WorldWideScience

Sample records for radiation inactivation studies

  1. The radiation inactivation of glutamate and isocitrate dehydrogenases

    International Nuclear Information System (INIS)

    El Failat, R.R.A.

    1980-12-01

    The reaction of free radicals produced by ionizing radiation with the enzymes glutamate dehydrogenase (GDH) and NADP + -specific isocitrate dehydrogenase (ICDH) have been studied by steady-state and pulse radiolysis techniques. In de-aerated GDH solutions, hydroxyl radicals have been found to be the most efficient of the primary radicals generated from water in causing inactivation. The effect of reaction with the enzyme of selective free radicals (SCN) 2 - , (Br) 2 - and (I) 2 - on its activity has also been studied. In neutral solutions, the order of inactivating effectiveness is (I) 2 - > (Br) 2 - > (SCN) 2 - . In the case of the thiocyanate radical anion (SCN) 2 - , the inactivation efficiency is found to depend on KSCN concentration. The radiation inactivation of GDH at both neutral and alkaline pH is accompanied by the loss of sulphydryl groups. Pulse radiolysis was also used to determine the rate constants and the transient absorption spectra following the reaction of the free radicals with GDH. 60 Co-γ-radiolysis and pulse radiolysis were also used to study the effect of ionizing radiation on the activity of ICDH. The results obtained were similar to those of GDH. (author)

  2. Some factors affecting urokinase inactivation. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Hiroo; Iketa, Yoshito

    1985-10-01

    The enzymatic activity of urokinase adsorbed on various polymer surfaces was measured to study the interaction between protein and polymers. The polymer films on which urokinase was adsorbed were exposed to either a high temperature or ..gamma..-radiation. The thermal inactivation rates were higher on hydrophobic polymers such as poly(ethylene terephthalate), nylon 6, and poly(vinylidene fluoride) than hydrophilic polymers like cellulose and ethylene-vinyl alcohol copolymer, indicating their substantial dependence on the interfacial free energy between the polymer and water. A similar dependence was also seen for the ..gamma..-radiation inactivation. Urokinase adsorbed on the hydrophobic polymers lost more easily its enzymatic activity by exposure to ..gamma..-radiation. The interfacial free energy seems to be one of the driving forces to denaturate proteins on polymers.

  3. Inactivation and stability of viral diagnostic reagents treated by gamma radiation

    International Nuclear Information System (INIS)

    White, L.A.; Freeman, C.Y.; Hall, H.E.; Forrester, B.D.

    1990-01-01

    The objective of this study was to apply the pertinent findings from gamma inactivation of virus infectivity to the production of high quality diagnostic reagents. A Gammacell 220 was used to subject 38 viruses grown in either susceptible tissue cultures or embryonated chicken eggs to various doses of gamma radiation from a cobalt-60 source. The radiation required to reduce viral infectivity was 0.42 to 3.7 megarads (Mrad). The effect of gamma treatment on the antigenic reactivity of reagents for the complement fixation (CF), hemagglutination (HA) and neuraminadase assays was determined. Influenza antigens inactivated with 1.7 Mrad displayed comparable potency, sensitivity, specificity and stability to those inactivated by standard procedures with beta-propiolactone (BPL). Significant inactivation of influenza N1 and B neuraminidase occurred with >2.4 Mrad radiation at temperatures above 4 0 C. All 38 viruses were inactivated, and CF or HA antigens were prepared successfully. Antigenic potency remained stable with all antigens for 3 years and with 83% after 5 years storage. Influenza HA antigens evaluated after 9 years of storage demonstrated 86% stability. Gamma radiation is safer than chemical inactivation procedures and is a reliable and effective replacement for BPL in preparing diagnostic reagents. (author)

  4. Inactivation and stability of viral diagnostic reagents treated by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    White, L A; Freeman, C Y; Hall, H E; Forrester, B D [Department of Health and Human Services, Atlanta, GA (USA)

    1990-10-01

    The objective of this study was to apply the pertinent findings from gamma inactivation of virus infectivity to the production of high quality diagnostic reagents. A Gammacell 220 was used to subject 38 viruses grown in either susceptible tissue cultures or embryonated chicken eggs to various doses of gamma radiation from a cobalt-60 source. The radiation required to reduce viral infectivity was 0.42 to 3.7 megarads (Mrad). The effect of gamma treatment on the antigenic reactivity of reagents for the complement fixation (CF), hemagglutination (HA) and neuraminadase assays was determined. Influenza antigens inactivated with 1.7 Mrad displayed comparable potency, sensitivity, specificity and stability to those inactivated by standard procedures with beta-propiolactone (BPL). Significant inactivation of influenza N1 and B neuraminidase occurred with >2.4 Mrad radiation at temperatures above 4{sup 0}C. All 38 viruses were inactivated, and CF or HA antigens were prepared successfully. Antigenic potency remained stable with all antigens for 3 years and with 83% after 5 years storage. Influenza HA antigens evaluated after 9 years of storage demonstrated 86% stability. Gamma radiation is safer than chemical inactivation procedures and is a reliable and effective replacement for BPL in preparing diagnostic reagents. (author).

  5. Inactivation of bacteria in sewage sludge by gamma radiation

    International Nuclear Information System (INIS)

    Pandya, G.A.; Kapila, Smita; Kelkar, V.B.; Negi, Shobha; Modi, V.V.

    1987-01-01

    The survival of certain bacterial cultures suspended in sewage sludge and exposed to gamma-radiation was studied. The inactivation patterns of most of the organisms were significantly different when irradiation was performed using sewage samples collected in the summer and monsoon seasons. The summer sample collected from the anaerobic digester afforded significant protection to both Gram negative and Gram positive organisms. This was evident by the increase in dose required to bring about a 6 log cycle reduction in viable count of the bacterial cultures, when suspended in sewage samples instead of phosphate buffer. The observations made using monsoon digester samples were quite different. This sewage sludge greatly enhanced inactivation by gamma-radiation in most cases. The effects of certain chemicals on the inactivation patterns of two organisms - Salmonella typhi and Shigella flexneri - were examined. Arsenate, mercury and lead salts sensitised S. typhi, while barium acetate and sodium sulphide protected this culture against gamma-radiation. In the case of Sh. flexneri, barium acetate and iodacetamide proved to be radioprotectors. The effects of some chemicals on the inactivation pattern of Sh. flexneri cells irradiated in sludge are also discussed. (author)

  6. The inactivation of papain by high LET radiations

    International Nuclear Information System (INIS)

    Bisby, R.H.; Cundall, R.B.; Sims, H.E.; Burns, W.G.

    1984-01-01

    The effect of varying LET over a wide range (0.2-1570 eV/nm) on the radiation-induced inactivation of the enzyme papain in dilute aqueous solution has been investigated. Measurements of total, reparable and non-reparable inactivation G values in oxygen, nitrous oxide and argon saturated solutions have allowed the contributions to inactivation from radicals and hydrogen peroxide to be evaluated. At high LET the results demonstrate an increasing component due to reaction of the superoxide radical, formed from oxygen produced in the track as a primary radiolysis product. This effect was not observed in our previous study with ribonuclease due to the insensitivity of ribonuclease to inactivation by superoxide and hydrogen peroxide. The results obtained with papain clearly demonstrate a maximum in G(H 2 O 2 ) at an LET of equivalent to 140 eV/nm. Generation of O 2 within the track as a primary radiolysis product at high LET now appears to be confirmed as an important mechanism leading to reduction in the oxygen enhancement ratio for cellular systems exposed to high LET radiations (Baverstock and Burns 1981). (author)

  7. Functional size analysis of bioactive materials by radiation inactivation

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    1994-01-01

    When the research on various proteins including enzymes is carried out, first molecular weight is measured. The physical chemical methods used for measuring molecular weight cannot measure it in the state of actually acting in living bodies. Radiation inactivation method is the unique method which can measure the molecular weight of the active substances in living bodies. Paying attention to this point, recently it is attempted to measure the activity unit of enzymes, receptors and others, and to apply to the elucidation of their functions. In this report, the concept of the method of measuring molecular size based on radiation inactivation, the detailed experimental method and the points to which attention must be paid are described. Also its application to the elucidation of living body functions according to the example of the studies by the author is reported. The concept of the measurement of molecular weight by radiation inactivation is based on target theory. The preparation of samples, the effect of oxygen, radiation sources, dosimetry, irradiation temperature, internal standard process and so on are reported. The trend of the research is shown. (K.I.)

  8. Functional size of vacuolar H+ pumps: Estimates from radiation inactivation studies

    International Nuclear Information System (INIS)

    Sarafian, V.; Poole, R.J.

    1991-01-01

    The PPase and the ATPase from red beet (Beta vulgaris) vacuolar membranes were subjected to radiation inactivation by a 60 Co source in both the native tonoplast and detergent-solubilized states, in order to determine their target molecular sizes. Analysis of the residual phosphohydrolytic and proton transport activities, after exposure to varying doses of radiation, yielded exponential relationships between the activities and radiation doses. The deduced target molecular sizes for PPase activity in native and solubilized membranes were 125kD and 259kD respectively and 327kD for H + -transport. This suggests that the minimum number of subunits of 67kD for PPi hydrolysis is two in the native state and four after Triton X-100 solubilization. At least four subunits would be required for H + -translocation. Analysis of the ATPase inactivation patterns revealed target sizes of 384kD and 495kD for ATP hydrolysis in native and solubilized tonoplast respectively and 430kD for H + -transport. These results suggest that the minimum size for hydrolytic or transport functions is relatively constant for the ATPase

  9. Linear energy transfer (LET) effects in the radiation-induced inactivation of papain

    International Nuclear Information System (INIS)

    Bisby, R.H.; Cundall, R.B.; Sims, H.E.; Burns, W.G.

    1977-01-01

    The inactivation of dilute aqueous solutions of papain by radiations of varying linear energy transfer has been studied in N 2 , N 2 0 and O 2 -saturated solutions. The results obtained with low LET radiation are very similar to those previously reported by Lin et al (Radiation Res.;62:438(1975)). The additional data obtained at higher LET, when radical product yields are reduced and the yield of hydrogen peroxide is increased, show that the hydrogen atom is more important in the inactivation of papain than previously considered. (author)

  10. Bioburden assessment and gamma radiation inactivation patterns in parchment documents

    International Nuclear Information System (INIS)

    Nunes, Inês; Mesquita, Nuno; Cabo Verde, Sandra; Carolino, Maria Manuela; Portugal, António; Botelho, Maria Luísa

    2013-01-01

    Parchment documents are part of our cultural heritage and, as historical artifacts that they are, should be preserved. The aim of this study was to validate an appropriate methodology to characterize the bioburden of parchment documents, and to assess the growth and gamma radiation inactivation patterns of the microbiota present in that material. Another goal was to estimate the minimum gamma radiation dose (D min ) to be applied for the decontamination of parchment as an alternative treatment to the current toxic chemical and non-chemical decontamination methods. Two bioburden assessment methodologies were evaluated: the Swab Method (SM) and the Destructive Method (DM). The recovery efficiency of each method was estimated by artificial contamination, using a Cladosporium cladosporioides spore suspension. The parchment samples' microbiota was typified using morphological methods and the fungal isolates were identified by ITS-DNA sequencing. The inactivation pattern was assessed using the DM after exposure to different gamma radiation doses, and using C. cladosporioides as reference. Based on the applied methodology, parchment samples presented bioburden values lower than 5×10 3 CFU/cm 2 for total microbiota, and lower than 10 CFU/cm 2 for fungal propagules. The results suggest no evident inactivation trend for the natural parchment microbiota, especially regarding the fungal community. A minimum gamma radiation dose (D min ) of 5 kGy is proposed for the decontamination treatment of parchment. Determining the minimal decontamination dose in parchment is essential for a correct application of gamma radiation as an alternative decontamination treatment for this type of documents avoiding the toxicity and the degradation promoted by the traditional chemical and non-chemical treatments. - Highlights: • Characterization of the microbial population of parchment documents. • Study the inactivation pattern of parchment microbiota by gamma radiation. • Assessment of

  11. Radiation-induced inactivation of bovine liver catalase in nitrous oxide-saturated solutions

    International Nuclear Information System (INIS)

    Gebicka, L.; Metodiewa, D.

    1988-01-01

    Radiation-induced inactivation of catalase by . OH/H . radicals was studied. It was found that inactivation yield of catalase depended on the dose. Optical spectrum of irradiated catalase showed that no redox processes in active site of enzyme occurred as a result of . OH/H . interaction. (author) 19 refs.; 3 figs

  12. THE ANTIGENIC POTENCY OF EPIDEMIC INFLUENZA VIRUS FOLLOWING INACTIVATION BY ULTRAVIOLET RADIATION

    Science.gov (United States)

    Salk, Jonas E.; Lavin, G. I.; Francis, Thomas

    1940-01-01

    A study of the antigenic potency of influenza virus inactivated by ultraviolet radiation has been made. Virus so inactivated is still capable of functioning as an immunizing agent when given to mice by the intraperitoneal route. In high concentrations inactivated virus appears to be nearly as effective as active virus but when quantitative comparisons of the immunity induced by different dilutions are made, it is seen that a hundredfold loss in immunizing capacity occurs during inactivation. Virus in suspensions prepared from the lungs of infected mice is inactivated more rapidly than virus in tissue culture medium. A standard for the comparison of vaccines of epidemic influenza virus is proposed. PMID:19871057

  13. Radiation inactivation studies of renal brush border water and urea transport

    International Nuclear Information System (INIS)

    Verkman, A.S.; Dix, J.A.; Seifter, J.L.; Skorecki, K.L.; Jung, C.Y.; Ausiello, D.A.

    1985-01-01

    Radiation inactivation was used to determine the nature and molecular weight of water and urea transport pathways in brush border membrane vesicles (BBMV) isolated from rabbit renal cortex. BBMV were frozen to -50 degrees C, irradiated with 1.5 MeV electrons, thawed, and assayed for transport or enzyme activity. The freezing process had no effect on enzyme or transport kinetics. BBMV alkaline phosphatase activity gave linear ln(activity) vs. radiation dose plots with a target size of 68 +/- 3 kDa, similar to previously reported values. Water and solute transport were measured using the stopped-flow light-scattering technique. The rates of acetamide and osmotic water transport did not depend on radiation dose (0-7 Mrad), suggesting that transport of these substances does not require a protein carrier. In contrast, urea and thiourea transport gave linear ln(activity) vs. dose curves with a target size of 125-150 kDa; 400 mM urea inhibited thiourea flux by -50% at 0 and 4.7 Mrad, showing that radiation does not affect inhibitor binding to surviving transporters. These studies suggest that BBMV urea transport requires a membrane protein, whereas osmotic water transport does not

  14. Inactivation of B. Pumilus spores by combination hydrostatic pressure-radiation treatment of parenteral solutions

    International Nuclear Information System (INIS)

    Wills, P.A.

    1975-01-01

    Bacterial spores are inactivated by moderate hydrostatic pressures. The radiation dose required to sterilize radiation sensitive pharmaceuticals can be considerably reduced using a combination hydrostatic pressure-radiation treatment. This paper describes a combination pressure-radiation sterilization process using Bacillus pumilus spores suspended in water, 0.9% saline, and 5% dextrose solutions. The optimum temperatures for spore inactivation at 35 MPa and the degree of inactivation at 35, 70 and 105 MPa applied for times up to 100 min have been determined. Inactivation was greatest in saline and least in dextrose. Spores in dextrose were only slightly less radiation resistant than in saline or water. It was calculated that the radiation dose required for sterilization could be halved with appropriate compression treatment. Examples of combinations of pressure-radiation suitable for sterilization are given. One combination is compression at 105 MPa for 18 min for a dose of 1.25 Mrad. (author)

  15. Characterization of the functional domains of the natriuretic peptide receptor/guanylate cyclase by radiation inactivation

    International Nuclear Information System (INIS)

    Tremblay, J.; Huot, C.; Koch, C.; Potier, M.

    1991-01-01

    Radiation inactivation has been used to evaluate the molecular size of domains responsible for atrial natriuretic peptide (ANP)-binding and cyclase functions of the ANP receptor/guanylate cyclase. Two types of inactivation curves were observed for cyclase function in both adrenal cortex and aortic smooth muscle cells: (1) biphasic with enhanced guanylate cyclase activity after exposure to low radiation doses and (2) linear after preincubation of membrane proteins with 0.5 microM ANP or solubilization with Triton X-100. The existence of an inhibitory component was the simplest model that best explained the types of radiation curves obtained. Activation of guanylate cyclase by ANP or Triton X-100 could occur via the dissociation of this inhibitory component from the catalytic domain. On the other hand, the loss of ANP-binding activity was linear with increasing radiation exposures under basal, ANP treatment, and Triton X-100 solubilization conditions. Radiation inactivation sizes of about 30 kDa for cyclase function, 20 kDa for ANP-binding function, and 90 kDa for inhibitory function were calculated. These studies suggest that the ANP receptor/guanylate cyclase behaves as a multidomain protein. The results obtained by radiation inactivation of the various biological functions of this receptor are compatible with the hypothesis of an intramolecular inhibitory domain repressing the guanylate cyclase catalytic domain within its membrane environment

  16. Study on Efficacy of Gamma Radiation on the Inactivation of Highly Pathogenic Avian Influenza Virus H5N1 (Thai isolate) in Chicken Meat and Chicken Feces

    International Nuclear Information System (INIS)

    Pinyochon, Wasana; Piadang, Nattayana; Mulika, Ladda; Parchariyanon, Sujira; Vitittheeranon, Arag; Damrongwatapokin, Sudarat

    2006-09-01

    A study on the efficacy of gamma radiation on the inactivation of a highly pathogenic avian influenza virus H5N1 subtype, Thai isolate was carried out. The virus was in the form frozen infected allantoic fluid frozen chicken meat and frozen chicken feces. The result indicated that 9 kilo grey of gamma radiation could completely inactivated 106.0 EID50/ml of AIV infected allantoic fluid and 22 kiel grey and 15 kilo grey of gamma radiation completely inactivate 106.0 EID50/10/ grams of chicken meat and 106.0 EID50/5 grams of chicken feces respectively.

  17. Monitoring ultraviolet (UV) radiation inactivation of Cronobacter sakazakii in dry infant formula using Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Liu, Qian; Lu, Xiaonan; Swanson, Barry G; Rasco, Barbara A; Kang, Dong-Hyun

    2012-01-01

    Cronobacter sakazakii is an opportunistic pathogen associated with dry infant formula presenting a high risk to low birth weight neonates. The inactivation of C. sakazakii in dry infant formula by ultraviolet (UV) radiation alone and combined with hot water treatment at temperatures of 55, 60, and 65 °C were applied in this study. UV radiation with doses in a range from 12.1 ± 0.30 kJ/m² to 72.8 ± 1.83 kJ/m² at room temperature demonstrated significant inactivation of C. sakazakii in dry infant formula (P radiation combining 60 °C hot water treatment increased inactivation of C. sakazakii cells significantly (P radiation on C. sakazakii inactivation kinetics (D value) were not observed in infant formula reconstituted in 55 and 65 °C water (P > 0.05). The inactivation mechanism was investigated using vibrational spectroscopy. Infrared spectroscopy detected significant stretching mode changes of macromolecules on the basis of spectral features, such as DNA, proteins, and lipids. Minor changes on cell membrane composition of C. sakazakii under UV radiation could be accurately and correctly monitored by infrared spectroscopy coupled with 2nd derivative transformation and principal component analysis. © 2011 Institute of Food Technologists®

  18. Inactivation of rabies diagnostic reagents by gamma radiation

    International Nuclear Information System (INIS)

    Gamble, W.C.; Chappell, W.A.; George, E.H.

    1980-01-01

    Treatment of CVS-11 rabies adsorbing suspensions and street rabies infected mouse brains with gamma radiation resulted in inactivated reagents that are safer to distribute and use. These irradiated reagents were as sensitive and reactive as the nonirradiated control reagents

  19. Complicated biallelic inactivation of Pten in radiation-induced mouse thymic lymphomas

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Yu [Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inage-ku, Chiba 263-8522 (Japan); Experimental Radiobiology for Children' s Health Research Group, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Takabatake, Takashi; Kakinuma, Shizuko; Amasaki, Yoshiko; Nishimura, Mayumi; Imaoka, Tatsuhiko; Yamauchi, Kazumi; Shang, Yi [Experimental Radiobiology for Children' s Health Research Group, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Miyoshi-Imamura, Tomoko [Experimental Radiobiology for Children' s Health Research Group, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Genetic Counseling Program, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyou-ku, Tokyo 112-8610 (Japan); Nogawa, Hiroyuki [Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inage-ku, Chiba 263-8522 (Japan); Kobayashi, Yoshiro [Department of Biomolecular Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510 (Japan); Shimada, Yoshiya, E-mail: y_shimad@nirsgo.jp [Experimental Radiobiology for Children' s Health Research Group, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2010-04-01

    Inactivation of the phosphatase and tensin homolog gene (Pten) occurs via multiple tissue-dependent mechanisms including epigenetic silencing, point mutations, insertions, and deletions. Although frequent loss of heterozygosity around the Pten locus and plausible involvement of epigenetic silencing have been reported in radiation-induced thymic lymphomas, the proportion of lymphomas with inactivated Pten and the spectrum of causal aberrations have not been extensively characterized. Here, we assessed the mode of Pten inactivation by comprehensive analysis of the expression and alteration of Pten in 23 radiation-induced thymic lymphomas developed in B6C3F1 mice. We found no evidence for methylation-associated silencing of Pten; rather, complex structural abnormalities comprised of missense and nonsense mutations, 1- and 3-bp insertions, and focal deletions were identified in 8 of 23 lymphomas (35%). Sequencing of deletion breakpoints suggested that aberrant V(D)J recombination and microhomology-mediated rearrangement were responsible for the focal deletions. Seven of the 8 lymphomas had biallelic alterations, and 4 of them did not express Pten protein. These Pten aberrations coincided with downstream Akt phosphorylation. In conclusion, we demonstrate that Pten inactivation is frequently biallelic and is caused by a variety of structural abnormalities (rather than by epigenetic silencing) and is involved in radiation-induced lymphomagenesis.

  20. Protective effect by EDTA in radiation inactivation of enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Kumakura, M; Kaetsu, I

    1985-11-05

    Protective effect by EDTA in radiation inactivation of enzymes such as glucoamylase, cellulase, and urease was studied. A remarkable protective effect by EDTA was observed and had a maximum at certain EDTA concentration. The protective effect was compared with other protective agents in the irradiation of urease, in which the protective ability of EDTA was greater than those of sulfhydryl compounds such as cysteine. (author).

  1. Radiation inactivation of multimeric enzymes: application to subunit interactions of adenylate cyclase

    International Nuclear Information System (INIS)

    Verkman, A.S.; Skorecki, K.L.; Ausiello, D.A.

    1986-01-01

    Radiation inactivation has been applied extensively to determine the molecular weight of soluble enzyme and receptor systems from the slope of a linear ln (activity) vs. dose curve. Complex nonlinear inactivation curves are predicted for multimeric enzyme systems, composed of distinct subunits in equilibrium with multimeric complexes. For the system A1 + A2----A1A2, with an active A1A2 complex (associative model), the ln (activity) vs. dose curve is linear for high dissociation constant, K. If a monomer, A1, has all the enzyme activity (dissociative model), the ln (activity) vs. dose curve has an activation hump at low radiation dose if the inactive subunit, A2, has a higher molecular weight than A1 and has upward concavity when A2 is smaller than A1. In general, a radiation inactivation model for a multistep mechanism for enzyme activation fulfills the characteristics of an associative or dissociative model if the reaction step forming active enzyme is an associative or dissociative reaction. Target theory gives the molecular weight of the active enzyme subunit or complex from the limiting slope of the ln (activity) vs. dose curve at high radiation dose. If energy transfer occurs among subunits in the multimer, the ln (activity) vs. dose curve is linear for a single active component and is concave upward for two or more active components. The use of radiation inactivation as a method to determine enzyme size and multimeric subunit assembly is discussed with specific application to the hormone-sensitive adenylate cyclase system. It is shown that the complex inactivation curves presented in the accompanying paper can be used select the best mechanism out of a series of seven proposed mechanisms for the activation of adenylate cyclase by hormone

  2. Inactivation of human immunodeficiency virus (HIV) by ionizing radiation in body fluids and serological evidence

    International Nuclear Information System (INIS)

    Bigbee, P.D.; Sarin, P.S.; Humphreys, J.C.; Eubanks, W.G.; Sun, D.; Hocken, D.G.; Thornton, A.; Adams, D.E.; Simic, M.G.

    1989-01-01

    A method to use ionizing radiation to inactivate HIV (Human Immunodeficiency Virus) in human body fluids was studied in an effort to reduce the risk of accidental infection to forensic science laboratory workers. Experiments conducted indicate that an X-ray absorbed dose of 25 krad was required to completely inactivate HIV. This does not alter forensically important constituents such as enzymes and proteins in body fluids. This method of inactivation of HIV cannot be used on body fluids which will be subjected to deoxyribonucleic acid (DNA) typing

  3. Radiation inactivation of T7 phage

    International Nuclear Information System (INIS)

    Becker, D.; Redpath, J.L.; Grossweiner, L.I.

    1978-01-01

    The radiation inactivation of T7 phage by 25-MeV electron pulses has been measured in various media containing a wide concentration range of radical scavenging solutes and in the presence of protective and sensitizing agents. The dependence of sensitivity on pulse dose, from 1 mrad to 3.6 krad, is attributed to radical depletion via bimolecular processes. The survival data are analyzed by extending target theory to include diffusive reactions of primary and secondary radicals generated in the medium. It is concluded that OH radicals are the principal primary inactivating species and that secondary radicals from Br - , CNS - , uracil, glucose, ribose, sucrose, tyrosine, and histidine are lethal to some extent. In nutrient broth or 100 mM histidine, psoralen derivatives, Actinomycin D, and Mitomycin C are anoxic sensitizers. It is proposed that the psoralens promote the formation of non-strand break lesions as the sensitization mechanism. The target theory based on diffusional kinetics is applicable to other systems including single cells

  4. Radiation inactivation target size of rat adipocyte glucose transporters in the plasma membrane and intracellular pools

    International Nuclear Information System (INIS)

    Jacobs, D.B.; Berenski, C.J.; Spangler, R.A.; Jung, C.Y.

    1987-01-01

    The in situ assembly states of the glucose transport carrier protein in the plasma membrane and in the intracellular (microsomal) storage pool of rat adipocytes were assessed by studying radiation-induced inactivation of the D-glucose-sensitive cytochalasin B binding activities. High energy radiation inactivated the glucose-sensitive cytochalasin B binding of each of these membrane preparations by reducing the total number of the binding sites without affecting the dissociation constant. The reduction in total number of binding sites was analyzed as a function of radiation dose based on target theory, from which a radiation-sensitive mass (target size) was calculated. When the plasma membranes of insulin-treated adipocytes were used, a target size of approximately 58,000 daltons was obtained. For adipocyte microsomal membranes, we obtained target sizes of approximately 112,000 and 109,000 daltons prior to and after insulin treatment, respectively. In the case of microsomal membranes, however, inactivation data showed anomalously low radiation sensitivities at low radiation doses, which may be interpreted as indicating the presence of a radiation-sensitive inhibitor. These results suggest that the adipocyte glucose transporter occurs as a monomer in the plasma membrane while existing in the intracellular reserve pool either as a homodimer or as a stoichiometric complex with a protein of an approximately equal size

  5. Mechanisms of poliovirus inactivation by the direct and indirect effects of ionizing radiation

    International Nuclear Information System (INIS)

    Ward, R.L.

    1980-01-01

    This study was designed to measure the effects of ionizing radiation on poliovirus particles when given under conditions where either direct (in broth) or indirect (in water) effects were predominant. Under direct conditions, inactivation of poliovirus was found to be due primarily to RNA damage, although capsid damage could account for about one-third of the viral inactivation. RNA damage did not appear to be due to strand breakage and therefore was probably caused primarily by base damage or crosslink formation. Capsid damage under direct irradiation conditions did not result in significant alterations of either the sedimentation coefficients or the isoelectric points of the poliovirus particles or detectable modification of the sizes of the viral proteins. It did, however, cause loss of availability to bind to host cells. Under indirect conditions no more than 25% of viral inactivation appeared to be due to RNA damage. However, the sedimentation coefficients and isoelectric points of the viral particles were greatly altered, and their abilities to bind to cells were lost at about three-fourths the rate of loss of infectivity. Capsid damage in this case did result in changes in the sizes of capsid proteins. Therefore, the majority of the radiation inactivation under indirect conditions appeared to be due to protein damage

  6. Inactivation of carotenoid-producing and albino strains of Neurospora crassa by visible light, blacklight, and ultraviolet radiation

    International Nuclear Information System (INIS)

    Blanc, P.L.; Tuveson, R.W.; Sargent, M.L.

    1976-01-01

    Suspensions of Neurospora crassa conidia were inactivated by blacklight (BL) radiation (300 to 425 nm) in the absence of exogenous photosensitizing compounds. Carotenoid-containing wild-type conidia were less sensitive to BL radiation than albino conidia, showing a dose enhancement factor (DEF) of 1.2 for dose levels resulting in less than 10 percent survival. The same strains were about equally sensitive to shortwave ultraviolet (uv) inactivation. The kinetics of BL inactivation are similar to those of photodynamic inactivation by visible light in the presence of a photosensitizing dye (methylene blue). Only limited inactivation by visible light in the absence of exogenous photosensitizers was observed. BL and UV inactivations are probably caused by different mechanisms since wild-type conidia are only slightly more resistant to BL radiation (DEF = 1.2 at 1.0 percent survival) than are conidia from a uv-sensitive strain (upr-1, uvs-3). The BL-induced lethal lesions are probably not cyclobutyl pyrimidine dimers since BL-inactivated Haemophilus influenzae transforming deoxyribonucleic acid is not photoreactivated by N. crassa wild-type enzyme extracts, whereas uv-inactivated transforming deoxyribonucleic acid is photoreactivable with this treatment

  7. Photosensitized inactivation of DNA by monochromatic 334-nm radiation in the presence of 2-thiouracil: genetic activity and backbone breaks

    International Nuclear Information System (INIS)

    Peak, M.J.; Ito, A.; Peak, J.G.; Foote, C.S.

    1988-01-01

    Monochromatic 334-nm radiation delivered under aerobic conditions inactivates the genetic activity (ability to transform auxotrophic recipient cells to nutritional prototrophy) of isolated transforming Bacillus subtilis DNA. The presence of superoxide dismutase (SOD), catalase, and mannitol reduces the 334-nm inactivation. The rate of inactivation of the genetic activity by 334-nm radiation is enhanced fivefold by the sensitizer 2-thiouracil (s 2 Ura). This enhancement is substantially reversed when the irradiations are performed in the presence of mannitol, and, to a lesser extent, SOD. Catalase slightly reduces the s 2 Ura enhancement of 334-nm inactivation of transforming activity. Backbone breaks induced in the same DNA by aerobic 334-nm radiation were also enhanced markedly by the presence of s 2 Ura; this enhancement was reversed by the presence of mannitol and, to a lesser extent, SOD during irradiation. Catalase had no effect upon s 2 Ura-enhanced, 334-nm-induced SSBs. Whereas DNA breakage may be responsible for a portion of the inactivation of the DNA by the photosensitized reaction between s 2 Ura and 334-nm radiation, it is not the only inactivating lesion, because the yield of SSBs per lethal hit per unit length of DNA is not constant for all the irradiation conditions studied. (author)

  8. Inactivation of poliovirus in wastewater sludge with radiation and thermoradiation

    International Nuclear Information System (INIS)

    Ward, R.L.

    1977-01-01

    The effect of sludge on the rate of viral inactivation by radiation and thermoradiation was determined. The virus used for the experiments was the poliovirus type 1 strain CHAT, which was grown in HeLa cells. Radiation, heat, and thermoradiation treatments were carried out in a chamber specifically designed to permit rapid heating and cooling of the samples at the beginning and completion of treatment, respectively. The treated samples were then assayed for plaque-forming units on HeLa cells after sonication in 0.1% sodium dodecylsulfate (SDS). For the radiation treatment virus was diluted 10-fold into PBS containing new sludge, irradiated at 20 0 C with 137 Cs at a dose rate of 30 krads/min, and assayed for infectious virus. The results show that raw sludge is protective of poliovirus against ionizing radiation but that small concentrations of sludge are nearly as protective as large concentrations. When heat and radiation are given simultaneously, however, the amount of protection afforded by sludge is less than the additive effects of the individual treatments. This result is especially evident at low concentrations of sludge. It appears, therefore, that thermoradiation treatment may be an effective way of inactivation viruses in waters containing low concentrations of suspended solids

  9. A model for the stepwise radiation inactivation of the alpha 2-dimer of Na,K-ATPase

    International Nuclear Information System (INIS)

    Norby, J.G.; Jensen, J.

    1989-01-01

    This study is a direct continuation of Jensen, J., and Norby. A new model in which we propose that the in situ organization of the Na,K-ATPase alpha-subunit is an alpha 2-dimer and which describes the stepwise degradation by radiation inactivation of this assembly is presented on the basis of the following findings. Radiation inactivation size for alpha-peptide integrity, normal nucleotide, vanadate and ouabain binding, and K-pNPPase activity is close to m(alpha) = 112 kDa; for Na-ATPase activity it is 135 kDa and for Na,K-ATPase activity it increases from 140 to about 195 kDa with increasing assay ATP concentration (equal to increasing average turnover). Normal Tl+ occlusion had the same radiation inactivation size as Vmax for Na,K-ATPase, i.e. about 195 kDa. The binding experiments disclosed radiation-produced molecules with active binding sites but with a lower than normal affinity. Radiation inactivation size for the total binding capacity of ADP and ouabain was therefore smaller than the size of an alpha-peptide, namely about 70 kDa, and for total Tl+ occlusion it was down to 40 kDa. We can explain all these observations by using a new approach to target size analysis and by assuming a dimeric organization of the alpha-subunit. Each alpha-peptide is degraded stepwise by first destruction of either a 42- or a 70-kDa domain, and the partly damaged peptide may retain biochemical activity. We conclude that there is no role for the beta-subunit in catalysis and that the alpha-peptide is organized as an alpha 2-dimer in the membrane with each alpha-subunit being able to perform complete catalytic cycles (and probably also active transport), provided that it is stabilized by an adjacent alpha-peptide or a sufficiently large fragment thereof

  10. A model for the stepwise radiation inactivation of the alpha 2-dimer of Na,K-ATPase

    Energy Technology Data Exchange (ETDEWEB)

    Norby, J.G.; Jensen, J. (Univ. of Aarhus (Denmark))

    1989-11-25

    This study is a direct continuation of Jensen, J., and Norby. A new model in which we propose that the in situ organization of the Na,K-ATPase alpha-subunit is an alpha 2-dimer and which describes the stepwise degradation by radiation inactivation of this assembly is presented on the basis of the following findings. Radiation inactivation size for alpha-peptide integrity, normal nucleotide, vanadate and ouabain binding, and K-pNPPase activity is close to m(alpha) = 112 kDa; for Na-ATPase activity it is 135 kDa and for Na,K-ATPase activity it increases from 140 to about 195 kDa with increasing assay ATP concentration (equal to increasing average turnover). Normal Tl+ occlusion had the same radiation inactivation size as Vmax for Na,K-ATPase, i.e. about 195 kDa. The binding experiments disclosed radiation-produced molecules with active binding sites but with a lower than normal affinity. Radiation inactivation size for the total binding capacity of ADP and ouabain was therefore smaller than the size of an alpha-peptide, namely about 70 kDa, and for total Tl+ occlusion it was down to 40 kDa. We can explain all these observations by using a new approach to target size analysis and by assuming a dimeric organization of the alpha-subunit. Each alpha-peptide is degraded stepwise by first destruction of either a 42- or a 70-kDa domain, and the partly damaged peptide may retain biochemical activity. We conclude that there is no role for the beta-subunit in catalysis and that the alpha-peptide is organized as an alpha 2-dimer in the membrane with each alpha-subunit being able to perform complete catalytic cycles (and probably also active transport), provided that it is stabilized by an adjacent alpha-peptide or a sufficiently large fragment thereof.

  11. Use of ultraviolet radiation for inactivation of bacteria and coliphages in pretreated wastewater

    International Nuclear Information System (INIS)

    Dizer, H.; Bartocha, W.; Bartel, H.; Seidel, K.; Lopez-Pila, J.M.; Grohmann, A.

    1993-01-01

    The inactivation of bacteria and coliphages by u.v. radiation was tested in a full-scale pilot plant with a flow rate of 180 m 3 /h. The investigated water contained about 70% secondary effluent from sewage treatment plants and 30% surface water. The minimal rated radiation density was 13.3 mW/cm 2 (60% of u.v. transmission in water), and the radiation exposure lasted for 3.54 s resulting in a u.v. radiation dose of 47 mWs/cm 2 . This type of u.v. radiation chamber decreased the concentration of total coliform organisms, E. coli, fecal streptococci, Salmonella sp. and coliphages in the influent by 1–2 logs. Strains of bacteria, Streptococcus faecalis and Salmonella enteritidis, seeded artificially into the influent showed a reduction of about 2–4 logs after u.v. radiation. The coliphage f2 was more resistant than the tested bacteria and reduced by less than 2 logs through u.v. radiation. The inactivating effect of u.v. radiation was counteracted by the binding of the coliphage f2 to suspended turbid particles. It can be recommended to use u.v. treatment of effluents of wastewater plants after a flocculation and filtration step to improve the efficiency of the u.v. radiation. (author)

  12. Cryo-gamma radiation inactivation of bovine herpesvirus type-1

    Science.gov (United States)

    Degiorgi, C. Fernández; Smolko, E. E.; Lombardo, J. H.

    1999-07-01

    The radioresistance of bovine herpesvirus-1 (BHV-1), commonly known as infectious bovine rhinotracheitis virus (IBRV), suspended in free serum Glasgow-MEM medium and frozen at -78°C was studied. The number of surviving virus at a given dose of gamma-radiation was determined by a plaque assay system. D 10 values were calculated before and after removal of cell debris. The D 10 values obtained were 4.72 kGy and 7.31 kGy before and after removal of cell debris, respectively. Our results indicate that the inactivated viral particles could be used for vaccine preparation or diagnostic reagents.

  13. Target size analysis of bioactive substances by radiation inactivation. Comparison with electron beam and. gamma. -ray

    Energy Technology Data Exchange (ETDEWEB)

    Kume, Tamikazu; Watanabe, Yuhei; Ishigaki, Isao; Hirose, Shigehisa

    1988-11-01

    The molecular sizes of various bioactive substances can be measured by the radiation inactivation method. The high energy electron beam (10 MeV) and /sup 60/Co-..gamma.. ray are mainly used for radiation inactivation method. When the practical electron accelerator (/similar to/ 3 MeV) is used for the method, the problems such as penetration and increase of temperature will arise. In this paper the radiation inactivation using 3MeV electron beam is investigated by comparison with ..gamma..-ray. When the plate type glass ampules (glass thickness 1 +- 0.1 mm) were used as the irradiation vessels, relatively uniform dose distribution was obtained. The temperature increased only from 21 degC to 35 degC by irradiation (0.77 mA, 100 passes, 100 kGy). Under the irradiation condition mentioned above, the molecular size of three enzymes were calculated from D/sub 37/ doses. The molecular sizes obtained by electron beam and ..gamma..-ray were 14,000 and 17,000 respectively for lysozyme, 33,000 for pepsin, and 191,000 and 164,000 for yeast alcohol dehydrogenase. These values agreed closely with the reported molecular weight, suggesting that the 3 MeV electron beam can also be used for the radiation inactivation under limited conditions.

  14. Functional size of photosynthetic electron transport chain determined by radiation inactivation

    International Nuclear Information System (INIS)

    Pan, R.S.; Chen, L.F.; Wang, M.Y.; Tsal, M.Y.; Pan, R.L.; Hsu, B.D.

    1987-01-01

    Radiation inactivation technique was employed to determine the functional size of photosynthetic electron transport chain of spinach chloroplasts. The functional size for photosystem I+II(H 2 O to methylviologen) was 623 +/- 37 kilodaltons; for photosystem II (H 2 O to dimethylquinone/ferricyanide), 174 +/- 11 kilodaltons; and for photosystem I (reduced diaminodurene to methylviologen), 190 +/- 11 kilodaltons. The difference between 364 +/- 22 (the sum of 174 +/- 11 and 190 +/- 11) kilodaltons and 623 +/- 37 kilodaltons is partially explained to be due to the presence of two molecules of cytochrome b 6 /f complex of 280 kilodaltons. The molecular mass for other partial reactions of photosynthetic electron flow, also measured by radiation inactivation, is reported. The molecular mass obtained by this technique is compared with that determined by other conventional biochemical methods. A working hypothesis for the composition, stoichiometry, and organization of polypeptides for photosynthetic electron transport chain is proposed

  15. Radiation inactivation of Paenibacillus larvae and sterilization of American Foul Brood (AFB) infected hives using Co-60 gamma rays

    International Nuclear Information System (INIS)

    De Guzman, Zenaida M.; Cervancia, Cleofas R.; Dimasuay, Kris Genelyn B.; Tolentino, Mitos M.; Abrera, Gina B.; Cobar, Ma. Lucia C.; Fajardo, Alejandro C.; Sabino, Noel G.; Manila-Fajardo, Analinda C.; Feliciano, Chitho P.

    2011-01-01

    The effectiveness of gamma radiation in inactivating the Philippine isolate of Paenibacillus larvae was investigated. Spores of P. larvae were irradiated at incremental doses (0.1, 0.2, 0.4, 0.8 and 1.6 kGy) of gamma radiation emitted by a 60 Co source. Surviving spores were counted and used to estimate the decimal reduction (D 10 ) value. A dose of 0.2 kGy was sufficient to inactivate 90% of the total recoverable spores from an initial count of 10 5 -9x10 3 spores per glass plate. The sterilizing effect of high doses of gamma radiation on the spores of P. larvae in infected hives was determined. In this study, a minimum dose (D min ) of 15 kGy was tested. Beehives with sub-clinical infections of AFB were irradiated and examined for sterility. All the materials were found to be free of P. larvae indicating its susceptibility to γ-rays. After irradiation, there were no visible changes in the physical appearance of the hives' body, wax and frames. Thus, a dose of 15 kGy is effective enough for sterilization of AFB-infected materials. - Highlights: → We characterized Paenibacillus larvae and determined its radiation sensitivity. → We investigated the effectiveness of gamma rays in inactivating P. larvae. → Gamma radiation inactivates P. larvae. → 15 kGy is effective for the sterilization of P. larvae-infected hives. → Irradiation produces no visible changes in the hives' body, waxes and frames.

  16. Disinfection of secondary effluent by gamma radiation inactivation efficiency and regrowth

    International Nuclear Information System (INIS)

    Sekiguchi, M.; Sawai, T.; Shimokawa, T.; Sawai, T.

