contact with sources. It is recommended to implement more effective source and access controls as a way to reduce risks of individual radiation exposure and loss of radioactive materials (author)

  6. Practice for characterization and performance of a high-dose radiation dosimetry calibration laboratory

    International Nuclear Information System (INIS)

    2003-01-01

    This practice addresses the specific requirements for laboratories engaged in dosimetry calibrations involving ionizing radiation, namely, gamma-radiation, electron beams or X-radiation (bremsstrahlung) beams. It specifically describes the requirements for the characterization and performance criteria to be met by a high-dose radiation dosimetry calibration laboratory. The absorbed-dose range is typically between 10 and 10 5 Gy. This practice addresses criteria for laboratories seeking accreditation for performing high-dose dosimetry calibrations, and is a supplement to the general requirements described in ISO/IEC 17025. By meeting these criteria and those in ISO/IEC 17025, the laboratory may be accredited by a recognized accreditation organization. Adherence to these criteria will help to ensure high standards of performance and instill confidence regarding the competency of the accredited laboratory with respect to the services it offers

  7. LAWRENCE RADIATION LABORATORY COUNTING HANDBOOK

    Energy Technology Data Exchange (ETDEWEB)

    Group, Nuclear Instrumentation

    1966-10-01

    The Counting Handbook is a compilation of operational techniques and performance specifications on counting equipment in use at the Lawrence Radiation Laboratory, Berkeley. Counting notes have been written from the viewpoint of the user rather than that of the designer or maintenance man. The only maintenance instructions that have been included are those that can easily be performed by the experimenter to assure that the equipment is operating properly.

  8. Astrophysical radiative shocks: From modeling to laboratory experiments

    Czech Academy of Sciences Publication Activity Database

    Gonzales, N.; Stehlé, C.; Audit, E.; Busquet, M.; Rus, Bedřich; Thais, F.; Acef, O.; Barroso, P.; Bar-Shalom, A.; Bauduin, D.; Kozlová, Michaela; Lery, T.; Madouri, A.; Mocek, Tomáš; Polan, Jiří

    2006-01-01

    Roč. 24, - (2006), s. 535-540 ISSN 0263-0346 EU Projects: European Commission(XE) 506350 - LASERLAB-EUROPE; European Commission(XE) 5592 - JETSET Grant - others:CNRS(FR) PNPS Institutional research plan: CEZ:AV0Z10100523 Keywords : laboratory astrophysics * laser plasmas * radiative shock waves * radiative transfer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.958, year: 2006

  9. Experiences in Accreditation of Laboratories in the Field of Radiation Science

    International Nuclear Information System (INIS)

    Franic, Z.; Galjanic, S.; Krizanec, D.

    2011-01-01

    Efficient interaction of technical legislation, metrology, standardization and accreditation within the system of quality infrastructure is precondition for assurance of safety of goods and services as well as protection of humans and environment. In the paper importance of quality infrastructure on national and international levels is presented while special interest is paid to accreditation. Current situation regarding the accreditation of laboratories in the field of radiation science is presented. Regarding this field, in Croatia three laboratories are accredited by Croatian Accreditation Agency: 1. Laboratory for Radioecology, Rudjer Boskovic Institute (Scope: Measurement of radionuclide content in environmental samples and commodities - Including foodstuffs and drinking water) 2. EKOTEH Dozimetrija Ltd., Department for Radiation Protection (Scope: Testing in the scope of ionizing and nonionizing radiation) 3. Radiation Protection Unit, Institute for Medical Research and Occupational Health (Scope: Determination of radioactivity). (author)

  10. A Radiation Laboratory Curriculum Development at Western Kentucky University

    International Nuclear Information System (INIS)

    Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C.

    2009-01-01

    We present the latest developments for the radiation laboratory curriculum at the Department of Physics and Astronomy of Western Kentucky University. During the last decade, the Applied Physics Institute (API) at WKU accumulated various equipment for radiation experimentation. This includes various neutron sources (computer controlled d-t and d-d neutron generators, and isotopic 252 Cf and PuBe sources), the set of gamma sources with various intensities, gamma detectors with various energy resolutions (NaI, BGO, GSO, LaBr and HPGe) and the 2.5-MeV Van de Graaff particle accelerator. XRF and XRD apparatuses are also available for students and members at the API. This equipment is currently used in numerous scientific and teaching activities. Members of the API also developed a set of laboratory activities for undergraduate students taking classes from the physics curriculum (Nuclear Physics, Atomic Physics, and Radiation Biophysics). Our goal is to develop a set of radiation laboratories, which will strengthen the curriculum of physics, chemistry, geology, biology, and environmental science at WKU. The teaching and research activities are integrated into real-world projects and hands-on activities to engage students. The proposed experiments and their relevance to the modern status of physical science are discussed.

  11. Light source for synchrotron radiation x-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL)

    International Nuclear Information System (INIS)

    Zhao Jiyong; Jiang Jianhua; Tian Yulian

    1992-01-01

    Characteristics of the synchrotron radiation source for X-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL) is described, local geometrical resolution of topographies is discussed, and the diffracting intensities of white beam topography is given

  12. Solar Radiation Research Laboratory | Energy Systems Integration Facility |

    Science.gov (United States)

    Solar Radiation Research Laboratory (SRRL) has been collecting continuous measurements of basic solar continuous operation. More than 75 instruments contribute to the Baseline Measurement System by recording

  13. An overview of the facilities of the Ionizing Radiation Laboratory, South Africa

    International Nuclear Information System (INIS)

    Mostert, J.C.

    2002-01-01

    The Ionising Radiation Laboratory (IRL) of the CSIR-National Metrology Laboratory (NML) in South Africa was recently accepted as a member of the IAEA SSDL network. This article gives a very brief overview of the services and facilities provided by this laboratory. The NML has the responsibility to realize and maintain the national measuring standards in South Africa. In the field of ionizing radiation, this function is performed by the IRL. The IRL provides traceability through its calibration and measurement services for regulatory authorities, institutions providing radiation therapy services such as hospitals and other oncology centres, radiation protection service providers such as the South African Bureau of Standards (SABS), the radiation protection industry in general and to companies providing industrial quality assurance services. These services also extend to a number of countries in the Southern African Development Community (SADC) which do not currently have metrology facilities of their own

  14. Savannah River Plant/Savannah River Laboratory radiation exposure report

    International Nuclear Information System (INIS)

    Rogers, C.D.; Hyman, S.D.; Keisler, L.L.; Reeder, D.F.; Jolly, L.; Spoerner, M.T.; Schramm, G.R.

    1989-01-01

    The protection of worker health and safety is of paramount concern at the Savannah River Site. Since the site is one of the largest nuclear sites in the nation, radiation safety is a key element in the protection program. This report is a compendium of the results in 1988 of the programs at the Savannah River Plant and the Savannah River Laboratory to protect the radiological health of employees. By any measure, the radiation protection performance at this site in 1988 was the best since the beginning of operations. This accomplishment was made possible by the commitment and support at all levels of the organizations to reduce radiation exposures to ALARA (As Low As Reasonably Achievable). The report provides detailed information about the radiation doses received by departments and work groups within these organizations. It also includes exposure data for recent years to allow Plant and Laboratory units to track the effectiveness of their ALARA efforts. Many of the successful practices and methods that reduced radiation exposure are described. A new goal for personnel contamination cases has been established for 1989. Only through continual and innovative efforts to minimize exposures can the goals be met. The radiation protection goals for 1989 and previous years are included in the report. 27 figs., 58 tabs

  15. Laboratory of research for environmental radiation and its dosimetry in the ININ

    International Nuclear Information System (INIS)

    Chavez S, B.M.

    2003-01-01

    The objectives of this work are to learn on the methodology that should be continued for the investigation of such a specialized topic as it is a radiation laboratory and to develop the executive project of a building that contains laboratories focused to the investigation of the radiation levels in the environment and their dosimetry. The National Institute of Nuclear Research (ININ), is the place where are carried out many of the investigations related to the field of the physics and chemistry in Mexico besides being the center of nuclear research more important of Latin America and it is for that reason that here is proposed the Laboratory of Low Radiation and its Dosimetry, since the Institute accounts with the whole infrastructure and necessary safety for this type of laboratories. (Author)

  16. Calibration of radioprotection equipment gamma radiation at the Laboratory of Ionizing Radiation Metrology - DEN/UFPE

    International Nuclear Information System (INIS)

    Nazario, Macilene; Khoury, Helen; Hazin, Clovis

    2003-01-01

    This work presents aspects of the radioprotection equipment calibration service of the Laboratory for Metrology of Ionizing Radiations (LMRI) of the DEN/UFPE related to the calibration procedures, characteristics of the radiation beam and the evaluation of equipment calibrated in the period of 2001-2002. The LMRI-DEN/UFPE is one of the four laboratories in Brazil licensed by the Brazilian Nuclear Energy Commission for the execution of calibration services on area, surface contamination and personal monitors used by industries, hospitals, universities and research institutes using radioactive sources

  17. Standardization of irradiation values at the Radiation Calibration Laboratory

    International Nuclear Information System (INIS)

    Pham Van Dung; Hoang Van Nguyen; Phan Van Toan; Phan Dinh Sinh; Tran Thi Tuyet; Do Thi Phuong

    2007-01-01

    The objective of the theme is to determine dose rates around radiation facilities and sources in the NRI Radiation Calibration Laboratory. By improving equipment, calibrating a main dosemeter and carrying out experiments, the theme team received the following results: 1. The controller of a X-rays generator PY(-200 was improved. It permits to increase accuracy of radiation dose calibration up to 2-4 times; 2. The FAMER DOSEMETER 2570/1B with the ionization chamber NE 2575 C of the NRI Radiation Calibration Laboratory was calibrated at SSDL (Hanoi); 3. Dose rates at 4 positions around a high activity Co-60 source were determined; 4. Dose rates at 3 positions around a low activity Co-60 source were determined; 5. Dose rates at 3 positions around a low activity Cs-137 source were determined; 6. Dose rate at 1 position of a X-rays beam (Eaverage = 48 keV) was determined; 7. Dose rate at 1 position of a X-rays beam (Eaverage = 65 keV) was determined. (author)

  18. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory

    Science.gov (United States)

    Norbury, John W.; Schimmerling, Walter; Slaba, Tony C.; Azzam, Edouard I.; Badavi, Francis F.; Baiocco, Giorgio; Benton, Eric; Bindi, Veronica; Blakely, Eleanor A.; Blattnig, Steve R.; Boothman, David A.; Borak, Thomas B.; Britten, Richard A.; Curtis, Stan; Dingfelder, Michael; Durante, Marco; Dynan, William S.; Eisch, Amelia J.; Elgart, S. Robin; Goodhead, Dudley T.; Guida, Peter M.; Heilbronn, Lawrence H.; Hellweg, Christine E.; Huff, Janice L.; Kronenberg, Amy; La Tessa, Chiara; Lowenstein, Derek I.; Miller, Jack; Morita, Takashi; Narici, Livio; Nelson, Gregory A.; Norman, Ryan B.; Ottolenghi, Andrea; Patel, Zarana S.; Reitz, Guenther; Rusek, Adam; Schreurs, Ann-Sofie; Scott-Carnell, Lisa A.; Semones, Edward; Shay, Jerry W.; Shurshakov, Vyacheslav A.; Sihver, Lembit; Simonsen, Lisa C.; Story, Michael D.; Turker, Mitchell S.; Uchihori, Yukio; Williams, Jacqueline; Zeitlin, Cary J.

    2017-01-01

    Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation. PMID:26948012

  19. Occupational radiation exposures in research laboratories

    International Nuclear Information System (INIS)

    Vaccari, S.; Papotti, E.; Pedrazzi, G.

    2006-01-01

    Radioactive sources are widely used in many research activities at University centers. In particular, the activities concerning use of sealed form ( 57 Co in Moessbauer application) and unsealed form ( 3 H, 14 C, 32 P in radioisotope laboratories) are analyzed. The radiological impact of these materials and potential effective doses to researchers and members of the public were evaluated to show compliance with regulatory limits. A review of the procedures performed by researchers and technicians in the research laboratories with the relative dose evaluations is presented in different situations, including normal operations and emergency situations, for example the fire. A study of the possible exposure to radiation by workers, restricted groups of people, and public in general, as well as environmental releases, is presented. (authors)

  20. Research Laboratory of Mixed Radiation Dosimetry

    International Nuclear Information System (INIS)

    2002-01-01

    Full text: Two main topics of the research work in the Laboratory of Mixed Radiation Dosimetry in 2001 were: development of recombination methods for dosimetry of mixed radiation fields and maintenance and development of unique in Poland reference neutron fields. Additionally research project on internal dosimetry were carried out in collaboration with Division of Radiation Protection Service. RECOMBINATION METHODS Recombination methods make use of the fact that the initial recombination of ions in the gas cavity of the ionization chamber depends on local ionization density. The later can be related to linear energy transfer (LET) and provides information on radiation quality of the investigated radiation fields. Another key feature of the initial recombination is that it does not depend of dose rate. Conditions of initial (local) recombination can be achieved in specially designed high pressure tissue-equivalent ionization chambers, called the recombination chambers. They are usually parallel-plate ionization chambers filled with a tissue-equivalent gas mixture under a pressure of order 1 MPa. The spacing between electrodes is of order of millimeters. At larger spacing, the volume recombination limits the maximum dose rate at which the chamber can be properly operated. The output of the chamber is the ionization current (or collected charge) as a function of collecting voltage. All the recombination methods require the measurement of the ionization current (or charge) at least at two values of the collecting voltage applied to the chamber. The highest voltage should provide the conditions close to saturation (but below discharge or multiplication). The ionization current measured at maximum applied voltage is proportional to the absorbed dose, D, (some small corrections for lack of saturation can be introduced when needed). Measurements at other voltages are needed for the determination of radiation quality. The total dose equivalent in a mixed radiation field is

  1. Sample tracking in an automated cytogenetic biodosimetry laboratory for radiation mass casualties

    International Nuclear Information System (INIS)

    Martin, P.R.; Berdychevski, R.E.; Subramanian, U.; Blakely, W.F.; Prasanna, P.G.S.

    2007-01-01

    Chromosome-aberration-based dicentric assay is expected to be used after mass-casualty life-threatening radiation exposures to assess radiation dose to individuals. This will require processing of a large number of samples for individual dose assessment and clinical triage to aid treatment decisions. We have established an automated, high-throughput, cytogenetic biodosimetry laboratory to process a large number of samples for conducting the dicentric assay using peripheral blood from exposed individuals according to internationally accepted laboratory protocols (i.e., within days following radiation exposures). The components of an automated cytogenetic biodosimetry laboratory include blood collection kits for sample shipment, a cell viability analyzer, a robotic liquid handler, an automated metaphase harvester, a metaphase spreader, high-throughput slide stainer and coverslipper, a high-throughput metaphase finder, multiple satellite chromosome-aberration analysis systems, and a computerized sample-tracking system. Laboratory automation using commercially available, off-the-shelf technologies, customized technology integration, and implementation of a laboratory information management system (LIMS) for cytogenetic analysis will significantly increase throughput. This paper focuses on our efforts to eliminate data-transcription errors, increase efficiency, and maintain samples' positive chain-of-custody by sample tracking during sample processing and data analysis. This sample-tracking system represents a 'beta' version, which can be modeled elsewhere in a cytogenetic biodosimetry laboratory, and includes a customized LIMS with a central server, personal computer workstations, barcode printers, fixed station and wireless hand-held devices to scan barcodes at various critical steps, and data transmission over a private intra-laboratory computer network. Our studies will improve diagnostic biodosimetry response, aid confirmation of clinical triage, and medical

  2. Sample tracking in an automated cytogenetic biodosimetry laboratory for radiation mass casualties

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P.R.; Berdychevski, R.E.; Subramanian, U.; Blakely, W.F. [Armed Forces Radiobiology Research Institute, Uniformed Services University of Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States); Prasanna, P.G.S. [Armed Forces Radiobiology Research Institute, Uniformed Services University of Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)], E-mail: prasanna@afrri.usuhs.mil

    2007-07-15

    Chromosome-aberration-based dicentric assay is expected to be used after mass-casualty life-threatening radiation exposures to assess radiation dose to individuals. This will require processing of a large number of samples for individual dose assessment and clinical triage to aid treatment decisions. We have established an automated, high-throughput, cytogenetic biodosimetry laboratory to process a large number of samples for conducting the dicentric assay using peripheral blood from exposed individuals according to internationally accepted laboratory protocols (i.e., within days following radiation exposures). The components of an automated cytogenetic biodosimetry laboratory include blood collection kits for sample shipment, a cell viability analyzer, a robotic liquid handler, an automated metaphase harvester, a metaphase spreader, high-throughput slide stainer and coverslipper, a high-throughput metaphase finder, multiple satellite chromosome-aberration analysis systems, and a computerized sample-tracking system. Laboratory automation using commercially available, off-the-shelf technologies, customized technology integration, and implementation of a laboratory information management system (LIMS) for cytogenetic analysis will significantly increase throughput. This paper focuses on our efforts to eliminate data-transcription errors, increase efficiency, and maintain samples' positive chain-of-custody by sample tracking during sample processing and data analysis. This sample-tracking system represents a 'beta' version, which can be modeled elsewhere in a cytogenetic biodosimetry laboratory, and includes a customized LIMS with a central server, personal computer workstations, barcode printers, fixed station and wireless hand-held devices to scan barcodes at various critical steps, and data transmission over a private intra-laboratory computer network. Our studies will improve diagnostic biodosimetry response, aid confirmation of clinical triage, and

  3. Determination of the scattered radiation at the Neutron Calibration Laboratory of IPEN, SP, Brazil

    International Nuclear Information System (INIS)

    Alvarenga, Tallyson; Valeriano, Caio C.S.; Caldas, Linda V.E.; Federico, Claudio A.

    2016-01-01

    With the increased use of techniques using neutron radiation, there has been a considerable growth in the number of detectors for this kind of radiation. A neutron calibration laboratory with neutron radiation ("2"4"1AmBe) was designed. In practical situations of this type of laboratory, one of the main problems is related to the knowledge of scattered radiation. In order to evaluate this scattered radiation, simulations were carried out without the presence of structural elements and with the complete room. Fourteen measuring points were evaluated in different directions at various distances. (author)

  4. Occupational radiation exposures in research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Vaccari, S.; Papotti, E. [Parma Univ., Health Physics (Italy); Pedrazzi, G. [Parma Univ., Dept. of Public Health (Italy)

    2006-07-01

    Radioactive sources are widely used in many research activities at University centers. In particular, the activities concerning use of sealed form ({sup 57}Co in Moessbauer application) and unsealed form ({sup 3}H, {sup 14}C, {sup 32}P in radioisotope laboratories) are analyzed. The radiological impact of these materials and potential effective doses to researchers and members of the public were evaluated to show compliance with regulatory limits. A review of the procedures performed by researchers and technicians in the research laboratories with the relative dose evaluations is presented in different situations, including normal operations and emergency situations, for example the fire. A study of the possible exposure to radiation by workers, restricted groups of people, and public in general, as well as environmental releases, is presented. (authors)

  5. Ambient radiation levels in a microPET/CT research laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sarmento, D.M.; Rodrigues, D.L.; Sanches, M.P.; Carneiro, J.C.G.G., E-mail: janetegc@ipen.br [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    This study focuses on initial radiological evaluation and the exposure situation related to the worker task in a micro-positron emission tomography/computed tomography laboratory (microPET/CT). Selected and calibrated thermoluminescent dosimeters, TLD, of CaSO{sub 4}:Dy were used to measure room radiation levels. The detectors were placed in several selected points inside the microPET/CT laboratory and adjacent rooms. In addition, the occupationally exposed workers were monthly evaluated for external and internal exposures. In none of the selected points the dose values exceeded the radiation dose limit established for supervised area, as well as the values obtained in individual monitoring. (author)

  6. Ambient radiation levels in a microPET/CT research laboratory

    International Nuclear Information System (INIS)

    Sarmento, D.M.; Rodrigues, D.L.; Sanches, M.P.; Carneiro, J.C.G.G.

    2015-01-01

    This study focuses on initial radiological evaluation and the exposure situation related to the worker task in a micro-positron emission tomography/computed tomography laboratory (microPET/CT). Selected and calibrated thermoluminescent dosimeters, TLD, of CaSO 4 :Dy were used to measure room radiation levels. The detectors were placed in several selected points inside the microPET/CT laboratory and adjacent rooms. In addition, the occupationally exposed workers were monthly evaluated for external and internal exposures. In none of the selected points the dose values exceeded the radiation dose limit established for supervised area, as well as the values obtained in individual monitoring. (author)

  7. Participation of the radiation hygiene laboratories to the WHO/UNEP global environmental radiation network

    International Nuclear Information System (INIS)

    Milu, C.; Gheorghe, R.

    2003-01-01

    In December 1987, a WHO-UNEP meeting held at SCPRI (Service Central de protection canter Les Rayonnements Ionisantes - Le Vesinet, France) set up the basis of the international network GERMON (Global Environmental Radiation Monitoring Network) as an extension of existing network 'Global Environment Monitoring Systems' (GEMS). The accident from Chernobyl certainly was the important nuclear event influencing this decision. The aim of the GERMON network is to initiate programmes for the routine monitoring of the environmental radioactivity and to ensure a quick interchange of credible data in case of major accidental radioactive releases, as well as the development of intervention devices in the member states running such programmes. The responsibility of the Co-ordinating Collaborating Centre (CCC) has been given to the French Service Central de Protection Centre les Rayonnements Ionisants (SCPRI). In 1994, this Service became the Office de Protection Centre les Rayonnements Ionisants (OPRI). The Ministry of Health has a national network consisting of 23 radiation hygiene laboratories; 19 of these are included in the framework of county divisions of public health , and the other 4 are compartments of the regional institutes of public health. WHO designated the Institute of Public Health from Bucharest as National Contact Centre, in charge with communicating the results obtained by the national laboratories on the indicators of environmental radioactivity, according to the established methodologies. The main indicators considered are: ambient gamma dose, radioactivity of the air, of the precipitation, and of the milk. Following the measurement and transmission protocols of the CCC, the Radiation Hygiene Laboratory from the Institute of Public Health has established a methodology to be followed by the laboratories of the national network. (authors)

  8. Role of secondary standard dosimetry laboratory in radiation protection program

    International Nuclear Information System (INIS)

    Rahman, Sohaila; Ali, Noriah Mohd.

    2008-01-01

    Full text: The radiation dosimetry program is an important element of operational radiation protection. Dosimetry data enable workers and radiation protection professionals to evaluate and control work practices to eliminate unnecessary exposure to ionizing radiation. The usefulness of the data produced however depends on its quality and traceability. The emphasis of the global dosimetry program is focused through the IAEA/WHO network of secondary standard dosimetry laboratories (SSDLs), which aims for the determination of SI quantities through proper traceable calibration of radiation protection equipment. The responsibility of SSDL-NUCLEAR MALAYSIA to guarantee a reliable dosimetry service, which is traceable to international standards, is elucidated. It acts as the basis for harmonized occupational radiation monitoring in Malaysia.

  9. Image noise reduction technology reduces radiation in a radial-first cardiac catheterization laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gunja, Ateka; Pandey, Yagya [Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL (United States); Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL (United States); Xie, Hui [Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL (United States); Faculty of Health Sciences, Simon Fraser University, Burnaby, BC (Canada); Wolska, Beata M. [Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL (United States); Shroff, Adhir R.; Ardati, Amer K. [Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL (United States); Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL (United States); Vidovich, Mladen I., E-mail: miv@uic.edu [Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL (United States); Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL (United States)

    2017-04-15

    Background: Transradial coronary angiography (TRA) has been associated with increased radiation doses. We hypothesized that contemporary image noise reduction technology would reduce radiation doses in the cardiac catheterization laboratory in a typical clinical setting. Methods and results: We performed a single-center, retrospective analysis of 400 consecutive patients who underwent diagnostic and interventional cardiac catheterizations in a predominantly TRA laboratory with traditional fluoroscopy (N = 200) and a new image noise reduction fluoroscopy system (N = 200). The primary endpoint was radiation dose (mGy cm{sup 2}). Secondary endpoints were contrast dose, fluoroscopy times, number of cineangiograms, and radiation dose by operator between the two study periods. Radiation was reduced by 44.7% between the old and new cardiac catheterization laboratory (75.8 mGy cm{sup 2} ± 74.0 vs. 41.9 mGy cm{sup 2} ± 40.7, p < 0.0001). Radiation was reduced for both diagnostic procedures (45.9%, p < 0.0001) and interventional procedures (37.7%, p < 0.0001). There was no statistically significant difference in radiation dose between individual operators (p = 0.84). In multivariate analysis, radiation dose remained significantly decreased with the use of the new system (p < 0.0001) and was associated with weight (p < 0.0001), previous coronary artery bypass grafting (p < 0.0007) and greater than 3 stents used (p < 0.0004). TRA was used in 90% of all cases in both periods. Compared with a transfemoral approach (TFA), TRA was not associated with higher radiation doses (p = 0.20). Conclusions: Image noise reduction technology significantly reduces radiation dose in a contemporary radial-first cardiac catheterization clinical practice. - Highlights: • Radial arterial access has been associated with higher doses compared to femoral access. • In a radial-first cardiac catheterization laboratory (90% radial) we examined radiation doses reduction with a contemporary image

  10. Image noise reduction technology reduces radiation in a radial-first cardiac catheterization laboratory

    International Nuclear Information System (INIS)

    Gunja, Ateka; Pandey, Yagya; Xie, Hui; Wolska, Beata M.; Shroff, Adhir R.; Ardati, Amer K.; Vidovich, Mladen I.

    2017-01-01

    Background: Transradial coronary angiography (TRA) has been associated with increased radiation doses. We hypothesized that contemporary image noise reduction technology would reduce radiation doses in the cardiac catheterization laboratory in a typical clinical setting. Methods and results: We performed a single-center, retrospective analysis of 400 consecutive patients who underwent diagnostic and interventional cardiac catheterizations in a predominantly TRA laboratory with traditional fluoroscopy (N = 200) and a new image noise reduction fluoroscopy system (N = 200). The primary endpoint was radiation dose (mGy cm"2). Secondary endpoints were contrast dose, fluoroscopy times, number of cineangiograms, and radiation dose by operator between the two study periods. Radiation was reduced by 44.7% between the old and new cardiac catheterization laboratory (75.8 mGy cm"2 ± 74.0 vs. 41.9 mGy cm"2 ± 40.7, p < 0.0001). Radiation was reduced for both diagnostic procedures (45.9%, p < 0.0001) and interventional procedures (37.7%, p < 0.0001). There was no statistically significant difference in radiation dose between individual operators (p = 0.84). In multivariate analysis, radiation dose remained significantly decreased with the use of the new system (p < 0.0001) and was associated with weight (p < 0.0001), previous coronary artery bypass grafting (p < 0.0007) and greater than 3 stents used (p < 0.0004). TRA was used in 90% of all cases in both periods. Compared with a transfemoral approach (TFA), TRA was not associated with higher radiation doses (p = 0.20). Conclusions: Image noise reduction technology significantly reduces radiation dose in a contemporary radial-first cardiac catheterization clinical practice. - Highlights: • Radial arterial access has been associated with higher doses compared to femoral access. • In a radial-first cardiac catheterization laboratory (90% radial) we examined radiation doses reduction with a contemporary image-noise compared to

  11. Synchrotron radiation laboratories at the Bonn electron accelerators. a status report

    Science.gov (United States)

    Hormes, J.

    1987-07-01

    At the Physikalisches Institut of the University in Bonn experiments with synchrotron radiation were carried out ever since 1962. At the moment (June 1986) all work takes place in the SR-laboratory at the 2.5 GeV synchrotron. A 3.5 GeV stretcher ring (ELSA) is under construction and will come into operation at the end of 1986. This accelerator will also run as a storage ring for synchrotron radiation experiments and a laboratory to be used at this machine is also under consideration. The SR experiments which are carried out in Bonn try to take advantage of the fact that we are still using a high energy synchrotron for our work. Besides basic research also applied work is done using synchrotron radiation even as a production tool for X-ray lithography.

  12. Guidelines for Member States concerning radiation measurement standards and Secondary Standard Dosimetry Laboratories

    International Nuclear Information System (INIS)

    1986-01-01

    In the early nineteen-sixties an acute need developed for higher dosimetric accuracy in radiation therapy, particularly in developing countries. This need led to the establishment of a number of dosimetry laboratories around the world, specializing in the calibration of radiation therapy dosimeters. In order to co-ordinate the provision of guidance and assistance to such laboratories, the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) set up a Network of Secondary Standard Dosimetry Laboratories (SSDLs) under their joint aegis, as described in the IAEA booklet 'SSDLs: Development and Trends' (1985). This publication includes detailed criteria for the establishment of these laboratories. The present guidelines deal with the functions and status of SSDLs, in particular with the need for recognition and support by the competent national authorities. (author)

  13. Report on a Workshop on mobile laboratories for monitoring environmental radiation

    International Nuclear Information System (INIS)

    Andrasi, A,; Nemeth, I.; Zombori, P.; Urban, J.

    1992-01-01

    The international Workshop organized by the Health Physics Department of the Central Research Institute for Physics and by the Radiation Protection Department of the Paks Nuclear Power Plant was presented in this paper. The aims of the Workshop were the introduction of the mobile laboratories and the demonstration of the applied methods for monitoring environmental radiation in accidental situation. The intercomparison measurements showed that the results given by different participating laboratories (9 institutions from the middle and east European region) agreed well within an acceptable error margin. The demonstration, measurements and discussions were very useful for the participants and this could be a good basis for further developments and cooperations among the participating institutions. (author) 7 figs.; 2 tabs

  14. Building the basis for a comprehensive radiation protection program for a multi-program laboratory

    International Nuclear Information System (INIS)

    Copenhaver, E.D.

    1987-01-01

    An explicit, workplace-specific training has been developed, implemented, and documented for all radiation workers. In addition to the radiation worker personnel located at reactors, accelerators, radiochemical laboratories, and waste treatment areas, we have trained other personnel who work in areas where a lesser potential for radiological/chemical exposure exists. These workforces include construction crews, site restoration crews, contracted special services such as scoping and site characterization teams, and short-term visitors. We are developing a comprehensive, integrated approach to radiation protection training suited for a multi-purpose research laboratory. 9 refs., 1 fig., 1 tab

  15. How to prepare a calibration laboratory for ionizing radiation using X rays

    International Nuclear Information System (INIS)

    Bossio, Francisco; Cardoso, Ricardo de Souza; Quaresma, Daniel da Silva; Batista Filha, Luzianete do Amaral; Peixoto, Jose Guilherme Pereira

    2013-01-01

    This work shows the main features of a system for calibration and testing of radiation detectors used in low and medium energy. It is based on pre-assembly System Laboratory of Metrology Division (DIMET) Institute of Radiation Protection and Dosimetry (IRD) of the National Commission of Nuclear Energy (CNEN). (author)

  16. Dosimeter calibration facilities and methods at the Radiation Measurement Laboratory of the Centre d'etudes nucleaires, Grenoble

    International Nuclear Information System (INIS)

    Choudens, H. de; Herbaut, Y.; Haddad, A.; Giroux, J.; Rouillon, J.; CEA Centre d'Etudes Nucleaires de Grenoble, 38

    1975-01-01

    At the Centre d'etudes nucleaires, Grenoble, the Radiation Measurement Laboratory, which forms part of the Environmental Protection and Research Department, serves the entire Centre for purposes of dosimetry and the calibration of dose meters. The needs of radiation protection are such that one must have facilities for checking periodically the calibration of radiation-monitoring instruments and developing special dosimetry techniques. It was thought a good idea to arrange for the dosimetry and radiation protection team to assist other groups working at the Centre - in particular, the staff of the biology and radiobiology laboratories - and also bodies outside the framework of the French Commissariat a l'energie atomique. Thus, technical collaboration has been established with, for example, Grenoble's Centre hospitalier universitaire (university clinic), which makes use of the facilities and skills available at the Radiation Measurement Laboratory for solving special dosimetry problems. With the Laboratory's facilities it is possible to calibrate dose meters for gamma, beta and neutron measurements

  17. The spectra of the standard x-ray qualities used in STUK's Radiation Metrology Laboratory

    International Nuclear Information System (INIS)

    Tapiovaara, T.; Tapiovaara, M.; Siiskonen, T.; Hakanen, A.

    2008-02-01

    This report presents the fluence spectra of the standard x-radiation qualities used in the Radiation Dosimetry Laboratory of Radiation and Nuclear Safety Authority (STUK). The spectra were measured in August 2007. The radiation qualities characterised in the report are the ISO Narrow spectrum series (ISO N10-N200, ISO 4037-1:1996) and both of the RQR-spectrum series specified by the IEC (IEC 1267:1994 and IEC 61267:2005). The measurements were made using a high purity Ge-detector and the measured pulse height spectra were corrected to fluence spectra. Spectral characteristics were computed from the spectral data and compared to the requirements in the standards and to the values given in the quality manual of the laboratory. (orig.)

  18. Laboratory Training Manual on the Use of Isotopes and Radiation in Entomology.

    Science.gov (United States)

    International Atomic Energy Agency, Vienna (Austria).

    This publication should be useful for those who are interested in the theory and application of isotopes and radiation in agriculture and entomology. There are two main parts in the publication. Part I, entitled Basic Part, includes topics which an individual should know about radioisotopes and radiation. There are laboratory exercises included in…

  19. Laboratory and Feasibility Study for Industrial Wastewater Effluents Treatment by Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zimek, Z.; Głuszewski, W. [Centre for Radiation Research and Technology, Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    2012-07-01

    The study of wastewater treatment by radiation regarding chemical processes contribution and physical-chemical separation of highly concentrated non-organic pollutants deposited in specific industrial waste are proposed. Laboratory stand should be build and the study should be performed to confirm possible mechanism of the sedimentation process of nonorganic pollutants during separation initiated by ionizing radiation. Evaluation from technical and economical point of view of this specific radiation technology and feasibility study preparation for industrial facility will be the main output at the final stage of the project. (author)

  20. Laboratory and Feasibility Study for Industrial Wastewater Effluents Treatment by Radiation

    International Nuclear Information System (INIS)

    Zimek, Z.; Głuszewski, W.

    2012-01-01

    The study of wastewater treatment by radiation regarding chemical processes contribution and physical-chemical separation of highly concentrated non-organic pollutants deposited in specific industrial waste are proposed. Laboratory stand should be build and the study should be performed to confirm possible mechanism of the sedimentation process of nonorganic pollutants during separation initiated by ionizing radiation. Evaluation from technical and economical point of view of this specific radiation technology and feasibility study preparation for industrial facility will be the main output at the final stage of the project. (author)

  1. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshiyuki [Department of Intelligent Mechanical Engineering, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashiku, Fukuoka 811-0295 (Japan)

    2016-01-15

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO{sub 2}) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO{sub 2} gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  2. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale.

    Science.gov (United States)

    Kawamura, Yoshiyuki

    2016-01-01

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  3. Personnel radiation dosimetry laboratory accreditation programme for thermoluminescent dosimeters : a proposal

    International Nuclear Information System (INIS)

    Bhatt, B.C.; Srivastava, J.K.; Iyer, P.S.; Venkatraman, G.

    1993-01-01

    Accreditation for thermoluminescent dosimeters is the process of evaluating a programme intending to use TL personnel dosimeters to measure, report and record dose equivalents received by radiation workers. In order to test the technical competence for conducting personnel dosimetry service as well as to decentralize personnel monitoring service, it has been proposed by Radiological Physics Division (RPhD) to accredit some of the laboratories, in the country. The objectives of this accreditation programme are: (i) to give recognition to competent dosimetry processors, and (ii) to provide periodic evaluation of dosimetry processors, including review of internal quality assurance programme to improve the quality of personnel dosimetry processing. The scientific support for the accreditation programme will be provided by the scientific staff from Radiological Physics Division (RPhD) and Radiation Protection Services Division (RPSD). This paper describes operational and technical requirements for the Personnel Radiation Dosimetry Laboratory Accreditation Programme for Thermoluminescent Dosimeters for Personnel Dosimetry Processors. Besides, many technical documents dealing with the TL Personnel Dosimeter System have been prepared. (author). 5 refs., 2 figs

  4. Radiation chemistry at the Metallurgical Laboratory, Manhattan Project, University of Chicago (1942-1947) and the Argonne National Laboratory, Argonne, IL (1947-1984)

    International Nuclear Information System (INIS)

    Gordon, S.

    1989-01-01

    The events in radiation chemistry which occurred in the Manhattan Project Laboratory and Argonne National Laboratory during World War II are reviewed. Research programmes from then until the present day are presented, with emphasis on pulse radiolysis studies. (UK)

  5. A locally designed mobile laboratory for radiation analysis and monitoring in qatar. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Leila, H; El-Samman, H; Mahmoud, H [Physics Department, University of qatar, Doha (Qatar)

    1996-03-01

    A description of a mobile laboratory for radiation analysis and monitoring, completely designed in qatar and equipped at qatar university, is given. It consists of a van equipped with three scintillation detectors mounted on the front bumper. The detectors can monitor gamma radiations along the path of the laboratory over an angle range 120 degree. One Eberline radiation monitoring station is mounted on the roof. The laboratory is also equipped with several, and neutron survey meters in addition to some sampling equipment. All equipment used are powered with solar panels. The characteristics and performance of solar power/stabilized A C conversion is given. Data acquisition from the three scintillation detectors is performed by adding the outputs of the three detectors and storing the total as a function of time in a computer based multi-channel analyzer (MCA) operated in the MSC mode. The acquisition can be switched easily to the PHA mode to analyze gamma spectra from any possible contamination source. The laboratory was used in several environmental and possible contamination missions. Some results obtained during some of these missions are given. 4 figs.

  6. A locally designed mobile laboratory for radiation analysis and monitoring in qatar. Vol. 4

    International Nuclear Information System (INIS)

    Abou-Leila, H.; El-Samman, H.; Mahmoud, H.

    1996-01-01

    A description of a mobile laboratory for radiation analysis and monitoring, completely designed in qatar and equipped at qatar university, is given. It consists of a van equipped with three scintillation detectors mounted on the front bumper. The detectors can monitor gamma radiations along the path of the laboratory over an angle range 120 degree. One Eberline radiation monitoring station is mounted on the roof. The laboratory is also equipped with several, and neutron survey meters in addition to some sampling equipment. All equipment used are powered with solar panels. The characteristics and performance of solar power/stabilized A C conversion is given. Data acquisition from the three scintillation detectors is performed by adding the outputs of the three detectors and storing the total as a function of time in a computer based multi-channel analyzer (MCA) operated in the MSC mode. The acquisition can be switched easily to the PHA mode to analyze gamma spectra from any possible contamination source. The laboratory was used in several environmental and possible contamination missions. Some results obtained during some of these missions are given. 4 figs

  7. Monte Carlo simulation of muon radiation environment in China Jinping Underground Laboratory

    International Nuclear Information System (INIS)

    Su Jian; Zeng Zhi; Liu Yue; Yue Qian; Ma Hao; Cheng Jianping

    2012-01-01

    Muon radiation background of China Jinping Underground Laboratory (CJPL) was simulated by Monte Carlo method. According to the Gaisser formula and the MUSIC soft, the model of cosmic ray muons was established. Then the yield and the average energy of muon-induced photons and muon-induced neutrons were simulated by FLUKA. With the single-energy approximation, the contribution to the radiation background of shielding structure by secondary photons and neutrons was evaluated. The estimation results show that the average energy of residual muons is 369 GeV and the flux is 3.17 × 10 -6 m -2 · s -1 . The fluence rate of secondary photons is about 1.57 × 10 -4 m -2 · s -1 , and the fluence rate of secondary neutrons is about 8.37 × 10 -7 m -2 · s -1 . The muon radiation background of CJPL is lower than those of most other underground laboratories in the world. (authors)

  8. Stanford Synchrotron Radiation Laboratory activity report for 1987

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, S.; Cantwell, K. [eds.

    1988-12-31

    During 1987, SSRL achieved many significant advances and reached several major milestones utilizing both SPEAR and PEP as synchrotron radiation sources as described in this report. Perhaps the following two are worthy of particular mention: (1) SPEAR reached an all time high of 4,190 delivered user-shifts during calendar year 1987, highlights of the many scientific results are given; (2) during a 12 day run in December of 1987, PEP was operated in a low emittance mode (calculated emittance 6.4 nanometer-radians) at 7.1 GeV with currents up to 33 mA. A second undulator beam line on PEP was commissioned during this run and used to record many spectra showing the extremely high brightness of the radiation. PEP is now by far the highest brightness synchrotron radiation source in the world. The report is divided into the following sections: (1) laboratory operations; (2) accelerator physics programs; (3) experimental facilities; (4) engineering division; (5) conferences and workshops; (6) SSRL organization; (7) experimental progress reports; (8) active proposals; (9) SSRL experiments and proposals by institution; and (10) SSRL publications.

  9. The LBL [Lawrence Berkeley Laboratory] 1-2 GeV synchrotron radiation source

    International Nuclear Information System (INIS)

    Cornacchia, M.

    1987-03-01

    A description is presented of the conceptual design of the 1 to 2 GeV Synchrotron Radiation Source proposed for construction at Lawrence Berkeley Laboratory. This facility is designed to produce ultraviolet and soft x-ray radiation. The accelerator complex consists of an injection system (linac plus booster synchrotron) and a low-emittance storage ring optimized for insertion devices. Eleven straight sections are available for undulators and wigglers, and up to 48 photon beam lines may ultimately emanate from bending magnets. Design features of the radiation source are the high brightness of the photon beams, the very short pulses (tens of picoseconds), and the tunability of the radiation

  10. Radiation Testing at Sandia National Laboratories: Sandia – JPL Collaboration for Europa Lander

    Energy Technology Data Exchange (ETDEWEB)

    Hattar, Khalid Mikhiel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Ion Beam Lab.; Olszewska-Wasiolek, Maryla Aleksandra [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Gamma Irradiation Facility

    2017-01-01

    Sandia National Laboratories (SNL) is assisting Jet Propulsion Laboratory in undertaking feasibility studies and performance assessments for the Planetary Protection aspect of the Europa Lander mission. The specific areas of interest for this project are described by task number. This white paper presents the evaluation results for Task 2, Radiation Testing, which was stated as follows: Survey SNL facilities and capabilities for simulating the Europan radiation environment and assess suitability for: A. Testing batteries, electronics, and other component and subsystems B. Exposing biological organisms to assess their survivability metrics. The radiation environment the Europa Lander will encounter on route and in orbit upon arrival at its destination consists primarily of charged particles, energetic protons and electrons with the energies up to 1 GeV. The charged particle environments can be simulated using the accelerators at the Ion Beam Laboratory. The Gamma Irradiation Facility and its annex, the Low Dose Rate Irradiation Facility, offer irradiations using Co-60 gamma sources (1.17 and 1.33 MeV), as well as Cs-137 gamma (0.661 MeV) AmBe neutron (0-10 MeV) sources.

  11. Evaluation of Radiometers Deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Wilcox, Stephen; Stoffel, Thomas

    2015-12-23

    This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances and direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with fixed internal shading and are all deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. Data from 32 global horizontal irradiance and 19 direct normal irradiance radiometers are presented. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference global horizontal irradiances and direct normal irradiances.

  12. Radiation dosimetry and standards at the austrian dosimetry laboratory

    International Nuclear Information System (INIS)

    Leitner, A.

    1984-10-01

    The Austrian Dosimetry Laboratory, established and operated in cooperation between the Austrian Research Center Seibersdorf and the Federal Office of Metrology and Surveying (Bundesamt and Eich- und Vermessungswesen) maintains the national primary standards for radiation dosimetry. Furthermore its tasks include routine calibration of dosemeters and dosimetric research. The irradiation facilities of the laboratory comprise three X-ray machines covering the voltage range from 5 kV to 420 kV constant potential, a 60 Co teletherapy unit, a circular exposure system for routine batch calibration of personnel dosemeters with four gamma ray sources ( 60 Co and 137 Cs) and a reference source system with six gamma ray sources ( 60 Co and 137 Cs). In addition a set of calibrated beta ray sources are provided ( 147 Pm, 204 Tl and 90 Sr). The dosimetric equipment consists of three free-air parallelplate ionization chambers serving as primary standards of exposure for the X-ray energy region, graphite cavity chambers with measured volume as primary standards for the gamma radiation of 137 Cs and 60 Co as well as different secondary standard ionization chambers covering the dose rate range from the natural background level up to the level of modern therapy accelerators. In addition for high energy photon and electron radiation a graphite calorimeter is provided as primary standard of absorbed dose. The principle experimental set-ups for the practical use of the standards are presented and the procedures for the calibration of the different types of dosemeters are described. (Author)

  13. Effect of ultraviolet radiation on laboratory cultures of green algae and cyanobacteria

    International Nuclear Information System (INIS)

    Palffy, K.; Ordog, V.; Voros, L.

    2004-01-01

    Since the discovery of the ozone hole, an increasing amount of work has been devoted to measuring the impact of the UV-radiation on living organisms. In this point of view, algae as the primer producers of aquatic ecosystems, get to the central part of the interest. The aim of the study was to study the effect of ultraviolet radiation on laboratory cultures of green algae and cyanobacteria

  14. Radiation protection in a multi-disciplinary research laboratory

    International Nuclear Information System (INIS)

    O'Donovan, E.J.B.; Jenks, G.J.; Brighton, D.R.

    1993-01-01

    This paper describes the measures for the protection of personnel against the hazards of ionising and non-ionising radiation at the Materials Research Laboratory (MRL) in Victoria. The paper describes MRL safety and protection policy and management, and gives brief details of procedures and problems at the working level. A comparison of MRL average annual photon doses with all Governmental Research Institutions and industry is given. The good safety record of MRL is evident and shows that the radioactive protection issues are well handled. 4 figs

  15. Radiation and detection of gravitational waves in laboratory conditions

    International Nuclear Information System (INIS)

    Bogolyubov, P.N.; Pisarev, A.F.; Shavokhina, N.S.

    1981-01-01

    Two variants are proposed and analyzed for an experiment on radiation and detection of gravitational waves in laboratory conditions in the optical and superhigh frequency range (band). In the first variant the laser light is parametrically transformed to the gravitational wave in the optical-inhomogeneous medium. The gravitational flux produced is registered by the inverse parametric transformation of the gravitational to light wave. In the second variant the radiation of gravitational waves is realized through hypersonic oscillations in piezocrystals, and the reception of waves is made by the superconducting coaxial resonator in which the gravitational wave resonantly transforms into the electromag= . netic wave. The analysis performed testifies to the possibility of an experiment of this type at the present time [ru

  16. Laboratory investigation of fire radiative energy and smoke aerosol emissions

    Science.gov (United States)

    Charles Ichoku; J. Vanderlei Martins; Yoram J. Kaufman; Martin J. Wooster; Patrick H. Freeborn; Wei Min Hao; Stephen Baker; Cecily A. Ryan; Bryce L. Nordgren

    2008-01-01

    Fuel biomass samples from southern Africa and the United States were burned in a laboratory combustion chamber while measuring the biomass consumption rate, the fire radiative energy (FRE) release rate (Rfre), and the smoke concentrations of carbon monoxide (CO), carbon dioxide (CO2), and particulate matter (PM). The PM mass emission rate (RPM) was quantified from...

  17. HESYRL: a dedicated synchrotron radiation laboratory in China

    International Nuclear Information System (INIS)

    Qiu, L.J.

    1985-01-01

    The HESYRL national synchrotron radiation laboratory was first proposed in 1977 as a conclusion of a general planning meeting on nationwide development of natural science and technology at which a topic was the application of synchrotron radiation. A study group was formed in 1978 to carry out preliminary research and prototype development work. The final approval of the project was given in April 1983 and the lab was soon founded. Designs of the main facilities and building completed in Oct 1984. The ground breaking was in Nov 1984. Manufacturing and purchasing of all the equipment and components are now in progress. The overall layout of HESYRL project is shown. the main facilities are an 800 MeV electron storage ring, a 88 meter transport line and a 240 MeV linac as the injector. Some basic considerations in the selecting of major machine parameters are discussed

  18. Standards for radiation protection and diagnostic radiology at the IAEA Dosimetry Laboratory

    International Nuclear Information System (INIS)

    Pernicka, F.; Andreo, P.; Meghzifene, A.; Czap, L.; Girzikowsky, R.