    1992-01-01

    Inactivation efficiencies of several microorganisms in secondary effluents (SE) from sewage treatment plants by gamma radiation were investigated. Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae inoculated in SE were very sensitive but Streptcoccus sp. was resistant to gamma radiation. In addition, no significant difference was found between the combined sewer system and the separate sewer system in regards to the inactivation efficiencies of the bacteria inoculated in the SE. The number of total bacteria in SE was rapidly decreased in the dose range of 0 to 0.2-0.3 kGy but the number gradually fell over the dose range. Moreover, the number of total coliforms almost exponentially decreased with increasing dose, and fell to undetectable levels at about 0.5 kGy. Because of the decrease of the initial bacteria number in SE, adequate filtrating treatments were effective in lowering the irradiation dose for disinfection. Further, the effects of filtrating treatment on bacteria regrowth in SE are discussed. (author)

  17. Validation of γ-radiation and ultraviolet as a new inactivators for foot and mouth disease virus in comparison with the traditional methods

    Science.gov (United States)

    Mahdy, Safy El din; Hassanin, Amr Ismail; Gamal El-Din, Wael Mossad; Ibrahim, Ehab El-Sayed; Fakhry, Hiam Mohamed

    2015-01-01

    Aim: The present work deals with different methods for foot and mouth disease virus (FMDV) inactivation for serotypes O/pan Asia, A/Iran05, and SAT-2/2012 by heat, gamma radiation, and ultraviolet (UV) in comparison with the traditional methods and their effects on the antigenicity of viruses for production of inactivated vaccines. Materials and Methods: FMDV types O/pan Asia, A/Iran05, and SAT-2/2012 were propagated in baby hamster kidney 21 (BHK21) and titrated then divided into five parts; the first part inactivated with heat, the second part inactivated with gamma radiation, the third part inactivated with UV light, the fourth part inactivated with binary ethylamine, and the last part inactivated with combination of binary ethylamine and formaldehyde (BEI+FA). Evaluate the method of inactivation via inoculation in BHK21, inoculation in suckling baby mice and complement fixation test then formulate vaccine using different methods of inactivation then applying the quality control tests to evaluate each formulated vaccine. Results: The effect of heat, gamma radiation, and UV on the ability of replication of FMDV “O/pan Asia, A/Iran05, and SAT-2/2012” was determined through BHK cell line passage. Each of the 9 virus aliquots titer 108 TCID50 (3 for each strain) were exposed to 37, 57, and 77°C for 15, 30, and 45 min. Similarly, another 15 aliquots (5 for each strain) contain 1 mm depth of the exposed samples in petri-dish was exposed to UV light (252.7 nm wavelength: One foot distance) for 15, 30, 45, 60, and 65 min. Different doses of gamma radiation (10, 20, 25, 30, 35, 40, 45, 50, 55, and 60 KGy) were applied in a dose rate 0.551 Gy/s for each strain and repeated 6 times for each dose. FMDV (O/pan Asia, A/Iran05, and SAT-2/2012) were inactivated when exposed to heat ≥57°C for 15 min. The UV inactivation of FMDV (O/pan Asia and SAT-2) was obtained within 60 min and 65 min for type A/Iran05. The ideal dose for inactivation of FMDV (O/pan Asia, A/Iran05

  18. Validation of γ-radiation and ultraviolet as a new inactivators for foot and mouth disease virus in comparison with the traditional methods

    Directory of Open Access Journals (Sweden)

    Safy El din Mahdy

    2015-09-01

    Full Text Available Aim: The present work deals with different methods for foot and mouth disease virus (FMDV inactivation for serotypes O/pan Asia, A/Iran05, and SAT-2/2012 by heat, gamma radiation, and ultraviolet (UV in comparison with the traditional methods and their effects on the antigenicity of viruses for production of inactivated vaccines. Materials and Methods: FMDV types O/pan Asia, A/Iran05, and SAT-2/2012 were propagated in baby hamster kidney 21 (BHK21 and titrated then divided into five parts; the first part inactivated with heat, the second part inactivated with gamma radiation, the third part inactivated with UV light, the fourth part inactivated with binary ethylamine, and the last part inactivated with combination of binary ethylamine and formaldehyde (BEI+FA. Evaluate the method of inactivation via inoculation in BHK21, inoculation in suckling baby mice and complement fixation test then formulate vaccine using different methods of inactivation then applying the quality control tests to evaluate each formulated vaccine. Results: The effect of heat, gamma radiation, and UV on the ability of replication of FMDV "O/pan Asia, A/Iran05, and SAT-2/2012" was determined through BHK cell line passage. Each of the 9 virus aliquots titer 108 TCID50 (3 for each strain were exposed to 37, 57, and 77°C for 15, 30, and 45 min. Similarly, another 15 aliquots (5 for each strain contain 1 mm depth of the exposed samples in petri-dish was exposed to UV light (252.7 nm wavelength: One foot distance for 15, 30, 45, 60, and 65 min. Different doses of gamma radiation (10, 20, 25, 30, 35, 40, 45, 50, 55, and 60 KGy were applied in a dose rate 0.551 Gy/s for each strain and repeated 6 times for each dose. FMDV (O/pan Asia, A/Iran05, and SAT-2/2012 were inactivated when exposed to heat ≥57°C for 15 min. The UV inactivation of FMDV (O/pan Asia and SAT-2 was obtained within 60 min and 65 min for type A/Iran05. The ideal dose for inactivation of FMDV (O/pan Asia, A

  19. The radiation-induced inactivation of microorganisms in non-aqueous suspension: The effect of selective alcohols and paraffins on the radiation sensitivity of aerated Bacillus pumilus spores

    International Nuclear Information System (INIS)

    Jacobs, G.P.

    1981-01-01

    The effect of model compounds comprising alcohols and paraffins on the radiation sensitivity of B. pumilus spores has been studied with the aim of understanding the radiation-induced inactivation of microorganisms when suspended in non-aqueous medium. This study is a prerequisite to the undertaking of radiation sterilization of non-aqueous pharmaceuticals. Spores of B. pumilus E601 mounted on kaolin powder were suspended in the appropriate organic agent and gamma irradiated under oxic conditions. Spores suspended in paraffins displayed increased radiation response over that for aerated buffered suspensions. Values of inactivation constant ranged between 2 x and 5 x that for buffer. Less pronounced modification of response was obtained for the alcohols. The results reveal a marked tendency for response to increase with decreasing polarity of the supending fluid. The partial miscibility of the alcohols in water enabled the examining of the transition from the response characteristic of aerated buffered suspensions to those of the spores in pure organic liquids. (orig./MG) [de

  20. Radiation inactivation of Paenibacillus larvae and sterilization of American Foul Brood (AFB) infected hives using Co-60 gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    De Guzman, Zenaida M. [Microbiological Research and Service Laboratory, Atomic Research Division, Philippine Nuclear Research Institute, Diliman, Quezon City (Philippines); Cervancia, Cleofas R. [Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines, Los Banos, Laguna (Philippines); Dimasuay, Kris Genelyn B.; Tolentino, Mitos M.; Abrera, Gina B.; Cobar, Ma. Lucia C. [Microbiological Research and Service Laboratory, Atomic Research Division, Philippine Nuclear Research Institute, Diliman, Quezon City (Philippines); Fajardo, Alejandro C.; Sabino, Noel G.; Manila-Fajardo, Analinda C. [Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines, Los Banos, Laguna (Philippines); Feliciano, Chitho P., E-mail: cpfeliciano@pnri.dost.gov.ph [Microbiological Research and Service Laboratory, Atomic Research Division, Philippine Nuclear Research Institute, Diliman, Quezon City (Philippines); Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City (Philippines)

    2011-10-15

    The effectiveness of gamma radiation in inactivating the Philippine isolate of Paenibacillus larvae was investigated. Spores of P. larvae were irradiated at incremental doses (0.1, 0.2, 0.4, 0.8 and 1.6 kGy) of gamma radiation emitted by a {sup 60}Co source. Surviving spores were counted and used to estimate the decimal reduction (D{sub 10}) value. A dose of 0.2 kGy was sufficient to inactivate 90% of the total recoverable spores from an initial count of 10{sup 5}-9x10{sup 3} spores per glass plate. The sterilizing effect of high doses of gamma radiation on the spores of P. larvae in infected hives was determined. In this study, a minimum dose (D{sub min}) of 15 kGy was tested. Beehives with sub-clinical infections of AFB were irradiated and examined for sterility. All the materials were found to be free of P. larvae indicating its susceptibility to {gamma}-rays. After irradiation, there were no visible changes in the physical appearance of the hives' body, wax and frames. Thus, a dose of 15 kGy is effective enough for sterilization of AFB-infected materials. - Highlights: > We characterized Paenibacillus larvae and determined its radiation sensitivity. > We investigated the effectiveness of gamma rays in inactivating P. larvae. > Gamma radiation inactivates P. larvae. > 15 kGy is effective for the sterilization of P. larvae-infected hives. > Irradiation produces no visible changes in the hives' body, waxes and frames.

  1. UV inactivation: Combined effects of UV radiation and xenobiotics in two strains of Saccharomyces

    International Nuclear Information System (INIS)

    Lochmann, E.R.; Lochmann, G.

    1997-01-01

    The effects of eight chemicals on the inactivation rate of ultraviolet radiation on the colony building capabilities of two strains of Saccharomyces cervisae - a wild type strain and a mutant deficient in excision repair - were studied. The insecticide methoxychlor, the herbicide 2,4-dichlorophenoxyacetic acid, the fungicide pentachlorophenol and its metabolite tetrachlorohydroquinone, as well as the chemicals acrylonitrile and 2,3-dichloro-1-propene have no significant impact on the effects of UV radiation in Saccharomyces cerevisae. Depending on the concentration, trichloroethylene increases the sensitivity to UV radiation. The herbicide paraquat provides efficient protection against UV radiation at concentrations where a toxic effect cannot be observed even without UV. The results were rather similar for both strains. (orig.) [de

  2. Membrane-bound Na,K-ATPase: target size and radiation inactivation size of some of its enzymatic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, J.; Norby, J.G.

    1988-12-05

    Frozen samples of membrane-bound pig kidney Na,K-ATPase were subjected to target size analysis by radiation inactivation with 10-MeV electrons at -15 degrees C. The various properties investigated decreased monoexponentially with radiation dose, and the decay constants, gamma, were independent of the presence of other proteins and of sucrose concentrations above 0.25 M. The temperature factor was the same as described by others. Irradiation of four proteins of known molecular mass, m, showed that gamma for protein integrity was proportional to m with a proportionality factor about 20% higher than that conventionally used. By this standard curve, glucose-6-phosphate dehydrogenase activity used as internal standard gave a radiation inactivation size of 110 +/- 5 kDa, very close to m = 104-108 kDa for the dimer, as expected. For Na+/K+-transporting ATPase the following target sizes and radiation inactivation size values were very close to m = 112 kDa for the alpha-peptide: peptide integrity of alpha, 115 kDa; unmodified binding sites for ATP and vanadate, 108 kDa; K+-activated p-nitrophenylphosphatase activity, 106 kDa. There was thus no sign of dimerization of the alpha-peptide or involvement of the beta-peptide. In contrast, optimal Na+/K+-transporting ATPase activity had a radiation inactivation size = 189 +/- 7 kDa, and total nucleotide binding capacity corresponded to 72 +/- 3 kDa. These latter results will be extended and discussed in a forthcoming paper.

  3. Membrane-bound Na,K-ATPase: target size and radiation inactivation size of some of its enzymatic reactions

    International Nuclear Information System (INIS)

    Jensen, J.; Norby, J.G.

    1988-01-01

    Frozen samples of membrane-bound pig kidney Na,K-ATPase were subjected to target size analysis by radiation inactivation with 10-MeV electrons at -15 degrees C. The various properties investigated decreased monoexponentially with radiation dose, and the decay constants, gamma, were independent of the presence of other proteins and of sucrose concentrations above 0.25 M. The temperature factor was the same as described by others. Irradiation of four proteins of known molecular mass, m, showed that gamma for protein integrity was proportional to m with a proportionality factor about 20% higher than that conventionally used. By this standard curve, glucose-6-phosphate dehydrogenase activity used as internal standard gave a radiation inactivation size of 110 +/- 5 kDa, very close to m = 104-108 kDa for the dimer, as expected. For Na+/K+-transporting ATPase the following target sizes and radiation inactivation size values were very close to m = 112 kDa for the alpha-peptide: peptide integrity of alpha, 115 kDa; unmodified binding sites for ATP and vanadate, 108 kDa; K+-activated p-nitrophenylphosphatase activity, 106 kDa. There was thus no sign of dimerization of the alpha-peptide or involvement of the beta-peptide. In contrast, optimal Na+/K+-transporting ATPase activity had a radiation inactivation size = 189 +/- 7 kDa, and total nucleotide binding capacity corresponded to 72 +/- 3 kDa. These latter results will be extended and discussed in a forthcoming paper

  4. Promotion of initiated cells by radiation-induced cell inactivation.

    Science.gov (United States)

    Heidenreich, W F; Paretzke, H G

    2008-11-01

    Cells on the way to carcinogenesis can have a growth advantage relative to normal cells. It has been hypothesized that a radiation-induced growth advantage of these initiated cells might be induced by an increased cell replacement probability of initiated cells after inactivation of neighboring cells by radiation. Here Monte Carlo simulations extend this hypothesis for larger clones: The effective clonal expansion rate decreases with clone size. This effect is stronger for the two-dimensional than for the three-dimensional situation. The clones are irregular, far from a circular shape. An exposure-rate dependence of the effective clonal expansion rate could come in part from a minimal recovery time of the initiated cells for symmetric cell division.

  5. Rape seed glucosinolate: radiation inactivation and physiological performance of broiler fed irradiated rapeseed meal

    International Nuclear Information System (INIS)

    Farag, M.Diaa El-Din H.

    1994-01-01

    Rape seeds meal (RSM) is a high quality protein supplement suitable for all classes of livestock. The major area of concern in animal nutrition has been glucosinolates and their derivative products which cause depressed performance in poultry or may be even toxic. Therefore, these substances must be removed or inactivated before the meal can be used as potential protein source for food or feed. I the current study, RSM has been used to test whether gamma radiation processing can inactivate glucosinolates as a step towards detoxication. Samples were exposed to gamma rays of 10, 50, 100 and 250 kGy. Approximated analysis showed that RSM was not affected by irradiation processing up to 250 kGy. However, the crude fiber content decreased at the highest dose while at doses of 10, 50 100 and 250 kGy the available lysine decreased by 6.76%, 9.46%, 17.84% and 22.43%, respectively. Radiation processing at 250 kGy significantly inactivated glucosinolate by 85% from its initial value. In a 8-week chick-feeding study, raw and irradiated RSM were applied at 30%. The diets containing raw and irradiated (at 10, 50 and 100 kGy) RSM had somewhat low growth and thyroid, liver and kidney enlargement compared to the basal control group. No significant difference was observed between chicks fed on RSM irradiated at 250 kGy and those fed on basal diet. No significant differences were observed in the serum protein, albumin, GPT, uric acid, creatine and basal diet groups. Those kept on raw and irradiated at 10, 50 and 100 kGy RSM had higher GOT than those kept on irradiated at 250 kGy RSM and basal diet. Radiation treatment of RSM up to 250 kGy improved its nutritional quality by decreasing the glucosinolate and consequently maintained the chicks in a better health condition. (author)

  6. Protocol for Determining Ultraviolet Light Emitting Diode (UV-LED) Fluence for Microbial Inactivation Studies.

    Science.gov (United States)

    Kheyrandish, Ataollah; Mohseni, Madjid; Taghipour, Fariborz

    2018-06-15

    Determining fluence is essential to derive the inactivation kinetics of microorganisms and to design ultraviolet (UV) reactors for water disinfection. UV light emitting diodes (UV-LEDs) are emerging UV sources with various advantages compared to conventional UV lamps. Unlike conventional mercury lamps, no standard method is available to determine the average fluence of the UV-LEDs, and conventional methods used to determine the fluence for UV mercury lamps are not applicable to UV-LEDs due to the relatively low power output, polychromatic wavelength, and specific radiation profile of UV-LEDs. In this study, a method was developed to determine the average fluence inside a water suspension in a UV-LED experimental setup. In this method, the average fluence was estimated by measuring the irradiance at a few points for a collimated and uniform radiation on a Petri dish surface. New correction parameters were defined and proposed, and several of the existing parameters for determining the fluence of the UV mercury lamp apparatus were revised to measure and quantify the collimation and uniformity of the radiation. To study the effect of polychromatic output and radiation profile of the UV-LEDs, two UV-LEDs with peak wavelengths of 262 and 275 nm and different radiation profiles were selected as the representatives of typical UV-LEDs applied to microbial inactivation. The proper setup configuration for microorganism inactivation studies was also determined based on the defined correction factors.

  7. Functional significance of the oligomeric structure of the Na,K-pump from radiation inactivation and ligand binding

    International Nuclear Information System (INIS)

    Norby, J.G.; Jensen, J.

    1991-01-01

    The present article is concerned with the oligomeric structure and function of the Na,K-pump (Na,K-ATPase). The questions we have addressed, using radiation inactivation and target size analysis as well as ligand binding, are whether the minimal structural unit and the functional unit have more than one molecule of the catalytic subunit, alpha. The authors first discuss the fundamentals of the radiation inactivation method and emphasize the necessity for rigorous internal standardization with enzymes of known molecular mass. They then demonstrate that the radiation inactivation of Na,K-ATPase is a stepwise process which leads to intermediary fragments of the alpha-subunit with partial catalytic activity. From the target size analysis it is most likely that the membrane-bound Na,K-ATPase is structurally organized as a diprotomer containing two alpha-subunits. Determination of ADP- and ouabain-binding site stoichiometry favors a theory with one substrate site per (alpha beta) 2. 47 references

  8. Gamma radiation inactivation of pathogens in sludge under larger-scale condition

    Energy Technology Data Exchange (ETDEWEB)

    Sermkiattipong, N; Pongpat, S

    1996-12-01

    The effect of gamma radiation on microorganisms in sludge from Huay Kwang Sewage Treatment Plant and Vajira Hospital showed that total bacterial counts were reduced to 2-3 log cycles and 1-2 log cycles at 5 kGy irradiation with and without aeration, respectively. Inactivation of coliform bacteria in sludge required irradiation with and without aeration at the dosages of 3-4.5 and 4-5 kGy, respectively. A dose of 2-3 kGy was sufficient to inactivate fecal coliform bacteria and E. coli. The doses used for inactivation these bacteria depend on the irradiation condition and solid content in sludge sample. Irradiation with aeration led to an increased microbial inactivation. According to our results, the frequency of occurrence of salmonella e contaminated in sludge from Huay Kwang Sewage Treatment Plant and Vajira Hospital was 50% and 75%, respectively. A dose of 2 kGy irradiation with or without aeration, salmonella e could not be detected in any sludge. Clostridium perfringens organisms were also detected in non-irradiated and irradiated sludge from both sources. Moreover, a dose of 5 kGy irradiation with or without aeration was not enough to eliminate C. perfringens. However, no shigella e were isolated from any treatment of sludge

  9. Gamma radiation inactivation of pathogens in sludge under larger-scale condition

    International Nuclear Information System (INIS)

    Sermkiattipong, N.; Pongpat, S.

    1996-01-01

    The effect of gamma radiation on microorganisms in sludge from Huay Kwang Sewage Treatment Plant and Vajira Hospital showed that total bacterial counts were reduced to 2-3 log cycles and 1-2 log cycles at 5 kGy irradiation with and without aeration, respectively. Inactivation of coliform bacteria in sludge required irradiation with and without aeration at the dosages of 3-4.5 and 4-5 kGy, respectively. A dose of 2-3 kGy was sufficient to inactivate fecal coliform bacteria and E. coli. The doses used for inactivation these bacteria depend on the irradiation condition and solid content in sludge sample. Irradiation with aeration led to an increased microbial inactivation. According to our results, the frequency of occurrence of salmonella e contaminated in sludge from Huay Kwang Sewage Treatment Plant and Vajira Hospital was 50% and 75%, respectively. A dose of 2 kGy irradiation with or without aeration, salmonella e could not be detected in any sludge. Clostridium perfringens organisms were also detected in non-irradiated and irradiated sludge from both sources. Moreover, a dose of 5 kGy irradiation with or without aeration was not enough to eliminate C. perfringens. However, no shigella e were isolated from any treatment of sludge

  10. Inactivation of certain insect pathogens by ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Krieg, A.; Groener, A.; Huber, J.; Zimmermann, G.

    1981-01-01

    The UV-sensitivity of two baculoviruses (granulosis virus, nuclear polyhedrosis virus) and two entomopathogenic microorganisms (Bacillus thuringiensis, Beauveria bassiana) was determined by radiation tests. In the far UV (254 nm) the stability, measured at an inactivation rate of 99%, was in declining order: nuclear polyhedra >= conidia of B. bassiana > granula > spores of B. thuringiensis >= vegetative cells of B. thuringiensis. In the near UV (285-380 nm) the following order could be found: conidia of B. bassiana >= nuclear polyhedra > spores of B. thuringiensis >= granula > vegetative cells of B. thuringiensis. Far UV had a much higher germicidal effect for all pathogens tested than near UV.

  11. Radiation inactivation analysis of enzymes. Effect of free radical scavengers on apparent target sizes

    International Nuclear Information System (INIS)

    Eichler, D.C.; Solomonson, L.P.; Barber, M.J.; McCreery, M.J.; Ness, G.C.

    1987-01-01

    In most cases the apparent target size obtained by radiation inactivation analysis corresponds to the subunit size or to the size of a multimeric complex. In this report, we examined whether the larger than expected target sizes of some enzymes could be due to secondary effects of free radicals. To test this proposal we carried out radiation inactivation analysis on Escherichia coli DNA polymerase I, Torula yeast glucose-6-phosphate dehydrogenase, Chlorella vulgaris nitrate reductase, and chicken liver sulfite oxidase in the presence and absence of free radical scavengers (benzoic acid and mannitol). In the presence of free radical scavengers, inactivation curves are shifted toward higher radiation doses. Plots of scavenger concentration versus enzyme activity showed that the protective effect of benzoic acid reached a maximum at 25 mM then declined. Mannitol alone had little effect, but appeared to broaden the maximum protective range of benzoic acid relative to concentration. The apparent target size of the polymerase activity of DNA polymerase I in the presence of free radical scavengers was about 40% of that observed in the absence of these agents. This is considerably less than the minimum polypeptide size and may reflect the actual size of the polymerase functional domain. Similar effects, but of lesser magnitude, were observed for glucose-6-phosphate dehydrogenase, nitrate reductase, and sulfite oxidase. These results suggest that secondary damage due to free radicals generated in the local environment as a result of ionizing radiation can influence the apparent target size obtained by this method

  12. Inactivation of the Radiation-Resistant Spoilage Bacterium Micrococcus radiodurans

    Science.gov (United States)

    Duggan, D. E.; Anderson, A. W.; Elliker, P. R.

    1963-01-01

    A simplified technique permitting the pipetting of raw puréed meats for quantitative bacteriological study is described for use in determining survival of these non-sporing bacteria, which are exceptionally resistant to radiation. Survival curves, using gamma radiation as the sterilizing agent, were determined in raw beef with four strains of Micrococcus radiodurans. Survival curves of the R1 strain in other meat substrates showed that survival was significantly greater in raw beef and raw chicken than in raw fish or in cooked beef. Resistance was lowest in the buffer. Cells grown in broth (an artificial growth medium) and resuspended in beef did not differ in resistance from cells that had been grown and irradiated in beef. Survival rate was statistically independent of the initial cell concentration, even though there appeared to be a correlation between lower death rate and lower initial cell concentrations. The initial viable count of this culture of the domesticated R1 strain in beef was reduced by a factor of about 10-5 by 3.0 megarad, and 4.0 megarad reduced the initial count by a factor of more than 10-9. Data suggest that M. radiodurans R1 is more resistant to radiation than spore-forming spoilage bacteria for which inactivation rates have been published. PMID:14063780

  13. Radiation inactivation method provides evidence that membrane-bound mitochondrial creatine kinase is an oligomer

    International Nuclear Information System (INIS)

    Quemeneur, E.; Eichenberger, D.; Goldschmidt, D.; Vial, C.; Beauregard, G.; Potier, M.

    1988-01-01

    Lyophilized suspensions of rabbit heart mitochondria have been irradiated with varying doses of gamma rays. Mitochondrial creatine kinase activity was inactivated exponentially with a radiation inactivation size of 352 or 377 kDa depending upon the initial medium. These values are in good agreement with the molecular mass previously deduced from by permeation experiments: 357 kDa. This is the first direct evidence showing that the native form of mitochondrial creatine kinase is associated to the inner membrane as an oligomer, very likely an octamer

  14. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation

    International Nuclear Information System (INIS)

    Elliott, L.H.; McCormick, J.B.; Johnson, K.M.

    1982-01-01

    Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with 60 CO gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of 60 CO radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose per rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. The authors found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents

  15. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation

    International Nuclear Information System (INIS)

    Elliott, L.H.; McCormick, J.B.; Johnson, K.M.

    1982-01-01

    Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with 60 Co gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of 60 Co radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose per rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. We found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents

  16. Inactivation of certain insect pathogens by ultraviolet radiation

    International Nuclear Information System (INIS)

    Krieg, A.; Groener, A.; Huber, J.; Zimmermann, G.

    1981-01-01

    The UV-sensitivity of two baculoviruses (granulosis virus, nuclear polyhedrosis virus) and two entomopathogenic microorganisms (Bacillus thuringiensis, Beauveria bassiana) was determined by radiation tests. In the far UV (254 nm) the stability, measured at an inactivation rate of 99%, was in declining order: nuclear polyhedra >= conidia of B. bassiana > granula > spores of B. thuringiensis >= vegetative cells of B. thuringiensis. In the near UV (285-380 nm) the following order could be found: conidia of B. bassiana >= nuclear polyhedra > spores of B. thuringiensis >= granula > vegetative cells of B. thuringiensis. Far UV had a much higher germicidal effect for all pathogens tested than near UV. (orig.) [de

  17. DNA double strand breaks as the critical type of damage with regard to inactivation of cells through ionizing radiation

    International Nuclear Information System (INIS)

    Frankenberg, D.

    1985-01-01

    This report presents the results of an investigation into the effects of ionizing radiation on eukaryotic cells, aimed at revealing the molecular mechanisms leading to cell inactivation as a result of ionizing radiation. The quantitative determination of radiation-induced double strand breaks (DSB) is done via sedimentation of the DNA released from the cells in a neutral saccharose gradient in a preparative ultracentrifuge. The 'experimental mass spectrum' of DNA molecules thus obtained, the mean number of DSB per cell is calculated using a special computer program which simulates the stochastic induction of DSB in the DNA of non-irradiated cells and links the 'simulated' mass spectrum with the 'experimental' one on the basis of the least square fit. The experimental and theoretical studies with the eukaryote yeast on the whole allow insight into the relation between energy absorption and the inactivation of irradiated cells. (orig./MG) [de

  18. recA+-dependent inactivation of the lambda repressor in Escherichia coli lysogens by γ-radiation and by tif expression

    International Nuclear Information System (INIS)

    West, S.C.; Powell, K.A.; Emmerson, P.T.

    1975-01-01

    When lambda lysogens of E. coli are induced by γ-radiation the lambda repressor, as measured by its specific binding to lambda DNA, is rapidly inactivated by a recA + -dependent process which does not require new protein synthesis. This rapid inactivation is similar to inactivation of repressor by expression of the temperature sensitive E. coli mutation tif. In contrast, induction by UV irradiation or mitomycin C treatment requires new protein synthesis and there is a lag before the repressor is inactivated (Tomizawa and Ogawa, 1967; Shinagawa and Itoh, 1973). (orig.) [de

  19. Production of DNA strand breaks by ionizing radiation of different quality and their consequences for cell inactivation

    International Nuclear Information System (INIS)

    Kampf, G.

    1983-07-01

    The production of single- and double-strand breaks (DSB) in the DNA of Chinese hamster cells (V 79) was studied by use of 11 radiation qualities, with some also under hypoxic conditions. The aim was to find relations between the induction of lesions on the molecular level and the expression of this damage on the cellular level. The results suggest that release of DNA from the nuclear-membrane complex, induction of chromosome breaks, and cell inactivation are triggered by DSB. However, not simply a certain number of DSB in the DNA of the nucleus, but their cooperation within a small structural section of DNA is required for cell inactivation. Such sections may be the membrane-associated superstructure units. DSB produced under hypoxic conditions show a greater effectiveness than those produced under oxic conditions. The investigations with eukaryotic cells and bacteria suggest that not the entire DNA of all organisms but a structural unit common to them represents the critical target for radiation action. (author)

  20. Study of sequential disinfection for the inactivation of protozoa and indicator microorganisms in wastewater

    Directory of Open Access Journals (Sweden)

    Raphael Corrêa Medeiros

    2015-05-01

    Full Text Available Sewage disinfection has the primary objective of inactivating pathogenic organisms to prevent the dissemination of waterborne diseases. This study analyzed individual disinfection, with chlorine and ultraviolet radiation, and sequential disinfection (chlorine-UV radiation. The tests were conducted with anaerobic effluent in batch, in laboratory scale, with two dosages of chlorine (10 and 20 mg L-1 and UV (2.5 and 6.1 Wh m-3. In addition, to guarantee the presence of cysts in the tests, 104 cysts per liter of Giardia spp. were inoculated. The resistance order was as follows: E. coli = Total Coliforms < Clostridium perfringens < Giardia spp.. Furthermore, synergistic effects reached 0.06 to 1.42 log of inactivation in sequential disinfection for both the most resistant microorganisms.

  1. Response of bacteria in wastewater sludge to moisture loss by evaporation and effect of moisture content on bacterial inactivation by ionizing radiation

    International Nuclear Information System (INIS)

    Ward, R.L.; Yeager, J.G.; Ashley, C.S.

    1981-01-01

    Two studies were carried out to determine the influence of moisture content on the survival of bacteria in raw wastewater sludge. The first study involved the effect of water loss by evaporation on the bacterial population. The second used these dewatered samples to measure the effects of moisture content on the inactivation of bacteria in sludge by ionizing radiation. Both studies involved survival measurements of six representative fecally associated bacteria grown separately in sterilized sludge as well as survival data on bacteria indigenous to sludge. Growth of bacteria was stimulated in sludge during the initial phase of moisture removal by evaporation, but the reduction of moisture content below about 50% by weight caused a proportional decrease in bacterial numbers. The rates of inactivation of bacteria by ionizing radiation in sludge were usually modified to some degree by variations in moisture content. Most bacteria were found to be somewhat protected from ionizing radiation at reduced moisture levels

  2. Study on the inactivation of intracellular enzyme molecules by X-ray irradiation

    International Nuclear Information System (INIS)

    Lee, S.B.

    1977-01-01

    Inactivation of the glutamic acid dehydrogenase and glucose-6-phosphate dehydrogenase enzyme molecules in the Ehrlich ascites tumor cells of the mouse were studied. The above mentioned intracellular enzyme molecules were irradiated by the X-ray radiation under the condition of 65 kV, 1 Amp under the atmosphere of nitrogen gases and by 4 0 C. Thereby, irradiation doses were 580 KR/min(error: +-3%). After irradiation, the cell homogentes were prepared through liquid air techniques. There after, the activities of the enzymes were measured with photometric method given by O. Warburg and W. Christian. The dose effect curves of the activities of the two enzymes by the X-ray irradiation showed both exponential and the inactivation doses were 6.5x10 6 and 5.0x10 6 R respectively. These results showed one side that the inactivation process of the intracellular enzyme molecules was one hit reaction after target theory, and the other side that this inactivation process could not be the primary causes of the death through X-ray irradiation of the vertebrate animals, because of the high resistance of the intracellular protein molecules against X-ray irradiation. The one hit reaction by the inactivation process of the irradiated intracellular enzyme molecules was discussed. (author)

  3. Induction of DNA double-strand breaks by ionizing radiation of different quality and their relevance for cell inactivation

    International Nuclear Information System (INIS)

    Kampf, G.

    1988-01-01

    By investigation of the production of DNA strand breaks and of DNA release from the nuclear membrane complex in Chinese hamster cells using different radiation qualities from 1 to 360 keV/μm, partly also under hypoxic conditions, and by relating the results to the induction of chromosome aberrations and to cell inactivation it has become possible to find connections between the induction of molecular lesions and the expression of this damage on the cellular level. From the studies follows that DNA pieces are cut off from the nuclear membrane complex by DNA double-strand breaks (DSB). The share and size of the released pieces depends on radiation dose and quality as well as on the oxygen conditions. The lesions can partly be repaired. In connection with the DSB rates the results of the DNA release studies led to the conclusion that the DNA in the cells must be organized in superstructure units (MASSUs) with a DNA mass of about 2 x 10 9 g/mol, which are associated to the nuclear membrane in attachment points. The numerical relations show that for a 37% survival probability about 90 DSB per genome are required with sparsely ionizing radiation; this number declines to about 40 by use of more densely ionizing radiation up to 150 keV/μm, and increases again with further rise of the ionization density. Hence, for cell inactivation not simply a certain number of DSB per cell is required but rather seems their cooperation within a small structure section of the DNA to be relevant. These critical structures are with high probability the MASSUs. An irrepairable release of DNA from such a structure unit can bring about a chromosome break detectable in the metaphase and finally lead to cell inactivation. DSB turned out to be the essential lethal events in bacteria as well. The relatively small differences to the eukaryotic cells in the position of the maximum of radiation sensitivity on the LET scale and in the lesion sensitivity towards DSB let suggest that a common critical

  4. Inactivation of food-borne pathogens by combined high hydrostatic pressure and irradiation- a model study

    International Nuclear Information System (INIS)

    Kamat, Anu; Thomas, Paul; Kesavan, P.C.; Fotedar, R.

    1997-01-01

    Application of radiation or high pressure as a food processing method is comparatively recent development in food industry. To investigate the response to hydrostatic pressure, cells of pathogens at logarithmic phase were exposed to 200 MPa for various time intervals in saline as model system. The cells of Salmonella were observed to be most sensitive whereas Listeria monocytogenes were most resistant as revealed by 7 and 2 log cycle inactivation respectively in 10 min. The cells of Bacillus cereus and Yersinia enterocolitica showed 3 long cycles reduction by the same treatment. Bacterial spores because of their resistant nature, are inactivated only at high radiation doses, which are technologically unfeasible. Studies carried out to examine the effectiveness of combination of pressure and radiation clearly suggested that combination treatment given in either sequence reduces the bacterial spore load more effectively than the individual treatment per se. (author)

  5. LOW PRESSURE ULTRAVIOLET STUDIES FOR INACTIVATION OF GIARDIA MURIS CYSTS

    Science.gov (United States)

    This research was initiated to confirm and expand the current database for the inactivation of Giardia spp. using ultraviolet (UV) radiation. Initially, previous research that used in vitro excystation as the indicator for UV effectiveness was confirmed. Later, the in vitro excys...

  6. Solar Radiation Disinfection of Drinking Water at Temperate Latitudes: Inactivation rates for an optimized reactor configuration

    Science.gov (United States)

    Solar radiation-driven inactivation of bacteria, virus and protozoan pathogen models was quantified in simulated drinking water at a temperate latitude (34°S). The water was seeded with Enterococcus faecalis, Clostridium sporogenes spores, and P22 bacteriophage, each at ca 1 x 10...

  7. Size determination of an equilibrium enzymic system by radiation inactivation

    International Nuclear Information System (INIS)

    Simon, P.; Swillens, S.; Dumont, J.E.

    1982-01-01

    Radiation inactivation of complex enzymic systems is currently used to determine the enzyme size and the molecular organization of the components in the system. An equilibrium model was simulated describing the regulation of enzyme activity by association of the enzyme with a regulatory unit. It is assumed that, after irradiation, the system equilibrates before the enzyme activity is assayed. The theoretical results show that the target-size analysis of these numerical data leads to a bad estimate of the enzyme size. Moreover, some implicit assumptions such as the transfer of radiation energy between non-covalently bound molecules should be verified before interpretation of target-size analysis. It is demonstrated that the apparent target size depends on the parameters of the system, namely the size and the concentration of the components, the equilibrium constant, the relative activities of free enzyme and enzymic complex, the existence of energy transfer, and the distribution of the components between free and bound forms during the irradiation. (author)

  8. Oxygen-independent inactivation of Haemophilus influenzae transforming DNA by monochromatic radiation: action spectrum, effect of histidine and repair

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera-Juarez, E; Setlow, J K; Swenson, P A; Peak, M J

    1976-01-01

    The action spectrum for the oxygen-independent inactivation of native transforming DNA from Haemophilus influenzae with near-uv radiation revealed a shoulder beginning at 334 and extending to 460 nm. The presence of 0.2 M histidine during irradiation produced a small increase in inactivation at 254, 290 and 313 nm, a large increase at 334 nm and a decrease in inactivation at 365, 405, and 460 nm. Photoreactivation did not reverse the DNA damage produced at pH 7.0 at 334, 365, 405 and 460 nm, but did reactivate the DNA after irradiation at 254, 290 and 313 nm. The inactivation of DNA irradiated at 254, 290 and 313 nm was considerably greater when the transforming ability was assayed in an excision-defective mutant compared with the wild type, although DNA irradiated at 334, 365, 405 and 460 nm showed smaller differences. These results suggest that the oxygen-independent inactivation of H. influenzae DNA at pH 7 by irradiation at 334, 365, 405 and 460 nm is caused by lesions other than pyrimidine dimers.

  9. Inactivation of prion infectivity by ionizing rays

    Energy Technology Data Exchange (ETDEWEB)

    Gominet, M. [Ionisos, ZI les Chatinieres, F01120 Dagneux (France); Vadrot, C.; Austruy, G. [Paris V University, Central Pharmacy of Hospitals, 4 avenue de l' Observatoire, F-75006, Paris (France); Darbord, J.C. [Paris V University, Central Pharmacy of Hospitals, 4 avenue de l' Observatoire, F-75006, Paris (France)], E-mail: darbord@pharmacie.univ-paris5.fr

    2007-11-15

    Inactivation of prion deposits on medical devices or prion contamination in pharmaceutical raw materials is considered as impossible by using gamma irradiation. Early, the guideline WHO/CDS/CSR/APH/2000 has described irradiation as an ineffective process. But, in 2003, S. Miekka et al. noted radiation inactivation of prions in a particular application to purify human albumin, shown by the physical denaturation of the infectious protein (PrP). The aim of our study was to determine the inactivation of prions with a scrapie model (strain C506M3) by irradiating standardised preparations. Results: Gamma irradiation was partially effective, showing a 4-5 log reduction on exposure to 50 kGy. A characteristic effect-dose curve was not observed (25, 50 and 100 kGy), only an increase in the incubation period of the murine disease (229 days with 25 kGy to 290 days with 100 kGy) compared with 170 days without irradiation. Since the inactivation was not a total one, the observed effect is significant. It is proposed that further work be undertaken with the model to investigate the application of gamma radiation known levels of prion contamination.

  10. Inactivation of prion infectivity by ionizing rays

    International Nuclear Information System (INIS)

    Gominet, M.; Vadrot, C.; Austruy, G.; Darbord, J.C.

    2007-01-01

    Inactivation of prion deposits on medical devices or prion contamination in pharmaceutical raw materials is considered as impossible by using gamma irradiation. Early, the guideline WHO/CDS/CSR/APH/2000 has described irradiation as an ineffective process. But, in 2003, S. Miekka et al. noted radiation inactivation of prions in a particular application to purify human albumin, shown by the physical denaturation of the infectious protein (PrP). The aim of our study was to determine the inactivation of prions with a scrapie model (strain C506M3) by irradiating standardised preparations. Results: Gamma irradiation was partially effective, showing a 4-5 log reduction on exposure to 50 kGy. A characteristic effect-dose curve was not observed (25, 50 and 100 kGy), only an increase in the incubation period of the murine disease (229 days with 25 kGy to 290 days with 100 kGy) compared with 170 days without irradiation. Since the inactivation was not a total one, the observed effect is significant. It is proposed that further work be undertaken with the model to investigate the application of gamma radiation known levels of prion contamination

  11. Does oxygen enhance the radiation: induced inactivation of penicillinase. Progress report, December 1, 1979-November 30, 1980

    International Nuclear Information System (INIS)

    Samuni, A.; Kalkstein, A.; Czapski, G.

    1980-01-01

    The radiation-induced inactivation of penicillinase in dilute aqueous solutions buffered with phosphate was studied, by examining enzyme radiosensitivity in the presence of various gases (He, O 2 , H 2 , N 2 O, N 2 O + O 2 ). The introduction of either N 2 O or O 2 was found to reduce the radiodamage. On the other hand H 2 or N 2 O + O 2 gas-mixture enhanced the radiosensitivity. In the presence of formate and oxygen, no enzyme inactivation was detected. The results indicated that the specific damaging efficiency of H atoms is almost four-fold higher than that of OH radical; therefore in phosphate buffer, where more than half of the free radicals are H atoms, it is the H radicals that are responsible for the majority of the damage. The superoxide radicals appeared to be completely inactive and did not contribute toward enzyme inactivation. Oxygen was shown to affect the radiosensitivity in two ways. On one side, it protected by converting e - /sub aq/ and H radicals into harmless O 2 - radicals. On the other side it increased the inactivation by enhancing the damage brought about by OH radicals (OER = 2.8). In the present case the oxygen effect of protection exceeded that of sensitization, thus giving rise to a moderate overall protection effect

  12. Molecular sizes of lichen ice nucleation sites determined by gamma radiation inactivation analysis

    International Nuclear Information System (INIS)

    Kieft, T.L.; Ruscetti, T.

    1992-01-01

    It has previously been shown that some species of lichen fungi contain proteinaceous ice nuclei which are active at temperatures as warm as −2 °C. This experiment was undertaken to determine the molecular sizes of ice nuclei in the lichen fungus Rhizoplaca chrysoleuca and to compare them to bacterial ice nuclei from Pseudomonas syringae. Gamma radiation inactivation analysis was used to determine molecular weights. Radiation inactivation analysis is based on target theory, which states that the likelihood of a molecule being inactivated by gamma rays increases as its size increases. Three different sources of ice nuclei from the lichen R. chrysoleuca were tested: field-collected lichens, extract of lichen fungus, and a pure culture of the fungus R. chrysoleuca. P. syringae strain Cit7 was used as a source of bacterial ice nuclei. Samples were lyophilized, irradiated with gamma doses ranging from 0 to 10.4 Mrads, and then tested for ice nucleation activity using a droplet-freezing assay. Data for all four types of samples were in rough agreement; sizes of nucleation sites increased logarithmically with increasing temperatures of ice nucleation activity. Molecular weights of nucleation sites active between −3 and −4 °C from the bacteria and from the field-collected lichens were approximately 1.0 × 10 6 Da. Nuclei from the lichen fungus and in the lichen extract appeared to be slightly smaller but followed the same log-normal pattern with temperature of ice nucleation activity. The data for both the bacterial and lichen ice nuclei are in agreement with ice nucleation theory which states that the size of ice nucleation sites increases logarithmically as the temperature of nucleation increases linearly. This suggests that although some differences exist between bacterial and lichen ice nucleation sites, their molecular sizes are quite similar

  13. A high-performance doped photocatalysts for inactivation of total coliforms in superficial waters using different sources of radiation.

    Science.gov (United States)

    Claro, Elis Marina Turini; Bidoia, Ederio Dino; de Moraes, Peterson Bueno

    2016-07-15

    Photocatalytic water treatment has a currently elevated electricity demand and maintenance costs, but the photocatalytic water treatment may also assist in overcoming the limitations and drawbacks of conventional water treatment processes. Among the Advanced Oxidation Processes, heterogeneous photocatalysis is one of the most widely and efficiently used processes to degrade and/or remove a wide range of polluting compounds. The goal of this work was to find out a highly efficient photocatalytic disinfection process in superficial water with different doped photocatalysts and using three sources of radiation: mercury vapor lamp, solar simulator and UV-A LED. Three doped photocatalysts were prepared, SiZnO, NSiZnO and FNSiZnO. The inactivation efficiency of each synthesized photocatalysts was compared to a TiO2 P25 (Degussa(®)) 0.5 g L(-1) control. Photolysis inactivation efficiency was 85% with UV-A LED, which is considered very high, demanding low electricity consumption in the process, whereas mercury vapor lamp and solar simulator yielded 19% and 13% inactivation efficiency, respectively. The best conditions were found with photocatalysts SiZnO, FNSiZnO and NSiZnO irradiated with UV-A LED, where efficiency exceeded 95% that matched inactivation of coliforms using the same irradiation and photocatalyst TiO2. All photocatalysts showed photocatalytic activity with all three radiation sources able to inactivate total coliforms from river water. The use of UV-A LED as the light source without photocatalyst is very promising, allowing the creation of cost-effective and highly efficient water treatment plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Estimation by radiation inactivation of the size of functional units governing Sendai and influenza virus fusion

    International Nuclear Information System (INIS)

    Bundo-Morita, K.; Gibson, S.; Lenard, J.

    1987-01-01

    The target sizes associated with fusion and hemolysis carried out by Sendai virus envelope glycoproteins were determined by radiation inactivation analysis. The target size for influenza virus mediated fusion with erythrocyte ghosts at pH 5.0 was also determined for comparison. Sendai-mediated fusion with erythrocyte ghosts at pH 7.0 was likewise inactivated exponentially with increasing radiation dose, yielding a target size of 60 +/- 6 kDa, a value consistent with the molecular weight of a single F-protein molecule. The inactivation curve for Sendai-mediated fusion with cardiolipin liposomes at pH 7.0, however, was more complex. Assuming a multiple target-single hit model, the target consisted of 2-3 units of ca. 60 kDa each. A similar target was seen if the liposome contained 10% gangliosides or if the reaction was measured at pH 5.0, suggesting that fusion occurred by the same mechanism at high and low pH. A target size of 261 +/- 48 kDa was found for Sendai-induced hemolysis, in contrast with influenza, which had a more complex target size for this activity. Sendai virus fusion thus occurs by different mechanisms depending upon the nature of the target membrane, since it is mediated by different functional units. Hemolysis is mediated by a functional unit different from that associated with erythrocyte ghost fusion or with cardiolipin liposome fusion

  15. Radiation inactivation analysis of assimilatory NADH:nitrate reductase. Apparent functional sizes of partial activities associated with intact and proteolytically modified enzyme

    International Nuclear Information System (INIS)

    Solomonson, L.P.; McCreery, M.J.; Kay, C.J.; Barber, M.J.

    1987-01-01

    Recently we demonstrated that target sizes for the partial activities of nitrate reductase were considerably smaller than the 100-kDa subunit which corresponded to the target size of the full (physiologic) activity NADH:nitrate reductase. These results suggested that the partial activities resided on functionally independent domains and that radiation inactivation may be due to localized rather than extensive damage to protein structure. The present study extends these observations and addresses several associated questions. Monophasic plots were observed over a wide range of radiation doses, suggesting a single activity component in each case. No apparent differences were observed over a 10-fold range of concentration for each substrate, suggesting that the observed slopes were not due to marked changes in Km values. Apparent target sizes estimated for partial activities associated with native enzyme and with limited proteolysis products of native enzyme suggested that the functional size obtained by radiation inactivation analysis is independent of the size of the polypeptide chain. The presence of free radical scavengers during irradiation reduced the apparent target size of both the physiologic and partial activities by an amount ranging from 24 to 43%, suggesting that a free radical mechanism is at least partially responsible for the inactivation. Immunoblot analysis of nitrate reductase irradiated in the presence of free radical scavengers revealed formation of distinct bands at 90, 75, and 40 kDa with increasing doses of irradiation rather than complete destruction of the polypeptide chain

  16. Inactivation of bacteria in sewage sludge by ionizing radiation, heat, and thermoradiation

    International Nuclear Information System (INIS)

    Brandon, J.R.; Langley, S.L.

    1976-01-01

    For purposes of animal feeding or fertilizer usage on edible crops, sewage sludge must be free of pathogenic organisms. Bacterial inactivation by a combination of heat and irradiation is shown to be effective. These results must be viewed in conjunction with those from studies of parasite egg inactivation, virus inactivation, and physical-chemical benefits in order to make a fair assessment of the value of the thermoradiation treatment compared to other possible sludge treatment processes

  17. Mechanistic and kinetic aspects of microbial inactivation in food irradiation processes

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text: A proper reaction mechanism was searched by analyzing the inactivation processes of microorganisms during food irradiation by ionizing radiation. By employing transition-state theory, it was assumed that the overall inactivation process involves a reversible sub-lethal stress and repair reactions to form reversibly injured cell or sensitized cell, which then undergoes irreversible injury leading to dead cell. A shoulder in low dose range in survival kinetics was associated with the repair process. Depending on the postulated mechanism, kinetic model equations were derived. The kinetics of cell inactivation by irradiation was expressed as depending on irradiation dose. By using experimental data in the developed model the inactivation parameters including threshold dose, radiation yield, decimal reduction dose and minimum sterilization dose were evaluated and microbial inactivation by irradiation was simulated by using the numerical values of the parameters. Developed model and model parameters may be used for the process control and the assessment of product quality in radiation preservation of food

  18. Studies on ultraviolet inactivation of air-borne microorganisms, 1

    International Nuclear Information System (INIS)

    Adachi, Shin-ichi; Doi, Hitoshi; Yamayoshi, Takao; Nunoura, Masako; Tatsumi, Noriyuki.

    1989-01-01

    UV(254nm) inactivation of air-borne bacteria in an air-controlling apparatus was studied. The appratus was composed of a chamber for vaporizing a bacterial suspension and an irradiation duct equipped with an UV lamp(GL-30). The bacterial which passed through the irradiation duct impinged on a petri dish by an air slit sampler. Selected bacteria for the experiment were Serratia marcescens, Escherichia coli, Sarcina lutea and Bacillus subtilis(spores). The apparatus was useful for the study of the susceptibility of air-borne bacteria to UV radiation. UV dose necessary to inhibit colony formation in 90% of individual bacteria in the controlled air was as low as 27 to 35% of the dose required for the agar plate method. (author)

  19. Regulatory proteins (inhibitors or activators) affect estimates of Msub(r) of enzymes and receptors by radiation inactivation

    International Nuclear Information System (INIS)

    Potier, M.; Giroux, S.

    1985-01-01

    The radiation-inactivation method allows the determination of the Msub(r) of enzymes and receptors by monitoring the decay of biological activity as a function of absorbed dose. The presence of regulatory or effector proteins (inhibitors or activators) associated with an enzyme or receptor, or released in the preparation after tissue homogenization, may affect the decay of biological activity. How the activity is affected, however, will depend on the type of inhibition (competitive or non-competitive), the inhibitor or activator concentration, the dissociation constant of the enzyme-effector system, and the effector Msub(r) relative to that of the enzyme. Since little is known on how effector proteins influence radiation inactivation of enzymes and receptors, we have considered a theoretical model in an effort to provide a framework for the interpretation of experimentally obtained data. Our model predicts that competitive and non-competitive inhibitors of enzymes could be distinguished by analysing irradiated samples with various substrate concentrations. Inhibitors will decrease whereas activators will increase the apparent target size of enzymes or receptors. (author)

  20. Response of bacteria in wastewater sludge to moisture loss by evaporation and effect of moisture content on bacterial inactivation by ionizing radiation.

    OpenAIRE

    Ward, R L; Yeager, J G; Ashley, C S

    1981-01-01

    Two studies were carried out to determine the influence of moisture content of the survival of bacteria in raw wastewater sludge. The first study involved the effect of water loss by evaporation on the bacterial population. The second used these dewatered samples to measure the effects of moisture content on the inactivation of bacteria sludge by ionizing radiation. Both studies involved survival measurements of six representative fecally associated bacteria grown separately in sterilized slu...

  1. Cell inactivation by heavy charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, E A [Lawrence Berkeley Lab., CA (United States). Cell and Molecular Biology Div.

    1992-06-01

    The inactivation of cells resulting in lethal or aberrant effects by charged particles is of growing interest. Charged particles at extremely high LET are capable of completely eliminating cell-type and cell-line differences in repair capacity. It is still not clear however whether the repair systems are inactivated, or merely that heavy-ion lesions are less repairable. Studies correlating the particle inactivation dose of radioresistant cells with intact DNA analyzed with pulse field gel electrophoresis and other techniques may be useful, but more experiments are also needed to assess the fidelity of repair. For particle irradiations between 40-100 keV/{mu}m there is however evidence for particle-induced activation of specific genes in mammalian cells, and certain repair processes in bacteria. New data are available on the inactivation of developmental processes in several systems including seeds, and cells of the nematode C. elegans. Future experimental and theoretical modeling research emphasis should focus on exploring particle-induced inactivation of endpoints assessing functionality and not just lethality, and on analyzing molecular damage and genetic effects arising in damage but non-inactivated survivors. The discrete nature of selective types of particle damage as a function of radiation quality indicates the value of accelerated ions as probes of normal and aberrant biological processes. Information obtained from molecular analyses of damage and repair must however be integrated into the context of cellular and tissue functions of the organism. (orig.).

  2. Inactivation kinetics of Escherichia coli O157:H7, Salmonella enterica Serovar Typhimurium, and Listeria monocytogenes in ready-to-eat sliced ham by near-infrared heating at different radiation intensities.

    Science.gov (United States)

    Ha, Jae-Won; Kang, Dong-Hyun

    2014-07-01

    The aim of this study was to investigate the inactivation kinetics of Salmonella enterica serovar Typhimurium, Escherichia coli O157:H7, and Listeria monocytogenes on ready-to-eat sliced ham by near-infrared (NIR) heating as a function of the processing parameter, radiation intensity. Precooked ham slices inoculated with the three pathogens were treated at different NIR intensities (ca. 100, 150, and 200 μW/cm(2)/nm). An increase in the applied radiation intensity resulted in a gradual increase of inactivation of all pathogens. The survival curves of the three pathogens exhibited both shoulder and tailing behavior at all light intensities. Among nonlinear models, the Weibull distribution and log-logistic model were used to describe the experimental data, and the statistical results (mean square error and R(2) values) indicated the suitability of the model for prediction. The log-logistic model more accurately described survival curves of the three pathogens than did the Weibull distribution at all radiation intensities. The output of this study and the proposed kinetics model would be beneficial to the deli meat industry for selecting the optimum processing conditions of NIR heating to meet the target pathogen inactivation on ready-to-eat sliced ham.

  3. Fast neutron radiation inactivation of Bacillus subtilis: Absorbed dose determination

    International Nuclear Information System (INIS)

    Song Lingli; Zheng Chun; Ai Zihui; Li Junjie; Dai Shaofeng

    2011-01-01

    In this paper, fast neutron inactivation effects of Bacillus subtilis were investigated with fission fast neutrons from CFBR-II reactor of INPC (Institute of Nuclear Physics and Chemistry) and mono-energetic neutrons from the Van de Graaff accelerator at Peking University. The method for determining the absorbed dose in the Bacillus subtilis suspension contained in test tubes is introduced. The absorbed dose, on account of its dependence on the volume and the form of confined state, was determined by combined experiments and Monte Carlo method. Using the calculation results of absorbed dose, the fast neutron inactivation effects on Bacillus subtilis were studied. The survival rates and absorbed dose curve was constructed. (authors)

  4. Effect of Coat Layers in Bacillus Subtilis Spores Resistance to Photo-Catalytic Inactivation

    Directory of Open Access Journals (Sweden)

    Luz del Carmen Huesca-Espitia

    2017-10-01

    Full Text Available Different water treatment processes (physical and chemical exist to obtain safe water for human or food industry supply. The advanced oxidation technologies are rising as a new alternative to eliminate undesirable chemicals and waterborne diseases. In this work, we analyze the power of the photo-assisted Fenton process using Fe(II/H2O2 and UV radiation (365 nm to inactivate Bacillus subtilis spores, considered among the most resistant biological structures known. Different concentrations of Fe(II, H2O2 and UV radiation (365 nm were used to inactivate wt and some coat spore mutants of B. subtilis. Wt spores of B. subtilis were inactivated after 60 min using this process. In general, all defective coat mutants were more sensitive than the wt spores and, particularly, the double mutant was 10 folds more sensitive than others being inactivated during the first 10 minutes using soft reaction conditions. Presence of Fe(II ions was found essential for spore inactivating process and, for those spores inactivated using the Fe(II/H2O2 under UV radiation process, it is suggested that coat structures are important to their resistance to the treatment process. The photo-assisted Fenton process using Fe(II, H2O2 and UV radiation (365 nm can be used to inactivate any water microorganisms with the same or less resistance that B. subtilis spores to produce safe drinking water in relatively short treatment time.

  5. Inactivation of RNA Viruses by Gamma Irradiation: A Study on Mitigating Factors

    Directory of Open Access Journals (Sweden)

    Adam J. Hume

    2016-07-01

    Full Text Available Effective inactivation of biosafety level 4 (BSL-4 pathogens is vital in order to study these agents safely. Gamma irradiation is a commonly used method for the inactivation of BSL-4 viruses, which among other advantages, facilitates the study of inactivated yet morphologically intact virions. The reported values for susceptibility of viruses to inactivation by gamma irradiation are sometimes inconsistent, likely due to differences in experimental protocols. We analyzed the effects of common sample attributes on the inactivation of a recombinant vesicular stomatitis virus expressing the Zaire ebolavirus glycoprotein and green fluorescent protein. Using this surrogate virus, we found that sample volume and protein content of the sample modulated viral inactivation by gamma irradiation but that air volume within the sample container and the addition of external disinfectant surrounding the sample did not. These data identify several factors which alter viral susceptibility to inactivation and highlight the usefulness of lower biosafety level surrogate viruses for such studies. Our results underscore the need to validate inactivation protocols of BSL-4 pathogens using “worst-case scenario” procedures to ensure complete sample inactivation.

  6. Radiation inactivation of microorganisms on food materials with different dry conditions

    International Nuclear Information System (INIS)

    Ryomoto, Yasuhisa; Ito, Hitoshi

    2001-01-01

    The effect of dry condition of food materials such as spices or herbs with grain or powder were investigated for inactivation of microorganisms by gamma-rays or electron-beams. Radiation sensitivities on endospores of Bacillus pumilus and B. cereus at polished rice, whole black pepper and glass fiber filter dried with additives of 2% peptone + 1% glycerin were almost equivalent, and D 10 values of gamma-rays were obtained to be 1.8 - 2.2 kGy for B. pumilus and 1.2 - 1.3 kGy for B. cereus, respectively. However, D 10 value was decreased to 1.6 kGy for B. pumilus and 1.0 kGy for B. cereus in white pepper powder, and increased significantly as 2.6 kGy for B. pumilus and 1.8 kGy for B. cereus in senna herb powder. In the case of B. megaterium, Enterobacter cloacae and Escherichia coli, D 10 values were increased at all of food materials even in white pepper powder compared with glass fiber filter with additives. These results are indicating that glycerin and related radical scavengers in food components protect the bacteria such as B. megaterium, Ent. cloacae and E. coli more significantly from effects of radiation than B. pumilus or B. cereus. The increase of radiation resistance of these bacteria should be responsible also to the amount of oxygen penetration in bacterial cells which dried at different conditions. On the irradiation of electron-beams, radiation resistance of all of bacteria increased more significantly than gamma-rays which depending to dose rate effects on bacteria. However, increase of radiation resistance was not observed at Aspergillus oryzae in all of food materials at different dry conditions. (author)

  7. Radiation inactivation of microorganisms on food materials with different dry conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ryomoto, Yasuhisa; Ito, Hitoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-09-01

    The effect of dry condition of food materials such as spices or herbs with grain or powder were investigated for inactivation of microorganisms by gamma-rays or electron-beams. Radiation sensitivities on endospores of Bacillus pumilus and B. cereus at polished rice, whole black pepper and glass fiber filter dried with additives of 2% peptone + 1% glycerin were almost equivalent, and D{sub 10} values of gamma-rays were obtained to be 1.8 - 2.2 kGy for B. pumilus and 1.2 - 1.3 kGy for B. cereus, respectively. However, D{sub 10} value was decreased to 1.6 kGy for B. pumilus and 1.0 kGy for B. cereus in white pepper powder, and increased significantly as 2.6 kGy for B. pumilus and 1.8 kGy for B. cereus in senna herb powder. In the case of B. megaterium, Enterobacter cloacae and Escherichia coli, D{sub 10} values were increased at all of food materials even in white pepper powder compared with glass fiber filter with additives. These results are indicating that glycerin and related radical scavengers in food components protect the bacteria such as B. megaterium, Ent. cloacae and E. coli more significantly from effects of radiation than B. pumilus or B. cereus. The increase of radiation resistance of these bacteria should be responsible also to the amount of oxygen penetration in bacterial cells which dried at different conditions. On the irradiation of electron-beams, radiation resistance of all of bacteria increased more significantly than gamma-rays which depending to dose rate effects on bacteria. However, increase of radiation resistance was not observed at Aspergillus oryzae in all of food materials at different dry conditions. (author)

  8. Virus inactivation studies using ion beams, electron and gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Smolko, Eduardo E. [Laboratorio de Polimeros, Grupo Aplicaciones Industriales, Unidad de Aplicaciones Tecnologicas y Agropecuarias, Centro Atomico Ezeiza, Comision Nacional de Energia Atomica, Pbro. Juan Gonzalez y Aragon 15, C.P. B1802AYA Ezeiza, Buenos Aires (Argentina)]. E-mail: smolko@cae.cnea.gov.ar; Lombardo, Jorge H. [Biotech S.A., C.P. 1754 Buenos Aires (Argentina)

    2005-07-01

    Known methods of virus inactivation are based on the chemical action of some substances such as acetylethylenimine, betapropiolactone, glycidalaldehyde, formaldehyde, etc. In such a process, the viral suspension should be kept at room or higher temperatures for 24-48 h. Under these conditions, physical and chemical agents act to degrade the virus antigenic proteins. On the contrary with ionizing radiations at low temperatures, the treatment does not cause such degradation allowing the study of different viral functions. In this work, particle ({alpha}, d and ss) and {gamma} irradiations were used for partial and total inactivation of Foot and Mouth Disease Virus (FMDV), Rauscher Leukemia Virus (RLV) and Herpes Simplex Virus (HSV). Obtention of the D{sub 37} dose from survival curves and the application of the target theory, permitted the determination of molecular weight of the nucleic acid genomes, EBR values and useful information for vaccine preparation. For RLV virus, a two target model of the RNA genome was deduced in accordance with biological information while from data from the literature and our own work on the structure of the scrapie prion, considering the molecular weight obtained by application of the theory, a new model for prion replication is presented, based on a trimer molecule.

  9. Virus inactivation studies using ion beams, electron and gamma irradiation

    International Nuclear Information System (INIS)

    Smolko, Eduardo E.; Lombardo, Jorge H.

    2005-01-01

    Known methods of virus inactivation are based on the chemical action of some substances such as acetylethylenimine, betapropiolactone, glycidalaldehyde, formaldehyde, etc. In such a process, the viral suspension should be kept at room or higher temperatures for 24-48 h. Under these conditions, physical and chemical agents act to degrade the virus antigenic proteins. On the contrary with ionizing radiations at low temperatures, the treatment does not cause such degradation allowing the study of different viral functions. In this work, particle (α, d and ss) and γ irradiations were used for partial and total inactivation of Foot and Mouth Disease Virus (FMDV), Rauscher Leukemia Virus (RLV) and Herpes Simplex Virus (HSV). Obtention of the D 37 dose from survival curves and the application of the target theory, permitted the determination of molecular weight of the nucleic acid genomes, EBR values and useful information for vaccine preparation. For RLV virus, a two target model of the RNA genome was deduced in accordance with biological information while from data from the literature and our own work on the structure of the scrapie prion, considering the molecular weight obtained by application of the theory, a new model for prion replication is presented, based on a trimer molecule

  10. Radiation inactivation analysis of chloroplast CF0-CF1 ATPase

    International Nuclear Information System (INIS)

    Wang, M.Y.; Chien, L.F.; Pan, R.L.

    1988-01-01

    Radiation inactivation technique was employed to measure the functional size of adenosine triphosphatase of spinach chloroplasts. The functional size for acid-base-induced ATP synthesis was 450 +/- 24 kilodaltons; for phenazine methosulfate-mediated ATP synthesis, 613 +/- 33 kilodaltons; and for methanol-activated ATP hydrolysis, 280 +/- 14 kilodaltons. The difference (170 +/- 57 kilodaltons) between 450 +/- 24 and 280 +/- 14 kilodaltons is explained to be the molecular mass of proton channel (coupling factor 0) across the thylakoid membrane. Our data suggest that the stoichiometry of subunits I, II, and III of coupling factor 0 is 1:2:15. Ca2+- and Mg2+-ATPase activated by methanol, heat, and trypsin digestion have a similar functional size. However, anions such as SO 3 (2-) and CO 3 (2-) increased the molecular mass for both ATPase's (except trypsin-activated Mg2+-ATPase) by 12-30%. Soluble coupling factor 1 has a larger target size than that of membrane-bound. This is interpreted as the cold effect during irradiation

  11. Inactivation of carbenicillin by some radioresistant mutant strains

    International Nuclear Information System (INIS)

    Zahiera, T.S.; Mahmoud, M.I.; Bashandy, A.A.

    1990-01-01

    Sensitivity test of five bacterial species to carbenicillin was performed microbiologically. The bacterial species were previously isolated from high level radiation environment. All the studied species could either highly decrease the antibiotic activity or even inactivate it completely. Detailed study of the inactivation of carbenicillin by the radioresistant mutant strains B. Laterosporus, B. firmus and M. roseus was performed, in the present study. Using high performace liquid chromatography technique. The gram-positive m. roseus mutant strain seemed to be the most active mutant in degrading the antibiotic. The left over of the antibiotic attained a value of 9% of the original amount after 14 day incubation of the antibiotic with this mutant strain, while the value of the left over reached 36% and 32% after the same period of incubation with the mutants B. laterosporus and B. firmus respectively. In the case of bacillus species, the degradation of the antibiotic started at the same moment when it was added to the bacterial cultures. This fact may indicate that the inactivation of the studied antibiotic by these bacillus species was due to extracellular enzymes extracted rapidly in the surrounding medium. In the case of M. roseus the inactivation process started later. after the addition of the antibiotic to the mutant culture

  12. Inactivation of Bacterial Spores and Vegetative Bacterial Cells by Interaction with ZnO-Fe2O3 Nanoparticles and UV Radiation

    Directory of Open Access Journals (Sweden)

    José Luis Sánchez-Salas

    2017-09-01

    Full Text Available ZnO-Fe2O3 nanoparticles (ZnO-Fe NPs were synthesized and characterized by scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDS and dynamic light scattering (DLS. The generation of chemical reactive hydroxyl radicals (•OH was measured spectrophotometrically (UV-Vis by monitoring of p-nitrosodimethylaniline (pNDA bleaching. Inactivation of E. coli and B. subtilis spores in the presence of different concentrations of ZnO-Fe NPs, under UV365nm or visible radiation, was evaluated. We observed the best results under visible light, of which inactivation of E. coli of about 90% was accomplished in 30 minutes, while B. subtilis inactivation close to 90% was achieved in 120 minutes. These results indicate that the prepared photocatalytic systems are promising for improving water quality by reducing the viability of water-borne microorganisms, including bacterial spores.

  13. Factors affecting the In Vitro inactivation of adolase by x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Quintiliani, M.; Boccacci, M.

    1962-08-15

    The influence of urea and of various protective compounds on the in vitro inactivation of aldolase by x rays was studied. Low concentrations of urea protect the enzyme from the inactivation, whereas high concentrations, able to induce an unfolding of the protein molecule, increase the degree inactivation by a given dose of radiation. Cysteamine, cystamine, aminoethyl-isothio-uronium, and glutathione, all protect the aldolase in solution from the inactivation by x rays. Cystamine is as protective as cysteamine, in equimolecular concentrations, when high inactivation levels are reached. No protection can be demonstrated when the aldolase, after incubation with the tested compounds, is precipitated and redissolved in a new medium before irradiation. Nevertheless, with S/sup 35/ labeled cystamine, it can be demonstrated that at least seven residues of cysteamine are bound to each aldolase molecule. The protective power of glutathione is reduced by a factor of about 0.2 in the presence of 4 M urea. The possible implications of these findings are discussed. (auth)

  14. Study on security of sterile and non-pyrogenic disposable wares for medical use. Inactivation of endotoxins by γ-ray radiation in the presence of various drugs

    International Nuclear Information System (INIS)

    Hosobuchi, Kazunari; Tanamoto, Kenichi; Haijima, Yuji

    1997-01-01

    To efficiently inactivate endotoxins, γ-ray radiation to disposable wares for medical use was conducted using 185TBq 60 Co-radiation system in a medium added with various drugs. Endotoxin derived from E. coli R3F653 was used as the subject. Hydrogen peroxide solution, ethyl alcohol, or sodium hydrochloride were added to the basal medium. The activity of endotoxin was determined by limulus test with toxicolor system. The activity was markedly decreased by standing in 0.03% sodium hydrochloride solution for several days, whereas it was little affected in solutions of other two drugs at any concentration. However, γ-ray radiation in the medium added with either of those drugs caused to reduce the endotoxin activity dose-dependently. Such reducing effects by γ-ray radiation were most marked in the medium containing Na-hydrochloride at 0.03 or 0.3%, suggesting that there might be interaction of γ-ray and Na-hydrochloride. (M.N.)

  15. Method of inactivating reproducible forms of mycoplasma in biological preparations

    International Nuclear Information System (INIS)

    Veber, P.; Jurmanova, K.; Lesko, J.; Hana, L.; Veber, V.

    1978-01-01

    Inactivation of mycoplasms in biological materials was achieved using gamma radiation with a dose rate of 1x10 4 to 5x10 6 rads/h for 1 to 250 hours. The technique is advantageous for allowing the inactivation of the final form of products (tablets, vaccines, etc.). (J.P.)

  16. Radionuclides in cigarettes may lead to carcinogenesis via p16INK4a inactivation

    International Nuclear Information System (INIS)

    Prueitt, Robyn L.; Goodman, Julie E.; Valberg, Peter A.

    2009-01-01

    It is widely accepted that tobacco smoke is responsible for the vast majority of lung cancers worldwide. There are many known and suspected carcinogens present in cigarette smoke, including α-emitting radioisotopes. Epidemiologic studies have shown that increased lung cancer risk is associated with exposure to ionizing radiation, and it is estimated that the majority of smoking-induced lung cancers may be at least partly attributable to the inhaled and deposited radiation dose from radioisotopes in the cigarette smoke itself. Recent research shows that silencing of the tumor suppressor gene p16 INK4a (p16) by promoter methylation plays a role in smoking-related lung cancer. Inactivation of p16 has also been associated with lung cancer incidence in radiation-exposed workers, suggesting that radionuclides in cigarette smoke may be acting with other compounds to cause smoking-induced lung cancer. We evaluated the mechanism of ionizing radiation as an accepted cause of lung cancer in terms of its dose from tobacco smoke and silencing of p16. Because both radiation and cigarette smoking are associated with inactivation of p16, and p16 inactivation has been shown to play a major role in carcinogenesis, ionizing radiation from cigarette smoke likely plays a role in lung cancer risk. How large a role it plays, relative to chemical carcinogens and other modes of action, remains to be elucidated

  17. The Efficiency of UVC Radiation in the Inactivation of Listeria monocytogenes on Beef-Agar Food Models

    Directory of Open Access Journals (Sweden)

    Christian James

    2015-01-01

    Full Text Available The aim of this study is to evaluate the eff ect of meat content and surface smoothness on the deactivation of Listeria monocytogenes in beef-agar food models achieved by shortwave ultraviolet (UVC light. Food models with various meat contents were made using chopped beef slices and agar solution. Prepared models together with a Listeria selective agar (LSA plate and a slice of cooked beef were inoculated with L. monocytogenes and then exposed to UVC light. Population of Listeria reduced to below the level of detection on the LSA plates. As the content of beef in the beef-agar models increased, more L. monocytogenes cells survived. Survival was greatest on the treated cooked slice of beef. To bett er understand the effect of surface irregularities, a white light interferometer was used to analyse the surface smoothness of beef-agar media and LSA plates. No correlation was observed between the surface roughness of seven out of nine types of produced beef-agar media and the degree of inactivation resulting from UVC radiation at the given dose, whereas, less bacterial cells were killed as beef content of the food models increased. The findings of the current study show that the chemical composition of the treated sample also plays an important role in pathogen resistance and survival, meaning that two samples with similar surface irregularities but diff erent chemical composition might produce very diff erent inactivation results when exposed to UVC light.

  18. Modelling and application of the inactivation of microorganism

    International Nuclear Information System (INIS)

    Oğuzhan, P.; Yangılar, F.

    2013-01-01

    Prevention of consuming contaminated food with toxic microorganisms causing infections and consideration of food protection and new microbial inactivation methods are obligatory situations. Food microbiology is mainly related with unwanted microorganisms spoiling foods during processing and transporting stages and causing diseases. Determination of pathogen microorganisms is important for human health to define and prevent dangers and elongate shelf life. Inactivation of pathogen microorganisms can provide food security and reduce nutrient losses. Microbial inactivation which is using methods of food protection such as food safety and fresh. With this aim, various methods are used such as classical thermal processes (pasteurisation, sterilisation), pressured electrical field (PEF), ionised radiation, high pressure, ultrasonic waves and plasma sterilisation. Microbial inactivation modelling is a secure and effective method in food production. A new microbiological application can give useful results for risk assessment in food, inactivation of microorganisms and improvement of shelf life. Application and control methods should be developed and supported by scientific research and industrial applications

  19. Studies on the inactivation of human parvovirus 4.

    Science.gov (United States)

    Baylis, Sally A; Tuke, Philip W; Miyagawa, Eiji; Blümel, Johannes

    2013-10-01

    Human parvovirus 4 (PARV4) is a novel parvovirus, which like parvovirus B19 (B19V) can be a contaminant of plasma pools used to prepare plasma-derived medicinal products. Inactivation studies of B19V have shown that it is more sensitive to virus inactivation strategies than animal parvoviruses. However, inactivation of PARV4 has not yet been specifically addressed. Treatment of parvoviruses by heat or low-pH conditions causes externalization of the virus genome. Using nuclease treatment combined with real-time polymerase chain reaction, the extent of virus DNA externalization was used as an indirect measure of the inactivation of PARV4, B19V, and minute virus of mice (MVM) by pasteurization of albumin and by low-pH treatment. Infectivity studies were performed in parallel for B19V and MVM. PARV4 showed greater resistance to pasteurization and low-pH treatment than B19V, although PARV4 was not as resistant as MVM. There was a 2- to 3-log reduction of encapsidated PARV4 DNA after pasteurization and low-pH treatment. In contrast, B19V was effectively inactivated while MVM was stable under these conditions. Divalent cations were found to have a stabilizing effect on PARV4 capsids. In the absence of divalent cations, even at neutral pH, there was a reduction of PARV4 titer, an effect not observed for B19V or MVM. In the case of heat treatment and incubation at low pH, PARV4 shows intermediate resistance when compared to B19V and MVM. Divalent cations seem important for stabilizing PARV4 virus particles. © 2013 American Association of Blood Banks.

  20. Inactivation disinfection property of Moringa Oleifera seed extract: optimization and kinetic studies

    Science.gov (United States)

    Idris, M. A.; Jami, M. S.; Hammed, A. M.

    2017-05-01

    This paper presents the statistical optimization study of disinfection inactivation parameters of defatted Moringa oleifera seed extract on Pseudomonas aeruginosa bacterial cells. Three level factorial design was used to estimate the optimum range and the kinetics of the inactivation process was also carried. The inactivation process involved comparing different disinfection models of Chicks-Watson, Collins-Selleck and Homs models. The results from analysis of variance (ANOVA) of the statistical optimization process revealed that only contact time was significant. The optimum disinfection range of the seed extract was 125 mg/L, 30 minutes and 120rpm agitation. At the optimum dose, the inactivation kinetics followed the Collin-Selleck model with coefficient of determination (R2) of 0.6320. This study is the first of its kind in determining the inactivation kinetics of pseudomonas aeruginosa using the defatted seed extract.

  1. Study on the specificity of yeast cell damage by high-intensity UV radiation (266nm)

    International Nuclear Information System (INIS)

    Burchuladze, T.G.; Frajkin, G.Ya.; Rubin, L.B.

    1981-01-01

    Peculiarities of photoreactivation and photoprotection of the Candida guilliermondii and Candida utilis yeast cells, irradiated with far and near ultraviolet radiation, are considered. New results on the study of the dependence of the cells inactivation degree on the intensity of ultraviolet radiation are presented. The impulse rate density at 266 nm reached 10 10 Ix m -2 xs -1 at the impulse duration of 10 -8 s. Survival curves of the yeast cells during their irradiation with ultraviolet radiation of 266 nm and 254 nm are given. It is shown that with the increase of the irradiation intensity of 266 nm the rates and final levels of photoreactivation decrease. Under the effect of ultraviolet irradiation of high intensity contribution of pyrimidine dimers to the cell inactivation decreases [ru

  2. Role of DNA damage in ultraviolet (313 nm) inactivation of yeasts Saccharomyces cerevisial

    International Nuclear Information System (INIS)

    Pospelov, M.E.; Ivanova, Eh.V.; Frajkin, G.Ya.

    1984-01-01

    Relative contribution of photoinhibition of cell respiration and DNA damage to lethal effect, caused by ultraviolet (UV) radiation of 313 m in certain yeast strains Saccharomyces cerevisiae, has been studied. It is shown that cell inactivation is mainly conditioned by DNA photodamage. When studying photoreactivation it has been established, that dimers of pyrimidine bases are the main lethal photoproducts, formed in DNA Under the effect of UV-radiation of 313 nm

  3. Inactivation of cephapirin sodium by the radiation-resistant strain micrococcus roseus

    International Nuclear Information System (INIS)

    Tawfik, Z.S.

    1991-01-01

    The susceptibility of the radioresistant mutants B. firmus, B.megaterium, B, laterosporus, M. roseus and M. luteus to the betalactam antibiotic cephapirin sodium was estimated using the microbiological assay technique. All the studied species were found to be sensitive to the concerned antibiotic except the radioresistant mutant M. rosues. Accordingly, the inactivation of betalactam, antibiotic cephapirin sodium, by this mutant strain was interesting to be investigated. A microbiological assay was used to determine the potency of the studied antibiotic and its degraded compound produced after its incubation with the above mentioned mutant strain for different periods of time in basal salt mineral medium.Results obtained for antibiotic samples extracted after 7-day incubation with the mutant strain indicated that the antibiotic was metabolized by this mutant strain to inactive products. These results were confirmed by chromatograms of the antibiotic samples, extracted from cultures with the mutant incubated for zero, 7 and 14 days. Degraded products were eluted at retention time values different from those observed for the noninucubated antibiotic samples. The inactivation of the antibiotic by the studied mutant starin seems to be due to extracellular enzymes in the surrounding medium.1 tab

  4. Calmodulin-activated cyclic nucleotide phosphodiesterase from brain. Relationship of subunit structure to activity assessed by radiation inactivation

    International Nuclear Information System (INIS)

    Kincaid, R.L.; Kemdner, E.; Manganiello, V.C.; Osborne, J.C.; Vaughan, M.

    1981-01-01

    The apparent target sizes of the basal and calmodulin-dependent activities of calmodulin-activated phosphodiesterase from bovine brain were estimated using target theory analysis of data from radiation inactivation experiments. Whether crude or highly purified samples were irradiated, the following results were obtained. Low doses of radiation caused a 10 to 15% increase in basal activity, which, with further irradiation, decayed with an apparent target size of approx.60,000 daltons. Calmodulin-dependent activity decayed with an apparent target size of approx.105,000 daltons. The percentage stimulation of enzyme activity by calmodulin decreased markedly as a function of radiation dosage. These observations are consistent with results predicted by computer-assisted modeling based on the assumptions that: 1) the calmodulin-activated phosphodiesterase exists as a mixture of monomers which are fully active in the absence of calmodulin and dimers which are inactive in the absence of calmodulin; 2) in the presence of calmodulin, a dimer exhibits activity equal to that of two monomers; 3) on radiation destruction of a dimer, an active monomer is generated. This monomer-dimer hypothesis provides a plausible explanation for and definition of basal and calmodulin-dependent phosphodiesterase activity

  5. Nanoscale Structural and Mechanical Analysis of Bacillus anthracis Spores Inactivated with Rapid Dry Heating

    Science.gov (United States)

    Felker, Daniel L.; Burggraf, Larry W.

    2014-01-01

    Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating. PMID:24375142

  6. Photodynamic inactivation of conidia of the fungus Colletotrichum abscissum on Citrus sinensis plants with methylene blue under solar radiation.

    Science.gov (United States)

    Gonzales, Júlia C; Brancini, Guilherme T P; Rodrigues, Gabriela B; Silva-Junior, Geraldo José; Bachmann, Luciano; Wainwright, Mark; Braga, Gilberto Ú L

    2017-11-01

    Antimicrobial photodynamic treatment (APDT) is a promising light based approach to control diseases caused by plant-pathogenic fungi. In the present study, we evaluated the effects of APDT with the phenothiazinium photosensitizer methylene blue (MB) under solar radiation on the germination and viability of conidia of the pathogenic fungus Colletotricum abscissum (former Colletotrichum acutatum sensu lato). Experiments were performed both on petals and leaves of sweet orange (Citrus sinensis) in different seasons and weather conditions. Conidial suspensions were deposited on the leaves and petals surface, treated with the PS (25 or 50μM) and exposed to solar radiation for only 30min. The effects of APDT on conidia were evaluated by counting the colony forming units recovered from leaves and petals and by direct evaluating conidial germination on the surface of these plant organs after the treatment. To better understand the mechanistic of conidial photodynamic inactivation, the effect of APDT on the permeability of the conidial plasma membrane was assessed using the fluorescent probe propidium iodide (PI) together with flow cytometry and fluorescence microscopy. APDT with MB and solar exposure killed C. abscissum conidia and prevented their germination on both leaves and petals of citrus. Reduction of conidial viability was up to three orders of magnitude and a complete photodynamic inactivation was achieved in some of the treatments. APDT damaged the conidial plasma membrane and increased its permeability to PI. No damage to sweet orange flowers or leaves was observed after APDT. The demonstration of the efficacy of APDT on the plant host represents a further step towards the use of the method for control phytopathogens in the field. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Size of the plasma membrane H+-ATPase from Neurospora crassa determined by radiation inactivation and comparison with the sarcoplasmic reticulum Ca2+-ATPase from skeletal muscle

    International Nuclear Information System (INIS)

    Bowman, B.J.; Berenski, C.J.; Jung, C.Y.

    1985-01-01

    Using radiation inactivation, the authors have measured the size of the H + -ATPase in Neurospora crassa plasma membranes. Membranes were exposed to either high energy electrons from a Van de Graaff generator or to gamma irradiation from 60 Co. Both forms of radiation caused an exponential loss of ATPase activity in parallel with the physical destruction of the Mr = 104,000 polypeptide of which this enzyme is composed. By applying target theory, the size of the H + -ATPase in situ was found to be approximately 2.3 X 10(5) daltons. They also used radiation inactivation to measure the size of the Ca 2+ -ATPase of sarcoplasmic reticulum and got a value of approximately 2.4 X 10(5) daltons, in agreement with previous reports. By irradiating a mixture of Neurospora plasma membranes and rabbit sarcoplasmic reticulum, they directly compared the sizes of these two ATPases and found them to be essentially the same. The authors conclude that both H + -ATPase and Ca 2+ -ATPase are oligomeric enzymes, most likely composed of two approximately 100,000-dalton polypeptides

  8. Inactivation of E. Coli in Water Using Photocatalytic, Nanostructured Films Synthesized by Aerosol Routes

    Directory of Open Access Journals (Sweden)

    Pratim Biswas

    2013-03-01

    Full Text Available TiO2 nanostructured films were synthesized by an aerosol chemical vapor deposition (ACVD method with different controlled morphologies: columnar, granular, and branched structures for the photocatalytic inactivation of Escherichia coli (E. coli in water. Effects of film morphology and external applied voltage on inactivation rate were investigated. As-prepared films were characterized using scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffractometry (XRD, and UV-VIS. Photocatalytic and photoelectrochemical inactivation of E. coli using as-prepared TiO2 films were performed under irradiation of UVA light (note: UVA has a low efficiency to inactivate E. coli. Inactivation rate constants for each case were obtained from their respective inactivation curve through a 2 h incubation period. Photocatalytic inactivation rate constants of E. coli are 0.02/min (using columnar films, and 0.08/min (using branched films. The inactivation rate constant for the columnar film was enhanced by 330% by applied voltage on the film while that for the branched film was increased only by 30%. Photocatalytic microbial inactivation rate of the columnar and the branched films were also compared taking into account their different surface areas. Since the majority of the UV radiation that reaches the Earth’s surface is UVA, this study provides an opportunity to use sunlight to efficiently decontaminate drinking water.

  9. Effect of electron-beams irradiation for inactivation of microorganisms on spices

    International Nuclear Information System (INIS)

    Ito, Hitoshi; Islam, Md.S.

    1993-01-01

    Total aerobic bacteria in spices used in this study were determined to be 1x10 6 to 6x10 7 per gram. A study on the inactivation of microorganisms in spices showed that doses of 6 to 9 kGy of EB (electron-beams) or gamma irradiation were required to reduce the total aerobic bacteria tobelow 10 3 per gram. However, a little increase of resistance was observed on the inactivation of total aerobic bacteria in many spices in case of EB irradiation. These difference of radiation sensitivities between EB and gamma-rays was explained by dose rate effect on oxidation damage to microorganisms from the results of radiation sensitivities of Bacillus pumilus and B. megaterium spores at dry conditions. On the other hand, these high dose rate of EB irradiation suppressed the increase of peroxide values in spices at high dose irradiation up to 80 kGy. Components of essential oils in spices were not changed even irradiated up to 50 kGy with EB and gamma-rays. (author)

  10. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    International Nuclear Information System (INIS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-01-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as · OH and ONOO - . In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  11. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Rodacka, Aleksandra, E-mail: olakow@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Serafin, Eligiusz, E-mail: serafin@biol.uni.lodz.p [Laboratory of Computer and Analytical Techniques, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Puchala, Mieczyslaw, E-mail: puchala@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland)

    2010-09-15

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as {sup {center_dot}}OH and ONOO{sup -}. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  12. Inactivation of Staphylococcus aureus and Enterococcus faecalis by a direct-current, cold atmospheric-pressure air plasma microjet.