    1999-01-01

    International standardization in dosimetry is essential for the successful exploitation of radiation technology. The IAEA dosimetry programme is focused into services provided to Member States through the IAEA/WHO Network of Secondary Standard Dosimetry Laboratories (SSDLs), to radiotherapy centres and radiation processing facilities. Radiation protection quantities defined by ICRU and ICRP are used to relate the risk due to exposure to ionizing radiation to a single quantity, irrespective of the type of radiation, which takes into account the human body as a receptor. Two types of quantities, limiting and operational, can be related to basic physical quantities which are defined without need for considering specific aspects of radiation protection, e.g. air kerma for photons and fluence for neutrons. The use of a dosimeter for measurements in radiation protection requires a calibration in terms of a physical quantity together with a conversion from physical into protection quantities by means of a factor or a coefficient

  19. Trends in instrumentation for environmental radiation measurements at Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Hiebert, R.D.; Wolf, M.A.

    1980-01-01

    Recent instruments developed to fulfill radiation monitoring needs at Los Alamos Scientific Laboratory are described. Laboratory instruments that measure tritium gas effluents alone, or in the presence of activated air from D-T fusion reactors are discussed. Fully portable systems for gamma, x-ray, and alpha analyses in the field are described. Also included are descriptions of survey instruments that measure low levels of transuranic contaminants and that measure pulsed-neutron dose rates

  20. The role of the IAEA Dosimetry Laboratory in the dissemination of standards for radiation protection

    International Nuclear Information System (INIS)

    Czap, L.; Andreo, P.; Matscheko, G.

    1998-01-01

    Approximately 90% of the Secondary Standard Dosimetry Laboratories (SSDLs) provide users with calibrations of radiation protection instruments, and the IAEA is taking every necessary effort to insure that SSDLs measurements are traceable to Primary Standards. The Agency has proper radiation sources available to provide traceable calibrations to the SSDLs involved in measurements on diagnostic x-ray generators, including an x-ray unit specifically for mammography dedicated to standardization procedures. The different photon beam qualities and calibration procedures available in the Agency's Dosimetry Laboratory are described

  1. Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover

    Science.gov (United States)

    Hassler, Donald M.; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L.; Brinza, David E.; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A.; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A.; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P.; MSL Science Team; Kemppinen, Osku; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; Berger, Thomas; Matthia, Daniel; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Jones, Andrea; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Williams, Rebecca M. E.; Yingst, Aileen; Lewis, Kevin; Leshin, Laurie; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Hamilton, Victoria; Peterson, Joseph; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Herkenhoff, Kenneth; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Sumner, Dawn Y.; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; García, César Martín; Mueller-Mellin, Reinhold; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2014-01-01

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.

  2. Mars' surface radiation environment measured with the Mars Science Laboratory's Curiosity rover.

    Science.gov (United States)

    Hassler, Donald M; Zeitlin, Cary; Wimmer-Schweingruber, Robert F; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L; Brinza, David E; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P

    2014-01-24

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.

  3. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, 21

    International Nuclear Information System (INIS)

    1990-03-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1987 through March 31, 1988. Detailed descriptions of the activities are presented in the following subjects: (i) studies on surface phenomena under electron and ion irradiations and (ii) studies on radiation chemistry of high polymers and radiation dosimetry. (J.P.N.)

  4. Laboratory contamination in the early period of radiation research

    International Nuclear Information System (INIS)

    Rona, E.

    1979-01-01

    Meagre records exist of the levels of contamination and human exposure encountered by those who took part in the early research on radioactive materials. In order to throw some light on the nature and extent of the problem the author presents some recollections of the conditions of the laboratories in which she worked from 1924-1940. These include the Kaiser Wilhelm Institute, the Radium Institute of Vienna and the Curie Institute. The health, radiation injuries and causes of death of some early workers are discussed. Although the effects of acute exposure were recognised early on, there was less awareness of the possible effects of chronic exposure, and lack of prompt clinical signs of injury encouraged complacency. Laboratory contamination was often seen more as a problem affecting experimental results than as a health hazard. (author)

  5. PREFACE: Acceleration and radiation generation in space and laboratory plasmas

    Science.gov (United States)

    Bingham, R.; Katsouleas, T.; Dawson, J. M.; Stenflo, L.

    1994-01-01

    Sixty-six leading researchers from ten nations gathered in the Homeric village of Kardamyli, on the southern coast of mainland Greece, from August 29-September 4, 1993 for the International Workshop on Acceleration and Radiation Generation in Space and Laboratory Plasmas. This Special Issue represents a cross-section of the presentations made at and the research stimulated by that meeting. According to the Iliad, King Agamemnon used Kardamyli as a dowry offering in order to draw a sulking Achilles into the Trojan War. 3000 years later, Kardamyli is no less seductive. Its remoteness and tranquility made it an ideal venue for promoting the free exchange of ideas between various disciplines that do not normally interact. Through invited presen tations, informal poster discussions and working group sessions, the Workshop brought together leaders from the laboratory and space/astrophysics communities working on common problems of acceleration and radiation generation in plasmas. It was clear from the presentation and discussion sessions that there is a great deal of common ground between these disciplines which is not at first obvious due to the differing terminologies and types of observations available to each community. All of the papers in this Special Issue highlight the role collective plasma processes play in accelerating particles or generating radiation. Some are state-of-the-art presentations of the latest research in a single discipline, while others investi gate the applicability of known laboratory mechanisms to explain observations in natural plasmas. Notable among the latter are the papers by Marshall et al. on kHz radiation in the magnetosphere ; Barletta et al. on collective acceleration in solar flares; and by Dendy et al. on ion cyclotron emission. The papers in this Issue are organized as follows: In Section 1 are four general papers by Dawson, Galeev, Bingham et al. and Mon which serves as an introduction to the physical mechanisms of acceleration

  6. 1994 activity report: Stanford Synchrotron Radiation Laboratory

    International Nuclear Information System (INIS)

    Cantwell, K.; Dunn, L.

    1994-01-01

    The SSRL facility delivered 89% of the scheduled user beam to 25 experimental stations during 6.5 months of user running. Users from private industry were involved in 31% of these experiments. The SPEAR accelerator ran very well with no major component failures and an unscheduled down time of only 2.9%. In addition to this increased reliability, there was a significant improvement in the stability of the beam. The enhancements to the SPEAR orbit as part of a concerted three-year program were particularly noticeable to users. The standard deviation of beam movement (both planes) in the last part of the run was 80 microns, major progress toward the ultimate goal of 50-micron stability. This was a significant improvement from the previous year when the movement was 400 microns in the horizontal and 200 microns in the vertical. A new accelerator Personal Protection System (PPS), built with full redundancy and providing protection from both radiation exposure and electrical hazards, was installed in 1994. It is not possible to describe in this summary all of the scientific experimentation which was performed during the run. However, the flavor of current research projects and the many significant accomplishments can be realized by the following highlights: A multinational collaboration performed several experiments involving x-ray scattering from nuclear resonances; Studies related to nuclear waste remediation by groups from Los Alamos National Laboratory and Pacific Northwest Laboratories continued in 1994; Diffraction data sets for a number of important protein crystals were obtained; During the past two years a collaboration consisting of groups from Hewlett Packard, Intel, Fisons Instruments and SSRL has been exploring the utility of synchrotron radiation for total reflection x-ray fluorescence (TRXRF); and High-resolution angle-resolved photoemission experiments have continued to generate exciting new results from highly correlated and magnetic materials

  7. 1994 activity report: Stanford Synchrotron Radiation Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Cantwell, K.; Dunn, L. [eds.

    1994-01-01

    The SSRL facility delivered 89% of the scheduled user beam to 25 experimental stations during 6.5 months of user running. Users from private industry were involved in 31% of these experiments. The SPEAR accelerator ran very well with no major component failures and an unscheduled down time of only 2.9%. In addition to this increased reliability, there was a significant improvement in the stability of the beam. The enhancements to the SPEAR orbit as part of a concerted three-year program were particularly noticeable to users. The standard deviation of beam movement (both planes) in the last part of the run was 80 microns, major progress toward the ultimate goal of 50-micron stability. This was a significant improvement from the previous year when the movement was 400 microns in the horizontal and 200 microns in the vertical. A new accelerator Personal Protection System (PPS), built with full redundancy and providing protection from both radiation exposure and electrical hazards, was installed in 1994. It is not possible to describe in this summary all of the scientific experimentation which was performed during the run. However, the flavor of current research projects and the many significant accomplishments can be realized by the following highlights: A multinational collaboration performed several experiments involving x-ray scattering from nuclear resonances; Studies related to nuclear waste remediation by groups from Los Alamos National Laboratory and Pacific Northwest Laboratories continued in 1994; Diffraction data sets for a number of important protein crystals were obtained; During the past two years a collaboration consisting of groups from Hewlett Packard, Intel, Fisons Instruments and SSRL has been exploring the utility of synchrotron radiation for total reflection x-ray fluorescence (TRXRF); and High-resolution angle-resolved photoemission experiments have continued to generate exciting new results from highly correlated and magnetic materials.

  8. Active Radiation Level Measurement on New Laboratory Instrument for Evaluating the Antibacterial Activity of Radioisotope

    International Nuclear Information System (INIS)

    Joh, Eunha; Park, Jang Guen

    2014-01-01

    A disc method has been widely used to measure the antibacterial effect of chemical agents. However, it is difficult to measure the antibacterial effect of radioisotopes using a disc method. A disc method is a method for diffusing a drug by placing the drug containing disc on the medium. In this method, radioisotopes are diffused on the medium and it is difficult to measure the exact effect by radiation. Thus, new laboratory equipment needs to evaluate the antibacterial activity by the radioisotopes. In this study, we measured the radiation level of radioisotopes on a new laboratory instrument using a MCNP. A disc method has been widely used to measure the antibacterial effect of chemical agents. This method uses a drug diffusion system for the measurement of anti-bacterial antibiotics. To measure the antimicrobial activity of a radioisotope, a new type of laboratory instrument is necessary to prevent the drug from spreading. The radioisotopes are used to diagnose and treat cancer. However, studies for anti-biotical use have not progressed. The radiation of radioisotopes has the effect of killing bacteria. Before this study proceeds further, it is necessary to be able to measure the antimicrobial activity of the radioisotope easily in the laboratory. However, in this study, it was possible to measure the antimicrobial activity of the radioisotope in the laboratory using a new laboratory instrument. We intend to start evaluation studies of the antibacterial activity of specific radioisotopes. In addition, it will be possible to develop research to overcome diseases caused by bacteria in the future

  9. Active Radiation Level Measurement on New Laboratory Instrument for Evaluating the Antibacterial Activity of Radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Joh, Eunha; Park, Jang Guen [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    A disc method has been widely used to measure the antibacterial effect of chemical agents. However, it is difficult to measure the antibacterial effect of radioisotopes using a disc method. A disc method is a method for diffusing a drug by placing the drug containing disc on the medium. In this method, radioisotopes are diffused on the medium and it is difficult to measure the exact effect by radiation. Thus, new laboratory equipment needs to evaluate the antibacterial activity by the radioisotopes. In this study, we measured the radiation level of radioisotopes on a new laboratory instrument using a MCNP. A disc method has been widely used to measure the antibacterial effect of chemical agents. This method uses a drug diffusion system for the measurement of anti-bacterial antibiotics. To measure the antimicrobial activity of a radioisotope, a new type of laboratory instrument is necessary to prevent the drug from spreading. The radioisotopes are used to diagnose and treat cancer. However, studies for anti-biotical use have not progressed. The radiation of radioisotopes has the effect of killing bacteria. Before this study proceeds further, it is necessary to be able to measure the antimicrobial activity of the radioisotope easily in the laboratory. However, in this study, it was possible to measure the antimicrobial activity of the radioisotope in the laboratory using a new laboratory instrument. We intend to start evaluation studies of the antibacterial activity of specific radioisotopes. In addition, it will be possible to develop research to overcome diseases caused by bacteria in the future.

  10. Radiation safety and quality control in the cyclotron laboratory

    International Nuclear Information System (INIS)

    Sharma, S.; Krause, G.; Ebadi, M.

    2006-01-01

    Radiation safety was determined to maintain quality control in the cyclotron laboratory. Based on the results of 438 runs in the Faraday cup (20 μA for 10 min), 20 runs on 18 O-water target (40 μA for 2 h) and 10 runs on 18 O-gas targets (30 μA for 45 min), we have established that occupationally exposed workers remain 10 ± 5 times below federal regulatory limits (FRLs) in the cyclotron vault, 30 ± 8 times below FRL in the radiochemistry laboratory and 200 ± 10 times below the FRL outside the cyclotron laboratory during beam operation. (The FRL for unrestricted area are <20 μSv in 1 h.) The non-occupationally exposed workers serving in offices in the vicinity of the cyclotron vault within 100 m distance remained 200 times below the FRL irrespective of beam being on or off, suggesting that routine beam operation of 40 μA for 2 h once a day during office hours is safe provided quality control and system performance measures as discussed in this report are strictly maintained. (authors)

  11. Safety Study of the X-Ray Reference Laboratory for Radiation Protection Levels (IR-14D)

    International Nuclear Information System (INIS)

    Garcia, G.

    1999-01-01

    This report is a study about the safety of the X-ray reference laboratory that has been recently constructed in the building 2 of the CIEMAT. After a brief description of the apparatus, we present the method used to calculate the exposure and absorbed dose rates in the most characteristic points of the laboratory. This method takes into account the spectral distribution of the radiation beams as a function of the accelerating voltage. The built-up factors of the absorbent materials have been considered to calculate the transmission of the radiation beams through the filters and shielding. Scattered radiations has been introduced in the calculations by means of a semiempirical method. This model supposes that multiple scattering processes give an isotropic contribution to the reflected beams and the single scattered can be described in terms of the differential cross section of Klein-Nishina. The results of this study have been applied to determine the maximum dose equivalent that the personnel of the laboratory could receive in normal operation conditions. (Author) 5 refs

  12. Pacific Northwest Laboratory plan to maintain radiation exposure as low as reasonably achievable (ALARA)

    International Nuclear Information System (INIS)

    Higby, D.P.; Denovan, J.T.

    1982-12-01

    This document describes the radiation safety program at the Pacific Northwest Laboratory (PNL). The practices and administrative policies of this program support the principles of ALARA (to maintain radiation exposure as low as reasonably achievable). This document also describes a program to establish safety goals at PNL to help ensure that operations are conducted according to ALARA principles

  13. National Laboratory of Ionizing Radiation Metrology - Brazilian CNEN; Laboratorio Nacional de Metrologia das Radiacoes Ionizantes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The activities of the Brazilian National Laboratory of Ionizing Radiations Metrology are described. They include research and development of metrological techniques and procedures, the calibration of area radiation monitors, clinical dosemeters and other instruments and the preparation and standardization of reference radioactive sources. 4 figs., 13 tabs.

  14. National Laboratory of Ionizing Radiation Metrology - Brazilian CNEN; Laboratorio Nacional de Metrologia das Radiacoes Ionizantes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    The activities of the Brazilian National Laboratory of Ionizing Radiations Metrology are described. They include research and development of metrological techniques and procedures, the calibration of area radiation monitors, clinical dosemeters and other instruments and the preparation and standardization of reference radioactive sources. 4 figs., 13 tabs.

  15. Collimation system for a laboratory of primary and secondary ionizing radiation calibration

    International Nuclear Information System (INIS)

    Oliveira, S.R.; David, M.G.

    2003-01-01

    This work is part of a cooperation plan between the LNMRI/IRD and the LCR/UERJ, for the a primary calibration at the IRD and a secondary laboratory at the LCR, both calibrated for mammographic beams which will be part a Calibration National Network. For the mounting of the primary laboratory, the first step was to install two additional collimators in order to guarantee that the beam area over the ionization chamber to satisfy the calibration international standards. So, the collimators were constructed obeying the geometric rules, the first being of conic format and the second of the cylindrical format, therefore avoiding the effects of the scattering radiation on the edges. By using this collimation system it was possible to verify the uniformity of the radiation field incident the ionization chamber to be over 98% of the total area, guaranteeing better precision of the measurement

  16. Radiation chemistry in the Jovian stratosphere - Laboratory simulations

    Science.gov (United States)

    Mcdonald, Gene D.; Thompson, W. R.; Sagan, Carl

    1992-01-01

    The results of the present low-pressure/continuous-flow laboratory simulations of H2/He/CH4/NH3 atmospheres' plasma-induced chemistry indicate radiation yields of both hydrocarbon and N2-containing organic compounds which increase with decreasing pressure. On the basis of these findings, upper limits of 1 million-1 billion molecules/sq cm/sec are established for production rates of major auroral-chemistry species in the Jovian stratosphere. It is noted that auroral processes may account for 10-100 percent of the total abundances of most of the observed polar-region organic species.

  17. Optimization of radiation safety conditions in radon laboratories

    International Nuclear Information System (INIS)

    Kibal'nik, S.P.; Koroleva, T.M.

    1990-01-01

    The study was aimed at studying working conditions of personnel, engaged in production and supply of radon solution in medical and prophylactic institutions of the Kaliningrad region for the period 1962-1988. Data on examinations carried out at radon laboratories during this period by radiological group of the Kaliningrad sanitary epidemiological station were used as a basis for the study. Positive dynamics of indicators of radiation safety of the persons working at these objects is indicated, concrete measures and ways for improving working conditions of the personnel and role of sanitary epidemiological service in solving these problems are shown. 2 refs.; 1 tab

  18. Real-time dosimetry system in catheterisation laboratory: utility as a learning tool in radiation protection

    International Nuclear Information System (INIS)

    Pinto Monedero, M.; Rodriguez Cobo, C.; Pifarre Martinez, X.; Ruiz Martin, J.; Barros Candelero, J.M.; Goicolea Ruigomez, J.; Diaz Blaires, G.; Garcia Lunar, I.

    2015-01-01

    Document available in abstract form only. Full text of publication follows: Workers at the catheter laboratory are among the most exposed to ionising radiation in hospitals. However, it is difficult to be certain of the radiation doses received by the staff, as personal dosemeters are often misused, and thus, the dose history is not reliable. Moreover, the information provided by personal dosemeters corresponds to the monthly accumulated dose, so corrective actions tends to be delayed. The purpose of this work is, on the one hand, to use a real-time dosimetry system to establish the occupational doses per procedure of workers at the catheter laboratories and, on the other hand, to evaluate its utility as a learning tool for radiation protection purposes with the simultaneous video recording of the interventions. (authors)

  19. Strengthening of an advanced automated radiation laboratory. Hungary. Terminal report project findings and recommendations

    International Nuclear Information System (INIS)

    1992-01-01

    An Advanced Automated Radiation Laboratory was completed; the hardware and software bases are now suitable for up-to-date kinetical measurements in radiation chemistry and technology both for Hungarian experts and for specialists from abroad. It would be possible and useful e.g. to organize further training courses in the field of radiation chemistry and technology by the IAEA and/or the UNDP, as well as to send fellows from developing countries for practical research work or other purposes (TCDC)

  20. Determination of the scattered radiation at the Neutron Calibration Laboratory of IPEN using the shadow cone method

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Tallyson S.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Freitas, Bruno M. [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Fonseca, Evaldo S.; Pereira, Walsan W., E-mail: talvarenga@ipen.br, E-mail: lcaldas@ipen.br, E-mail: bfreitas@con.ufrj.br, E-mail: walsan@ird.gov.br, E-mail: evaldo@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Because of the increase in the demand for the calibration of neutron detectors, there is a need for new calibration services. In this context, the Calibration Laboratory of Instituto de Pesquisas Energéticas e Nucleares (IPEN), São Paulo, which already offers calibration services of radiation detectors with standard X, gamma, beta and alpha beams, has recently projected a new test laboratory for neutron detectors. This work evaluated the contribution of dispersed neutron radiation in this laboratory, using the cone shadow method and a Bonner sphere spectrometer to take the measurements at a distance of 100 cm from the neutron source. The dosimetric quantities H⁎(10) and H⁎(10) were obtained at the laboratory, allowing the calibration of detectors. (author)

  1. Determination of the scattered radiation at the Neutron Calibration Laboratory of IPEN using the shadow cone method

    International Nuclear Information System (INIS)

    Alvarenga, Tallyson S.; Caldas, Linda V.E.; Freitas, Bruno M.

    2017-01-01

    Because of the increase in the demand for the calibration of neutron detectors, there is a need for new calibration services. In this context, the Calibration Laboratory of Instituto de Pesquisas Energéticas e Nucleares (IPEN), São Paulo, which already offers calibration services of radiation detectors with standard X, gamma, beta and alpha beams, has recently projected a new test laboratory for neutron detectors. This work evaluated the contribution of dispersed neutron radiation in this laboratory, using the cone shadow method and a Bonner sphere spectrometer to take the measurements at a distance of 100 cm from the neutron source. The dosimetric quantities H⁎(10) and H⁎(10) were obtained at the laboratory, allowing the calibration of detectors. (author)

  2. Construction and operation of an improved radiation calibration facility at Brookhaven National Laboratory. Environmental assessment

    International Nuclear Information System (INIS)

    1994-10-01

    Calibration of instruments used to detect and measure ionizing radiation has been conducted over the last 20 years at Brookhaven National Laboratory's (BNL) Radiation Calibration Facility, Building 348. Growth of research facilities, projects in progress, and more stringent Department of Energy (DOE) orders which involve exposure to nuclear radiation have placed substantial burdens on the existing radiation calibration facility. The facility currently does not meet the requirements of DOE Order 5480.4 or American National Standards Institute (ANSI) N323-1978, which establish calibration methods for portable radiation protection instruments used in the detection and measurement of levels of ionizing radiation fields or levels of radioactive surface contaminations. Failure to comply with this standard could mean instrumentation is not being calibrated to necessary levels of sensitivity. The Laboratory has also recently obtained a new neutron source and gamma beam irradiator which can not be made operational at existing facilities because of geometry and shielding inadequacies. These sources are needed to perform routine periodic calibrations of radiation detecting instruments used by scientific and technical personnel and to meet BNL's substantial increase in demand for radiation monitoring capabilities. To place these new sources into operation, it is proposed to construct an addition to the existing radiation calibration facility that would house all calibration sources and bring BNL calibration activities into compliance with DOE and ANSI standards. The purpose of this assessment is to identify potential significant environmental impacts associated with the construction and operation of an improved radiation calibration facility at BNL

  3. Radiation protection in clinical chemical laboratories

    International Nuclear Information System (INIS)

    Jacob, K.

    1980-01-01

    In the clinical-chemical laboratory, the problems of the personal radiation protection can be handled relatively simply. Important conditions are certain requirements as far as the building is concerned and the keeping to protection measures to invoid ingestion, inhalation, and resorption of open radioactive substances. Very intensive attention must be paid to a clean working technique in order to be able to exclude the danger of contamination which is very disturbing during the extremely sensitive measurements. The higgest problem in the handling of open radioactive substances, however, is in our opinion the waste management because it requires which space and personnel this causing high costs. Furthermore, since 1 January 1979, the permission for the final storage of radioactive waste in the shut down mine ASSE was taken back from the county collection places and it cannot be said yet if and when this permission will be given again. (orig./HP) [de

  4. University Physics Students' Ideas of Thermal Radiation Expressed in Open Laboratory Activities Using Infrared Cameras

    Science.gov (United States)

    Haglund, Jesper; Melander, Emil; Weiszflog, Matthias; Andersson, Staffan

    2017-01-01

    Background: University physics students were engaged in open-ended thermodynamics laboratory activities with a focus on understanding a chosen phenomenon or the principle of laboratory apparatus, such as thermal radiation and a heat pump. Students had access to handheld infrared (IR) cameras for their investigations. Purpose: The purpose of the…

  5. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory.

    Science.gov (United States)

    Zeitlin, C; Hassler, D M; Cucinotta, F A; Ehresmann, B; Wimmer-Schweingruber, R F; Brinza, D E; Kang, S; Weigle, G; Böttcher, S; Böhm, E; Burmeister, S; Guo, J; Köhler, J; Martin, C; Posner, A; Rafkin, S; Reitz, G

    2013-05-31

    The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011, and for most of the 253-day, 560-million-kilometer cruise to Mars, the Radiation Assessment Detector made detailed measurements of the energetic particle radiation environment inside the spacecraft. These data provide insights into the radiation hazards that would be associated with a human mission to Mars. We report measurements of the radiation dose, dose equivalent, and linear energy transfer spectra. The dose equivalent for even the shortest round-trip with current propulsion systems and comparable shielding is found to be 0.66 ± 0.12 sievert.

  6. Technical qualification requirements and training programs for radiation protection personnel at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Copenhaver, E.D.; Houser, B.S.; Butler, H.M. Jr.; Bogard, J.S.; Fair, M.F.; Haynes, C.E.; Parzyck, D.C.

    1986-04-01

    This document deals with the policies and practices of the Environmental and Occupational Safety Division (EOSD) at the Oak Ridge National Laboratory (ORNL) in regard to the selection, training, qualification, and requalification of radiation protection staff assigned to reactor and nonreactor nuclear facilities. Included are personnel at facilities that: (1) operate reactors or particle accelerators; (2) produce, process, or store radioactive liquid or solid waste; (3) conduct separations operations; (4) engage in research with radioactive materials and radiation sources; and (5) conduct irradiated materials inspection, fuel fabrication, deconamination, or recovery operations. The EOSD personnel also have environmental surveillance and operational and industrial safety responsibilities related to the total Laboratory

  7. Establishment of exposure dose assessment laboratory in National Radiation Emergency Medical Center (NREMC)

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Ryong; Ha, Wi Ho; Yoon, Seok Won; Han, Eun Ae; Lee, Seung Sook [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-10-15

    As unclear industry grown, 432 of the nuclear power plants are operating and 52 of NPPs are under construction currently. Increasing use of radiation or radioisotopes in the field of industry, medical purpose and research such as non-destructive examination, computed tomography and x-ray, etc. constantly. With use of nuclear or radiation has incidence possibility for example the Fukushima NPP incident, the Goiania accident and the Chernobyl Nuclear accident. Also the risk of terror by radioactive material such as Radiological Dispersal Device(RDD) etc. In Korea, since the 'Law on protection of nuclear facilities and countermeasure for radioactive preparedness was enacted in 2003, the Korean institute of Radiological and Medical Sciences(KIRAMS) was established for the radiation emergency medical response in radiological disaster due to nuclear accident, radioactive terror and so on. Especially National Radiation Emergency Medical Center(NREMC) has the duty that is protect citizens from nuclear, radiological accidents or radiological terrors through the emergency medical preparedness. The NREMC was established by the 39-article law on physical protection of nuclear material and facilities and measures for radiological emergencies. Dose assessment or contamination survey should be performed which provide the radiological information for medical response. For this reason, the NREMC establish and re-organized dose assessment system based on the existing dose assessment system of the NREMC recently. The exposure dose could be measured by physical and biological method. With these two methods, we can have conservative dose assessment result. Therefore the NREMC established the exposure dose assessment laboratory which was re-organized laboratory space and introduced specialized equipment for dose assessment. This paper will report the establishment and operation of exposure dose assessment laboratory for radiological emergency response and discuss how to enhance

  8. Experiences and Management of Pregnant Radiation Workers at the Pacific Northwest National Laboratory

    International Nuclear Information System (INIS)

    Bliss, Mary; Bowyer, Sonya M.; Bryant, Janet L.; Lipton, Mary S.; Wahl, Karen L.

    2001-01-01

    Radiation workers at the Pacific Northwest National Laboratory are divided into two classes based on whether or not they can encounter radioactive contamination in the normal course of their work. Level I workers primarily handle sealed radioactive materials such as those used to calibrate detectors. Level II workers perform benchtop chemistry. The U.S. Department of Energy has strict guidelines on the management of pregnant radiation workers. Staff members may voluntarily notify their line managers of a pregnancy and be subjected to stringent radiation exposure limits for the developing fetus. The staff member and manager develop a plan to limit and monitor radiation dose for the remainder of the pregnancy. Several examples of dose management plans and case examples of the impact of pregnancy on staff member's technical work and projects will be presented

  9. Conception of the Instrument Calibration Laboratory of Ionizing Radiation Measurement (LACIMRI) of CTMSP - Sao Paulo, SP

    International Nuclear Information System (INIS)

    Silva, Raimundo Dias da; Kibrit, Eduardo

    2009-01-01

    The present work describes the phases of implantation of calibration laboratory of ionizing radiation measurement instruments at the CTMSP, Sao Paulo, in a priory approved by CNEN, Brazil. That laboratory will allow and enhance the present metrological capacity for the attendance to the growing demand for calibration services of the instruments

  10. Laboratory training manual on the use of isotopes and radiation in soil-plant relations research

    International Nuclear Information System (INIS)

    1964-01-01

    The International Atomic Energy Agency (IAEA) and the Food and Agriculture Organization of the United Nations (FAO) in co-operation with local authorities in various countries have jointly sponsored international laboratory training courses on the use of isotopes and radiation in specialized fields of agriculture. Outstanding scientists from various countries have given lectures and devised and conducted the laboratory exercises; research workers from all over the world have attended these courses. In addition, under the United Nations Expanded Programme of Technical Assistance the IAEA in co-operation with host governments has conducted similar regional courses. This laboratory manual is a natural outgrowth of these activities. The contents represents the efforts not only of the IAEA and FAO Secretariats but also of the various instructors who have participated in the courses, a Special Consultant, Victor Middelboe, and a panel of scientists who met in Vienna from 3 to 7 September 1962 and revised the initial version assembled by Hans Broeshart and Chai Moo Cho of the IAEA Secretariat. The present manual consists of two parts: a basic part which contains general information and laboratory exercises on the properties of radiation and the principles of use of radioactive tracers, and a second part which contains a series of detailed laboratory exercises in the field of soil-plant relationships. It is intended to publish at least four additional parts on the subjects of the use of isotopes and radiation in animal science, agricultural biochemistry, entomology and plant pathology. This manual, dealing with an important aspect of the peaceful application and use of atomic energy, should prove helpful not only to those working with the IAEA and FAO training programmes but to other research scientists dealing with the development and use of new information in agricultural science all over the world

  11. Application of gamma radiation for the treatment of laboratory animal diets

    International Nuclear Information System (INIS)

    Ley, F.J.

    1979-01-01

    The use of gamma radiation for the treatment of laboratory animal diets has proved particularly successful. The effective inactivation of microorganisms, insects and parasites etc. is well demonstrated and the absence of adverse effects on the dietary components is inferred from many years of practical use. Adequate packaging of the pelleted diets is essential to avoid recontamination after irradiation; this aspect needs particular attention. The economics of the process are such that it would not be warranted to invest in a 60 Co plant specifically for the treatment of laboratory diets. However, a throughput in the order of 1000 to 1500 tonnes per annum, as estimated to meet UK current demand, can be catered for adequately and economically in a large-scale general service facility. (author)

  12. The central gamma spectrometry laboratory of the GSF Institute of Radiation Protection

    International Nuclear Information System (INIS)

    Ruckerbauer, F.; Dietl, F.; Winkler, R.

    1997-01-01

    Since the middle of 1995 the WG Radioecology is operating the central gamma spectrometry laboratory of the GSF-Institute of Radiation Protection. The main scope of the laboratory is the gamma spectrometric analysis of samples within the research program of the institute and within joint programs with other institutes of the GSF research center. In the present report set-up and technical data of the measuring equipment, the central operating and data evaluation system and measures for quality assurance are described. At that time 18 semiconductor detectors are available for gamma spectrometric sample analysis which is standardized with respect to operation, evaluation algorithms, nuclide data, data safety and documentation. (orig.) [de

  13. The Stanford Synchrotron Radiation Laboratory, 20 years of synchrotron light

    International Nuclear Information System (INIS)

    Cantwell, K.

    1993-08-01

    The Stanford Synchrotron Radiation Laboratory (SSRL) is now operating as a fully dedicated light source with low emittance electron optics, delivering high brightness photon beams to 25 experimental stations six to seven months per year. On October 1, 1993 SSRL became a Division of the Stanford Linear Accelerator Center, rather than an Independent Laboratory of Stanford University, so that high energy physics and synchrotron radiation now function under a single DOE contract. The SSRL division of SLAC has responsibility for operating, maintaining and improving the SPEAR accelerator complex, which includes the storage ring and a 3 GeV injector. SSRL has thirteen x-ray stations and twelve VUV/Soft x-ray stations serving its 600 users. Recently opened to users is a new spherical grating monochromator (SGM) and a multiundulator beam line. Circularly polarized capabilities are being exploited on a second SGM line. New YB 66 crystals installed in a vacuum double-crystal monochromator line have sparked new interest for Al and Mg edge studies. One of the most heavily subscribed stations is the rotation camera, which has been recently enhanced with a MAR imaging plate detector system for protein crystallography on a multipole wiggler. Under construction is a new wiggler-based structural molecular biology beam line with experimental stations for crystallography, small angle scattering and x-ray absorption spectroscopy. Plans for new developments include wiggler beam lines and associated facilities specialized for environmental research and materials processing

  14. Annual report of Radiation Laboratory Department of Nuclear Engineering Kyoto University for fiscal 1993

    International Nuclear Information System (INIS)

    1994-07-01

    This publication is the collection of the papers presented research activities of Radiation Laboratory, Department of Nuclear Engineering, Kyoto University during the 1993 academic/fiscal year (April, 1993 - March, 1994). The 47 of the presented papers are indexed individually. (J.P.N.)

  15. Annual report of Radiation Laboratory Department of Nuclear Engineering Faculty of Engineering, Kyoto University

    International Nuclear Information System (INIS)

    1993-07-01

    This publication is the collection of the papers presented research activities of Radiation laboratory, Department of Nuclear Engineering, Kyoto University during the 1992 academic/fiscal year (April, 1992 - March, 1993). The 48 of the presented papers are indexed individually. (J.P.N.)

  16. Note on the preliminar proposal of the feasibility study for the implantation of a national laboratory of synchrotron radiation

    International Nuclear Information System (INIS)

    Lobo, R.; Muniz, R.P.A.

    1983-01-01

    Some socio-economic and political aspects on the implantation of a National Laboratory of Synchrotron Radiation in Brazil are discussed. Some applications of such a radiation, including technological ones, are presented. (L.C.) [pt

  17. Potential for improved radiation thermometry measurement uncertainty through implementing a primary scale in an industrial laboratory

    Science.gov (United States)

    Willmott, Jon R.; Lowe, David; Broughton, Mick; White, Ben S.; Machin, Graham

    2016-09-01

    A primary temperature scale requires realising a unit in terms of its definition. For high temperature radiation thermometry in terms of the International Temperature Scale of 1990 this means extrapolating from the signal measured at the freezing temperature of gold, silver or copper using Planck’s radiation law. The difficulty in doing this means that primary scales above 1000 °C require specialist equipment and careful characterisation in order to achieve the extrapolation with sufficient accuracy. As such, maintenance of the scale at high temperatures is usually only practicable for National Metrology Institutes, and calibration laboratories have to rely on a scale calibrated against transfer standards. At lower temperatures it is practicable for an industrial calibration laboratory to have its own primary temperature scale, which reduces the number of steps between the primary scale and end user. Proposed changes to the SI that will introduce internationally accepted high temperature reference standards might make it practicable to have a primary high temperature scale in a calibration laboratory. In this study such a scale was established by calibrating radiation thermometers directly to high temperature reference standards. The possible reduction in uncertainty to an end user as a result of the reduced calibration chain was evaluated.

  18. Development of Remote Control Laboratory for Radiation Detection via Internet

    International Nuclear Information System (INIS)

    Park, Sang Tae; Lee, Hee Bok; Yuk, Keun Chul

    2002-01-01

    The role of experiments in science education is essential for understanding the natural phenomena and principle related to a subject. Therefore, the remote control experiment via Internet is one of key solution for distance learners in science education. The remote experiments are also necessary for the time-consuming experiment which takes several days, collaborative experiment between distance learners, expensive laboratory equipment which is not usually available to students, experimental procedure which is dangerous, etc. In this study, we have developed a general method for a remote control laboratory system using internet and interface techniques. It is possible for students to learn the nuclear physics to control the real instruments and conduct physics experimentation with internet techniques. We proposed the remote control radiation measurement system as a sample application. This system could be useful for the monitoring near a nuclear power plants in order to improve the environment data credibility to the public

  19. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, No. 29. April 1, 1995 - March 31, 1996

    International Nuclear Information System (INIS)

    1997-03-01

    The annual research activities of the Osaka Laboratory for Radiation Chemistry, JAERI, during the fiscal year 1995, are reported. The research activities were conducted under two research programs: the study on laser-induced organic chemical reactions and the study on basic radiation technology for functional materials. Detailed description of the activities are presented as reviews on the following subjects: laser-induced chemical transformation, laser-induced reaction of polymer surface, photochemical separation of stable isotopes, microprocessing by radiation-induced polymerization, preparation of fine metal particles by gamma-ray irradiation, and electron beam dosimetry. The operation report of the irradiation facility is also included. In October 1995, the Osaka Laboratory was dissolved into the Kansai Research Establishment which was newly inaugurated to promote advanced photon research. Therefore, this is the final issue of the annual report of the Osaka Laboratory for Radiation Chemistry. (author)

  20. Characterization of the radiation field of a 137Cs source in a calibration laboratory

    International Nuclear Information System (INIS)

    Barbosa, E.F.; Freitas, C.; Freire, D.; Almeida, C.E.

    2001-01-01

    Due to the broad range of radiation levels found in practice, the calibration of radiation detector requires that the laboratory have a large range of values of air kerma rates for a reference distance to the source, in order to allow the calibration of all scales. The dosimetry performed for open beam and with the different attenuators has shown deviations smaller than 5% in relation to the data supplied by the manufacturer that is acceptable. These results are in accordance with the recommendations of the ISO/DIS 4037-2

  1. Exercise for laboratory comparison of calibration coefficient in 137Cs beam, radiation protection - 2013/2014

    International Nuclear Information System (INIS)

    Cabral, T.S.; Potiens, M.P.A.; Soares, C.M.A.; Silveira, R.R.; Khoury, H.; Borges, J.C.

    2015-01-01

    This work deals with the preliminary results of the second exercise of comparing the radiation monitors calibration laboratories in Brazil. The exercise involved eight laboratories and the measured quantity is the air kerma in a beam of 137 Cs for radioprotection. The exercise was conducted by the LNMRI/IRD, in a star shaped arrangement from October 2013 to July 2015. The largest deviation was 2% of the calibration coefficient that is acceptable for applications in radioprotection. (author)

  2. Design and implementation of a virtual laboratory of radiation measurement; Diseno e implementacion de un laboratorio virtual de medicion de radiaciones

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez T, J. R.; Morales S, J. B. [Facultad de Ingenieria, UNAM, Ciudad Universitaria, 04510 Mexico, D. F. (Mexico)], e-mail: jms0620@yahoo.com.mx

    2009-10-15

    The work involves the implementation of a virtual laboratory, this project is conducted in the Faculty of Engineering of National Autonomous University of Mexico with the name of LANUVI. It is intended that the laboratory can be used by students who have interest in the nuclear radiation knowledge as well as in its detection and attenuation, in addition serve as and introduction to nuclear systems. In the first part of project will conduct a source that can simulate the particle radiation of Alfa, beta, neutrons and gamma rays. The project will take sources used in class laboratories and elements that are dangerous but are used in different practical applications. After taking the source analyzing the particles behaviour in different media like air, animal tissue, aluminium, lead, etc. The analysis is done in different ways in order to know with which material can stop or mitigate the different types of radiation. Finally shall be measure radioactivity with different types of detectors. At this point, has the behaviour of ionization chamber but in the future is expected to make the simulation of some other radiation detectors. The mathematical models we represent the behaviour of these cases were implemented in free software. The program will be used to implement the virtual laboratory with radiation sources, detectors and different types of shields will be Blender which is a free software that is used by many users for the embodiment of games but try to use as a tool to help visualize the different equipment that is widely used in a radioactive materials laboratory. (Author)

  3. Preliminary analysis of radiologic consequence in accident cases with radiation sources in laboratories of the Physics Department of the IEN, cyclotrons and laboratories annexed

    International Nuclear Information System (INIS)

    Fajardo, P.W.; Silva, J.J.G. da.

    1987-03-01

    The requirements necessaries to the elaboration of the situation of Emergency PLans of the Nuclear Engineering Institute (IEN), Brazil, in particular, cases of radiation emergency are presented. An estimate of radiation in the laboratories of the Physic Department of the IEN, in case of accident, are given. The results presented are based in some hypothesis, values of radionuclide activity furnished by Radioisotopes Division and values of activities estimated by Radiation Protection Section of the IEN in function of datas achieved with cyclotron Division. The dose calculations are done to the cases of radionuclides inhalation and immersion of person in a semi-infinite cloud of contaminants. (V.R.B.)

  4. Health Physics Laboratory - Overview

    International Nuclear Information System (INIS)

    Olko, P.

    2000-01-01

    Full text: The activities of the Health Physics Laboratory at the Institute of Nuclear Physics in Cracow are principally research in the general area of radiation physics, and radiation protection of the employees of the Institute of Nuclear Physics. Theoretical research concerns modelling of radiation effects in radiation detectors and studies of concepts in radiation protection. Experimental research, in the general area of solid state dosimetry, is primarily concerned with thermoluminescence (TL) dosimetry, and more specifically: development of LiF:Mg, Ti and CVD diamond detectors for medical applications in conventional and hadron radiotherapy and of LiF:Mg, Cu, P for low-level natural external ionising radiation. Environmental radiation measurements (cosmic-rays on aircraft and radon in dwellings and soil) are also performed using track CR-39 and TLD detectors. The Laboratory provides expert advice on radiation protection regulations at national and international levels. Routine work of the Health Physics Laboratory involves design and maintenance of an in-house developed TL-based personnel dosimetry system for over 200 radiation workers at the INP, supervision of radiation safety on INP premises, and advising other INP laboratories on all matters pertaining to radiation safety. We provide personal and environmental TLD dosimetry service for several customers outside the INP, mainly in hospitals and nuclear research institutes in Poland. We also calibrate radiation protection instruments for customers in southern Poland. The year 2000 was another eventful year for the Health Physics Laboratory. We started three new research projects granted by the Polish State Committee of Scientific Research. Mr P. Bilski co-ordinates the project on the measurements of radiation doses on board of commercial aircraft of Polish LOT Airlines. Dr B. Marczewska and I worked on the application of artificial diamonds for dosimetry of ionising radiation. We also participate in a

  5. Activity report of Synchrotron Radiation Laboratory 2001

    International Nuclear Information System (INIS)

    2002-11-01

    After moved from Tanashi to Kashiwa Campus in the spring of 2000, the Synchrotron Radiation Laboratory (SRL) has been promoting the High-brilliance Light Source project, Super SOR project, in cooperation with the nationwide user group as well as with the users of the University of Tokyo. In May of 2001, the project has met with a dramatic progress. The Ministry of Education, Science, Sports and Culture organized the Advisory Board and started to discuss the future synchrotron radiation facilities in EUV and SX regime in Japan. Based on extensive discussion, they proposed the new facility consisting of a 1.8 GeV storage ring of 3rd generation type. The University of Tokyo approved to construct the proposed facility in the Kashiwa campus. The plan is supported not only by researchers in academic institutions but also bio- and chemical-industries. We strongly hope the plan will be realized in near future. On the other hand, SRL maintains a branch laboratory in the Photon Factory (PF) High Energy Accelerator Research Organization (KEK) at Tsukuba with a Revolver undulator, two beamlines and three experimental stations (BL-18A, 19A and 19B), which are and fully opened to the outside users. In the fiscal year of 2001, the operation time of the beamlines was more than 5000 hours and the number of the users was about 200. The main scientific interests and activities in the SRL at KEK-PF are directed to the electronic structures of new materials with new transport, magnetic and optical properties. The electronic structures of solid surfaces and interfaces are also intensively studied by photoelectron spectroscopy and photoelectron microscopy. The accelerator group of SRL is carrying out research works of the accelerator physics and developing the accelerator-related technology, many parts of which will be directly applied to the new light source project. This report contains the activities of the staff members of SRL and users of the three beamlines in FY2001. The status of

  6. Mars science laboratory radiation assessment detector (MSL/RAD) modeling workshop proceedings

    Science.gov (United States)

    Hassler, Donald M.; Norbury, John W.; Reitz, Günther

    2017-08-01

    The Radiation Assessment Detector (RAD) (Hassler et al., 2012; Zeitlin et al., 2016) onboard the Mars Science Laboratory (MSL) Curiosity rover (Grotzinger et al., 2012) is a sophisticated charged and neutral particle radiation analyzer developed by an international team of scientists and engineers from Southwest Research Institute in Boulder, Colorado as the leading institution, the University of Kiel and the German Aerospace Center in Cologne, Germany. RAD is a compact, powerful instrument capable of distinguishing between ionizing particles and neutral particles and providing neutron, gamma, and charged particle spectra from protons to iron as well as absorbed dose measurements in tissue-equivalent material. During the 6 month cruise to Mars, inside the MSL spacecraft, RAD served as a proxy to validate models of the radiation levels expected inside a spacecraft that future astronauts might experience (Zeitlin et al., 2013). RAD was turned on one day after the landing on August 7, 2012, exactly 100 years to the day after the discovery of cosmic rays on Earth by Victor Hess. These measurements are the first of their kind on the surface of another planet (Hassler et al., 2014), and the radiation data collected by RAD on the surface of Mars will inform projections of crew health risks and the design of protective surface habitats and other countermeasures for future human missions in the coming decades.

  7. (Re)implantation of quality system of LCR (Laboratory for Radiation Sciences) for accreditation in the standard ABNT NBR ISO/IEC 17025:2005

    International Nuclear Information System (INIS)

    Leite, Sandro P.; Fernandes, Elisabeth O.; David, Mariano G.; Pires, Evandro J.; Alves, Carlos F.E.; Almeida, Carlos E.

    2014-01-01

    This paper presents preparing procedure of the metrology laboratory (LABMETRO), which belongs Laboratorio de Ciencias Radiologicas of Rio de Janeiro , for postulating accreditation of its services metrology to INMETRO. This process, supported by the Technological Services Network SIBRATEC/FINEP for Radiation Protection and Dosimetry Technological Services, had as one of its aims to avoid possible technical barriers to the purchase services in the area of ionizing radiation laboratories. Accreditation will also enable the integration of services such laboratories in Brazilian Calibration Network (RBC). (author)

  8. Computerization aspects of the Health Physics' Radiation Control Program at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Dolecek, Elwyn H.

    1978-01-01

    Greater public awareness of the potential hazards of ionizing radiation and the more stringent governmental compliance programs have made accountability of radioactive materials an item of increasingly major concern for all radionuclide users. For low-volume (radioisotopically) organizations, manual record keeping techniques may suffice without requiring significant work-hour allocations. When considering high-volume users, the workload contingent with manual inventory is usually excessive from an employee time-allocation standpoint. Therefore, various automation systems are employed, usually with the aid of an in-house or time-purchase computer system. The computer programs developed for these systems often do not allow for future modification without major rewriting. Therefore, to facilitate in program concept, modification, and implementation the Health Physics Section at Argonne National Laboratory chose to design and code its computer program(s) and has instituted a Radiation Administrative Program (RAP) as a major component of the Section's laboratory-wide radiation control program. Coded in ANSI PL/I, RAP provides both flexibility in present concept and allowance for future growth. It requires less than 300K words of computer memory and can be easily incorporated at other organizations with minimal modifications. The modular design provides run cost benefits and versatility of report generation and modification. Through the use of this type of information processing and retrieval system, one can manipulate large amounts of radionuclide data, providing control and identification, while still maintaining commitment of computer costs and employee time at a reasonable level. (author)

  9. The effect of sucralfate on the reduction of radiation esophagitis: clinical and laboratory data

    International Nuclear Information System (INIS)

    Chun, Mison; Kim, Juree; Hahm, Kibaik; Kim, Jinhong

    1996-01-01

    Purpose/Objective: Sucralfate is a common ulcer healing drug. This study was conducted between June 1995 and February 1996, to verify the sucralfate effect on the reduction of esophagitis, radiation induced mucosal damage. Materials and Methods: Initially, a total of 39 patients (31 lung cancer, 8 esophageal cancer) received either sucralfate or a placebo before each meal (TID) starting the 1st day of the radiation treatment and continuing during the treatment without interruption. Patients were evaluated weekly by the same personnel using a pain scale. Subsequently, sucralfate was given 4 times daily (QID), with each meal and right before treatment, to 14 patients. Esophageal biopsies were taken from 14 patients (9 from the sucralfate group and 5 from the placebo group) on the third week of radiation treatment, when the patients usually received 2000 to 2500 cGy to the thoracic esophagus. We evaluated the change of reactive oxygen metabolites and reactive nitrogen metabolites such as NOS(constitutive and inducible form of nitric oxide synthetase) generated by irradiation. Myeloperoxidase(MPO) activities were measured spectroscopically. Thiobarbituric acid reactive substance (TBA-RS) and chemiluminescence (CL) as an index of lipid peroxidation were also measured. Results: There was a considerable reduction of severe esophagitis (≥ 4 pain scale) in patients with regular sucralfate medication compared to patients with the placebo ((6(20))(30%) vs(14(19)) (74%)). Sucralfate QID group patients showed more improvement than the TID group, with only 2 out of 14 (14%) suffering severe esophagitis. The laboratory results are shown below : Conclusion: This data confirmed that sucralfate significantly reduced severe esophagitis symptoms during the radiation therapy course, and made it easier for patients to tolerate the thoracic radiation treatment. Moreover, the laboratory data showed a significant reduction in the level of all reactive oxygen metabolites generated by the

  10. Radiation-induced DNA damage and repair: Argonne National Laboratory symposium, Argonne, Illinois 60439, 15 April, 1988. Symposium report

    Energy Technology Data Exchange (ETDEWEB)

    Peak, M J; Peak, J G; Blazek, E R

    1988-10-01

    The Argonne National Laboratory Symposium brought together 109 scientists from five countries to discuss the molecular effects of radiation on DNA and the responses of cells to radiation exposure. Six speakers covered three general areas: (1) DNA damages caused by radiations; (2) repair of these damages in prokaryotes and eukaryotes; and (3) aminothiols as radioprotectors. In addition, a round table discussion chaired by J. Ward dealt with alkaline and neutral elution methodology.