    Science.gov (United States)

    Tian, Ye; Sun, Peng; Wu, Haiyan; Bai, Na; Wang, Ruixue; Zhu, Weidong; Zhang, Jue; Liu, Fuxiang

    2010-07-01

    A direct-current, cold atmospheric-pressure air plasma microjet (PMJ) was performed to inactivate Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis) in air. The process of sterilization and morphology of bacteria was observed. We wish to know the possible inactivation mechanisms of PMJ and explore a potential application in dental and other temperature sensitive treatment. In this study, we employed a direct current, atmospheric pressure, cold air PMJ to inactivate bacterias. Scanning electron microscopy was employed to evaluate the morphology of S. aureus and showed rupture of cell walls after the plasma treatment and Optical emission spectrum (OES) were used to understand the possible inactivation mechanisms of PMJ. The inactivation rates could reach 100% in 5 min. When the distance between the exit nozzle of the PMJ device and Petri dish was extended from 1 cm to 3 cm, effective inactivation was also observed with a similar inactivation curve. The inactivation of bacteria is attributed to the abundant reactive oxygen and nitrogen species, as well as ultroviolet radiation in the plasma. Different life spans and defensibilities of these killing agents may hold the key to understanding the different inactivation curves at different treatment distances.

  13. Studies on disappearance and inactivation of viruses in sewage, 2

    International Nuclear Information System (INIS)

    Yano, Kazuyoshi; Yabuuchi, Kiyoshi; Taguchi, Fumiaki.

    1985-01-01

    Methods of inactivating viruses in wastewater were studied. Polio visuses were added to the distilled water until the number of viruses reached 10sup(6.8) TCID 50 /ml, and liquid layer was 2 mm. The inactivation rate of viruses was determined at each time of ultraviolet (U.V.) irradiation (from 0.425 x 10 4 μw/cm 2 to 10.0 x 10 4 μw/cm 2 ). A linear correlation was seen between the inactivation rate of viruses and the time of U.V. irradiation obtained from logarithmic transformation. The irradiation time required for inactivation of 99.9% viruses was 15 sec when U.V. intensity was 10.0 x 10 4 μw/cm 2 and 9.6 min when it was 0.423 x 10 4 μw/cm 2 . When the U.V. intensity was 0.425 x 10 4 μw/cm 2 , the time required for inactivation was dependent on the number of viruses (120 sec in cases of 10sup(3.8) TCID 50 /ml of viruses and 720 sec in cases of 10sup(7.8) TCID 50 /ml of viruses). When viruses were added to the distilled water until the number reached 10sup(5.8) TCID 50 /ml, and the depth of water was designated as 2 mm, 10 cm, and 15 cm, the U.V. permeability was more than 89% at any depth of water, and a sixteen-min U.V. irradiation inactivated more than 99.99% of viruses. When polio viruses were added to triple step-treated water until the number reached 10sup(5.3) TCID 50 /ml, the irradiation time required for inactivation of more than 99.99% was one min when the U.V. intensity was 10.0 x 10 4 μw/cm 2 and 20 min when it was 0.425 x 10 4 μw/cm 2 . (Namekawa, K.)

  14. Microwave-Irradiation-Assisted HVAC Filtration for Inactivation of Viral Aerosols (Postprint)

    Science.gov (United States)

    2012-02-01

    Baggiani, A. and Senesi, S. (2004). Effect of Microwave Radiation on Bacillus subtilis Spores . J. Appl. Microbiol. 97: 1220–1227. Damit, B., Lee, C.N...AFRL-RX-TY-TP-2012-0020 MICROWAVE-IRRADIATION-ASSISTED HVAC FILTRATION FOR INACTIVATION OF VIRAL AEROSOLS POSTPRINT Myung-Heui Woo and...12-APR-2011 -- 11-DEC-2011 Microwave Irradiation-Assisted HVAC Filtration for Inactivation of Viral Aerosols (POSTPRINT) FA8650-06-C-5913 0602102F

  15. Radiation inactivation of animal viruses in culture fluid and sewage; a case study

    International Nuclear Information System (INIS)

    Groneman, A.F.; Frenkel, S.; Terpstra, C.

    1977-01-01

    Inactivation studies of different animal viruses were performed with gamma irradiation from a 60 Co-source to evaluate the technical and economic feasibility of sterilization of sewage of a veterinary institute involved in research on virus diseases and the production of virus vaccines. The D 10 values for swine fever virus, foot-and-mouth disease virus (FMDV) and swine vesicular disease virus (SVDV) irradiated in culture medium at 0degC were 1.8, 4.5, and 5.9 kGy (0.18, 0.45, and 0.59 Mrad), respectively. Suspensions of SVDV and FMDV were mixed with raw sludge and irradiated at 8degC. Raw sludge had a protecting effect on FMDV, if compared to culture fluid, increasing the D 10 value significantly to 6.5 kGy (0.65 Mrad). No similar protective effect was observed in the case of SVDV. Addition of 0.2 M NaBr did not significantly increase the radiosensitivity of these two viruses. The technical and economic feasibility for sterilization of sewage and sludge by 60 Co-gamma irradiation are discussed

  16. Visible optical radiation generates bactericidal effect applicable for inactivation of health care associated germs demonstrated by inactivation of E. coli and B. subtilis using 405-nm and 460-nm light emitting diodes

    Science.gov (United States)

    Hönes, Katharina; Stangl, Felix; Sift, Michael; Hessling, Martin

    2015-07-01

    The Ulm University of Applied Sciences is investigating a technique using visible optical radiation (405 nm and 460 nm) to inactivate health-hazardous bacteria in water. A conceivable application could be point-of-use disinfection implementations in developing countries for safe drinking water supply. Another possible application field could be to provide sterile water in medical institutions like hospitals or dental surgeries where contaminated pipework or long-term disuse often results in higher germ concentrations. Optical radiation for disinfection is presently mostly used in UV wavelength ranges but the possibility of bacterial inactivation with visible light was so far generally disregarded. One of the advantages of visible light is, that instead of mercury arc lamps, light emitting diodes could be used, which are commercially available and therefore cost-efficient concerning the visible light spectrum. Furthermore they inherit a considerable longer life span than UV-C LEDs and are non-hazardous in contrast to mercury arc lamps. Above all there are specific germs, like Bacillus subtilis, which show an inactivation resistance to UV-C wavelengths. Due to the totally different deactivation mechanism even higher disinfection rates are reached, compared to Escherichia coli as a standard laboratory germ. By 460 nm a reduction of three log-levels appeared with Bacillus subtilis and a half log-level with Escherichia coli both at a dose of about 300 J/cm². By the more efficient wavelength of 405 nm four and a half log-levels are reached with Bacillus subtilis and one and a half log-level with Escherichia coli also both at a dose of about 300 J/cm². In addition the employed optical setup, which delivered a homogeneous illumination and skirts the need of a stirring technique to compensate irregularities, was an important improvement compared to previous published setups. Evaluated by optical simulation in ZEMAX® the designed optical element provided proven

  17. Sunlight inactivation of Escherichia coli in waste stabilization microcosms in a sahelian region (Ouagadougou, Burkina Faso).

    Science.gov (United States)

    Maïga, Ynoussa; Denyigba, Kokou; Wethe, Joseph; Ouattara, Aboubakar Sidiki

    2009-02-09

    Experiments on sunlight inactivation of Escherichia coli were conducted from November 2006 to June 2007 in eight outdoors microcosms with different depths filled with maturation pond wastewater in order to determine pond depth influence on sunlight inactivation of E. coli. The long-term aim was to maximize sunlight inactivation of waterborne pathogens in waste stabilization ponds (WSPs) in sahelian regions where number of sunny days enable longer exposure of wastewater to sunlight. The inactivation was followed during daylight from 8.00 h to 17.00 h and during the night. Sunlight inactivation rates (K(S)), as a function of cumulative global solar radiation (insolation), were 16 and 24 times higher than the corresponding dark inactivation (K(D)) rates, respectively in cold and warm season. In warm season, E. coli was inactivated far more rapidly. Inactivation of E. coli follows the evolution of radiation during the day. In shallow depth microcosms, E. coli was inactivated far more rapidly than in high depth microcosms. The physical chemical parameters [pH, dissolved oxygen (DO)] of microcosms water were higher in shallow depth microcosms than in high depth microcosms suggesting a synergistic effect of sunlight and these parameters to damage E. coli. To increase the efficiency of the elimination of waterborne bacteria, the use of maturation ponds with intermediate depths (0.4m) would be advisable in view of the high temperatures and thus evaporation recorded in sahelian regions.

  18. Effects of heavy ions on inactivation and DNA double strand breaks in Deinococcus radiodurans R1.

    Science.gov (United States)

    Zimmermann, H; Schafer, M; Schmitz, C; Bucker, H

    1994-10-01

    Inactivation and double strand break (dsb) induction after heavy ion irradiation were studied in stationary phase cells of the highly radiation resistant bacterium Deinococcus radiodurans R1. There is evidence that the radiation sensitivity of this bacterium is nearly independent on energy in the range of up to 15 MeV/u for lighter ions (Ar). The responses to dsb induction for charged particles show direct relationship between increasing radiation dose and residual intact DNA.

  19. The inactivation of hepatitis A virus and other model viruses by UV irradiation

    International Nuclear Information System (INIS)

    Battigelli, D.A.; Sobsey, M.D.; Lobe, D.C.

    1993-01-01

    Ultraviolet light is an attractive alternative to chemical disinfection of water, but little is known about its ability to inactivate important waterborne pathogens such as hepatitis A virus. Therefore, the sensitivity of HAV strain HM-175, coxsackievirus type B-5, rotavirus strain SA-11, and bacteriophages MS2 and φX174 to ultraviolet radiation of 254 nm wavelength in phosphate buffered water was determined. Purified stocks of the viruses were combined and exposed to collimated UV radiation in a stirred reactor for a total dose of up to 40 mW sec/cm 2 . Virus survival kinetics were determined from samples removed at dose intervals. The results of these experiments indicate that UV radiation can effectively inactivate viruses of public health concern in drinking water. (author)

  20. Instrument for Study of Microbial Thermal Inactivation

    Science.gov (United States)

    Dickerson, R. W.; Read, R. B.

    1968-01-01

    An instrument was designed for the study of thermal inactivation of microorganisms using heating times of less than 1 sec. The instrument operates on the principle of rapid automatic displacement of the microorganism to and from a saturated steam atmosphere, and the operating temperature range is 50 to 90 C. At a temperature of 70 C, thermometric lag (time required to respond to 63.2% of a step change) of the fluid sample containing microorganisms was 0.12 sec. Heating time required to heat the sample to within 0.1 C of the exposure temperature was less than 1 sec, permitting exposure periods as brief as 1 sec, provided the proper corrections are made for the lethal effect of heating. The instrument is most useful for heat exposure periods of less than 5 min, and, typically, more than 500 samples can be processed for microbial inactivation determinations within an 8-hr period. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 7 Fig. 8 PMID:4874466

  1. Inactivation of Coxiella burnetti by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Scott, G.H.; McCaul, T.F.; Williams, J.C.

    1989-01-01

    The gamma radiation inactivation kinetics for Coxiella burnetii at - 79 C were exponential. The radiation dose needed to reduce the number of infective C. burnetii by 90% varied from 0-64 to 1.2 kGy depending on the phase of hte micro-organism, purity of the culture and composition of suspending menstruum. The viability of preparations containing C. burnetti was completely abolished by 10 kGy without diminishing antigenicity or ability to elicit a protective immune response in vaccinated mice. Immunocytochemical examinations using monoclonal antibodies and electron microscopy demonstrated that radiation doses of 20 kGy did not alter cell-wall morphology or cell-surface antigenic epitopes.

  2. Cell extracts of propionic acid bacteria reactivate cells of Escherichia coli inactivated by ultraviolet radiation

    International Nuclear Information System (INIS)

    Vorob'eva, L.I.; Nikitenko, G.V.; Khodzhaev, E.Yu.; Ponomareva, G.M.

    1994-01-01

    Cell extracts of three Propionibacterium shermanii strains were shown to exert a reactivating effect on cells of E. coli AB 1157 inactivated by ultraviolet radiation. The reactivating effect was revealed after both preincubation and postincubation of the irradiated cells with the extracts. The effect increased with a decrease of the survival rate within the range of 1.8-0.006%. The protective factor (or factors) is dialyzable and thermolabile; it was detected both in the fraction of soluble proteins and in the fraction of nucleoproteins and nucleic acids. The protective properties of dialyzate disappear after incubation with proteinase K and trypsin, decrease after incubation with α-amylase, deoxyribonuclease-1, or ribonuclease, and do not change under the influence of lipase. The reactivating factor is believed to be of a polypeptide nature

  3. Study of genetic effects of high energy radiations with different ionizing capacities on extracellular phages.

    Science.gov (United States)

    Bresler, S E; Kalinin, V L; Kopylova, Y U; Krivisky, A S; Rybchin, V N; Shelegedin, V N

    1975-07-01

    The inactivating and mutagenic action of high-energy radiations with different ionizing capacities (gamma-rays, protons, alpha-particles and accelerated ions of 12C and 20Ne) was studied by using coliphages lambda11 and SD as subjects. In particular the role of irradiation conditions (broth suspension, pure buffer, dry samples) and of the host functions recA, exrA and polA was investigated. The dose-response curve of induced mutagenesis was studied by measuring the yield of vir mutants in lambda11 and plaque mutants in SD. The following results were obtained. (1) The inactivation kinetics of phages under the action of gamma-rays and protons was first order to a survival of 10(-7). Heavy ions also showed exponential inactivation kinetics to a survival of 10(-4). At higher doses of 20Ne ion bombardment some deviation from one-hit kinetics was observed. For dry samples of phages the dimensions of targets for all types of radiation were approximately proportional to the molecular weights of phage DNA's. For densely ionizing radiation (heavy ions) the inactivating action was 3-5 times weaker than for gamma-rays and protons. (2) Mutagenesis was observed for all types of radiation, but heavy ions were 1-5-2 times less efficient than gamma-rays. For both phages studied the dose-response curve of mutagenesis was non-linear. The dependence on the dose was near to parabolic for lambda11. For SD a plateau or maximum of mutagenesis was observed for the relative number of mutants at a survival of about 10(-4). (3) Host-cell functions recA and exrA were practically indifferent for survival of gamma-irradiated phage lambda11, but indispensable for mutagenesis. Mutation recAI3 abolished induced vir mutations totally and exrA- reduced them significantly. The absence of the function polA had a considerable influence on phage survival, but no effect on vir mutation yield (if compared at the same survival level). (4) In conditions of indirect action of gamma-rays no vir mutations were

  4. Efficacy of ultraviolet radiation as an alternative technology to inactivate microorganisms in grape juices and wines.

    Science.gov (United States)

    Fredericks, Ilse N; du Toit, Maret; Krügel, Maricel

    2011-05-01

    Since sulphur dioxide (SO(2)) is associated with health risks, the wine industry endeavours to reduce SO(2) levels in wines with new innovative techniques. The aim of this study was, therefore, to investigate the efficacy of ultraviolet radiation (UV)-C (254 nm) as an alternative technology to inactivate microorganisms in grape juices and wines. A pilot-scale UV-C technology (SurePure, South Africa) consisting of an UV-C germicidal lamp (100 W output; 30 W UV-C output) was used to apply UV-C dosages ranging from 0 to 3672 J l(-1), at a constant flow rate of 4000 l h(-1) (Re > 7500). Yeasts, lactic and acetic acid bacteria were singly and co-inoculated into 20 l batches of Chenin blanc juice, Shiraz juice, Chardonnay wine and Pinotage wine, respectively. A dosage of 3672 J l(-1), resulted in an average log(10) microbial reduction of 4.97 and 4.89 in Chardonnay and Pinotage, respectively. In Chenin blanc and Shiraz juice, an average log(10) reduction of 4.48 and 4.25 was obtained, respectively. UV-C efficacy may be influenced by liquid properties such as colour and turbidity. These results had clearly indicated significant (p radiation may stabilize grape juice and wine microbiologically in conjunction with reduced SO(2) levels. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Inactivation of Staphylococcus aureus and Enterococcus faecalis by a direct-current, cold atmospheric-pressure air plasma microjet☆

    Science.gov (United States)

    Tian, Ye; Sun, Peng; Wu, Haiyan; Bai, Na; Wang, Ruixue; Zhu, Weidong; Zhang, Jue; Liu, Fuxiang

    2010-01-01

    Objective A direct-current, cold atmospheric-pressure air plasma microjet (PMJ) was performed to inactivate Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis) in air. The process of sterilization and morphology of bacteria was observed. We wish to know the possible inactivation mechanisms of PMJ and explore a potential application in dental and other temperature sensitive treatment. Methods In this study, we employed a direct current, atmospheric pressure, cold air PMJ to inactivate bacterias. Scanning electron microscopy was employed to evaluate the morphology of S. aureus and showed rupture of cell walls after the plasma treatment and Optical emission spectrum (OES) were used to understand the possible inactivation mechanisms of PMJ. Results The inactivation rates could reach 100% in 5 min. When the distance between the exit nozzle of the PMJ device and Petri dish was extended from 1 cm to 3 cm, effective inactivation was also observed with a similar inactivation curve. Conclusion The inactivation of bacteria is attributed to the abundant reactive oxygen and nitrogen species, as well as ultroviolet radiation in the plasma. Different life spans and defensibilities of these killing agents may hold the key to understanding the different inactivation curves at different treatment distances. PMID:23554639

  6. Inactivation of Mycobacterium paratuberculosis and Mycobacterium tuberculosis in fresh soft cheese by gamma radiation

    International Nuclear Information System (INIS)

    Badr, Hesham M.

    2011-01-01

    The effectiveness of gamma irradiation on the inactivation of Mycobacterium paratuberculosis, Mycobacterium bovis and Mycobacterium tuberculosis in fresh soft cheese that prepared from artificially inoculated milk samples was studied. Irradiation at dose of 2 kGy was sufficient for the complete inactivation of these mycobacteria as they were not detected in the treated samples during storage at 4±1 o C for 15 days. Moreover, irradiation of cheese samples, that were prepared from un-inoculated milk, at this effective dose had no significant effects on their gross composition and contents from riboflavin, niacin and pantothenic acid, while significant decreases in vitamin A and thiamin were observed. In addition, irradiation of cheese samples had no significant effects on their pH and nitrogen fractions contents, except for the contents of ammonia, which showed a slight, but significant, increases due to irradiation. The analysis of cheese fats indicated that irradiation treatment induced significant increase in their oxidation parameters and contents from free fatty acids; however, the observed increases were relatively low. On the other hand, irradiation of cheese samples induced no significant alterations on their sensory properties. Thus, irradiation dose of 2 kGy can be effectively applied to ensure the safety of soft cheese with regards to these harmful mycobacteria. - Highlights: → We examined the effectiveness of gamma irradiation on inactivation of Mycobacterium paratuberculosis, Mycobacterium bovis and Mycobacterium tuberculosis in fresh soft cheese. → Irradiation at dose of 2 kGy was sufficient for complete inactivation of these mycobacteria. → Irradiation of cheese samples induced no significant alterations on their sensory properties.

  7. Inactivation of Mycobacterium paratuberculosis and Mycobacterium tuberculosis in fresh soft cheese by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Badr, Hesham M., E-mail: heshambadr_aea@yahoo.co.uk [Atomic Energy Authority, Nuclear Research Center, Abou Zaabal, P.O. Box 13759 Cairo (Egypt)

    2011-11-15

    The effectiveness of gamma irradiation on the inactivation of Mycobacterium paratuberculosis, Mycobacterium bovis and Mycobacterium tuberculosis in fresh soft cheese that prepared from artificially inoculated milk samples was studied. Irradiation at dose of 2 kGy was sufficient for the complete inactivation of these mycobacteria as they were not detected in the treated samples during storage at 4{+-}1 {sup o}C for 15 days. Moreover, irradiation of cheese samples, that were prepared from un-inoculated milk, at this effective dose had no significant effects on their gross composition and contents from riboflavin, niacin and pantothenic acid, while significant decreases in vitamin A and thiamin were observed. In addition, irradiation of cheese samples had no significant effects on their pH and nitrogen fractions contents, except for the contents of ammonia, which showed a slight, but significant, increases due to irradiation. The analysis of cheese fats indicated that irradiation treatment induced significant increase in their oxidation parameters and contents from free fatty acids; however, the observed increases were relatively low. On the other hand, irradiation of cheese samples induced no significant alterations on their sensory properties. Thus, irradiation dose of 2 kGy can be effectively applied to ensure the safety of soft cheese with regards to these harmful mycobacteria. - Highlights: > We examined the effectiveness of gamma irradiation on inactivation of Mycobacterium paratuberculosis, Mycobacterium bovis and Mycobacterium tuberculosis in fresh soft cheese. > Irradiation at dose of 2 kGy was sufficient for complete inactivation of these mycobacteria. > Irradiation of cheese samples induced no significant alterations on their sensory properties.

  8. Inactivation of Caliciviruses

    Directory of Open Access Journals (Sweden)

    Raymond Nims

    2013-03-01

    Full Text Available The Caliciviridae family of viruses contains clinically important human and animal pathogens, as well as vesivirus 2117, a known contaminant of biopharmaceutical manufacturing processes employing Chinese hamster cells. An extensive literature exists for inactivation of various animal caliciviruses, especially feline calicivirus and murine norovirus. The caliciviruses are susceptible to wet heat inactivation at temperatures in excess of 60 °C with contact times of 30 min or greater, to UV-C inactivation at fluence ≥30 mJ/cm2, to high pressure processing >200 MPa for >5 min at 4 °C, and to certain photodynamic inactivation approaches. The enteric caliciviruses (e.g.; noroviruses display resistance to inactivation by low pH, while the non-enteric species (e.g.; feline calicivirus are much more susceptible. The caliciviruses are inactivated by a variety of chemicals, including alcohols, oxidizing agents, aldehydes, and β-propiolactone. As with inactivation of viruses in general, inactivation of caliciviruses by the various approaches may be matrix-, temperature-, and/or contact time-dependent. The susceptibilities of the caliciviruses to the various physical and chemical inactivation approaches are generally similar to those displayed by other small, non-enveloped viruses, with the exception that the parvoviruses and circoviruses may require higher temperatures for inactivation, while these families appear to be more susceptible to UV-C inactivation than are the caliciviruses.

  9. Inactivation of bacterial spores by combination processes: ultraviolet plus gamma radiation. [Streptococcus faecium, micrococcus radiodurans, clostridium botulinum

    Energy Technology Data Exchange (ETDEWEB)

    Grecz, N; Durban, E

    1973-01-01

    Bacterial spores, viruses and some vegetative bacteria such as Streptococcus faecium and Micrococcus radiodurans are distinguished by high radiation resistance. In order to lay a theoretical basis for biomedical sterilization applications, we have investigated the combined action of uv and gamma rays. Spores of two strains of C. botulinum were selected, a highly radiation resistant strain, 33A having a D/sub 10/-value of 0.32 Mrad, and a relatively radiation sensitive strain, 51B having a D/sub 10/-value of 0.12 Mrad. Strain 33A exhibits an extensive initial ''shoulder'' in its uv as well as gamma ray survival curves; strain 51B shows only a slight shoulder. The shoulder in the gamma ray survival curve of spores of strain 33A could be reduced or completely eliminated by preirradiation with uv. Simultaneously the D/sub 10/-value for gamma inactivation of spores of 33A was reduced substantially. For example, the gamma resistance was reduced almost to half of its original D/sub 10/-value by uv-preirradiation for only one minute under an 8 watt GE germicidal lamp. The effect of uv-preirradiation on the radiation sensitive strain 51B was less pronounced. In fact, there was about seven fold higher positive interaction (synergism) between uv and gamma radiation in 33A spores than in 51B spores. The experiments suggest that interference with DNA repair enzymes in the radiation resistant strain are responsible for lethal synergism between uv and gamma radiation. A hypothesis is developed attempting to explain the combined effect of these two radiations in terms of a special summation of known DNA lesions in the cell. These observations emphasize the potential practical advantages of combining uv and gamma rays for effective sterilization of certain biomedical devices, drugs and biologicals.

  10. Method of inactivation of viral and bacterial blood contaminants

    International Nuclear Information System (INIS)

    Hackett, R.; Goodrich, R.P.; Van Borssum Waalkes, M.; Wong, V.A.

    1992-01-01

    A method is provided for inactivating viral and/or bacterial contamination in blood cellular matter, such as erythrocytes and platelets, or protein fractions. The cells or protein fractions are mixed with chemical sensitizers and irradiated with, for example, gamma or X-ray radiation

  11. Luteinizing hormone-releasing hormone inactivation by purified pituitary plasma membranes: effects of receptor-binding studies.

    Science.gov (United States)

    Clayton, R N; Shakespear, R A; Duncan, J A; Marshall, J C

    1979-05-01

    Inactivation of LHRH by purified bovine pituitary plasma membranes was studied in vitro. After incubation of [125I]iodo-LHRH with plasma membranes, the amount of tracer bound to the pellet was measured, and the integrity of the unbound tracer in the supernatant was assessed. Reduction in ability to bind to anti-LHRH serum and to rebind to plasma membranes together with altered electrophoretic mobility on polyacrylamide gels showed that the unbound [125I]iodo-LHRH was inactivated. LHRH inactivation occurred rapidly and was dependent upon membrane concentration and incubation temperature. These results indicate that hormone inactivation must be taken into account in the interpretation of LHRH-receptor interactions. During 37 C incubations, the apparent absence of specific LHRH binding can be explained by inactivation of tracer hormone. Significant LHRH inactivation also occurred at 0 C, which in part explains the insensitivity of LHRH receptor assays. Assessment of LHRH inactivation by different particulate subcellular fractions of pituitary tissue showed that the inactivating enzyme was associated with the plasma membranes; other organelles did not alter LHRH. The enzyme appeared to be an integral part of the plasma membrane structure, since enzymic activity could not be removed by washing without reducing specific LHRH binding. Additionally, reduction of LHRH inactivation by the inhibitors Bacitracin and Trasylol and by magnesium was also accompanied by reduced LHRH binding. Previous studies have shown that the majority of LHRH binding to pituitary plasma membranes is to the low affinity site (approximately 10(-6) M), but the significance of this binding has been uncertain. Our findings indicate that low affinity binding probably represents binding of LHRH to the inactivating enzyme. The LHRH analog, D-Ser6(TBu), des Gly10, ethylamide, has greater biological activity than LHRH and is not inactivated to a significant extent by pituitary plasma membranes. The

  12. The inactivation of hepatitis A virus and other model viruses by UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Battigelli, D A; Sobsey, M D; Lobe, D C [North Carolina Univ., Chapel Hill, NC (United States). Dept. of Environmental Sciences

    1993-01-01

    Ultraviolet light is an attractive alternative to chemical disinfection of water, but little is known about its ability to inactivate important waterborne pathogens such as hepatitis A virus. Therefore, the sensitivity of HAV strain HM-175, coxsackievirus type B-5, rotavirus strain SA-11, and bacteriophages MS2 and [phi]X174 to ultraviolet radiation of 254 nm wavelength in phosphate buffered water was determined. Purified stocks of the viruses were combined and exposed to collimated UV radiation in a stirred reactor for a total dose of up to 40 mW sec/cm[sup 2]. Virus survival kinetics were determined from samples removed at dose intervals. The results of these experiments indicate that UV radiation can effectively inactivate viruses of public health concern in drinking water. (author).

  13. Skewed X-inactivation in cloned mice

    International Nuclear Information System (INIS)

    Senda, Sho; Wakayama, Teruhiko; Yamazaki, Yukiko; Ohgane, Jun; Hattori, Naka; Tanaka, Satoshi; Yanagimachi, Ryuzo; Shiota, Kunio

    2004-01-01

    In female mammals, dosage compensation for X-linked genes is accomplished by inactivation of one of two X chromosomes. The X-inactivation ratio (a percentage of the cells with inactivated maternal X chromosomes in the whole cells) is skewed as a consequence of various genetic mutations, and has been observed in a number of X-linked disorders. We previously reported that phenotypically normal full-term cloned mouse fetuses had loci with inappropriate DNA methylation. Thus, cloned mice are excellent models to study abnormal epigenetic events in mammalian development. In the present study, we analyzed X-inactivation ratios in adult female cloned mice (B6C3F1). Kidneys of eight naturally produced controls and 11 cloned mice were analyzed. Although variations in X-inactivation ratio among the mice were observed in both groups, the distributions were significantly different (Ansary-Bradley test, P < 0.01). In particular, 2 of 11 cloned mice showed skewed X-inactivation ratios (19.2% and 86.8%). Similarly, in intestine, 1 of 10 cloned mice had a skewed ratio (75.7%). Skewed X-inactivation was observed to various degrees in different tissues of different individuals, suggesting that skewed X-inactivation in cloned mice is the result of secondary cell selection in combination with stochastic distortion of primary choice. The present study is the first demonstration that skewed X-inactivation occurs in cloned animals. This finding is important for understanding both nuclear transfer technology and etiology of X-linked disorders

  14. Inactivation of Coxiella burnetii by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Scott, G.H.; McCaul, T.F. (Army Medical Research Inst. of Infectious Diseases, Fort Detrick, Frederick, MD (USA)); Williams, J.C. (National Inst. of Allergy and Infectious Diseases, Bethesda, MD (USA))

    1989-12-01

    The gamma radiation inactivation kinetics for Coxiella burnetii at - 79{sup 0}C were exponential. The radiation dose needed to reduce the number of infective C. burnetii by 90% varied from 0.64 to 1.2 kGy depending on the phase of the micro-organism, purity of the culture and composition of suspending menstruum. The viability of preparations containing 10{sup 11} C. burnetii ml{sup -1} was completely abolished by 10 kGy without diminishing antigenicity or ability to elicit a protective immune response in vaccinated mice. Immunocytochemical examinations using monoclonal antibodies and electron microscopy demonstrated that radiation doses of 20 kGy did not alter cell-wall morphology or cell-surface antigenic epitopes. (author).

  15. Inactivation of Coxiella burnetii by gamma irradiation

    International Nuclear Information System (INIS)

    Scott, G.H.; McCaul, T.F.; Williams, J.C.

    1989-01-01

    The gamma radiation inactivation kinetics for Coxiella burnetii at - 79 0 C were exponential. The radiation dose needed to reduce the number of infective C. burnetii by 90% varied from 0.64 to 1.2 kGy depending on the phase of the micro-organism, purity of the culture and composition of suspending menstruum. The viability of preparations containing 10 11 C. burnetii ml -1 was completely abolished by 10 kGy without diminishing antigenicity or ability to elicit a protective immune response in vaccinated mice. Immunocytochemical examinations using monoclonal antibodies and electron microscopy demonstrated that radiation doses of 20 kGy did not alter cell-wall morphology or cell-surface antigenic epitopes. (author)

  16. Study of the reactivation of X-ray inactivated lambda bacteriophages by irradiated Escherichia coli bacteria

    International Nuclear Information System (INIS)

    Kiessling, W.

    1980-01-01

    Bacteriophages lambda and E.coli cells were exposed to X-rays in LB medium. Host cells exposed to a dose of 85 to 765 Gy had a reactivation factor 1.3 to 3.0 for bacteriophages inactivated by X-rays. The capacity of the bacteria for bacteriophage mutliplication remained apparently unchanged in this dose range. After UV-irradiation of the host cells, only a reactivation factor of 1.3 was found for bacteriophages exposed to X-radiation. The comparatively low Weigle reactivation of bacteriophages exposed to X-radiation - as compared with bacteriophages exposed to UV radiation was analyzed by counting free, non-adsorbed bacteriophages determined by filtration of radioactively labelled bacteriophage-host complexes, it was found to be due to a reduced adsorptivity. Reactivation experiments with bacteriophages exposed to X-rays and host bacterias with different degrees of radiosensitivity proved this assumption to be correct. (orig.) [de

  17. Electron beam inactivation of Tulane virus on fresh produce, and mechanism of inactivation of human norovirus surrogates by electron beam irradiation.

    Science.gov (United States)

    Predmore, Ashley; Sanglay, Gabriel C; DiCaprio, Erin; Li, Jianrong; Uribe, R M; Lee, Ken

    2015-04-02

    Ionizing radiation, whether by electron beams or gamma rays, is a non-thermal processing technique used to improve the microbial safety and shelf-life of many different food products. This technology is highly effective against bacterial pathogens, but data on its effect against foodborne viruses is limited. A mechanism of viral inactivation has been proposed with gamma irradiation, but no published study discloses a mechanism for electron beam (e-beam). This study had three distinct goals: 1) evaluate the sensitivity of a human norovirus surrogate, Tulane virus (TV), to e-beam irradiation in foods, 2) compare the difference in sensitivity of TV and murine norovirus (MNV-1) to e-beam irradiation, and 3) determine the mechanism of inactivation of these two viruses by e-beam irradiation. TV was reduced from 7 log10 units to undetectable levels at target doses of 16 kGy or higher in two food matrices (strawberries and lettuce). MNV-1 was more resistant to e-beam treatment than TV. At target doses of 4 kGy, e-beam provided a 1.6 and 1.2 log reduction of MNV-1 in phosphate buffered saline (PBS) and Dulbecco's Modified Eagle Medium (DMEM), compared to a 1.5 and 1.8 log reduction of TV in PBS and Opti-MEM, respectively. Transmission electron microscopy revealed that increased e-beam doses negatively affected the structure of both viruses. Analysis of viral proteins by SDS-PAGE found that irradiation also degraded viral proteins. Using RT-PCR, irradiation was shown to degrade viral genomic RNA. This suggests that the mechanism of inactivation of e-beam was likely the same as gamma irradiation as the damage to viral constituents led to inactivation. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    Science.gov (United States)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low

  19. High energy electron beam inactivation of lactate dehydrogenase suspended in different aqueous media

    International Nuclear Information System (INIS)

    Hategan, A.; Popescu, A.; Butan, C.; Oproiu, C.; Hategan, D.; Morariu, V.V.

    1999-01-01

    The direct and indirect effects of 5 MeV electron beam irradiation in the range (0-400 Gy) at 20 degC, 0 degC, -3 degC and -196 degC, as well as the influence of the aqueous suspending medium (ultrapure water and heavy water) on the total enzymatic activity of lactate dehydrogenase (LDH) have been studied. Our results showed an exponential decrease on the enzymatic activity of irradiated LDH, at all irradiation temperatures, independently of the direct or indirect action of radiation. The temperature gradient used to lower the temperature of the samples to -196 degC drastically influences the results. Freeze-thawing in two steps down to -196 degC protects LDH to radiation, in the dose range used. The data obtained here inform on the high energy electrons effects on the enzymatic activity loss during irradiation and during thawing, when the subsequent growth of the water crystals influences the three dimensional structure of the enzyme. A 99.98% concentration of D 2 O in the suspending medium of the enzyme decreases the global enzymatic activity, but reduces the rate of radiation inactivation of the enzyme. The rate of radiation inactivation of the enzyme suspended in ultrapure water is reduced when compared to the enzyme suspended in bidistilled water, but compared to the D 2 O suspended enzyme is lightly increased. (author)

  20. Single-hit mechanism of tumour cell killing by radiation.

    Science.gov (United States)

    Chapman, J D

    2003-02-01

    To review the relative importance of the single-hit mechanism of radiation killing for tumour response to 1.8-2.0 Gy day(-1) fractions and to low dose-rate brachytherapy. Tumour cell killing by ionizing radiation is well described by the linear-quadratic equation that contains two independent components distinguished by dose kinetics. Analyses of tumour cell survival curves that contain six or more dose points usually provide good estimates of the alpha- and beta-inactivation coefficients. Superior estimates of tumour cell intrinsic radiosensitivity are obtained when synchronized populations are employed. The characteristics of single-hit inactivation of tumour cells are reviewed and compared with the characteristics of beta-inactivation. Potential molecular targets associated with single-hit inactivation are discussed along with strategies for potentiating cell killing by this mechanism. The single-hit mechanism of tumour cell killing shows no dependence on dose-rate and, consequently, no evidence of sublethal damage repair. It is uniquely potentiated by high linear-energy-transfer radiation, exhibits a smaller oxygen enhancement ratio and exhibits a larger indirect effect by hydroxyl radicals than the beta-mechanism. alpha-inactivation coefficients vary slightly throughout interphase but mitotic cells exhibit extremely high alpha-coefficients in the range of those observed for lymphocytes and some repair-deficient cells. Evidence is accumulating to suggest that chromatin in compacted form could be a radiation-hypersensitive target associated with single-hit radiation killing. Analyses of tumour cell survival curves demonstrate that it is the single-hit mechanism (alpha) that determines the majority of cell killing after doses of 2Gy and that this mechanism is highly variable between tumour cell lines. The characteristics of single-hit inactivation are qualitatively and quantitatively distinct from those of beta-inactivation. Compacted chromatin in tumour cells

  1. Theoretical studies on the inactivation mechanism of γ-aminobutyric acid aminotransferase.

    Science.gov (United States)

    Durak, A T; Gökcan, H; Konuklar, F A S

    2011-07-21

    The inactivation mechanism of γ-aminobutyric acid aminotransferase (GABA-AT) in the presence of γ-vinyl-aminobutyric acid, an anti-epilepsy drug, has been studied by means of theoretical calculations. Density functional theory methods have been applied to compare the three experimentally proposed inactivation mechanisms (Silverman et al., J. Biol. Chem., 2004, 279, 363). All the calculations were performed at the B3LYP/6-31+G(d,p) level of theory. Single point solvent calculations were carried out in water, by means of an integral equation formalism-polarizable continuum model (IEFPCM) at the B3LYP/6-31+G(d,p) level of theory. The present calculations provide an insight into the mechanistic preferences of the inactivation reaction of GABA-AT. The results also allow us to elucidate the key factors behind the mechanistic preferences. The computations also confirm the importance of explicit water molecules around the reacting center in the proton transfer steps.

  2. Kinetic studies of acid inactivation of alpha-amylase from Aspergillus oryzae

    DEFF Research Database (Denmark)

    Carlsen, Morten; Nielsen, Jens Bredal; Villadsen, John

    1996-01-01

    The stability of alpha-amylase from Aspergillus oryzae has been studied at different pH. The enzyme is extremely stable at neutral pH (pH 5-8), whereas outside this pH-range a substantial loss of activity is observed. The acid-inactivation of alpha-amylase from A. oryzae was monitored on...... regains part of its activity, and the reactivation process also follows first-order kinetics. The irreversible loss of activity is found not to result from a protease contamination of the protein samples. A proposed model, where irreversibly inactivated a-amylase is formed both directly from the active...

  3. Inactivation of catalase by free radicals derived from oxygen via gamma radiolysis

    International Nuclear Information System (INIS)

    Malhaire, J.P.; Gardes-Albert, M.; Ferradini, C.; Sabourault, D.; Ribiere, C.

    1991-01-01

    The inactivation of catalase (10 -5 mol/l) by OH· or OH·/O 2 - · free radicals, at pH 7.4, has been investigated using γ radiolysis with doses up to 9000 Gy. Maxima initial G-values of catalase inactivation have been determined. These values are inferior to those of the free radicals OH· and O 2 - · produced by water radiolysis. Nevertheless, the presence of O 2 /O 2 - · enhances the inactivation due to OH· radicals. The general shape of the inactivation curves as a function of the radiation dose is biphasic: an initial rapid phase (from 0 to ∼ 500 Gy) followed by a slow phase (from ∼ 500 to 9000 Gy). The addition of H 2 O 2 at the beginning of irradiation decreases the inactivation yield by OH· radicals. This phenomenon could be due to the formation of compound-I (catalase-H 2 O 2 ) which would be less sensitive towards OH· radicals than catalase. In the presence of 0.1 mol/l ethanol, catalase (5 x 10 -6 mol/l) is not inactived by O 2 - · and RO 2 · (from ethanol) radicals for an irradiation dose of 2000 Gy, implying a complete protecting effect by ethanol [fr

  4. Risk scaling factors from inactivation to chromosome aberrations, mutations and oncogenic transformations in mammalian cells

    International Nuclear Information System (INIS)

    Alkaharam, A.S.; Watt, D.E.

    1997-01-01

    Analyses of bio-effect mechanisms of damage to mammalian cells in terms of the quality parameter 'mean free path for primary ionisation', for heavy charged particles, strongly suggests that there is a common mechanism for the biological endpoints of chromosome aberrations, mutations and oncogenic transformation. The lethal lesions are identified as unrepaired double-strand breaks in the intracellular DNA. As data for the various endpoints studied can be represented in a unified scheme, for any radiation type, it follows that radiation risk factors can be determined on the basis of simple ratios to the inactivation cross sections. There are intrinsic physical reasons why neutrons can never reach the saturation level of heavier particles for equal fluences. The probabilities of risk with respect to inactivation, for chromosome dicentrics, mutation of the HPRT gene and of oncogenic transformation are respectively 0.24, 5.8 x 10 -5 , and 4.1 x 10 -3 . (author)

  5. Experience with a pilot plant for the irradiation of sewage sludge: Experiments on the inactivation of viruses in sewage sludge after radiation treatment

    International Nuclear Information System (INIS)

    Epp, C.

    1975-01-01

    Investigations examining the virus inactivating effect of a 60 Co-plant have up to now been limited to attempts to isolate virus from sludge samples taken from sewage sludge before and after irradiation with 300 krad. As in these sludge samples the presence of virus could be proved only on a rather irregular basis, an experiment was carried out in which defined virus quantities were packed into capsules and mixed with the digested sludge. At the end of the hygienization process these capsules were removed from the sludge and examined for virus content. In addition one radiation volume (5.6 m 3 ) was infected with attenuated polio virus type I and the virus content of the sludge titrated before and after the radiation treatment. (author)

  6. Effect of pre-irradiation on thermal inactivation of B. pumilus E 601 dry spores irradiated with EB and. gamma. -rays

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yuhei; Ito, Hitoshi; Ishigaki, Isao [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1989-11-01

    The survival fraction of B. pumilus spores irradiated with {gamma} -rays and electron beams in vacuum were increased when the spores were heated or allowed to stand in vacuum for a long time at room temperature. The survival curves of the spores thus treated after irradiation might give apparent radiation sensitivities which were lower than true ones obtained just after irradiation. On the contrary, the radiation sensitivities of the spores irradiated in dry air and then heated or allowed to stand in dry air became high. To elucidate the characteristics of th spores, the effect of heating on the radiation sensitivity of the B. pumilus spores has been studied. By heating the pre-irradiated spores in vacuum, its survival fraction was increased, in other words, the spores inactivated with radiation were recovered. However, the thermal sensitivity of the recovered spores was found to be high compared with that of the original spores. On the other hand, when B. pumilus spores were irradiated in dry air and then heated in dry air, the survival curves of the spores were found to be composed of two exponential curves, suggesting that two kinds of thermal inactivation mechanism existed. From Arrhenius plots of unirradiated B. pumilus spores, the activation energies of the thermal inactivation in the range of 90degC to 120degC in vacuum and in air were found to be about 38 kcal/mol and 29 kcal/mol, respectively. The activation energy of the spores at a temperature of higher than 120degC, however increased to give the same value (about 38 kcal/mol) as found in vacuum. This fact suggests the main mechanism of the thermal inactivation of the spores varies near 120degC. Arrhenius plots of irradiated spores in vacuum was similar to that of unirradiated ones. Thermal inactivation rates of the irradiated spores in the presence of air will also be discussed as compared with those of unirradiated ones. (author).