  11. Secondary standards laboratories for ionizing radiation calibrations: the national laboratory interests

    International Nuclear Information System (INIS)

    Roberson, P.L.; Campbell, G.W.

    1984-11-01

    The national laboratories are probable candidates to serve as secondary standards laboratories for the federal sector. Representatives of the major Department of Energy laboratories were polled concerning attitudes toward a secondary laboratory structure. Generally, the need for secondary laboratories was recognized and the development of such a program was encouraged. The secondary laboratories should be reviewed and inspected by the National Bureau of Standards. They should offer all of the essential, and preferably additional, calibration services in the field of radiological health protection. The selection of secondary laboratories should be based on economic and geographic criteria and/or be voluntary. 1 ref., 2 tabs

  12. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, (No. 26)

    International Nuclear Information System (INIS)

    1994-03-01

    The annual research activities of Osaka Laboratory for Radiation Chemistry, JAERI during the fiscal year of 1992 (April 1, 1992 - March 31, 1993) are described. The research activities were conducted under the two research programs: the study on laser-induced organic chemical reactions and the study on basic radiation technology for functional materials. Detailed descriptions of the activities are presented in the following subjects: laser-induced organic synthesis, modification of polymer surface by laser irradiation, radiation-induced polymerization, preparation of fine particles by gamma ray irradiation, and electron beam dosimetry. The operation report of the irradiation facilities is also included. (author)

  13. Oak Ridge National Laboratory Radiation Control Program - Partners in Site Restoration

    International Nuclear Information System (INIS)

    Jones, S. L.; Stafford, M. W.

    2002-01-01

    In 1998, the U.S. Department of Energy (DOE) awarded the Management and Integration (M and I) contract for all five of the Oak Ridge Operations (ORO) facilities to Bechtel Jacobs Company LLC (BJC). At Oak Ridge National Laboratory (ORNL), a world renowned national laboratory and research and development facility, the BJC mission involves executing the DOE Environmental Management (EM) program. In addition to BJC's M and I contract, UT-Battelle, LLC, a not-for-profit company, is the Management and Operating (M and O) contractor for DOE on the ORNL site. As part of ORNL's EM program, legacy inactive facilities (i.e., reactors, nuclear material research facilities, burial grounds, and underground storage tanks) are transferred to BJC and are designated as remediation, decontamination and decommissioning (D and D), or long-term surveillance and maintenance (S and M) facilities. Facilities operated by both UT-Battelle and BJC are interspersed throughout the site and are usually in close proximity. Both UT-Battelle and BJC have DOE-approved Radiation Protection Programs established in accordance with 10 CFR 835. The BJC Radiological Control (RADCON) Program adapts to the M and I framework and is comprised of a combination of subcontracted program responsibilities with BJC oversight. This paper focuses on the successes and challenges of executing the BJC RADCON Program for BJC's ORNL Project through a joint M and I contractor relationship, while maintaining a positive working relationship and partnership with UT-Battelle's Radiation Protection organization

  14. Health Physics Laboratory - Overview

    International Nuclear Information System (INIS)

    Olko, P.

    1999-01-01

    The activities of the Health Physics Laboratory at the Institute of Nuclear Physics in Cracow are principally research in the general area of radiation physics, and radiation protection of the employees of the Institute of Nuclear Physics. Theoretical research concerns modelling of radiation effects in radiation detectors and studies of concepts in radiation protection. Experimental research, in the general area of solid state dosimetry, is primarily concerned with thermoluminescence (TL) dosimetry, and more specifically: development of LiF:Mg, Ti for medical applications in conventional and hadron radiotherapy, and of LiF:Mg, Cu, P for low-level natural external ionising radiation. Environmental radiation measurements (radon in dwellings and in soil air) are also performed using track detectors. The Laboratory provides expert advice on radiation protection regulations at national and international levels. Routine work of the Health Physics Laboratory involves design and maintenance of an in-house developed TL-based personnel dosimetry system for over 200 radiation workers at the INP, monitoring and supervision of radiation safety on INP premises, and advising other INP laboratories on all matters pertaining to radiation safety. The year 1998 was another eventful year for the Health Physics Laboratory. In retrospective, the main effort in 1998 has been directed towards preparation and participation in the 12th International Conference on Solid State Dosimetry in Burgos, Spain. One of the research projects is aimed at developing novel miniature TLD detectors with improved LET and dose characteristics for precise phantom measurements in eye cancer radiotherapy with proton beams. The second project concerns the application of ultra-sensitive LiF:Mg, Cu, P (MCP-N) TLD detectors in environmental monitoring of gamma ionising radiation. The main objective of this last project is to develop and to test a system for rapid, short-term monitoring of environmental radiation

  15. Laboratory simulation of interplanetary ultraviolet radiation (broad spectrum) and its effects on Deinococcus radiodurans

    Science.gov (United States)

    Paulino-Lima, Ivan Gláucio; Pilling, Sérgio; Janot-Pacheco, Eduardo; de Brito, Arnaldo Naves; Barbosa, João Alexandre Ribeiro Gonçalves; Leitão, Alvaro Costa; Lage, Claudia de Alencar Santos

    2010-08-01

    The radiation-resistant bacterium Deinococcus radiodurans was exposed to a simulated interplanetary UV radiation at the Brazilian Synchrotron Light Laboratory (LNLS). Bacterial samples were irradiated on different substrates to investigate the influence of surface relief on cell survival. The effects of cell multi-layers were also investigated. The ratio of viable microorganisms remained virtually the same (average 2%) for integrated doses from 1.2 to 12 kJ m -2, corresponding to 16 h of irradiation at most. The asymptotic profiles of the curves, clearly connected to a shielding effect provided by multi-layering cells on a cavitary substrate (carbon tape), means that the inactivation rate may not change significantly along extended periods of exposure to radiation. Such high survival rates reinforce the possibility of an interplanetary transfer of viable microbes.

  16. Radiative Transfer Theory Verified by Controlled Laboratory Experiments

    Science.gov (United States)

    Mishchenko, Michael I.; Goldstein, Dennis H.; Chowdhary, Jacek; Lompado, Arthur

    2013-01-01

    We report the results of high-accuracy controlled laboratory measurements of the Stokes reflection matrix for suspensions of submicrometer-sized latex particles in water and compare them with the results of a numerically exact computer solution of the vector radiative transfer equation (VRTE). The quantitative performance of the VRTE is monitored by increasing the volume packing density of the latex particles from 2 to 10. Our results indicate that the VRTE can be applied safely to random particulate media with packing densities up to 2. VRTE results for packing densities of the order of 5 should be taken with caution, whereas the polarized bidirectional reflectivity of suspensions with larger packing densities cannot be accurately predicted. We demonstrate that a simple modification of the phase matrix entering the VRTE based on the so-called static structure factor can be a promising remedy that deserves further examination.

  17. Radiation chemistry in the nuclear power reactor environment: from laboratory study to practical application

    International Nuclear Information System (INIS)

    Stuart, C.R.

    1999-01-01

    This paper discusses the work carried out at the Chalk River Nuclear Laboratories in underlying and applied radiation chemical research performed to optimise the processes occurring in the four aqueous systems in and around the core. The aqueous systems subject to radiolysis in CANDU reactors are Heat Transport System, Moderator, Liquid Zone Controls and End Shields.

  18. Health Physics Laboratory - Overview

    International Nuclear Information System (INIS)

    Olko, P.

    2002-01-01

    Full text: The activities of the Health Physics Laboratory at the Institute of Nuclear Physics (IFJ) in Cracow are principally research in the general area of radiation physics, dosimetry and radiation protection of the employees of the Institute. Theoretical research concerns modelling of radiation effects in radiation detectors and studies of concepts in radiation protection. Experimental research, in the general area of solid state dosimetry, is primarily concerned with thermoluminescence (TL) dosimetry, and more specifically: development of LiF:Mg, Ti, CaF 2 :Tm and CVD diamond detectors for medical applications in conventional and hadron radiotherapy and of LiF:Mg, Cu, P and LiF:Mg, Cu, Si, Na for low-level natural external ionising radiation. Environmental radiation measurements (cosmic-rays on aircraft and radon in dwellings and soil) are also performed using track CR-39 and TLD detectors. The Laboratory provides expert advice on radiation protection regulations at national and international levels. Routine work of the Health Physics Laboratory involves design and maintenance of an in-house developed TL-based personnel dosimetry system for over 200 radiation workers at the INP, supervision of radiation safety on IFJ premises, and advising other INP laboratories on all matters pertaining to radiation safety. We provide personal and environmental TLD dosimetry services for several customers outside the IFJ, mainly in hospitals and nuclear research institutes in Poland. We also calibrate radiation protection instruments (400 per year) for customers in the southern region of Poland. The year 2001 was another eventful year for the Health Physics Laboratory. M. Waligorski has received his Professor of Physics state nomination from A. Kwasniewski, the President of Poland. P. Bilski and M. Budzanowski were granted their Ph.D. degrees by the Scientific Council of the Institute of Nuclear Physics. We continued several national and international research projects. Dr

  19. Evaluation of ambient radiation levels in positron emission tomography/computed tomography in microPET/CT laboratory

    International Nuclear Information System (INIS)

    Sarmento, Daniele Martins

    2016-01-01

    Micro PET/CT scanner is an essential tool generally used for small animal molecular imaging. Fluorine-18-labeled fluorodeoxyglucose is the most widely used radioisotope in this technique. The present study aimed to evaluate the radiation levels in a micro PET/CT research laboratory of the Radiopharmacy Center at IPEN-CNEN / SP, in order to accomplish both national standards and international recommendations. The radioprotection team has classified the laboratory as supervised area; even this laboratory does not require the adoption of specific measures for protection and safety, should be done regular re-evaluation of the conditions of occupational exposures. Workplace monitoring and individual control assessment were carried out to ensure the radiological protection of all workers directly involved in handling the scanner. Initially, there was conducted a radiometric survey, as well as measurements of the external radiation level in the workplace and its surroundings. To achieve this goal, there were placed nine thermoluminescent dosimeters of CaSO 4 :Dy in preselected locations. Monthly evaluations of the occupationally exposed individuals were carried out through the use of TL dosimeters, ported in the workers' chest. Moreover, whole body measurements were performed every six months. The study period was about two-years which started in April 2014. All tests to evaluate micro PET/CT performance were based on the standard protocol of the equipment in accordance with the standard developed by the Animal PET Standard Task Force. Present study's results demonstrated that the ambient radiation levels (ambient and effective estimated radiation dose), as well as the effective shielding equipment are both adequate. This study emphasizes that it is essential to strictly follow the principles of radioprotection in workplace, whenever researches involve radioactive unsealed sources. (author)

  20. Activity report of Synchrotron Radiation Laboratory 2005

    International Nuclear Information System (INIS)

    2006-11-01

    Since 1980s, the Synchrotron Radiation Laboratory (SRL) has been promoting the 'Super-SOR' project, the new synchrotron radiation facility dedicated to sciences in vacuum ultraviolet and soft X-ray regions. The University of Tokyo considered the project as one of the most important future academic plans and strongly endorsed to construct the new facility with an electron storage ring of third generation type in the Kashiwa campus. During last year, the design of the accelerator system was slightly modified to obtain stronger support of the people in the field of bio-sciences, such as medicine, pharmacy, agriculture, etc. The energy of the storage ring was increased to 2.4 GeV, which is determined to obtain undulator radiation with sufficient brightness in X-ray region for the protein crystallography experiments. The value was also optimised to avoid considerable degradation of undulator radiation in the VUV and soft X-ray regions. However, in October last year, the president office of the University found out that the promotion of the project was very difficult for financial reasons. The budget for the new facility project is too big to be supported by a single university. The decision was intensively discussed by the International Review Committee on the Institute for Solid State Physics (ISSP), which was held at ISSP from November 14 to 16. The committee understood that the restructuring of the University system in Japan would overstrain the financial resources of the University of Tokyo and accepted the decision by the University. Presently, SRL has inclined to install beamlines using undulator radiation in other SR facilities instead of constructing a facility with a light source accelerator. At new beamlines, SRL will promote advanced materials sciences utilizing high brilliance and small emittance of synchrotron radiation which have been considered in the Super-SOR project. They are those such as microscopy and time-resolved experiments, which will only be

  1. Quality assurance for radon exposure chambers at the National Air and Radiation Environmental Laboratory, Montgomery, Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Semler, M.O.; Sensintaffar, E.L. [National Air and Radiation Environmental Laboratory, Montgomery, AL (United States)

    1993-12-31

    The Office of Radiation and Indoor Air, U.S. Environmental Protection Agency (EPA), operates six radon exposure chambers in its two laboratories, the National Air and Radiation Environmental Laboratory (NAREL) in Montgomery, Alabama, and the Las Vegas Facility, Las Vegas, Nevada. These radon exposure chambers are used to calibrate and test portable radon measuring instruments, test commercial suppliers of radon measurement services through the Radon Measurement Proficiency Program, and expose passive measurement devices to known radon concentrations as part of a quality assurance plan for federal and state studies measuring indoor radon concentrations. Both laboratories participate in national and international intercomparisons for the measurement of radon and are presently working with the National Institute of Standards and Technology (NIST) to receive a certificate of traceability for radon measurements. NAREL has developed an estimate of the total error in its calibration of each chamber`s continuous monitors as part of an internal quality assurance program. This paper discusses the continuous monitors and their calibration for the three chambers located in Montgomery, Alabama, as well as the results of the authors intercomparisons and total error analysis.

  2. A review of the probabilistic safety assessment of the Radiation Monitor Calibration Laboratory of the Almirante Alvaro Alberto Power Plant

    International Nuclear Information System (INIS)

    Gomes, Erica Cupertino

    2005-03-01

    The main purpose of this work is to update the PSA study of the Radiation Monitor Calibration Laboratory of the Almirante Alvaro Alberto Power Station taking into account new information. It is considered in this study an evaluation of the human reliability analysis in the calibration procedure of the radiation monitors, and for such the THERP modeling is used, as well as the use of the Bayesian approach for the calculation of the equipment failure probabilities used by the operators. Some accident scenarios of external origin were incorporated for evaluating their importance for an accident that might expose a worker to gamma radiation. A catastrophic failure is analyzed in the diesel generators 3 and 4, whose building is nearby the laboratory, as well as the route of change and the transportation of the steam generator of the nuclear power plant since the laboratory is located in the plant controlled area. Although more accidents scenarios are considered in this work, a conservative approach was not used and thus a smaller radiological risk was obtained. (author)

  3. National laboratories

    International Nuclear Information System (INIS)

    Moscati, G.

    1983-01-01

    The foundation of a 'National Laboratory' which would support a Research center in synchrotron radiation applications is proposed. The essential features of such a laboratory differing of others centers in Brazil are presented. (L.C.) [pt

  4. [Experience of the development special medical technical laboratory for studies of effects caused by potent electromagnetic radiation in biologic objects].

    Science.gov (United States)

    Gorodetsky, B N; Kalyada, T V; Petrov, S V

    2015-01-01

    This article covers topics of creating special medical technical laboratory for medial and biologic studies concerning influence of potent high-frequency elecromagnetic radiation on various biologic objects. The authors gave example of such laboratory, described its construction features, purpose and main characteristics of the included devices.

  5. Radiation tolerance in the fruit fly, Drosophila Melanogaster - effects of laboratory culturing and stages in life cycle

    International Nuclear Information System (INIS)

    Vas, Iril Prima; Naik, Pramila; Kumar, Vineeth; Naik, Prathima; Patil, Rajashekar K.

    2013-01-01

    Radiation induced damages are due to direct effect of radiation energy or through free radical generation. Recent studies suggest Drosophila to be a good animal model to study radiation tolerance. The present study on female Drosophila melanogaster was conducted to observe 1. Variations in larval and adult radiation tolerance 2. Variations in laboratory culture and field populations of Drosophila. Third instar larvae were exposed to gamma radiation of 6, 10, 20, 30, 40 and 50 Gy in gamma chamber GC 5000 (BRT, India). Larvae of flies collected from the field were reared for two generations in the lab before irradiation. The laboratory cultured files were from stocks that were maintained for more than 1000 generations. The larvae of field populations had higher survival rate at 51% as compared to 43% in case of cultured flies and thus more resistant. The III instar larval stage (lab culture) had a LD50 of 26 Gy as compared to LD 50 of 928 Gy in case of adult flies have ∼ 160 times higher tolerance compared to humans. Prolonged rearing comparable to 'domestication' might have induced reduction in tolerance. Larval stages have a lower tolerance than adults possibly due to higher metabolic rate. Adults are post-mitotic in nature with very low rate of cell division. This may contribute to higher tolerance. This however is in contradiction to studies of midge (Chironomous) where larvae also have higher tolerance. (author)

  6. Laboratory training manual on the use of isotopes and radiation in entomology. 2. ed.

    International Nuclear Information System (INIS)

    1977-01-01

    The revised manual, which incorporates changes particularly regarding applied aspects, consists of 7 parts. Part 1 is divided into separate chapters on the properties of radionuclides and radiations; radiation detection and assay of radioactivity; radiation protection; tracer methodology; 15 N determination; and neutron moderation and γ-ray attentuation techniques. Part 2 is concerned with radiobiology. References and a bibliography are supplied with each part. Part 3 contains 17 mental exercises, part 4 laboratory exercises on a GM counter; a scintillation counter; contamination and decontamination; and exercises on basic utilization principles. Part 5 considers radioisotope uptake and excretion paths through the insect organism; principles of internal and external tagging; with emphasis on insect physiology and ecology; various experiments on insects, and insect sterilization using 60 Co and chemosterilants. Eight Appendices and a Glossary of some basic terms and concepts constitute parts 6 and 7, respectively

  7. Laboratory for Calibration of Gamma Radiation Measurement Instruments (LabCal) of Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN) from Brazilian Army Technology Center (CTEx)

    International Nuclear Information System (INIS)

    Amorim, Aneuri de; Balthar, Mario Cesar V.; Santos, Avelino; Vilela, Paulo Ricardo T. de; Oliveira, Luciano Santa Rita; Penha, Paulo Eduardo C. de Oliveira; Gonzaga, Roberto Neves; Andrade, Edson Ramos de; Oliveira, Celio Jorge Vasques de; Fagundes, Luiz Cesar S.

    2016-01-01

    This paper describes the calibration laboratory deployment steps (LABCAL) gamma ionizing radiation measuring instruments in the Army Technology Center, CTEx. Initially the calibration of radiation monitors will be held in the dosimetric quantity air kerma and operational quantity ambient dose equivalent H*(d). The LABCAL / CTEx has not yet authorized by CASEC / CNEN. This laboratory aims to calibrate the ionizing radiation instruments used by the Brazilian Army. (author)

  8. SSPM based radiation sensing: Preliminary laboratory and clinical results

    International Nuclear Information System (INIS)

    Konnoff, Daniel C.; Plant, Thomas K.; Shiner, Elizabeth

    2011-01-01

    Recent Solid State Photomultiplier (SSPM) technology has matured, reaching a performance level that is suitable for replacement of the ubiquitous photomultiplier tube in selected applications for environmental radiation monitoring, clinical dosimetry, and medical imaging purposes. The objective of this work is low signal level laboratory and high signal level clinical testing of the Hamamatsu MPPC (S10362-11-050C), Photonique SSPM (0810G1), and Voxtel SiPM (SQBF-EKAA/SQBF-EIOA) SSPMs coupled to different inorganic scintillator crystals (Prelude 420, BGO), inorganic doped glass scintillator material SiO 2 :Cu 2+ and organic BCF-12 plastic scintillating fibers, used as detector elements. Plastic Optical Fibers (POFs) and Glass Optical Fibers (GOFs) are used as signal conduits for laboratory and clinical testing. Further, reduction of electron-beam-generated Cerenkov light in optical fibers is facilitated by the inclusion of metalized air-core capillary tubing between the BCF-12 plastic scintillating fiber and the POF. In a clinical setting dose linearity, percent depth dose, and angular measurements for 6 MV/18 MV photon beams and 9 MeV electron beams are compared with and without the use of the air-core capillary tubing for BCF-12 plastic scintillating fiber. These same measurements are repeated for SiO 2 :Cu 2+ scintillator material without air-core capillary tubing.

  9. Laboratory astrophysics with high energy and high power lasers: from radiative shocks to young star jets

    International Nuclear Information System (INIS)

    Diziere, A.

    2012-01-01

    Laboratory astrophysics are a rapidly developing domain of the High Energy Density Physics. It aims to recreate at smaller scales physical processes that astronomical telescopes have difficulties observing. We shall approach, in this thesis, three major subjects: 1) Jets ejected from young stars, characterized by an important collimation degree and ending with a bow shock; 2) Radiative shocks in which radiation emitted by the shock front itself plays a dominant role in its structure and 3) Accretion shocks in magnetic cataclysmic variables whose important cooling factor allows them to reach stationarity. From the conception to experimental realization, we shall attempt to reproduce in laboratory each of these processes by respecting the scaling laws linking both situations (experimental and astrophysical) established beforehand. The implementation of a large array of visible and X-ray diagnostics will finally allow to completely characterize them and calculate the dimensionless numbers that validate the astrophysical relevance. (author) [fr

  10. Radiation and Health Technology Laboratory Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Goles, Ronald W.; Johnson, Michelle Lynn; Piper, Roman K.; Peters, Jerry D.; Murphy, Mark K.; Mercado, Mike S.; Bihl, Donald E.; Lynch, Timothy P.

    2003-07-15

    The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.

  11. Quality control of calibration system for area monitors at National Laboratory of Metrology from Ionizing Radiations (LNMRI)

    International Nuclear Information System (INIS)

    Ramos, M.M.O.; Freitas, L.C. de

    1992-01-01

    The quality control of equipment used in calibration from the National Laboratory of Metrology on Ionizing Radiations is presented, with results of standard measure systems and irradiation system. Tables and graphics with the quality of systems are also shown. (C.G.C.)

  12. Second meeting of the Scientific Societies for the feasibility study of implantation of a synchrotron radiation national laboratory

    International Nuclear Information System (INIS)

    1984-01-01

    Feasibility study for the implantation of a national laboratory of synchrotron radiation in Brazil is discussed by several Brazilian Scientific Societies. Problems related with cost, personnel training and machine uses are presented. (L.C.) [pt

  13. A mobile radiological laboratory for rapid response to off-site radiation emergencies

    Energy Technology Data Exchange (ETDEWEB)

    Katoch, D. S.; Sharma, R. C.; Mehta, D. J.; Raj, V. Venkat [Bhabha Atomic Research Centre, Mumbai (India)

    2002-07-01

    A mobile radiological laboratory (MRL) has been designed and developed primarily for providing a rapid response to radiation emergencies arising as a consequence of nuclear and/or radiological accidents. It is equipped specifically to monitor the environment and provide quick assessment of radiological hazards to the population living within a radius of 30 km around a nuclear facility. In this paper, various design features of an Indian MRL together with the details of installed equipment are presented. The MRL has been designed for a continuous outdoor operation of about two weeks. It is built on a 10.70 m long air suspension Bus Chassis and has four sections : Driver's Cabin, Main Counting Laboratory, Whole Body Monitor and Rear section housing general utilities. The electric power is provided by two diesel generators during field operation and by 230 V AC mains supply at headquarters and wherever possible. The equipment installed in the MRL includes : Alpha, beta and gamma counting systems and low and high volume air samplers for the assessment of radioactive contents in the samples of air, water, soil and vegetation; environment dose rate meters and a variety of survey meters for evaluating any potential increase in radiation levels; personal dosimeters to control external radiation exposure; personal protective equipment for avoiding skin and clothing contamination; a chair type of whole body monitor for the assessment of internal radioactive contamination of the human body, in particular, thyroidal uptake of radioiodine; an automatic weather station for recording continuously the meteorological parameters and a satellite based global positioning system to continuously track and display the geographical location of the MRL. The calibrations of the installed equipment are presently in progress. Preliminary results obtained for the methods needed for rapid detection of gamma emitters in the environment and human body, namely, in situ gamma spectrometry and

  14. Sandia Laboratories technical capabilities: auxiliary capabilities

    International Nuclear Information System (INIS)

    1978-09-01

    The primary responsibility of the environmental health function is the evaluation and control of hazardous materials and conditions. The evaluation and control of toxic materials, nonionizing radiation such as laser beams and microwaves, and ionizing radiation such as from radiation machines and radioactive sources, are examples of the activities of environmental health programs. A chemical laboratory is operated for the analysis of toxic and radioactive substances and for the bioassay program to provide an index of internal exposure of personnel to toxic and radioactive materials. Instrumentation support and development is provided for environmental health activities. A dosimetry program is maintained to measure personnel exposure to external ionizing radiation. A radiation counting laboratory is maintained. Reentry safety control and effluent documentation support are provided for underground nuclear tests at the Nevada Test Site. A radiation training program is provided for laboratory personnel which covers all areas of radiation protection, from working with radioactive materials to radiation-producing machines. The information science activity functions within the framework of Sandia Laboratories' technical libraries. Information science is oriented toward the efficient dissemination of information to technical and administrative personnel. Computerized systems are used to collect, process and circulate books, reports, and other literature. Current-awareness, reference, translation, and literature-search services are also provided

  15. Radiation safety requirements for radionuclide laboratories

    International Nuclear Information System (INIS)

    2000-01-01

    The guide lays down the requirements for laboratories and storage rooms in which radioactive substances are used or stored as unsealed sources. In addition, some general instructions concerning work in radionuclide laboratories are set out

  16. Radiation safety requirements for radionuclide laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide lays down the requirements for laboratories and storage rooms in which radioactive substances are used or stored as unsealed sources. In addition, some general instructions concerning work in radionuclide laboratories are set out.

  17. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, 22. April 1, 1988 - March 31, 1989

    International Nuclear Information System (INIS)

    1991-03-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1988 through March 31, 1989. The latest report, for 1987, is JAERI-M 90-054. Detailed descriptions of the activities are presented in the following subjects : (i) studies on laser-induced organic chemical reactions and (ii) studies on radiation chemistry of high polymers and radiation dosimetry. (J.P.N.)

  18. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1982-12-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1981 through March 31, 1982. The latest report, for 1981, is JAERI-M 9856. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, hydrogen and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  19. CRCPD`S laboratory accrediation program

    Energy Technology Data Exchange (ETDEWEB)

    Dukes, P.M. [South Carolina Department of Health and Environmental Control, Columbia, SC (United States)

    1993-12-31

    The Conference of Radiation Control Program Directors, or CRCPD, first became involved in a calibration laboratory accreditation program about 17 years ago. Since that time, the CRCPD has formed a Committee on Ionizing Measurements which writes criteria for the accreditation of laboratories, and performs the accreditation review process. To become accredited, a laboratory must agree to an administrative review, and an onsite review, and participate in measurement quality assurance (MQA) testing with the National Institute of Standards and Technology (NIST). The CRCPD currently has four accredited laboratories. All the laboratories are working with the Conference in promoting the improvement of MQA in radiation control programs.

  20. X radiation qualities characterization following the standard IEC 61267 recommendations at the calibration laboratory of IPEN

    International Nuclear Information System (INIS)

    Franciscatto, Priscila Cerutti

    2009-01-01

    This work presents a methodology for the X radiation qualities characterization following the new recommendations of the standard 61267 of the International Electrotechnical Commission (IEC) to establish a new procedure for calibration of dosimetric systems used in the field of diagnostic radiology. The reference qualities radiation of IEC 61267: RQR 2 to RQR 10, RQA 2 to RQA 10, RQB 2 to RQB 10 and RQN 2 to RQN 10 were implanted at the calibration laboratory of IPEN (LCI). Their characteristics were analyzed through measurements of beam parameters such as: Practical peak voltage (PPV), specific additional filtrations for each qualities (high purity aluminum of about 99.9%), 1st and 2nd Half Value Layers, homogeneity coefficient. The inherent filtration of the X ray tube was also determined. With the establishment of these radiation qualities, the LCI will be ready to calibrate the measuring instruments of radiation in the new qualities, allowing an improvement in radiological services offered by IPEN. (author)

  1. 1-2 GeV synchrotron radiation facility at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Berkner, K.H.

    1985-10-01

    The Advanced Light Source (ALS), a dedicated synchrotron radiation facility optimized to generate soft x-ray and vacuum ultraviole (XUV) light using magnetic insertion devices, was proposed by the Lawrence Berkeley Laboratory in 1982. It consists of a 1.3-GeV injection system, an electron storage ring optimized at 1.3 GeV (with the capability of 1.9-GeV operation), and a number of photon beamlines emanating from twelve 6-meter-long straight sections, as shown in Fig. 1. In addition, 24 bending-magnet ports will be avialable for development. The ALS was conceived as a research tool whose range and power would stimulate fundamentally new research in fields from biology to materials science (1-4). The conceptual design and associated cost estimate for the ALS have been completed and reviewed by the US Department of Energy (DOE), but preliminary design activities have not yet begun. The focus in this paper is on the history of the ALS as an example of how a technical construction project was conceived, designed, proposed, and validated within the framwork of a national laboratory funded largely by the DOE

  2. Environmental surveillance program of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Thomas, R.H.

    1976-04-01

    The major radiological environmental impact of the Lawrence Berkeley Laboratory is due to the operation of four particle accelerators. Potential sources of population exposure at the Laboratory are discussed. The major source of population exposure due to accelerator operation arises from the prompt radiation field which consists principally of neutrons and photons. Release of small quantities of radionuclides is also a potential source of population exposure but is usually an order of magnitude less significant. Accelerator produced radiation levels at the Laboratory boundary are comparable with the magnitudes of the fluctuations found in the natural background radiation. Environmental monitoring of accelerator-produced radiation and of radionuclides is carried on throughout the Laboratory, at the Laboratory perimeter, and in the regions surrounding the Laboratory. The techniques used are described. The models used to calculate population exposure are described and discussed

  3. Evaluation of radiation protection and technical procedures in Wad Madani Heart Diseases and Surgery Center (WHDSC) (cardiac catheterization laboratory)

    International Nuclear Information System (INIS)

    Gesmallah, A. H. A.

    2013-07-01

    The purpose of this study is conducted in order to evaluate the application of radiation protection program, evaluate the design of cardiac catheterization laboratory, evaluate the effectiveness of radiation protection devices, evaluate personal monitoring, usage of G-Arm x-ray machine, to evaluate the responsibilities of radiation protection officer (RPO), to assess monitoring devices if available, and to assess patient patient dose in Wad Madani hear disease and surgery center in a period from march 2013 to june 2013. The most data in this study was obtained from the results of the team of quality assurance and control of radiation safety institute when they visited hospital on 14/2/2011 for inspection and calibration for issue of registration and licenses, except the data of patients dose which obtained from exposure parameters and dosimetric information's in the archive of G-arm x-ray fluoroscopic machine (which were 110 of cardiac catheterization diagnostic and therapeutic cases, 60 of adult patients and 50 of children. The patient data included age, weight, kv, mAs, DAP, air kerma, and fluoro time. The results of this study show that there is radiation protection program need correction and partially applied, the design of cardiac catheterization laboratory is accepted according to radiation safety institute team of quality control. Also the study shows that the radiation protection program devices are available and good condition and enough in number. The study shows that there are no personal monitoring devices and services and the radiological technologist are well trained to dial with the G-arm x-ray machine and to apply the radiation protection program effectively. Also the study states that the radiation protection officer could apply his responsibilities partially. Finally the study shows that there is a direct linear relationship between the patient's weight and (DAP, air kerma, kv, and mAs) concludes that there is excessive radiation dose in cardiac

  4. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, (17)

    International Nuclear Information System (INIS)

    1985-01-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1983 through March 31, 1984. The latest report, for 1983, is JAERI-M 83-199. Detailed descriptions of the activities are presented in the following subjects: studies on surface phenomena under electron and ion irradiations; polymerization under the irradiation of electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  5. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, (9)

    International Nuclear Information System (INIS)

    1976-09-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1975 through March 31, 1976. The latest report, for 1975, is JAERI-M 6260. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide and hydrogen; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and drafting. (auth.)

  6. RESULTS OF THE FIRST RUN OF THE NASA SPACE RADIATION LABORATORY AT BNL

    International Nuclear Information System (INIS)

    BROWN, K.A.; AHRENS, L.; BRENNAN, J.M.

    2004-01-01

    The NASA Space Radiation Laboratory (NSRL) was constructed in collaboration with NASA for the purpose of performing radiation effect studies for the NASA space program. The results of commissioning of this new facility were reported in [l]. In this report we will describe the results of the first run. The NSRL is capable of making use of heavy ions in the range of 0.05 to 3 GeV/n slow extracted from BNL's AGS Booster. Many modes of operation were explored during the first run, demonstrating all the capabilities designed into the system. Heavy ion intensities from 100 particles per pulse up to 12 x 10 9 particles per pulse were delivered to a large variety of experiments, providing a dose range up to 70 Gy/min over a 5 x 5 cm 2 area. Results presented will include those related to the production of beams that are highly uniform in both the transverse and longitudinal planes of motion [2

  7. [The opportunity to use combined stem cells transplantation for haemopoesis activation in the old and mature laboratory animals under the conditions of ionizing radiation].

    Science.gov (United States)

    Grebnev, D Iu; Maklakova, I Iu; Iastrebov, A P

    2014-01-01

    The objective of this work was to study the influence of combined transplantation of stem cells (multypotent mesenchimal stromal and haemopoetic stem cells) on the haemopoesis of old and mature laboratory animals under the condition of ionizing radiation. The result of the experiment shows that under physiological conditions the combined transplantation brings the erithropoesis activation, under the ionizing radiation conditions it brings the erythroid and granulocytopoesis activation. Moreover the combined MMSC and HSC transplantation gives cytoprotective action on the myeloid tissue due to decrease of cyto genically changed cells in the mature animals under the condition of ionizing radiation, but in the old animals this effect can be seen even under physiological condition. Combined transplantation of MMSC and GSC can be used in the mature and old laboratory animals under the conditions of ionising radiation for the haemopoesis activation.

  8. Fruit Flies Provide New Insights in Low-Radiation Background Biology at the INFN Underground Gran Sasso National Laboratory (LNGS).

    Science.gov (United States)

    Morciano, Patrizia; Cipressa, Francesca; Porrazzo, Antonella; Esposito, Giuseppe; Tabocchini, Maria Antonella; Cenci, Giovanni

    2018-06-04

    Deep underground laboratories (DULs) were originally created to host particle, astroparticle or nuclear physics experiments requiring a low-background environment with vastly reduced levels of cosmic-ray particle interference. More recently, the range of science projects requiring an underground experiment site has greatly expanded, thus leading to the recognition of DULs as truly multidisciplinary science sites that host important studies in several fields, including geology, geophysics, climate and environmental sciences, technology/instrumentation development and biology. So far, underground biology experiments are ongoing or planned in a few of the currently operating DULs. Among these DULs is the Gran Sasso National Laboratory (LNGS), where the majority of radiobiological data have been collected. Here we provide a summary of the current scenario of DULs around the world, as well as the specific features of the LNGS and a summary of the results we obtained so far, together with other findings collected in different underground laboratories. In particular, we focus on the recent results from our studies of Drosophila melanogaster, which provide the first evidence of the influence of the radiation environment on life span, fertility and response to genotoxic stress at the organism level. Given the increasing interest in this field and the establishment of new projects, it is possible that in the near future more DULs will serve as sites of radiobiology experiments, thus providing further relevant biological information at extremely low-dose-rate radiation. Underground experiments can be nicely complemented with above-ground studies at increasing dose rate. A systematic study performed in different exposure scenarios provides a potential opportunity to address important radiation protection questions, such as the dose/dose-rate relationship for cancer and non-cancer risk, the possible existence of dose/dose-rate threshold(s) for different biological systems and

  9. Physics laboratory 2

    International Nuclear Information System (INIS)

    1980-01-01

    The report covers the research activities of the Physics laboratory of H.C. Oersted Institute, University of Copenhagen in the period January 1, 1976 - January 1, 1979. It gives also an idea about the teaching carried out by yhe laboratory. The research - broadly speaking - deals mainly with the interaction of particles (ions, electrons and neutrons) and electromagnetic radiation (X-rays) with matter. Use is made in studies of: atomic physics, radiation effects, surface physics, the electronic and crystallographic structure of matter and some biological problems. The research is carried out partly in the laboratory itself and partly at and in collaboration with other institutes in this country (H.C. Oersted Institute, Chemical Laboratories, Denmark's Technical University, Aarhus University, Institute of Physics and Risoe National Laboratory) and abroad (Federal Republic of Germany, France, India, Sweden, U.K., U.S.A. and U.S.S.R.). All these institutes are listed in the abstract titles. Bibliography comprehends 94 publications. A substantial part of the research is supported by the Danish Natural Sciences Research Council. (author)

  10. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, (13)

    International Nuclear Information System (INIS)

    1980-11-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1979 through March 31, 1980. The latest report, for 1979, is JAERI-M 8569. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, hydrogen and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  11. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, 14

    International Nuclear Information System (INIS)

    1981-12-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1980 through March 31, 1981. The latest report, for 1980, is JAERI-M 9214. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, hydrogen and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  12. Implementation of quality assurance and quality control in the Nuclear Analytical Laboratory of the Estonian Radiation Protection Centre

    International Nuclear Information System (INIS)

    Koeoep, T.; Jakobson, E.

    2002-01-01

    The Analytical Laboratory of the Estonian Radiation Protection Centre is in the process of implementing the system of Quality Assurance (QA) and Quality Control (QC) in the framework of the IAEA TC Project RER/2/004/ 'QA/QC of Nuclear Analytical Techniques'. The draft Quality Manual with annexes has been prepared accordingly to the ISO 17025 Guide, documents and other printed material delivered on the seminars of the project. The laboratory supply has been supplemented with necessary equipment for guaranteeing of quality. Proficiency testing included in the project has been performed successfully. (author)

  13. EVENT DRIVEN AUTOMATIC STATE MODIFICATION OF BNL'S BOOSTER FOR NASA SPACE RADIATION LABORATORY SOLAR PARTICLE SIMULATOR

    International Nuclear Information System (INIS)

    BROWN, D.; BINELLO, S.; HARVEY, M.; MORRIS, J.; RUSEK, A.; TSOUPAS, N.

    2005-01-01

    The NASA Space Radiation Laboratory (NSRL) was constructed in collaboration with NASA for the purpose of performing radiation effect studies for the NASA space program. The NSRL makes use of heavy ions in the range of 0.05 to 3 GeV/n slow extracted from BNL's AGS Booster. NASA is interested in reproducing the energy spectrum from a solar flare in the space environment for a single ion species. To do this we have built and tested a set of software tools which allow the state of the Booster and the NSRL beam line to be changed automatically. In this report we will describe the system and present results of beam tests

  14. Assessment of internal and external exposure to ionizing radiation in laboratories of nuclear medicine and radiotherapy

    International Nuclear Information System (INIS)

    Adamiak-Ziemba, J.; Doniec, J.; Kocznow, W.; Hawrynski, M.

    1985-01-01

    The investigations with determination of radioisotopes in urine led to detection of contamination with 99m Tc and radioactive iodine. The measurements and dosimetry of external radiation demonstrated that workers in laboratories of radioisotope diagnosis received a mean annual equivalent doses amounted less than 5% of the permissible dose for persons with occupational exposure. It was also established that external exposure was mainly responsible for this. The data about the levels of internal exposure in laboratories of nuclear medicine and radiotherapy demonstrated that introduction of a permanent central system of control of internal contamination of workers would be useless since the observation of the already accepted principles of radiological protection is sufficient for avoiding contamination. (author)

  15. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute (No. 8)

    International Nuclear Information System (INIS)

    1975-10-01

    This report describes research activities in Osaka Laboratory for Radiation Chemistry, JAERI during the one year period from April 1, 1974 through March 31, 1975. The major research field covers the following subjects: studies related to reactions of carbon monoxide and hydrogen; polymerization studies under the irradiation of high dose rate electron beams; modification of polymers; fundamental studies on polymerization, degradation, crosslinking, and grafting. (auth.)

  16. Radiological risk assessment of isotope laboratories according to the requirements of the radiation protection ordinance and the protective labour legislation

    International Nuclear Information System (INIS)

    Stuerm, R.P.; Kuster, M.; Traub, K.

    2001-01-01

    According to the Swiss Radiation Safety Ordinance the supervising authority may require a safety report from the operator of a radioactive laboratory (Art.95) and establish the methodology of the risk analysis. Isotope laboratories of the chemical industry are supervised by Swiss accident insurance agency (SUVA). In that respect SUVA safeguards both radiation protection issues and general protection of the workers and established guide lines in order to assess conventional risks in industrial premises. In these conventional analysis the working process is analysed according to its possible detriment (death, severe invalidity, slight invalidity, injury with absence, injury without absence) and the probability of occurrence (frequent, seldom, rare, improbable, virtually impossible). According to this the risks are categorised in a matrix as 'high', 'medium' and 'low'. SUVA requested such a risk analysis for two isotope laboratories of B type in Basel in which on the one hand the hazard to the workers on the other hand to the public should be analysed and radiologically assessed. It was proposed to use a methodology established in workers safety and the insurance section. This required a comparison of risks of radiation doses in mSv to the consequences of conventional working accidents (death, invalidity) and the risk perception of the public and politicians. In this paper this risk matrix derived in discussions among the supervising body, the company management, the laboratory head and workers is described. In the opinion of the authors such a comparison between radiological and conventional risks has not been performed up to now and the results obtained here are open to discussion. (orig.) [de

  17. DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009-2016

    Science.gov (United States)

    Berger, Thomas; Burmeister, Sönke; Matthiä, Daniel; Przybyla, Bartos; Reitz, Günther; Bilski, Pawel; Hajek, Michael; Sihver, Lembit; Szabo, Julianna; Ambrozova, Iva; Vanhavere, Filip; Gaza, Ramona; Semones, Edward; Yukihara, Eduardo G.; Benton, Eric R.; Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Boehme, Matthias

    2017-03-01

    The natural radiation environment in Low Earth Orbit (LEO) differs significantly in composition and energy from that found on Earth. The space radiation field consists of high energetic protons and heavier ions from Galactic Cosmic Radiation (GCR), as well as of protons and electrons trapped in the Earth's radiation belts (Van Allen belts). Protons and some heavier particles ejected in occasional Solar Particle Events (SPEs) might in addition contribute to the radiation exposure in LEO. All sources of radiation are modulated by the solar cycle. During solar maximum conditions SPEs occur more frequently with higher particle intensities. Since the radiation exposure in LEO exceeds exposure limits for radiation workers on Earth, the radiation exposure in space has been recognized as a main health concern for humans in space missions from the beginning of the space age on. Monitoring of the radiation environment is therefore an inevitable task in human spaceflight. Since mission profiles are always different and each spacecraft provides different shielding distributions, modifying the radiation environment measurements needs to be done for each mission. The experiments "Dose Distribution within the ISS (DOSIS)" (2009-2011) and "Dose Distribution within the ISS 3D (DOSIS 3D)" (2012-onwards) onboard the Columbus Laboratory of the International Space Station (ISS) use a detector suite consisting of two silicon detector telescopes (DOSimetry TELescope = DOSTEL) and passive radiation detector packages (PDP) and are designed for the determination of the temporal and spatial variation of the radiation environment. With the DOSTEL instruments' changes of the radiation composition and the related exposure levels in dependence of the solar cycle, the altitude of the ISS and the influence of attitude changes of the ISS during Space Shuttle dockings inside the Columbus Laboratory have been monitored. The absorbed doses measured at the end of May 2016 reached up to 286

  18. Practical radiation protection for radiography

    International Nuclear Information System (INIS)

    Hubbard, S.K.; Proudfoot, E.A.

    1978-01-01

    Nondestructive Testing Applications and Radiological Engineering at the Hanford Engineering Development Laboratory have developed radiation protection procedures, radiation work procedures, and safe practice procedures to assure safe operation for all radiographic work. The following topics are discussed: training in radiation safety; radiation exposure due to operations at Hanford; safeguards employed in laboratory radiography; field radiographic operations; and problems

  19. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute (no.19)

    International Nuclear Information System (INIS)

    1987-03-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1985 through March 31, 1986. The latest report, for 1984, is JAERI-M 86-051. Detailed descriptions of the activities are presented in the following subjects: studies on surface phenomena under electron and ion irradiations; polymerization under the irradiation of electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  20. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, (no. 20)

    International Nuclear Information System (INIS)

    1989-01-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1986 through March 31, 1987. The latest report, for 1985, is JAERI-M 87-046. Detailed descriptions of the activities are presented in the following subjects: studies on surface phenomena under electron and ion irradiations; polymerization under the irradiation of electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  1. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute (no. 18)

    International Nuclear Information System (INIS)

    1986-03-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1984 through March 31, 1985. The latest report, for 1984, is JAERI-M 84-239. Detailed descriptions of the activities are presented in the following subjects: studies on surface phenomena under electron and ion irradiations; polymerization under the irradiation of electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  2. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, (no. 11)

    International Nuclear Information System (INIS)

    1978-10-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1977 through March 31, 1978. The latest report, for 1977, is JAERI-M 7355. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide and hydrogen; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  3. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, No. 10

    International Nuclear Information System (INIS)

    1977-10-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1976 through March 31, 1977. The latest report, for 1976, is JAERI-M 6702. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide and hydrogen; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (auth.)

  4. Use of the NASA Space Radiation Laboratory at Brookhaven National Laboratory to Conduct Charged Particle Radiobiology Studies Relevant to Ion Therapy.

    Science.gov (United States)

    Held, Kathryn D; Blakely, Eleanor A; Story, Michael D; Lowenstein, Derek I

    2016-06-01

    Although clinical studies with carbon ions have been conducted successfully in Japan and Europe, the limited radiobiological information about charged particles that are heavier than protons remains a significant impediment to exploiting the full potential of particle therapy. There is growing interest in the U.S. to build a cancer treatment facility that utilizes charged particles heavier than protons. Therefore, it is essential that additional radiobiological knowledge be obtained using state-of-the-art technologies and biological models and end points relevant to clinical outcome. Currently, most such ion radiotherapy-related research is being conducted outside the U.S. This article addresses the substantial contributions to that research that are possible at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), which is the only facility in the U.S. at this time where heavy-ion radiobiology research with the ion species and energies of interest for therapy can be done. Here, we briefly discuss the relevant facilities at NSRL and how selected charged particle biology research gaps could be addressed using those facilities.