  7. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Zhen [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China)

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  8. The combined effect of heat and gamma irradiation on the inactivation of selected microorganisms associated with food hygiene

    International Nuclear Information System (INIS)

    Kwon, O.J.; Byun, M.W.

    1996-01-01

    The bactericidal effectiveness of radiation alone or in combination with heat against 8 strains associated with food hygiene were evaluated. In the case of radiation alone, D values of micro-organisms were 0.14~0.48 kGy, and inactivation factors were 4.54~21.43 at the doses of 2~3 kGy. Escherichia coli was the most sensitive among the tested strains, resulting in a D value of 0.14 kGy. D values of tile strains were 10~40 minutes at 50±1°C and 5~10 minutes at 60±1°C. Combination with heat and radiation showed D values of 0.04~0.31. Inactivation factors were 6.45~75 at the doses of 2 to 3 kGy. Therefore, heat treatment prior to irradiation significantly increased activation rate by increasing radiation sensitivity of microorganisms

  9. Sensitivity of clostridium acetobutylicum to oxygen and ionizing radiation

    International Nuclear Information System (INIS)

    Sozer, A.C.; Adler, H.I.; Machanoff, R.; Haney, S.

    1984-01-01

    The authors are studying the sensitivity of four strains of the obligate anaerobe, Clostridium acetobutylicum, to oxygen and ionizing radiation. Anaerobic bacteria are useful for such studies because of the absence of elaborate oxygen detoxification mechanisms that are found in aerobes. Their experiments make use of sterile membrane fragments from Escherichia coli that rapidly remove molecular oxygen from media and permit growth of anaerobes without the use of reducing agents or anaerobic chambers. Of the four strains examined for sensitivity to ionizing radiation under anaerobic conditions, one has an LD/sub 50/ of -- 25 krads and the others have an LD/sub 50/ of -- 7 krads. The radiation resistant strain is also relatively resistant to oxygen exposure. Sensitivity to oxygen was determined by diluting cells in buffer at 28 0 and bubbling with air. An exposure to air for 40 min induced only slight inactivation in the radiation resistant strain. All strains are capable of removing oxygen from complex media but there is no apparent correlation between this oxygen consuming reaction and inactivation by either oxygen or radiation

  10. Use of laser-UV for inactivation of virus in blood products

    International Nuclear Information System (INIS)

    Prodouz, K.N.; Fratantoni, J.C.; Boone, E.J.; Bonner, R.F.

    1987-01-01

    Inactivation of virus by UV radiation was examined as a potential method for sterilization of blood products. Samples of attenuated poliovirus, platelets and plasma were uniformly irradiated with a XeCl excimer laser that delivered 40 nsec pulses of UV at 308 nm (UVB308). Intensities and exposure does were varied from 0.11 to 1.40 MW/cm2 and 0.51 to 56.0 J/cm2, respectively. In studies conducted with low intensity UVB308 (less than or equal to 0.17 MW/cm2), using exposure doses greater than or equal to 10.8 J/cm2, it was possible to inactivate poliovirus by 4 to 6 log10. Platelets irradiated with doses less than or equal to 21.5 J/cm2 exhibited minimal damage as assessed by aggregation activity and spontaneous release of serotonin. Examination of the coagulation activity of irradiated plasma indicated that exposure doses less than or equal to 21.5 J/cm2 resulted in less than 20% increase in prothrombin and partial thromboplastin times. The use of UVB308 at a higher intensity (1.4 MW/cm2) over a similar range of exposure doses did not enhance viral inactivation but did result in increased damage to platelet and plasma proteins. These results demonstrate that at 308 nm there exists a window of efficacy for exposure doses between 10.8 and 21.5 J/cm2 and peak intensities less than or equal to 0.17 MW/cm2 in which a hardy virus is significantly inactivated and platelets and plasma proteins are, by functional criteria, minimally affected. Increased viral inactivation cannot be accomplished with higher UV intensities and will require additional or alternate measures

  11. Physicochemical and sensory analyses on egg powder irradiated to inactivate Salmonella and reduce microbial load

    International Nuclear Information System (INIS)

    Narvaiz, P.; Lescano, G.; Kairiyama, E.

    1992-01-01

    Egg powder was treated with 0, 2, 5 and 10 kGy of gamma radiation at 20 C to inactivate Salmonella and to stabilize its microbial load. Microbial, physicochemical and sensory determinations were performed during 4 months of storage to select the optimal radiation dose to attain the objective without significantly reducing egg quality. Microbial results show that 2.0 kGy inactivated Salmonella and reduced microbial load to levels below those stipulated by the Argentine regulations. Physicochemical determinations of egg powder extracts for peroxide number, spectrophotometric measurements in the visible and ultraviolet regions, functional properties on sponge cakes made with egg powder (height, compression-relaxation cycle parameters), foam stability and viscosity showed that gamma radiation at the dose of 2 kGy, did not cause significant changes in these parameters. Higher radiation doses (5 and 10 kGy) did increase rancidity, pigment loss and protein chain scission. Sensory determinations performed on egg powder, and on cakes manufactured with it, agreed with the physicochemical results. After 110 storage days, 2 kGy was the most suitable of the tested doses

  12. Inactivation Data.xlsx

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data set is a spreadsheet that contains results of inactivation experiments that were conducted to to determine the effectiveness of chlorine in inactivating B....

  13. Modeling Radiation Effectiveness for Inactivation of Bacillus Spores

    Science.gov (United States)

    2015-09-17

    radiation . 3.6.1 Ionizing Radiation Damage. Some of the ROS’ discussed in Section 3.3 cause indirect damage to the spore’s DNA. They can produce... ionizing radiation damage has focused on the effects of charged particles in their tracks. The charged particles create radiation - induced products and...3.8.1 Reaction-Diffusion of ROS Within the Spore. A demonstrative scenario will be explored in order to simulate the indirect effects of ionizing

  14. Inactivation of poliovirus by gamma irradiation of wastewater sludges

    International Nuclear Information System (INIS)

    Kaupert, Norma L.; Burgi, Elsa; Scolaro, L.

    1999-01-01

    The effect of gamma radiation on poliovirus infectivity seeded in sludge samples was investigated in order to determine the radiation dose required to inactivate 90% of viral infectivity (D 10 ). Sludges were obtained from anaerobic pretreated sewages produced by San Felipe, a wastewater treatment facility located at the Tucuman province, Argentina. A D 10 of 3.34 kGy was determined for poliovirus type III, Sabin strain, suspended in sludge samples. This value dropped to 1.92 kGy when the virus was suspended in water. A virucidal effect associated to sludges was also demonstrated. These results will be of interest when considering the dose of gamma radiation to be applied to wastewater sludges in order to preserve the environment from viral contamination. (author)

  15. Chlorine inactivation of Tubifex tubifex in drinking water and the synergistic effect of sequential inactivation with UV irradiation and chlorine.

    Science.gov (United States)

    Nie, Xiao-Bao; Li, Zhi-Hong; Long, Yuan-Nan; He, Pan-Pan; Xu, Chao

    2017-06-01

    The inactivation of Tubifex tubifex is important to prevent contamination of drinking water. Chlorine is a widely-used disinfectant and the key factor in the inactivation of T. tubifex. This study investigated the inactivation kinetics of chlorine on T. tubifex and the synergistic effect of the sequential use of chlorine and UV irradiation. The experimental results indicated that the Ct (concentration × time reaction ) concept could be used to evaluate the inactivation kinetics of T. tubifex with chlorine, thus allowing for the use of a simpler Ct approach for the assessment of T. tubifex chlorine inactivation requirements. The inactivation kinetics of T. tubifex by chlorine was found to be well-fitted to a delayed pseudo first-order Chick-Watson expression. Sequential experiments revealed that UV irradiation and chlorine worked synergistically to effectively inactivate T. tubifex as a result of the decreased activation energy, E a , induced by primary UV irradiation. Furthermore, the inactivation effectiveness of T. tubifex by chlorine was found to be affected by several drinking water quality parameters including pH, turbidity, and chemical oxygen demand with potassium permanganate (COD Mn ) concentration. High pH exhibited pronounced inactivation effectiveness and the decrease in turbidity and COD Mn concentrations contributed to the inactivation of T. tubifex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effect of dose rate on inactivation of microorganisms in spices by electron-beams and gamma-rays irradiation

    International Nuclear Information System (INIS)

    Ito, Hitoshi; Islam, Md.S.

    1994-01-01

    Total aerobic bacteria in spices used in this study were determined to be 1 x 10 6 to 6 x 10 7 per gram. A study on the inactivation of microorganisms in spices showed that doses of 6-9 kGy of EB (electron-beams) or γ-irradiation were required to reduce the total aerobic bacteria to below 10 3 per gram. However, a little increase of resistance was observed on the inactivation of total aerobic bacteria in many spices in case of EB irradiation. These differences of radiation sensitivities between EB and γ-rays was explained by dose rate effect on oxidation damage to microorganisms from the results of radiation sensitivities of Bacillus pumilus and B. megaterium spores at dry conditions. On the other hand, these high dose rate of EB irradiation suppressed the increase of peroxide values in spices at high dose irradiation up to 80 kGy. However, components of essential oils in spices were not changed even irradiated up to 50 kGy with EB and γ-rays. (author)

  17. Inactivation of pathogenic bacteria in food matrices: high pressure processing, photodynamic inactivation and pressure-assisted photodynamic inactivation

    Science.gov (United States)

    Cunha, A.; Couceiro, J.; Bonifácio, D.; Martins, C.; Almeida, A.; Neves, M. G. P. M. S.; Faustino, M. A. F.; Saraiva, J. A.

    2017-09-01

    Traditional food processing methods frequently depend on the application of high temperature. However, heat may cause undesirable changes in food properties and often has a negative impact on nutritional value and organoleptic characteristics. Therefore, reducing the microbial load without compromising the desirable properties of food products is still a technological challenge. High-pressure processing (HPP) can be classified as a cold pasteurization technique, since it is a non-thermal food preservation method that uses hydrostatic pressure to inactivate spoilage microorganisms. At the same time, it increases shelf life and retains the original features of food. Photodynamic inactivation (PDI) is also regarded as promising approach for the decontamination of food matrices. In this case, the inactivation of bacterial cells is achieved by the cytotoxic effects of reactive oxygens species (ROS) produced from the combined interaction of a photosensitizer molecule, light and oxygen. This short review examines some recent developments on the application of HPP and PDI with food-grade photosensitizers for the inactivation of listeriae, taken as a food pathogen model. The results of a proof-of-concept trial of the use of high-pressure as a coadjutant to increase the efficiency of photodynamic inactivation of bacterial endospores is also addressed.

  18. Intradermal Inactivated Poliovirus Vaccine: A Preclinical Dose-Finding Study

    OpenAIRE

    Kouiavskaia, Diana; Mirochnitchenko, Olga; Dragunsky, Eugenia; Kochba, Efrat; Levin, Yotam; Troy, Stephanie; Chumakov, Konstantin

    2014-01-01

    Intradermal delivery of vaccines has been shown to result in dose sparing. We tested the ability of fractional doses of inactivated poliovirus vaccine (IPV) delivered intradermally to induce levels of serum poliovirus-neutralizing antibodies similar to immunization through the intramuscular route. Immunogenicity of fractional doses of IPV was studied by comparing intramuscular and intradermal immunization of Wistar rats using NanoPass MicronJet600 microneedles. Intradermal delivery of partial...

  19. Lethal effects of solar radiation in proficient and deficient bacteria in repair systems

    International Nuclear Information System (INIS)

    Sousa Neto, A. de.

    1980-01-01

    A study of the lethal action of solar radiation on strains of E.coli K12, proficient or deficient in repair systems, as well as the wild type strain gene products are involved in repair of damage induced by solar radiation. The inactivation of the various bacterial strains (normalized to a dose equivalent to radiation at a wavelength 254 nm) suggests that the more energetic wavelengths of the solar spectrum (290-320 nm) could be responsible for the primary damage that occurs in the DNA. The reduction in the shoulder of the survival curve in wild type strains in indicative of induction of sub-lethal damage in this region of the curve. Analysing solar inactivation curves of the bacterial strains (normalised by spore dosimetry) together with those of the same strains irradiated with UV at 254 nm, it was evident that 254 nm is not the ideal wavelength for comparison. This analysis also indicated that in addition to damage to DNA, other factors are involved in the solar radiation inactivation of wild type strains. (author)

  20. Studies on the ability of irradiated Escherichia coli bacteria to reactivate X-ray inactivated bacteriophages

    International Nuclear Information System (INIS)

    Kiessling, W.

    1980-01-01

    The Weigle Reactivation phenomenon ie. the observation that low UV-flow irradiated bacteria increase the survival rate of UV-irradiated phages has not, to date, been studied with other forms of irradiation as inducers. In the studies reported here lambda-phages and E. coli cells in LB-medium were treated with X-rays. Host cells treated with an X-ray dose from 85 to 765 Gy showed a reactivation factor of 1.3 to 3.0 for X-ray inactivated phages. The capacity of the bacteria for phage reproduction did not appear to be markedly diminished. A reactivation factor of 1.3 only was found for X-irradiated phages when host cells were treated with UV-irradiation. The low Weigle reactivation of X-ray treated phages compared to UV-treatment was found to be due to a diminished absorption capacity, as demonstrated by the determination of free non-absorbed phages by filtration of radioactive-labelled phage-host-complexes. Reactivation studies on X-irradiated phages with various host bacteria of different radiation sensitivities confirm this finding. (orig.) [de

  1. Variations in the radiation sensitivity of foodborne pathogens associated with complex ready-to-eat food products

    Science.gov (United States)

    Sommers, Christopher H.; Boyd, Glenn

    2006-07-01

    Foodborne illness outbreaks and product recalls are occasionally associated with ready-to-eat (RTE) sandwiches and other "heat and eat" multi-component RTE products. Ionizing radiation can inactivate foodborne pathogens on meat and poultry, fruits and vegetables, seafood, and RTE meat products. However, less data are available on the ability of low-dose ionizing radiation, doses under 5 kGy typically used for pasteurization purposes, to inactivate pathogenic bacteria on complex multi-component food products. In this study, the efficacy of ionizing radiation to inactivate Salmonella spp., Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, and Yersinia enterocolitica on RTE foods including a "frankfurter on a roll", a "beef cheeseburger on a bun" and a "vegetarian cheeseburger on a bun" was investigated. The average D-10 values, the radiation dose needed to inactivate 1 log 10 of pathogen, by bacterium species, were 0.61, 0.54, 0.47, 0.36 and 0.15 kGy for Salmonella spp., S. aureus, L. monocytogenes, E. coli O157:H7, and Y. enterocolitica, respectively when inoculated onto the three product types. These results indicate that irradiation may be an effective means for inactivating common foodborne pathogens including Salmonella spp, S. aureus, L. monocytogenes, E. coli O157:H7 and Y. enterocolitica in complex RTE food products such as 'heat and eat" sandwich products.

  2. Variations in the radiation sensitivity of foodborne pathogens associated with complex ready-to-eat food products

    International Nuclear Information System (INIS)

    Sommers, Christopher H.; Boyd, Glenn

    2006-01-01

    Foodborne illness outbreaks and product recalls are occasionally associated with ready-to-eat (RTE) sandwiches and other 'heat and eat' multi-component RTE products. Ionizing radiation can inactivate foodborne pathogens on meat and poultry, fruits and vegetables, seafood, and RTE meat products. However, less data are available on the ability of low-dose ionizing radiation, doses under 5 kGy typically used for pasteurization purposes, to inactivate pathogenic bacteria on complex multi-component food products. In this study, the efficacy of ionizing radiation to inactivate Salmonella spp., Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, and Yersinia enterocolitica on RTE foods including a 'frankfurter on a roll', a 'beef cheeseburger on a bun' and a 'vegetarian cheeseburger on a bun' was investigated. The average D-10 values, the radiation dose needed to inactivate 1 log 1 of pathogen, by bacterium species, were 0.61, 0.54, 0.47, 0.36 and 0.15 kGy for Salmonella spp., S. aureus, L. monocytogenes, E. coli O157:H7, and Y. enterocolitica, respectively when inoculated onto the three product types. These results indicate that irradiation may be an effective means for inactivating common foodborne pathogens including Salmonella spp, S. aureus, L. monocytogenes, E. coli O157:H7 and Y. enterocolitica in complex RTE food products such as 'heat and eat' sandwich products

  3. Inactivation of enteroviruses in sewage with ozone

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, O.E.; Bogdanov, M.V.; Kazantseva, V.A.; Gabrilevskaia, L.N.; Kodkind, G.K.H.

    The study of ozone inactivation of enteroviruses in sewage showed the presence in sewage of suspensions of organic origin and bacterial flora to influence the rate of inactivation. The inactivation rate of poliomyelitis virus in sewage free from organic suspension and bacterial flora was significantly higher than that in sewage containing such suspension and bacterial flora. The inactivation rate of enteroviruses was found not to depend upon the protein and salt composition and pH of sewage or strain appurtenance of viruses. The inactivation rate of enteroviruses directly depended upon the dose of ozone and time of contact with it. Differences in the resistance of different types of poliomyelitis virus, ECHO and Coxsackie viruses to the effect of ozone are likely exist. These differences are manifested within the range of relatively small doses of ozone. E. coli is more resistant to ozone than entero-viruses. The results of laboratory studies were used to choose the regimen of sanitation of urban sewage to be used in technological cycles of industrial enterprises.

  4. An evaluation of the applicability of gamma radiation for preparing typhoid fever vaccine

    International Nuclear Information System (INIS)

    Malafiej, E.; Lachmanowa, S.; Horoszewicz-Malafiej, A.; Politechnika Lodzka

    1974-01-01

    Using mouse protection test, two typhoid fever vaccines were comparatively tested for efficacy: that prepared by thermal inactivation and that treated with ionizing radiation. The experiments were performed with white mice BALB/c. Co 60 was used as the radiation source. Vaccine prepared by the thermal inactivation showed higher protective activity than the vaccine prepared by treatment with ionizing radiation. (author)

  5. Radiation induced chemical changes in and disinfection of organic wastes suitable for supplemental feed

    International Nuclear Information System (INIS)

    Groneman, A.F.

    1980-01-01

    Ionizing radiation has been found to disinfect organic wastes and simultaneously ease the separation of suspended solids from water. Because these effects can have important favourable impacts on the technology of upgrading organic wastes to animal feed or fertilizers, experimental studies are reported on the rationale of effects of gamma irradiation or disinfection and separation of the solid and the liquid phase of organic waste systems. The radiation inactivation of microorganisms occurs by direct and indirect action. Mechanisms of inactivation are discussed and measures are proposed how the indirect action of the radiation inactivation of microorganisms can be increased. Effects of gamma irradiation on dewatering properties of organic wastes were indirectly caused by the oxidizing OH radicals produced by the irradiation of water. OH radicals react with organic components of the solid phase which leads to their solubilisation resulting in an increase of the total organic carbon concentration in the liquid phase. Results of a mutagenicity test indicate that the solvated compounds exhibited no mutagenic activity. Microbiological case studies on the disinfection and upgrading of liquid and solid organic wastes to animal feed are discussed and the acceptance of radiation processing is evaluated. (Auth.)

  6. Functional and physical molecular size of the chicken hepatic lectin determined by radiation inactivation and sedimentation equilibrium analysis

    International Nuclear Information System (INIS)

    Steer, C.J.; Osborne, J.C. Jr.; Kempner, E.S.

    1990-01-01

    Radiation inactivation and sedimentation equilibrium analysis were used to determine the functional and physical size of the chicken hepatic membrane receptor that binds N-acetylglucosamine-terminated glycoproteins. Purified plasma membranes from chicken liver were irradiated with high energy electrons and assayed for 125I-agalactoorosomucoid binding. Increasing the dose of ionizing radiation resulted in a monoexponential decay in binding activity due to a progressive loss of binding sites. The molecular mass of the chicken lectin, determined in situ by target analysis, was 69,000 +/- 9,000 Da. When the same irradiated membranes were solubilized in Brij 58 and assayed, the binding protein exhibited a target size of 62,000 +/- 4,000 Da; in Triton X-100, the functional size of the receptor was 85,000 +/- 10,000 Da. Sedimentation equilibrium measurements of the purified binding protein yielded a lower limit molecular weight of 79,000 +/- 7,000. However, the solubilized lectin was detected as a heterogeneous population of oligomers with molecular weights as high as 450,000. Addition of calcium or calcium plus N-acetylglucosamine decreased the higher molecular weight species, but the lower limit molecular weights remained invariant. Similar results were determined when the chicken lectin was solubilized in Brij 58, C12E9, or 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonic acid (CHAPS). Results from the present study suggest that in the plasma membrane, the functional species of the chicken hepatic lectin exists as a trimer. However, in detergent solution, the purified receptor forms a heterogeneous population of irreversible oligomers that exhibit binding activity proportional to size

  7. Mycobacteria inactivation using Engineered Water Nanostructures (EWNS).

    Science.gov (United States)

    Pyrgiotakis, Georgios; McDevitt, James; Gao, Ya; Branco, Alan; Eleftheriadou, Mary; Lemos, Bernardo; Nardell, Edward; Demokritou, Philip

    2014-08-01

    Airborne transmitted pathogens such as Mycobacterium tuberculosis (Mtb) cause serious, often fatal infectious disease with enormous global health implications. Due to their unique cell wall and slow growth, mycobacteria are among the most resilient microbial forms. Herein we evaluate the ability of an emerging, chemical-free, nanotechnology-based method to inactivate M. parafortuitum (Mtb surrogate). This method is based on the transformation of atmospheric water vapor into engineered water nano-structures (EWNS) via electrospray. We demonstrate that the EWNS can interact with and inactivate airborne mycobacteria, reducing their concentration levels significantly. Additionally, EWNS can inactivate M. parafortuitum on surfaces eight times faster than the control. The mechanism of mycobacteria inactivation was also investigated in this study. It was demonstrated that the EWNS effectively deliver the reactive oxygen species, encapsulated during the electrospray process, to the bacteria oxidizing their cell membrane resulting into inactivation. Overall, this is a method with the potential to become an effective intervention technology in the battle against airborne infections. This study demonstrates the feasibility of mycobacterium inactivation in airborne form or on contact surfaces using electrospray activated water nano-structures. Given that the method is free of toxic chemicals, this might become an important tool in the prevention of mycobacterial infections, which are notoriously hard to treat. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Radiosensitization: enhancing the radiation inactivation of foodborne bacteria

    Science.gov (United States)

    Borsa, J.; Lacroix, M.; Ouattara, B.; Chiasson, F.

    2004-09-01

    Irradiation of meat products to kill pathogens can be limited by radiation-induced detriment of sensory quality. Since such detriment is directly related to dose, one approach to reduce it is by devising means to lower the dose of radiation required for processing. Increasing the radiation sensitivity of the target microorganisms would lower the dose required for a given level of microbial kill. In this work, the radiation sensitivities of inoculated Escherichia coli and Salmonella typhi in ground beef were examined under a variety of conditions. Results showed that specific manipulations of treatment conditions significantly increased the radiation sensitivity of the test organisms, ranging from a few percent to several-fold reduction in D10. In particular, radiation sensitization could be effected by certain additives, including carvacrol, thymol and trans-cinnamaldehyde, and also by certain compositions of modified atmosphere in the package headspace. A combination of additives and modified atmosphere effected a greater radiosensitization effect than could be achieved by either factor applied alone. Radiosensitization could be demonstrated with irradiation of either fresh or frozen ground meat. The radiosensitization phenomenon may be of practical utility in enhancing the technical effectiveness and feasibility of irradiation of a variety of meat and other food products.

  9. Radiosensitization: enhancing the radiation inactivation of foodborne bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Borsa, J. E-mail: jborsa@mds.nordion.com; Lacroix, M.; Ouattara, B.; Chiasson, F

    2004-10-01

    Irradiation of meat products to kill pathogens can be limited by radiation-induced detriment of sensory quality. Since such detriment is directly related to dose, one approach to reduce it is by devising means to lower the dose of radiation required for processing. Increasing the radiation sensitivity of the target microorganisms would lower the dose required for a given level of microbial kill. In this work, the radiation sensitivities of inoculated Escherichia coli and Salmonella typhi in ground beef were examined under a variety of conditions. Results showed that specific manipulations of treatment conditions significantly increased the radiation sensitivity of the test organisms, ranging from a few percent to several-fold reduction in D{sub 10}. In particular, radiation sensitization could be effected by certain additives, including carvacrol, thymol and trans-cinnamaldehyde, and also by certain compositions of modified atmosphere in the package headspace. A combination of additives and modified atmosphere effected a greater radiosensitization effect than could be achieved by either factor applied alone. Radiosensitization could be demonstrated with irradiation of either fresh or frozen ground meat. The radiosensitization phenomenon may be of practical utility in enhancing the technical effectiveness and feasibility of irradiation of a variety of meat and other food products.

  10. Post-irradiation inactivation, protection, and repair of the sulfhydryl enzyme malate synthase

    International Nuclear Information System (INIS)

    Durchschlag, H.; Zipper, P.

    1985-01-01

    Malate synthase from baker's yeast, a trimeric sulfhydryl enzyme with one essential sulfhydryl group per subunit, was inactivated by 2 kGy X-irradiation in air-saturated aqueous solution (enzyme concentration: 0.5 mg/ml). The radiation induced changes of enzymic activity were registered at about 0,30,60 h after irradiation. To elucidate the role of OH - , O 2 , and H 2 O 2 in the X-ray inactivation of the enzyme, experiments were performed in the absence of presence of different concentrations of specific additives (formate, superoxide dismutase, catalase). These additives were added to malate synthase solutions before or after X-irradiation. Moreover, repairs of inactivated malate synthase were initiated at about 0 or 30 h after irradiation by means of the sulfhydryl agent dithiothreitol. Experiments yielded the following results: 1. Irradiation of malate synthase in the absence of additives inactivated the enzyme immediately to a residual activity Asub(r)=3% (corresponding to a D 37 =0.6 kGy), and led to further slow inactivation in the post-irradiation phase. Repairs, initiated at different times after irradiation, restored enzymic activity considerably. The repair initiated at t=0 led to Asub(r)=21%; repairs started later on resulted in somewhat lower activities. The decay of reparability, however, was found to progress more slowly than post-irradiation inactivation itself. After completion of repair the activities of repaired samples did not decrease significantly. 2. The presence of specific additives during irradiation caused significant protective effects against primary inactivation. The protection by formate was very pronounced (e.g., Asub(r)=72% and D 37 =6 kGy for 100 mM formate). The presence of catalytic amounts of superoxide dismutase and/or catalase exhibited only minor effects, depending on the presence and concentration of formate. (orig.)

  11. Inactivation of Aerosolized Biological Agents using Filled Nanocomposite Materials

    Science.gov (United States)

    2013-02-01

    radiation dose absorbed) roentgen shake slug torr (mm Hg, 0 0 C) *The bacquerel (Bq) is the SI unit of radioactivity ; 1 Bq = 1 event/s...setup was made of stainless steel. The setup was assembled and operated inside a class II biosafety cabinet (Model 6TX, Baker Co., Inc., Sanford, ME...system; (ii) Effectiveness of the facility decontamination conducted between the tests; (iii) Inactivation of spores exposed to combustion of strands

  12. Radiation damage in DNA

    International Nuclear Information System (INIS)

    Lafleur, V.

    1978-01-01

    A number of experiments are described with the purpose to obtain a better insight in the chemical nature and the biological significance of radiation-induced damage in DNA, with some emphasis on the significance of alkali-labile sites. It is shown that not only reactions of OH radicals but also of H radicals introduce breaks and other inactivating damage in single-standed phiX174 DNA. It is found that phosphate buffer is very suitable for the study of the reactions of H radicals with DNA, as the H 2 PO 4 - ions convert the hydrated electrons into H radicals. The hydrated electron, which does react with DNA, does not cause a detectable inactivation. (Auth.)

  13. In vitro studies of chlorin e6-assisted photodynamic inactivation of Helicobacter pylori

    Science.gov (United States)

    Simon, C.; Mohrbacher, C.; Hüttenberger, D.; Bauer-Marschall, Ina; Krickhahn, C.; Stachon, A.; Foth, H.-J.

    2014-03-01

    Helicobacter pylori (HP), a gram-negative microaerophilic bacterium located in gastric mucosa, plays an im- portant role in gastro carcinogenesis. Due to the increasing emergence of antibiotic resistance, photodynamic inactivation of bacteria presents a new approach to treat bacterial infections, like HP. In vitro experiments were performed to determine the irradiation conditions for a complete inactivation of HP with the photosensitizer Chlorin e6 (Ce6). The HP strain CCUG 38770 (Culture Collection, University of Gothenburg, Sweden) was routinely cultured under microaerophilic conditions, suspended in sodium chloride, incubated with Ce6 and irradiated briefly with red light of the appropriate wavelength of λ = 660 nm. Series of measurements of different Ce6-concentrations (0.1 μM - 100 μM) were carried out, whereby the incubation time was kept constant at 1 min. The absorbed energy dose has been selected in varying the irradiation time (1 s - 300 s) and the power density (4.5 mW/cm2 - 31 mW/cm2 ). Quantification of inactivation was performed by enumeration of the grown colonies. In addition, the accumulation of Ce6 in HP cells was studied more precisely by uorescence spectroscopy. With a Ce6 concentration of 100 μM and a power density of 9 mW cm2 , a 6-log10 reduction in the survival rate of HP was achieved within 30 seconds of irradiation. In conclusion the most relevant factor for the inactivation of HP is the exposure time of irradiation, followed by the concentration of Ce6 and the light intensity. Further studies with HP strains obtained from patient specimens are under current investigation.

  14. Variations in the radiation sensitivity of foodborne pathogens associated with complex ready-to-eat food products

    Energy Technology Data Exchange (ETDEWEB)

    Sommers, Christopher H. [Food Safety Intervention Technologies Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038 (United States)]. E-mail: csommers@errc.ars.usda.gov; Boyd, Glenn [Food Safety Intervention Technologies Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038 (United States)

    2006-07-15

    Foodborne illness outbreaks and product recalls are occasionally associated with ready-to-eat (RTE) sandwiches and other 'heat and eat' multi-component RTE products. Ionizing radiation can inactivate foodborne pathogens on meat and poultry, fruits and vegetables, seafood, and RTE meat products. However, less data are available on the ability of low-dose ionizing radiation, doses under 5 kGy typically used for pasteurization purposes, to inactivate pathogenic bacteria on complex multi-component food products. In this study, the efficacy of ionizing radiation to inactivate Salmonella spp., Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, and Yersinia enterocolitica on RTE foods including a 'frankfurter on a roll', a 'beef cheeseburger on a bun' and a 'vegetarian cheeseburger on a bun' was investigated. The average D-10 values, the radiation dose needed to inactivate 1 log{sub 1} of pathogen, by bacterium species, were 0.61, 0.54, 0.47, 0.36 and 0.15 kGy for Salmonella spp., S. aureus, L. monocytogenes, E. coli O157:H7, and Y. enterocolitica, respectively when inoculated onto the three product types. These results indicate that irradiation may be an effective means for inactivating common foodborne pathogens including Salmonella spp, S. aureus, L. monocytogenes, E. coli O157:H7 and Y. enterocolitica in complex RTE food products such as 'heat and eat' sandwich products.

  15. Some non-thermal microbial inactivation methods in dairy products

    International Nuclear Information System (INIS)

    Yangilar, F.; Kabil, E.

    2013-01-01

    During the production of dairy products, some thermal processes such as pasteurization and sterilization are used commonly to inactive microorganisms. But as a result of thermal processes, loss of nutrient and aroma, non-enzymatic browning and organoleptic differentiation especially in dairy products are seen. Because of this, alternative methods are needed to provide microbial inactivation and as major problems are caused by high temperatures, non-thermal processes are focused on. For this purpose, some methods such as high pressure (HP), pulsed light (PL), ultraviolet radiation (UV), supercritical carbon dioxide (SC-CO2) or pulsed electric field (PEF) are used in food. These methods products are processed in ambient temperature and so not only mentioned losses are minimized but also freshness and naturality of products can be preserved. In this work, we will try to be given information about methods of non-thermal microbial inactivation of dairy products. (author) [tr

  16. Pathogens Inactivated by Low-Energy-Electron Irradiation Maintain Antigenic Properties and Induce Protective Immune Responses

    Science.gov (United States)

    Fertey, Jasmin; Bayer, Lea; Grunwald, Thomas; Pohl, Alexandra; Beckmann, Jana; Gotzmann, Gaby; Casado, Javier Portillo; Schönfelder, Jessy; Rögner, Frank-Holm; Wetzel, Christiane; Thoma, Martin; Bailer, Susanne M.; Hiller, Ekkehard; Rupp, Steffen; Ulbert, Sebastian

    2016-01-01

    Inactivated vaccines are commonly produced by incubating pathogens with chemicals such as formaldehyde or β-propiolactone. This is a time-consuming process, the inactivation efficiency displays high variability and extensive downstream procedures are often required. Moreover, application of chemicals alters the antigenic components of the viruses or bacteria, resulting in reduced antibody specificity and therefore stimulation of a less effective immune response. An alternative method for inactivation of pathogens is ionizing radiation. It acts very fast and predominantly damages nucleic acids, conserving most of the antigenic structures. However, currently used irradiation technologies (mostly gamma-rays and high energy electrons) require large and complex shielding constructions to protect the environment from radioactivity or X-rays generated during the process. This excludes them from direct integration into biological production facilities. Here, low-energy electron irradiation (LEEI) is presented as an alternative inactivation method for pathogens in liquid solutions. LEEI can be used in normal laboratories, including good manufacturing practice (GMP)- or high biosafety level (BSL)-environments, as only minor shielding is necessary. We show that LEEI efficiently inactivates different viruses (influenza A (H3N8), porcine reproductive and respiratory syndrome virus (PRRSV), equine herpesvirus 1 (EHV-1)) and bacteria (Escherichia coli) and maintains their antigenicity. Moreover, LEEI-inactivated influenza A viruses elicit protective immune responses in animals, as analyzed by virus neutralization assays and viral load determination upon challenge. These results have implications for novel ways of developing and manufacturing inactivated vaccines with improved efficacy. PMID:27886076

  17. Inactivation of oocysts of Cryptosporidium parvum by ultraviolet irradiation

    International Nuclear Information System (INIS)

    Campbell, A.T.; Robertson, L.J.; Snowball, M.R.; Smith, H.V.

    1995-01-01

    Inactivation of oocysts of Cryptosporidium parvum in clean water using a novel design of an ultraviolet disinfection system was assessed by a vital dye assay and by in vitro excystation. The disinfection unit system is designed to expose the oocysts to ultraviolet radiation on two filters, providing a maximum total exposure to ultraviolet radiation of 8748 mW s cm −2 . Results revealed a reduction in oocyst viability of over two logs, indicating that this treatment has exciting potential as an additional treatment for water already treated by conventional methods. However, these data are only preliminary results using one isolate of oocysts and further trials must be conducted before this system could be recommended for use

  18. Comparative inactivation of enteric adenoviruses, poliovirus and coliphages by ultraviolet irradiation

    International Nuclear Information System (INIS)

    Meng, Q.S.; Gerba, C.P.

    1996-01-01

    The inactivation of enteric adenoviruses 40 and 41 by ultraviolet (UV) radiation was investigated and compared with poliovirus type 1 (strain LSc-2ab) and coliphages MS-2 and PRD-1. Purified stocks of the viruses were exposed to collimated ultraviolet radiation in a stirred reactor for a total dose of up to 140 mW s/cm 2 . The doses of UV to achieve a 90% inactivation of adenovirus 40, adenovirus 41, coliphages MS-2 and PRD-1 and poliovirus type 1 were 30, 23.6, 14, 8.7 and 4.1 mW s/cm 2 , respectively. Adenovirus 40 was significantly more resistant than coliphage MS-2 to UV irradiation (P < 0.01). Adenovirus 41 appeared slightly more sensitive than adenovirus 40, but the difference was not significant (P>0.05). The resistance of PRD-1 was less than MS-2 (P < 0.01), but greater than poliovirus type 1 (P < 0.01). Adenoviruses 40 and 41 were more resistant than Bacillus subtilis spores, often suggested as an indicator of UV light performance. The double-stranded DNA adenoviruses appear to be the most resistant of all potentially water-borne enteric viruses to UV light disinfection. (author)

  19. Determination method of inactivating minimal dose of gama radiation for Salmonella typhimurium

    International Nuclear Information System (INIS)

    Araujo, E.S.; Campos, H. de; Silva, D.M.

    1979-01-01

    A method for determination of minimal inactivating dose (MID) with Salmonella typhimurium is presented. This is a more efficient way to improve the irradiated vaccines. The MID found for S. thyphimurium 6.616 by binomial test was 0.55 MR. The method used allows to get a definite value for MID and requires less consumption of material, work and time in comparison with the usual procedure [pt

  20. Radioprotective action of glycerol and cysteamine on inactivation and mutagenesis in Salmonella tester strains after gamma and heavy ion irradiation

    International Nuclear Information System (INIS)

    Basha, S.G.; Krasavin, E.A.; Kozubek, S.

    1991-01-01

    Inactivation and mutagenesis were studied in Salmonella tester strains after γ-irradiation and after heavy ion irradiation in the presence of glycerol and cysteamine. Bacterial cells were irradiated at Dubna, JINR. Ions from deuterons to carbon were used with residual energies 2-9 MeV/u. The protective effect of glycerol was found both for γ-radiation and for heavy ions up to 50 keV/μm for both cell inactivation and mutagenesis in Salmonella tester strains with different mutation events. Cell sensitivity slightly increased with LET before falling down. The maximum was shifted in the presence of glycerol to the left and was less pronounced. The radioprotective effect of glycerol diminished gradually with LET from 2.0 for γ-radiation to 1.1 for carbon ions. Mutagenesis increases with LET in TA100 strain; in TA98 strain no marked increase could be detected. 13 refs.; 4 figs.; 5 tabs

  1. Randomized Trials Comparing Inactivated Vaccine after Medium- or High-titer Measles Vaccine with Standard Titer Measles Vaccine after Inactivated Vaccine

    DEFF Research Database (Denmark)

    Aaby, Peter; Ravn, Henrik; Benn, Christine S.

    2016-01-01

    Background: Observational studies have suggested that girls have higher mortality if their most recent immunization is an inactivated vaccine rather than a live vaccine. We therefore reanalyzed 5 randomized trials of early measles vaccine (MV) in which it was possible to compare an inactivated va...

  2. Experience in applying 60Co γ-rays for careful production of inactivated influenza virus vaccines

    International Nuclear Information System (INIS)

    Nordheim, W.; Braeuniger, S.; Schulze, P.; Dittmann, S.; Petzold, G.; Teupel, D.; Luther, P.; Tischner, H.; Baer, M.; Akademie der Wissenschaften der DDR, Leipzig. Zentralinstitut fuer Isotopen- und Strahlenforschung)

    1987-01-01

    Radiation doses between 12 and 13 kGy at 15-20 0 C were sufficient for mild inactivation of influenza viruses. Under these conditions the decisive surface antigens hemagglutinin and neuraminidase were treated with care, and the preparations of influenza viruses revealed good immunogenicity in the animal experiment. Morphologic alterations after application of 20 kGy could not be demonstrated in electron microscopic investigations. Doses of 9.5-9.9 kGy in combination with a very low quantity of HCHO (1:15000) is sufficient for inactivation. Reactivation of influenza viruses after treatment could not be demonstrated. (author)

  3. A comparative study of the disinfection efficacy of H2O2/ferrate and UV/H2O2/ferrate processes on inactivation of Bacillus subtilis spores by response surface methodology for modeling and optimization.

    Science.gov (United States)

    Matin, Atiyeh Rajabi; Yousefzadeh, Samira; Ahmadi, Ehsan; Mahvi, Amirhossein; Alimohammadi, Mahmood; Aslani, Hassan; Nabizadeh, Ramin

    2018-04-03

    Although chlorination can inactivate most of the microorganisms in water but protozoan parasites like C. parvum oocysts and Giardia cysts can resist against it. Therefore, many researches have been conducted to find a novel method for water disinfection. Present study evaluated the synergistic effect of H2O2 and ferrate followed by UV radiation to inactivate Bacillus subtilis spores as surrogate microorganisms. Response surface methodology(RSM) was employed for the optimization for UV/H2O2/ferrate and H2O2/ferrate processes. By using central composite design(CCD), the effect of three main parameters including time, hydrogen peroxide, and ferrate concentrations was examined on process performance. The results showed that the combination of UV, H2O2 and ferrate was the most effective disinfection process in compare with when H2O2 and ferrate were used. This study indicated that by UV/H2O2/ferrate, about 5.2 log reductions of B. subtilis spores was inactivated at 9299 mg/l of H2O2 and 0.4 mg/l of ferrate concentrations after 57 min of contact time which was the optimum condition, but H2O2/ferrate can inactivate B. subtilis spores about 4.7 logs compare to the other process. Therefore, the results of this research demonstrated that UV/H2O2 /ferrate process is a promising process for spore inactivation and water disinfection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Photodynamic inactivation of foodborne bacteria by eosin Y.

    Science.gov (United States)

    Bonin, E; Dos Santos, A R; Fiori da Silva, A; Ribeiro, L H; Favero, M E; Campanerut-Sá, P A Z; de Freitas, C F; Caetano, W; Hioka, N; Mikcha, J M G

    2018-03-25

    The aim of this study was evaluate the effect of photodynamic inactivation mediated by eosin Y in Salmonella enterica serotype Typhimurium ATCC 14028, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 25923 and Bacillus cereus ATCC 11778. Bacteria (10 7 CFU per ml) were incubated with eosin Y at concentrations ranging from 0·1 to 10 μmol l -1 , irradiated by green LED (λ max 490-570 nm) for 5, 10 and 15 min and the cellular viability was determined. Pseudomonas aeruginosa was completely inactivated when treated with 10 μmol l -1 eosin Y for 10 min. Treatments reduced B. cereus and Salm. Typhimurium counts to 2·7 log CFU per ml and 1·7 log CFU per ml, respectively. Escherichia coli counts were slightly reduced. Staphylococcus aureus presented the highest sensitivity, being completely inactivated by eosin Y at 5 μmol l -1 and 5 min of illumination. The reduction of cellular viability of photoinactivated Staph. aureus was also demonstrated by flow cytometry and morphological changes were observed by scanning electron microscopy. Eosin Y in combination with LED produced bacterial inactivation, being a potential candidate for photodynamic inactivation. This study evidenced the efficacy of photodynamic inactivation as a novel and promising alternative to bacterial control. © 2018 The Society for Applied Microbiology.