  5. Efficacy and safety of far infrared radiation in lymphedema treatment: clinical evaluation and laboratory analysis.

    Science.gov (United States)

    Li, Ke; Zhang, Zheng; Liu, Ning Fei; Feng, Shao Qing; Tong, Yun; Zhang, Ju Fang; Constantinides, Joannis; Lazzeri, Davide; Grassetti, Luca; Nicoli, Fabio; Zhang, Yi Xin

    2017-04-01

    Swelling is the most common symptom of extremities lymphedema. Clinical evaluation and laboratory analysis were conducted after far infrared radiation (FIR) treatment on the main four components of lymphedema: fluid, fat, protein, and hyaluronan. Far infrared radiation is a kind of hyperthermia therapy with several and additional benefits as well as promoting microcirculation flow and improving collateral lymph circumfluence. Although FIR therapy has been applied for several years on thousands of lymphedema patients, there are still few studies that have reported the biological effects of FIR on lymphatic tissue. In this research, we investigate the effects of far infrared rays on the major components of lymphatic tissue. Then, we explore the effectiveness and safety of FIR as a promising treatment modality of lymphedema. A total of 32 patients affected by lymphedema in stage II and III were treated between January 2015 and January 2016 at our department. After therapy, a significant decrease of limb circumference measurements was noted and improving of quality of life was registered. Laboratory examination showed the treatment can also decrease the deposition of fluid, fat, hyaluronan, and protein, improving the swelling condition. We believe FIR treatment could be considered as both an alternative monotherapy and a useful adjunctive to the conservative or surgical lymphedema procedures. Furthermore, the real and significant biological effects of FIR represent possible future applications in wide range of the medical field.

  6. The laboratory activities of the IAEA Laboratories, Vienna. Annual report 1979

    International Nuclear Information System (INIS)

    Cook, G.B.

    1981-03-01

    The report gives a fairly comprehensive view of the activities and results of the IAEA Laboratories in Seibersdorf, during the year 1979. These activities are presented under the following main categories: Metrology of the radiations; Dosimetry; Chemistry; Safeguards analytical laboratory; Isotope hydrology; Medical applications; Agriculture: soils; Entomology; Plant breeding; Electronics

  7. Laboratory Tests

    Science.gov (United States)

    ... Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & ... What are lab tests? Laboratory tests are medical devices that are intended for use on samples of blood, urine, or other tissues ...

  8. Exercise for laboratory comparison of calibration coefficient in {sup 137}Cs beam, radiation protection - 2013/2014; Exercicio de comparacao laboratorial do coeficiente de calibracao em feixe de Cesio-137, radioprotecao - 2013/2014

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, T.S. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Potiens, M.P.A., E-mail: tschirn@ird.gov.br [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Soares, C.M.A. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Silveira, R.R. [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Khoury, H. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Fernandes, E. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Laboratorio de Ciencias Radiologicas; Cardoso, W.F. [Eletrobras Termonuclear S.A. (Eletronuclear), Rio de Janeiro, RJ (Brazil); Borges, J.C. [MRA Comercio de Instrumentos Eletronicos Ltda., Ribeirao Preto, SP (Brazil)

    2015-07-01

    This work deals with the preliminary results of the second exercise of comparing the radiation monitors calibration laboratories in Brazil. The exercise involved eight laboratories and the measured quantity is the air kerma in a beam of {sup 137}Cs for radioprotection. The exercise was conducted by the LNMRI/IRD, in a star shaped arrangement from October 2013 to July 2015. The largest deviation was 2% of the calibration coefficient that is acceptable for applications in radioprotection. (author)

  9. Radiation safety at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Hoefert, M [CERN, Geneva (Switzerland)

    1995-09-01

    CERN, the European Laboratory for Particle Physics, operates proton accelerators up to an energy of 450 GeV and an electron-positron storage ring in the 50 GeV energy range for fundamental high-energy particle physics. A strong radiation protection group assures the radiation safety of these machines both during their operation and in periods of maintenance and repair. Particular radiation problems in an accelerator laboratory are presented and recent developments in radiation protection at CERN discussed. (author)

  10. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, No. 12

    International Nuclear Information System (INIS)

    1979-11-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1978 through March 31, 1979. The latest report, for 1978, is JAERI-M 7949. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, hydrogen and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  11. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute (no. 16)

    International Nuclear Information System (INIS)

    1983-11-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1982 through March 31, 1983. The latest report, for 1982, is JAERI-M 82-192. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, water and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  12. DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009–2016

    Directory of Open Access Journals (Sweden)

    Berger Thomas

    2017-01-01

    Full Text Available The natural radiation environment in Low Earth Orbit (LEO differs significantly in composition and energy from that found on Earth. The space radiation field consists of high energetic protons and heavier ions from Galactic Cosmic Radiation (GCR, as well as of protons and electrons trapped in the Earth’s radiation belts (Van Allen belts. Protons and some heavier particles ejected in occasional Solar Particle Events (SPEs might in addition contribute to the radiation exposure in LEO. All sources of radiation are modulated by the solar cycle. During solar maximum conditions SPEs occur more frequently with higher particle intensities. Since the radiation exposure in LEO exceeds exposure limits for radiation workers on Earth, the radiation exposure in space has been recognized as a main health concern for humans in space missions from the beginning of the space age on. Monitoring of the radiation environment is therefore an inevitable task in human spaceflight. Since mission profiles are always different and each spacecraft provides different shielding distributions, modifying the radiation environment measurements needs to be done for each mission. The experiments “Dose Distribution within the ISS (DOSIS” (2009–2011 and “Dose Distribution within the ISS 3D (DOSIS 3D” (2012–onwards onboard the Columbus Laboratory of the International Space Station (ISS use a detector suite consisting of two silicon detector telescopes (DOSimetry TELescope = DOSTEL and passive radiation detector packages (PDP and are designed for the determination of the temporal and spatial variation of the radiation environment. With the DOSTEL instruments’ changes of the radiation composition and the related exposure levels in dependence of the solar cycle, the altitude of the ISS and the influence of attitude changes of the ISS during Space Shuttle dockings inside the Columbus Laboratory have been monitored. The absorbed doses measured at the end of May 2016

  13. Contribution of the radiation hygiene laboratories network in physical protection of radiation materials in Romania

    International Nuclear Information System (INIS)

    Milu, C.

    2002-01-01

    Full text: The Ministry of Health and Family from Romania has its own radiation protection network, including 23 radiation hygiene laboratories (RHLs), within the Institutes of Public Health-Bucharest, Iassy, Cluj-Napoca and Timisoara and the Directions of Public Health from Arges county, Bihor, Brasov, Mures, Maramures, Cluj, Sibiu, Harghita, Suceava, lassy, Bacau, Neamt, Galati, Constanta, Prahova, Dolj, Caras-Severin, Timis and Bucharest City. The RHLs network has 170 persons (physicians, physicists, engineers, chemists, biologists and technicians) and it is technically co-ordinated by the RHL in the Institute of Public Health-Bucharest. Within the local or national activities for physical protection of radioactive materials, the RHLs network closely co-operates with the Ministry of Internal Affairs (MAI) and with the nuclear regulatory authority, named the National Commission for Nuclear Activities Control (CNCAN). In the particular case of theft, sabotage or illicit traffic of radioactive materials, usually the MAI has the main role in the co-ordination of intervention actions of the three authorities. The RHLs network contributes by the expertise of its staff and by using its intervention facilities. The specific tasks for the RHLs network are: identification of the type and size of the radioactive material (by direct dosimetry and/or by gamma spectroscopy); dose reconstructions for the involved persons, the intervention personnel and the population; health management for overexposed persons and the medical response, including biological dosimetry and epidemiological studies. Recent special situations in this field, were: theft of some fuel (defect) tablets of natural uranium, from a production factory; the illicit traffic of radioactive materials, in transition to Western European Countries; an unauthorized decommissioning of a furnace, determining the uncontrolled dispersion of about 30 cobalt-60 sealed sources and the radiation exposure of nearly 20

  14. The NRPB Chilton Calibration Laboratory for radiological protection measurements

    International Nuclear Information System (INIS)

    Iles, W.J.

    1982-01-01

    The Calibration Laboratory in NRPB Headquarters is intended as an authoritative reference laboratory for all aspects of radiation protection level instrument calibrations for X-, gamma and beta radiations and to be complementary to the national primary standards of the National Physical Laboratory. The gamma ray, filtered X-ray, fluorescence X-ray and beta ray facilities are described. (U.K.)

  15. Calibrations and evaluation of the quality assurance during 1999 at the National Laboratory for ionising radiation

    International Nuclear Information System (INIS)

    Grindborg, Jan-Erik; Israelsson, Karl-Erik; Kylloenen, Jan-Erik; Samuelson, Goeran

    2000-06-01

    The Swedish Radiation Protection Institute is the National Laboratory for the dosimetric quantities kerma, absorbed dose and dose equivalent. The activity is based on established calibration procedures and a quality assurance program for the used standards. This report gives a brief summary of the calibrations performed during 1999 and a more detailed description and analysis of the quality assurance during this year. The report makes it easier to draw conclusions about the long-term stability and possible malfunctions

  16. Radiation hydrodynamics in the laboratory

    International Nuclear Information System (INIS)

    1985-12-01

    This report contains a collection of five preprints devoted to the subject of laser induced phenomena of radiation hydrodynamics. These preprints cover approximately the contents of the presentations made by the MPQ experimental laser-plasma group at the 17th European Conference on Laser Interaction with Matter (ECLIM), Rome, November 18-22, 1985. (orig.)

  17. measurement of indoor background ionizing radiation in some

    African Journals Online (AJOL)

    Administrator

    Measurement of the background ionizing radiation profile within the. Chemistry Research Laboratory and Physics Laboratory III all of the. University of Jos and their immediate neighbourhood were carried out. These science laboratories also harbour a number of active radiation sources. The radiation levels were measured ...

  18. Upgrading the Medical Physics Calibration Laboratory Towards ISO/IEC 17025: Radiation Standards and Calibration in Diagnostic Radiology

    International Nuclear Information System (INIS)

    Asmaliza Hashim; Muhammad Jamal Md Isa; Abd Aziz Mhd Ramli; Wan Hazlinda Ismail; Norhayati Abdullah; Shahrul Azlan Azizan; Siti Sara Deraman; Nor Azlin Azraai; Md Khairusalih Md Zin

    2010-01-01

    Calibration of quality control (QC) test tools used in diagnostic radiology is legally required under the Ministry of Health (MOH) requirement. The Medical Physics Calibration Laboratory of the Malaysian Nuclear Agency is the national focal point for the calibration of quality control test tools used in diagnostic radiology. The Medical Physics Calibration Laboratory has measurement traceability to primary standard dosimetry laboratory (Physikalisch-Technische Bundesanstalt (PTB)), thus providing an interface between the primary standard dosimetry laboratory and Malaysian hospitals, clinics and license class H holder. The Medical Physics Calibration Laboratory facility is comprised of a constant potential x-ray system with a capability of 160 kV tube and a series of reference and working standard ion chambers. The stability of reference and working standard ion chambers was measured using strontium-90. Dosimetric instruments used in diagnostic radiology is calibrated in terms of air kerma to comply with an International Code of Practices of dosimetry for example IAEA's Technical Report Series number 457. The new series of standard radiation qualities was established based on ISO/IEC 61267. The measurement of beam homogeneity was measured using film and ion chamber to define the field size at certain distance and kV output was measured using the spectrometer and non-invasive kVp meter. The uncertainties measurement was determined with expended uncertainties to a level of confidence of approximately 95% (coverage factor k=2). This paper describes the available facility and the effort of the Medical Physics Calibration Laboratory to upgrade the laboratory towards ISO/IEC 17025. (author)

  19. Ionizing radiation

    International Nuclear Information System (INIS)

    Passchier, W.F.

    1988-01-01

    This report is part two from the series 'Future explorations' of the Dutch Counsil for Public Health. It contains contributions on biological effects of radiation in which information is presented on research into the occurrence of cancer in patients treated with radiotherapy and irradiated laboratory animals, on the effects of prenatal irradiation, and on the possibile, only in laboratory-animal research demonstrated, effects of irradiation in offspring of irradiated parents. In other contributions, which put the 'link' between the radiology and the practical radiation hygienics, it appears that the increased scientific knowledge does not make it easier to design radiation-hygienic standards and rules. (H.W.). refs.; figs.; tabs

  20. Synchrotron radiation

    International Nuclear Information System (INIS)

    Helliwell, J.R.; Walker, R.P.

    1985-01-01

    A detailed account of the research work associated with the Synchrotron Radiation Source at Daresbury Laboratory, United Kingdom, in 1984/85, is presented in the Appendix to the Laboratory's Annual Report. (U.K.)

  1. Early days in the Lawrence Laboratory

    International Nuclear Information System (INIS)

    McMillan, E.M.

    1976-10-01

    Events at the Lawrence Radiation Laboratory at Berkeley to the end of 1940 are recalled. Radiation detection, discovery of new isotopes and elements, and accelerators are among the subjects included. 29 photographs

  2. Precautions against radiations

    International Nuclear Information System (INIS)

    Osborn, S.B.

    1986-01-01

    In this chapter the characteristics of ionizing and non-ionizing radiations likely to cause hazards in a chemical laboratory are considered. Quantities and units of radiation are described. The general principles of radiation protection, precautions against radiation hazards, ICRP standards and recommendations and the legislation relating to the control of radiation hazards in the UK are discussed. (U.K.)

  3. A laboratory experimental setup for photo-absorption studies using synchrotron radiation

    CERN Document Server

    Shastri, A; Saraswati, P; Sunanda, K

    2002-01-01

    The photophysics beamline, which is being installed at the 450 MeV Synchrotron Radiation Source (SRS), Indus-l, is a medium resolution beamline useful for a variety of experiments in the VUV region viz. 500-2000 A. One of the major applications of this beamline is gas-phase photo-absorption studies. An experimental set up to be used for these experiments was designed, developed and tested in our laboratory. The setup consists of a high vacuum absorption cell, 1/4 m monochromator and detection system. For the purpose of testing, xenon and tungsten continuum sources were used and absorption spectra were recorded in the UV region. This setup was used to record the absorption spectrum of a few molecules like acetone, ammonia, benzene, formaldehyde and acetaldehyde in order to evaluate the performance of the experimental system which will subsequently be used with the photophysics beamline. Details of the design, fabrication and testing of the absorption cell and experimental procedures are presented in this repor...

  4. Upgrade of a radiation measurement laboratory course at the University of Florida

    International Nuclear Information System (INIS)

    Thomsen, L.M.; Bolch, W.E.; Wagner, T.H.

    1996-01-01

    The open-quotes Nuclear Radiation Detection and Instrumentation Laboratoryclose quotes course at the University of Florida provides health physics students with virtually their only hands-on exposure to the radiation measurement equipment used in professional practice. To better prepare students for employment, the course is currently under revision, with implementation of the revised course scheduled for fall semester 1996. The primary goal is to improve student understanding of the inherent strengths and limitations of various gas-filled, scintillation, and semiconductor detectors. A secondary goal is to improve student writing skills. To devise lab exercises that meet these goals, a six-step method for systematic laboratory course improvement was developed and used to guide the revision process. First, course objectives were delineated. Second, obstacles to achieving these course objectives were candidly assessed. Third, the course objectives were prioritized to ensure that the most important ones were met within the given time and equipment constraints. Fourth, performance-based learning objectives were written for each exercise. Fifth, exercises were developed that enable students to achieve the learning objectives specified. Sixth, when the revised course is implemented, its teaching effectiveness will be measured and steps will be taken to improve further. Course revision is nearly complete, and the new exercises promise to significantly improve both student technical knowledge and communication skill

  5. A reappraisal of the reported dose equivalents at the boundary of the University of California Radiation Laboratory during the early days of Bevatron operation

    International Nuclear Information System (INIS)

    Thomas, Ralph H.; Smith, Alan R.; Zeman, Gary H.

    2000-01-01

    Accelerator-produced radiation levels at the perimeter of the Ernest Orlando Lawrence Berkeley National Laboratory (the Berkeley Laboratory) reached a maximum in 1959. Neutrons produced by the Bevatron were the dominant component of the radiation field. Radiation levels were estimated from measurements of total neutron fluence and reported in units of dose equivalent (rem). Accurate conversion from total fluence to dose equivalent demands knowledge of both the energy spectrum of accelerator-produced neutrons and the appropriate conversion coefficient functions for different irradiation geometries. At that time (circa 1960), such information was limited, and it was necessary to use judgment in the interpretation of measured data. The Health Physics Group of the Berkeley Laboratory used the best data then available and, as a matter of policy, reported the most conservative (largest) values of dose equivalent supported by their data. Since the early sixties, significant improvements in the information required to compute dose equivalent, particularly in the case of conversion coefficients, have been reported in the scientific literature. This paper reinterprets the older neutron measurements using the best conversion coefficient data available today. It is concluded that the dose equivalents reported in the early sixties would be reduced by at least a factor of two using current methods of analysis

  6. Computer-controlled radiation monitoring system

    International Nuclear Information System (INIS)

    Homann, S.G.

    1994-01-01

    A computer-controlled radiation monitoring system was designed and installed at the Lawrence Livermore National Laboratory's Multiuser Tandem Laboratory (10 MV tandem accelerator from High Voltage Engineering Corporation). The system continuously monitors the photon and neutron radiation environment associated with the facility and automatically suspends accelerator operation if preset radiation levels are exceeded. The system has proved reliable real-time radiation monitoring over the past five years, and has been a valuable tool for maintaining personnel exposure as low as reasonably achievable

  7. HPS instrument calibration laboratory accreditation program

    Energy Technology Data Exchange (ETDEWEB)

    Masse, F.X; Eisenhower, E.H.; Swinth, K.L.

    1993-12-31

    The purpose of this paper is to provide an accurate overview of the development and structure of the program established by the Health Physics Society (HPS) for accrediting instrument calibration laboratories relative to their ability to accurately calibrate portable health physics instrumentation. The purpose of the program is to provide radiation protection professionals more meaningful direct and indirect access to the National Institute of Standards and Technology (NIST) national standards, thus introducing a means for improving the uniformity, accuracy, and quality of ionizing radiation field measurements. The process is designed to recognize and document the continuing capability of each accredited laboratory to accurately perform instrument calibration. There is no intent to monitor the laboratory to the extent that each calibration can be guaranteed by the program; this responsibility rests solely with the accredited laboratory.

  8. Experience of radiation treatment of laboratory and farm animal feeds in Hungary

    International Nuclear Information System (INIS)

    Nadudvari, I.

    1979-01-01

    The testing of methods suitable for the disinfection and sterilization of farm and laboratory animal feeds, and research into the effects of the methods on feeds and animals, started in Hungary within the last decade. Altogether, 871 tonnes of feeds sterilized and disinfected by various methods were used in 1976 for the feeding of farm and laboratory animals. Gamma radiation was used for sterilization of approx. 90 tonnes. Feeds for SPF animals were sterilized mainly at 1.5 Mrad, but 2.0-2.5 Mrad levels were also used. Feeds for germ-free animals were sterilized at a level of 4.5 Mrad. Experience gained over the past ten years has shown that irradiation at levels between 1.5 and 2.5 Mrad is excellent for the sterilization of mouse, rat, guinea pig and poultry feeds. Quality deterioration of the feeds remained slight and only slight decomposition of vitamins A and E and among the essential amino acids of lysine was observed. The irradiated feeds were readily consumed by the animals. In some cases, e.g. mice and rats, it was observed that weight gain in groups receiving irradiated diets exceeded that in groups fed on untreated or autoclaved diets, and at the same time the daily feed consumption in the groups receiving irradiated feed also increased. No adverse effect on reproduction and health of the farm and laboratory animals fed on irradiated feeds was observed. In Hungary the widespread use of feeds sterilized by irradiation is hindered, in spite of several advantages over feeds sterilized by conventional methods, mainly by the high cost of the irradiation and the supplemental costs associated with special packing and delivery. Therefore only a modest increase in the utilization of irradiated feeds can be expected in the next few years. (author)

  9. DEVELOPMENT HISTORY OF NATURAL SOURCES DOSIMETRY LABORATORY AT THE RESEARCH INSTITUTE OF RADIATION HYGIENE AFTER PROFESSOR P.V. RAMZAEV: 1970–1986

    Directory of Open Access Journals (Sweden)

    E. P. Lisachenko

    2016-01-01

    Full Text Available At the initial development stage of the Leningrad Research Institute of Radiation Hygiene natural sources dosimetry laboratory the experts focused at establishment of equipment and methodology. The following period of the lab activity was rather related to theoretical and experimental research which finally led to creation of a new in radiation hygiene field of work on standard protection of population irradiation caused by natural sources of ionizing radiation. The article describes the main results of the laboratory research of construction materials natural radioactivity and the subsequent substantiation of specifications on natural radionuclides content in them. There was parallel research of natural radionuclides transfer in the system “fertilizers→soil→plants” and further along the nutrition chain into the human body. In these works there were first obtained the quantitative data on coefficients of natural radionuclides transfer from fertilizers into agricultural plants, data on the natural radionuclides content in phosphate fertilizers of the main manufacturers, and the reference data on the natural radioactivity of arable soils. This research provided substantiation of a standard of natural radionuclides content in phosphate fertilizers. Important results were also received in a large-scale research of natural environment radioactivity and of technological processes of production, processing and use of mineral raw materials. During this research for the first time there were obtained the tool data on irradiation levels and structure of doses of non-uranium industries enterprises’ employees and on natural radionuclides balance parameters in different technologies.For the last two years of the considered period the laboratory was practically not engaged in its primary activity – the efforts of all laboratory and the Institute experts were focused at analysis of Chernobyl NPP accident consequences, research of man

  10. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, (No. 28). April 1, 1994 - March 31, 1995

    International Nuclear Information System (INIS)

    1995-10-01

    The annual research activities of Osaka Laboratory for Radiation Chemistry, JAERI during the fiscal year of 1994 (April 1, 1994 - March 31, 1995) are described. The research activities were conducted under two research programs: the study on laser-induced organic chemical reactions and the study on basic radiation technology for functional materials. Detailed descriptions of the activities are presented as reviews on the following subjects: laser-induced chemical transformation, laser-induced reaction of polymer surface, microprocessing by radiation-induced polymerization, preparation of fine metal particles by gamma ray irradiation, and electron beam dosimetry. The operation report of the irradiation facilities is also included. (author)

  11. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, (No. 28). April 1, 1994 - March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The annual research activities of Osaka Laboratory for Radiation Chemistry, JAERI during the fiscal year of 1994 (April 1, 1994 - March 31, 1995) are described. The research activities were conducted under two research programs: the study on laser-induced organic chemical reactions and the study on basic radiation technology for functional materials. Detailed descriptions of the activities are presented as reviews on the following subjects: laser-induced chemical transformation, laser-induced reaction of polymer surface, microprocessing by radiation-induced polymerization, preparation of fine metal particles by gamma ray irradiation, and electron beam dosimetry. The operation report of the irradiation facilities is also included. (author).

  12. Mortality among workers at Oak Ridge National Laboratory. Evidence of radiation effects in follow-up through 1984

    International Nuclear Information System (INIS)

    Wing, S.; Shy, C.M.; Wood, J.L.; Wolf, S.; Cragle, D.L.; Frome, E.L.

    1991-01-01

    White men hired at the Oak Ridge (Tenn) National Laboratory between 1943 and 1972 were followed up for vital status through 1984 (N = 8318, 1524 deaths). Relatively low mortality compared with that in US white men was observed for most causes of death, but leukemia mortality was elevated in the total cohort (63% higher, 28 deaths) and in workers who had at some time been monitored for internal radionuclide contamination (123% higher, 16 deaths). Median cumulative dose of external penetrating radiation was 1.4 mSv; 638 workers had cumulative doses above 50 mSv (5 rem). After accounting for age, birth cohort, a measure of socioeconomic status, and active worker status, external radiation with a 20-year exposure lag was related to all causes of death (2.68% increase per 10 mSv) primarily due to an association with cancer mortality (4.94% per 10 mSv). Studies of this population through 1977 did not find radiation-cancer mortality associations, and identical analyses using the shorter follow-up showed that associations with radiation did not appear until after 1977. The radiation-cancer dose response is 10 times higher than estimates from the follow-up of survivors of the bombings of Hiroshima and Nagasaki, Japan, but similar to one previous occupational study. Dose-response estimates are subject to uncertainties due to potential problems, including measurement of radiation doses and cancer outcomes. Longer-term follow-up of this and other populations with good measurement of protracted low-level exposures will be critical to evaluating the generalizability of the results reported herein

  13. Secondary standard dosimetry laboratory (SSDL)

    International Nuclear Information System (INIS)

    Md Saion bin Salikin.

    1983-01-01

    A secondary Standard Dosimetry Laboratory has been established in the Tun Ismail Research Centre, Malaysia as a national laboratory for reference and standardization purposes in the field of radiation dosimetry. This article gives brief accounts on the general information, development of the facility, programmes to be carried out as well as other information on the relevant aspects of the secondary standard dosimetry laboratory. (author)

  14. Laboratory for Structural Acoustics

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where acoustic radiation, scattering, and surface vibration measurements of fluid-loaded and non-fluid-loaded structures are...

  15. Annual reports of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, (No. 23, 24, 25)

    International Nuclear Information System (INIS)

    1992-09-01

    Research activities of Osaka Laboratory for Radiation Chemistry, JAERI during three year period from April 1, 1989 through March 31, 1992 are described. The latest report. for 1988, is JAERI-M 91-054. Detailed descriptions of the activities are presented in the following subjects: laser-induced organic synthesis, modification of polymer surface by laser irradiation, polymerization and modification of polymers by electron beam, and electron beam dosimetry. (author) 77 refs

  16. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  17. Itinerant radiometric laboratory (IRL-76)

    International Nuclear Information System (INIS)

    Dolgirev, E.I.; Domaratskij, V.P.; Kostikov, Yu.I.

    1978-01-01

    A mobile radiometric laboratory for routine radiation monitoring of the environment, personnel, and population is described. As compared to the previous models, this one incorporates a number of new features and is more informative and versatile. The design and main technical and operating characteristics of the laboratory are detailed

  18. The irradiation as alternative treatment for laboratory wastes

    International Nuclear Information System (INIS)

    Borrely, Sueli Ivone; Romanelli, Maria Fernanda; Silva, Giovana Pasqualini da; Castro, Daniela Marques

    2005-01-01

    The irradiation of effluents may be done by electron accelerator or gamma radiation source (cobalt-60). This technology has been developed as an alternative for several contaminants from different processes and sources. This paper shows the results of electron beam applied to liquid laboratories residues (effluents and standard solutions). Radiation doses were determined for the improvement of laboratories residues measured by detoxification of them. New technologies for residues treatment as well as decreasing contaminants generation is essential part of laboratories activities for environmental management for industry, universities and research institutions. (author)

  19. Medical and industrial application of radiation

    International Nuclear Information System (INIS)

    Ajayi, I.R.

    1999-01-01

    While dosimetry is not a radiation application, accurate dosage of radiation of utmost importance for all radiation applications. For both therapeutic and industrial applications it can be matter of life and death. For this reason, great efforts have been made to ensure that radiation dosages given to patients and used in all industrial applications are as near as possible to those prescribed. The World Health Organization (WHO) and the IAEA, together with many National Standard Laboratories and with the International Bureau of Weight and Measures, have been very active and successful during the last 20 years in ascertaining that normal cobalt-60 therapy unit. For this purpose, 63 Secondary Standard Dosimetry Laboratories have been established of which more than half are in developing countries. FRPS houses one of the Secondary Standard Dosimetry Laboratories. As accurate dosimetry is a prerequisite in radiotherapy, so it is in industrial exposures and all laboratories responsible for dosimetry have to make frequent intercomparisons with one of the Primary Standard Dosimetry Laboratories. The SSDL at FRPS hopes to commence this as soon as our new Harshaw 6600 TLD reader arrives. This has already been approved by the IAEA. Much high doses of radiation are used for some industrial applications, as discussed in a previous lecture, such as sterilization of rubber, and food preservation and newly developed techniques are being used for the assurance of the prescribed dose. IAEA provides assistance in this area also through the secondary standard dosimetry laboratories. The IAEA has a broad programme of assistance which includes the calibration of all instruments in the laboratories of the participants, be it for radiation protection, or high dose measurements

  20. Secondary standard dosimetry laboratory at INFLPR

    Energy Technology Data Exchange (ETDEWEB)

    Scarlat, F.; Minea, R.; Scarisoreanu, A.; Badita, E.; Sima, E.; Dumitrascu, M.; Stancu, E.; Vancea, C., E-mail: scarlat.f@gmail.com [National Institute for Laser, Plasma and Radiation Physics - INFLPR, Bucharest (Romania)

    2011-07-01

    National Institute for Laser, Plasma and Radiation Physics (INFLPR) has constructed a High Energy Secondary Standard Dosimetry Laboratory SSDL-STARDOOR - for performing dosimetric calibrations according to ISO IEC SR/EN 17025:2005 standards. This is outfitted with UNIDOS Secondary Standard Dosimeter from PTW (Freiburg Physikalisch-Technische Werksttaten) calibrated at the PTB-Braunschweig (German Federal Institute of Physics and Metrology). A radiation beam of the quality of Q used by our laboratory as calibration source are provided by INFLPR 7 MeV electron beam linear accelerator mounted in our facility. (author)

  1. Radiological design of hot laboratories

    International Nuclear Information System (INIS)

    Unruh, C.M.

    1976-04-01

    The fundamental design objectives for a laboratory where work with highly radioactive and highly toxic materials, such as plutonium and transplutonium nuclides, is performed are (1) to accomplish the purpose of the laboratory; (2) to protect the environment, (3) to provide safe working conditions; and (4) to keep radiation exposure to staff as low as practicable. The major planning and design features of a well engineered plutonium or transplutonium laboratory are given

  2. Radiological design of hot laboratories

    International Nuclear Information System (INIS)

    Unruh, C.M.

    1976-01-01

    The fundamental design objectives for a laboratory where work with highly radioactive and highly toxic materials, such as plutonium and transplutonium nuclides, is performed, are (1) to accomplish the purpose of the laboratory, (2) to protect the environment, (3) to provide safe working conditions, and (4) to keep radiation exposure to staff as low as practicable. The major planning and design features of well-engineered plutonium or transplutonium laboratory are given. (author)

  3. A large area transition radiation detector to measure the energy of muons in the Gran Sasso underground laboratory

    International Nuclear Information System (INIS)

    Barbarito, E.; Bellotti, R.; Cafagna, F.; Castellano, M.; De Cataldo, G.; De Marzo, C.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Guarnaccia, P.; Mazziotta, M.N.; Mongelli, M.; Montaruli, T.; Perchiazzi, M.; Raino, A.; Sacchetti, A.; Spinelli, P.

    1995-01-01

    We have designed and built a transition radiation detector of 36 m 2 area in order to measure the residual energy of muons penetrating in the Gran Sasso cosmic ray underground laboratory up to the TeV region. It consists of three adjacent modules, each of 2x6 m 2 area. Polystyrene square tubes, filled with a argon-carbon dioxide gas mixture, and polyethylene foam layers are used as proportional detectors and radiators respectively. We cover such a large surface with only 960 channels that provide adequate energy resolution and particle tracking for the astroparticle physics items to investigate. The detector has been calibrated using a reduced size prototype in a test beam. Results from one module exposed to cosmic rays at sea level are shown. (orig.)

  4. The Advanced Light Source: A new 1.5 GeV synchrotron radiation facility at the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1989-01-01

    The Advanced Light Source (ALS), now under construction at the Lawrence Berkeley Laboratory, is being planned as a national user facility for the production of high-brightness and partially coherent x-ray and ultraviolet synchrotron radiation. The ALS is based on a low-emittance electron storage ring optimized for operation at 1.5 GeV with insertion devices in 11 long straight sections and up to 48 bend-magnet ports. High-brightness photon beams, from less than 10 eV to more than 1 keV, will be produced by undulators, thereby providing many research opportunities in materials and surface science, biology, atomic physics and chemistry. Wigglers and bend magnets will provide high-flux, broad-band radiation at energies to 10 keV. 6 refs., 10 figs., 2 tabs

  5. Beta-Carotene production enhancement by UV-A radiation in Dunaliella bardawil cultivated in laboratory reactors

    International Nuclear Information System (INIS)

    Mogedas, B.; Casal, C.; Forjan, E.; Vilchez, C.

    2009-01-01

    beta-Carotene is an antioxidant molecule of commercial value that can be naturally produced by certain microalgae that mostly belong to the genus Dunaliella. So far, nitrogen starvation has been the most efficient condition for enhancing beta-carotene accumulation in Dunaliella. However, while nitrogen starvation promotes beta-carotene accumulation, the cells become non-viable; consequently under such conditions, continuous beta-carotene production is limited to less than 1 week. In this study, the use of UV-A radiation as a tool to enhance long-term beta-carotene production in Dunaliella bardawil cultures was investigated. The effect of UV-A radiation (320-400 nm) added to photosynthetically active radiation (PAR, 400-700 nm) on growth and carotenoid accumulation of D. bardawil in a laboratory air-fluidized bed photobioreactor was studied. The results were compared with those from D. bardawil control cultures incubated with PAR only. The addition of 8.7 W/square m UV-A radiation to 250 W/square m PAR stimulated long-term growth of D. bardawil. Throughout the exponential growth period the UV-A irradiated cultures showed enhanced carotenoid accumulation, mostly as beta-carotene. After 24 days, the concentration of beta-carotene in UV-A irradiated cultures was approximately two times that of control cultures. Analysis revealed that UV-A clearly induced major accumulation of all-trans beta-carotene. In N-starved culture media, beta-carotene biosynthesis in UV-A irradiated cultures was stimulated. We conclude that the addition of UV-A to PAR enhances carotenoid production processes, specifically all-trans beta-carotene, in D. bardawil cells without negative effects on cell growth

  6. Preparative radiation chemistry

    International Nuclear Information System (INIS)

    Drawe, H.

    1978-01-01

    Preparative synthesis of compounds with the aid of radiation chemistry is increasingly used in laboratories as well as on a technical scale. A large number of new compounds has been produced with the methods of radiation chemistry. With the increasing number of available radiation sources, also the number of synthesis metods in radiation chemistry has increased. This paper can only briefly mention the many possible ways of synthesis in radiation chemistry. (orig./HK) [de

  7. Radiation protection seminar

    International Nuclear Information System (INIS)

    2012-01-01

    The Radiation Protection Seminar, was organized by the Argentina Association of Biology and Nuclear Medicine, and Bacon Laboratory, the 20 june 2012, in the Buenos Aires city of Argentina. In this event were presented some papers on the following topics: methods of decontamination, radiation protection of patients; concepts of radiation protection and dosimetry.

  8. Radiation microbiology relevant to radiation processing

    International Nuclear Information System (INIS)

    Tallentire, A.

    1979-01-01

    The subject is discussed under the following headings: typical background studies involving laboratory models (measurement of radiation responses of different organisms, alone or on or in products; isolation of radiation resistant organisms from products and product environments; measurement of levels of preirradiation microbial contamination ('bioburden')); supplementary studies involving naturally occurring microbial contaminants (unit medical products; microbiological quality assurance; products in bulk; animal diet study). (U.K.)

  9. Radiation physics, biophysics, and radiation biology

    International Nuclear Information System (INIS)

    Hall, E.J.; Zaider, M.

    1991-05-01

    Research at the Radiological Research Laboratory is a blend of physics, chemistry, and biology, involving research at the basic level with the admixture of a small proportion of pragmatic or applied research in support of radiation protection and/or radiotherapy. Current research topics include: oncogenic transformation assays, mutation studies involving interactions between radiation and environmental contaminants, isolation, characterization and sequencing of a human repair gene, characterization of a dominant transforming gene found in C3H 10T1/2 cells, characterize ab initio the interaction of DNA and radiation, refine estimates of the radiation quality factor Q, a new mechanistic model of oncogenesis showing the role of long-term low dose medium LET radiation, and time dependent modeling of radiation induced chromosome damage and subsequent repair or misrepair

  10. Hazards analysis for the E.O. Lawrence Berkeley National Laboratory x-ray absorption experiments to be performed at Stanford Synchrotron Radiation Laboratory

    International Nuclear Information System (INIS)

    Edelstein, N.M.; Shuh, D.K.; Bucher, J.B.

    1995-04-01

    The objective of this experiment is to determine the oxidation state(s) of neptunium (Np) in mouse skeleton and in soft tissue by X-ray Absorption Near Edge Structure (XANES). If Np is present in sufficient concentration, X-ray Absorption Fine Structure (XAFS) data will be obtained in order to further identify the Np species present. These data will be crucial in understanding the metabolic pathway of Np in mammals which will help in the design of reagents which can eliminate Np from mammals in the event of accidental exposure. It is proposed to run these experiments at the Standard Synchrotron Radiation Laboratory (SSRL). This laboratory is a DOE national user facility located at the Stanford Linear Accelerator Center (SLAC). The 237 Np nucleus decays by the emission of an alpha particle and this particle emission is the principal hazard in handling Np samples. This hazard is mitigated by physical containment of the sample which stops the alpha particles within the containment. The total amount of Np material that will be shipped to and be at SSRL at any one time will be less than 1 gram. This limit on the amount of Np will ensure that SLAC remains a low hazard, non-nuclear facility. The Np samples will be solids or Np ions in aqueous solution. The Np samples will be shipped to SSRL/SLAC OHP. SLAC OHP will inventory the samples and swipe the containers holding the triply contained samples, and then bring them to the SSRL Actinide trailer located outside building 131. The QA counting records from the samples, as measured at LBNL, will be provided to SSRL and SLAC OHP prior to the arrival of the samples at SLAC OHP. In addition, strict monitoring of the storage and experimental areas will be performed in accordance with SLAC/OHP radiation protection procedures to ensure against the release of contamination

  11. Elementary computation of radiation doses and shieldings for radiochemical laboratories; Calculo Elemental de dosis y blindajes para laboratorios radioquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Jimeno de Osso, F

    1971-07-01

    Simple procedures for the calculation of radiation exposition, half thickness, shield thickness, etc. are described and equations and graphs are included for those gamma-emitting radionuclides, that are more often used in radiochemical laboratories. Application is made of these procedures to three radionuclides, bromine-82, sodium-24 and cobalt-60 which cover a rather wl.de energy range; theoretical results are compared with those obtained from experimental measurements. (Author) 23 refs.

  12. Measurement uncertainty. A practical guide for Secondary Standards Dosimetry Laboratories

    International Nuclear Information System (INIS)

    2008-05-01

    The need for international traceability for radiation dose measurements has been understood since the early nineteen-sixties. The benefits of high dosimetric accuracy were recognized, particularly in radiotherapy, where the outcome of treatments is dependent on the radiation dose delivered to patients. When considering radiation protection dosimetry, the uncertainty may be greater than for therapy, but proper traceability of the measurements is no less important. To ensure harmonization and consistency in radiation measurements, the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) created a Network of Secondary Standards Dosimetry Laboratories (SSDLs) in 1976. An SSDL is a laboratory that has been designated by the competent national authorities to undertake the duty of providing the necessary link in the traceability chain of radiation dosimetry to the international measurement system (SI, for Systeme International) for radiation metrology users. The role of the SSDLs is crucial in providing traceable calibrations; they disseminate calibrations at specific radiation qualities appropriate for the use of radiation measuring instruments. Historically, although the first SSDLs were established mainly to provide radiotherapy level calibrations, the scope of their work has expanded over the years. Today, many SSDLs provide traceability for radiation protection measurements and diagnostic radiology in addition to radiotherapy. Some SSDLs, with the appropriate facilities and expertise, also conduct quality audits of the clinical use of the calibrated dosimeters - for example, by providing postal dosimeters for dose comparisons for medical institutions or on-site dosimetry audits with an ion chamber and other appropriate equipment. The requirements for traceable and reliable calibrations are becoming more important. For example, for international trade where radiation products are manufactured within strict quality control systems, it is

  13. Overview. Health Physics Laboratory. Section 10

    Energy Technology Data Exchange (ETDEWEB)

    Waligorski, M.P.R. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    The activities of the Health Physics Laboratory at the Niewodniczanski Institute of Nuclear Physics are presented and namely: research in the area of radiation physics and radiation protection of the employees of the Institute of Nuclear Physics, theoretical research concerns radiation detectors, radiation protection and studies of concepts of radiation protection and experimental research concerns solid state dosimetry. In this report, apart of the detail descriptions of mentioned activities, the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given.

  14. Overview. Health Physics Laboratory. Section 10

    International Nuclear Information System (INIS)

    Waligorski, M.P.R.

    1995-01-01

    The activities of the Health Physics Laboratory at the Niewodniczanski Institute of Nuclear Physics are presented and namely: research in the area of radiation physics and radiation protection of the employees of the Institute of Nuclear Physics, theoretical research concerns radiation detectors, radiation protection and studies of concepts of radiation protection and experimental research concerns solid state dosimetry. In this report, apart of the detail descriptions of mentioned activities, the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given

  15. Enhancing radiation biodosimetry capability

    International Nuclear Information System (INIS)

    Alok, A.; Kumar, A.; Kulshrestra, S.; Choudhary, S.; Bhagi, S.; Adhikari, J.S.; Chaudhury, N.K.

    2016-01-01

    Biodosimetry laboratories are necessary for quick and accurate assessment of absorbed radiation dose in suspected individuals for their medical management. The method is based on dicentric chromosomal assay (Gold standard). This assay is completely manual and time consuming, require skill and competency of laboratory staff. There is a necessity of more biodosimetry labs within country and networking within and at international level for enhancing medical preparedness for management of radiation emergency

  16. Measurement of indoor background ionizing radiation in some ...

    African Journals Online (AJOL)

    Certain types of building materials are known to be radioactive. Exposure to indoor ionizing radiation like exposure to any other type of ionizing radiation results in critical health challenges. Measurement of the background ionizing radiation profile within the Chemistry Research Laboratory and Physics Laboratory III all of ...

  17. DOE life-span radiation effects studies at Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Thompson, R.C.; Cross, F.T.; Dagle, G.E.; Park, J.F.; Sanders, C.L.

    1986-01-01

    Major life-span radiation effects studies at Pacific Northwest Laboratory fall into three categories: (1) studies with beagle dogs exposed to plutonium compounds via a single inhalation; (2) studies with dogs and rats exposed chronically via inhalation to various combinations and concentrations of radon, radon daughters, and other components of uranium mine atmospheres; and (3) a study in which rats are exposed via single inhalation, in very large numbers, to very low concentrations of 239 PuO 2 . Exposure of beagles currently on study was initiated in 1970 with 239 PuO 2 , in 1973 with 238 PuO 2 , and in 1976 with 239 Pu(NO 3 ) 4 . These experiments involve more than 500 animals, many of them still alive. Experiments seeking to explain the increased incidence of lung cancer in uranium miners have been in progress since 1966. Present emphasis is on studies with rats, in an attempt to define dose-effect relationships at the lowest feasible radon-daughter exposure levels. Our very-low-level experiment with inhaled 239 PuO 2 in rats, with exposures still under way, includes 1000 rats in the control group and 1000 rats in the lowest-exposure group, where life-span lung doses of <5 rads are anticipated

  18. Work for radiation shielding concrete in large-scaled radiation facilities

    International Nuclear Information System (INIS)

    Konomi, Shinzo; Sato, Shoni; Otake, Takao.

    1980-01-01

    This paper reports the radiation shielding concrete work in the construction of radiation laboratory facilities of Electrotechnical Laboratory, a Japanese Government agency for the research and development of electronic technology. The radiation shielding walls of the facilities are made of ordinary concrete, heavy weight concrete and raw iron ore. This paper particularly relates the use of ordinary concrete which constitutes the majority of such concretes. The concrete mix was determined so as to increase its specific gravity for better shielding effect, to improve mass concrete effect and to advance good workability. The tendency of the concrete to decrease its specific gravity and the temperature variations were also made on how to place concrete to secure good shielding effect and uniform quality. (author)

  19. Tour of the Standards and Calibrations Laboratory

    International Nuclear Information System (INIS)

    Elliott, J.H.

    1978-01-01

    This tour of Lawrence Livermore Laboratory's Standards and Calibrations Laboratory is intended as a guide to the capabilities of and services offered by this unique laboratory. Described are the Laboratory's ability to provide radiation fields and measurements for dosimeters, survey instruments, spectrometers, and sources and its available equipment and facilities. The tour also includes a survey of some Health Physics and interdepartmental programs supported by the Standards and Calibrations Laboratory and a listing of applicable publications

  20. Thirty-sixth Lauriston S. Taylor Lecture on radiation protection and measurements--from the field to the laboratory and back: the what ifs, wows, and who cares of radiation biology.

    Science.gov (United States)

    Brooks, Antone L

    2013-11-01

    My scientific journey started at the University of Utah chasing fallout. It was on everything, in everything, and was distributed throughout the ecosystem. This resulted in radiation doses to humans and caused me great concern. From this concern I asked the question, "Are there health effects from these radiation doses and levels of radioactive contamination?" I have invested my scientific career trying to address this basic question. While conducting research, I got acquainted with many of the What ifs of radiation biology. The major What if in my research was, "What if we have underestimated the radiation risk for internally-deposited radioactive material?" While conducting research to address this important question, many other What ifs came up related to dose, dose rate, and dose distribution. I also encountered a large number of Wows. One of the first was when I went from conducting environmental fallout studies to research in a controlled laboratory. The activity in fallout was expressed as pCi L⁻¹, whereas it was necessary to inject laboratory animals with μCi g⁻¹ body weight to induce measurable biological changes, chromosome aberrations, and cancer. Wow! That is seven to nine orders of magnitude above the activity levels found in the environment. Other Wows have made it necessary for the field of radiation biology to make important paradigm shifts. For example, one shift involved changing from "hit theory" to total tissue responses as the result of bystander effects. Finally, Who cares? While working at U.S. Department of Energy headquarters and serving on many scientific committees, I found that science does not drive regulatory and funding decisions. Public perception and politics seem to be major driving forces. If scientific data suggested that risk had been underestimated, everyone cared. When science suggested that risk had been overestimated, no one cared. This result-dependent Who cares? was demonstrated as we tried to generate interactions

  1. Development of mobile radiological assessment laboratory

    International Nuclear Information System (INIS)

    Pujari, R.N.; Saindane, Shashank S.; Jain, Amit; Parmar, Jayesh; Narsaiah, M.V.R.; Pote, M.B.; Murali, S.; Chaudhury, Probal

    2018-01-01

    During any emergency situations real-time radiation measurements and the fast analysis of the measured radiological data are of crucial importance. The newly developed mobile vehicle based laboratory known as 'Radiological Assessment Laboratory' (RAL) can be used for real time measurements in different radiation emergency scenarios, such as the release of radioactive materials from a radiological/nuclear incident, during search of an orphan source or during radioisotope transportation. RAL is equipped with several high sensitive detectors/systems such as NaI(Tl) gamma spectrometers, large size plastic scintillators and air-sampler, along with GPS and data transfer capability through GSM modem

  2. Polarization-based enhancement of ocean color signal for estimating suspended particulate matter: radiative transfer simulations and laboratory measurements.

    Science.gov (United States)

    Liu, Jia; He, Xianqiang; Liu, Jiahang; Bai, Yan; Wang, Difeng; Chen, Tieqiao; Wang, Yihao; Zhu, Feng

    2017-04-17

    Absorption and scattering by molecules, aerosols and hydrosols, and the reflection and transmission over the sea surface can modify the original polarization state of sunlight. However, water-leaving radiance polarization, containing embedded water constituent information, has largely been neglected. Here, the efficiency of the parallel polarization radiance (PPR) for enhancing ocean color signal of suspended particulate matter is examined via vector radiative transfer simulations and laboratory experiments. The simulation results demonstrate that the PPR has a slightly higher ocean color signal at the top-of-atmosphere as compared with that of the total radiance. Moreover, both the simulations and laboratory measurements reveal that, compared with total radiance, PPR can effectively enhance the normalized ocean color signal for a large range of observation geometries, wavelengths, and suspended particle concentrations. Thus, PPR has great potential for improving the ocean color signal detection from satellite.

  3. The national institute of radiation hygiene and the medical application of radiation

    International Nuclear Information System (INIS)

    Baarli, J.

    1988-01-01

    This paper gives a review of the rules and regulations concerning medical application of radiation in Norway. It discusses the intention of the regulations, the way in which the regulations is applied and how the National Institute of Radiation Hygiene as the competent authority assures the application of the regulations. The paper furthermore gives an indication of the areas of radiation application in medicine and the number of location of X-ray equipment, nuclear medical laboratories, radiation therapy equipment, etc. The number of X-ray examinations in Norway per year are also given, together with their distribution among the various types of examinations. Summary results of a quality assurance investigation of nuclear medical laboratories are given, as well as the results of inspections of the various types of equipment used in medical diagnostics

  4. Space Radiation Research at NASA

    Science.gov (United States)

    Norbury, John

    2016-01-01

    The harmful effects of space radiation on astronauts is one of the most important limiting factors for human exploration of space beyond low Earth orbit, including a journey to Mars. This talk will present an overview of space radiation issues that arise throughout the solar system and will describe research efforts at NASA aimed at studying space radiation effects on astronauts, including the experimental program at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Recent work on galactic cosmic ray simulation at ground based accelerators will also be presented. The three major sources of space radiation, namely geomagnetically trapped particles, solar particle events and galactic cosmic rays will be discussed as well as recent discoveries of the harmful effects of space radiation on the human body. Some suggestions will also be given for developing a space radiation program in the Republic of Korea.