  5. Chlorophyll mediated photodynamic inactivation of blue laser on Streptococcus mutans

    Science.gov (United States)

    Astuti, Suryani Dyah; Zaidan, A.; Setiawati, Ernie Maduratna; Suhariningsih

    2016-03-01

    Photodynamic inactivation is an inactivation method in microbial pathogens that utilize light and photosensitizer. This study was conducted to investigate photodynamic inactivation effects of low intensity laser exposure with various dose energy on Streptococcus mutans bacteria. The photodynamic inactivation was achieved with the addition of chlorophyll as photosensitizers. To determine the survival percentage of Streptococcus mutans bacteria after laser exposure, the total plate count method was used. For this study, the wavelength of the laser is 405 nm and variables of energy doses are 1.44, 2.87, 4.31, 5.74, 7.18, and 8.61 in J/cm2. The results show that exposure to laser with energy dose of 7.18 J/cm2 has the best photodynamic inactivation with a decrease of 78% in Streptococcus

  6. UVA Causes Dual Inactivation of Cathepsin B and L Underlying Lysosomal Dysfunction in Human Dermal Fibroblasts

    Science.gov (United States)

    Lamore, Sarah D.; Wondrak, Georg T.

    2013-01-01

    Cutaneous exposure to chronic solar UVA-radiation is a causative factor in photocarcinogenesis and photoaging. Recently, we have identified the thiol-dependent cysteine-protease cathepsin B as a novel UVA-target undergoing photo-oxidative inactivation upstream of autophagic-lysosomal dysfunction in fibroblasts. In this study, we examined UVA effects on a wider range of cathepsins and explored the occurrence of UVA-induced cathepsin inactivation in other cultured skin cell types. In dermal fibroblasts, chronic exposure to non-cytotoxic doses of UVA caused pronounced inactivation of the lysosomal cysteine-proteases cathepsin B and L, effects not observed in primary keratinocytes and occurring only to a minor extent in primary melanocytes. In order to determine if UVA-induced lysosomal impairment requires single or dual inactivation of cathepsin B and/or L, we used a genetic approach (siRNA) to selectively downregulate enzymatic activity of these target cathepsins. Monitoring an established set of protein markers (including LAMP1, LC3-II, and p62) and cell ultrastructural changes detected by electron microscopy, we observed that only dual genetic antagonism (targeting both CTSB and CTSL expression) could mimic UVA-induced autophagic-lysosomal alterations, whereas single knockdown (targeting CTSB or CTSL only) did not display ‘UVA-mimetic’ effects failing to reproduce the UVA-induced phenotype. Taken together, our data demonstrate that chronic UVA inhibits both cathepsin B and L enzymatic activity and that dual inactivation of both enzymes is a causative factor underlying UVA-induced impairment of lysosomal function in dermal fibroblasts. PMID:23603447

  7. Free radical inactivation of trypsin

    International Nuclear Information System (INIS)

    Cudina, Ivana; Jovanovic, S.V.

    1988-01-01

    Reactivities of free radical oxidants, radical OH, Br2-anion radical and Cl 3 COO radical and a reductant, CO2-anion radical, with trypsin and reactive protein components were determined by pulse radiolysis of aqueous solutions at pH 7, 20 0 C. Highly reactive free radicals, radical OH, Br2-anion radical and CO2-anion radical, react with trypsin at diffusion controlled rates. Moderately reactive trichloroperoxy radical, k(Cl 3 COO radical + trypsin) preferentially oxidizes histidine residues. The efficiency of inactivation of trypsin by free radicals is inversely proportional to their reactivity. The yields of inactivation of trypsin by radical OH, Br2-anion radical and CO2-anion radical are low, G(inactivation) = 0.6-0.8, which corresponds to ∼ 10% of the initially produced radicals. In contrast, Cl 3 COO radical inactivates trypsin with ∼ 50% efficiency, i.e. G(inactivation) = 3.2. (author)

  8. Ultraviolet radiation inactivates SV40 by disrupting at least four genetic functions

    International Nuclear Information System (INIS)

    Brown, T.C.; Cerutti, P.A.

    1986-01-01

    The most UV sensitive region within the SV40 viral genome contains the transcriptional promotors and enhancers for the early and late viral genes plus part of the origin of DNA replication. Lesions within this regulatory region are 3.2-fold more effective in inactivating viral DNA than is the same amount of damage randomly distributed throughout the viral genome. The region least sensitive to damage lies within the coding portion of the viral coat protein genes, which are expressed only late in infection and would therefore be transcribed from undamaged progeny viral genomes, provided DNA replication occurs. Damage within this region is only 45% as effective in inactivating viral DNA as are randomly distributed lesions. Thus there is a 7-fold difference in the lethal effect of DNA damage within the most and least sensitive regions of the viral genome. Intermediate sensitivities are observed within the transcribed portion of the viral A gene, coding for the T antigen whose expression is required early in infection, and in a region at the terminus of DNA replication. The sum of the individual sensitivities for all regions of the SV40 genome is equal to the total sensitivity of viral DNA subjected to random damage. (author)

  9. Inactivation by gamma irradiation of animal viruses in simulated laboratory effluent

    International Nuclear Information System (INIS)

    Thomas, F.C.; Ouwerkerk, T.; McKercher, P.

    1982-01-01

    Several animal viruses were treated with gamma radiation from a 60 Co source under conditions which might be found in effluent from an animal disease laboratory. Swine vesicular disease virus, vesicular stomatitis virus, and blue-tongue virus were irradiated in tissues from experimentally infected animals. Pseudorabies virus, fowl plague virus, swine vesicular disease virus, and vesicular stomatitis virus were irradiated in liquid animal feces. All were tested in animals and in vitro. The D 10 values, that is, the doses required to reduce infectivity by 1 log 10 , were not apparently different from those expected from predictions based on other data and theoretical considerations. The existence of the viruses in pieces of tissues or in liquid feces made no differences in the efficacy of the gamma radiation for inactivating them. Under the ''worst case'' conditions (most protective for virus) simulated in this study, no infectious agents would survive 4.0 Mrads

  10. Structure of suicide-inactivated β-hydroxydecanoyl-thioester dehydrase

    International Nuclear Information System (INIS)

    Schwab, J.M.; Ho, C.K.; Li, W.B.; Townsend, C.A.; Salituro, G.M.

    1986-01-01

    β-Hydroxydecanoylthioester dehydrase, the key enzyme in biosynthesis of unsaturated fatty acids under anaerobic conditions, equilibrates thioesters of (R)-3-hydroxydecanoic acid, E-2-decenoic acid, and Z-3-decenoic acid. Dehydrase is irreversibly inactivated by the N-acetylcysteamine thioester of 3-decynoic acid (3-decynoyl-NAC), via dehydrase-catalyzed isomerization to 2,3-decadienoyl-NAC. To probe the relationship between normal catalysis and suicide inactivation, the structure of the inactivated enzyme has been studied. 3-[2- 13 C]Decynoyl-NAC was synthesized and incubated with dehydrase. 13 C NMR showed that attack of 2,3-decadienoyl-NAC by the active site histidine gives 3-histidinyl-3-decenoyl-NAC, which slowly rearranges to the more stable Δ 2 isomer. Model histidine-allene adducts have been made and characterized. Analysis of NMR data show that the C=C configuration of the decenoyl moiety of enzyme-bound inactivator is E. The suggestion that the mechanism of dehydrase inactivation parallels its normal mechanism of action is supported these findings

  11. Effects of track structure and cell inactivation on the calculation of heavy ion mutation rates in mammalian cells

    Science.gov (United States)

    Cucinotta, F. A.; Wilson, J. W.; Shavers, M. R.; Katz, R.

    1996-01-01

    It has long been suggested that inactivation severely effects the probability of mutation by heavy ions in mammalian cells. Heavy ions have observed cross sections of inactivation that approach and sometimes exceed the geometric size of the cell nucleus in mammalian cells. In the track structure model of Katz the inactivation cross section is found by summing an inactivation probability over all impact parameters from the ion to the sensitive sites within the cell nucleus. The inactivation probability is evaluated using the dose-response of the system to gamma-rays and the radial dose of the ions and may be equal to unity at small impact parameters for some ions. We show how the effects of inactivation may be taken into account in the evaluation of the mutation cross sections from heavy ions in the track structure model through correlation of sites for gene mutation and cell inactivation. The model is fit to available data for HPRT mutations in Chinese hamster cells and good agreement is found. The resulting calculations qualitatively show that mutation cross sections for heavy ions display minima at velocities where inactivation cross sections display maxima. Also, calculations show the high probability of mutation by relativistic heavy ions due to the radial extension of ions track from delta-rays in agreement with the microlesion concept. The effects of inactivation on mutations rates make it very unlikely that a single parameter such as LET or Z*2/beta(2) can be used to specify radiation quality for heavy ion bombardment.

  12. Chemical effects of radiation

    International Nuclear Information System (INIS)

    Philips, G.O.

    1986-01-01

    Ionizing radiations initiate chemical changes in materials because of the high energy of their quanta. In water, highly reactive free radicals are produced which can initiate secondary changes of solutes, and in chemical of biological molecules in contact with the water. Free radicals can also be directly produced in irradiated medical products. Their fate can be identified and the molecular basis of radiation inactivation clarified. Methods have now been developed to protect and minimise such radiation damage. (author)

  13. DNA aptamer functionalized gold nanostructures for molecular recognition and photothermal inactivation of methicillin-Resistant Staphylococcus aureus.

    Science.gov (United States)

    Ocsoy, Ismail; Yusufbeyoglu, Sadi; Yılmaz, Vedat; McLamore, Eric S; Ildız, Nilay; Ülgen, Ahmet

    2017-11-01

    In this work, we report the development of DNA aptamer-functionalized gold nanoparticles (Apt@Au NPs) and gold nanorods (Apt@Au NRs) for inactivation of Methicillin-resistant Staphylococcus aureus (MRSA) with targeted photothermal therapy (PTT). Although both Apt@Au NPs and Apt@Au NRs specifically bind to MRSA cells, Apt@Au NPs and Apt@Au NRs inactivated ∼5% and over 95% of the cells,respectively through PTT. This difference in inactivation was based on the relatively high longitudinal absorption of near-infrared (NIR) radiation and strong photothermal conversion capability for the Apt@Au NRs compared to the Apt@Au NPs. The Au NRs served as a nanoplatform for the loading of thiolated aptamer and also provided multivalent effects for increasing binding strength and affinity to MRSA. Our results indicate that the type of aptamer and the degree of multivalent effect(s) are important factors for MRSA inactivation efficiency in PTT. We show that the Apt@Au NRs are a very effective and promising nanosystem for specific cell recognition and in vitro PTT. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The radiation hypersensitivity of cells at mitosis.

    Science.gov (United States)

    Stobbe, C C; Park, S J; Chapman, J D

    2002-12-01

    Mitotic cells are hypersensitive to ionizing radiation, exhibiting single-hit inactivation coefficients near to those of repair deficient cell lines and lymphocytes. To elucidate possible mechanisms for this hypersensitivity, the kinetics of oxygen radiosensitization, the proportion of indirect effect by OH radicals and the kinetics of radiation-induced DNA strand breakage in the chromatin of mitotic cells were investigated. Synchronized populations of >90% mitotic HT-29 cells were obtained by the mitotic shake-off method. Cells were irradiated at indirect effect of OH radicals was investigated with the radical scavenger, DMSO. DNA strand breakage was measured by the comet assay. Mitotic HT-29 cell inactivation is well described by a single-hit inactivation coefficient (alpha) of 1.14 +/- 0.06 Gy(-1). The oxygen enhancement ratio of mitotic cells (at 10% survival) was found to be approximately 2.0, significantly lower than the value of 2.8 measured for interphase (asynchronous) cells. More than 60% of mitotic cell killing was eliminated when the media contained 2 M DMSO, indicating that indirect effect is as important in the killing of mitotic cells as it is for interphase cells. The chromatin in mitotic cells was found to be ~2.8 times more sensitive to radiation-induced DNA single-strand breakage than the chromatin of interphase cells. The alpha-inactivation coefficient of mitotic HT-29 cells was ~30 times larger than that of interphase cells. Mitotic cell chromatin appears to contain intrinsic DNA breaks that are not lethal. In addition, chromatin in mitotic cells was found to be more susceptible to radiation-induced DNA strand-breakage than the dispersed chromatin of interphase cells. How the enhanced production of these simple DNA lesions (that are usually reparable) translates into the lethal (non-reparable) events associated with alpha-inactivation is not known. The compaction/dispersion status of DNA throughout the cell cycle appears to be an important

  15. Radiobiological inactivation of Epstein-Barr virus

    International Nuclear Information System (INIS)

    Henderson, E.; Heston, L.; Grogan, E.; Miller, G.

    1978-01-01

    Lymphocyte transforming properties of B95-8 strain Epstein-Barr virus (EBV) are very sensitive to inactivation by either uv or x irradiation. No dose of irradiation increases the transforming capacity of EBV. The x-ray dose needed for inactivation of EBV transformation (dose that results in 37% survival, 60,000 rads) is similar to the dose required for inactivation of plaque formation by herpes simplex virus type 1 (Fischer strain). Although herpes simplex virus is more sensitive than EBV to uv irradiation, this difference is most likely due to differences in the kinetics or mechanisms of repair of uv damage to the two viruses. The results lead to the hypothesis that a large part, or perhaps all, of the EBV genome is in some way needed to initiate transformation. The abilities of EBV to stimulate host cell DNA synthesis, to induce nuclear antigen, and to immortalize are inactivated in parallel. All clones of marmoset cells transformed by irradiated virus produce extracellular transforming virus. These findings suggest that the abilities of the virus to transform and to replicate complete progeny are inactivated together. The amounts of uv and x irradiation that inactivate transformation by B95-8 virus are less than the dose needed to inactivate early antigen induction by the nontransforming P 3 HR-1 strain of EBV. Based on radiobiological inactivation, 10 to 50% of the genome is needed for early antigen induction

  16. Influence of gamma radiation on the immunobiological and immunochemical properties of cholera exotoxin. Communication 1. Changes in the biological activity of crude cholera exotoxin under the action of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nedugova, G I; Rubtsov, I V; Samojlenko, I I [Ministerstvo Zdravookhraneniya SSSR, Tsentral' nyj Inst. Ehpidemiologii

    1984-02-01

    Native cholera exotoxin (abacterial centrifugalized deposit) has been irradiated using gamma-installations with a /sup 60/Co source. A high inactivating effect of gamma-radiation on native cholera exotoxin is established: with the increase of radiation dose cholerogenity decreased for certain (at the dose 50 kGy) a complete inactivation of all studied series of liquid filtrate-toxin took place), activity of permeability factor and toxicity for mice decreased. A higher radiostability of dry toxin preparations as compared with the liquid ones is detected. Sterilization effect of radiation is achieved at the dose 20 kGy for liquid preparations and at the dose of 30 kGy for dry ones. When preserving the irradiated preparations of raw toxin in different temperature regimes for 6 months to 1.5 year (observation time) toxic properties are not restored, immunogenous properties do not change.

  17. Removal of detergents from SDS-inactivated dextransucrase

    International Nuclear Information System (INIS)

    Husman, D.W.; Mayer, R.M.

    1986-01-01

    Dextransucrase, which is rapidly inactivated by SDS, can be reactivated upon the addition of Triton X-100. Purification of the enzyme, in good yield and homogeneity, has been achieved by chromatography in the presence of SDS. The purified enzyme can be reactivated with Triton, but has large amounts of detergents. It was important to develop procedures for their removal. Density gradient centrifugation of SDS-inactivated or Triton-reactivated enzyme, treatment with Extracti-Gel D (Pierce) or chromatography on hydroxyl apatite (HA), have been examined for their effectiveness in providing detergent-free enzyme in good yield. Ultracentrifugation of SDS-inactivated protein provided limited recovery of active enzyme, but suggested that reactivation could be achieved by the simple removal of the detergent. While similar behavior was observed when the enzyme was eluted from Extracti-Gel, it was also shown that the limited recovery was a result of irreversible inactivation of the enzyme. Recovery could be improved if the enzyme was collected in solutions containing Triton, which has been reported to be a stabilizer. Chromatography of SDS-inactivated enzyme on HA also yielded active enzyme. Good recovery was obtained when Triton-reactivated enzyme was employed in these studies. The degree of detergent removal was determined by utilizing radiolabelled SDS and Triton X-100

  18. Cortical inactivation by cooling in small animals

    Directory of Open Access Journals (Sweden)

    Ben eCoomber

    2011-06-01

    Full Text Available Reversible inactivation of the cortex by surface cooling is a powerful method for studying the function of a particular area. Implanted cooling cryoloops have been used to study the role of individual cortical areas in auditory processing of awake-behaving cats. Cryoloops have also been used in rodents for reversible inactivation of the cortex, but recently there has been a concern that the cryoloop may also cool non-cortical structures either directly or via the perfusion of blood, cooled as it passed close to the cooling loop. In this study we have confirmed that the loop can inactivate most of the auditory cortex without causing a significant reduction in temperature of the auditory thalamus or other sub-cortical structures. We placed a cryoloop on the surface of the guinea pig cortex, cooled it to 2°C and measured thermal gradients across the neocortical surface. We found that the temperature dropped to 20-24°C among cells within a radius of about 2.5mm away from the loop. This temperature drop was sufficient to reduce activity of most cortical cells and led to the inactivation of almost the entire auditory region. When the temperature of thalamus, midbrain, and middle ear were measured directly during cortical cooling, there was a small drop in temperature (about 4°C but this was not sufficient to directly reduce neural activity. In an effort to visualise the extent of neural inactivation we measured the uptake of thallium ions following an intravenous injection. This confirmed that there was a large reduction of activity across much of the ipsilateral cortex and only a small reduction in subcortical structures.

  19. Influence of gamma radiation on the immunobiological and immunochemical properties of cholera exotoxin

    International Nuclear Information System (INIS)

    Nedugova, G.I.; Rubtsov, I.V.; Samojlenko, I.I.

    1984-01-01

    Native cholera exotoxin (abacterial centrifugalized deposit) has been irradiated using gamma-installations with a 60 Co source. A high inactivating effect of gamma-radiation on native cholera exotoxin is established: with the increase of radiation dose cholerogenity decreased for certain (at the dose 50 kGy) a complete inactivation of all studied series of liquid filtrate-toxin took place), activity of permeability factor and toxicity for mice decreased. A higher radiostability of dry toxin preparations as compared with the liquid ones is detected. Sterilization effect of radiation is achieved at the dose 20 kGy for liquid preparations and at the dose of 30 kGy for dry ones. When preserving the irradiated preparations of raw toxin in different temperature regimes for 6 months to 1.5 year (observation time) toxic properties are not restored, immunogenous properties do not change

  20. His+ reversions caused in Salmonella typhimurium by different types of ionizing radiation

    International Nuclear Information System (INIS)

    Roos, H.; Thomas, W.H.; Fitzek, M.; Kellerer, A.M.

    1988-01-01

    The yield of his+ reversions in the Ames Salmonella tester strain TA2638 has been determined for 60Co gamma rays, 140 kV X rays, 5.4 keV characteristic X rays, 2.2 MeV protons, 3.1 MeV alpha particles, and 18 MeV/U Fe ions. Inactivation studies were performed with the same radiations. For both mutation and inactivation, the maximum effectiveness per unit absorbed dose was obtained for the characteristic X rays, which have a dose averaged linear energy transfer (LET) of roughly 10 keV/micron. The ratio of the effectiveness of this radiation to gamma rays was 2 for inactivation and about 1.4 for the his+ reversion. For both end points the effectiveness decreases substantially at high LET, i.e., for the alpha particles and the Fe ions. The composition of the bottom and the top agar was the one recommended by Maron and Ames for application in chemical mutagenicity tests. The experiments with the less penetrating radiations differed from the usual protocol by utilization of a technique of plating the bacteria on the surface of the top agar. As in an earlier study greatly enhanced yields of mutations, relative to the spontaneous reversion rate, were obtained in these experiments by performing the irradiations 6 h after plating, which differs from the conventional procedure to irradiate the bacteria shortly after plating

  1. Inactivation of infectious bovine rhinotracheitis virus by gamma irradiation

    International Nuclear Information System (INIS)

    Nonomiya, Takashi; Yamashiro, Tomio; Tsutsumi, Takamasa; Ito, Hitoshi; Ishigaki, Isao.

    1990-01-01

    Radiation inactivation of Infectious Boivne Rhinotracheitis (IBR) virus was investigated by suspending in a commercial preparation medium (c.p.m.) or IBR antibody free serum and irradiated at room temperature or dry ice frozen condition. Normal pooled serum was also analysed by electrophoresis with cellulose acetate membrane after irradiation at frozen and non-frozen condition. The virus inactivation was determined by MDBK cell line which 50 % tissue culture infectious dose (TCID 50 ) was calculated by Behrens Kaerber method. D 10 value at non-frozen condition in serum was obtained as 1.1-1.2 kGy and that in c.p.m. was 1.3-1.4 kGy. On the other hand, D 10 value was increased to 3.4-3.6 kGy in serum and 3.9 kGy in c.p.m. at frozen condition. On the irradiation effect of bovine serum, four peaks of albumin, α, β and γ-globulin fraction were obtained from non-irradiation and irradiated serum up to 2 kGy at non-frozen condition by electrophoresis. More than 4 kGy irradiation, the peaks of globulin fractions became not clear and at more than 8 kGy, changed to one large peak. On the other hand, these changes of electrophoretic patterns were not observed even at 30 kGy irradiation in frozen condition. From these results, necessary dose was decided as 20-25 kGy at frozen condition for inactivation of IBR virus in serum. (author)

  2. [Kinetics of catalase inactivation induced by ultrasonic cavitation].

    Science.gov (United States)

    Potapovich, M V; Eremin, A N; Metelitsa, D I

    2003-01-01

    Kinetic patterns of sonication-induced inactivation of bovine liver catalase (CAT) were studied in buffer solutions (pH 4-11) within the temperature range from 36 to 55 degrees C. Solutions of CAT were exposed to low-frequency (20.8 kHz) ultrasound (specific power, 48-62 W/cm2). The kinetics of CAT inactivation was characterized by effective first-order rate constants (s-1) of total inactivation (kin), thermal inactivation (*kin), and ultrasonic inactivation (kin(us)). In all cases, the following inequality was valid: kin > *kin. The value of kin(us) increased with the ultrasound power (range, 48-62 W/cm2) and exhibited a strong dependence on pH of the medium. On increasing the initial concentration of CAT (0.4-4.0 nM), kin(us) decreased. The three rate constants were minimum within the range of pH 6.5-8; their values increased considerably at pH 9. At 36-55 degrees C, temperature dependence of kin(us) was characterized by an activation energy (Eact) of 19.7 kcal/mol, whereas the value of Eact for CAT thermoinactivation was equal to 44.2 kcal/mol. Bovine serum and human serum albumins (BSA and HSA, respectively) inhibited sonication-induced CAT inactivation; complete prevention was observed at concentrations above 2.5 micrograms/ml. Dimethyl formamide (DMFA), a scavenger of hydroxyl radicals (HO.), prevented sonication-induced CAT inactivation at 10% (kin and *kin increased with the content of DMFA at concentrations in excess of 3%). The results obtained indicate that free radicals generated in the field of ultrasonic cavitation play a decisive role in the inactivation of CAT, which takes place when its solutions are exposed to low-frequency ultrasound. However, the efficiency of CAT inactivation by the radicals is determined by (1) the degree of association between the enzyme molecules in the reaction medium and (2) the composition thereof.

  3. European Pharmacopoeia biological reference preparation for poliomyelitis vaccine (inactivated): collaborative study for the establishment of batch No. 3.

    Science.gov (United States)

    Martin, J; Daas, A; Milne, C

    2016-01-01

    Inactivated poliomyelitis vaccines are an important part of the World Health Organization (WHO) control strategy to eradicate poliomyelitis. Requirements for the quality control of poliomyelitis vaccines (inactivated) include the use of an in vitro D antigen quantification assay for potency determination on the final lot as outlined in the European Pharmacopoeia (Ph. Eur.) monograph 0214. Performance of this assay requires a reference preparation calibrated in International Units (IU). A Ph. Eur. biological reference preparation (BRP) for poliomyelitis vaccine (inactivated) calibrated in IU has been established for this purpose. Due to the dwindling stocks of batch 2 of the BRP a collaborative study was run as part of the European Directorate for the Quality of Medicines & HealthCare (EDQM) Biological Standardisation Programme to establish BRP batch 3 (BRP3). Twelve laboratories including Official Medicines Control Laboratories (OMCLs) and manufacturers participated. The candidate BRP3 (cBRP3) was from the same source and had the same characteristics as BRP batch 2 (BRP2). During the study the candidate was calibrated against the 3 rd International Standard for inactivated poliomyelitis vaccine using in-house D antigen ELISA assays in line with the Ph. Eur. monograph 0214. The candidate was also compared to BRP2 to evaluate the continuity. Based on the results of the study, values of 320 DU/mL, 78 DU/mL and 288 DU/mL (D antigen units/mL) (IU) for poliovirus type 1, 2 and 3 respectively were assigned to the candidate. In June 2016, the Ph. Eur. Commission adopted the material as Ph. Eur. BRP for poliomyelitis vaccine (inactivated) batch 3.

  4. Inactivation of Aspergillus flavus in drinking water after treatment with UV irradiation followed by chlorination

    International Nuclear Information System (INIS)

    Al-Gabr, Hamid Mohammad; Zheng, Tianling; Yu, Xin

    2013-01-01

    The disinfection process for inactivating microorganisms at drinking water treatment plants is aimed for safety of drinking water for humans from a microorganism, such as bacteria, viruses, algae, fungi by using chlorination, ozonation, UV irradiation, etc. In the present study, a combination of two disinfectants, UV irradiation followed by chlorination, was evaluated for inactivating Aspergillus flavus under low contact time and low dosage of UV irradiation. The results indicated an inverse correlation between the inactivation of A. flavus by using UV irradiation only or chlorination alone. By using UV radiation, the 2 log 10 control of A. flavus was achieved after 30 s of irradiation, while chlorination was observed to be more effective than UV, where the 2 log was achieved at chlorine concentration of 0.5, 1, 2 and 3 mg/l, in contact time of 60, 5, 1 and 1 min, respectively. However, combined use (UV irradiation followed by chlorination) was more effective than using either UV or chlorination alone; 5 s UV irradiation followed by chlorination produced 4 log 10 reduction of A. flavus at chlorine concentrations of 2 and 3 mg/l under a contact time of 15 min. The results indicated that efficiency of UV irradiation improves when followed by chlorination at low concentrations. - Highlights: • As a disinfectant, chlorine is more effective than UV in inactivating Aspergillus flavus. • As a combined method, UV irradiation followed by chlorination shows high efficiency. • UV irradiation can improve effectiveness of chlorination in reducing Aspergillus flavus

  5. Thermal inactivation kinetics of β-galactosidase during bread baking

    NARCIS (Netherlands)

    Zhang, L.; Chen, Xiao Dong; Boom, R.M.; Schutyser, M.A.I.

    2017-01-01

    In this study, β-galactosidase was utilized as a model enzyme to investigate the mechanism of enzyme inactivation during bread baking. Thermal inactivation of β-galactosidase was investigated in a wheat flour/water system at varying temperature-moisture content combinations, and in bread during

  6. Mechanistic study of the visible-light-driven photocatalytic inactivation of bacteria by graphene oxide–zinc oxide composite

    International Nuclear Information System (INIS)

    Wu, Dan; An, Taicheng; Li, Guiying; Wang, Wei; Cai, Yuncheng; Yip, Ho Yin; Zhao, Huijun; Wong, Po Keung

    2015-01-01

    Graphical abstract: - Highlights: • The GO–ZnO composites exhibited efficient VLD bacterial inactivation performance. • Strong interfacial interaction existed between GO and ZnO. • GO served as a photosensitizer in the inactivation process. • Excellent antibacterial activity by GO–ZnO composite was shown under sunlight. • An inactivation mechanism based on the GO photosensitizer induction was proposed. - Abstract: The visible-light-driven (VLD) photocatalytic activity of graphene oxide–zinc oxide (GO–ZnO) composite prepared by a simple hydrothermal method was evaluated toward the inactivation of Escherichia coli K-12. The results showed that GO–ZnO composite had excellent VLD photocatalytic bacterial inactivation activity, comparing with those of ZnO and GO, which was attributed to the strong interaction between ZnO and GO in the composite. Accordingly, an interaction induced VLD photocatalytic inactivation mechanism of the strong interaction of GO with ZnO within the GO–ZnO composite was proposed. GO served as a photosensitizer and facilitated the charge separation and transfer, thus boosted the massive production of reactive oxygen species such as ·OH bulk , which was identified as the major reactive species from conduction band of ZnO, and resulted in a remarkable enhancement of bacterial inactivation efficiency. Moreover, GO–ZnO composite showed obviously superior photocatalytic bacterial inactivation within 10 min under natural solar light irradiation, indicating that GO–ZnO composite has great potential in wastewater treatment and environmental protection.

  7. Skewed X inactivation and survival: a 13-year follow-up study of elderly twins and singletons

    DEFF Research Database (Denmark)

    Mengel-From, Jonas; Thinggaard, Mikael; Christiansen, Lene

    2012-01-01

    In mammalian females, one of the two X chromosomes is inactivated in early embryonic life. Females are therefore mosaics for two cell populations, one with the maternal and one with the paternal X as the active X chromosome. A skewed X inactivation is a marked deviation from a 50:50 ratio...... mortality than the majority of women who had a more skewed DS (hazard ratio: 1.30; 95% CI: 1.04-1.64). The association between X inactivation and mortality was replicated in dizygotic twin pairs for which the co-twin with the lowest DS also had a statistically significant tendency to die first in the twin....... In populations of women past 55-60 years of age, an increased degree of skewing (DS) is found. Here the association between age-related skewing and mortality is analyzed in a 13-year follow-up study of 500 women from three cohorts (73-100 years of age at intake). Women with low DS had significantly higher...

  8. Germination and Inactivation of Alicyclobacillus acidoterrestris Spores Induced by Moderate Hydrostatic Pressure.

    Science.gov (United States)

    Sokołowska, Barbara; Skapska, Sylwia; Fonberg-Broczek, Monika; Niezgoda, Jolanta; Porebska, Izabela; Dekowska, Agnieszka; Rzoska, Sylwester J

    2015-01-01

    Given the importance of spoilage caused by Alicyclobacillus acidoterrestris for the fruit juice industry, the objective of this work was to study the germination and inactivation of A. acidoterrestris spores induced by moderate hydrostatic pressure. Hydrostatic pressure treatment can induce the germination and inactivation of A. acidoterrestris spores. At low pH, spore germination of up to 3.59-3.75 log and inactivation of 1.85-2.04 log was observed in a low pressure window (200-300 MPa) applied at 50 degrees C for 20 min. Neutral pH suppressed inactivation, the number of spores inactivated at pH 7.0 was only 0.24-1.06 log. The pressurization temperature significantly affected spore germination and inactivation. The degree of germination in apple juice after pressurization for 30 min with 200 MPa at 20 degrees C was 2.04 log, with only 0.61 log of spores being inactivated, while at 70 degrees C spore germination was 5.94 log and inactivation 4.72 log. This temperature strongly stimulated germination and inactivation under higher (500 MPa) than lower (200 MPa) pressure. When the oscillatory mode was used, the degree of germination and inactivation was slightly higher than at continuous mode. The degree of germination and inactivation was inversely proportional to the soluble solids content and was lowest in concentrated apple juice.

  9. Experience with a pilot plant for sewage sludge: Experiments on the inactivation of viruses in sewage sludge after a radiation treatment

    International Nuclear Information System (INIS)

    Epp, C.

    1975-01-01

    Investigations examining the virus inactivating effect of a Cobalt-60-plant were, till now, limited to the attempts to isolate virus from the sludge samples taken from sewage sludge before and after irradiation with 300 krad. As in those sludge samples virus presence could be proven only on a rather irregular basis, an experiment was devised in which defined virus quantities were packed into capsules and mixed with the digested sludge. At the end of the hygienization process these capsules were removed from the sludge and examined for virus content. Furthermore one radiation volume (5.6 m 3 ) was infected with attenuated polio virus type I and the virus content was determined before and after the radiation treatment. In 33 sludge samples examined before hygienization, presence of one or several viruses occurred in 8 samples. With the 33 capsules examined after hygienization with 300 krad, only 2 showed presence of virus. Suspensions of attenuated polio virus type I packed into synthetic capsules with a medium virus dosis of 10sup(6.92) JD 50/0.1 were immersed into sludge. In 6 experiments it was found that after hygienization, virus dosis was reduced to an average value of 10sup(5.4) JD 50/0.1 ml. Accordingly, the experimental results showed that after the radiation treatment the reduction of the exposed virus was more than 90%. Under natural conditions the investigation of the sewage sludge samples showed presence of virus 4 times less after hygienization than in the samples examined before hygienization. (orig./AK) [de

  10. Inactivation of ascaris lumbricoides eggs by heat, radiation, and thermoradiation

    International Nuclear Information System (INIS)

    Brannen, J.P.; Garst, D.M.; Langley, S.

    1975-07-01

    It is desirable to eliminate the public health hazards associated with land application of municipal sewage sludge as a fertilizer or soil conditioner. This report describes experimentation to determine the effects of heat, radiation, and thermoradiation on the suppression of embryonation of Ascaris lumbricoides ova, a parasite commonly found in sewage sludge. Heat effects were observed at a minimum temperature of 51 0 C and radiation effects at doses in excess of 15 krads of radiation. Thermoradiation at 47 0 C suppressed embryonation at less than half the total dose required by radiation alone. (U.S.)

  11. High pressure inactivation of Brettanomyces bruxellensis in red wine.

    Science.gov (United States)

    van Wyk, Sanelle; Silva, Filipa V M

    2017-05-01

    Brettanomyces bruxellensis ("Brett") is a major spoilage concern for the wine industry worldwide, leading to undesirable sensory properties. Sulphur dioxide, is currently the preferred method for wine preservation. However, due to its negative effects on consumers, the use of new alternative non-thermal technologies are increasingly being investigated. The aim of this study was to determine and model the effect of high pressure processing (HPP) conditions and yeast strain on the inactivation of "Brett" in Cabernet Sauvignon wine. Processing at 200 MPa for 3 min resulted in 5.8 log reductions. However higher pressure is recommended to achieve high throughput in the wine industry, for example >6.0 log reductions were achieved after 400 MPa for 5 s. The inactivation of B. bruxellensis is pressure and time dependent, with increased treatment time and pressure leading to increased yeast inactivation. It was also found that yeast strain had a significant effect on HPP inactivation, with AWRI 1499 being the most resistant strain. The Weibull model successfully described the HPP "Brett" inactivation. HPP is a viable alternative for the inactivation of B. bruxellensis in wine, with the potential to reduce the industry's reliance on sulphur dioxide. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Radiation sterilization

    International Nuclear Information System (INIS)

    Jacobs, G.P.

    1989-01-01

    In view of the application of ionizing radiation to sterilize pharmaceutical products, and the particular advantages of using this mode of sterilization for powders for injection, which cannot be sterilized by more conventional methods, it is important to recognise the possibility of modification of radiation response of bacteria when in close contact with various drug powders. For this study, bacterial spores, which lend themselves to dessication, and which can be dried onto an inert powder matrix, were chosen as the test system. The results of this work indicate that the additives tested have a modest protective effect on the spores. However, when considering a bacterial inactivation for sterilization purposes of between six and ten orders of magnitude, that is, a desired sterility assurance level of an expected maximum probability of a product item being non-sterile of 10 -6 , then the slight protective effect observed in this study approaches insignificance

  13. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst

    2009-01-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  14. Thermal inactivation of enzymes and pathogens in biosamples for MS analysis.

    Science.gov (United States)

    Ahnoff, Martin; Cazares, Lisa H; Sköld, Karl

    2015-01-01

    Protein denaturation is the common basis for enzyme inactivation and inactivation of pathogens, necessary for preservation and safe handling of biosamples for downstream analysis. While heat-stabilization technology has been used in proteomic and peptidomic research since its introduction in 2009, the advantages of using the technique for simultaneous pathogen inactivation have only recently been addressed. The time required for enzyme inactivation by heat (≈1 min) is short compared with chemical treatments, and inactivation is irreversible in contrast to freezing. Heat stabilization thus facilitates mass spectrometric studies of biomolecules with a fast conversion rate, and expands the chemical space of potential biomarkers to include more short-lived entities, such as phosphorylated proteins, in tissue samples as well as whole-blood (dried blood sample) samples.

  15. Thermal and high pressure inactivation kinetics of blueberry peroxidase.

    Science.gov (United States)

    Terefe, Netsanet Shiferaw; Delon, Antoine; Versteeg, Cornelis

    2017-10-01

    This study for the first time investigated the stability and inactivation kinetics of blueberry peroxidase in model systems (McIlvaine buffer, pH=3.6, the typical pH of blueberry juice) during thermal (40-80°C) and combined high pressure-thermal processing (0.1-690MPa, 30-90°C). At 70-80°C, the thermal inactivation kinetics was best described by a biphasic model with ∼61% labile and ∼39% stable fractions at temperature between 70 and 75°C. High pressure inhibited the inactivation of the enzyme with no inactivation at pressures as high as 690MPa and temperatures less than 50°C. The inactivation kinetics of the enzyme at 60-70°C, and pressures higher than 500MPa was best described by a first order biphasic model with ∼25% labile fraction and 75% stable fraction. The activation energy values at atmospheric pressure were 548.6kJ/mol and 324.5kJ/mol respectively for the stable and the labile fractions. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  16. Inactivation of infectious bovine rhinotracheitis virus by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nonomiya, Takashi; Yamashiro, Tomio; Tsutsumi, Takamasa (Animal Quarantine Service, Yokohama (Japan)); Ito, Hitoshi; Ishigaki, Isao

    1990-10-01

    Radiation inactivation of Infectious Boivne Rhinotracheitis (IBR) virus was investigated by suspending in a commercial preparation medium (c.p.m.) or IBR antibody free serum and irradiated at room temperature or dry ice frozen condition. Normal pooled serum was also analysed by electrophoresis with cellulose acetate membrane after irradiation at frozen and non-frozen condition. The virus inactivation was determined by MDBK cell line which 50 % tissue culture infectious dose (TCID{sub 50}) was calculated by Behrens Kaerber method. D{sub 10} value at non-frozen condition in serum was obtained as 1.1-1.2 kGy and that in c.p.m. was 1.3-1.4 kGy. On the other hand, D{sub 10} value was increased to 3.4-3.6 kGy in serum and 3.9 kGy in c.p.m. at frozen condition. On the irradiation effect of bovine serum, four peaks of albumin, {alpha}, {beta} and {gamma}-globulin fraction were obtained from non-irradiation and irradiated serum up to 2 kGy at non-frozen condition by electrophoresis. More than 4 kGy irradiation, the peaks of globulin fractions became not clear and at more than 8 kGy, changed to one large peak. On the other hand, these changes of electrophoretic patterns were not observed even at 30 kGy irradiation in frozen condition. From these results, necessary dose was decided as 20-25 kGy at frozen condition for inactivation of IBR virus in serum. (author).

  17. LOW PRESSURE ULTRAVEIOLET STUDIES FOR INACTIVATION OF GIARDIA MURIS CYSTS

    Science.gov (United States)

    Cysts of Giardia muris were inactivated using a low pressure ultravolet (UV) light source. Cyst viability was detemined by both in vitro excystation and animal infectivity. Cyst doeses were counted using a flow cytometer for the animal infectivity experiments. Using in vitro excy...

  18. Ultraviolet and gamma-radiation effect on the zymotic characteristics of turnip moth's granules

    Energy Technology Data Exchange (ETDEWEB)

    Khakimova, M A

    1975-01-01

    Virus granules of the winter cutworm (Agrotis segetum Schiff) were used as agents for biological control of this pest of field and vegetable crops. The authors first studied the effect of uv and gamma radiation on granules of the cutworm. A purified suspension of winter moth granules, 0.5 mg of granules per mm/sup 3/, was irradiated with a BUV-15 lamp at a distance of 9 cm from the radiation source. The dose rate was 6.6x10/sup 3/ ergs/cm/sup 2/.sec. The results showed that a uv dose of 71.1x10/sup 6/ ergs/cm/sup 2/ decreased the virulence of the granules by a factor of 3 compared to the original suspension (larval mortality of 27.5%) and a dose of 95x10/sup 6/ ergs/cm/sup 2/ completely inactivated the granules. With gamma radiation (/sup 60/Co or /sup 137/Cs) the inactivating dose was only 21.6x10/sup 5/ rads. The work indicated that cutworm granules are very resistant to uv and gamma radiation.

  19. Radiation resistance of a hemolytic micrococcus isolated from chicken meat

    International Nuclear Information System (INIS)

    Tan, S.T.

    1982-01-01

    The effects of environmental factors on a highly radiation-resistant hemolytic micrococcus isolated from chicken meat were studied. NaCl tolerance and gamma radiation resistance of the cells were growth phase-related. The cells were resistant to injury from drying or freezing/thawing. Under certain conditions, cells in the frozen state required approximately 5 Mrad to inactivate 90% of the population; 0.2 Mrad injured an equivalent proportion. Survival curve of the cells heated at 60 0 C showed a unique pattern which was in three distinct phases. Heat-stressed cells were much more sensitive to radiation inactivation than unheated cells. When suspended in fresh m-Plate Count Broth (PCB), the injured cells repaired without multiplication during incubation at 32 0 C. The repair process in this bacterium, however, was slower compared to thermally injured organisms studied by other workers. An improved replica-plating technique, was devised for isolation of radiation-sensitive mutants of pigmented bacteria. A simple method to demonstrate radiation-inducible radiation resistance in microbial cells was developed. The new method required neither washing/centrifugation nor procedures for cell enumeration. Mutagenesis treatment of radiation-resistant micrococcal bacterium with N-methyl-N'-nitro-N-nitrosoguanidine (NTG) followed by FPR and screening steps resulted in isolation of two radiation-sensitive mutants. The more sensitive mutant strain, designated as 702, was seven times as sensitive to gamma or UC radiation as the wild type. No apparent difference was observed between 702 and the wild type in (1) cell morphology, colonial morphology, and pigment production or (2) tolerance to NaCl, drying/storage, freezing/thawing, and heating. Sodium dodecyl sulfate treatment (for curing) of wild type did not result in isolation of a radiation-sensitive mutant

  20. Fullerene C60 and graphene photosensibiles for photodynamic virus inactivation

    Science.gov (United States)

    Belousova, I.; Hvorostovsky, A.; Kiselev, V.; Zarubaev, V.; Kiselev, O.; Piotrovsky, L.; Anfimov, P.; Krisko, T.; Muraviova, T.; Rylkov, V.; Starodubzev, A.; Sirotkin, A.; Grishkanich, A.; Kudashev, I.; Kancer, A.; Kustikova, M.; Bykovskaya, E.; Mayurova, A.; Stupnikov, A.; Ruzankina, J.; Afanasyev, M.; Lukyanov, N.; Redka, D.; Paklinov, N.