  5. Electron/positron measurements obtained with the Mars Science Laboratory Radiation Assessment Detector on the surface of Mars

    Directory of Open Access Journals (Sweden)

    J. Köhler

    2016-01-01

    Full Text Available The Radiation Assessment Detector (RAD, on board the Mars Science Laboratory (MSL rover Curiosity, measures the energetic charged and neutral particles and the radiation dose rate on the surface of Mars. Although charged and neutral particle spectra have been investigated in detail, the electron and positron spectra have not been investigated yet. The reason for that is that they are difficult to separate from each other and because of the technical challenges involved in extracting energy spectra from the raw data. We use GEANT4 to model the behavior of the RAD instrument for electron/positron measurements. We compare Planetocosmics predictions for different atmospheric pressures and different modulation parameters Φ with the obtained RAD electron/positron measurements. We find that the RAD electron/positron measurements agree well with the spectra predicted by Planetocosmics. Both RAD measurements and Planetocosmics simulation show a dependence of the electron/positron fluxes on both atmospheric pressure and solar modulation potential.

  6. Electron/positron measurements obtained with the Mars Science Laboratory Radiation Assessment Detector on the surface of Mars

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, J.; Wimmer-Schweingruber, R.F.; Appel, J. [Kiel Univ. (Germany). Inst. of Experimental and Applied Physics; and others

    2016-04-01

    The Radiation Assessment Detector (RAD), on board the Mars Science Laboratory (MSL) rover Curiosity, measures the energetic charged and neutral particles and the radiation dose rate on the surface of Mars. Although charged and neutral particle spectra have been investigated in detail, the electron and positron spectra have not been investigated yet. The reason for that is that they are difficult to separate from each other and because of the technical challenges involved in extracting energy spectra from the raw data. We use GEANT4 to model the behavior of the RAD instrument for electron/positron measurements.We compare Planetocosmics predictions for different atmospheric pressures and different modulation parameters Φ with the obtained RAD electron/positron measurements.We find that the RAD electron/positron measurements agree well with the spectra predicted by Planetocosmics. Both RAD measurements and Planetocosmics simulation show a dependence of the electron/positron fluxes on both atmospheric pressure and solar modulation potential.

  7. Report on radiation protection calibration activities in Australia

    International Nuclear Information System (INIS)

    Hargrave, N.J.

    1995-01-01

    Australia is a federation of eight autonomous States or Territories. Each of these is responsible for many matters including radiation safety within their borders. National matters are the responsibility of the Federal Government. The Australian Radiation Laboratory (ARL) is a part of the Federal Government Department of Human Services and Health and undertakes research and service activities related to radiation health. Work related to both ionising and non ionising radiation and regulatory matters is performed. Some of the research activities relate to radiation measurement standards, environmental radioactivity (e.g. radon in air, radioactivity in drinking water), effects of electro-magnetic fields on health (ELF), ultra violet radiation (UV) and laser safety, radiochemistry, medical applications of radiation (and doses to the population as a result), general health physics, thermoluminescent dosimetry (TLD) and electron spin resonance (ESR) dosimetry. The calibration of protection instruments are undertaken by the Ionising Radiation Standards Group within the Laboratory and by State Health Laboratories. (J.P.N.)

  8. Synchrotron-radiation research

    International Nuclear Information System (INIS)

    Cunningham, J.E.

    1982-01-01

    The use of radiation from synchrotron sources has started a renaissance in materials, physics, chemistry, and biology. Synchrotron radiation has advantages over conventional x rays in that its source brightness is a thousand times greater throughout a continuous energy spectrum, and resonances are produced with specific electron energy levels. Two major synchrotron radiation sources are operated by DOE: the Stanford Synchrotron Radiation Laboratory at SLAC, and the National Synchrotron Light Source at Brookhaven

  9. Replacement of the Idaho National Engineering Laboratory Health Physics Instrumentation Laboratory

    International Nuclear Information System (INIS)

    1995-05-01

    The DOE-Idaho Operations Office (DOE-ID) has prepared an environmental assessment (EA) on the replacement of the Idaho National Engineering Laboratory Health Physics Instrumentation Laboratory at the Idaho National Engineering Laboratory (INEL). The purpose of this project is to replace the existing Health Physics Instrumentation Laboratory (HPIL) with a new facility to provide a safe environment for maintaining and calibrating radiation detection instruments used at the Idaho National Engineering Laboratory. The existing HPIL facility provides portable health physics monitoring instrumentation and direct reading dosimetry procurement, maintenance and calibration of radiation detection instruments, and research and development support-services to the INEL and others. However, the existing facility was not originally designed for laboratory activities and does not provide an adequate, safe environment for calibration activities. The EA examined the potential environmental impacts of the proposed action and evaluated reasonable alternatives, including the no action alternative in accordance with the Council on Environmental Quality (CEQ) Regulations (40 CFR Parts 1500-1508). Based on the environmental analysis in the attached EA, the proposed action will not have a significant effect on the human environment within the meaning of the National Environmental Policy Act (NEPA) and 40 CFR Parts 1508.18 and 1508.27. The selected action (the proposed alternative) is composed of the following elements, each described or evaluated in the attached EA on the pages referenced. The proposed action is expected to begin in 1997 and will be completed within three years: design and construction of a new facility at the Central Facility Area of the INEL; operation of the facility, including instrument receipt, inspections and repairs, precision testing and calibration, and storage and issuance. The selected action will result in no significant environmental impacts

  10. Waste water management in radiation medicine laboratories

    International Nuclear Information System (INIS)

    Song Miaofa

    1990-01-01

    A new building has been used since 1983 in the department of radiation medicine of Suzhou Medical College. Management, processing facilities, monitoring, discharge and treatment of 147 Pm contaminated waste water are reported

  11. Principles of radiation therapy

    International Nuclear Information System (INIS)

    Richter, M.P.; Share, F.S.; Goodman, R.L.

    1985-01-01

    Radiation oncology now represents the integration of knowledge obtained over an 80-year period from the physics and biology laboratories and the medical clinic. Such integration is recent; until the supervoltage era following World War II, the chief developments in these three areas for the most part were realized independently. The physics and engineering laboratories have now developed a dependable family of sources of ionizing radiations that can be precisely directed at tumor volumes at various depths within the body. The biology laboratory has provided the basic scientific support underlying the intensive clinical experience and currently is suggesting ways of using ionizing radiations more effectively, such as modified fractionation schedules relating to cell cycle kinetics and the use of drugs and chemicals as modifiers of radiation response and normal tissue reaction. The radiation therapy clinic has provided the patient stratum on which the acute and chronic effects of irradiation have been assessed, and the patterns of treatment success and failure identified. The radiation therapist has shared with the surgeon and medical oncologist the responsibility for clarifying the natural history of a large number of human neoplasms, and through such clarifications, has developed more effective treatment strategies. Several examples of this include the improved results in the treatment of Hodgkin's disease, squamous cell carcinoma of the cervix, seminoma, and epithelial neoplasms of the upper aerodigestive tract

  12. High Intensity Source Laboratory (HISL)

    International Nuclear Information System (INIS)

    1992-01-01

    The High Intensity Source Laboratory (HISL) is a laboratory facility operated for the US Department of Energy (DOE) by EG ampersand G, Energy Measurements (EG ampersand G/EM). This document is intended as an overview -- primarily for external users -- of the general purposes and capabilities of HISL; numerous technical details are beyond its scope. Moreover, systems at HISL are added, deleted, and modified to suit current needs, and upgraded with continuing development. Consequently, interested parties are invited to contact the HISL manager for detailed, current, technical, and administrative information. The HISL develops and operates pulsed radiation sources with energies, intensities, and pulse widths appropriate for several applications. Principal among these are development, characterization, and calibration of various high-bandwidth radiation detectors and diagnostic systems. Hardness/vulnerability of electronic or other sensitive components to radiation is also tested. In this connection, source development generally focuses on attending (1) the highest possible intensities with (2) reasonably short pulse widths and (3) comprehensive output characterization

  13. Laboratory safety handbook

    Science.gov (United States)

    Skinner, E.L.; Watterson, C.A.; Chemerys, J.C.

    1983-01-01

    Safety, defined as 'freedom from danger, risk, or injury,' is difficult to achieve in a laboratory environment. Inherent dangers, associated with water analysis and research laboratories where hazardous samples, materials, and equipment are used, must be minimized to protect workers, buildings, and equipment. Managers, supervisors, analysts, and laboratory support personnel each have specific responsibilities to reduce hazards by maintaining a safe work environment. General rules of conduct and safety practices that involve personal protection, laboratory practices, chemical handling, compressed gases handling, use of equipment, and overall security must be practiced by everyone at all levels. Routine and extensive inspections of all laboratories must be made regularly by qualified people. Personnel should be trained thoroughly and repetitively. Special hazards that may involve exposure to carcinogens, cryogenics, or radiation must be given special attention, and specific rules and operational procedures must be established to deal with them. Safety data, reference materials, and texts must be kept available if prudent safety is to be practiced and accidents prevented or minimized.

  14. Thermoluminescent dosimetry in two laboratories of the ININ

    International Nuclear Information System (INIS)

    Cejudo, R.; Gonzalez, P.R.; Azorin N, J.

    2002-01-01

    The effects of the high doses of radiation are well known, but the effects caused by the exposure to low level radiations do not. However it is well known that the dose by small scale what this was as long as it comes from the ionizing radiation it has the enough energy for altering the normal performance of the cells in the living beings. In this work the obtained results in the measurement of the radiation levels in two laboratories of the ININ are presented. One of them located in the Gamma source building (FG) and the other one is now know as Connected to Basic and Environmental Sciences (ACBA). This work was motivated by the nonconformist personnel which works in the last laboratory, since this place was used during many years as warehouse of radioactive wastes, therefore it is expected that the dose levels were higher. The dose was measured with Tl of CaSO 4 :Dy + Ptfe dosemeters developed in the ININ. The results showed that the radiation levels in both laboratories are similar and they are under of the recommended levels for public in general, except a point in ACBA where the dose exceeded in a 64% that value. (Author)

  15. Lawrence and his laboratory

    International Nuclear Information System (INIS)

    Hellbron, J.L.; Seidel, R.W.

    1989-01-01

    The birthplace of nuclear chemistry and nuclear medicine is the subject of this study of the Radiation Laboratory in Berkeley, California, where Ernest Lawrence used local and national technological, economic, and manpower resources to build the cyclotron

  16. Practical radiation protection

    International Nuclear Information System (INIS)

    Brouwer, G.; Van den Eijnde, J.H.G.M.

    1997-01-01

    This textbook aims at providing sufficient knowledge and insight to carry out correctly radiation protection activities and operations. The subjects are appropriate for the training of radiation protection experts for the levels 5A (encapsulated sources, X rays) and 5B (open sources, laboratory activities)

  17. Influence of ambient meteorology on the accuracy of radiation measurements: insights from field and laboratory experiments

    Science.gov (United States)

    Oswald, Sandro M.; Pietsch, Helga; Baumgartner, Dietmar J.; Rieder, Harald E.

    2016-04-01

    A precise knowledge of the surface energy budget, which includes the solar and terrestrial radiation fluxes, is needed to accurately characterize the global energy balance which is largely determining Earth's climate. To this aim national and global monitoring networks for surface radiative fluxes have been established in recent decades. The most prominent among these networks is the so-called Baseline Surface Radiation Network (BSRN) operating under the auspices of the World Climate Research Programme (WCRP) (Ohmura et al., 1998). National monitoring networks such as the Austrian RADiation Monitoring Network (ARAD), which has been established in 2010 by a consortium of the Central Agency of Meteorology and Geodynamics (ZAMG), the University of Graz, the University of Innsbruck, and the University of Natural Resources and Applied Sciences, Vienna (BOKU), orient themselves on BSRN standards (McArthur, 2005). ARAD comprises to date five sites (Wien Hohe Warte, Graz/University, Innsbruck/University, Kanzelhöhe Observatory and Sonnblick (which is also a BSRN site)) and aims to provide long-term monitoring of radiation budget components at highest accuracy and to capture the spatial patterns of radiation climate in Austria (Olefs et al., 2015). Given the accuracy requirement for the local monitoring of radiative fluxes instrument offsets, triggered by meteorological factors and/or instrumentation, pose a major challenge in radiation monitoring. Within this study we investigate effects of ambient meteorology on the accuracy of radiation measurements performed with pyranometers contained in various heating/ventilation systems (HV-systems), all of which used in regular operation within the ARAD network. We focus particularly on instrument offsets observed following precipitation events. To quantify pyranometer responses to precipitation we performed a series of controlled laboratory experiments as well as targeted field campaigns in 2015 and 2016. Our results indicate

  18. The laboratory-type data input and processing subsystem of the country-wide environmental radiation monitoring system in Hungary

    International Nuclear Information System (INIS)

    Kanyar, B.; Fulop, N.; Glavatszkih, N.; Nemeth, A.

    1996-01-01

    The countrywide radiation monitoring activity in Hungary is shared among the national networks as agriculture, environmental protection and public health ones. They are mostly involved in the environmental sampling and laboratory type determinations of the radioactive pollution, meanwhile the organisations mainly from the Army and Civil Defence are responsible to the early warning system. A moderately effective collaboration is established only around the Nuclear Power Plant Paks. Based on more than 10 years experience in collaboration around the NPP the Hungarian Atomic Energy Commission initiated some centralism in the countrywide monitoring activity as well. As the first step the National Research Institute for Radiobiology and Radiohygiene has been charged to establish an Information Center for laboratory-type data collection, processing, analysis and informing regularly the proper organizations on the results. The Information Centre is equipped with a computer type of SUN SPARCserver-20 and the laboratories are planned to be linked on line by PC stations. The main user programs for data collection, control and restricted processing are written in INGRES data manager software. The semiprocessed results can be transformed in a readable form for general statistical etc. packages

  19. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Schleimer, G.E.

    1989-06-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs

  20. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schleimer, G.E. (ed.)

    1989-06-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs.

  1. The design of hot laboratories

    International Nuclear Information System (INIS)

    1976-01-01

    The need for specialized laboratories to handle radioactive substances of high activity has increased greatly due to the expansion of the nuclear power industry and the widespread use of radioisotopes in scientific research and technology. Such laboratories, which are called hot laboratories, are specially designed and equipped to handle radioactive materials of high activity, including plutonium and transplutonium elements. The handling of plutonium and transplutonium elements presents special radiation-protection and safety problems because of their high specific activity and high radiotoxicity. Therefore, the planning, design, construction and operation of hot laboratories must meet the stringent safety, containment, ventilation, shielding, criticality control and fire-protection requirements. The IAEA has published two manuals in its Safety Series, one on the safety aspects of design and equipment of hot laboratories (SS No.30) and the other on the safe handling of plutonium (SS No.39). The purpose of the symposium in Otaniemi was to collect information on recent developments in the safety features of hot laboratories and to review the present state of knowledge. A number of new developments have taken place as the result of growing sophistication in the philosophy of radiation protection as given in the ICRP recommendations (Report No.22) and in the Agency's basic safety standards (No.9). The topics discussed were safety features of planning and design, air cleaning, transfer and transport systems, criticality control, fire protection, radiological protection, waste management, administrative arrangements and operating experience

  2. Dose profile modeling of Idaho National Laboratory's active neutron interrogation laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Chichester, D.L. [Idaho National Laboratory, 2525 N. Fremont Avenue, Idaho Falls, ID 83415 (United States)], E-mail: david.chichester@inl.gov; Seabury, E.H.; Zabriskie, J.M.; Wharton, J.; Caffrey, A.J. [Idaho National Laboratory, 2525 N. Fremont Avenue, Idaho Falls, ID 83415 (United States)

    2009-06-15

    A new laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for deuterium-tritium (DT) fusion (14.1 MeV) neutron generators (2x10{sup 8} n/s), deuterium-deuterium (DD) fusion (2.5 MeV) neutron generators (1x10{sup 7} n/s), and {sup 252}Cf spontaneous fission neutron sources (6.96x10{sup 7} n/s, 30 {mu}g). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8 m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for {sup 252}Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield walls and entrance mazes and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.

  3. Linear Accelerator Laboratory

    International Nuclear Information System (INIS)

    1976-01-01

    This report covers the activity of the Linear Accelerator Laboratory during the period June 1974-June 1976. The activity of the Laboratory is essentially centered on high energy physics. The main activities were: experiments performed with the colliding rings (ACO), construction of the new colliding rings and beginning of the work at higher energy (DCI), bubble chamber experiments with the CERN PS neutrino beam, counter experiments with CERN's PS and setting-up of equipment for new experiments with CERN's SPS. During this period a project has also been prepared for an experiment with the new PETRA colliding ring at Hamburg. On the other hand, intense collaboration with the LURE Laboratory, using the electron synchrotron radiation emitted by ACO and DCI, has been developed [fr

  4. Radiation Detection Center on the Front Lines

    International Nuclear Information System (INIS)

    Hazi, A

    2005-01-01

    Many of today's radiation detection tools were developed in the 1960s. For years, the Laboratory's expertise in radiation detection resided mostly within its nuclear test program. When nuclear testing was halted in the 1990s, many of Livermore's radiation detection experts were dispersed to other parts of the Laboratory, including the directorates of Chemistry and Materials Science (CMS); Physics and Advanced Technologies (PAT); Defense and Nuclear Technologies (DNT); and Nonproliferation, Arms Control, and International Security (NAI). The RDC-- was formed to maximize the benefit of radiation detection technologies being developed in 15 to 20 research and development (R and D) programs. These efforts involve more than 200 Laboratory employees across eight directorates, in areas that range from electronics to computer simulations. The RDC's primary focus is the detection, identification, and analysis of nuclear materials and weapons. A newly formed outreach program within the RDC-- is responsible for conducting radiation detection workshops and seminars across the country and for coordinating university student internships. Simon Labov, director of the RDC, says, ''Virtually all of the Laboratory's programs use radiation detection devices in some way. For example, DNT uses radiation detection to create radiographs for their work in stockpile stewardship and in diagnosing explosives; CMS uses it to develop technology for advancing the detection, diagnosis, and treatment of cancer; and the Energy and Environment Directorate uses radiation detection in the Marshall Islands to monitor the aftermath of nuclear testing in the Pacific. In the future, the National Ignition Facility will use radiation detection to probe laser targets and study shock dynamics.''

  5. Utilization of SRNL-developed radiation-resistant polymer in high radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Skibo, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-27

    The radiation-resistant polymer developed by the Savannah River National Laboratory is adaptable for multiple applications to enhance polymer endurance and effectiveness in radiation environments. SRNL offers to collaborate with TEPCO in evaluation, testing, and utilization of SRNL’s radiation-resistant polymer in the D&D of the Fukushima Daiichi NPS. Refinement of the scope and associated costs will be conducted in consultation with TECPO.

  6. Health Physics Society program for accreditation of calibration laboratories

    International Nuclear Information System (INIS)

    West, L.; Masse, F.X.; Swinth, K.L.

    1988-01-01

    The Health Physics Society has instituted a new program for accreditation of organizations that calibrate radiation survey instruments. The purpose of the program is to provide radiation protection professionals with an expanded means of direct and indirect access to national standards, thus introducing a means for improving the uniformity, accuracy, and quality of ionizing radiation field measurements. Secondary accredited laboratories are expected to provide a regional support basis. Tertiary accredited laboratories are expected to operate on a more local basis and provide readily available expertise to end users. The accreditation process is an effort to provide better measurement assurance for surveys of radiation fields. The status of the accreditation program, general criteria, gamma-ray calibration criteria, and x-ray calibration criteria are reviewed

  7. Laboratory for Calibration of Gamma Radiation Measurement Instruments (LabCal) of Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN) from Brazilian Army Technology Center (CTEx); Laboratorio de Calibracao de Instrumentode Medicao de Radiacao Gama (LabCal) do IDQBRN do CTEx

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Aneuri de; Balthar, Mario Cesar V.; Santos, Avelino; Vilela, Paulo Ricardo T. de; Oliveira, Luciano Santa Rita; Penha, Paulo Eduardo C. de Oliveira; Gonzaga, Roberto Neves; Andrade, Edson Ramos de; Oliveira, Celio Jorge Vasques de; Fagundes, Luiz Cesar S., E-mail: aneurideamorim@gmail.com [Centro Tecnologico do Exercito (DQBRN/CTEx), Rio de Janeiro, RJ (Brazil). Instituto de Defesa Quimica, Biologica, Radiologica e Nuclear

    2016-07-01

    This paper describes the calibration laboratory deployment steps (LABCAL) gamma ionizing radiation measuring instruments in the Army Technology Center, CTEx. Initially the calibration of radiation monitors will be held in the dosimetric quantity air kerma and operational quantity ambient dose equivalent H*(d). The LABCAL / CTEx has not yet authorized by CASEC / CNEN. This laboratory aims to calibrate the ionizing radiation instruments used by the Brazilian Army. (author)

  8. Safety guide for protection in nuclear medicine laboratories

    International Nuclear Information System (INIS)

    1995-01-01

    The regulations that must be taken into account during constructing the nuclear medicine laboratories to meet the requirements of radiation protection and the specifications of equipment in the laboratory, quality control, radioactive monitoring, protective procedures, personnel qualifications are given

  9. Calibration Laboratory of the Paul Scherrer Institute

    International Nuclear Information System (INIS)

    Gmuer, K.; Wernli, C.

    1994-01-01

    Calibration and working checks of radiation protection instruments are carried out at the Calibration Laboratory of the Paul Scherrer Institute. In view of the new radiation protection regulation, the calibration laboratory received an official federal status. The accreditation procedure in cooperation with the Federal Office of Metrology enabled a critical review of the techniques and methods applied. Specifically, personal responsibilities, time intervals for recalibration of standard instruments, maximum permissible errors of verification, traceability and accuracy of the standard instruments, form and content of the certificates were defined, and the traceability of the standards and quality assurance were reconsidered. (orig.) [de

  10. Hanford Laboratories Operation monthly activities report, August 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-09-15

    This is the monthly report of the Hanford Laboratories Operation, August 1958. Reactor fuels, chemistry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, employee relations, plutonium recycling, programming, radiation protection, laboratory auxiliaries operation, and inventions are discussed.

  11. An integrated model for radiation induced cancer

    International Nuclear Information System (INIS)

    Hall, E.J.; Varma, M.

    1994-01-01

    Risk estimates for radiation induced cancer are based on epidemiological data, principally the Japanese A bomb survivors. These estimates for radiation are better known than for any other environmental pollutant, but they do not relate directly to exposure to low doses and low dose rate. Recent rapid advances in molecular genetics, coupled with steady gains in cellular biology, radiation physics and chemistry led to the notion that the time may not be far off when it may be possible to arrive at human cancer risk estimates entirely from laboratory data. Whether risk estimates based on laboratory data will ever replace estimates based on epidemiological studies is an open question. What is clear is that laboratory data can supplement the present risk estimates by providing information on the relative effectiveness of high LET radiations, the importance of dose rate and dose protraction, and by identifying subpopulations which are unusually sensitive or resistant to radiation carcinogenesis. (author)

  12. Project of an integrated calibration laboratory of instruments at IPEN

    International Nuclear Information System (INIS)

    Barros, Gustavo Adolfo San Jose

    2009-01-01

    The Calibration Laboratory of Instruments of Instituto de Pesquisas Energeticas e Nucleares offers calibration services of radiation detectors used in radioprotection, diagnostic radiology and radiotherapy, for IPEN and for external facilities (public and private). One part of its facilities is located in the main building, along with other laboratories and study rooms, and another part in an isolated building called Bunker. For the optimization, modernization and specially the safety, the laboratories in the main building shall be transferred to an isolated place. In this work, a project of an integrated laboratory for calibration of instruments was developed, and it will be an expansion of the current Calibration Laboratory of Instruments of IPEN. Therefore, a series of radiometric monitoring of the chosen localization of the future laboratory was realized, and all staff needs (dimensions and disposition of the study rooms and laboratories) were defined. In this project, the laboratories with X ray equipment, alpha and beta radiation sources were located at an isolated part of the building, and the wall shielding was determined, depending on the use of each laboratory. (author)

  13. Mortality through 1990 among white male workers at the Los Alamos National Laboratory: Considering exposures to plutonium and external ionizing radiation

    International Nuclear Information System (INIS)

    Wiggs, L.D.; Johnson, E.R.; Cox-DeVore, C.A.; Voelz, G.L.

    1994-01-01

    A cohort mortality study was conducted of 15,727 white men employed by the Los Alamos National Laboratory, a nuclear research and development facility. Some of the workers at this facility have been exposed to various forms of ionizing radiation and other potentially hazardous materials. These analyses focused on whole-body ionizing radiation exposures and internal depositions of plutonium. The results indicated that overall mortality among this cohort is quite low, even after nearly 30 y of follow-up. No cause of death was significantly elevated among plutonium-exposed workers when compared with their unexposed coworkers; however, a rate ratio for lung cancer of 1.78 (95% CI = 0.79-3.99) was observed. A case of osteogenic sarcoma, a type of cancer related to plutonium exposure in animal studies, was also observed. Dose-response relationships for whole-body dose from external ionizing radiation and tritium were observed for cancers of the brain/central nervous system, the esophagus, and Hodgkin's disease. 34 refs., 1 fig., 7 tabs

  14. Handbook of laboratory health and safety measures

    International Nuclear Information System (INIS)

    Pal, S.B.

    1985-01-01

    The application of radioactive isotopes and various scientific instruments based on different ionizing and non-ionizing radiation have brought new safety problems to laboratory workers today. Therefore, there is a need to revise present knowledge of safety measures to deal with new hazards, thus broadening the outlook towards health and safety measures for contemporary laboratory staff. This handbook presents a series of articles on current knowledge regarding laboratory safety

  15. Effectiveness of the implementation of a simple radiation reduction protocol in the catheterization laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jurado-Román, Alfonso, E-mail: alfonsojuradoroman@gmail.com [Unidad de Hemodinámica, Servicio de Cardiología, Hospital General Universitario de Ciudad Real (Spain); Sánchez-Pérez, Ignacio; Lozano Ruíz-Poveda, Fernando; López-Lluva, María T.; Pinilla-Echeverri, Natalia; Moreno Arciniegas, Andrea [Unidad de Hemodinámica, Servicio de Cardiología, Hospital General Universitario de Ciudad Real (Spain); Agudo-Quilez, Pilar [Servicio de Cardiología, Hospital Universitario de La Princesa, Madrid (Spain); Gil Agudo, Antonio [Servicio de Radiofísica y Protección Radiológica, Hospital General Universitario de Ciudad Real (Spain)

    2016-07-15

    Background and purpose: A reduction in radiation doses at the catheterization laboratory, maintaining the quality of procedures is essential. Our objective was to analyze the results of a simple radiation reduction protocol at a high-volume interventional cardiology unit. Methods: We analyzed 1160 consecutive procedures: 580 performed before the implementation of the protocol and 580 after it. The protocol consisted in: the reduction of the number of ventriculographies and aortographies, the optimization of the collimation and the geometry of the X ray tube-patient-receptor, the use of low dose-rate fluoroscopy and the reduction of the number of cine sequences using the software “last fluoroscopy hold”. Results: There were no significant differences in clinical baseline features or in the procedural characteristics with the exception of a higher percentage of radial approach (30.7% vs 69.6%; p < 0.001) and of percutaneous coronary interventions of chronic total occlusions after the implementation of the protocol (2.1% vs 6.7%; p = 0,001). Angiographic success was similar during both periods (98.3% vs 99.2%; p = 0.2). There were no significant differences between both periods regarding the overall duration of the procedures (26.9 vs 29.6 min; p = 0.14), or the fluoroscopy time (13.3 vs 13.2 min; p = 0.8). We observed a reduction in the percentage of procedures with ventriculography (80.9% vs 7.1%; p < 0.0001) or aortography (15.4% vs 4.4%; p < 0.0001), the cine runs (21.8 vs 6.9; p < 0.0001) and the dose–area product (165 vs 71 Gyxcm{sup 2}; p < 0.0001). Conclusions: With the implementation of a simple radiation reduction protocol, a 57% reduction of dose–area product was observed without a reduction in the quality or the complexity of procedures. - Highlights: • This simple protocol can achieve a reduction in dose–area product of 57%. • It does not interfere with the quality or complexity of the procedures. • Full advantage of “Last Fluoroscopy

  16. Organisation in the Harwell Radiochemistry Laboratories for Dealing with Radiation Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Hudswell, F. [Atomic Energy Research Establishment, Harwell, Didcot, Berks. (United Kingdom)

    1969-10-15

    The radiochemistry laboratories contain extensive facilities for the handling of large quantities of alpha emitters and beta/gamma active materials. Safety in this area is surveyed by a local safety committee, which has been responsible for the development of both the working rules for the avoidance of radiation accidents and the organisation for dealing with them should they occur. The emergency control organisation within the high activity area is linked with and approved by the site organisation. Local control within the building can be undertaken by any one of a number of senior staff, who is advised by a health physicist, engineer and other scientists, and who delegates executive responsibility for emergency stations to a number of scientific and engineering staff. An incident in the area which affects other areas in the establishment is controlled by the establishment emergency organisation but will also involve the local control post as a source of action and information. Reciprocally, local control may be required to receive evacuees from a remote incident area. Safety manuals and emergency plans are revised periodically. Exercises are mounted several times a year and are followed by discussions of the weaknesses found. Attempts are made to remedy the weaknesses in subsequent exercises. (author)

  17. Use of synchrotron radiation in radiation biology research

    International Nuclear Information System (INIS)

    Yamada, Takeshi

    1981-01-01

    Synchrotron radiation (SR) holds great expectation as a new research tool in the new areas of material science, because it has the continuous spectral distribution from visible light to X-ray, and its intensity is 10 2 to 10 3 times as strong as that of conventional radiation sources. In the National Laboratory for High Energy Physics, a synchrotron radiation experimental facility has been constructed, which will start operation in fiscal 1982. With this SR, the photons having the wavelength in undeveloped region from vacuum ultraviolet to soft X-ray are obtained as intense mono-wavelength light. The SR thus should contribute to the elucidation of the fundamentals in the biological action of radiation. The following matters are described: synchrotron radiation, experimental facility using SR, electron storage ring, features of SR, photon factory plan and synchrotron radiation experimental facility, utilization of SR in radiation biology field. (J.P.N.)

  18. Hanford Laboratories Operation monthly activities report, June 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-07-15

    This is the monthly report for the Hanford Laboratories Operation, June, 1958. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics, instrumentation research, employee relations, operations research, synthesis operation, programming, radiation protection, and laboratory auxiliaries operation are discussed.

  19. Physical determinants of radiation sensitivity in bacterial spores

    International Nuclear Information System (INIS)

    Powers, E.L.

    1982-01-01

    Several factors modifying radiation sensitivity in dry bacterial spores are described and discussed. Vacuum inducing the loss of critical structural water, very low dose rates of radiation from which the cell may recover, radiations of high linear energy transfer, and the action of temperature over long periods of time on previously irradiated cells are recognized from extensive laboratory work as important in determining survival of spores exposed to low radiation doses at low temperatures for long periods of time. Some extensions of laboratory work are proposed

  20. Efficacy of the RADPAD Protection Drape in Reducing Operators' Radiation Exposure in the Catheterization Laboratory: A Sham-Controlled Randomized Trial.

    Science.gov (United States)

    Vlastra, Wieneke; Delewi, Ronak; Sjauw, Krischan D; Beijk, Marcel A; Claessen, Bimmer E; Streekstra, Geert J; Bekker, Robbert J; van Hattum, Juliette C; Wykrzykowska, Joanna J; Vis, Marije M; Koch, Karel T; de Winter, Robbert J; Piek, Jan J; Henriques, José P S

    2017-11-01

    Interventional cardiologists are increasingly exposed to radiation-induced diseases like cataract and the stochastic risk of left-sided brain tumors. The RADPAD is a sterile, disposable, lead-free shield placed on the patient with the aim to minimize operator-received scatter radiation. The objective of the trial was to examine the RADPAD's efficacy in a real-world situation. In the current, double-blind, sham-controlled, all-comer trial, patients undergoing diagnostic catheterization or percutaneous coronary interventions were randomized in a 1:1:1 ratio to a radiation absorbing shield (RADPAD), standard treatment (NOPAD), or a sham shield (SHAMPAD). The sham shield allowed testing for shield-induced radiation behavior. The primary outcome was the difference in relative exposure of the primary operator between the RADPAD and NOPAD arms and was defined as the ratio between operator's exposure (E in µSv) and patient exposure (dose area product in mGy·cm 2 ), measured per procedure. A total of 766 consecutive coronary procedures were randomized to the use of RADPAD (N=255), NOPAD (N=255), or SHAMPAD (N=256). The use of RADPAD was associated with a 20% reduction in relative operator exposure compared with that of NOPAD ( P =0.01) and a 44% relative exposure reduction compared with the use of a SHAMPAD ( P RADPAD radiation shield reduced operator radiation exposure compared with procedures with NOPAD or SHAMPAD. This study supports the routine use of RADPAD in the catheterization laboratory. URL: https://www.clinicaltrials.gov. Unique identifier: NCT03139968. © 2017 American Heart Association, Inc.

  1. Effects of the Gamma radiation on laboratory and field attractiveness of virgin females of the carob moth Ectomyelois ceratoniae Zeller (Lepidoptera: Pyralidae)

    International Nuclear Information System (INIS)

    Jouda Mediouni, B.

    2007-01-01

    In this paper, we studied the effects of Gamma radiation on the attractiveness of the virgin females of the carob moth, Ectomyelois ceratoniae Zeller, under laboratory and field conditions. Four Gamma radiation doses (200, 300, 400, 500 Gy) in addition to the control were studied. We examined also the effects of the age of irradiated females on their attractiveness; in particular, females 24, 48 and 72 hours old were studied. Laboratory studies showed that females' attractiveness decreased with increasing irradiation dose. At 500 Gray, 32 males were caught per week per trap against 97 males per week/trap for the control. For the doses 200, 300 and 400 Gray, the mean number of males per trap per week was 52, 51 and 50 respectively. On the other hand, for 24 hours old virgin females, the weekly mean number of caught males per trap was 63 while for 48 and 72 old females, the mean number of caught males per trap per week was 54 and 50 respectively. For field studies, results showed that irradiated females were able to attract wild males. Moreover, their attractiveness was better than the synthetic lure.

  2. Radiation physics, biophysics, and radiation biology. Final report, October 1, 1971--September 30, 1977

    International Nuclear Information System (INIS)

    Rossi, H.H.; Hall, E.J.

    1978-02-01

    Research under Contract EY-76-C-02-3243 has been carried out in the area of Radiation Physics, Biophysics and Radiation Biology. During the period of this contract the major accomplishments include, in Physics, the refinement of tissue equivalent dosimetry, the formulation of the concepts of microdosimetry, the development of apparatus used in microdosimetry, and the development of ionization chambers with internal gas multiplication. Principal contributions in Radiobiology have included the determination of RBE and OER as a function of neutron energy, the study of combined effects of radiation and a variety of other agents, and the investigation of the transformation of cells in tissue culture. Theoretical research centered around the development of the theoretical framework of microdosimetry and the establishment of the Theory of Dual Radiation Action. In a cooperative effort with Brookhaven National Laboratory, a major accelerator facility dedicated exclusively to Radiobiology and Radiation Physics, has been developed. Members of the laboratory have performed extensive service to national and international organizations

  3. Radiation Calibration Measurements

    International Nuclear Information System (INIS)

    Omondi, C.

    2017-01-01

    KEBS Radiation Dosimetry mandate are: Custodian of Kenya Standards on Ionizing radiation, Ensure traceability to International System (SI ) and Calibration radiation equipment. RAF 8/040 on Radioisotope applications for troubleshooting and optimizing industrial process established Radiotracer Laboratory objective is to introduce and implement radiotracer technique for problem solving of industrial challenges. Gamma ray scanning technique applied is to Locate blockages, Locate liquid in vapor lines, Locate areas of lost refractory or lining in a pipe and Measure flowing densities. Equipment used for diagnostic and radiation protection must be calibrated to ensure Accuracy and Traceability

  4. Instructor qualification for radiation safety training at a national laboratory

    International Nuclear Information System (INIS)

    Trinoskey, P.A.

    1994-10-01

    Prior to 1993, Health Physics Training (HPT) was conducted by the Lawrence Livermore National Laboratory (LLNL) health physics group. The job requirements specified a Masters Degree and experience. In fact, the majority of Health Physicists in the group were certified by the American Board of Health Physics. Under those circumstances, it was assumed that individuals in the group were technically qualified and the HPT instructor qualification stated that. In late 1993, the Health Physics Group at the LLNL was restructured and the training function was assigned to the training group. Additional requirements for training were mandated by the Department of Energy (DOE), which would necessitate increasing the existing training staff. With the need to hire, and the policy of reassignment of employees during downsizing, it was imperative that formal qualification standards be developed for technical knowledge. Qualification standards were in place for instructional capability. In drafting the new training qualifications for instructors, the requirements of a Certified Health Physicists had to be modified due to supply and demand. Additionally, for many of the performance-based training courses, registration by the National Registry of Radiation Protection Technologists is more desirable. Flexibility in qualification requirements has been incorporated to meet the reality of ongoing training and the compensation for desirable skills of individuals who may not meet all the criteria. The qualification requirements for an instructor rely on entry-level requirements and emphasis on goals (preferred) and continuing development of technical and instructional capabilities

  5. Accelerator safety program at the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Graham, C.L.

    1976-01-01

    A proposed accelerator safety standard for the Lawrence Livermore Laboratory (LLL) is given. All accelerators will comply with this standard when it is included in the LLL Health and Safety Manual. The radiation alarm and radiation safety system for a radiography facility are also described

  6. Hanford Laboratories operation monthly activities report, November 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-12-15

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for November 1957.

  7. Hanford Laboratories operation monthly activities report, November 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-12-21

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operations research, inventions, visits, and personnel status are discussed. This report is for November, 1956.

  8. Hanford Laboratories Operation monthly activities report, October 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-11-15

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for October 1958.

  9. Hanford Laboratories Operation monthly activities report, April 1959

    Energy Technology Data Exchange (ETDEWEB)

    1959-05-15

    This is the monthly report for the Hanford Laboratories Operation, April, 1959. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology financial activities. Biology operation, physics and instrumentation research, employee relations, operations research and synthesis operation programming, radiation protection, and laboratory auxiliaries operation are discussed.

  10. Hanford Laboratories Operation monthly activities report, July 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-08-15

    This is the monthly report for the Hanford Laboratories Operation, July, 1958. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, employee relations, operations research and synthesis operation, programming, radiation protection, and laboratory auxiliaries operation area discussed.

  11. Hanford Laboratories operation monthly activities report, January 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-02-15

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for January 1957.

  12. Hanford Laboratories Operation monthly activities report, October 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-11-15

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for October 1957.

  13. Hanford Laboratories Operation monthly activities report, September 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-10-19

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for September 1956.

  14. Hanford Laboratories Operation monthly activities report, May 1959

    Energy Technology Data Exchange (ETDEWEB)

    1959-06-15

    This is the monthly report for the Hanford Laboratories Operation, May, 1959. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, employee relations, operations research and synthesis operation, programming, radiation protection, and laboratory auxiliaries operation area discussed.

  15. Hanford Laboratories Operation monthly activities report, May 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-06-15

    This is the monthly report for the Hanford Laboratories Operation, May 1958. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, employee relations, operations research and synthesis operation, programming, radiation protection, and laboratory auxiliaries operation area discussed.

  16. Hanford Laboratories Operation monthly activities report, March 1960

    Energy Technology Data Exchange (ETDEWEB)

    1960-04-15

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for March 1960.

  17. Hanford Laboratories operation monthly activities report, February 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-03-15

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for February 1958.

  18. Hanford Laboratories Operation monthly activities report, December 1957

    Energy Technology Data Exchange (ETDEWEB)

    1958-01-15

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for December 1957.

  19. Computer-based nuclear radiation detection and instrumentation teaching laboratory system

    International Nuclear Information System (INIS)

    Ellis, W.H.; He, Q.

    1993-01-01

    The integration of computers into the University of Florida's Nuclear Engineering Sciences teaching laboratories is based on the innovative use of MacIntosh 2 microcomputers, IEEE-488 (GPIB) communication and control bus system and protocol, compatible modular nuclear instrumentation (NIM) and test equipment, LabVIEW graphics and applications software, with locally prepared, interactive, menu-driven, HyperCard based multi-exercise laboratory instruction sets and procedures. Results thus far have been highly successful with the majority of the laboratory exercises having been implemented

  20. The LLNL Multiuser Tandem Laboratory computer-controlled radiation monitoring system

    International Nuclear Information System (INIS)

    Homann, S.G.

    1992-01-01

    The Physics Department of the Lawrence Livermore National Laboratory (LLNL) recently constructed a Multiuser Tandem Laboratory (MTL) to perform a variety of basic and applied measurement programs. The laboratory and its research equipment were constructed with support from a consortium of LLNL Divisions, Sandia National Laboratories Livermore, and the University of California. Primary design goals for the facility were inexpensive construction and operation, high beam quality at a large number of experimental stations, and versatility in adapting to new experimental needs. To accomplish these goals, our main design decisions were to place the accelerator in an unshielded structure, to make use of reconfigured cyclotrons as effective switching magnets, and to rely on computer control systems for both radiological protection and highly reproducible and well-characterized accelerator operation. This paper addresses the radiological control computer system

  1. Secondary standard dosimetry laboratory Saraykoy Nuclear Research and Training Center Ankara, Turkey

    International Nuclear Information System (INIS)

    Okruhlica, P.

    2014-01-01

    Turkish Saraykoy Nuclear Research and Training Center (SANA) was founded in 2005. In 2014 the company PTW Freiburg in cooperation with VF Cerna Hora started the construction of a comprehensive national metrology laboratories of ionizing radiation 'Secondary Standard Dosimetry Laboratory' (SSDL). The laboratory will be located in the area of 'Saraykoy Nuclear Research and Training Center' in Ankara in Turkey. SSDL will be equipped with metrology departments for calibration and measurement of standard required quantities of metrology of ionizing radiation: - Neutron workplace; Gamma workplace (low-energy X-ray, gamma Standard Cs-137 and high dose rate, Co-60); - Beta workplace; - Control system of metrology laboratories and irradiation VF DARS; - Radiation monitoring system VF RMS; - Camera and security system; - Measuring instruments (ionization chambers, electrometers, monitors for environmental measurements ...) with the appropriate phantoms and other systems.

  2. (Re)implantation of quality system of LCR (Laboratory for Radiation Sciences) for accreditation in the standard ABNT NBR ISO/IEC 17025:2005; (Re)implantacao do sistema da qualidade do LCR para acreditacao na ABNT NBR ISO/IEC 17025:2005

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Sandro P., E-mail: leite_sp@ig.com.br [Rede Sibratec, Sao Paulo, SP (Brazil); Fernandes, Elisabeth O.; David, Mariano G.; Pires, Evandro J.; Alves, Carlos F.E.; Almeida, Carlos E. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2014-07-01

    This paper presents preparing procedure of the metrology laboratory (LABMETRO), which belongs Laboratorio de Ciencias Radiologicas of Rio de Janeiro , for postulating accreditation of its services metrology to INMETRO. This process, supported by the Technological Services Network SIBRATEC/FINEP for Radiation Protection and Dosimetry Technological Services, had as one of its aims to avoid possible technical barriers to the purchase services in the area of ionizing radiation laboratories. Accreditation will also enable the integration of services such laboratories in Brazilian Calibration Network (RBC). (author)

  3. Similarity and self-similarity in high energy density physics: application to laboratory astrophysics

    International Nuclear Information System (INIS)

    Falize, E.

    2008-10-01

    The spectacular recent development of powerful facilities allows the astrophysical community to explore, in laboratory, astrophysical phenomena where radiation and matter are strongly coupled. The titles of the nine chapters of the thesis are: from high energy density physics to laboratory astrophysics; Lie groups, invariance and self-similarity; scaling laws and similarity properties in High-Energy-Density physics; the Burgan-Feix-Munier transformation; dynamics of polytropic gases; stationary radiating shocks and the POLAR project; structure, dynamics and stability of optically thin fluids; from young star jets to laboratory jets; modelling and experiences for laboratory jets

  4. Sandia National Laboratories/New Mexico 1994 site environmental report. Summary pamphlet

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents details of the environmental activities that occurred during 1994 at Sandia National Laboratories. Topics include: Background about Sandia; radiation facts; sources of radiation; environmental monitoring; discussion of radiation detectors; radioactive waste management; environmental restoration; and quality assurance

  5. Sandia National Laboratories/New Mexico 1994 site environmental report. Summary pamphlet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents details of the environmental activities that occurred during 1994 at Sandia National Laboratories. Topics include: Background about Sandia; radiation facts; sources of radiation; environmental monitoring; discussion of radiation detectors; radioactive waste management; environmental restoration; and quality assurance.

  6. Los Alamos Science: Number 23, 1995. Radiation protection and the human radiation experiments

    International Nuclear Information System (INIS)

    Cooper, N.G.

    1995-01-01

    There are a variety of myths and misconceptions about the ionizing radiation that surrounds and penetrates us all. Dispel a few of these by taking a leisurely tour of radiation and its properties, of the natural and man-made sources of ionizing radiation, and of the way doses are calculated. By damaging DNA and inducing genetic mutations, ionizing radiation can potentially initiate a cell on the road to cancer. The authors review what is currently known about regulation of cellular reproduction, DNA damage and repair, cellular defense mechanisms, and the specific cancer-causing genes that are susceptible to ionizing radiation. A rapid survey of the data on radiation effects in humans shows that high radiation doses increase the risk of cancer, whereas the effects of low doses are very difficult to detect. The hypothetical risks at low doses, which are estimated from the atomic-bomb survivors, are compared to the low-dose data so that the reader can assess the present level of uncertainty. As part of the openness initiative, ten individuals who have worked with plutonium during various periods in the Laboratory's history were asked to share their experiences including their accidental intakes. The history and prognosis of people who have had plutonium exposures is discussed by the Laboratory's leading epidemiologist

  7. An ECVAG inter-laboratory validation study of the comet assay

    DEFF Research Database (Denmark)

    Ersson, Clara; Møller, Peter; Forchhammer, Lykke

    2013-01-01

    of ionising radiation, inter-laboratory variation, intra-laboratory variation and residual variation contributed to 60.9, 19.4, 0.1 and 19.5%, respectively, of the total variation. In the coded PBMC samples, the inter-laboratory variation explained the largest fraction of the overall variation of DNA strand...

  8. Using computer-based training to facilitate radiation protection review

    International Nuclear Information System (INIS)

    Abercrombie, J.S.; Copenhaver, E.D.

    1989-01-01

    In a national laboratory setting, it is necessary to provide radiation protection overview and training to diverse parts of the laboratory population. This includes employees at research reactors, accelerators, waste facilities, radiochemical isotope processing, and analytical laboratories, among others. In addition, our own radiation protection and monitoring staffs must be trained. To assist in the implementation of this full range of training, ORNL has purchased prepackaged computer-based training in health physics and technical mathematics with training modules that can be selected from many topics. By selection of specific modules, appropriate radiation protection review packages can be determined to meet many individual program needs. Because our radiation protection personnel must have some previous radiation protection experience or the equivalent of an associate's degree in radiation protection for entry level, the computer-based training will serve primarily as review of major principles. Others may need very specific prior training to make the computer-based training effective in their work situations. 4 refs

  9. Performance testing of UK personal dosimetry laboratories

    CERN Document Server

    Marshall, T O

    1985-01-01

    The proposed Ionising Radiations Regulations will require all UK personal dosimetry laboratories that monitor classified personnel to be approved for personal dosimetry by the Health and Safety Executive. It is suggested that these approvals should be based on general and supplementary criteria published by the British Calibration Service (BCS) for laboratory approval for the provision of personal dosimetry services. These criteria specify certain qualitative requirements and also indicate the need for regular tests of performance to be carried out to ensure constancy of dosimetric standards. This report concerns the latter. The status of the BCS criteria is discussed and the need for additional documents to cover new techniques and some modifications to existing documents is indicated. A means is described by which the technical performance of laboratories, concerned with personal monitoring for external radiations, can be assessed, both initially and ongoing. The costs to establish the scheme and operate it...

  10. Calibration service of radiation detectors and dosemeters at IPEN/ Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Potiens, M.P.A.; Caldas, L.V.E. [IPEN, CNEN/SP, Sao Paulo (Brazil)]. e-mail: mppalbu@ipen.br

    2006-07-01

    The Calibration Laboratory of Instituto de Pesquisas Energeticas e Nucleares, IPEN, has already over 25 years been calibrating instruments used in radiation protection and therapy measurements and belonging to hospitals, industries, clinics and other users located in Sao Paulo and in other parts of Brazil. At the present time, the Calibration Laboratory is part of the Radiation Metrology Center and it acts in the Radiation Protection, Radiation Therapy, Nuclear Medicine and Diagnostic Radiology areas, using special set-ups with gamma and beta radiation sealed sources, alpha and beta radiation plane sources and low and intermediate energies of X radiation. Moreover, it has reference instruments for each calibration area with traceability to the Brazilian National Laboratory for Metrology of Ionizing Radiation (secondary standards) and international laboratories (primary standards). The number of tested instruments is increasing annually (from 170 in 1980 to 1871 in 2005), and for the development of new techniques and radiation detectors the continuous improvement of the existing calibration methods is necessary, as well as the establishment of new calibration services to be offered by the Calibration Laboratory for Brazilian and South American users. The objective of this study is to show the evolution of the calibration service developed at IPEN, describing the applied methods and the calibrated instruments types. The quality system implantation process following the basis of the NBR IEC/ISO 17025 standard is also presented with some tools used in the calibration procedures. (Author)

  11. Calibration service of radiation detectors and dosemeters at IPEN/ Sao Paulo

    International Nuclear Information System (INIS)

    Potiens, M.P.A.; Caldas, L.V.E.

    2006-01-01

    The Calibration Laboratory of Instituto de Pesquisas Energeticas e Nucleares, IPEN, has already over 25 years been calibrating instruments used in radiation protection and therapy measurements and belonging to hospitals, industries, clinics and other users located in Sao Paulo and in other parts of Brazil. At the present time, the Calibration Laboratory is part of the Radiation Metrology Center and it acts in the Radiation Protection, Radiation Therapy, Nuclear Medicine and Diagnostic Radiology areas, using special set-ups with gamma and beta radiation sealed sources, alpha and beta radiation plane sources and low and intermediate energies of X radiation. Moreover, it has reference instruments for each calibration area with traceability to the Brazilian National Laboratory for Metrology of Ionizing Radiation (secondary standards) and international laboratories (primary standards). The number of tested instruments is increasing annually (from 170 in 1980 to 1871 in 2005), and for the development of new techniques and radiation detectors the continuous improvement of the existing calibration methods is necessary, as well as the establishment of new calibration services to be offered by the Calibration Laboratory for Brazilian and South American users. The objective of this study is to show the evolution of the calibration service developed at IPEN, describing the applied methods and the calibrated instruments types. The quality system implantation process following the basis of the NBR IEC/ISO 17025 standard is also presented with some tools used in the calibration procedures. (Author)

  12. Hanford Laboratories Operation monthly activities report, September 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-10-15

    This is the monthly report for the Hanford Laboratories Operation, September, 1958. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, 4000 program research and development, operations research and synthesis operation, programming, radiation protection, and laboratory auxiliaries operation are discussed.

  13. Laboratory simulation of Euclid-like sky images to study the impact of CCD radiation damage on weak gravitational lensing

    Science.gov (United States)

    Prod'homme, T.; Verhoeve, P.; Oosterbroek, T.; Boudin, N.; Short, A.; Kohley, R.

    2014-07-01

    Euclid is the ESA mission to map the geometry of the dark universe. It uses weak gravitational lensing, which requires the accurate measurement of galaxy shapes over a large area in the sky. Radiation damage in the 36 Charge-Coupled Devices (CCDs) composing the Euclid visible imager focal plane has already been identified as a major contributor to the weak-lensing error budget; radiation-induced charge transfer inefficiency (CTI) distorts the galaxy images and introduces a bias in the galaxy shape measurement. We designed a laboratory experiment to project Euclid-like sky images onto an irradiated Euclid CCD. In this way - and for the first time - we are able to directly assess the effect of CTI on the Euclid weak-lensing measurement free of modelling uncertainties. We present here the experiment concept, setup, and first results. The results of such an experiment provide test data critical to refine models, design and test the Euclid data processing CTI mitigation scheme, and further optimize the Euclid CCD operation.

  14. Informatics for the solution of health physics problems in nuclear medicine laboratories

    International Nuclear Information System (INIS)

    De Rossi, G.; Montesanti, M.I.

    1984-01-01

    As the use of 'in vitro' and 'in vivo' radioisotope studies spreads more and more, many organizational and management problems arise. Hence an exact evaluation of current contamination levels and protection standards is very important for radiation-protection purposes. Environmental and personnel contamination levels in Nuclear Medicine Laboratories were recorded for four years and the results were evaluated by a computer-assisted method which furnished parameters such as the maximum permissible level of radioactivity at different timeintervals. They allow the health physicist to assess laboratory contamination levels as well as to classify radiation workers and places. A continuous 'monitoring' of radiation safety is possible in order to modify worker and/or laboratory classification as soon as possible, in close connection with possible changes in radiation hazards. This computer program applies equally well to other fields involving radioisotope use, such as industry, agriculture, etc. (Author)

  15. Radiation physics, biophysics, and radiation biology. Progress report, December 1, 1985-November 30, 1986

    International Nuclear Information System (INIS)

    Hall, E.J.

    1986-07-01

    This is the annual report of the Radiological Research Laboratory of the Department of Radiation Oncology, Columbia University. The bulk of the research of the Laboratory involves basic and fundamental aims, not confined to radiotherapy. Research carried out in the Laboratory covers the determination of microdosimetry quantities, computer simulation of particle tracks, determination of oncogenic transformation, and the transfection of DNA into cells. The Hallmark of the Laboratory is the interaction between physics and biology

  16. 1990's annual report of INPE's Plasma Associated Laboratory

    International Nuclear Information System (INIS)

    1991-06-01

    This is the 1990's annual report of INPE's Plasma Associated Laboratory it contains information on current research developed at the laboratory including quiescent plasma, magnetized plasma, plasma centrifuge, plasma and radiation (gyrotron), ionic propulsion, and toroidal plasma. (A.C.A.S.)

  17. Environmental Remediation Sciences Program at the Stanford Synchrotron Radiation Laboratory

    International Nuclear Information System (INIS)

    Bargar, John R.

    2006-01-01

    Synchrotron radiation (SR)-based techniques provide unique capabilities to address scientific issues underpinning environmental remediation science and have emerged as major research tools in this field. The high intensity of SR sources and x-ray photon-in/photon-out detection allow noninvasive in-situ analysis of dilute, hydrated, and chemically/structurally complex natural samples. SR x-rays can be focused to beams of micron and sub-micron dimension, which allows the study of microstructures, chemical microgradients, and microenvironments such as in biofilms, pore spaces, and around plant roots, that may control the transformation of contaminants in the environment. The utilization of SR techniques in environmental remediation sciences is often frustrated, however, by an ''activation energy barrier'', which is associated with the need to become familiar with an array of data acquisition and analysis techniques, a new technical vocabulary, beam lines, experimental instrumentation, and user facility administrative procedures. Many investigators find it challenging to become sufficiently expert in all of these areas or to maintain their training as techniques evolve. Another challenge is the dearth of facilities for hard x-ray micro-spectroscopy, particularly in the 15 to 23 KeV range, which includes x-ray absorption edges of the priority DOE contaminants Sr, U, Np, Pu, and Tc. Prior to the current program, there were only two (heavily oversubscribed) microprobe facilities in the U.S. that could fully address this energy range (one at each of APS and NSLS); none existed in the Western U.S., in spite of the relatively large number of DOE laboratories in this region

  18. Advances in radiation epidemiology

    International Nuclear Information System (INIS)

    Boice, J.

    1997-01-01

    The 1994 UNSCEAR report provides an informative review of radiation epidemiology. During the past 2 years there have been several major advances in our understanding of radiation effects based on new studies of atomic bomb survivors in Japan, of patients given diagnostic and therapeutic radiation (including iodine-131), of workers occupationally exposed, and of general populations exposed to residential radon. Laboratory approaches are also being incorporated into epidemiological investigations to learn more about the biological mechanism by which radiation causes cancer in man. (author)

  19. Intercomparison of Environmental Nuclear Radiation Measuring

    Institute of Scientific and Technical Information of China (English)

    GAO; Fei; NI; Ning; HOU; Jin-bing; SONG; Ming-zhe

    2015-01-01

    In 2015,Radiation Metrology Division of China Institute of Atomic Energy organized an environmental monitoring of nuclear radiation measuring intercomparison,and 9laboratories attended.The intercomparison included environmental level dosemeters and protection level

  20. Integrated nuclear and radiation protection systems

    International Nuclear Information System (INIS)

    Oprea, I.; Oprea, M.; Stoica, V.; Cerga, V.; Pirvu, V.; Badea, E.

    1993-01-01

    A multifunctional radiation monitoring equipment, flexible and capable to meet virtually environmental radiation monitoring, activity measurement and computational requirements, for nuclear laboratories has been designed. It can be used as a radiation protection system, for radionuclide measurement in isotope laboratories, nuclear technology, health physics and nuclear medicine, nuclear power stations and nuclear industry. The equipment is able to measure, transmit and record gamma dose rate and isotope activities. Other parameters and functions are optionally available, such as: self-contained alarm level, system self-test, dose integrator, syringe volume calculation for a given dose corrected for decay, calibration factor, 99 Mo assays performing and background subtraction

  1. Overview of radiation effects research in photonics

    Science.gov (United States)

    Webb, Robert C.; Cohn, Lewis M.; Taylor, Edward W.; Greenwell, Roger A.

    1995-05-01

    A brief overview of ongoing radiation effects research in photonics is presented focusing on integrated optic and acousto-optic components. A short summary of radiation-induced effects in electro-optic modulators, detector arrays, and other photonic technologies is presented along with extensive references. The coordinated radiation effects studies among researchers within the Tri-Service Organizations and international experimental teams are beginning to demonstrate consistent measurements of radiation-induced effects in photonic components and confirming earlier reported data. This paper will present an overview of these coordinated investigations and focus on key research being conducted with the AFMC Phillips Laboratory, Naval Research Laboratory, Defence Nuclear Agency, NATO Nuclear Effects Task Group, and the Tri-Service Photonics Coordinating Committee.

  2. Performance testing of UK personal dosimetry laboratories

    International Nuclear Information System (INIS)

    Marshall, T.O.

    1985-01-01

    The proposed Ionising Radiations Regulations will require all UK personal dosimetry laboratories that monitor classified personnel to be approved for personal dosimetry by the Health and Safety Executive. It is suggested that these approvals should be based on general and supplementary criteria published by the British Calibration Service (BCS) for laboratory approval for the provision of personal dosimetry services. These criteria specify certain qualitative requirements and also indicate the need for regular tests of performance to be carried out to ensure constancy of dosimetric standards. This report concerns the latter. The status of the BCS criteria is discussed and the need for additional documents to cover new techniques and some modifications to existing documents is indicated. A means is described by which the technical performance of laboratories, concerned with personal monitoring for external radiations, can be assessed, both initially and ongoing. The costs to establish the scheme and operate it are also estimated. (author)

  3. Radiation monitoring by minicomputer

    International Nuclear Information System (INIS)

    Seamons, M.

    1977-01-01

    Radiation monitoring at the Los Alamos Scientific Laboratory (LASL) ranges from measuring the potential build-up of alpha particle radiation in the offices and laboratories of LASL to the detection of radiation leakage from nuclear tests at the Nevada Test Site (NTS). This paper describes PDP-11 based systems to accomplish both types of monitoring. In the first system, filter papers are collected from monitoring stations around LASL. One filter paper is placed under any of 128 photomultiplier (PM) tubes exposing it to alpha radiation. Alpha particle ''hits'' are recorded in a 64-word hardware FIFO, which interrupts and is read by the computer. The FIFO makes it possible to handle short aggregate alpha particle bursts of up to 10 6 hits/s in a computer that can only process 10 4 hits/s. In the second system, up to 100 current measuring radiation probes feed data from the site of the nuclear test(s) to the computer by microwave. The software system can support three tests simultaneously. Both systems offer a high degree of flexibility in configuring for a new test and in real-time control of such things as channel assignment, selective data retrieval, and output formatting

  4. Synchrotron Radiation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Studies the effects of UV radiation and X rays on solids, and calibrates X-ray optics, detectors, and instruments.DESCRIPTION: Research focuses on applying...

  5. Requirements for the authorization of operation os a calibration laboratory of gamma-ray monitors

    International Nuclear Information System (INIS)

    Silva, Raimundo Dias da; Kibrit, Eduardo

    2011-01-01

    This paper describes the process for obtaining the authorization of operation of a laboratory designed to calibrate area and personal monitors with gamma radiation, by using a sealed Cs-137 source. The regulations of Comissao Nacional de Energia Nuclear (CNEN) are deeply analysed and discussed. The authorization for construction, the authorization for modification of items important to safety, the authorization for the acquisition and handling of radiation sources, the authorization for operating, and the authorization for withdrawal of operation of the laboratory are also discussed. The paper also describes the technical and managerial requirements necessary to operate a gamma radiation calibration laboratory in Brazil. . (author)

  6. Radiation and Homeostasis

    International Nuclear Information System (INIS)

    Sugahara, T.; Nikaido, O.; Niwa, O.

    2002-01-01

    These proceedings aim to promote the understanding of the health hazard of radiation at low dose range and to construct a more solid basis for radiation safety policy. Radiation hazard has been the central issue of investigation in the field of radiation research. The two major approaches are mechanistic analysis by laboratory investigation and phenomenological analysis of radiation-exposed population as represented by epidemiology. In an increasingly safety-conscious society, the extremely low level risk associated with low dose of radiation has become an important issue. In this area, the phenomenological approach has a limit. DNA damage is the primary and direct cause of the risk. Tremendous progress has been made recently in the basic understanding of radiation effects on cells and tissues and the importance of damage response rather than damage itself. This challenges the classical linear non-threshold hypothesis

  7. Brookhaven National Laboratory site environmental report for calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Royce, B.A. [eds.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory.

  8. Effect of lateral radiative losses on radiative shock propagation

    Czech Academy of Sciences Publication Activity Database

    Busquet, M.; Audit, E.; González, M.; Stehlé, C.; Thais, F.; Acef, O.; Bauduin, D.; Barroso, P.; Rus, Bedřich; Kozlová, Michaela; Polan, Jiří; Mocek, Tomáš

    2007-01-01

    Roč. 3, - (2007), s. 8-11 ISSN 1574-1818 EU Projects: European Commission(XE) 506350 - LASERLAB-EUROPE Institutional research plan: CEZ:AV0Z10100523 Keywords : radiative shocks * laboratory astrophysics Subject RIV: BH - Optics, Masers, Lasers

  9. The GSF secondary standard dosimetry laboratory for photon and beta radiation

    International Nuclear Information System (INIS)

    Eckerl, H.; Nahrstedt, U.

    1986-03-01

    A brief outline of the laboratory's tasks and a detailed description of its layout and equipment is given. The laboratory contains a Co-60 irradiation unit, a Cs-137 irradiation unit, a panoramic irradiation unit for different nuclide sources, a 160- and 420 kV X-ray unit, a beta-irradiation unit and a measuring and control room. The calibration laboratory is equipped with reference and field dosemeters. (DG)

  10. Experimental comparison among the laboratories accredited within the framework of the European Co-operation for Accreditation on the calibration of a radiation protection dosimeters in the terms of the quantity air Kerma

    International Nuclear Information System (INIS)

    Bovi, M.; Toni, M.P.; Tricomi, G.

    2002-01-01

    The European co-operation for Accreditation (EA) formalises the collaboration of the Accreditation Bodies of the Member States of the European Union and the European Free Trade Association covering all conformity assessment activities. This collaboration is based on a Memorandum of Understanding dated the 27 November 1997 and aims at developing and maintain Multilateral Agreements (MLAs) within EA and with non-members accreditation bodies. MLAs Signatories guarantee uniformity of accreditation by continuous and rigorous evaluation. Based on mutual confidence, the MLAs recognise the equivalence of the accreditation systems administered by EA Members and of certificates and reports issued by bodies accredited under these systems. A basic element of the program to establish and maintain mutual confidence among calibration services is the participation of the accredited laboratories in experimental interlaboratory comparisons (ILC) organised by EA members or other international organisations. The aim of these ILC is to verify the technical equivalence of calibration services within the EA. The ILC which it is dealt with in the present work was recently carried out over a period of two years, ending in May 2002. It interested the laboratories accredited in the ionising radiation field for calibration of dosimeters at radiation protection levels in terms of the quantity air kerma (K air ) due to 6 0C o and 1 37C s gamma radiation. The ILC was planned by the EA expert group on Ionising radiation and radioactivity and approved by the EA General Assembly in December 1999 with the title Calibration of a Radiation Protection Dosimeter under the code IR3. The need of this comparison also resulted from an inquiry carried out in 1998 by the expert group among the different Accreditation Bodies members of EA and associated to EA. The organization of the ILC was carried out according to the EA rules by the Italian Accreditation Body in the ionising radiation field, the SIT

  11. Line radiation effects in laboratory and astrophysical plasmas

    Czech Academy of Sciences Publication Activity Database

    Kerr, F.M.; Gouveia, A.; Renner, Oldřich; Rose, S. J.; Scott, H.A.; Wark, J. S.

    2006-01-01

    Roč. 99, - (2006), s. 363-369 ISSN 0022-4073 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : radiation transport * plasmas * opacity effects Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.599, year: 2006

  12. Characterization of reactor neutron environments at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Kelly, J.G.; Luera, T.F.; Griffin, P.J.; Vehar, D.W.

    1994-01-01

    To assure quality in the testing of electronic parts in neutron radiation environments, Sandia National Laboratories (SNL) has incorporated modern techniques and procedures, developed in the last two decades by the radiation effects community, into all of its experimental programs. Attention to the application of all of these methodologies, experiment designs, nuclear data, procedures and controls to the SNL radiation services has led to the much more accurate and reliable environment characterizations required to correlate the effects observed with the radiation delivered

  13. Synchrotron radiation

    CERN Document Server

    Kunz, C

    1974-01-01

    The production of synchrotron radiation as a by-product of circular high-energy electron (positron) accelerators or storage rings is briefly discussed. A listing of existing or planned synchrotron radiation laboratories is included. The following properties are discussed: spectrum, collimation, polarization, and intensity; a short comparison with other sources (lasers and X-ray tubes) is also given. The remainder of the paper describes the experimental installations at the Deutsches Elektronen-Synchrotron (DESY) and DORIS storage rings, presents a few typical examples out of the fields of atomic, molecular, and solid-state spectroscopy, and finishes with an outlook on the use of synchrotron radiation in molecular biology. (21 refs).

  14. Radiation Induced Chemistry of Icy Surfaces: Laboratory Simulations

    Science.gov (United States)

    Gudipati, Murthy S.; Lignell, Antti; Li, Irene; Yang, Rui; Jacovi, Ronen

    2011-01-01

    We will discuss laboratory experiments designed to enhance our understanding the chemical processes on icy solar system bodies, enable interpretation of in-situ and remote-sensing data, and help future missions to icy solar system bodies, such as comets, Europa, Ganymede, Enceladus etc.

  15. High-dose secondary calibration laboratory accreditation program

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, J.C. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1993-12-31

    There is a need for high-dose secondary calibration laboratories to serve the multi-billion dollar radiation processing industry. This need is driven by the desires of industry for less costly calibrations and faster calibration-cycle response time. Services needed include calibration irradiations of routine processing dosimeters and the supply of reference standard transfer dosimeters for irradiation in the production processing facility. In order to provide measurement quality assurance and to demonstrate consistency with national standards, the high-dose secondary laboratories would be accredited by means of an expansion of an existing National Voluntary Laboratory Accreditation Program. A laboratory performance criteria document is under development to implement the new program.

  16. High-dose secondary calibration laboratory accreditation program

    International Nuclear Information System (INIS)

    Humphreys, J.C.

    1993-01-01

    There is a need for high-dose secondary calibration laboratories to serve the multi-billion dollar radiation processing industry. This need is driven by the desires of industry for less costly calibrations and faster calibration-cycle response time. Services needed include calibration irradiations of routine processing dosimeters and the supply of reference standard transfer dosimeters for irradiation in the production processing facility. In order to provide measurement quality assurance and to demonstrate consistency with national standards, the high-dose secondary laboratories would be accredited by means of an expansion of an existing National Voluntary Laboratory Accreditation Program. A laboratory performance criteria document is under development to implement the new program

  17. The IAEA isotope and radiation programme

    International Nuclear Information System (INIS)

    Danesi, P.R.

    1988-01-01

    The IAEA isotope and radiation programme is characterized by the very large number of topics dealt with and the broad range of activities where nuclear methods and techniques are utilized. The main activities of the programme can be grouped into: food and agriculture, human health and life science, industry and physical science, and laboratory services. Radioisotope and radiation based techniques are applied to such areas as plant breeding, insect and pest control, soil fertility studies, animal health and production, studies on the fate of pesticide residues and radionuclides in the food chain, and food preservation. General objectives of the second group of activities are to assist hospitals and research institutes in developing member states in the introduction and development of radionuclide tracers in medical diagnosis and research, to promote use of radiation therapy for cancer treatment, etc. The major objective of the third group is to foster research and application of nuclear methodologies for industrial applications in developing countries. The Agency's Laboratories at Seibersdorf and in Vienna and the Monaco Laboratory play a relevant role in providing laboratory services as a back-up for various programmes, and in the training of scientists from developing countries. (Nogami, K.)

  18. Conception of the Instrument Calibration Laboratory of Ionizing Radiation Measurement (LACIMRI) of CTMSP - Sao Paulo, SP; Concepcao do Laboratorio de Calibracao de Instrumentos de Medicao de Radiacao Ionizante (LACIMRI) do CTMSP, Sao Paulo, SP

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Raimundo Dias da; Kibrit, Eduardo, E-mail: raimundo@ctmsp.mar.mil.b, E-mail: kibrit@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil)

    2009-07-01

    The present work describes the phases of implantation of calibration laboratory of ionizing radiation measurement instruments at the CTMSP, Sao Paulo, in a priory approved by CNEN, Brazil. That laboratory will allow and enhance the present metrological capacity for the attendance to the growing demand for calibration services of the instruments

  19. Synchrotron radiation

    International Nuclear Information System (INIS)

    Poole, M.W.; Lea, K.R.

    1982-01-01

    A report is given on the work involving the Synchrotron Radiation Division of the Daresbury Laboratory during the period January 1981 - March 1982. Development of the source, beamlines and experimental stations is described. Progress reports from individual investigators are presented which reveal the general diversity and interdisciplinary nature of the research which benefits from access to synchrotron radiation and the associated facilities. Information is given on the organisation of the Division and publications written by the staff are listed. (U.K.)

  20. Detector Characterization Report, Response Related to Linear Movement and Radiation Levels for an Oak Ridge National Laboratory (ORNL)-Developed Ion Chamber and a Commercial Ion Chamber

    International Nuclear Information System (INIS)

    Chiaro, P.J.

    2001-01-01

    Recent activities regarding the safeguarding of radioactive material have indicated there is a need to use radiation sensors to monitor intentional or unintentional material movement. Existing radiation detection systems were not typically designed for this type of operation since most of their use accounted for monitoring material while the material is stationary. To ensure that a radiation monitoring system is capable of detecting the movement of radioactive material, a series of tests were needed. These tests would need to be performed in known radiological conditions, under controlled environmental conditions, and at known movement speeds. The Radiation Effects Facility (REF), located at the Radiation Calibration Laboratory, provided the necessary capabilities to perform these tests. This report provides a compilation of the results from a characterization of two different sensors--a simple, air ionization chamber-based sensor developed at ORNL that consists of an ion chamber connected to a separate amplifier, and an Eberline model RO-7-LD. The RO-7-LD is also an air ionization chamber-based sensor, but the electronics are in the same physical package

  1. Brookhaven National Laboratory site environmental report for calendar year 1994

    International Nuclear Information System (INIS)

    Naidu, J.R.; Royce, B.A.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory's operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory

  2. Radiation monitoring in high energy research facility

    International Nuclear Information System (INIS)

    Miyajima, Mitsuhiro

    1975-01-01

    In High Energy Physics Research Laboratory, construction of high energy proton accelerator is in progress. The accelerator is a cascaded machine comprising Cockcroft type (50 keV), linac (20 MeV), booster synchrotron (500 MeV), and synchrotron (8-12 GeV). Its proton beam intensity is 1x10 13 photons/pulse, and acceleration is carried out at the rate of every 2 minutes. The essential problems of radiation control in high energy accelerators are those of various radiations generated secondarily by proton beam and a number of induced radiations simultaneously originated with such secondary particles. In the Laboratory, controlled areas are divided into color-coded four regions, red, orange, yellow and green, based on each dose-rate. BF 3 counters covered with thick paraffin are used as neutron detectors, and side-window GM tubes, NaI (Tl) scintillators and ionization chambers as γ-detectors. In red region, however, ionization chambers are applied to induced radiation detection, and neutrons are not monitored. NIM standards are adopted for the circuits of all above monitors considering easy maintenance, economy and interchangeability. Notwithstanding the above described systems, these monitors are not sufficient to complete the measurement of whole radiations over wide energy region radiated from the accelerators. Hence separate radiation field measurement is required periodically. An example of the monitoring systems in National Accelerator Laboratory (U.S.) is referred at the last section. (Wakatsuki, Y.)

  3. US Army primary radiation standards complex

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, S.C. [Radiation Standards and Dosimetry Laboratory, Redstone Arsenal, AL (United States)

    1993-12-31

    This paper describes the U.S. Army Primary Radiation Standards Complex (PRSC) to be constructed at Redstone Arsenal, Alabama. The missions of the organizations to be located in the PRSC are described. The health physics review of the facility design is discussed. The radiation sources to be available in the PRSC and the resulting measurement capabilities of the Army Primary Standards Laboratory Nucleonics section are specified. Influence of the National Voluntary Laboratory Accrediation Program (NVLAP) accreditation criteria on facility design and source selection is illustrated.

  4. The activities of the IAEA Laboratories, Vienna. Annual report 1982

    International Nuclear Information System (INIS)

    Taylor, C.B.G.

    1983-10-01

    A brief account is given on the main activities of the IAEA Laboratory in Seibersdorf during 1982. The following areas are specified: Plant breeding; Soil science; Entomology; Agrochemicals; Human nutrition; Radiation dosimetry; Electronics; Chemistry; Isotope hydrology; Safeguards Analytical Laboratory (SAL); Health physics

  5. Radiation treatment of foodstuffs

    International Nuclear Information System (INIS)

    Luther, T.; Huebner, G.

    1990-10-01

    In addition to fundamental demands on radiation and safety engineering of irradiation facilities, the necessity arises to optimize irradiation conditions by using facilities to capacity and thus reducing irradiation costs. The following subjects are dealt with in detail: rehabilitation of a pilot plant for radiation treatment of onions; examination of radiation resistance of components and equipment parts of food irradiation facilities; chemical dosimetry; relative measurement of the intensity of radioactive sources; thermo- and chemiluminescence to prove irradiation of foodstuffs; radiation induced sprout inhibition of potatoes; laboratory tests of delayed maturation of tomatoes; radiation treatment of strawberries; radiation treatment of forage; radiation induced sprout inhibition of acid-treated onions; radiation treatment of starch and potatoe products; radiation treatment of cosmetics; the universal radiation source UNI 88/26 for gamma irradiation facilities; microbiological aspects of food irradiation, and introduction of chicken irradiation on an industrial scale. (BBR) [de

  6. Beta emitters and radiation protection

    DEFF Research Database (Denmark)

    Jødal, Lars

    2009-01-01

    preparing 90Y-Zevalin were measured. CONCLUSIONS. Good laboratory practice is important to keep radiation doses low. To reduce bremsstrahlung, 90Y should not be shielded by lead but instead perspex (10 mm) or aluminium (5 mm). Bremsstrahlung radiation can be further reduced by adding a millimetre of lead...

  7. Aspects of occupational radioprotection in laboratories for radioisotopes production

    International Nuclear Information System (INIS)

    Fajardo, Patricia Wieland; Santos, Ilka Helena Taam.

    1990-10-01

    Some aspects of the radiation protection program implemented in the radioisotope production laboratories at the Nuclear Engineering Institute (IEN), are presented. This program evolves external and internal monitoring, radiation level measurements, and surface and air contamination monitoring. Comparing the results obtained in 1987, 1988 and 1989 with the corresponding limits established by Brazilian National Nuclear Energy Commission, it can be seen that the radiation protection program is suitable for those places with high risks of radiation contamination. (author). 2 refs., 2 figs., 2 tabs

  8. Dose measurements in controlled area and laboratory of TRIGA IPR-R1 reactor

    International Nuclear Information System (INIS)

    Maretti Junior, Fausto; Alvarenga, Frederico Ladeia

    2005-01-01

    The workers doses in exposure areas to the radiation are so important for a Radioprotection Quality Program, as well as to guarantee the workers safety. For that it is necessary to raise the doses in the radiation areas, to obtain the accumulated dose in certain procedures for detailed studies. Several risings were accomplished to obtain the radiation levels in the areas where the workers are exposed due the operation of a research nuclear reactor and in the radioisotopes manipulation laboratories of a nuclear institute. The radiation levels and doses can be observed through graphs in the dependences of the Controlled Area 1 (AC-1) and the Reactor Laboratory. Those limits are in according of the CNEN-NE-3.01 work limits rules. The conclusion of the work allowed to demonstrate that the Laboratory of the Reactor and AC-1, have booth an effective radiological program with efficient operational practices that contributes with low doses to the workers. (author)

  9. Decommissioning of the Fission Product Development Laboratory at Holifield National Laboratory

    International Nuclear Information System (INIS)

    Schaich, R.W.

    1975-01-01

    The decontamination of the Fission Product Development Laboratory was initiated in FY 1975 after 17 years of processing fission product waste streams to produce commercial quantities of 90 Sr, 137 Cs, 144 Ce, and 147 Pm. The objective of the decommissioning program is the removal of all radiation and contamination areas in the facility to a level which will be compatible with the environment in the foreseeable future

  10. Non-ionizing radiation protection training manual for radiation control. Lectures, demonstrations, laboratories and tours on the course on non-ionizing radiations. Final report

    International Nuclear Information System (INIS)

    Morgan, K.Z.; Burkhart, R.L.

    1976-03-01

    In late 1974, consultation with the National Training Coordination Committee of the Conference of Radiation Control Program Directors determined that State personnel needed training in order to fulfill their responsibility with respect to the growing number of non-ionizing radiation sources. A contract was awarded to the Georgia Institute of Technology to develop materials for a training program on non-ionizing radiation protection, pilot test these materials in a two-week presentation for Federal, State, and local government health personnel, and revise the materials as needed to produce a self-contained training manual. The materials were pilot-tested in March 1976, and then revised to provide the final manual. The course consists of three parts (1) general discussions of basic principles, properties, propagation and behavior of all types of non-ionizing radiations (2) an indepth study of all types and applications of coherent (laser) radiations, and (3) a study of ultraviolet, infrared, microwave, r.f., longwave and mechanical radiations as they may be used to have applications in hospitals and other medical institutions

  11. Audit of high energy therapy beams in hospital oncology departments by the National Radiation Laboratory

    International Nuclear Information System (INIS)

    Smyth, V.G.

    1994-02-01

    In 1993 the output of every high energy radiotherapy beam used clinically in New Zealand was measured by National Radiation Laboratory (NRL) staff using independent dosimetry equipment. The purpose of this was to audit the dosimetry that is used by hospital physicists for the basis of patient treatments, and to uncover any errors that may be clinically significant. This report analyses the uncertainties involved in comparing the NRL and hospital measurements, and presents the results of the 1993 audit. The overall uncertainty turns out to be about 1.5%. The results for linear accelerator photon beams are consistent with a purely random variation within this uncertainty. Electron beams show some small errors beyond the expected uncertainty. Gamma beams have the potential to be the most accurately measured, but in practice are less accurately measured than linear accelerator beams. None of the disagreements indicated an error of clinical significance. 8 refs., 3 figs., 2 tabs

  12. Decontamination of an Analytical Laboratory Hot Cell Facility

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Henslee, S.P.; Rosenberg, K.E.; Coleman, R.M.

    1995-11-01

    An Analytical Laboratory Hot Cell Facility at Argonne National Laboratory-West (ANL-W) had been in service for nearly thirty years. In order to comply with current DOE regulations governing such facilities and meet programmatic requirements, a major refurbishment effort was mandated. Due to the high levels of radiation and contamination within the cells, a decontamination effort was necessary to provide an environment that permitted workers to enter the cells to perform refurbishment activities without receiving high doses of radiation and to minimize the potential for the spread of contamination. State-of-the-art decontamination methods, as well as time-proven methods were utilized to minimize personnel exposure as well as maximize results

  13. RHOBOT: Radiation hardened robotics

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.C.; Posey, L.D. [Sandia National Labs., Albuquerque, NM (United States)

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  14. RHOBOT: Radiation hardened robotics

    International Nuclear Information System (INIS)

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program

  15. Purine and its analogues and radiation damage in Bacillus megaterium spores

    Energy Technology Data Exchange (ETDEWEB)

    Powers, E.L.

    1986-12-01

    As an extension of results obtained from radiation studies on caffeine both in other laboratories and more recently in this laboratory using the bacterial spore as the test system, six compounds with chemical structures closely resembling that of caffeine were tested as radiation modifiers. Of these compounds, purine, adenine and hypoxanthine resembled caffeine in sensitizing spores to radiation, while theobromine, xanthine and theophylline did not. These responses are discussed in relation to the electron sequestration hypothesis of cellular sensitization to high-energy radiation.

  16. Automation of metrological operations on measuring apparatuses of radiation monitoring system

    International Nuclear Information System (INIS)

    Kulich, V.; Studeny, J.

    1995-01-01

    (J.K.)In this paper the measuring apparatuses of ionizing radiation for the radiation monitoring of NPP Dukovany operation is described. The increase of metrological operations number has been made possible only by a timely reconstruction of the laboratory and by computerization of the measuring procedure and of administrative work which consists mainly of recording of a great number information pieces about the observed measuring apparatuses. There are three working places in the laboratory: 1) irradiation gamma stand with cesium-137 sources; 2) irradiation stand with plutonium-beryllium neutron sources; 3) spectrometric working place. With the regard to the uniqueness of the laboratory operation, all the works in the sphere of hardware as well as software has been implemented by own forces. The equipment of the laboratory makes possible to test metrologically all the radiation monitoring apparatuses used in NPP Dukovany. The quantity of operation of he laboratory of ionizing metrology qualifies the proper functioning of the radiation monitoring system, which directly influences the ensurance of nuclear safety of NPP Dukovany

  17. Automation of metrological operations on measuring apparatuses of radiation monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Kulich, V; Studeny, J [NPP Dukovany (Czech Republic)

    1996-12-31

    (J.K.)In this paper the measuring apparatuses of ionizing radiation for the radiation monitoring of NPP Dukovany operation is described. The increase of metrological operations number has been made possible only by a timely reconstruction of the laboratory and by computerization of the measuring procedure and of administrative work which consists mainly of recording of a great number information pieces about the observed measuring apparatuses. There are three working places in the laboratory: 1) irradiation gamma stand with cesium-137 sources; 2) irradiation stand with plutonium-beryllium neutron sources; 3) spectrometric working place. With the regard to the uniqueness of the laboratory operation, all the works in the sphere of hardware as well as software has been implemented by own forces. The equipment of the laboratory makes possible to test metrologically all the radiation monitoring apparatuses used in NPP Dukovany. The quantity of operation of he laboratory of ionizing metrology qualifies the proper functioning of the radiation monitoring system, which directly influences the ensurance of nuclear safety of NPP Dukovany.

  18. Environmental radiation data, 7

    International Nuclear Information System (INIS)

    Nagaoka, Toshi; Sakamoto, Ryuichi; Saito, Kimiaki; Tsutsumi, Masahiro; Moriuchi, Shigeru

    1989-10-01

    The Environmental Radiation Physics Laboratory has conducted a large number of background radiation surveys in these years, aiming at the analysis of characteristics and behaviour of environmental radiation, the development of measurement techniques and instruments of environmental radiation, and the evaluation of environmental radiation dose. The environmental radiation data obtained by these surveys are useful for broad purposes as actual survey data. Therefore, it is desirable to make the recording media and the FORMAT of these data available for usual computers. In the light of this circumstance, these data were rearranged and recompiled systematically to meet the demand. This report mentions about the data obtained by the background radiation surveys in and around Tokyo performed during 1982 - 1988 using portable instruments, as well as the information necessary for the data handling. (author)

  19. Facility - Radiation Source Features and User Applications

    International Nuclear Information System (INIS)

    Gover, A.; Abramovich, A.; Eichenbaum, A.L.; Kanter, M.; Sokolowski, J.; Yahalom, A.; Shiloh, J.; Schnitzer, I.; Pinhasi, Y.

    1999-01-01

    Recent measurements of the radiation characteristics of the tandem FEL prove .that the device operates as a high quality, tunable radiation source in the mm wave regime. Tuning range of 60% around a central frequency of 100 GHz was demonstrated by varying the tandem accelerator energy from 1 to 1.5 MeV with 1-1.5 Amp. Beam current. Fourier transform limited linewidth of Δ f/f -5 was measured in single-mode lasing operation. The FEL power in pulse operation (10μsec) was 10 kWatt. Operating the FEL at high repetition rate with 0.1 to 1 mSec pulses will make it possible to obtain high average power (1 kWatt) and narrow linewidth (10 -7 ). Based ,on these exceptional properties of the FEL as a high quality spectroscopic tool and as a source of high average power radiation, the FEL consortium, supported by a body of 10 radiation user groups from various universities and research institutes, embark on a new project for development of an Israeli FEL radiation user laboratory. The laboratory is presently in a design and building stage in the academic campus in Ariel. The FEL will be moved to this laboratory after completion of X-ray protection structure in the allocated building. In the first phase of development, the radiation user laboratory will consist of three user stations: a. Spectroscopic station (low average power). Material studies are planned in the fields of H.T.S.C., submicron semiconductor devices, gases. b. Material processing station (high average power). Experiments are planned in the fields of thin film ceramic sintering (including H.T.S.C.), functionally graded materials, surface treatment of metals, interaction with biological tissues. c. Atmospheric study station. Experiments are planned in the fields of aerosol, dust and clouds mapping, remote sensing of gases, wide-band mm wave communication The FEL experimental results and the user laboratory features will be described

  20. Needs analysis and project schedule for the Los Alamos National Laboratory (LANL) Health Physics Analysis Laboratory (HPAL) upgrade

    International Nuclear Information System (INIS)

    Rhea, T.A.; Rucker, T.L.; Stafford, M.W.

    1990-01-01

    This report is a needs assessment and project schedule for the Health Physics Analysis Laboratory (HPAL) upgrade project at Los Alamos National Laboratory (LANL). After reviewing current and projected HPAL operations, two custom-developed laboratory information management systems (LIMS) for similar facilities were reviewed; four commercially available LIMS products were also evaluated. This project is motivated by new regulations for radiation protection and training and by increased emphasis on quality assurance (QA). HPAL data are used to: protect the health of radiation workers; document contamination levels for transportation of radioactive materials and for release of materials to the public for uncontrolled use; and verify compliance with environmental emission regulations. Phase 1 of the HPAL upgrade project concentrates on four types of counting instruments which support in excess of 90% of the sample workload at the existing central laboratories. Phase 2 is a refinement phase and also integrates summary-level databases on the central Health, Safety, and Environment (HSE) VAX. Phase 3 incorporates additional instrument types and integrates satellite laboratories into the HPAL LIMS. Phase 1 will be a multi-year, multimillion dollar project. The temptation to approach the upgrade of the HPAL program in a piece meal fashion should be avoided. This is a major project, with clearly-defined goals and priorities, and should be approached as such. Major programmatic and operational impacts will be felt throughout HSE as a result of this upgrade, so effective coordination with key customer contacts will be critical

  1. Nuclear Physics Laboratory 1976 annual report. [Nuclear Physics Laboratory, Univ. of Washington

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-01

    Laboratory activities for the period spring, 1975 to spring, 1976 are described. The emphasis of the work can be discerned from the chapter headings: accelerator development; ion source development; instrumentation, detectors, research techniques; computer and computing; atomic physics; nuclear astrophysics; fundamental symmetries in nuclei; nuclear structure; radiative capture measurements and calculations; scattering and reactions; reactions with polarized protons and deuterons; heavy-ion elastic and inelastic scattering; heavy-ion deeply inelastic and fusion reactions; heavy ion transfer and intermediate structure reactions; medium-energy physics; and energy studies. Research by users and visitors is also described; and laboratory personnel, degrees granted, and publications are listed. Those summaries having significant amounts of information are indexed individually. (RWR)

  2. Radiation physics, biophysics, and radiation biology: Progress report, December 1, 1987-November 30, 1988

    International Nuclear Information System (INIS)

    Hall, E.J.; Zaider, M.; Delegianis, M.J.

    1988-07-01

    Research at the Radiological Research Laboratory is a blend of physics, chemistry, and biology, involving research at the basic level with the admixture of a small proportion of pragmatic or applied research in support of radiation protection and/or radiation therapy. At the current level of funding, approximately one quarter of the research of the Laboratory could be regarded as in support of radiotherapy, with the remainder addressing more basic issues. The new initiatives have been in two directions. First, there has been an increased emphasis on research in radiation chemistry, inasmuch as this subject which involves the study of free radicals and fast radiation chemistry processes starts to bridge the gap between physics and biology, between the initial deposition of radiant energy and its final expression in terms of biological consequences. Second, the emphasis in the biological research has moved towards studies at the molecular level, with the appointment of new members of staff with expertise in this area. Individual chapters were processed separately for the data base

  3. Ionising radiation metrology : Physical basis for the radiation protection in Spain

    International Nuclear Information System (INIS)

    Arcos, J. M. los; Brosed, A.; Fernandez, F.

    2004-01-01

    Applying radiological protection principles and, in particular optimisation, requires a system of metrological references internationally traceable and to which be traced at the national level, through a well defined calibration chain. In this paper on overview of the activities done in the national standards laboratory and in the calibration laboratories existing in Spain is presented. As a conclusion it is established that, although the necessities at the protection level are reasonably covered for α, β, X and γ radiation, the lack of a neutronic reference laboratory is detected, to give metrological support to the two laboratories with capability for making irradiations or determinations of neutronic doses, currently operating in the country. (Author) 19 refs

  4. Brookhaven National Laboratory site environmental report for calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, G.L.; Paquette, D.E.; Naidu, J.R.; Lee, R.J.; Briggs, S.L.K.

    1998-01-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1996. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and non-radiological emissions and effluents to the environment.

  5. Purine and its analogues and radiation damage in Bacillus megaterium spores

    International Nuclear Information System (INIS)

    Powers, E.L.

    1986-01-01

    As an extension of results obtained from radiation studies on caffeine both in other laboratories and more recently in this laboratory using the bacterial spore as the test system, six compounds with chemical structures closely resembling that of caffeine were tested as radiation modifiers. Of these compounds, purine, adenine and hypoxanthine resembled caffeine in sensitizing spores to radiation, while theobromine, xanthine and theophylline did not. These responses are discussed in relation to the electron sequestration hypothesis of cellular sensitization to high-energy radiation. (author)

  6. Basic Radiation Detectors. Chapter 6

    Energy Technology Data Exchange (ETDEWEB)

    Van Eijk, C. W.E. [Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands)

    2014-12-15

    Radiation detectors are of paramount importance in nuclear medicine. The detectors provide a wide range of information including the radiation dose of a laboratory worker and the positron emission tomography (PET) image of a patient. Consequently, detectors with strongly differing specifications are used. In this chapter, general aspects of detectors are discussed.

  7. Radiation effects in optoelectronic devices

    International Nuclear Information System (INIS)

    Barnes, C.E.; Wiczer, J.J.

    1984-05-01

    Purpose of this report is to provide not only a summary of radiation damage studies at Sandia National Laboratories, but also of those in the literature on the components of optoelectronic systems: light emitting diodes (LEDs), laser diodes, photodetectors, optical fibers, and optical isolators. This review of radiation damage in optoelectronic components is structured according to device type. In each section, a brief discussion of those device properties relevant to radiation effects is given

  8. Research laboratories annual report. 1973 and 1974

    International Nuclear Information System (INIS)

    1975-02-01

    This report presents brief summaries of the research carried out at the Israel A.E.C. laboratories during the two years 1973 and 1974 in the following fields: theoretical physics and chemistry, neutron and reactor physics, solid state physics and metallurgy, laser-induced plasma research, nuclear physics and chemistry, radiation chemistry and applications of radiation and radioisotopes, physical and inorganic chemistry, analytical chemistry, health physics, environmental studies, instrumentation and techniques. (B.G.)

  9. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both by international organizations (IAEA) and national laboratories have helped to improve the reliability of dose measurements. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading to traceable and reliable dosimetry are discussed. (author)

  10. Quality assurance programme for isotope diagnostic laboratories

    International Nuclear Information System (INIS)

    Krasznai, Istvan

    1987-01-01

    Quality assurance systems are suggested to be introduced in laboratories, in accordance with the recommendations of IAEA and WHO, taking local circumstances into consideration. It is emphasized that a quantitative enhancement of work must not endanger its quality; diagnostic information must be undistorted, reproducible, and gathered with the minimum of radiation burden. National authorities are requested to strengthen their supervision. Recommendations for quality assurance methods are given for medical isotope diagnostic laboratories. (author)

  11. A multigroup treatment of radiation transport

    International Nuclear Information System (INIS)

    Tahir, N.A.; Laing, E.W.; Nicholas, D.J.

    1980-12-01

    A multi-group radiation package is outlined which will accurately handle radiation transfer problems in laser-produced plasmas. Bremsstrahlung, recombination and line radiation are included as well as fast electron Bremsstrahlung radiation. The entire radiation field is divided into a large number of groups (typically 20), which diffuse radiation energy in real space as well as in energy space, the latter occurring via electron-radiation interaction. Using this model a radiation transport code will be developed to be incorporated into MEDUSA. This modified version of MEDUSA will be used to study radiative preheat effects in laser-compression experiments at the Central Laser Facility, Rutherford Laboratory. The model is also relevant to heavy ion fusion studies. (author)

  12. Occupational exposure to ionizing radiation in Kenya

    International Nuclear Information System (INIS)

    Shadrack, Anthony Kiti

    2008-01-01

    Full text: This project is based on studies of radiation doses received by radiation workers from sample of radiation facilities in Nairobi, Kenya, using TLD badges. Radiation doses received by workers during performance of a few types of radiological exposures and application of sealed and unsealed radionuclides have been measured at a number of x ray departments (diagnostic radiology), radiotherapy and nuclear medicine and training and research. Radiation dose measurements were based on thermoluminescence dosimetry (TLD) techniques, using the laboratory facilities of the National Radiation Protection Laboratory (NRPL) at KNH, in Nairobi, Kenya. Evaluation of doses from TLD badges exposed to X-rays and radioisotopes are discussed. Nuclear medicine recorded the highest dose as compared to Radiotherapy, Training and research and Diagnostic radiology. Age and gender have no relation with dose absorption. Yearly average dose seems to have been reducing from 2002 to 2005, representing an improvement in radiation protection. Overall, the results show that radiation workers in Kenya are working under safe environments since the doses received are within acceptable limits of radiation protection. The data presented in this research provides a database, which should serve as a useful reference for comparison with similar studies in the future. (author)

  13. The Advanced Light Source: A new 1.5 GeV synchrotron radiation facility at the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Schlachter, F.