    2018-02-01

    A solid-phase photosensitizer based on aggregated C60 fullerene and graphene oxide for photodynamic inactivation of pathogens in biological fluids was studied. The most promising technologies of inactivation include the photodynamic effect, which consists in the inactivation of infectious agents by active oxygen forms (including singlet oxygen), formed when light is activated by the photosensitizer introduced into the plasma. Research shows features of solid-phase systems based on graphene and fullerene C60 oxide, which is a combination of an effective inactivating pathogens (for example, influenza viruses) reactive oxygen species formed upon irradiation of the photosensitizer in aqueous and biological fluids, a high photostability fullerene coatings and the possibility of full recovery photosensitizer from the biological environment after the photodynamic action.

  1. Thermal inactivation kinetics of β-galactosidase during bread baking.

    Science.gov (United States)

    Zhang, Lu; Chen, Xiao Dong; Boom, Remko M; Schutyser, Maarten A I

    2017-06-15

    In this study, β-galactosidase was utilized as a model enzyme to investigate the mechanism of enzyme inactivation during bread baking. Thermal inactivation of β-galactosidase was investigated in a wheat flour/water system at varying temperature-moisture content combinations, and in bread during baking at 175 or 205°C. In the wheat flour/water system, the thermostability of β-galactosidase increased with decreased moisture content, and a kinetic model was accurately fitted to the corresponding inactivation data (R 2 =0.99). Interestingly, the residual enzyme activity in the bread crust (about 30%) was hundredfold higher than that in the crumb (about 0.3%) after baking, despite the higher temperature in the crust throughout baking. This result suggested that the reduced moisture content in the crust increased the thermostability of the enzyme. Subsequently, the kinetic model reasonably predicted the enzyme inactivation in the crumb using the same parameters derived from the wheat flour/water system. However, the model predicted a lower residual enzyme activity in the crust compared with the experimental result, which indicated that the structure of the crust may influence the enzyme inactivation mechanism during baking. The results reported can provide a quantitative understanding of the thermal inactivation kinetics of enzyme during baking, which is essential to better retain enzymatic activity in bakery products supplemented with heat-sensitive enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Disinfestation of agricultural products with electron beams and their radiation tolerance

    International Nuclear Information System (INIS)

    Hayashi, Toru

    1996-01-01

    Some agricultural products contaminated with insect pests are fumigated with methyl bromide for quarantine purposes. However, the use of methyl bromide is preferably restricted because of its ozone depleting effect. Therefore, establishing alternative quarantine techniques is highly desirable; one such technique is exposure to ionizing radiation. Few data are available on the effects of radiation on insect pests other than fruit flies and stored-product insects and on the radiation tolerance of host commodities. Radiation technology as an alternative to methyl bromide fumigation will be used to inactivate not only insects but also mites, spider mites, thrips, nematodes, scales, mealybugs and thrips contaminating fruits, grains, cut flowers, vegetables, timbers, seedlings and seeds. In order to collect data on the effects of irradiation on pests and host commodities, IAEA and FAO have conducted an international project, 'FAO/IAEA Coordinated Research Programme on Irradiation as a Quarantine Treatment of Mites, Nematodes and Insects other than Fruit Fly' since 1992. The project determines the minimum doses necessary to inactivate pests and the maximum doses host commodities tolerate. All pests except nematodes can be inactivated at doses 400Gy or lower. Various varieties of cut flowers and herbs are tolerant to 400Gy of radiation, although some flowers and herbs such as chrysanthemum, rose, lily, calla, anthurium, sweet pea, iris, dill, basil and arugula are intolerant to 200Gy of radiation. Japanese research project on treatment of cut flowers with electron beams carried out mainly by Yokohama Plant Protection Station greatly contributes to these conclusions. Aqueous solution (2%) of sucrose, glucose, fructose or maltose prevents radiation-induced detrimental effects of radiation on chrysanthemums. Sugars reduce radiation-induced physiological deterioration of chrysanthemums. (author)

  3. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    Directory of Open Access Journals (Sweden)

    Liliana Costa

    2012-06-01

    Full Text Available Photodynamic inactivation (PDI has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  4. Influence of gamma-radiation on the biological activity of snake venoms in Peru

    International Nuclear Information System (INIS)

    Yarleque Ch, A.

    1986-03-01

    Effects of Co-60 gamma radiation on enzymatic, haemorragic and necrotic activities of Lachesis muta and Bothrops atrox venoms was studied at several ranges of irradiation lower than 1.0 Mrad. The radiation produced changes on its enzymatic activities. Irradiation at 0.1 Mrad resulted in the partial or complete inactivation of the following enzymes that are listed in order of increasing sensitivity: exonuclease, phospholipase A, caseinolytic enzyme, thrombinolytic enzyme, fibrinolytic enzyme, 5'-nucleotidase and endonuclease. The enzymatic inactivation was increased with 0.5 and 1.0 Mrad although not in a linear manner. Exonuclease was found to be the most radioresistant. The haemorragic activity was decreased to a greater extent than the necrotic activity. The probable mechanism for the changes in the enzymatic, haemorragic and necrotic activities are discussed

  5. Microbial electrolytic disinfection process for highly efficient Escherichia coli inactivation

    DEFF Research Database (Denmark)

    Zhou, Shaofeng; Huang, Shaobin; Li, Xiaohu

    2018-01-01

    extensively studied for recalcitrant organics removal, its application potential towards water disinfection (e.g., inactivation of pathogens) is still unknown. This study investigated the inactivation of Escherichia coli in a microbial electrolysis cell based bio-electro-Fenton system (renamed as microbial......Water quality deterioration caused by a wide variety of recalcitrant organics and pathogenic microorganisms has become a serious concern worldwide. Bio-electro-Fenton systems have been considered as cost-effective and highly efficient water treatment platform technology. While it has been......]OH was identified as one potential mechanism for disinfection. This study successfully demonstrated the feasibility of bio-electro-Fenton process for pathogens inactivation, which offers insight for the future development of sustainable, efficient, and cost-effective biological water treatment technology....

  6. Microbial Inactivation by Ultrasound Assisted Supercritical Fluids

    Science.gov (United States)

    Benedito, Jose; Ortuño, Carmen; Castillo-Zamudio, Rosa Isela; Mulet, Antonio

    A method combining supercritical carbon dioxide (SC-CO2) and high power ultrasound (HPU) has been developed and tested for microbial/enzyme inactivation purposes, at different process conditions for both liquid and solid matrices. In culture media, using only SC-CO2, the inactivation rate of E. coli and S. cerevisiae increased with pressure and temperature; and the total inactivation (7-8 log-cycles) was attained after 25 and 140 min of SC-CO2 (350 bar, 36 °C) treatment, respectively. Using SC-CO2+HPU, the time for the total inactivation of both microorganisms was reduced to only 1-2 min, at any condition selected. The SC-CO2+HPU inactivation of both microorganisms was slower in juices (avg. 4.9 min) than in culture media (avg. 1.5 min). In solid samples (chicken, turkey ham and dry-cured pork cured ham) treated with SC-CO2 and SC-CO2+HPU, the inactivation rate of E. coli increased with temperature. The application of HPU to the SC-CO2 treatments accelerated the inactivation rate of E. coli and that effect was more pronounced in treatments with isotonic solution surrounding the solid food samples. The application of HPU enhanced the SC-CO2 inactivation mechanisms of microorganisms, generating a vigorous agitation that facilitated the CO2 solubilization and the mass transfer process. The cavitation generated by HPU could damage the cell walls accelerating the extraction of vital constituents and the microbial death. Thus, using the combined technique, reasonable industrial processing times and mild process conditions could be used which could result into a cost reduction and lead to the minimization in the food nutritional and organoleptic changes.

  7. Strategy to inactivate Clostridium perfringens spores in meat products.

    Science.gov (United States)

    Akhtar, Saeed; Paredes-Sabja, Daniel; Torres, J Antonio; Sarker, Mahfuzur R

    2009-05-01

    The current study aimed to develop an inactivation strategy for Clostridium perfringens spores in meat through a combination of spore activation at low pressure (100-200 MPa, 7 min) and elevated temperature (80 degrees C, 10 min); spore germination at high temperatures (55, 60 or 65 degrees C); and inactivation of germinated spores with elevated temperatures (80 and 90 degrees C, 10 and 20 min) and high pressure (586 MPa, at 23 and 73 degrees C, 10 min). Low pressures (100-200 MPa) were insufficient to efficiently activate C. perfringens spores for germination. However, C. perfringens spores were efficiently activated with elevated temperature (80 degrees C, 10 min), and germinated at temperatures lethal for vegetative cells (>or= 55 degrees C) when incubated for 60 min with a mixture of L-asparagine and KCl (AK) in phosphate buffer (pH 7) and in poultry meat. Inactivation of spores (approximately 4 decimal reduction) in meat by elevated temperatures (80-90 degrees C for 20 min) required a long germination period (55 degrees C for 60 min). However, similar inactivation level was reached with shorter germination period (55 degrees C for 15 min) when spore contaminated-meat was treated with pressure-assisted thermal processing (568 MPa, 73 degrees C, 10 min). Therefore, the most efficient strategy to inactivate C. perfringens spores in poultry meat containing 50 mM AK consisted: (i) a primary heat treatment (80 degrees C, 10 min) to pasteurize and denature the meat proteins and to activate C. perfringens spores for germination; (ii) cooling of the product to 55 degrees C in about 20 min and further incubation at 55 degrees C for about 15 min for spore germination; and (iii) inactivation of germinated spores by pressure-assisted thermal processing (586 MPa at 73 degrees C for 10 min). Collectively, this study demonstrates the feasibility of an alternative and novel strategy to inactivate C. perfringens spores in meat products formulated with germinants specific for C

  8. Differential analysis of the inactivation of yeast cells induced by irradiation with various ionization densities

    International Nuclear Information System (INIS)

    Grundler, W.

    1979-03-01

    A quantitative investigation is presented on the radiation-induced inactivation of yeast cells in the first generations as a function of dose, repair, and various ionization densities. The study has been made to solve two main questions, i.e.: How do these cells reproduce, and how do they look like at the end of the investigation. Finding the answer to these questions, it was hoped, would lead to a description of survival in the colony test by defining the final fate of the cells which represent the stationary end state. The experiments were to clarify to what extent the dose-response curve yields only relatively general information on radiation-induced damage, or what kind of damage is mainly and best described. This supplementary information will help to improve the interpretation of many experiments having been made with this strain. (orig./MG) [de

  9. Biological effects of high LET radiations

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masami [Nagasaki Univ. (Japan). Faculty of Pharmaceutical Sciences

    1997-03-01

    Biological effect of radiation is different by a kind of it greatly. Heavy ions were generally more effective in cell inactivation, chromosome aberration induction, mutation induction and neoplastic cell transformation induction than {gamma}-rays in SHE cells. (author)

  10. Foodborne Pread of Hepatitis A: Recent Studies on Virus Survival, Transfer and Inactivation

    Directory of Open Access Journals (Sweden)

    Syed A Sattar

    2000-01-01

    Full Text Available Hepatitis A virus (HAV is responsible for considerable morbidity and economic losses worldwide, and is the only reportable, foodborne viral pathogen in Canada. Outbreaks caused by it occur more frequently in settings such as hospitals, daycare centres, schools, and in association with foods and food service establishments. In recent years, the incidence of hepatitis A has increased in Canada. Many factors, including changing lifestyles and demographics, faster and more frequent travel, and enhanced importation of foods from hepatitis A-endemic regions, may be behind this increase. Despite its increasing significance as a human pathogen, not much was known until recently about the survival and inactivation of HAV, and even less was understood about the effectiveness of measures to prevent and control its foodborne spread. Studies conducted in the past decade have shown that HAV can survive for several hours on human hands and for several days on environmental surfaces indoors. The virus can also retain its infectivity for several days on fruits and vegetables which are often consumed raw, and such imported items have already been incriminated in disease outbreaks. Casual contact between contaminated hands and clean food items can readily lead to a transfer of as much as 10% of the infectious virus. HAV is also relatively resistant to inactivation by heat, gamma irradiation and chemical germicides. In view of these findings, better approaches to prevent the contamination of foods with HAV and more effective methods for its inactivation in foods, on environmental surfaces and on the hands of food handlers are needed.

  11. Studies on the radiation sensitivity of food microorganism by high dose irradiation

    International Nuclear Information System (INIS)

    Hwang, Han Joon; Lee, Eun Jung; Yu, Hyun Hee; Lee, Jae Ho

    2010-04-01

    We investigated the radio resistance of pathogenic microorganisms (Bacillus cereus, Staphylococcus aureus, Methicillin resistant Staphylococcus aureus(MRSA) and Escherichia coli O157) in irradiating environments. Their radiation conditions of pathogenic microorganisms varied with pH(3-10), salt concentration(1-15%), temperature(-20, 4 and 25 .deg. C) and atmospheric condition. In addition, the effect of γ-irradiation on the inactivation of pathogenic microorganisms inoculated into food (saengsik, sliced ham, chopped beef) was investigated. The radiation dose ranged from 0 to 3 kGy. The γ--irradiated B.cereus(γ--BC) St.aureus(γ--SA), MRSA(γ--MRSA) and E.coli O157(γ--EC) were then cultured and the viable cell count on plate count agar and D10-values(dose required to inactivate 90% of a microbial population) were calculated. The number of pathogenic microorganisms at pH(3-10) and salt concentration(1-15%), temperature(-20, 4 and 25 .deg. C) and atmospheric condition decreased by 1 log CFU/ml after irradiation. The D 10 -value of γ--SA in the optimum condition was 0.152 kGy, and these of γ--MRSA and γ--EC were 0.346 and 0.240 kGy, respectively. The initial cell counts of pathogenic microorganisms in culture broth were slightly decreased as the decrease of pH and the increase of salt concentration. However, radiation resistance of pathogenic microorganisms was increased at frozen state. Moreover, D 10 -values of these is test strains in saengsik, sliced ham and chopped beef were 0.597, 0.226 , 0.398 and 0.416 kGy, respectively. These results provide the basic information for the in activation of pathogenic microorganisms in foods by irradiation

  12. Studies on the radiation sensitivity of food microorganism by high dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Han Joon; Lee, Eun Jung; Yu, Hyun Hee; Lee, Jae Ho [Korea University, Seoul (Korea, Republic of)

    2010-04-15

    We investigated the radio resistance of pathogenic microorganisms (Bacillus cereus, Staphylococcus aureus, Methicillin resistant Staphylococcus aureus(MRSA) and Escherichia coli O157) in irradiating environments. Their radiation conditions of pathogenic microorganisms varied with pH(3-10), salt concentration(1-15%), temperature(-20, 4 and 25 .deg. C) and atmospheric condition. In addition, the effect of {gamma}-irradiation on the inactivation of pathogenic microorganisms inoculated into food (saengsik, sliced ham, chopped beef) was investigated. The radiation dose ranged from 0 to 3 kGy. The {gamma}--irradiated B.cereus({gamma}--BC) St.aureus({gamma}--SA), MRSA({gamma}--MRSA) and E.coli O157({gamma}--EC) were then cultured and the viable cell count on plate count agar and D10-values(dose required to inactivate 90% of a microbial population) were calculated. The number of pathogenic microorganisms at pH(3-10) and salt concentration(1-15%), temperature(-20, 4 and 25 .deg. C) and atmospheric condition decreased by 1 log CFU/ml after irradiation. The D{sub 10}-value of {gamma}--SA in the optimum condition was 0.152 kGy, and these of {gamma}--MRSA and {gamma}--EC were 0.346 and 0.240 kGy, respectively. The initial cell counts of pathogenic microorganisms in culture broth were slightly decreased as the decrease of pH and the increase of salt concentration. However, radiation resistance of pathogenic microorganisms was increased at frozen state. Moreover, D{sub 10}-values of these is test strains in saengsik, sliced ham and chopped beef were 0.597, 0.226 , 0.398 and 0.416 kGy, respectively. These results provide the basic information for the in activation of pathogenic microorganisms in foods by irradiation

  13. Ultraviolet inactivation of papain

    International Nuclear Information System (INIS)

    Baugher, J.F.; Grossweiner, L.I.

    1975-01-01

    Flash photolysis transient spectra (lambda > 250 nm) of aqueous papain showed that the initial products are the neutral tryptophan radical Trp (lambdasub(max) 510 nm), the tryptophan triplet state 3 Trp (lambdasub(max) 460 nm), the disulfide bridge electron adduct -SS - - (lambdasub(max) 420 nm) and the hydrated electron esub(aq) - . The -SS - - yield was not altered by nitrous oxide or air, indicating that the formation of this product does not involve electrons in the external medium. The original papain preparation was activated by irradiating under nitrogen. The action spectrum supports previous work attributing the low initial activity to blocking of cysteinyl site 25 with a mixed disulfide. Flask lamp irradiation in nitrogen led to activation at low starting activities and inactivation at higher starting activities, while only inactivation at the same quantum yield was observed with air saturation. The results are consistent with photoionization of an essential tryptophyl residue as the key inactivating step. (author)

  14. Lipase inactivation in wheat germ by gamma irradiation

    International Nuclear Information System (INIS)

    Jha, Pankaj Kumar; Kudachikar, V.B.; Kumar, Sourav

    2013-01-01

    An attempt was made to improve the shelf life of wheat germ by optimizing processing conditions involving γ-irradiation. Studies were carried out to investigate the effect of γ-irradiation (0–30 kGy doses) on the chemical composition of wheat germ with respect to variation in moisture, total ash, crude fat, free fatty acid, protein and lipase activity. The results demonstrate that shelf stability of wheat germ was achieved by inactivation of lipase at doses of γ-irradiation greater than 12 kGy. - Highlights: Ø γ-irradiation was found to inactivate Lipase present in Wheat Germ. Ø The treatment did not result in significant changes in Total Ash, Moisture and Protein Content of Wheat Germ. Ø The irradiation at 30 kGy resulted in 31.2 % inactivation of Lipase in Wheat Germ

  15. Physicochemical inactivation of Lassa, Ebola, and Marburg viruses and effect on clinical laboratory analyses

    International Nuclear Information System (INIS)

    Mitchell, S.W.; McCormick, J.B.

    1984-01-01

    Clinical specimens from patients infected with Lassa, Ebola, or Marburg virus may present a serious biohazard to laboratory workers. The authors have examined the effects of heat, alteration of pH, and gamma radiation on these viruses in human blood and on the electrolytes, enzymes, and coagulation factors measured in laboratory tests that are important in the care of an infected patient. Heating serum at 60 degrees C for 1 h reduced high titers of these viruses to noninfectious levels without altering the serum levels of glucose, blood urea nitrogen, and electrolytes. Dilution of blood in 3% acetic acid, diluent for a leukocyte count, inactivated all of these viruses. All of the methods tested for viral inactivation markedly altered certain serum proteins, making these methods unsuitable for samples that are to be tested for certain enzyme levels and coagulation factors

  16. Radiosensitivity to gamma radiation of Escherichia coli in three different substracts and study of the alterations in the electronic microscope

    International Nuclear Information System (INIS)

    Cerri, M.E.N.F.

    1984-01-01

    The minimum inactivating dose of radiation (MID) for Escherichia coli IZ-1982 was determinated in three different substrates: cow milk, liquid extract of soybean and nutrient broth (DIFCO). Observations on electronic microscope of the bacterial cells were also made in the three substracts and submitted to different dose of gamma radiation. The Tukey's Test was used to stablish the significance of the difference in the size of the cells grow in the three substrates. (M.A.C.) [pt

  17. Human norovirus inactivation in oysters by high hydrostatic pressure processing: A randomized double-blinded study

    Science.gov (United States)

    This randomized, double-blinded, clinical trial assessed the effect of high hydrostatic pressure processing (HPP) on genogroup I.1 human norovirus (HuNoV) inactivation in virus-seeded oysters when ingested by subjects. The safety and efficacy of HPP treatments were assessed in three study phases wi...

  18. Mary Lyon's X-inactivation studies in the mouse laid the foundation ...

    Indian Academy of Sciences (India)

    2015-11-20

    Nov 20, 2015 ... bridge for women and graduated in 1946. She started gradu- ... working at the same time as Lyon, also observed that variega- tion in coat character ... X chromosome inactivation; single active X hypothesis. Journal of Genetics ...

  19. Effect of various conditions on inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in fresh-cut lettuce using ultraviolet radiation.

    Science.gov (United States)

    Kim, Yoon-Hee; Jeong, Seul-Gi; Back, Kyeong-Hwan; Park, Ki-Hwan; Chung, Myung-Sub; Kang, Dong-Hyun

    2013-09-16

    The effect of various conditions on inactivation of foodborne pathogens and quality of fresh-cut lettuce during ultraviolet (254 nm, UVC) radiation was investigated. Lettuce was inoculated with a cocktail of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes and treated at different temperatures (4 and 25 °C), distances between sample and lamp (10 and 50 cm), type of exposure (illuminated from one or two sides), UV intensities (1.36 to 6.80 mW/cm²), and exposure times (0.5 to 10 min), sequentially. UV treatment at 25 °C for 1 min achieved 1.45-, 1.35-, and 2.12-log reductions in surface-inoculated E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively, whereas the reduction of these pathogens at 4 °C was 0.31, 0.57, and 1.16 log, respectively. UV radiation was most effective when distance from UV lamp to the sample was minimal (10 cm) and radiation area was maximal (two-sided exposure). All UV intensities significantly (P0.05) different from those of nontreated samples up to 5 min exposure. However, these qualities significantly (Pradiation under optimized conditions could reduce foodborne pathogens without adversely affecting color quality properties of fresh-cut lettuce. © 2013 Elsevier B.V. All rights reserved.

  20. 'K' contribution to the biological effect of ionizing radiations

    International Nuclear Information System (INIS)

    Boissiere, Arnaud

    2004-01-01

    The aim of this work is to determine the importance of 'K' ionizations on DNA as critical physical events initiating the biological effects of ionizing radiation, in particular in human cells. Ultra-soft X-rays are used as a probe of core ionization events. A decisive test consists in comparing the biological effects at 250 eV and 350 eV (before and after the carbon K - threshold). The results show a sharp increase of the biological efficiency for both cellular inactivation and chromosomal exchange aberration above the carbon K-threshold, correlated with the one of core events occurring in DNA atoms. The heavy ion irradiation displays again the paradoxical behaviour of cellular inactivation cross sections as a function of LET. Finally, the 'K' event contribution to cellular inactivation of usual low LET radiation is estimated to be about 75%. (author) [fr

  1. Modeling-independent elucidation of inactivation pathways in recombinant and native A-type Kv channels

    Science.gov (United States)

    Fineberg, Jeffrey D.; Ritter, David M.

    2012-01-01

    A-type voltage-gated K+ (Kv) channels self-regulate their activity by inactivating directly from the open state (open-state inactivation [OSI]) or by inactivating before they open (closed-state inactivation [CSI]). To determine the inactivation pathways, it is often necessary to apply several pulse protocols, pore blockers, single-channel recording, and kinetic modeling. However, intrinsic hurdles may preclude the standardized application of these methods. Here, we implemented a simple method inspired by earlier studies of Na+ channels to analyze macroscopic inactivation and conclusively deduce the pathways of inactivation of recombinant and native A-type Kv channels. We investigated two distinct A-type Kv channels expressed heterologously (Kv3.4 and Kv4.2 with accessory subunits) and their native counterparts in dorsal root ganglion and cerebellar granule neurons. This approach applies two conventional pulse protocols to examine inactivation induced by (a) a simple step (single-pulse inactivation) and (b) a conditioning step (double-pulse inactivation). Consistent with OSI, the rate of Kv3.4 inactivation (i.e., the negative first derivative of double-pulse inactivation) precisely superimposes on the profile of the Kv3.4 current evoked by a single pulse because the channels must open to inactivate. In contrast, the rate of Kv4.2 inactivation is asynchronous, already changing at earlier times relative to the profile of the Kv4.2 current evoked by a single pulse. Thus, Kv4.2 inactivation occurs uncoupled from channel opening, indicating CSI. Furthermore, the inactivation time constant versus voltage relation of Kv3.4 decreases monotonically with depolarization and levels off, whereas that of Kv4.2 exhibits a J-shape profile. We also manipulated the inactivation phenotype by changing the subunit composition and show how CSI and CSI combined with OSI might affect spiking properties in a full computational model of the hippocampal CA1 neuron. This work unambiguously

  2. Estimation of the contribution of ionization and excitation to the lethal effect of ionizing radiation

    International Nuclear Information System (INIS)

    Petin, V.G.; Komarov, V.P.

    1982-01-01

    A simple theoretical model is proposed for estimating the differential contribution of ionization and excitation to the lethal effect of ionizing radiation. Numerical results were obtained on the basis of published experimental data on the ability of bacterial cells Escherichia coli to undergo photoreactivation of radiation-induced damage. It was shown that inactivation by excitation may be highly significant for UV-hypersensitive cells capable of photoreactivation; inactivation by excitation increased with the energy of ionizing radiation and the volume of irradiated suspensions. The data are in qualitative agreement with the assumption of a possible contribution of the UV-component of Cerenkov radiation to the formation of excitations responsible for the lethal effect and the phenomenon of photoreactivation after ionizing radiation. Some predictions from the model are discussed. (orig.)

  3. Cytogenetic and molecular studies on a recombinant human X chromosome: implications for the spreading of X chromosome inactivation

    International Nuclear Information System (INIS)

    Mohandas, T.; Geller, R.L.; Yen, P.H.; Rosendorff, J.; Bernstein, R.; Yoshida, A.; Shapiro, L.J.

    1987-01-01

    A pericentric inversion of human X chromosome and a recombinant X chromosome [rec(X)] derived from crossing-over within the inversion was identified in a family. The rec(X) had a duplication of the segment Xq26.3 → Xqter and a deletion of Xp22.3 → Xpter and was interpreted to be Xqter → Xq26.3::Xp22.3 → Xqter. To characterize the rec(X) chromosome, dosage blots were done on genomic DNA from carriers of this rearranged X chromosome using a number of X chromosome probes. Results showed that anonymous sequences from the distal end of the long arm to which probes 4D8, Hx120A, DX13, and St14 bind as well as the locus for glucose-6-phosphate dehydrogenase (G6PD) wee duplicated on the rec(X). Mouse-human cell hybrids were constructed that retained the rec(X) in the active or inactive state. Analyses of these hybrid clones for markers from the distal short arm of the X chromosome showed that the rec(X) retained the loci for steroid sulfatase (STS) and the cell surface antigen 12E7 (MIC2); but not the pseudoautosomal sequence 113D. These molecular studies confirm that the rec(X) is a duplication-deficiency chromosome as expected. In the inactive state in cell hybrids, STS and MIC2 (which usually escape X chromosome inactivation) were expressed from the rec(X), whereas G6PD was not. Therefore, in the rec(X) X chromosome inactivation has spread through STS and MIC2 leaving these loci unaffected and has inactivated G6PD in the absence of an inactivation center in the q26.3 → qter region of the human X chromosome. The mechanism of spreading of inactivation appears to operate in a sequence-specific fashion. Alternatively, STS and MIC2 may have undergone inactivation initially but could not be maintained in an inactive state

  4. A molecular switch driving inactivation in the cardiac K+ channel HERG.

    Directory of Open Access Journals (Sweden)

    David A Köpfer

    Full Text Available K(+ channels control transmembrane action potentials by gating open or closed in response to external stimuli. Inactivation gating, involving a conformational change at the K(+ selectivity filter, has recently been recognized as a major K(+ channel regulatory mechanism. In the K(+ channel hERG, inactivation controls the length of the human cardiac action potential. Mutations impairing hERG inactivation cause life-threatening cardiac arrhythmia, which also occur as undesired side effects of drugs. In this paper, we report atomistic molecular dynamics simulations, complemented by mutational and electrophysiological studies, which suggest that the selectivity filter adopts a collapsed conformation in the inactivated state of hERG. The selectivity filter is gated by an intricate hydrogen bond network around residues S620 and N629. Mutations of this hydrogen bond network are shown to cause inactivation deficiency in electrophysiological measurements. In addition, drug-related conformational changes around the central cavity and pore helix provide a functional mechanism for newly discovered hERG activators.

  5. Design and mechanism of tetrahydrothiophene-based γ-aminobutyric acid aminotransferase inactivators.

    Science.gov (United States)

    Le, Hoang V; Hawker, Dustin D; Wu, Rui; Doud, Emma; Widom, Julia; Sanishvili, Ruslan; Liu, Dali; Kelleher, Neil L; Silverman, Richard B

    2015-04-08

    Low levels of γ-aminobutyric acid (GABA), one of two major neurotransmitters that regulate brain neuronal activity, are associated with many neurological disorders, such as epilepsy, Parkinson's disease, Alzheimer's disease, Huntington's disease, and cocaine addiction. One of the main methods to raise the GABA level in human brain is to use small molecules that cross the blood-brain barrier and inhibit the activity of γ-aminobutyric acid aminotransferase (GABA-AT), the enzyme that degrades GABA. We have designed a series of conformationally restricted tetrahydrothiophene-based GABA analogues with a properly positioned leaving group that could facilitate a ring-opening mechanism, leading to inactivation of GABA-AT. One compound in the series is 8 times more efficient an inactivator of GABA-AT than vigabatrin, the only FDA-approved inactivator of GABA-AT. Our mechanistic studies show that the compound inactivates GABA-AT by a new mechanism. The metabolite resulting from inactivation does not covalently bind to amino acid residues of GABA-AT but stays in the active site via H-bonding interactions with Arg-192, a π-π interaction with Phe-189, and a weak nonbonded S···O═C interaction with Glu-270, thereby inactivating the enzyme.

  6. Design and Mechanism of Tetrahydrothiophene-Based γ-Aminobutyric Acid Aminotransferase Inactivators

    Energy Technology Data Exchange (ETDEWEB)

    Le, Hoang V. [Departments; Hawker, Dustin D. [Departments; Wu, Rui [Department; Doud, Emma [Departments; Widom, Julia [Departments; Sanishvili, Ruslan [X-ray; Liu, Dali [Department; Kelleher, Neil L. [Departments; Silverman, Richard B. [Departments

    2015-03-25

    Low levels of gamma-aminobutyric acid (GABA), one of two major neurotransmitters that regulate brain neuronal activity, are associated with many neurological disorders, such as epilepsy, Parkinsons disease, Alzheimers disease, Huntingtons disease, and cocaine addiction. One of the main methods to raise the GABA level in human brain is to use small molecules that cross the bloodbrain barrier and inhibit the activity of gamma-aminobutyric acid aminotransferase (GABA-AT), the enzyme that degrades GABA. We have designed a series of conformationally restricted tetrahydrothiophene-based GABA analogues with a properly positioned leaving group that could facilitate a ring-opening mechanism, leading to inactivation of GABA-AT. One compound in the series is 8 times more efficient an inactivator of GABA-AT than vigabatrin, the only FDA-approved inactivator of GABA-AT. Our mechanistic studies show that the compound inactivates GABA-AT by a new mechanism. The metabolite resulting from inactivation does not covalently bind to amino acid residues of GABA-AT but stays in the active site via H-bonding interactions with Arg-192, a pi-pi interaction with Phe-189, and a weak nonbonded (SO)-O-...=C interaction with Glu-270, thereby inactivating the enzyme.

  7. Study of the effects of radiation of nucleic acids and related compounds. Progress report, August 15, 1975--August 14, 1976

    International Nuclear Information System (INIS)

    Wang, S.Y.

    1976-04-01

    Ionizing radiation produces genetic effects in biological systems. Since genetic effects are usually the result of modifications of DNA or sometimes of RNA, interest is being centered on the chemical and physical nature of radiation-induced lesions to nucleic acids and their components. These investigations have revealed the enormous complexity of chemical events and the possible degradation of nucleic acids by strand breakage. Therefore, work in the ionization radiation of nucleic acids has proceeded along a dual course. On the one hand, molecular changes have been characterized for a number of primary radiation products. On the other hand, strand breakage has been investigated intensively as a direct primary event. Both of these aspects were emphasized in our research last year. We succeeded in improving the synthesis of 5-hydroxy-methyl thymine (α-TOOH). α-TOOH was found to be much more effective than cis-5,6-dihydro-6-hydroperoxy-5-hydroxy thymine (6-TOOH) in the inactivation of transforming DNA of H. influenzae cells although α-TOOH is much less reactive chemically than 6-TOOH. 6-TOOH causes inactivation and acts as an inhibitor of DNA synthesis in mammalian cells. In addition, evidence may indicate that 6-TOOH does not induce strand breaks directly in DNA although we showed that 6-TOOH is a clastogenic compound

  8. Action spectra for inactivation of normal and xeroderma pigmentosum human skin fibroblasts by ultraviolet radiations

    International Nuclear Information System (INIS)

    Keyse, S.M.; Moss, S.H.; Davies, D.J.G.

    1983-01-01

    Action spectra for UV-induced lethality as measured by colony forming ability were determined both for a normal human skin fibroblast strain (1BR) and for an excision deficient xeroderma pigmentosum strain (XP4LO) assigned to complementation group A using 7 monochromatic wavelengths in the range 254-365 nm. The relative sensitivity of the XP strain compared to the normal skin fibroblasts shows a marked decrease at wavelengths longer than 313 nm, changing from a ratio of about 20 at the shorter wavelengths to just greater than 1.0 at the longer wavelengths. The action spectra thus indicate that the influence on cell inactivation of the DNA repair defect associated with XP cells is decreased and almost reaches zero at longer UV wavelengths. This would occur, for example, if the importance of pyrimidine dimers as the lethal lesion decreased with increasing wavelength. These results are consistent with pyrimidine dimers induced in DNA being the major lethal lesion in both cell strains over the wavelength range 254-313 nm. However, it is indicated that different mechanisms of inactivation operate at wavelengths longer than 313 nm. (author)

  9. Comparative study on the mechanisms of rotavirus inactivation by sodium dodecyl sulfate and ethylenediaminetetraacetate

    Energy Technology Data Exchange (ETDEWEB)

    Ward, R.L. (Sandia Labs., Albuquerque, NM); Ashley, C.S.

    1980-06-01

    This report describes a comparative study on the effects of the anionic detergent sodium dodecyl sulfate and the chelating agent ethylenediaminetetraacetate on purified rotavirus SA-11 particles. Both chemicals readily inactivated rotavirus at quite low concentrations and under very mild conditions. In addition, both agents modified the viral capsid and prevented the adsorption of inactivated virions to cells. Capsid damage by ethylenediaminetetraacetate caused a shift in the densities of rotavirions from about l.35 to about 1.37 g/ml and a reduction in their sedimentation coefficients. Sodium dodcyl sulfate, on the other hand, did not detectably alter either of these physical properties of rotavirions. Both agents caused some alteration of the isoelectric points of the virions. Finally, analysis of rotavirus proteins showed that ethylenediaminetetraacetate caused the loss of two protein peaks from the electrophoretic pattern of virions but sodium dodecyl sulfate caused the loss of only one of these same protein peaks.

  10. Effect of incubation temperatures for inactivation of Escherichia coli and related bacteria after gamma-irradiation

    International Nuclear Information System (INIS)

    Nakauma, Makoto; Ito, Hitoshi; Tada, Mikiro

    2000-01-01

    Irradiated fresh meat or fishery products have been expected to store and distribute under refrigerated temperature below 10degC. From previous reports, growth of coliform bacteria in these products were suppressed by gamma-irradiation below expected doses obtained at 30-37degC. This research was performed to observe the irradiation effect on the inactivation of Escherichia coli and related bacteria at different incubation temperatures of 10-40degC on plate agar after irradiation. From this study, D10 values of all strains decreased 17- 45% at 10degC compared with maximum D10 values at 30- 40degC. Radiation sensitivities were related to the ability to grow at low temperatures in which psychrotrophic type E. coli A4-1 indicated most sensitive to radiation, next of Salmonella enteritidis YK-2, E. coli S2, B4 whereas most resistant at Enterobacter agglomerans K3-1. (author)

  11. Effect of incubation temperatures for inactivation of Escherichia coli and related bacteria after gamma-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakauma, Makoto; Ito, Hitoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Tada, Mikiro [Okayama Univ. (Japan). Faculty of Agriculture

    2000-09-01

    Irradiated fresh meat or fishery products have been expected to store and distribute under refrigerated temperature below 10degC. From previous reports, growth of coliform bacteria in these products were suppressed by gamma-irradiation below expected doses obtained at 30-37degC. This research was performed to observe the irradiation effect on the inactivation of Escherichia coli and related bacteria at different incubation temperatures of 10-40degC on plate agar after irradiation. From this study, D10 values of all strains decreased 17- 45% at 10degC compared with maximum D10 values at 30- 40degC. Radiation sensitivities were related to the ability to grow at low temperatures in which psychrotrophic type E. coli A4-1 indicated most sensitive to radiation, next of Salmonella enteritidis YK-2, E. coli S2, B4 whereas most resistant at Enterobacter agglomerans K3-1. (author)

  12. Radiation treatment of drugs, biochemicals and vaccines

    International Nuclear Information System (INIS)

    Nordheim, W.; Braeuniger, S.; Kirsch, B.; Kotowski, H.; Teupel, D.

    1984-12-01

    The concise and tabulated review reports experimental results on the effects of radiation treatment on drugs, vaccines, biochemicals and adjuvants including enzymes as well. Irradiation was mostly performed by γ-radiation using 60 Co and to a lesser extent by 137 Cs, 182 Ta, X-rays and accelerators. Ionizing radiation proved to be a useful tool for sterilization and inactivation in producing drugs, vaccines, and bioactive agents and will contribute to realize procedures difficultly solvable as to engineering and economy, respectively. 124 refs

  13. Inactivation of Smad4 in gastric carcinomas.

    Science.gov (United States)

    Powell, S M; Harper, J C; Hamilton, S R; Robinson, C R; Cummings, O W

    1997-10-01

    Allelic loss of chromosome 18q has been noted in intestinal type gastric adenocarcinomas. Smad4 is a gene located at 18q that was recently cloned in humans and found to be significantly altered in pancreatic cancers. We sought to determine whether Smad4 genetic alterations played a significant role in gastric tumorigenesis by studying 35 gastric adenocarcinomas of all histopathological types and pathological stages. Microdissected specimens were used for mutational analysis of Smad4 at the nucleotide level, including the entire coding region and intron/exon boundaries. Allelic imbalance was also analyzed at the Smad4 locus using two nearby microsatellite markers. One case of apparent biallelic inactivation of Smad4 was found in our study of 35 gastric carcinomas. A nonsense point mutation at codon 334 was demonstrated, which, similar to other Smad4 mutations, is predicted to truncate the conserved COOH-terminal domain of this protein. This Smad4 C to T transition mutation was proven to be somatically acquired. Allelic loss was also noted on chromosome 18q at a marker near Smad4 in this mutated gastric cancer, apparently producing complete inactivation of Smad4 in this tumor. Significant 18q allelic loss (56% of 34 informative cases) was noted in our gastric carcinomas using microsatellite markers near the Smad4 locus, regardless of histological subtype or pathological stage. Additionally, three cases of microsatellite instability were observed. Thus, Smad4 inactivation was noted in our gastric carcinomas; however, this event was rare. The frequent loss of chromosomal arm 18q observed in gastric cancers suggests the presence of other tumor suppressor genes in this region that are involved in gastric tumorigenesis. Further studies are needed to identify these other targets of inactivation during gastric cancer development.

  14. Inactivation of natural enteric bacteria in real municipal wastewater by solar photo-Fenton at neutral pH.

    Science.gov (United States)

    Ortega-Gómez, E; Esteban García, B; Ballesteros Martín, M M; Fernández Ibáñez, P; Sánchez Pérez, J A

    2014-10-15

    This study analyses the use of the solar photo-Fenton treatment in compound parabolic collector photo-reactors at neutral pH for the inactivation of wild enteric Escherichia coli and total coliform present in secondary effluents of a municipal wastewater treatment plant (SEWWTP). Control experiments were carried out to find out the individual effects of mechanical stress, pH, reactants concentration, and UVA radiation as well as the combined effects of UVA-Fe and UVA-H2O2. The synergistic germicidal effect of solar-UVA with 50 mg L(-1) of H2O2 led to complete disinfection (up to the detection limit) of total coliforms within 120 min. The disinfection process was accelerated by photo-Fenton, achieving total inactivation in 60 min reducing natural bicarbonate concentration found in the SEWWTP from 250 to 100 mg L(-1) did not give rise to a significant enhancement in bacterial inactivation. Additionally, the effect of hydrogen peroxide and iron dosage was evaluated. The best conditions were 50 mg L(-1) of H2O2 and 20 mg L(-1) of Fe(2+). Due to the variability of the SEWWTP during autumn and winter seasons, the inactivation kinetic constant varied between 0.07 ± 0.04 and 0.17 ± 0.04 min(-1). Moreover, the water treated by solar photo-Fenton fulfilled the microbiological quality requirement for wastewater reuse in irrigation as per the WHO guidelines and in particular for Spanish legislation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Lethal effects of solar radiation in proficient and deficient bacteria in repair systems; Efeitos letais da luz solar em bacterias proficientes e deficientes em reparos: acoes e interacoes

    Energy Technology Data Exchange (ETDEWEB)

    Sousa Neto, A de

    1981-12-31

    A study of the lethal action of solar radiation on strains of E.coli K12, proficient or deficient in repair systems, as well as the wild type strain gene products are involved in repair of damage induced by solar radiation. The inactivation of the various bacterial strains (normalized to a dose equivalent to radiation at a wavelength 254 nm) suggests that the more energetic wavelengths of the solar spectrum (290-320 nm) could be responsible for the primary damage that occurs in the DNA. The reduction in the shoulder of the survival curve in wild type strains in indicative of induction of sub-lethal damage in this region of the curve. Analysing solar inactivation curves of the bacterial strains (normalised by spore dosimetry) together with those of the same strains irradiated with UV at 254 nm, it was evident that 254 nm is not the ideal wavelength for comparison. This analysis also indicated that in addition to damage to DNA, other factors are involved in the solar radiation inactivation of wild type strains. (author).

  16. Radiobiological studies with the nematode Caenorhabditis elegans. Genetic and developmental effects of high LET radiation

    International Nuclear Information System (INIS)

    Nelson, G.A.; Schubert, W.W.; Marshall, T.M.