    1990-01-01

    The Advanced Light Source (ALS), presently under construction at the Lawrence Berkeley Laboratory, will be the world's brightest synchrotron-radiation source of ultraviolet and soft x-ray photons when it opens its doors to users in April 1993. The ALS is a third-generation source that is based on a low-emittance electron storage ring, optimized for operation at 1.5 GeV, with long straight sections for insertion devices. Its naturally short pulses are ideal for time-resolved measurements. Undulators will produce high-brightness beams from below 10 eV to above 2 keV; wigglers will produce high fluxes of harder x-rays to energies above 10 keV. The ALS will support an extensive research program in a broad spectrum of scientific and technological areas. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets. Undulator radiation can excite the K shell of elements up to silicon and the L shell of elements up to krypton, and wiggler radiation can excite the L shell of nearly every element. The ALS will operate as a national user facility; interested scientists are encouraged to contact the ALS Scientific Program Coordinator to explore their scientific and technological research interests

  14. Radiation hormesis and its potential to manage radiation injuries

    International Nuclear Information System (INIS)

    Bala, Madhu; Mathew, Lazar

    2000-01-01

    The term radiation hormesis explains stimulatory or beneficial effects of low dose radiation exposure, which cannot be predicted by extrapolation of detrimental or lethal effects of high dose radiation exposure. Although beneficial effects of low doses of radiation were observed soon after discovery of x-rays and radioactivity, studies remained inconclusive until recently, due to (i) inadequate statistical planning of experiments conducted in early part of the 20th century; and (ii) poor dose monitoring. Recently (1980s onwards), large scale, systematic epidemiological and experimental studies with a number of diverse systems have demonstrated existence of radiation hormesis beyond doubt. It is pointed out that the hormetic effects of radiation have not been successfully exploited so far for human benefits, primarily because underlying molecular mechanisms are poorly understood. It is argued that with more and more studies, it is becoming evident that radiation hormesis is not merely physiological adaptation, but a genetically regulated phenomenon and involves de novo synthesis of proteins. Role of these proteins in induction of radiation hormesis is the current area of research in a number of world-renowned laboratories. The first part of this review elucidates the shifts in paradigms on radiation effects in the 20th century and the later portion presents a brief on underlying molecular mechanisms of radiation hormesis and their implications towards management of radiation injuries. (author)

  15. A relativistic radiation transfer benchmark

    International Nuclear Information System (INIS)

    Munier, A.

    1988-01-01

    We use the integral form of the radiation transfer equation in an one dimensional slab to determine the time-dependent propagation of the radiation energy, flux and pressure in a collisionless homogeneous medium. First order v/c relativistic terms are included and the solution is given in the fluid frame and the laboratory frame

  16. Performance of the undulator based ultraviolet and soft x-ray beamline for catalysis and surface science at National Synchrotron Radiation Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Du, Liangliang [University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Hefei, Anhui 230029 (China); University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230029 (China); Du, Xuewei, E-mail: xwdu@ustc.edu.cn [University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230029 (China); Wei, Shen [University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230029 (China); Li, Chaoyang [China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Pan, Congyuan; Ju, Huanxin [University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230029 (China); Wang, Qiuping, E-mail: qiuping@ustc.edu.cn [University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230029 (China); Zhu, Junfa [University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230029 (China)

    2016-12-01

    The undulator based ultraviolet and soft x-ray beamline BL11U for catalysis and surface science at National Synchrotron Radiation Laboratory (NSRL) has been under opteration for months and the present performance is described. This beamline utilizes radiation from an in-vacuum undulator, which has 30 magnetic periods with the period length of 40 mm. A varied-line-spacing plane grating monochromator is employed tto cover the photon energy region of 20–600 eV by two gratings with nominal groove densities of 400 llmm and 1200 l/mm respectively. The energy resolution power E/ΔE is measured with a gas ionization chamber and the photon flux is measured by a photodiode. Results show that the resolution power is better than 10,000 at a photon energy of 29.2 eV. And the flux is higher than 1×10{sup 10} phs/s under 300 mA ring beam current for most of the covered photon energy.

  17. Hanford Laboratories monthly activities report, January 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-02-14

    This is the monthly report for the Hanford Laboratories Operation, January 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  18. Hanford Laboratories monthly activities report, May 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-06-15

    This is the monthly report for the Hanford Laboratories Operation, May 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  19. Hanford Laboratories monthly activities report, July 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-08-14

    This is the monthly report for the Hanford Laboratories Operation, July 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  20. Hanford Laboratories monthly activities report, April 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-05-15

    This is the monthly report for the Hanford Laboratories Operation, April 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  1. Measuring space radiation shielding effectiveness

    Directory of Open Access Journals (Sweden)

    Bahadori Amir

    2017-01-01

    Full Text Available Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  2. Measuring space radiation shielding effectiveness

    Science.gov (United States)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  3. Prototype demonstration of radiation therapy planning code system

    International Nuclear Information System (INIS)

    Little, R.C.; Adams, K.J.; Estes, G.P.; Hughes, L.S. III; Waters, L.S.

    1996-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development project at the Los Alamos National Laboratory (LANL). Radiation therapy planning is the process by which a radiation oncologist plans a treatment protocol for a patient preparing to undergo radiation therapy. The objective is to develop a protocol that delivers sufficient radiation dose to the entire tumor volume, while minimizing dose to healthy tissue. Radiation therapy planning, as currently practiced in the field, suffers from inaccuracies made in modeling patient anatomy and radiation transport. This project investigated the ability to automatically model patient-specific, three-dimensional (3-D) geometries in advanced Los Alamos radiation transport codes (such as MCNP), and to efficiently generate accurate radiation dose profiles in these geometries via sophisticated physics modeling. Modem scientific visualization techniques were utilized. The long-term goal is that such a system could be used by a non-expert in a distributed computing environment to help plan the treatment protocol for any candidate radiation source. The improved accuracy offered by such a system promises increased efficacy and reduced costs for this important aspect of health care

  4. Photocatalysis and radiation absorption in a solar plant

    Energy Technology Data Exchange (ETDEWEB)

    Curco, D; Gimenez, J [Departamento de Ingenieria Quimica, Facultad de Quimica, Universidad de Barcelona, Barcelona (Spain); Malato, S; Blanco, J [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Plataforma Solar de Almeria, Almeria (Spain)

    1996-11-15

    Recently, many papers have appeared in literature about photocatalytic detoxification. However, progress from laboratory data to the industrial solar reactor is not easy. Kinetic models for heterogeneous catalysis can be used to describe the photocatalytic processes, but luminic steps, related to the radiation, have to be added to the physical and chemical steps considered in heterogeneous catalysis. Thus, the evaluation of the radiation, and its distribution, inside a photocatalytic reactor is essential to extrapolate results from laboratory to outdoor experiments and to compare the efficiency of different installations. This study attempts to validate the experimental set up and theoretical data treatment for this purpose in a Solar Pilot Plant. The procedure consists of the calibration of different sunlight radiometers, the estimation of the radiation inside the reactor, and the validation of the results by actinometric experiments. Finally, a comparison between kinetic constants, for the same reaction in the laboratory (artificial light) and field conditions (sun light), is performed to demonstrate the advantages of knowing the radiation inside a large photochemical reactor

  5. Development of a quality assurance program for ionizing radiation secondary calibration laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, H.T. II; Taylor, A.R. Jr. [Center for Devices and Radiological Health, Rockville, MD (United States)

    1993-12-31

    For calibration laboratories, routine calibrations of instruments meeting stated accuracy goals are important. One method of achieving the accuracy goals is to establish and follow a quality assurance program designed to monitor all aspects of the calibration program and to provide the appropriate feedback mechanism if adjustments are needed. In the United States there are a number of organizations with laboratory accreditation programs. All existing accreditation programs require that the laboratory implement a quality assurance program with essentially the same elements in all of these programs. Collectively, these elements have been designated as a Measurement Quality Assurance (MQA) program. This paper will briefly discuss the interrelationship of the elements of an MQA program. Using the Center for Devices and Radiological Health (CDRH) X-ray Calibration Laboratory (XCL) as an example, it will focus on setting up a quality control program for the equipment in a Secondary Calibration Laboratory.

  6. Development of a quality assurance program for ionizing radiation secondary calibration laboratories

    International Nuclear Information System (INIS)

    Heaton, H.T. II; Taylor, A.R. Jr.

    1993-01-01

    For calibration laboratories, routine calibrations of instruments meeting stated accuracy goals are important. One method of achieving the accuracy goals is to establish and follow a quality assurance program designed to monitor all aspects of the calibration program and to provide the appropriate feedback mechanism if adjustments are needed. In the United States there are a number of organizations with laboratory accreditation programs. All existing accreditation programs require that the laboratory implement a quality assurance program with essentially the same elements in all of these programs. Collectively, these elements have been designated as a Measurement Quality Assurance (MQA) program. This paper will briefly discuss the interrelationship of the elements of an MQA program. Using the Center for Devices and Radiological Health (CDRH) X-ray Calibration Laboratory (XCL) as an example, it will focus on setting up a quality control program for the equipment in a Secondary Calibration Laboratory

  7. A new nuclear materials laboratory at Queen's University

    International Nuclear Information System (INIS)

    Holt, R.A.; Daymond, M.R.

    2015-01-01

    The Reactor Materials Testing Laboratory (RMTL) at Queen's University and the results of commissioning tests are described. RMTL uses energetic protons (up to 8MeV) to simulate fast neutron damage in materials for reactor components. The laboratory is also capable of He implantation (up to 12 MeV) to simulate the effects of transmutation He in reactor components. The $17.5M laboratory comprises a new building, a 4MV tandem accelerator, two electron microscopes, mechanical testing and specimen preparation equipment, and a radiation detection laboratory. RMTL focusses on studying dynamic effects of irradiation (irradiation creep, irradiation growth, irradiation induced swelling, fatigue under irradiation) in-situ. (author)

  8. Cytogenetic techniques as biological indicator and dosimeter of radiation damage

    International Nuclear Information System (INIS)

    Hadjidekova, V.; Hristova, R.

    2006-01-01

    Full text: The cytogenetic methods are established techniques for bio monitoring and bio dosimetry of professionally and accidentally exposed to ionizing radiation subjects. They are applied to continue the evaluation of the physical dosimetry and to consider the individual radiosensitivity. The results of cytogenetic monitoring and dosimetry of radiation exposed subjects carried out during the last 5 years in laboratory of Radiation Genetics, NCRRP is reported. Laboratory of Radiation genetics performs cytogenetic monitoring of low dose radiation professionally or medically exposed subjects: workers in Kozloduy NPP, radioactive waste repository workers, X-rays diagnostically exposed patients, and radiotherapy exposed as well. Three cytogenetic indicators are applied as the most sensitive indicators for human radiation exposure: analysis of micronuclei (MN), chromosomal aberrations (CA) and stable translocations (FISH). The optimized methodology for application of different cytogenetic techniques for radiation estimation is discussed

  9. Hanford Laboratories monthly activities report, February 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-03-16

    This is the monthly report for the Hanford Laboratories Operation, February, 1964. Reactor fuels, chemistry, dosimetry, separation process, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, applied mathematics, programming, and radiation protection are discussed.

  10. Environmental Measurements Laboratory program review, December 1983

    International Nuclear Information System (INIS)

    Volchok, H.L.; de Planque, G.

    1984-03-01

    This volume contains all of the written material that was submitted to the panel of Reviewers in advance of a Program Review conducted by the US Department of Energy, Office of Health and Environmental Research at the Environmental Measurements Laboratory (EML) December 7-9, 1983. In addition to a general introduction there are nineteen papers grouped into the five broad program categories covering all of the scientific and engineering projects of the Laboratory: Natural Radioactivity and Radiation, Anthropogenic Radioactivity and Radiation, Non-nuclear, Quality Assurance, and Development and Support. These short articles, for the most part, focus on the rationale for EML's involvement in each project, emphasizing their relevance to the EML and Department of Energy missions. Project results and their interpretation were presented at the Review and can be found in the material referenced in this volume

  11. Safe handling of plutonium in research laboratories

    International Nuclear Information System (INIS)

    1976-01-01

    The training film illustrates the main basic requirements for the safe handling of small amounts of plutonium. The film is intended not only for people setting up plutonium research laboratories but also for all those who work in existing plutonium research laboratories. It was awarded the first prize in the category ''Protection of Workers'' at the international film festival organized by the 4th World Congress of the International Radiation Protection Association (IRPA) in Paris in April 1977

  12. Safe handling of plutonium in research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-12-31

    The training film illustrates the main basic requirements for the safe handling of small amounts of plutonium. The film is intended not only for people setting up plutonium research laboratories but also for all those who work in existing plutonium research laboratories. It was awarded the first prize in the category ``Protection of Workers`` at the international film festival organized by the 4th World Congress of the International Radiation Protection Association (IRPA) in Paris in April 1977

  13. Radiation physics, biophysics and radiation biology. Progress report, December 1, 1984-November 30, 1985

    International Nuclear Information System (INIS)

    Rossi, H.H.

    1985-07-01

    This is the annual progress report for the Radiological Research Laboratory, Department of Radiology, Columbia University. The report consists of 17 individual reports plus an overall summary. Reports survey research results in neutron dosimetry, microdosimetry of electron beams and x-radiation, development of theoretical models for biological radiation effects and induction of oncogenic transformations. Individual abstracts were also prepared for each paper

  14. Hanford Laboratories monthly activities report, January 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-02-15

    This is the monthly report for the Hanford Laboratories Operation January 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  15. Hanford Laboratories monthly activities report, March 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-04-15

    This is the monthly report for the Hanford Laboratories Operation March 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  16. Hanford Laboratories monthly activities report, April, 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-05-15

    This is the monthly report for the Hanford Laboratories Operation, April, 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, applied mathematics operation, programming, and radiation protection operation discussed.

  17. BOW SHOCK FRAGMENTATION DRIVEN BY A THERMAL INSTABILITY IN LABORATORY ASTROPHYSICS EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki-Vidal, F.; Lebedev, S. V.; Pickworth, L. A.; Swadling, G. F.; Skidmore, J.; Hall, G. N.; Bennett, M.; Bland, S. N.; Burdiak, G.; De Grouchy, P.; Music, J.; Suttle, L. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Ciardi, A. [Sorbonne Universités, UPMC Univ. Paris 6, UMR 8112, LERMA, F-75005, Paris (France); Rodriguez, R.; Gil, J. M.; Espinosa, G. [Departamento de Fisica de la Universidad de Las Palmas de Gran Canaria, E-35017 Las Palmas de Gran Canaria (Spain); Hartigan, P. [Department of Physics and Astronomy, Rice University, 6100 S. Main, Houston, TX 77521-1892 (United States); Hansen, E.; Frank, A., E-mail: f.suzuki@imperial.ac.uk [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States)

    2015-12-20

    The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counterstreaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame, and the experiments are driven over many times the characteristic cooling timescale. The initially smooth bow shock rapidly develops small-scale nonuniformities over temporal and spatial scales that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with the radiative packages ABAKO/RAPCAL.

  18. Radiation Resistance Test of Wireless Sensor Node and the Radiation Shielding Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liqan; Sur, Bhaskar [Atomic Energy of Canada Limited, Ontario (Canada); Wang, Quan [University of Western Ontario, Ontario (Canada); Deng, Changjian [The University of Electronic Science and Technology, Chengdu (China); Chen, Dongyi; Jiang, Jin [Applied Physics Branch, Ontario (Korea, Republic of)

    2014-08-15

    A wireless sensor network (WSN) is being developed for nuclear power plants. Amongst others, ionizing radiation resistance is one essential requirement for WSN to be successful. This paper documents the work done in Chalk River Laboratories of Atomic Energy of Canada Limited (AECL) to test the resistance to neutron and gamma radiation of some WSN nodes. The recorded dose limit that the nodes can withstand before being damaged by the radiation is compared with the radiation environment inside a typical CANDU (CANada Deuterium Uranium) power plant reactor building. Shielding effects of polyethylene, cadmium and lead to neutron and gamma radiations are also analyzed using MCNP simulation. The shielding calculation can be a reference for the node case design when high dose rate or accidental condition (like Fukushima) is to be considered.

  19. Spectroscopy of X-ray Photoionized Plasmas in the Laboratory

    Science.gov (United States)

    Liedahl, Duane A.; Loisel, Guillaume; Bailey, James E.; Nagayama, Taisuke; Hansen, Stephanie B.; Rochau, Gregory; Fontes, Christopher J.; Mancini, Roberto; Kallman, Timothy R.

    2018-06-01

    The physical processes operating in astrophysical plasmas --- heating, cooling, ionization, recombination, level population kinetics, and radiation transport --- are all accessible to observation in the laboratory. What distinguishes X-ray photoionized plasmas from the more common case of high-temperature collisionally-ionized plasmas is the elevated level of importance of the radiation/matter interaction. The advent of laboratory facilities with the capability to generate high-powered X-ray sources has provided the means by which to study this interaction, which is also fundamental to active galactic nuclei and other accretion-powered objects. We discuss recent and ongoing experiments, with an emphasis on X-ray spectroscopic measurements of silicon plasmas obtained at the Sandia Z Pulsed Power Facility.

  20. Hanford Laboratories Operation monthly activities report, May 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-06-15

    This is the monthly report for the Hanford Laboratories Operation, May, 1962. Reactor fuels, chemistry, dosimetry, separation process, reactor technology employee relations, operations research and synthesis operation, programming, and radiation protection are discussed.

  1. Handbook of laboratory health and safety measures

    International Nuclear Information System (INIS)

    Pal, S.B.

    1985-01-01

    Eighteen chapters deal with all kinds of possible health and safety hazards, chemical, physical and biological, arising in laboratories. Two chapters, on X-ray hazards - diagnostic and therapeutic, and radiation protection in radionuclide investigations, respectively are indexed separately. (U.K.)

  2. Nuclear analysis methods. Rudiments of radiation protection

    International Nuclear Information System (INIS)

    Roth, E.

    1998-01-01

    The nuclear analysis methods are generally used to analyse radioactive elements but they can be used also for chemical analysis, with fields such analysis and characterization of traces. The principles of radiation protection are explained (ALARA), the biological effects of ionizing radiations are given, elements and units used in radiation protection are reminded in tables. A part of this article is devoted to how to use radiation protection in a nuclear analysis laboratory. (N.C.)

  3. Towards a radiation safety culture at Universidad Nacional de Colombia

    International Nuclear Information System (INIS)

    Poveda, Jairo F.; Munera, Hector A.

    2008-01-01

    Full text: During the 20th century, nuclear and radiation techniques for research, teaching, and medical and engineering practice slowly appeared at the National University of Colombia, mainly at the Bogota, Medellin and Manizales branches. Each individual laboratory or researcher obtained the license for the use of the radioactive source, or radiation emitting apparatus. However, the University as a whole does not have as yet a Radiation Safety Manual, nor an inventory of laboratories using radiation. From the viewpoint of radiation safety and culture, this situation is undesirable, and may easily lead to inappropriate waste management practices, including the possibility of orphan sources (one such source has been already found). As part of the program of environmental management of dangerous wastes promoted by the National Division of Laboratories of our University, an office of radiation safety was created in the year 2006. This paper describes the situation that was found, the activities that have been carried out, some of the difficulties that we have met, and the plans that we have to help shape a safety culture at our institution. Currently we are pursuing an inventory of laboratories using radioactive sources and radiation emitting apparatuses, starting with the branches in Bogota and Manizales which are perceived as the most urgent to deal with. Fortunately, the branch in Medellin has been for about a decade under the care of a former radiation safety officer of our national Institute of Nuclear Affairs, who presently teaches there. During 2006 and 2007, 13 laboratories using radioactive sources were visited in the Bogota branch. Safety procedures and waste handling protocols were checked, safety manuals prepared and/or revised, and recommendations for safety culture provided. During 2008 we will visit Manizales, and will continue visiting a number of X-ray machines used in the Bogota branch for engineering, veterinary, and diagnostic, and surgery medical

  4. Role of radiation standards in peaceful uses of nuclear energy

    International Nuclear Information System (INIS)

    Mahant, A.K.; Sathian, V.; Joseph, L.

    2009-01-01

    Radiation standards play an acute role in all the peaceful applications of nuclear energy, which is not limited to generation of electrical power anymore. Radioactive sources are being used in a very wide variety of applications, which can be broadly classified as medicine, agriculture, industry and scientific research. All these applications involve the use of radiation in a well-controlled manner and hence require accurate characterization and quantification of the radiation. Radiation Standards Section of Radiation Safety Systems Division at BARC is the apex national laboratory for all the radiological quantities related to various types of radiation sources. The laboratory develops, maintains and disseminates the standards to the users of the radiation sources all over the country and some of the neighbouring countries viz. Nepal, Bangladesh, Sri Lanka and Myanmar with an essential objective to bring homogeneity in all radiological measurements and make them compatible with the international standards. Various services provided by the Radiation Standards Section have been briefly described in the following sections. (author)

  5. Synchrotron radiation and structural proteomics

    CERN Document Server

    Pechkova, Eugenia

    2011-01-01

    This book presents an overview of the current state of research in both synchrotron radiation and structural proteomics from different laboratories worldwide. The book presents recent research results in the most advanced methods of synchrotron radiation analysis, protein micro- and nano crystallography, X-ray scattering and X-ray optics, coherent X-Ray diffraction, and laser cutting and contactless sample manipulation are described in details. The book focuses on biological applications and highlights important aspects such as radiation damage and molecular modeling.

  6. A control system of radiation protection at HESYRL

    International Nuclear Information System (INIS)

    Li Yuxiong; Li Juexin; Ning Xinquan

    1990-01-01

    A control system for radiation protection at Hefei National Synchrotron Radiation Laboratory (HESYRL) consists of three parts. They are a personal radiation safety interlock system, an automatic environmental radiation monitoring system and a data logging and management system for area radiation monitoring. Two-year operating experiments have shown that this system is reasonably designed, reliable, high-sensitive and automatic. The design principle, construction and operating status of each part of the system are introduced

  7. Report of the laboratory building for late occurring injury

    International Nuclear Information System (INIS)

    1978-01-01

    In order to estimate the danger of low level radiation to human beings, the studies of the late-occurring injuries and internal exposure due to radionuclide deposition are necessary. In the National Institute of Radiological Sciences, research on the estimation of the danger of late-occurring injuries due to radiation is proceeding. In this connection, a late-occurring injury laboratory building has been completed recently. Basic ideas behind it are as follows. To carry out the above mentioned studies effectively and efficiently, many experimental animals of high quality must be kept under best possible environment. For the observation in a series of experiments, irradiation room and laboratory rooms are essential. The building comprises the following: the first floor for animal receiving, the second floor for laboratory rooms, the third floor for RI facility and X-ray irradiated animal keeping, the fourth floor for SPF animal keeping, and attic floor for water supply, etc. (J.P.N.)

  8. Air kerma standardization for diagnostic radiology in a secondary standard laboratory

    International Nuclear Information System (INIS)

    Ramos, Manoel M.O.; Peixoto, J. Guilherme P.; Lopes, Ricardo T.

    2009-01-01

    The demand for calibration services and quality control in diagnostic radiology has grown in the country since the publication of the governmental regulation 453, issued by the Brazilian Ministry of Health in 1998. At that time, to produce results facing the new legislation, many laboratories used different standards and radiation qualities, some of which could be inadequate. The international standards neither supplied consistent radiation qualities and standardization for the different types of equipment available. This situation changed with the publication of the new edition of the IEC 61267 standard, published in 2005. The objective of this work was to implement the standardization of the air kerma for the unatenuated qualities (RQR) of IEC 61267 in the National Laboratory of Metrology of the Ionizing Radiations (LNMRI) of the Institute of Radiation Protection and Dosimetry (IRD). Technical procedures were developed together with uncertainty budget. Results of interlaboratory comparisons demonstrate that the quantity is standardized and internationally traceable. (author)

  9. Laboratory Experiments on Rotation of Micron Size Cosmic Dust Grains with Radiation

    Science.gov (United States)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E.; Weingartner, J.; Witherow, W. K.

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models and numerical studies of grain rotation and alignment along the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in grain rotation and alignment has not been achieved. As there appears to be no experimental data available on this subject, we have carried out some unique experiments to illuminate the processes involved in rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron size nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approx. 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low frequency (approx. 0-100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in the light of the current theories of alignment.

  10. Rock Formation and Cosmic Radiation Exposure Ages in Gale Crater Mudstones from the Mars Science Laboratory

    Science.gov (United States)

    Mahaffy, Paul; Farley, Ken; Malespin, Charles; Gellert, Ralph; Grotzinger, John

    2014-05-01

    The quadrupole mass spectrometer (QMS) in the Sample Analysis at Mars (SAM) suite of the Mars Science Laboratory (MSL) has been utilized to secure abundances of 3He, 21Ne, 36Ar, and 40Ar thermally evolved from the mudstone in the stratified Yellowknife Bay formation in Gale Crater. As reported by Farley et al. [1] these measurements of cosmogenic and radiogenic noble gases together with Cl and K abundances measured by MSL's alpha particle X-ray spectrometer enable a K-Ar rock formation age of 4.21+0.35 Ga to be established as well as a surface exposure age to cosmic radiation of 78+30 Ma. Understanding surface exposures to cosmic radiation is relevant to the MSL search for organic compounds since even the limited set of studies carried out, to date, indicate that even 10's to 100's of millions of years of near surface (1-3 meter) exposure may transform a significant fraction of the organic compounds exposed to this radiation [2,3,4]. Transformation of potential biosignatures and even loss of molecular structural information in compounds that could point to exogenous or endogenous sources suggests a new paradigm in the search for near surface organics that incorporates a search for the most recently exposed outcrops through erosional processes. The K-Ar rock formation age determination shows promise for more precise in situ measurements that may help calibrate the martian cratering record that currently relies on extrapolation from the lunar record with its ground truth chronology with returned samples. We will discuss the protocol for the in situ noble gas measurements secured with SAM and ongoing studies to optimize these measurements using the SAM testbed. References: [1] Farley, K.A.M Science Magazine, 342, (2013). [2] G. Kminek et al., Earth Planet Sc Lett 245, 1 (2006). [3] Dartnell, L.R., Biogeosciences 4, 545 (2007). [4] Pavlov, A. A., et al. Geophys Res Lett 39, 13202 (2012).

  11. Laboratory-scale shielded cell for 252Cf

    International Nuclear Information System (INIS)

    Anderl, R.A.; Cargo, C.H.

    1979-01-01

    A shielded-cell facility for storing and handling remotely up to 2 milligram quantities of unencapsulated 252 Cf has been built in a radiochemistry laboratory at the Test Reactor Area of the Idaho National Engineering Laboratory. Unique features of this facility are its compact bulk radiation shield of borated gypsum and transfer lines which permit the transport of fission product activity from 252 Cf fission sources within the cell to a mass separator and to a fast radiochemistry system in nearby rooms

  12. Current trends in radiation physics

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, M A; Elbehay, A Z; Hassib, G M; Elnaggar, A M [eds.

    1994-12-31

    This conference details 11 papers, explain radiation physics. It discuss subjects of axial and spherical symmetry,accelerators,cyclotron laboratory and radon monitoring. contains figures,tables and data.

  13. Current trends in radiation physics

    International Nuclear Information System (INIS)

    Gomaa, M.A.; Elbehay, A.Z.; Hassib, G.M.; Elnaggar, A.M.

    1993-01-01

    This conference details 11 papers, explain radiation physics. It discuss subjects of axial and spherical symmetry,accelerators,cyclotron laboratory and radon monitoring. contains figures,tables and data

  14. Radiation protection training for users of ionizing radiation in Hungary

    International Nuclear Information System (INIS)

    Pellet, S.; Giczi, F.; Elek, R.; Temesi, A.; Csizmadia, H.; Sera, E.

    2012-01-01

    According to the current and previous regulation related to the safety use of ionizing radiation, the personnel involved must obtain special qualification in radiation protection. In Hungary the radiation protection training are performed by appropriately certified training centers on basic, advanced and comprehensive levels. Certification of the training centers is given by the competent radiological health/radiation protection authority. The office of the Chief Medical Officer is the certifying authority for advanced and comprehensive levels training, as well as competent Regional Radiological Health Authority is responsible for basic level courses. The content and length of courses are specified in the regulation for all three levels of industrial, laboratory and medical users, in general. Some of the universities, technical and medical oriented are certified for advanced training for students as gradual course. Recently in Hungary there are 47 certified training centers for advanced and comprehensive courses, where the trainers should have a five years job experience in radiation protection and successful completion of comprehensive level course in radiation protection. (authors)

  15. Calibrations and evaluation of the quality assurance during 1999 at the National Laboratory for ionising radiation; Kalibrerings- och normalieverksamheten vid Riksmaetplats 06 under 1999

    Energy Technology Data Exchange (ETDEWEB)

    Grindborg, Jan-Erik; Israelsson, Karl-Erik; Kylloenen, Jan-Erik; Samuelson, Goeran

    2000-06-01

    The Swedish Radiation Protection Institute is the National Laboratory for the dosimetric quantities kerma, absorbed dose and dose equivalent. The activity is based on established calibration procedures and a quality assurance program for the used standards. This report gives a brief summary of the calibrations performed during 1999 and a more detailed description and analysis of the quality assurance during this year. The report makes it easier to draw conclusions about the long-term stability and possible malfunctions.

  16. Laboratory Directed Research ampersand Development Program

    International Nuclear Information System (INIS)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments

  17. Cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, R.W.

    1979-01-01

    The 20-ft horn-reflector antenna at Bell Laboratories is discussed in detail with emphasis on the 7.35 cm radiometer. The circumstances leading to the detection of the cosmic microwave background radiation are explored

  18. Induction linacs as radiation processors

    International Nuclear Information System (INIS)

    Birx, D.L.

    1986-01-01

    Experiments at the Lawrence Livermore National Laboratory (LLNL), University of California, in conjunction with the University of California at Davis have shown induction linear accelerators (linacs) to be suitable for radiation processing of food. Here we describe how it might be possible to optimize this technology developded for the Department of Defense to serve in radiation processing. The possible advantages of accelerator-produced radiation over the use of radioisotopes include a tailor-made energy spectrum that can provide much deeper penetration and thereby better dose uniformity

  19. Labor security in radiation flaw detection

    International Nuclear Information System (INIS)

    Margulis, U.Ya.; Chistov, E.D.; Partolin, O.F.; Pertsov, V.A.; Momzhiev, B.N.; Sprygaev, I.F.

    1986-01-01

    Problems of ensuring safe labour conditions in radiation flaw detection are considered. Methods for ionizing radiation protection are given calculating techniques for shielding flaw detectors and stationary structures are presented as well. Safe methods of nondestructive testing of items under field conditions, in a shop and special laboratories using gamma- and X-ray flaw detectors, betatrons, electron accelerators are described. Attention is paid to the principles of radiation factor stantardization as well as radiation monitoring. Analysis of accidents and recommendations on their prevention and liquidation of accidental consequences are given

  20. Synchrotron radiation

    International Nuclear Information System (INIS)

    Pattison, P.; Quinn, P.

    1990-01-01

    This report details the activities in synchrotron radiation and related areas at Daresbury Laboratory during 1989/90. The number and scope of the scientific reports submitted by external users and in-house staff is a reflection of the large amount of scheduled beamtime and high operating efficiency achieved at the Synchrotron Radiation Source (SRS) during the past year. Over 4000 hours of user beam were available, equivalent to about 80% of the total scheduled time. Many of the reports collected here illustrate the increasing technical complexity of the experiments now being carried out at Daresbury. Provision of the appropriate technical and scientific infrastructure and support is a continuing challenge. The development of the Materials Science Laboratory together with the existing Biological Support Laboratory will extend the range of experiments which can be carried out on the SRS. This will particularly facilitate work in which the sample must be prepared or characterised immediately before or during an experiment. The year 1989/90 has also seen a substantial upgrade of several stations, especially in the area of x-ray optics. Many of the advantages of the High Brightness Lattice can only be exploited effectively with the use of focusing optics. As the performance of these stations improves, the range of experiments which are feasible on the SRS will be extended significantly. (author)

  1. Environmental radiation data, 9

    International Nuclear Information System (INIS)

    Nagaoka, Toshi; Sakamoto, Ryuichi; Saito, Kimiaki; Tsutsumi, Masahiro; Moriuchi, Shigeru

    1993-06-01

    The Environmental Physics Laboratory has conducted a large number of background radiation surveys in these years, aiming at the analysis of characteristics and behaviour of environmental radiation, the development of measurement techniques and instruments of environmental radiation, and the evaluation of environmental radiation dose. As the environmental radiation data obtained by these surveys are useful for broad purposes as actual survey data, it is desirable to arrange these data systematically and to open them to the other scientist. For that, it is necessary to make the recording media and the FORMAT of these data available for usual computers. In the light of this circumstance, these data were rearranged and recompiled systematically to meet the demand. This report mentions about the data obtained by the background radiation surveys in and around Tokyo performed during 1991 - 1993 using portable instruments, as well as the information necessary for the data handling. (author)

  2. Nuclear technology in materials testing and radiation protection

    International Nuclear Information System (INIS)

    Neider, R.

    1975-01-01

    A report of the 1974 activities of the laboratories for physical and measuring technical fundamentals, radiation effects and radiation protection, application of radionuclides and testing of radioactive materials of the Bundesanstalt fuer Materialpruefung (BAM) is given. (RW/LH) [de

  3. Radiation damage in optical fibers

    International Nuclear Information System (INIS)

    Lyons, P.B.; Looney, L.D.; Ogle, J.W.

    1983-01-01

    Optical fibers provide important advantages over coaxial cables for many data transmission applications. Some of these applications require that the fibers transmit data during a radiation pulse. Other applications utilize the fiber as a radiation-to-light transducer. In either case, radiation-induced luminescence and absorption must be understood. Most studies of radiation effects in fibers have emphasized time scales of interest in telecommunication systems, from the msec to hour range. Few studies have concentrated on response at times below 1 + s. At Los Alamos, both laboratory electron accelerators and nuclear tests have been used as radiation sources to probe this early time region. The use of a fiber (or any optical medium) as a Cerenkov radiation-to-light transducer is discussed. Since the radiation induces attenuation in the medium, the light output is not proportional to the radiation input. The nonlinearity introduced by this attenuation is calculated

  4. Viability study of a construction of invasive high voltage meter for the National Reference Laboratory of the Brazilian Net Calibration in Diagnostic Radiology, the National Laboratory of Metrology of the Ionizing Radiation - LNMRI

    International Nuclear Information System (INIS)

    Quaresma, D.S.; Peixoto, J.G.P.; Pereira, M.A.G.

    2007-01-01

    This work has studied the parameters for the construction of an invasive high voltage meter for the National Reference Laboratory of the Brazilian Net Calibration in Diagnostic Radiology, the National Laboratory of Metrology of the Ionizing Radiation - LNMRI. This study took into consideration the necessity of quality control of the of X-rays equipment required by Ministry of Health - MS, through the regulation N.453. To satisfy the demands of the MS, the recommendation of the norm IEC 61676 was analyzed by using the quantity of Practical Peak Voltage (PPV) in the measurements of the voltage discharge applied to the X-rays tubes, the infra structures of metrology available in the country to offer tracking the components of the high voltage meter through INMETRO and the difficulty of adaptation of the high voltage meter analyser III U in relation to the Pan tak HF160 equipment in which respect the connection of the high voltage cable and the voltage limitations due to the electric configuration of the high voltage generator of the constant potential Pantak HF160 equipment. (author)

  5. Radiation physics, biophysics, and radiation biology

    International Nuclear Information System (INIS)

    Hall, E.J.; Zaider, M.; Delegianis, M.J.

    1989-07-01

    An important event of the year was the designation of our Laboratory as a Center for Radiological Research by the Dean of the Faculty of Medicine and Vice-President for Health Sciences. Center status acknowledges the size and importance of the research efforts in this area, and allows a greater measure of independence in administrative matters. While the name has changed from a Laboratory to a Center within the Medical School, the mission and charge remain the same. The efforts of the Center are a multidisciplinary mix of physics, chemistry, and biology, mostly at a basic level, with the admixture of a small proportion of pragmatic or applied research in support of radiation protection or radiation therapy. About a quarter of our funding, mostly individual research awards, could be regarded as in direct support of radiotherapy, with the remainder (an NCI program project grant and DOE grants) being in support of research addressing more basic issues. An important effort currently underway concerns ab-initio calculations of the dielectric response function of condensed water. This investigation has received the coveted designation, ''Grand Challenge Project,'' awarded by DOE to research work which represents ''distinct advance on a major scientific or engineering problem that is broadly recognized as important within the mission of the Department.''

  6. Mars' surface radiation environment measured with the Mars science laboratory's curiosity rover

    NARCIS (Netherlands)

    Hassler, D.M.; Zeitlin, C.; Wimmer-Schweingruber, R.F.; Ehresmann, B.; Rafkin, S.; Eigenbrode, J.L.; Brinza, D.E.; Weigle, G.; Böttcher, S.; Böhm, E.; Burmeister, S.; Guo, J.; Köhler, J.; Martin, C.; Reitz, G.; Cucinotta, F.A.; Kim, M.-H.; Grinspoon, D.; Bullock, M.A.; Posner, A.; Gómez-Elvira, J.; Vasavada, A.; Grotzinger, J.P.; MSL Science Team, the|info:eu-repo/dai/nl/292012217

    2014-01-01

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory’s Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose

  7. Development of a free software for laboratory of metrology

    International Nuclear Information System (INIS)

    Silveira, Renata R. da; Benevides, Clayton A.

    2014-01-01

    The Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE) has a Metrology Laboratory to realize radioactive assays and calibrations in X and gamma radiation. This job, realized before in a manual way, had only paper recording and a hard-working data recovery. The objective of this job was to develop an application with free software to manage the laboratory activities, as service recording, rastreability control and environmental conditions monitoring, beyond automate the certificates and reports. As result, we have obtained the optimization of the routine and the management of the laboratory. (author)

  8. Project Radiation protection, Annual report 1994

    International Nuclear Information System (INIS)

    Ninkovic, M.M.

    1994-12-01

    According to the action plan for the period 1991-1995, the main objective of this project during 1994 was to provide operational basis, methods and procedures for solving the radiation protection problems that might appear under routine working conditions and handling of radiation sources. The aim was also to provide special methods for action in case of accidents that could affect the employed staff and the population. Overall activity was directed to maintaining and providing personnel, instrumentation, and methods for the following special radiation protection measures: operational control of the radiation field and contamination; calibration of the radiation and dosimetry instruments-secondary dosimetry metrology laboratory; instrumentation and measuring systems for radiation protection; control of environmental transfer of radioactive material; medical radiation protection [sr

  9. Progress report for (1974-1984) of Nuclear Research Laboratory, Srinagar, Kashmir

    International Nuclear Information System (INIS)

    Kaul, P.K.; Razdan, H.

    1985-01-01

    The Nuclear Research Laboratory, established at Srinagar in 1974, serves as a base laboratory to organise research activities at the High Altitude Research Laboratory at Gulmarg. Space physics, nuclear physics, radiation and atmospheric chemistry, and technical physics: are the fields in which the research facilities are established at the Laboratory, over the past ten years. The highlights of the various research programmes undertaken at the Laboratory during the period 1974-1984 are presented in the form of summaries. A list of papers published in various journals and presented at different conferences, symposia etc. is given at the end. (M.G.B.)

  10. Synchrotron radiation generation: Technological considerations, feasibility of practical realization with available way in the Country

    International Nuclear Information System (INIS)

    Moreira, A.F.O.

    1983-01-01

    Technological aspects linked to the synchrotron radiation generation in laboratory are discussed. A feasibility study for the implantation of a machine for such a radiation in a laboratory in Brazil is also discussed. (L.C.) [pt

  11. Radiation protection dosimetry and calibrations

    International Nuclear Information System (INIS)

    Verhavere, Ph.

    2007-01-01

    At the SCK-CEN different specialised services are delivered for a whole range of external and internal customers in the radiation protection area. For the expertise group of radiation protection dosimetry and calibrations, these services are organized in four different laboratories: dosimetry, anthropogammametry, nuclear calibrations and non-nuclear calibrations. The services are given by a dedicated technical staff who has experience in the handling of routine and specialised cases. The scientific research that is performed by the expertise group makes sure that state-of-the-art techniques are being used, and that constant improvements and developments are implemented. Quality Assurance is an important aspect for the different services, and accreditation according national and international standards is achieved for all laboratories

  12. Low-level radiation risks in people

    International Nuclear Information System (INIS)

    Goloman, M.; Filjushkin, V. lgor

    1993-01-01

    Using the limited human data plus the relationships derived from the laboratory, a leukemia risk model has been developed as well as a suggested model for other cancers in people exposed to low levels of radiation. Theoretical experimental and epidemiological evidence will be presented in an integrated stochastic model for projection of radiation-induced cancer risks

  13. Management of radiation injuries

    International Nuclear Information System (INIS)

    Roberto, Maria A.

    2003-01-01

    Injuries by exposure to ionizing radiation can be due to the detonation of a nuclear device in a military conflict, or it can occur following a large industrial accident (e.g. Chernobyl), or it can be the result of therapy (e.g. in a laboratory, in the case of cancer or other clinical situations). The severity of biological tissues damage depends on the energy deposited. The skin and subcutaneous tissue alone damaged may be related with an exposure to low energy radiation. In case of an exposure to high energy radiation the deeper structures will be involved. The treatment of the clinical situation after radiation requires special facilities (burn intensive care unit) and a massive support from a dedicated team. (author)

  14. The MCART radiation physics core: the quest for radiation dosimetry standardization.

    Science.gov (United States)

    Kazi, Abdul M; MacVittie, Thomas J; Lasio, Giovanni; Lu, Wei; Prado, Karl L

    2014-01-01

    Dose-related radiobiological research results can only be compared meaningfully when radiation dosimetry is standardized. To this purpose, the National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Medical Countermeasures Against Radiological Threats (MCART) consortium recently created a Radiation Physics Core (RPC) as an entity to assume responsibility of standardizing radiation dosimetry practices among its member laboratories. The animal research activities in these laboratories use a variety of ionizing photon beams from several irradiators such as 250-320 kVp x-ray generators, Cs irradiators, Co teletherapy machines, and medical linear accelerators (LINACs). In addition to this variety of sources, these centers use a range of irradiation techniques and make use of different dose calculation schemes to conduct their experiments. An extremely important objective in these research activities is to obtain a Dose Response Relationship (DRR) appropriate to their respective organ-specific models of acute and delayed radiation effects. A clear and unambiguous definition of the DRR is essential for the development of medical countermeasures. It is imperative that these DRRs are transparent between centers. The MCART RPC has initiated the establishment of standard dosimetry practices among member centers and is introducing a Remote Dosimetry Monitoring Service (RDMS) to ascertain ongoing quality assurance. This paper will describe the initial activities of the MCART RPC toward implementing these standardization goals. It is appropriate to report a summary of initial activities with the intent of reporting the full implementation at a later date.

  15. Infrared radiation models for atmospheric methane

    Science.gov (United States)

    Cess, R. D.; Kratz, D. P.; Caldwell, J.; Kim, S. J.

    1986-01-01

    Mutually consistent line-by-line, narrow-band and broad-band infrared radiation models are presented for methane, a potentially important anthropogenic trace gas within the atmosphere. Comparisons of the modeled band absorptances with existing laboratory data produce the best agreement when, within the band models, spurious band intensities are used which are consistent with the respective laboratory data sets, but which are not consistent with current knowledge concerning the intensity of the infrared fundamental band of methane. This emphasizes the need for improved laboratory band absorptance measurements. Since, when applied to atmospheric radiation calculations, the line-by-line model does not require the use of scaling approximations, the mutual consistency of the band models provides a means of appraising the accuracy of scaling procedures. It is shown that Curtis-Godson narrow-band and Chan-Tien broad-band scaling provide accurate means of accounting for atmospheric temperature and pressure variations.

  16. Hanford Laboratories Operation monthly activities report, June 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-07-16

    This is the monthly report for the Hanford Laboratories Operation June 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  17. Hanford Laboratories Operation monthly activities report, July 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-08-15

    This is the monthly report for the Hanford Laboratories Operation July 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  18. Hanford Laboratories Operation monthly activities report, October 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-11-15

    This is the monthly report for the Hanford Laboratories Operation October 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  19. Hanford Laboratories Operation monthly activities report, August 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-09-14

    This is the monthly report for the Hanford Laboratories Operation August 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  20. Hanford Laboratories Operation monthly activities report, March 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-04-16

    This is the monthly report for the Hanford Laboratories Operation March 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  1. Hanford Laboratories Operation monthly activities report, October 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-11-15

    This is the monthly report for the Hanford Laboratories Operation October 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  2. Hanford Laboratories Operation monthly activities report, August 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-09-15

    This is the monthly report for the Hanford Laboratories Operation August 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  3. Developing a Radiation Protection Hub

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Nolan E [ORNL

    2017-01-01

    The WARP report issued by the NCRP study committee estimates that in ten years there will be a human capital crisis across the radiation safety community. The ability to respond to this shortage will be amplified by the fact that many radiation protection (health physics) academic programs will find it difficult to justify their continued existence since they are low volume programs, both in terms of enrollment and research funding, compared to the research funding return and visibility of more highly subscribed and highly funded academic disciplines. In addition, across the national laboratory complex, radiation protection research groups have been disbanded or dramatically reduced in size. The loss of both of these national resources is being accelerated by low and uncertain government funding priorities. The most effective solution to this problem would be to form a consortium that would bring together the radiation protection research, academic and training communities. The goal of such a consortium would be to engage in research, education and training of the next generation of radiation protection professionals. Furthermore the consortium could bring together the strengths of different universities, national laboratory programs and other entities in a strategic manner to accomplish a multifaceted research, educational and training agenda. This vision would forge a working and funded relationship between major research universities, national labs, four-year degree institutes, technical colleges and other partners.

  4. Twenty years of an international nuclear laboratory

    International Nuclear Information System (INIS)

    Suschny, O.

    1982-01-01

    The laboratories of the International Atomic Energy Agency were started in 1959 with a physics laboratory, a chemistry laboratory and an electronics workshop. Early work centred on absolute radionuclide calibrations and on assessments of the consequences of radioactive fallout from atomic weapons testing on the health of the people in Member States. Subsequently, work was started on the use of radioactive and stable isotopes in agriculture, in hydrology, in medical applications, in pest and insect control and with the entry into force of the Nuclear Non-Proliferation Treaty a Safeguard Analytical Laboratory was established to provide support for the Agency's safeguards inspection responsibilities. Together with WHO a network of 43 Secondary Standard Dosimetry Laboratories were set up in Member States to improve dosimetric accuracy in medicine and radiation protection worldwide. Throughout their history, the laboratories of the IAEA have lent great importance on their training programmes that have enabled many workers in nuclear or nuclear related research to gain experience. This emphasis on training has been stressed particularly to benefit research workers from developing countries

  5. Preliminary laboratory studies of the optical scattering properties of the crystal clouds

    Directory of Open Access Journals (Sweden)

    C. Saunders

    Full Text Available Ice crystal clouds have an influence on the radiative budget of the earth; however, the exact size and nature of this influence has yet to be determined. A laboratory cloud chamber experiment has been set up to provide data on the optical scattering behaviour of ice crystals at a visible wavelength in order to gain information which can be used in climate models concerning the radiative characteristics of cirrus clouds. A PMS grey-scale probe is used to monitor simultaneously the cloud microphysical properties in order to correlate these closely with the observed radiative properties. Preliminary results show that ice crystals scatter considerably more at 90° than do water droplets, and that the halo effects are visible in a laboratory-generated cloud when the ice crystal concentration is sufficiently small to prevent masking from multiple scattering.

    Key words. Meteorology and atmosphere dynamics · Climatology · Radiative process · Atmospheric composition and structure · Cloud physics and chemistry

  6. Improvement of radiation protection conditions during radiodiagnostic investigations

    International Nuclear Information System (INIS)

    Ivanov, E.V.; Livshits, R.E.; Lev, M.Ya.; Zakharenko, Yu.S.; Kal'nitskij, S.A.; Nechiporuk, V.I.

    1978-01-01

    Thermoluminescence dosimeters were used to estimate individual doses of radiation received by personnel of radiodiagnostic laboratories. The experiment, which lasted 3 months, showed that although the average levels of radiation did not exceed the permissible values, in some cases the personnel could receive an annual dose close to the maximum permissible one. A number of arrangements to improve radiation safety were proposed

  7. Dose measurements in laboratory of Physics department, University of Khartoum

    International Nuclear Information System (INIS)

    Hamid, Maria Mohammed

    1999-05-01

    Personal monitoring in University of Khartoum is being conducted using thermoluminescent dosimetry. The purpose of the study is to measure the dose of radiation in laboratory of Physics in physics department. TL phosphors LiF: Mg, Ti (card) and LiF Mg, Cu, P (GR-200) and mini-rad dosimeter are used to measure the dose in laboratory. The total dose for students form the laboratory bu using card, GR-200 and mini-rad dosimeter was found to be 2.2μ sv/year. 2.5 μ sv/year and 2.6 μ sv respectively, and for the teacher about 4.0 μ sv/year, 5.8 μ sv/year and 13.6 μ sv/year respectively, and for the dose near junk room about 3.9 μ sv/year, 2.9 μ sv/year and 2.8 μ sv/year by using card, GR-200 and mini-rad dosimeter respectively. There is just a background radiation in the main library and the applied nuclear.(Author)

  8. Radiation epidemiology

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Lyman, J.T.; Alpen, E.L.

    1983-01-01

    The effect of latency periods on cancer risk estimation is under study in our laboratory. Insofar as cancer incidences and radiation doses are concerned, effort is made to ascertain these with the greatest reliability, although problems arise, particularly in attempts to reconstruct the events of exposure many years prevously. The matter of the long latent periods begs the important issue of how to project into the future the risk of cancer induced in individuals exposed at the present time, or depriving a projection model appropriate for predicting how induced cancers will express themselves in time following exposure. Two risk-projection models which are generally used by radiation epidemiologists are discussed

  9. Current worldwide nuclear cardiology practices and radiation exposure: results from the 65 country IAEA Nuclear Cardiology Protocols Cross-Sectional Study (INCAPS)

    Science.gov (United States)

    Einstein, Andrew J.; Pascual, Thomas N. B.; Mercuri, Mathew; Karthikeyan, Ganesan; Vitola, João V.; Mahmarian, John J.; Better, Nathan; Bouyoucef, Salah E.; Hee-Seung Bom, Henry; Lele, Vikram; Magboo, V. Peter C.; Alexánderson, Erick; Allam, Adel H.; Al-Mallah, Mouaz H.; Flotats, Albert; Jerome, Scott; Kaufmann, Philipp A.; Luxenburg, Osnat; Shaw, Leslee J.; Underwood, S. Richard; Rehani, Madan M.; Kashyap, Ravi; Paez, Diana; Dondi, Maurizio

    2015-01-01

    Aims To characterize patient radiation doses from nuclear myocardial perfusion imaging (MPI) and the use of radiation-optimizing ‘best practices’ worldwide, and to evaluate the relationship between laboratory use of best practices and patient radiation dose. Methods and results We conducted an observational cross-sectional study of protocols used for all 7911 MPI studies performed in 308 nuclear cardiology laboratories in 65 countries for a single week in March–April 2013. Eight ‘best practices’ relating to radiation exposure were identified a priori by an expert committee, and a radiation-related quality index (QI) devised indicating the number of best practices used by a laboratory. Patient radiation effective dose (ED) ranged between 0.8 and 35.6 mSv (median 10.0 mSv). Average laboratory ED ranged from 2.2 to 24.4 mSv (median 10.4 mSv); only 91 (30%) laboratories achieved the median ED ≤ 9 mSv recommended by guidelines. Laboratory QIs ranged from 2 to 8 (median 5). Both ED and QI differed significantly between laboratories, countries, and world regions. The lowest median ED (8.0 mSv), in Europe, coincided with high best-practice adherence (mean laboratory QI 6.2). The highest doses (median 12.1 mSv) and low QI (4.9) occurred in Latin America. In hierarchical regression modelling, patients undergoing MPI at laboratories following more ‘best practices’ had lower EDs. Conclusion Marked worldwide variation exists in radiation safety practices pertaining to MPI, with targeted EDs currently achieved in a minority of laboratories. The significant relationship between best-practice implementation and lower doses indicates numerous opportunities to reduce radiation exposure from MPI globally. PMID:25898845

  10. Radiation environment in space

    International Nuclear Information System (INIS)

    Goka, Tateo; Koga, Kiyokazu; Matsumoto, Haruhisa; Komiyama, Tatsuo; Yasuda, Hiroshi

    2011-01-01

    Japanese Experiment Module (Kibo) had been build into the International Space Station (ISS), which is a multipurpose manned facility and laboratory and is operated in orbit at about 400 km in altitude. Two Japanese astronauts stayed in the ISS for long time (4.5 and 5.5 months) for the first time. Space radiation exposure is one of the biggest safety issues for astronauts to stay for such a long duration in space. This special paper is presenting commentary on space radiation environment in ISS, neutrons measurements and light particles (protons and electrons) measurements, the instruments, radiation exposure management for Japanese astronauts and some comments in view of health physics. (author)

  11. Intercomparisons in the radiation monitoring network of the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Tuckova, S; Malatova, I [National Radiation Protection Inst., Prague (Czech Republic); Drabova, D [State Office for Nuclear Safety, Prague (Czech Republic)

    1996-12-31

    In Czech Republic, altogether 11 laboratories, equipped by semiconductor gamma spectrometry supply regularly to the Centre of Radiation Monitoring Network the measured data about the radionuclide activity concentration in different environmental samples, participating thus in monitoring of radiation situation in the country. The Center of Radiation Monitoring Network of Czech Republic periodically organizes through its reference laboratories interlaboratory comparison tests ensuring thus quality of the measurements within the radiation monitoring network. A ring intercomparison test was organized in 1994. The piece of steel rather highly contaminated by {sup 60}Co was used. In the intercomparison test 1994-1995 of pulverized concrete breeze-block containing fly ash with natural radionuclides were used. Results of this measurement is given as an example (authors).

  12. Immediate Dose Assessment for Radiation Accident in Laboratory Containing Gamma Source and/or Neutron Source

    International Nuclear Information System (INIS)

    Ahmed, E.M.

    2012-01-01

    One of the most important safety requirements for any place containing radiation sources is an accurate and fast way to assess the dose rate in both normal and accidental case. In normal case, the source is completely protected inside its surrounded shields in case of non use. In some cases this source may stuck outside its shield. In this case the walls of the place act as a shield. Many studies were carried for obtaining the most appropriate materials that may be used as shielding depending on their efficiency and also their cost. As concrete- with different densities- is the most available constructive material, this study presented a theoretical model using MCNP-4B code, based on Monte Carlo method to estimate the dose rate distribution in a laboratory with concrete walls in case of source stuck accident. The study dealt with Cs-137 as gamma source and Am-Be-241 as neutron source. Two different densities of concrete and also different thicknesses of walls were studied. The used model was verified by comparing the results with a practical study concerning with the effect of adding carbon powder to the concrete. The results showed good agreement

  13. The Australian radiation protection and Nuclear Safety Agency

    International Nuclear Information System (INIS)

    Macnab, D.; Burn, P.; Rubendra, R.

    1998-01-01

    The author talks about the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), the new regulatory authority which will combine the existing resources of the Australian Radiation Laboratory and the Nuclear Safety Bureau. Most uses of radiation in Australia are regulated by State or Territory authorities, but there is presently no regulatory authority for Commonwealth uses of radiation. To provide for regulation of the radiation practices of the Commonwealth, the Australian Government has decided to establish the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) and a Bill has passed through the House of Representatives and will go to the Spring sitting of the Senate. The new agency will subsume the resources and functions of the Nuclear Safety Bureau and the Australian Radiation Laboratory, with additional functions including the regulation of radiation protection and nuclear safety of Commonwealth practices. Another function of ARPANSA will be the promotion of uniform regulatory requirements for radiation protection across Australia. This will be done by developing, in consultation with the States and Territories, radiation health policies and practices for adoption by the Commonwealth, States and Territories. ARPANSA will also provide research and services for radiation health, and in support of the regulatory and uniformity functions. The establishment of ARPANSA will ensure that the proposed replacement research reactor, the future low level radioactive waste repository and other Commonwealth nuclear facilities and radiation practices are subject to a regulatory regime which reflects the accumulated experience of the States and Territories and best international practice, and meets public expectations

  14. Radiation litigation: Quality assurance and the radiation analyst

    International Nuclear Information System (INIS)

    Jose, D.E.

    1986-01-01

    This paper touches on three areas of interest to the radiation analyst; the dose issue, legal persuasion, and future legal issues. While many laboratory scientists would think that the actual dose received by the plaintiff's relevant organ would be an easy issue to resolve, that has not been the experience to date. All radiation cases are assumed to be ultrahazardous activity cases, even though they involve a dose well below yearly natural background. At some point the law needs to realize that such low dose cases are a waste of scarce judicial resources. Lawyers and scientists need to communicate with each other and work together to help improve the way the legal system processes these important cases

  15. Radiation protection in the pharmaceutical-chemical industry

    International Nuclear Information System (INIS)

    Griesser, R.

    1992-01-01

    Some aspects of the use of ionizing radiation in research in the pharmaceutical and chemical industries will be discussed, the emphasis being placed on the handling of open radioactive materials in research laboratories. The compliance with official regulations and the preparation of company internal radiation protection regulations are described. 1 tab., 9 refs

  16. European Synchrotron Radiation Facility

    International Nuclear Information System (INIS)

    Buras, B.

    1985-01-01

    How a European Synchrotron Radiation Facility has developed into a detailed proposal recently accepted as the basis for construction of the facility at Grenoble is discussed. In November 1977, the General Assembly of the European Science Foundation (ESF) approved the report of the ESF working party on synchrotron radiation entitled Synchrotron Radiation - a Perspective View for Europe. This report contained as one of its principal recommendations that work should commence on a feasibility study for a European synchrotron radiation laboratory having a dedicated hard X-ray storage ring and appropriate advanced instrumentation. In order to prepare a feasibility study the European Science Foundation set up the Ad-hoc Committee on Synchrotron Radiation, which in turn formed two working groups: one for the machine and another for instrumentation. This feasibility study was completed in 1979 with the publication of the Blue Book describing in detail the so called 1979 European Synchrotron Radiation Facility. The heart of the facility was a 5 GeV electron storage ring and it was assumed that mainly the radiation from bending magnets will be used. The facility is described

  17. Application of radiation nowadays

    International Nuclear Information System (INIS)

    Habibah Adnan

    2009-01-01

    Despite of scientist know about radiation since 1890, but they have successfully developed many of application to help human life. Now, we can see that radiation was applied in medical, academic, industrial, and generating electricity. Besides that, radiations also have other applications that can help in agriculture activities, archaeology, legislation, geology, space exploration and many more. In hospital, doctor use nuclear medicine to trace, monitor and save almost thousands of people every year. According to research, 7 out of 10 American citizens had already use this services at least once in their life. Universities, college, secondary school, research center also use nuclear material in their laboratory. For example, through research, radiation can help in plants study, agriculture technique, soils study and others. Industrial sector are one sector that applied radiation widely. For example, radiation can kill almost 80 % bacteria or dangerous microorganism in food or export products. Nowadays, radiation cannot be curtailed although it can give more benefit more than risk. It depends on how we manage it.

  18. ISO radiation protection standards

    International Nuclear Information System (INIS)

    Becker, K.; West, N.

    1981-01-01

    After a brief description of the International Organization for Standardization (ISO) and its Technical Committee (TC) 85 ''Nuclear Energy'', the work of its Sub-Committee (SC) 2 ''Radiation Protection'' is described in some detail. Several international standards on subjects closely related to radiation protection have already been published, for example ISO-361 (Basic radiation protection symbol), ISO-1757 (Photographic dosimeters), ISO-1758 and 1759 (Direct and indirect-reading pocket exposure meters), ISO-2889 (Sampling of airborne radioactive materials), ISO-4037 (X and gamma reference radiations for calibration) and ISO-4071 (Testing of exposure meters and dosimeters). TC 85/SC 2 has currently eight active Working Groups (WG) dealing with 14 standards projects, mostly in advanced stages, in such fields as neutron and beta reference radiations, and X and gamma radiations of high and low dose-rates and high energies for calibration purposes, reference radiations for surface contamination apparatus, ejection systems for gamma radiography apparatus, industrial and laboratory irradiators, lead shielding units, protective clothing, thermoluminescence dosemeters, radioelement gauges, and surface contamination and decontamination. (author)

  19. Interventionalists’ perceptions on a culture of radiation protection

    Directory of Open Access Journals (Sweden)

    André Rose

    2018-03-01

    Full Text Available Background: Occupational exposure to ionising radiation poses potential health risks to radiation workers unless adequate protection is in place. The catheterisation laboratory is a highly contextualised workplace with a distinctive organisational and workplace culture.   Objective: This study was conducted to understand the culture of radiation protection (CRP.   Methods: This study was a qualitative study and data were collected through 30 in-depth and 6 group interviews with 54 purposively selected South African interventionalists (interventional radiologists and cardiologists. The participants included a diversity of interventionalists who varied in sex, geographic location and years of experience with fluoroscopy. The transcribed data were analysed thematically using a deductive and inductive approach.   Results: ‘Culture of radiation protection’ emerged as a complex theme that intersected with other themes: ‘knowledge and awareness of radiation’, ‘radiation safety practice’, ‘personal protective equipment (PPE utilisation’ and ‘education and training’.   Conclusion: Establishing and sustaining a CRP provides an opportunity to mitigate the potentially detrimental health effects of occupational radiation exposure. Education and training are pivotal to establishing a CRP. The time to establish a culture of radiation in the catheterisation laboratory is now.

  20. Pacific Northwest Laboratory monthly activities report, April 1965

    Energy Technology Data Exchange (ETDEWEB)

    1965-05-14

    This report discusses research at the Pacific Northwest Laboratory on topics relating to hanford production reactors. The topic deal with: reactor and material technology; reactor physics and instruments; chemistry; biology and medicine; applied mathematics; radiation protection; and test reactor and engineering services.

  1. Radiation transport: Progress report, July 1, 1987-September 30, 1987

    International Nuclear Information System (INIS)

    O'Dell, R.D.; Nagy, A.

    1988-05-01

    Research and development progress in radiation transport for the Los Alamos National Laboratory's Group S-6 for the fourth quarter of FY 87 is reported. Included are unclassified tasks in the areas of Deterministic Radiation Transport, Monte Carlo Radiation Transport, and Cross Sections and Physics. 23 refs., 9 figs

  2. A Comparative Study of Melanin Content and Skin Morphology for Three Commonly Used Laboratory Swine (Sus scrofa domestica)

    Science.gov (United States)

    2012-09-01

    Air Force Research Laboratory 711th Human Performance Wing Human Effectiveness Directorate Bioeffects Division Optical Radiation Bioeffects...Branch AFRL-RH-FS-TR-2013-0004 A Comparative Study of Melanin Content and Skin Morphology for Three Commonly Used Laboratory Swine (Sus scrofa...Jindra Human Effectiveness Directorate Directed Energy Bioeffects Division Optical Radiation Branch Robert W. Kornegay Rick Figueroa Human

  3. Compound Semiconductor Radiation Detectors

    CERN Document Server

    Owens, Alan

    2012-01-01

    Although elemental semiconductors such as silicon and germanium are standard for energy dispersive spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by their physical limitations, namely the need for ancillary cooling, their modest stopping powers, and radiation intolerance. Compound semiconductors, on the other hand, encompass such a wide range of physical and electronic properties that they have become viable competitors in a number of applications. Compound Semiconductor Radiation Detectors is a consolidated source of information on all aspects of the use of compound semiconductors for radiation detection and measurement. Serious Competitors to Germanium and Silicon Radiation Detectors Wide-gap compound semiconductors offer the ability to operate in a range of hostile thermal and radiation environments while still maintaining sub-keV spectral resolution at X-ray wavelengths. Narrow-gap materials offer the potential of exceeding the spectral resolutio...

  4. On the omnipresent background gamma radiation of the continuous spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Banjanac, R.; Maletić, D.; Joković, D., E-mail: yokovic@ipb.ac.rs; Veselinović, N.; Dragić, A.; Udovičić, V.; Aničin, I.

    2014-05-01

    The background spectrum of a germanium detector, shielded from the radiations arriving from the lower and open for the radiations arriving from the upper hemisphere, is studied by means of absorption measurements, both in a ground level and in an underground laboratory. The low-energy continuous portion of this background spectrum that peaks at around 100 keV, which is its most intense component, is found to be of very similar shape at the two locations. It is established that it is mostly due to the radiations of the real continuous spectrum, which is quite similar to the instrumental one. The intensity of this radiation is in our cases estimated to about 8000 photons/(m{sup 2}s·2π·srad) in the ground level laboratory, and to about 5000 photons/(m{sup 2}s·2π·srad) in the underground laboratory, at the depth of 25 m.w.e. Simulations by GEANT4 and CORSIKA demonstrate that this radiation is predominantly of terrestrial origin, due to environmental gamma radiations scattered off the materials that surround the detector (the “skyshine radiation”), and to a far less extent to cosmic rays of degraded energy. - Highlights: • We studied the low-energy part of continuous background spectra of germanium detectors. • The study was performed at the ground level and at the shallow underground sites. • The instrumental spectrum is due to radiations of the similar continuous spectrum. • The low-energy radiation is of both terrestrial and cosmic-ray origin. • In our study, we find that this radiation is of predominantly terrestrial origin.

  5. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1980

    International Nuclear Information System (INIS)

    Schleimer, G.E.

    1981-04-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data on air and water sampling and continuous radiation monitoring for 1980 are presented, and general trends are discussed

  6. Transition radiation electron beam diagnostic study at ATF

    International Nuclear Information System (INIS)

    Qiu, X.Z.; Wang, X.J.; Batchelor, K.; Ben-Zvi, I.

    1995-01-01

    Recently we have started a program to develop transition radiation based electron beam diagnostics at the Accelerator Test Facility at Brookhaven National Laboratory. In this paper, we will discuss a technique to estimate the lower limit in electron beam divergence measurement with single foil transition radiation and two-foil transition radiation interferometer. Preliminary experimental data from 4.5 MeV electron beam will be presented

  7. Microbiological control of a gamma-irradiated feed for laboratory animals

    International Nuclear Information System (INIS)

    Fernandez, M.V.G. de

    1979-01-01

    A special feed for laboratory animals was prepared, that meets or surpasses the FAO requirements. Experiments were undertaken to determine the γ-radiation dose necessary to sterilize the feed, to free it from enterobacteria which grow abundantly in the rich medium and cause digestive disorders in the laboratory animals. Methods of identifying the various bacteria and fungi are given. The results are tabulated. (U.K.)

  8. Building Connecticut's clinical biodosimetry laboratory surge capacity to mitigate the health consequences of radiological and nuclear disasters: A collaborative approach between the state biodosimetry laboratory and Connecticut's medical infrastructure

    International Nuclear Information System (INIS)

    Albanese, Joseph; Martens, Kelly; Arnold, Jeffrey L.; Kelley, Katherine; Kristie, Virginia; Forte, Elaine; Schneider, Mark; Dainiak, Nicholas

    2007-01-01

    Biodosimetry, based on the analysis of dicentric chromosomes in circulating mononuclear cells, is considered the 'gold standard' for estimating radiation dose and is used to make informed decisions regarding the medical management of irradiated persons. This paper describes the development of biodosimetry laboratory surge capacity for the health consequences of radiological and nuclear disasters in Connecticut, including: (1) establishment of the Biodosimetry Laboratory for the timely assessment of radiation dosage in biodosimetry specimens; (2) identification of clinical laboratories qualified and willing to process biodosimetry specimens from a large number of victims; (3) training of clinical laboratorians in initial biodosimetry specimen processing; and (4) conducting a functional drill that evaluated the effectiveness of these elements. Descriptive information was obtained from: (1) personal observations; (2) a needs assessment of clinical laboratories in Connecticut; (3) records from a training program of clinical laboratorians in biodosimetry specimen processing that was developed and provided by the Yale New Haven Center for Emergency Preparedness and Disaster Response; and (4) records from a statewide functional drill in biodosimetry specimen processing that was developed and conducted by the State of Connecticut Biodosimetry Laboratory. A needs assessment of clinical laboratories in Connecticut identified 30 of 32 clinical laboratories qualified and willing to perform initial biodosimetry specimen processing. Currently, 79 clinical laboratorians in 19 of these qualified clinical laboratories have been trained in biodosimetry specimen processing. A functional exercise was conducted involving 37 of these trained clinical laboratorians in 18 qualified laboratories as well as the Biodosimetry Laboratory. The average turnaround time for biodosimetry specimen processing in this drill was 199 min. Exercise participants provided feedback which will be used to

  9. Evaluation of postulate events in laboratory irradiators

    International Nuclear Information System (INIS)

    Domenech Nieves, Haydee; Morales Monzon, Jose A.; Cardenas Leyva, Gerardo; Callis Fernandez, Ernesto

    1996-01-01

    In the present work are used the methods of logic-master graphs and failure trees for the evaluation of the irradiator OB6 of the Secondary Laboratory of Dosimetric Calibration of the Center for Hygiene and radiation Protection and the gamma cell 500 of the National Center of Agricultural Safety

  10. Personal radiation monitoring and assessment of doses received by radiation workers (1991)

    International Nuclear Information System (INIS)

    Morris, N.D.

    1992-06-01

    The Australian Radiation Laboratory has operated a Personal Radiation Monitoring Service since the early 1930's so that people working with radiation can determine the radiation doses that they receive due to their occupation. Since late 1986, all persons monitored by the Service have been registered on a data base which maintains records of the doses received by each individual wearer. Ultimately, this data base will become a National Register of the doses received within Australia. At present, the Service regularly monitors approximately 20,000 persons, which is roughly 70 percent of those monitored in Australia, and maintains dose histories of over 35,000 people. The skin dose for occupationally exposed workers can be measured by using one of the four types of monitor issued by the Service: 1. Thermoluminescent Dosemeter (TLD monitor) 2. Finger TLD 3. Neutron Monitor 4. Special TLD. The technical description of the monitors is provided along with the method for calculating the radiation dose. 5 refs., 7 tabs., 4 figs

  11. Radiation hygiene problems of radiopharmaceutical preparation at nuclear medicine units

    International Nuclear Information System (INIS)

    Pekarek, J.; Kukacka, R.

    1977-01-01

    The problems of magistral radiopharmaceuticals preparation are indicated and the layout of a unit for the magistral preparation of radiopharmaceuticals is described. The results are briefly reported of a study of radiation load of laboratory personnel preparing radiopharmaceuticals as against doctors actually applying them. It was found that the exposure of hands to ionizing radiation represents the highest hazard for the laboratory personnel. The most important radiation protection principles are pointed out, such as the use of protective clothing, regular preventive medical examinations, appropriately shielded radionuclides and radionuclide generators to be supplied by manufacturers, and a more frequent rotation of personnel working with active and nonactive preparations. (L.O.)

  12. Experience of TLD personnel monitoring laboratory

    International Nuclear Information System (INIS)

    Jakhete, Prashant

    2002-01-01

    Full text: Renentech Laboratories is the first Private Enterprise in India to have been chosen to provide Personnel radiation monitoring services to radiation workers at different parts of the country. Since 1992 the Company has been manufacturing TLD phosphor powder of requisite quality and from 1995 commenced the production of TLD cards for radiation monitoring. After getting the necessary approval from the competent authorities in the country, the company undertook a rigorous quality assurance programme and received the accreditation in 1999 to carry out the personnel monitoring of radiation. Since then the trained staff of the Company is covering 1200 institutions in 16 states where radiation is being used. This translates to processing of 60,000 Till cards annually, the maximum limit permitted by BARC. Processing of exposure data is done strictly according well-laid guidelines. Any cases of overexposure are immediately referred to Calibration and Dose Record Section of BARC to meet the regulatory requirements. Necessary procedural guidelines are followed to handle such cases. In this lecture, learning, operation and implementation experience of a typical Private Company in a task, which, hitherto had been regarded as exclusive responsibility of state owned institution, is enumerated

  13. A new nuclear materials laboratory at Queen's University

    Energy Technology Data Exchange (ETDEWEB)

    Holt, R.A.; Daymond, M.R., E-mail: holt@queensu.ca, E-mail: daymond@queensu.ca [Queen' s University, Department of Mechanical and Materials Engineering, Kingston, ON (Canada)

    2015-07-01

    The Reactor Materials Testing Laboratory (RMTL) at Queen's University and the results of commissioning tests are described. RMTL uses energetic protons (up to 8MeV) to simulate fast neutron damage in materials for reactor components. The laboratory is also capable of He implantation (up to 12 MeV) to simulate the effects of transmutation He in reactor components. The $17.5M laboratory comprises a new building, a 4MV tandem accelerator, two electron microscopes, mechanical testing and specimen preparation equipment, and a radiation detection laboratory. RMTL focusses on studying dynamic effects of irradiation (irradiation creep, irradiation growth, irradiation induced swelling, fatigue under irradiation) in-situ. (author)

  14. Radiation safety

    International Nuclear Information System (INIS)

    Auxier, J.A.

    1977-01-01

    Data available on the biological effects of radiation on man are reviewed, with emphasis on dose response to low LET and high LET radiation sources, and the effects of dose rate. Existing guides for radiation protection were formulated largely on the basis of tumor induction in the bone of radium dial painters, but the ICRP/NCRP annual dose guides of 5 rem/yr are of the same general magnitude as the doses received in several parts of the world from the natural radiation environment. Because of the greater sensitivity of rapidly dividing cells and the assumption that radiation occupations would not begin before the age of eighteen, maximum exposure levels were set as 5 (N-18) rem/yr, where N is the exposed worker's age in years. However, in the case of the natural radiation environment, exposure commences, in a sense, with the exposure of the ovum of the individual's mother; and the ovum is formed during the fetal development of the mother. In occupational exposures, the professional health physicist has always practiced the as low as practical philosophy, and exposures have generally averaged far below the guidelines. The average annual exposure of the radiation worker in modern plants and laboratories is approximately equal to the average natural radiation environment exposure rate and far lower than the natural radiation environment in many parts of the world. There are numerous complications and uncertainties in quantifying radiation effects on humans, however, the greatest is that due to having to extrapolate from high dose levels at which effects have been measured and quantified, to low levels at which most exposures occur but at which no effects have been observed

  15. Performance evaluation of the food and environmental monitoring radio-analytical laboratory in Ghana

    International Nuclear Information System (INIS)

    Agyeman, Lilian Ataa

    2016-06-01

    Since the establishment of the Radiation Protection Institute’s Food and Environmental Laboratory in 1988, there has never been any thorough evaluation of the activities of the facility to provide assurance of the quality of analytical results produced by the laboratory. The objective of this study, therefore, was to assess the performance level of the Food and Environmental monitoring laboratory with respect to the requirements for a standard analytical laboratory (IAEA, 1989) and ISO 17025. The study focused on the performance of the Gamma Spectrometry laboratory of the Radiation Protection Institute, Ghana Atomic Energy Commission which has been involved in monitoring of radionuclides in food and environmental samples. In doing that, data from 1988 to 2015 was reviewed to ascertain whether the Laboratory has being performing as required in providing quality results on food and environmental samples measured. Besides this data (records kept), the evaluation also covered some Technical Quality Control measures, such as Energy and Efficiency Calibration, that need to be put in place for such laboratories. The laboratory meets almost all conditions and equipment requirements of IAEA (1989), however the laboratory falls short of the management requirements of ISO 17025. Based on the results it was recommended, among others, that management of the laboratory should ensure there are procedures for how calibration and testing is performed for different types of equipment and also the competence of all who operate specific equipment, perform tests, evaluate results and sign test reports ensured. (au)

  16. Stanford Synchrotron Radiation Laboratory activity report for 1986

    Energy Technology Data Exchange (ETDEWEB)

    Cantwell, K. [ed.

    1987-12-31

    1986 was another year of major advances for SSRL as the ultimate capabilities of PEP as a synchrotron radiation source became more apparent and a second PEP beam line was initiated, while effective development and utilization of SPEAR proceeded. Given these various PEP developments, SSRL abandoned its plans for a separate diffraction limited ring, as they abandoned their plans for a 6--7 GeV ring of the APS type last year. It has become increasingly apparent that SSRL should concentrate on developing SPEAR and PEP as synchrotron radiation sources. Consequently, initial planning for a 3 GeV booster synchrotron injector for SPEAR was performed in 1986, with a proposal to the Department of Energy resulting. As described in Chapter 2, the New Rings Group and the Machine Physics Group were combined into one Accelerator Physics Group. This group is focusing mainly on the improvement of SPEAR`s operating conditions and on planning for the conversion of PEP into a fourth generation x-ray source. Considerable emphasis is also being given to the training of accelerator physics graduate students. At the same time, several improvements of SSRL`s existing facilities were made. These are described in Chapter 3. Chapter 4 describes new SSRL beam lines being commissioned. Chapter 5 discusses SSRL`s present construction projects. Chapter 6 discusses a number of projects presently underway in the engineering division. Chapter 7 describes SSRL`s advisory panels while Chapter 8 discusses SSRL`s overall organization. Chapter 9 describes the experimental progress reports.

  17. Environmental Measurements Laboratory (EML) procedures manual

    International Nuclear Information System (INIS)

    Chieco, N.A.; Bogen, D.C.; Knutson, E.O.

    1990-11-01

    Volume 1 of this manual documents the procedures and existing technology that are currently used by the Environmental Measurements Laboratory. A section devoted to quality assurance has been included. These procedures have been updated and revised and new procedures have been added. They include: sampling; radiation measurements; analytical chemistry; radionuclide data; special facilities; and specifications. 228 refs., 62 figs., 37 tabs. (FL)

  18. Overview. Department of Environmental and Radiation Transport Physics. Section 6

    Energy Technology Data Exchange (ETDEWEB)

    Loskiewicz, J. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    Research activities in the Department of Environmental and Radiation Transport Physics are carried out by three Laboratories: Laboratory of Environmental Physics, Laboratory of Neutron Transport Physics and Laboratory of Physics and Modeling of Radiation Transport. The researches provided in 1994 cover: tracer transport and flows in porous media, studies on pollution in atmospheric air, physics of molecular phenomena in chromatographic detectors, studies on neutron transport in heterogenous media, studies on evaluation of neutron cross-section in the thermal region, studies on theory and utilization of neural network in data evaluation, numerical modelling of particle cascades for particle accelerator shielding purpose. In this section the description of mentioned activities as well as the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants is also given.

  19. Overview. Department of Environmental and Radiation Transport Physics. Section 6

    Energy Technology Data Exchange (ETDEWEB)

    Loskiewicz, J [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    Research activities in the Department of Environmental and Radiation Transport Physics are carried out by three Laboratories: Laboratory of Environmental Physics, Laboratory of Neutron Transport Physics and Laboratory of Physics and Modeling of Radiation Transport. The researches provided in 1994 cover: tracer transport and flows in porous media, studies on pollution in atmospheric air, physics of molecular phenomena in chromatographic detectors, studies on neutron transport in heterogenous media, studies on evaluation of neutron cross-section in the thermal region, studies on theory and utilization of neural network in data evaluation, numerical modelling of particle cascades for particle accelerator shielding purpose. In this section the description of mentioned activities as well as the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants is also given.

  20. Preliminar plan of a machine for the synchrotron radiation production

    International Nuclear Information System (INIS)

    Moscati, G.; Takahashi, J.; Miyao, Y.

    1985-01-01

    A preliminar plan, with all the technical specifications, for the construction of a machine for the synchrotron radiation production to be done by the National Synchrotron Radiation Laboratory in Brazil is presented. (L.C.) [pt

  1. Atomic photoelectron-spectroscopy studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobrin, P.H.

    1983-02-01

    Photoelectron spectroscopy combined with tunable synchrotron radiation has been used to study the photoionization process in several atomic systems. The time structure of the synchrotron radiation source at the Stanford Synchrotron Radiation Laboratory (SSRL) was used to record time-of-flight (TOF) photoelectron spectra of gaseous Cd, Hg, Ne, Ar, Ba, and Mn. The use of two TOF analyzers made possible the measurement of photoelectron angular distributions as well as branching ratios and partial cross sections

  2. Some remarks on applied radiation chemistry

    International Nuclear Information System (INIS)

    Sakurada, I.

    1979-01-01

    Radiation induced polymerization and grafting are two important reactions in the processing. Numerous reports concerning these subjects have appeared in the literature. There are, however, still many problems which have been left unsolved or neglected. Several problems will be taken up in this paper and discussed on experiments carried out in Osaka Laboratory for Radiation Chemistry and Department of Polymer Chemistry of Kyoto University. (author)

  3. Occupational radiation exposure monitoring among radiation workers in Nepal

    International Nuclear Information System (INIS)

    Bhatt, Chhavi Raj; Shrestha, Shanta Lall; Khanal, Tara; Ween, Borgny

    2008-01-01

    Nepal was accepted as a member of the IAEA in 2007. Nepal is one of the world's least developed countries and is defined in Health Level IV. The population counted 26.4 millions in 2007. The health care sector increases with new hospitals and clinics, however, Nepal has no radiation protection authority or radiation protection regulation in the country until now. The radiation producing equipment in the health sector includes conventional X-ray and dental X-ray equipment, fluoroscopes, mammography, CT, catheterization laboratory equipment, nuclear medicine facilities, a few linear accelerators, Co 60 teletherapy and High Dose Rate brachytherapy sources. The situation regarding dosimetry service for radiation workers is unclear. A survey has been carried out to give an overview of the situation. The data collection of the survey was performed by phone call interviews with responsible staff at the different hospitals and clinics. Data about different occupationally exposed staff, use of personal radiation monitoring and type of dosimetry system were collected. In addition, it was asked if dosimetry reports were compiled in files or databases for further follow-up of staff, if needed. The survey shows that less of 25% of the procedures performed on the surveyed hospitals and clinics are performed by staff with personnel radiation monitoring. Radiation monitoring service for exposed staff is not compulsory or standardized, since there is no radiation protection authority. Nepal has taken a step forward regarding radiation protection, with the IAEA membership, although there are still major problems that have to be solved. An evaluation of the existing practice of staff dosimetry can be the first helpful step for further work in building a national radiation protection authority. (author)

  4. Uses of synchrotron radiation

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1982-01-01

    X-ray fluorescence has long been used as a technique for elemental analysis. X-ray fluorescence techniques have a number of features that make them attractive for application to biomedical samples. In the past few years synchrotron radiation x-ray sources have been developed and, because of their properties, their use can improve the sensitivity for trace element analysis by two to three orders of magnitude. Also, synchrotron radiation will make possible an x-ray microprobe with resolution in the micrometer range. The National Synchrotron Light Source (NSLS), a dedicated synchrotron radiation source recently built at Brookhaven National Laboratory, will have a facility for trace element analysis by x-ray fluorescence and will be available to all interested users

  5. Calibration services for medical applications of radiation

    Energy Technology Data Exchange (ETDEWEB)

    DeWerd, L.A.

    1993-12-31

    Calibration services for the medical community applications of radiation involve measuring radiation precisely and having traceability to the National Institute of Standards and Technology (NIST). Radiation therapy applications involve the use of ionization chambers and electrometers for external beams and well-type ionization chamber systems as well as radioactive sources for brachytherapy. Diagnostic x-ray applications involve ionization chamber systems and devices to measure other parameters of the x-ray machine, such as non-invasive kVp meters. Calibration laboratories have been established to provide radiation calibration services while maintaining traceability to NIST. New radiation applications of the medical community spur investigation to provide the future calibration needs.

  6. Calibration services for medical applications of radiation

    International Nuclear Information System (INIS)

    DeWerd, L.A.

    1993-01-01

    Calibration services for the medical community applications of radiation involve measuring radiation precisely and having traceability to the National Institute of Standards and Technology (NIST). Radiation therapy applications involve the use of ionization chambers and electrometers for external beams and well-type ionization chamber systems as well as radioactive sources for brachytherapy. Diagnostic x-ray applications involve ionization chamber systems and devices to measure other parameters of the x-ray machine, such as non-invasive kVp meters. Calibration laboratories have been established to provide radiation calibration services while maintaining traceability to NIST. New radiation applications of the medical community spur investigation to provide the future calibration needs

  7. Characterization of radiation qualities used in diagnostic X-ray

    International Nuclear Information System (INIS)

    Bero, M.; Zahili, M.; Al Ahmad, M.

    2013-12-01

    This study aims to adjust the radiation beams emitted from X-ray tubes installed at the National Radiation Metrology Laboratory in the field of diagnostic radiology (radiology and mammography) according to the IAEA protocol code number TRS 457, the second goal of this study is to establish various radiation qualities used fordiagnostic radiology applications: RQR, RQA and RQT and the radiation qualities related to mammography applications: RQA-M and RQR-M (author).

  8. Sister chromatid exchange analysis and chromosoma aberration studies in interventional cardiology laboratory workers. One year follow up study

    International Nuclear Information System (INIS)

    Erol, M.K.; Oztas, S.; Bozkurt, E.; Karakelleoglu, S.

    2002-01-01

    Invasive cardiology laboratory workers are occupationally exposed to chronic ionizing radiation. It is known that ionizing radiation has a damaging effect on chromosomes. In present study, we investigated the frequency of sister chromatid exchange (SCE) and chromosomal aberrations in 11 invasive cardiology laboratory workers and 11 healthy controls. After a vacation period, we took blood samples for chromosome analysis in months 0, 4, 8 and 12 (last two month period was the nonradiation time). The SCE frequencies did not change significantly after exposure to ionizing radiation in any worker. Our study has revealed that non-specific structural chromosome aberrations such as gaps, isogaps, acentric chromosomes, chromatids and chromosome breakage could be in the 4th and 8th months after ionizing radiation exposure in the metaphase plaques. All abnormal chromosomal effects had disappeared by the end of the two month non-exposure period in each worker. In conclusion, the results suggest that SCE frequencies are not significantly affected in invasive cardiology laboratory workers who are exposed occupationally to ionizing radiation, although some degree of reversible chromosomal aberrations did appear. (author)

  9. View of environmental radiation effects from the study of radiation biology in C. elegans

    International Nuclear Information System (INIS)

    Sakashita, Tetsuya

    2011-01-01

    Caenorhabditis (C.) elegans is a non-parasitic soil nematode and is well-known as a unique model organism, because of its complete cell-lineage, nervous network and genome sequences. Also, C. elegans can be easily manipulated in the laboratory. These advantages make C. elegans as a good in vivo model system in the field of radiation biology. Radiation effects in C. elegans have been studied for three decades. Here, I briefly review the current knowledge of the biological effects of ionizing irradiation in C. elegans with a scope of environmental radiation effects. Firstly, basic information of C. elegans as a model organism is described. Secondly, historical view is reported on the study of radiation biology in C. elegans. Thirdly, our research on learning behavior is presented. Finally, an opinion of the use of C. elegans for environmental radiation protection is referred. I believe that C. elegans may be a good promising in vivo model system in the field of environmental radiation biology. (author)

  10. Lawrence Livermore National Laboratory Environmental Report 2015

    International Nuclear Information System (INIS)

    Rosene, C. A.; Jones, H. E.

    2016-01-01

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2015 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites-the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, ''Environment, Safety and Health Reporting,'' and DOE Order 458.1, ''Radiation Protection of the Public and Environment.''

  11. Radioactive sources in chemical laboratories

    International Nuclear Information System (INIS)

    Janzekovic, H.; Krizman, M.

    2007-01-01

    Radioactive sources including all radioactive materials exceeding exemption levels have to be registered in national databases according to international standards based on the recommendations ICRP 60 and a proper licensing should take place as described for example in the 96/29/EURATOM. In spite of that, unregistered sources could be found, usually due to the fact that the owner is not aware of radiation characteristics of sources. The material inventories of chemical laboratories are typical and most frequent example where radioactive sources could be found. Five different types of sources could be identified. The most frequent type are chemicals, namely thorium and uranium compounds. They are used not due to their radioactivity but due to their chemical properties. As for all other sources a stringent control is necessary in order to assure their safe use. Around hundred of stored radioactive chemical items were found during inspections of such laboratories performed by the Slovenian Nuclear Safety Administration or qualified experts in a period December 2006 - July 2007. Users of such chemicals are usually not aware that thorium and uranium chemicals are radioactive and, as unsealed sources, they could be easily spilled out and produce contamination of persons, surfaces, equipment etc. The external exposure as well as the internal exposure including exposure due to inhalation could be present. No knowledge about special precautions is usually present in laboratories and leads to underestimating of a potential risk and unintentional exposure of the laboratory personnel, students etc. Due to the long decay times in decay series of Th -232, U-238 and U- 235 the materials are also radioactive today. Even more, in case of thorium chemicals the radioactivity increased substantially from the time of their production. The implementation of safety measures has been under way and includes a survey of the qualified experts, establishment of organizational structure in a

  12. The Advanced Light Source at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Robinson, A.L.; Perera, R.C.C.; Schlachter, A.S.

    1991-10-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL), scheduled to be operational in the spring of 1993 as a US Department of Energy national user facility, will be a next- generation source of soft x-ray and ultraviolet (XUV) synchrotron radiation. Undulators will provide the world's brightest synchrotron radiation at photon energies from below 10 eV to above 2 keV; wiggler and bend-magnet radiation will extend the spectral coverage with high fluxes above 10 keV. These capabilities will support an extensive research program in a broad spectrum of scientific and technological areas in which XUV radiation is used to study and manipulate matter in all its varied gaseous, liquid, and solid forms. The ALS will also serve those interested in developing the fabrication technology for micro- and nanostructures, as well as characterizing them

  13. Risk control in the laboratory

    International Nuclear Information System (INIS)

    Vermeeren, H.P.W.; Zwaard, A.W.

    1986-01-01

    This volume contains the knowledge which is needed for safely working in a laboratory. With the help of the contents it is possible to come, after an evaluation of the risks, to practical measures (risk control). Not only exposure to chemicals but also to other burdening factors (radiation, sound, radioactive materials, micro-organisms) are discussed. A general strategy for risk control forms the central point in this book. 51 refs.; 67 figs.; 29 tabs

  14. Radiation survey meters used for environmental monitoring

    International Nuclear Information System (INIS)

    Bjerke, H.; Sigurdsson, T.; Meier Pedersen, K.; Grindborg, J.-E.; Persson, L.; Siiskonen, T.; Hakanen, A.; Kosunen, A.

    2012-01-01

    The Nordic dosimetry group set up the GammaRate project to investigate how its expertise could be used to assure appropriate usage of survey meters in environmental monitoring. Considerable expertise in calibrating radiation instruments exists in the Nordic radiation protection authorities. The Swedish, Finnish, Danish and Norwegian authorities operate Secondary Standard Dosimetry Laboratories (SSDLs) that provide users with calibration traceable to internationally recognised primary standards. These authorities together with the Icelandic authorities have formally cooperated since 2002 in the field of radiation dosimetry. Dosimetry is the base for assesment of risk from ionising radiation and calibration of instruments is an imported part in dosimetry. The Nordic dosimetry group has been focused on cancer therapy. This work extends the cooperation to the dosimetry of radiation protection and environmental monitoring. This report contains the formal, theoretical and practical background for survey meter measurements. Nordic standards dosimetry laboratories have the capability to provide traceable calibration of instruments in various types of radiation. To verify and explore this further in radiation protection applications a set of survey instruments were sent between the five Nordic countries and each of the authority asked to provide a calibration coefficient for all instruments. The measurement results were within the stated uncertainties, except for some results from NRPA for the ionchamber based instrument. The comparison was shown to be a valuable tool to harmonize the calibration of radiation protection instruments in the Nordic countries. Dosimetry plays an important role in the emergency situations, and it is clear that better traceability and harmonised common guidelines will improve the emergency preparedness and health. (Author)

  15. Radiation survey meters used for environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bjerke, H. (ed.) (Norwegian Radiation Protection Authority, NRPA (Norway)); Sigurdsson, T. (Icelandic Radiation Safety Authority, Geislavarnir Rikisins, GR (IS)); Meier Pedersen, K. (National Board of Health, Statens Institut for Straalebeskyttelse (SIS) (Denmark)); Grindborg, J.-E.; Persson, L. (Swedish Radiation Safety Authority, Straalsaekerhetsmyndigheten (SSM) (Sweden)); Siiskonen, T.; Hakanen, A.; Kosunen, A. (Radiation and Nuclear Safety Authority, Saeteilyturvakeskus (STUK) (Finland))

    2012-01-15

    The Nordic dosimetry group set up the GammaRate project to investigate how its expertise could be used to assure appropriate usage of survey meters in environmental monitoring. Considerable expertise in calibrating radiation instruments exists in the Nordic radiation protection authorities. The Swedish, Finnish, Danish and Norwegian authorities operate Secondary Standard Dosimetry Laboratories (SSDLs) that provide users with calibration traceable to internationally recognised primary standards. These authorities together with the Icelandic authorities have formally cooperated since 2002 in the field of radiation dosimetry. Dosimetry is the base for assesment of risk from ionising radiation and calibration of instruments is an imported part in dosimetry. The Nordic dosimetry group has been focused on cancer therapy. This work extends the cooperation to the dosimetry of radiation protection and environmental monitoring. This report contains the formal, theoretical and practical background for survey meter measurements. Nordic standards dosimetry laboratories have the capability to provide traceable calibration of instruments in various types of radiation. To verify and explore this further in radiation protection applications a set of survey instruments were sent between the five Nordic countries and each of the authority asked to provide a calibration coefficient for all instruments. The measurement results were within the stated uncertainties, except for some results from NRPA for the ionchamber based instrument. The comparison was shown to be a valuable tool to harmonize the calibration of radiation protection instruments in the Nordic countries. Dosimetry plays an important role in the emergency situations, and it is clear that better traceability and harmonised common guidelines will improve the emergency preparedness and health. (Author)

  16. Radiation hazard control report

    International Nuclear Information System (INIS)

    Morishima, Hiroshige; Koga, Taeko; Hisanaga, Saemi; Miki, Ryota; Kawai, Hiroshi; Aoki, Yutaka; Sone, Koji; Okada, Hirokazu

    1990-01-01

    The report describes the radiation hazard control activities performed at the Atomic Energy Research Institute of Kinki University, Japan, during the one-year period from April 1989 to March 1990. Personal radiation hazard control is outlined first focusing on results of physical examination and data of personal exposure dose equivalent. Radiation control in laboratory is then described. Dose equivalent at various places is discussed on the basis of monthly total dose equivalent measured on film badges, measurements made by TLD, and observations made through a continuous radiations monitoring system. The concentration of radiations in air and water is discussed focusing on their measured concentrations in air at the air outlets of tracer/accelerator facilities, and radioactivity in waste water sampled in the reactor facilities and tracer/accelerator facilities. Another discussion is made on the surface contamination density over the floors, draft systems, sink surface, etc. Concerning outdoor radiation hazard control, furthermore, TLD measurements of environmental gamma-rays, data on total gamma-ray radioactivity in environmental samples, and analysis of gamma-ray emitting nuclides in environmental samples are described and discussed. (N.K.)

  17. Air kerma standardization for diagnostic radiology, and requirements proposal for calibration laboratories

    International Nuclear Information System (INIS)

    Ramos, Manoel Mattos Oliveira

    2009-01-01

    The demand for calibration services and quality control in diagnostic radiology has grown in the country since the publication of the governmental regulation 453, issued by the Ministry of Health in 1998. At that time, to produce results facing the new legislation, many laboratories used different standards and radiation qualities, some of which could be inadequate. The international standards neither supplied consistent radiation qualities and standardization for the different types of equipment available. This situation changed with the publication of the new edition of the IEC 61267 standard, published in 2005. A metrology network was created, but it is not yet accredited by the accreditation organism of the country, INMETRO. The objective of this work was to implement the standardization of the air kerma for the un attenuated qualities (RQR) of IEC 61267, and to develop a requirement proposal for instruments calibration laboratories. Results of interlaboratory comparisons demonstrate that the quantity is standardized and internationally traceable. A laboratory requirement proposal was finalized and it shall be submitted to INMETRO to be used as auxiliary normative document in laboratory accreditation. (author)

  18. Atomic spectroscopy and radiative processes

    CERN Document Server

    Landi Degl'Innocenti, Egidio

    2014-01-01

    This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications. Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.

  19. The irradiation as alternative treatment for laboratory wastes; A irradiacao como alternativa de tratamento para residuos de laboratorio

    Energy Technology Data Exchange (ETDEWEB)

    Borrely, Sueli Ivone; Romanelli, Maria Fernanda; Silva, Giovana Pasqualini da; Castro, Daniela Marques [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: sborrely@ipen.br

    2005-07-01

    The irradiation of effluents may be done by electron accelerator or gamma radiation source (cobalt-60). This technology has been developed as an alternative for several contaminants from different processes and sources. This paper shows the results of electron beam applied to liquid laboratories residues (effluents and standard solutions). Radiation doses were determined for the improvement of laboratories residues measured by detoxification of them. New technologies for residues treatment as well as decreasing contaminants generation is essential part of laboratories activities for environmental management for industry, universities and research institutions. (author)

  20. 15-year-activity of Electron Linear Accelerator Laboratory

    International Nuclear Information System (INIS)

    Karolczak, S.

    1999-01-01

    The purchase of the Russian Electron Linear Accelerator ELU-6E by Institute of Radiation Technique of Lodz Technical University in 1978 started the activity of the ELA Laboratory. The accelerator itself and many additional scientific equipment designed and built during past 15 years have became the basic investigation tool for the ITR now. The most important measuring systems based on electron beam as irradiation source are: pulse radiolysis system with detection in IR, UV and visible region of the spectra, radiation induced conductometry, Faraday chamber and computerized data acquisition and processing system