    1992-01-01

    The biological effects of heavy charged particle (HZE) radiation are of particular interest to travellers and planners for long-duration space flights where exposure levels represents a potential health hazard. The unique feature of HZE radiation is the structured pattern of its energy deposition in targets. There are many consequences of this feature to biological endpoints when compared with effects of ionizing photons. Dose vs response and dose-rate kinetics may be modified, DNA and cellular repair systems may be altered in their abilities to cope with damage, and the qualitative features of damage may be unique for different ions. The nematode Caenorhabditis elegans is being used to address these and related questions associated with exposure to radiation. HZE-induced mutation, chromosome aberration, cell inactivation and altered organogenesis are discussed along with plans for radiobiological experiments in space. (author)

  17. Sensitivity of viruses to radiation sterilization

    International Nuclear Information System (INIS)

    Dziedzic Goclawska; A

    1999-01-01

    kGy, the reduction of 9 (6+3) log 10 units, or a dose of 36 kGy, would be required, and if D 10 is 5.6 kGy, than a dose >50 kGy would be needed to inactivate HIV (Conway and Tomford , CID 14: 978, 1992). These results are in agreement with data published by Fideler et al. (J Bone Jnt Surg.76A: 1032, 1994) who found that doses of 30-40 kGy are required to inactivate HIV in fresh frozen bone allografts. The doses cited above exceed the dose of 25 kGy currently recommended and commonly used by many tissue banks in the world with the exception of the Central Tissue Bank in Warsaw, where the dose of 33 kGy + 10% has been routinely used since 1963. Taking into consideration the results cited above it seems advisable to increase the sterilizing dose for tissue allografts at least up to 35 kGy. It should be kept in mind, however, that high doses of ionizing radiation can evoke numerous chemical and physical changes which may affect the quality of tissue allografts, such as the mechanical properties of bone or other connective tissue grafts or the osteoinductive capacity of bone allografts as well as their resorption rate. It has been observed, however, that radiation-induced changes in quality of tissue allografts depend on two groups of factors: i) conditions of irradiation (dose, temperature) and ii) the method of preservation (deep-freezing, lyophilization). These factors may dramatically influence the radiation damage of collagen a major constituent of connective tissue allografts. Further studies are needed on the effect of radiation sterilization conditions and preservation procedures on degradation of connective tissue allograft constituents

  18. Microencapsulated antimicrobial compounds as a means to enhance electron beam irradiation treatment for inactivation of pathogens on fresh spinach leaves.

    Science.gov (United States)

    Gomes, Carmen; Moreira, Rosana G; Castell-Perez, Elena

    2011-08-01

    Recent outbreaks associated to the consumption of raw or minimally processed vegetable products that have resulted in several illnesses and a few deaths call for urgent actions aimed at improving the safety of those products. Electron beam irradiation can extend shelf-life and assure safety of fresh produce. However, undesirable effects on the organoleptic quality at doses required to achieve pathogen inactivation limit irradiation. Ways to increase pathogen radiation sensitivity could reduce the dose required for a certain level of microbial kill. The objective of this study was to evaluate the effectiveness of using natural antimicrobials when irradiating fresh produce. The minimum inhibitory concentration of 5 natural compounds and extracts (trans-cinnamaldehyde, eugenol, garlic extract, propolis extract, and lysozyme with ethylenediaminetetraacetate acid (disodium salt dihydrate) was determined against Salmonella spp. and Listeria spp. In order to mask odor and off-flavor inherent of several compounds, and to increase their solubility, complexes of these compounds and extracts with β-cyclodextrin were prepared by the freeze-drying method. All compounds showed bacteriostatic effect at different levels for both bacteria. The effectiveness of the microencapsulated compounds was tested by spraying them on the surface of baby spinach inoculated with Salmonella spp. The dose (D₁₀ value) required to reduce the bacterial population by 1 log was 0.190 kGy without antimicrobial addition. The increase in radiation sensitivity (up to 40%) varied with the antimicrobial compound. These results confirm that the combination of spraying microencapsulated antimicrobials with electron beam irradiation was effective in increasing the killing effect of irradiation. Foodborne illness outbreaks attributed to fresh produce consumption have increased and present new challenges to food safety. Current technologies (water washing or treating with 200 ppm chlorine) cannot

  19. Inactivation of influenza A virus H1N1 by disinfection process.

    Science.gov (United States)

    Jeong, Eun Kyo; Bae, Jung Eun; Kim, In Seop

    2010-06-01

    Because any patient, health care worker, or visitor is capable of transmitting influenza to susceptible persons within hospitals, hospital-acquired influenza has been a clinical concern. Disinfection and cleaning of medical equipment, surgical instruments, and hospital environment are important measures to prevent transmission of influenza virus from hospitals to individuals. This study was conducted to evaluate the efficacy of disinfection processes, which can be easily operated at hospitals, in inactivating influenza A virus H1N1 (H1N1). The effects of 0.1 mol/L NaOH, 70% ethanol, 70% 1-propanol, solvent/detergent (S/D) using 0.3% tri (n-butyl)-phosphate and 1.0% Triton X-100, heat, and ethylene oxide (EO) treatments in inactivating H1N1 were determined. Inactivation of H1N1 was kinetically determined by the treatment of disinfectants to virus solution. Also, a surface test method, which involved drying an amount of virus on a surface and then applying the inactivation methods for 1 minute of contact time, was used to determine the virucidal activity. H1N1 was completely inactivated to undetectable levels in 1 minute of 70% ethanol, 70% 1-propanol, and solvent/detergent treatments in the surface tests as well as in the suspension tests. H1N1 was completely inactivated in 1 minute of 0.1 mol/L NaOH treatment in the suspension tests and also effectively inactivated in the surface tests with the log reduction factor of 3.7. H1N1 was inactivated to undetectable levels within 5 minutes, 2.5 minutes, and 1 minute of heat treatment at 70, 80, and 90 degrees C, respectively in the suspension tests. Also, H1N1 was completely inactivated by EO treatment in the surface tests. Common disinfectants, heat, and EO tested in this study were effective at inactivating H1N1. These results would be helpful in implementing effective disinfecting measures to prevent hospital-acquired infections. Copyright 2010 Association for Professionals in Infection Control and Epidemiology, Inc

  20. An approach to modelling radiation damage by fast ionizing particles

    International Nuclear Information System (INIS)

    Thomas, G.E.

    1987-01-01

    The paper presents a statistical approach to modelling radiation damage in small biological structures such as enzymes, viruses, and some cells. Irreparable damage is assumed to be caused by the occurrence of ionizations within sensitive regions. For structures containing double-stranded DNA, one or more ionizations occurring within each strand of the DNA will cause inactivation; for simpler structures without double-stranded DNA a single ionization within the structure will be sufficient for inactivation. Damaging ionizations occur along tracks of primary irradiating particles or along tracks of secondary particles released at primary ionizations. An inactivation probability is derived for each damage mechanism, expressed in integral form in terms of the radius of the biological structure (assumed spherical), rate of ionization along primary tracks, and maximum energy for secondary particles. The performance of each model is assessed by comparing results from the model with those derived from data from various experimental studies extracted from the literature. For structures where a single ionization is sufficient for inactivation, the model gives qualitatively promising results; for larger more complex structures containing double-stranded DNA, the model requires further refinements. (author)

  1. Capsid protein oxidation in feline calicivirus using an electrochemical inactivation treatment

    Energy Technology Data Exchange (ETDEWEB)

    Shionoiri, Nozomi; Nogariya, Osamu; Tanaka, Masayoshi; Matsunaga, Tadashi; Tanaka, Tsuyoshi, E-mail: tsuyo@cc.tuat.ac.jp

    2015-02-11

    Highlights: • Feline calicivirus was inactivated electrochemically by a factor of >5 log. • The electrochemical treatment was performed at 0.9 V (vs. Ag/AgCl) for 15 min. • Electrochemical treatment caused oxidation of viral proteins. • Oxidation of viral proteins can lead to loss of viral structural integrity. - Abstract: Pathogenic viral infections are an international public health concern, and viral disinfection has received increasing attention. Electrochemical treatment has been used for treatment of water contaminated by bacteria for several decades, and although in recent years several reports have investigated viral inactivation kinetics, the mode of action of viral inactivation by electrochemical treatment remains unclear. Here, we demonstrated the inactivation of feline calicivirus (FCV), a surrogate for human noroviruses, by electrochemical treatment in a developed flow-cell equipped with a screen-printed electrode. The viral infectivity titer was reduced by over 5 orders of magnitude after 15 min of treatment at 0.9 V vs. Ag/AgCl. Proteomic study of electrochemically inactivated virus revealed oxidation of peptides located in the viral particles; oxidation was not observed in the non-treated sample. Furthermore, transmission electron microscopy revealed that viral particles in the treated sample had irregular structures. These results suggest that electrochemical treatment inactivates FCV via oxidation of peptides in the structural region, causing structural deformation of virus particles. This first report of viral protein damage through electrochemical treatment will contribute to broadening the understanding of viral inactivation mechanisms.

  2. Intradermal inactivated poliovirus vaccine: a preclinical dose-finding study.

    Science.gov (United States)

    Kouiavskaia, Diana; Mirochnitchenko, Olga; Dragunsky, Eugenia; Kochba, Efrat; Levin, Yotam; Troy, Stephanie; Chumakov, Konstantin

    2015-05-01

    Intradermal delivery of vaccines has been shown to result in dose sparing. We tested the ability of fractional doses of inactivated poliovirus vaccine (IPV) delivered intradermally to induce levels of serum poliovirus-neutralizing antibodies similar to immunization through the intramuscular route. Immunogenicity of fractional doses of IPV was studied by comparing intramuscular and intradermal immunization of Wistar rats using NanoPass MicronJet600 microneedles. Intradermal delivery of partial vaccine doses induced antibodies at titers comparable to those after immunization with full human dose delivered intramuscularly. The results suggest that intradermal delivery of IPV may lead to dose-sparing effect and reduction of the vaccination cost. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  3. Cationic antimicrobial peptides inactivate Shiga toxin-encoding bacteriophages

    Science.gov (United States)

    Del Cogliano, Manuel E.; Hollmann, Axel; Martinez, Melina; Semorile, Liliana; Ghiringhelli, Pablo D.; Maffía, Paulo C.; Bentancor, Leticia V.

    2017-12-01

    Shiga toxin (Stx) is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC) infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs) are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: 1) direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, 2) cationic properties are necessary but not sufficient for bacteriophage inactivation, and 3) inactivation by cationic peptides could be sequence (or structure) specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  4. Cationic Antimicrobial Peptides Inactivate Shiga Toxin-Encoding Bacteriophages

    Directory of Open Access Journals (Sweden)

    Manuel E. Del Cogliano

    2017-12-01

    Full Text Available Shiga toxin (Stx is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non-alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: (1 direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, (2 cationic properties are necessary but not sufficient for bacteriophage inactivation, and (3 inactivation by cationic peptides could be sequence (or structure specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  5. Investigation of inactivation of Clostridium botulinum toxin by nuclear radiation

    International Nuclear Information System (INIS)

    Kaltenhaeuser, A.; Werner, K.H.

    1989-01-01

    The effect of nuclear radiation on the toxicity and the molecular structure of the toxin produced by the microorganism Clostridium botulinum type A was investigated. The radiation induced changes in the structure of the toxin molecule. This effect is influenced by the composition or the medium above the toxin solution as well as by the temperature during the irradiation. The results of the investigation indicate that with increasing irradiation dose a new molecule was formed with immunological properties similar to the properties of the original molecule however with a greater molecular weight. After exposure to a radiation dose of 3,4 Mrad at normal temperature in air, complete detoxification of the substance was found. Immunizing experiments with the toxoid with two guinea-pigs indicated a pronounced increase of the antibody titer in the serum after 4 weeks. Vaccination experiments with the toxoid on animals show, that the protection against the effect of the toxin corresponds to the demands of the European Pharmacopoeia. The efficiency of the toxoid shows a similar efficiency as toxoids produced by chemical methods. The production of a toxoid-viccine with the relatively simple method of nuclear radiation appears possible. (orig./MG) With 12 refs., 3 tabs., 11 figs [de

  6. Pulsed dielectric barrier discharge for Bacillus subtilis inactivation in water

    Science.gov (United States)

    Hernández-Arias, A. N.; Rodríguez-Méndez, B. G.; López-Callejas, R.; Valencia-Alvarado, R.; Mercado-Cabrera, A.; Peña-Eguiluz, R.; Barocio, S. R.; Muñoz-Castro, A. E.; de la Piedad Beneitez, A.

    2012-06-01

    The inactivation of Bacillus subtilis bacteria in water has been experimentally studied by means of a pulsed dielectric barrier discharge (PDBD) in a coaxial reactor endowed with an alumina dielectric. The plasma source is capable of operating at atmospheric pressure with gas, water or hybrid gas-liquid media at adjustable 25 kV pulses, 30 μs long and at a 500 Hz frequency. In order to evaluate the inactivation efficiency of the system, a set of experiments were designed on the basis of oxygen flow control. The initial data have showed a significant bacterial rate reduction of 103-107 CFU/mL. Additional results proved that applying an oxygen flow for a few seconds during the PDBD treatment inactivates the Bacillus subtilis population with 99.99% effectiveness. As a reference, without gas flow but with the same exposure times, this percentage is reduced to ~90%. The analysis of the relationship between inactivation rate and chemical species in the discharge has been carried out using optical emission spectroscopy as to identifying the main reactive species. Reactive oxygen species such as atomic oxygen and ozone tuned out to be the dominant germicidal species. Some proposed inactivation mechanisms of this technique are discussed.

  7. Pulsed dielectric barrier discharge for Bacillus subtilis inactivation in water

    International Nuclear Information System (INIS)

    Hernández-Arias, A N; López-Callejas, R; De la Piedad Beneitez, A; Rodríguez-Méndez, B G; Valencia-Alvarado, R; Mercado-Cabrera, A; Peña-Eguiluz, R; Barocio, S R; Muñoz-Castro, A E

    2012-01-01

    The inactivation of Bacillus subtilis bacteria in water has been experimentally studied by means of a pulsed dielectric barrier discharge (PDBD) in a coaxial reactor endowed with an alumina dielectric. The plasma source is capable of operating at atmospheric pressure with gas, water or hybrid gas-liquid media at adjustable 25 kV pulses, 30 μs long and at a 500 Hz frequency. In order to evaluate the inactivation efficiency of the system, a set of experiments were designed on the basis of oxygen flow control. The initial data have showed a significant bacterial rate reduction of 10 3 -10 7 CFU/mL. Additional results proved that applying an oxygen flow for a few seconds during the PDBD treatment inactivates the Bacillus subtilis population with 99.99% effectiveness. As a reference, without gas flow but with the same exposure times, this percentage is reduced to ∼90%. The analysis of the relationship between inactivation rate and chemical species in the discharge has been carried out using optical emission spectroscopy as to identifying the main reactive species. Reactive oxygen species such as atomic oxygen and ozone tuned out to be the dominant germicidal species. Some proposed inactivation mechanisms of this technique are discussed.

  8. Radioprotective action of glycerol and cysteamine on inactivation and mutagenesis in Salmonella tester strains after γ- and heavy ion irradiation

    International Nuclear Information System (INIS)

    Basha, S.G.; Krasavin, E.A.; Kozubek, S.

    1992-01-01

    Inactivation and mutagenesis were studied in Salmonella tester strains after γ-irradiation and after heavy ion irradiation in the presence of glycerol and cysteamine. Ions from deuteron to carbon with residual energies of 2-9 MeV/n were used. Cell sensitivity slightly increased with LET before decreasing. In the presence of glycerol the maximum was shifted to higher values of LET. The radioprotective effect of glycerol for cell killing diminished gradually with increasing LET from 2.0 for γ-radiation to 1.1 for carbon ions. Mutagenic effectiveness increased slightly for deuterium and helium ions. The radioprotective effect of cysteamine on mutagenesis was found to be very small in the case of γ-radiation for the three strains examined. (author). 20 refs.; 4 figs.; 5 tabs

  9. Inactivation of Uropathogenic Escherichia coli in Ground Chicken Meat Using High Pressure Processing and Gamma Radiation, and in Purge and Chicken Meat Surfaces by Ultraviolet Light

    Directory of Open Access Journals (Sweden)

    Christopher H Sommers

    2016-04-01

    Full Text Available Extraintestinal pathogenic Escherichia coli (ExPEC, including uropathogenic E. coli (UPEC are common contaminants in poultry meat and may cause urinary tract infections after colonization of the gastrointestinal tract and transfer of contaminated feces to the urethra. Three nonthermal processing technologies used to improve the safety and shelf-life of both human and pet foods include high pressure processing (HPP, ionizing (gamma radiation (GR, and ultraviolet light (UV-C. Multi-isolate cocktails of UPEC were inoculated into ground chicken which was then treated with HPP (4 oC, 0-25 min at 300, 400 or 500 MPa. HPP D10, the processing conditions needed to inactivate 1 log of UPEC, was 30.6, 8.37, and 4.43 min at 300, 400, and 500 MPa, respectively. When the UPEC was inoculated into ground chicken and gamma irradiated (4 and -20 oC the GR D10 were 0.28 and 0.36 kGy, respectively. The UV-C D10 of UPEC in chicken suspended in exudate and placed on stainless steel and plastic food contact surfaces ranged from 11.4 to 12.9 mJ/cm2. UV-C inactivated ca. 0.6 log of UPEC on chicken breast meat. These results indicate that existing nonthermal processing technologies such as HPP, GR, and UV-C can significantly reduce UPEC levels in poultry meat or exudate and provide safer poultry products for at-risk consumers.

  10. Inactivation of Uropathogenic Escherichia coli in Ground Chicken Meat Using High Pressure Processing and Gamma Radiation, and in Purge and Chicken Meat Surfaces by Ultraviolet Light.

    Science.gov (United States)

    Sommers, Christopher H; Scullen, O J; Sheen, Shiowshuh

    2016-01-01

    Extraintestinal pathogenic Escherichia coli, including uropathogenic E. coli (UPEC), are common contaminants in poultry meat and may cause urinary tract infections after colonization of the gastrointestinal tract and transfer of contaminated feces to the urethra. Three non-thermal processing technologies used to improve the safety and shelf-life of both human and pet foods include high pressure processing (HPP), ionizing (gamma) radiation (GR), and ultraviolet light (UV-C). Multi-isolate cocktails of UPEC were inoculated into ground chicken which was then treated with HPP (4°C, 0-25 min) at 300, 400, or 500 MPa. HPP D10, the processing conditions needed to inactivate 1 log of UPEC, was 30.6, 8.37, and 4.43 min at 300, 400, and 500 MPa, respectively. When the UPEC was inoculated into ground chicken and gamma irradiated (4 and -20°C) the GR D10 were 0.28 and 0.36 kGy, respectively. The UV-C D10 of UPEC in chicken suspended in exudate and placed on stainless steel and plastic food contact surfaces ranged from 11.4 to 12.9 mJ/cm(2). UV-C inactivated ca. 0.6 log of UPEC on chicken breast meat. These results indicate that existing non-thermal processing technologies such as HPP, GR, and UV-C can significantly reduce UPEC levels in poultry meat or exudate and provide safer poultry products for at-risk consumers.

  11. Comparison of glycerolisation with cryopreservation methods on HIV-1 inactivation

    International Nuclear Information System (INIS)

    Van Baare, J.; Pagnon, J.; Cameron, P.; Vardaxis, N.; Middlekoop, E.; Crowe, S.

    1999-01-01

    Cryopreservation and glycerolisation are two successful long-term preservation methods for human cadaveric donor skin, which is used in the treatment of bum patients. High concentrations of glycerol has been shown to be antibacterial and virucidal. Because fear of possible transmission of HIV-1 following allograft transplantation, this study was undertaken to investigate whether HIV can be effectively eliminated from skin explants. HIV-1 Ba-L, which has been shown to infect monocytes in skin explants and also dendritic cells, was. For the experiments we used cell-free virus, exogenously HIV infected peripheral blood mononuclear cells (PBMCs) and exogenously HIV infected cadaver split skin. Different concentrations of glycerol at various temperatures and the glycerolisation procedure as used by the Euro Skin Bank were used to determine the effects on HIV-1 Ba-L infectivity. For the cryopreservation technique we used 10% DMSO and a controlled rate freezer. HIV-1 Ba-L transfer was determined by adding uninfected PBMCs to the infected material and reverse transcriptase was measured. Cell-free HIV-1 Ba-L was not inactivated by 50% glycerol but was effectively inactivated within 30 minutes by 70% and 85% glycerol at 4 degree C, room temperature and 37 degree C. In contrast, cell-free HIV-1 Ba-L was not inactivated by cryopreservation. Most importantly, we have shown that HIV-1 Ba-L present in split skin is inactivated by incubating skin in 70% glycerol for three hours at 37-C. HIV in exogenously infected skin was not inactivated by cryopreservation. High concentrations of glycerol effectively inactivates free HIV-1 Ba-L and intracellular HIV-1 Ba-L. Also the current glycerolisation procedure carried out by the Euro Skin Bank effectively inactivates infectious virus. However, the cryopreservation technique did not show any reduction in HIV-1 Ba-L infectivity

  12. Inactivation of alcohol dehydrogenase (ADH) by ferryl derivatives of human hemoglobin.

    Science.gov (United States)

    Kowalczyk, Aleksandra; Puchała, Mieczysław; Wesołowska, Katarzyna; Serafin, Eligiusz

    2007-01-01

    In this paper, inactivation of alcohol dehydrogenase (ADH) by products of reactions of H2O2 with metHb has been studied. Inactivation of the enzyme was studied in two systems corresponding to two kinetic stages of the reaction. In the first system H2O2 was added to the mixture of metHb and ADH [the (metHb+ADH)+H2O2] system (ADH was present in the system since the moment of addition of H2O2 i. e. since the very beginning of the reaction of metHb with H2O2). In the second system ADH was added to the system 5 min after the initiation of the reaction of H2O2 with metHb [the (metHb+H2O2)5 min+ADH] system. In the first case all the products of reaction of H2O2 with metHb (non-peroxyl and peroxyl radicals and non-radical products, viz. hydroperoxides and *HbFe(IV)=O) could react with the enzyme causing its inactivation. In the second system, enzyme reacted almost exclusively with non-radical products (though a small contribution of reactions with peroxyl radicals cannot be excluded). ADH inactivation was observed in both system. Hydrogen peroxide alone did not inactivate ADH at the concentrations employed evidencing that enzyme inactivation was due exclusively to products of reaction of H2O2 with metHb. The rate and extent of ADH inactivation were much higher in the first than in the second system. The dependence of ADH activity on the time of incubation with ferryl derivatives of Hb can be described by a sum of three exponentials in the first system and two exponentials in the second system. Reactions of appropriate forms of the ferryl derivatives of hemoglobin have been tentatively ascribed to these exponentials. The extent of the enzyme inactivation in the second system was dependent on the proton concentration, being at the highest at pH 7.4 and negligible at pH 6.0. The reaction of H2O2 with metHb resulted in the formation of cross-links of Hb subunits (dimers and trimers). The amount of the dimers formed was much lower in the first system i. e. when the radical

  13. Limnoithona sinensis as refuge for bacteria: protection from UV radiation and chlorine disinfection in drinking water treatment.

    Science.gov (United States)

    Lin, Tao; Cai, Bo; Chen, Wei

    2014-11-01

    In this study, we tested the potential of Limnoithona sinensis to provide its attached bacteria refuge against disinfection. The experimental results indicated that in water devoid of zooplankton, both UV radiation and chlorine disinfection significantly decreased the viability of free-living bacteria. In the presence of L. sinensis, however, the attached bacteria could survive and rapidly recover from disinfection. This demonstrated that L. sinensis provided protection from external damage to various aquatic bacteria that were attached to its body. The surviving bacteria remained on L. sinensis after disinfection exposure, which enabled a rapid increase in the bacterial population followed by their subsequent release into the surrounding water. Compared with UV radiation, chlorine disinfection was more effective in terms of inactivating attached bacteria. Both UV radiation and chlorine disinfection had little effect in terms of preventing the spread of undesirable bacteria, due to the incomplete inactivation of the bacteria associated with L. sinensis.

  14. Pathogen inactivation of Dengue virus in red blood cells using amustaline and glutathione.

    Science.gov (United States)

    Aubry, Maite; Laughhunn, Andrew; Santa Maria, Felicia; Lanteri, Marion C; Stassinopoulos, Adonis; Musso, Didier

    2017-12-01

    Dengue virus (DENV) is an arbovirus primarily transmitted through mosquito bite; however, DENV transfusion-transmitted infections (TTIs) have been reported and asymptomatic DENV RNA-positive blood donors have been identified in endemic countries. DENV is considered a high-risk pathogen for blood safety. One of the mitigation strategies to prevent arbovirus TTIs is pathogen inactivation. In this study we demonstrate that the amustaline and glutathione (S-303/GSH) treatment previously found effective against Zika virus in red blood cells (RBCs) is also effective in inactivating DENV. Red blood cells were spiked with high levels of DENV. Viral RNA loads and infectious titers were measured in the untreated control and before and after pathogen inactivation treatment of RBC samples. DENV infectivity was also assessed over five successive cell culture passages to detect any potential residual replicative virus. The mean ± SD DENV titer in RBCs before inactivation was 6.61 ± 0.19 log 50% tissue culture infectious dose (TCID 50 )/mL and the mean viral RNA load was 8.42 log genome equivalents/mL. No replicative DENV was detected either immediately after completion of treatment using S-303/GSH or after cell culture passages. Treatment using S-303/GSH inactivated high levels of DENV in RBCs to the limit of detection. In combination with previous studies showing the effective inactivation of DENV in plasma and platelets using the licensed amotosalen/UVA system, this study demonstrates that high levels of DENV can be inactivated in all blood components. © 2017 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  15. Study of the integrated immune response induced by an inactivated EV71 vaccine.

    Directory of Open Access Journals (Sweden)

    Longding Liu

    Full Text Available Enterovirus 71 (EV71, a major causative agent of hand-foot-and-mouth disease (HFMD, causes outbreaks among children in the Asia-Pacific region. A vaccine is urgently needed. Based on successful pre-clinical work, phase I and II clinical trials of an inactivated EV71 vaccine, which included the participants of 288 and 660 respectively, have been conducted. In the present study, the immune response and the correlated modulation of gene expression in the peripheral blood mononuclear cells (PBMCs of 30 infants (6 to 11 months immunized with this vaccine or placebo and consented to join this study in the phase II clinical trial were analyzed. The results showed significantly greater neutralizing antibody and specific T cell responses in vaccine group after two inoculations on days 0 and 28. Additionally, more than 600 functional genes that were up- or down-regulated in PBMCs were identified by the microarray assay, and these genes included 68 genes associated with the immune response in vaccine group. These results emphasize the gene expression profile of the immune system in response to an inactivated EV71 vaccine in humans and confirmed that such an immune response was generated as the result of the positive mobilization of the immune system. Furthermore, the immune response was not accompanied by the development of a remarkable inflammatory response.NCT01391494 and NCT01512706.

  16. Inactivation Effect of Antibiotic-Resistant Gene Using Chlorine Disinfection

    Directory of Open Access Journals (Sweden)

    Takashi Furukawa

    2017-07-01

    Full Text Available The aim of this study was to elucidate the inactivation effects on the antibiotic-resistance gene (vanA of vancomycin-resistant enterococci (VRE using chlorination, a disinfection method widely used in various water treatment facilities. Suspensions of VRE were prepared by adding VRE to phosphate-buffered saline, or the sterilized secondary effluent of a wastewater treatment plant. The inactivation experiments were carried out at several chlorine concentrations and stirring time. Enterococci concentration and presence of vanA were determined. The enterococci concentration decreased as chlorine concentrations and stirring times increased, with more than 7.0 log reduction occurring under the following conditions: 40 min stirring at 0.5 mg Cl2/L, 20 min stirring at 1.0 mg Cl2/L, and 3 min stirring at 3.0 mg Cl2/L. In the inactivation experiment using VRE suspended in secondary effluent, the culturable enterococci required much higher chlorine concentration and longer treatment time for complete disinfection than the cases of suspension of VRE. However, vanA was detected in all chlorinated suspensions of VRE, even in samples where no enterococcal colonies were present on the medium agar plate. The chlorine disinfection was not able to destroy antibiotic-resistance genes, though it can inactivate and decrease bacterial counts of antibiotic-resistant bacteria (ARB. Therefore, it was suggested that remaining ARB and/or antibiotic-resistance gene in inactivated bacterial cells after chlorine disinfection tank could be discharged into water environments.

  17. Development of inactivated-local isolate vaccine for infectious bronchitis

    Directory of Open Access Journals (Sweden)

    Darminto

    1999-06-01

    Full Text Available Infectious bronchitis (IB is an acute highly contagious viral respiratory disease of poultry caused by coronavirus. The disease causes high mortality in young chicks, reduce body weight gain in broilers and remarkable drop in egg production. IB can only be controlled by vaccination, but due to the antigenic variation among serotypes of IB viruses, the effective IB vaccine should be prepared from local isolates. The aim of this research is to develop inactivated IB vaccine derived from local IB isolates. Local isolates of IB viruses designated as I-37, I-269 and PTS-III were propagated respectively in specific pathogen free (SPF chicken eggs, the viruses then were inactivated by formaline at final concentration of 1:1,000. Subsequently, the inactivated viruses were mixed and emulsified in oil emulsion adjuvant with sorbitant mono-oleic as an emulsifier. The vaccine then was tested for its safety, potency and efficacy in broiler chickens. Birds inoculated twice with a two-week interval by inactivated vaccine did not show any adverse reaction, either systemic or local reaction. The inoculated birds developed antibody responses with high titre, while antibody of the control birds remain negative. In addition, efficacy test which was conducted in broilers demonstrated that birds vaccinated by live-commercial vaccine and boosted three weeks later by Balitvet inactivated vaccine showed high level of antibody production which provided high level of protection against challenged virus (76% against I-37, 92% against I-269 and 68% against PTS-III challenge viruses. From this study, it can be concluded that inactivated local IB vaccine is considered to be safe, potent and efficacious. The vaccine stimulates high titre of antibody responses, which provide high level of protection against challenged viruses.

  18. Cells, targets, and molecules in radiation biology

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1979-01-01

    Cellular damage and repair are discussed with regard to inactivation models, dose-effect curves and cancer research, repair relative to damage accumulation, potentially lethal damage, repair of potentially lethal vs. sublethal damage, cell killing and DNA damage due to nonionizing radiation, and anisotonicity vs. lethality due to nonionizing radiation. Other topics discussed are DNA damage and repair in cells exposed to ionizing radiation, kinetics of repair of single-strand DNA breaks, effects of actinomycin D on x-ray survival curve of hamster cells, misrepair and lethality, and perspective and prospects

  19. Ultraviolet germicidal efficacy as a function of pulsed radiation parameters studied by spore film dosimetry.

    Science.gov (United States)

    Bauer, Stefan; Holtschmidt, Hans; Ott, Günter

    2018-01-01

    Disinfection by pulsed ultraviolet (UV) radiation is a commonly used method, e.g. in industry or medicine and can be carried out either with lasers or broadband UV radiation sources. Detrimental effects to biological materials depending on parameters such as pulse duration τ or pulse repetition frequency f p are well-understood for pulsed coherent UV radiation, however, relatively little is known for its incoherent variant. Therefore, within this work, it is the first time that disinfection rates of pulsed and continuous (cw) incoherent UV radiation studied by means of spore film dosimetry are presented, compared with each other, and in a second step further investigated regarding two pulse parameters. After analyzing the dynamic range of the Bacillus subtilis spore films with variable cw radiant exposures H=5-100Jm -2 a validation of the Bunsen-Roscoe law revealed its restricted applicability and a 28% enhanced detrimental effect of pulsed compared to cw incoherent UV radiation. A radiant exposure H=50Jm -2 and an irradiance E=0.5Wm -2 were found to be suitable parameters for an analysis of the disinfection rate as a function of τ=0.5-10ms and f p =25-500Hz unveiling that shorter pulses and lower frequencies inactivate more spores. Finally, the number of applied pulses as well as the experiment time were considered with regard to spore film disinfection. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Inactivation of γ-aminobutyric acid aminotransferase by γ-ethynyl- and γ-vinyl GABA

    International Nuclear Information System (INIS)

    Silverman, R.B.; Burke, J.R.; Nanavati, S.M.

    1989-01-01

    γ-Ethynyl- and γ-vinyl GABA (vigabatrin) are anticonvulsant agents that have been shown to be mechanism-based inactivators of γ-aminobutyric acid aminotransferase (GABA-T). The inactivation mechanisms of these compounds have been investigated. Inactivation of GABA-T by [ 3 H]γ-ethynyl GABA led to the incorporation of 1.0 equiv of 3 H into the enzyme which is not released by enzyme denaturation. Inactivation by γ-ethynyl GABA of GABA-T reconstituted with [ 3 H]PLP followed by denaturation resulted in release of 3 H as PLP. Eight different possible adducts are consistent with that result. Experiments have been carried out to differentiate these possibilities. Similar studies have been carried out with γ-vinyl GABA. Inactivation by [ 14 C]γ-vinyl GABA resulted in the incorporation of 1.0 equiv of 14 C per active site. Unlike the case with γ-ethynyl GABA, γ-vinyl GABA inactivation of GABA-T reconstituted with [ 3 H]PLP followed by denaturation resulted in release of 3 H as PMP

  1. Luciferase inactivation in the luminous marine bacterium Vibrio harveyi.

    Science.gov (United States)

    Reeve, C A; Baldwin, T O

    1981-06-01

    Luciferase was rapidly inactivated in stationary-phase cultures of the wild type of the luminous marine bacterium Vibrio harveyi, but was stable in stationary-phase cultures of mutants of V. harveyi that are nonluminous without exogenous aldehyde, termed the aldehyde-deficient mutants. The inactivation in the wild type was halted by cell lysis and was slowed or stopped by O2 deprivation or by addition of KCN and NaF or of chloramphenicol. If KCN and NaF or chloramphenicol were added to a culture before the onset of luciferase inactivation, then luciferase inactivation did not occur. However, if these inhibitors were added after the onset of luciferase inactivation, then luciferase inactivation continued for about 2 to 3 h before the inactivation process stopped. The onset of luciferase inactivation in early stationary-phase cultures of wild-type cell coincided with a slight drop in the intracellular adenosine 5'-triphosphate (ATP) level from a relatively constant log-phase value of 20 pmol of ATP per microgram of soluble cell protein. Addition of KCN and NaF to a culture shortly after this drop in ATP caused a rapid decrease in the ATP level to about 4 pmol of ATP per microgram whereas chloramphenicol added at this same time caused a transient increase in ATP level to about 25 pmol/microgram. The aldehyde-deficient mutant (M17) showed a relatively constant log-phase ATP level identical with that of the wild-type cells, but rather than decreasing in early stationary phase, the ATP level increased to a value twice that in log-phase cells. We suggest that the inactivation of luciferase is dependent on the synthesis of some factor which is produced during stationary phase and is itself unstable, and whose synthesis is blocked by chloramphenicol or cyanide plus fluoride.

  2. Comparison of two different methods for inactivation of viruses in serum

    DEFF Research Database (Denmark)

    Preuss, T.; Kamstrup, Søren; Kyvsgaard, N.C.

    1997-01-01

    enterovirus (PEV) was inactivated within 3 h, The inactivation with electron-beam irradiation resulted in almost linear curves in a semilogarithmic plot of virus titer versus irradiation dose, reflecting a first-order inactivation, The rate of inactivation was almost twice as fast in the liquid samples...

  3. Predicting Bacillus coagulans spores inactivation in tomato pulp under nonisothermal heat treatments.

    Science.gov (United States)

    Zimmermann, Morgana; Longhi, Daniel A; Schaffner, Donald W; Aragão, Gláucia M F

    2014-05-01

    The knowledge and understanding of Bacillus coagulans inactivation during a thermal treatment in tomato pulp, as well as the influence of temperature variation during thermal processes are essential for design, calculation, and optimization of the process. The aims of this work were to predict B. coagulans spores inactivation in tomato pulp under varying time-temperature profiles with Gompertz-inspired inactivation model and to validate the model's predictions by comparing the predicted values with experimental data. B. coagulans spores in pH 4.3 tomato pulp at 4 °Brix were sealed in capillary glass tubes and heated in thermostatically controlled circulating oil baths. Seven different nonisothermal profiles in the range from 95 to 105 °C were studied. Predicted inactivation kinetics showed similar behavior to experimentally observed inactivation curves when the samples were exposed to temperatures in the upper range of this study (99 to 105 °C). Profiles that resulted in less accurate predictions were those where the range of temperatures analyzed were comparatively lower (inactivation profiles starting at 95 °C). The link between fail prediction and both lower starting temperature and magnitude of the temperature shift suggests some chemical or biological mechanism at work. Statistical analysis showed that overall model predictions were acceptable, with bias factors from 0.781 to 1.012, and accuracy factors from 1.049 to 1.351, and confirm that the models used were adequate to estimate B. coagulans spores inactivation under fluctuating temperature conditions in the range from 95 to 105 °C. How can we estimate Bacillus coagulans inactivation during sudden temperature shifts in heat processing? This article provides a validated model that can be used to predict B. coagulans under changing temperature conditions. B. coagulans is a spore-forming bacillus that spoils acidified food products. The mathematical model developed here can be used to predict the spoilage

  4. In vitro studies of interaction of rickettsia and macrophages: effect of ultraviolet light on Coxiella burnetti inactivation and macrophage enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Little, J.S.; Kishimoto, R.A.; Canonico, P.G.

    1980-03-01

    The inactivation of Coxiella burnetii in suspension or in cultures of guinea pig peritoneal macrophages by ultraviolet (uv) light was studied. The effect of uv treatment on the activity of macrophage organelle marker enzymes and their subsequent equilibration in linear sucrose gradients was also determined. It was shown that uv treatment for 15 s at a distance of 10 cm inactivated C. burnetti, either in suspension or within guinea pig peritoneal macrophages. Similar uv treatment had little effect on the activity or equilibration of macrophage organelle marker enzymes in linear sucrose gradients.

  5. In vitro studies of interaction of rickettsia and macrophages: effect of ultraviolet light on Coxiella burnetti inactivation and macrophage enzymes

    International Nuclear Information System (INIS)

    Little, J.S.; Kishimoto, R.A.; Canonico, P.G.

    1980-01-01

    The inactivation of Coxiella burnetii in suspension or in cultures of guinea pig peritoneal macrophages by ultraviolet (uv) light was studied. The effect of uv treatment on the activity of macrophage organelle marker enzymes and their subsequent equilibration in linear sucrose gradients was also determined. It was shown that uv treatment for 15 s at a distance of 10 cm inactivated C. burnetti, either in suspension or within guinea pig peritoneal macrophages. Similar uv treatment had little effect on the activity or equilibration of macrophage organelle marker enzymes in linear sucrose gradients

  6. Active-site-directed inactivation of Aspergillus oryzae beta-galactosidase with beta-D-galactopyranosylmethyl-p-nitrophenyltriazene.

    Science.gov (United States)

    Mega, T; Nishijima, T; Ikenaka, T

    1990-04-01

    beta-D-Galactopyranosylmethyl-p-nitrophenyltriazene (beta-GalMNT), a specific inhibitor of beta-galactosidase, was isolated as crystals by HPLC and its chemical and physicochemical characteristics were examined. Aspergillus oryzae beta-galactosidase was inactivated by the compound. We studied the inhibition mechanism in detail. The inhibitor was hydrolyzed by the enzyme to p-nitroaniline and an active intermediate (beta-galactopyranosylmethyl carbonium or beta-galactopyranosylmethyldiazonium), which inactivated the enzyme. The efficiency of inactivation of the enzyme (the ratio of moles of inactivated enzyme to moles of beta-GalMNT hydrolyzed by the enzyme) was 3%; the efficiency of Escherichia coli beta-galactosidase was 49%. In spite of the low efficiency, the rate of inactivation of A. oryzae enzyme was not very different from that of the E. coli enzyme, because the former hydrolyzed beta-GalMNT faster than the latter did. A. oryzae beta-galactosidase was also inactivated by p-chlorophenyl, p-tolyl, and m-nitrophenyl derivatives of beta-galactopyranosylmethyltriazene. However, E. coli beta-galactosidase was not inactivated by these triazene derivatives. The results showed that the inactivation of A. oryzae and E. coli beta-galactosidases by beta-GalMNT was an enzyme-activated and active-site-directed irreversible inactivation. The possibility of inactivation by intermediates produced nonenzymatically was ruled out for E. coli, but not for the A. oryzae enzyme.

  7. Effect of iron salt counter ion in dose-response curves for inactivation of Fusarium solani in water through solar driven Fenton-like processes

    Science.gov (United States)

    Aurioles-López, Verónica; Polo-López, M. Inmaculada; Fernández-Ibáñez, Pilar; López-Malo, Aurelio; Bandala, Erick R.

    2016-02-01

    The inactivation of Fusarium solani in water was assessed by solar driven Fenton-like processes using three different iron salts: ferric acetylacetonate (Fe(acac)3), ferric chloride (FeCl3) and ferrous sulfate (FeSO4). The experimental conditions tested were [Fe] ≈ 5 mg L-1, [H2O2] ≈ 10 mg L-1 and [Fe] ≈ 10 mg L-1; [H2O2] ≈ 20 mg L-1 mild and high, respectively, and pH 3.0 and 5.0, under solar radiation. The highest inactivation rates were observed at high reaction conditions for the three iron salts tested at pH 5.0 with less than 3.0 kJ L-1 of accumulate energy (QUV) to achieve over 99.9% of F. solani inactivation. Fe(acac)3 was the best iron salt to accomplishing F. solani inactivation. The modified Fermi equation was used to fix the experimental inactivation, data showed it was helpful for modeling the process, adequately describing dose-response curves. Inactivation process using FeSO4 at pH 3.0 was modeled fairly with r2 = 0.98 and 0.99 (mild and high concentration, respectively). Fe(acac)3, FeCl3 and FeSO4 at high concentration (i.e. [Fe] ≈ 10 mg L-1; [H2O2] ≈ 20 mg L-1) and pH 5.0 showed the highest fitting values (r2 = 0.99). Iron salt type showed a remarkable influence on the Fenton-like inactivation process.

  8. Radiation sensitivity of organisms of different organization level: an approach including DNA strand breakage

    International Nuclear Information System (INIS)

    Kampf, G.

    1983-01-01

    The mean numbers of DNA double-strand breaks (DSB) suggested to be necessary to lead to the loss of reproductive capacity are compared with bacteriophages, bacteria, and cells of the Chinese hamster after the influence of several radiation qualities. The results suggest that the critical target for the inactivating action of radiations may not be the entire DNA of all organisms but a structure unit of it designed as membrane-attached super structure unit. With organisms having only one of these structures (bacteria) the inactivation probability of one DSB will be near unity, with their multiplication in higher cells it will become lower. This means, eukaryotic cells are able to tolerate more DSB before being inactivated than organisms of a lower organization level, and consequently are more ''lesion resistant''. This behavior represents an evolutionary stabilization of higher cells towards the lethal action of severe DNA lesions such as DSB. (author)

  9. In vitro assays for predicting tumor cell response to radiation by apoptotic pathways

    International Nuclear Information System (INIS)

    Algan, Oe.; Hanks, G.E.; Biade, S.; Chapman, J.D.

    1995-01-01

    Purpose: We had previously shown that the rate of spontaneous and radiation-induced apoptosis was significantly greater in well-differentiated compared to anaplastic Dunning prostate carcinomas. The goal of this study was to define the most useful assay for quantifying radiation-induced apoptotic cell death and to determine if measured rates of radiation-induced apoptosis in tumor cell populations can predict treatment outcome. Materials and Methods: The time course and extent of radiation-induced apoptosis after single doses of Cesium-137 gamma-rays were measured by five different assays. These included gross DNA degradation, nucleosome ladder formation, labeling of 3'-OH ends in DNA with an immunofluorescence probe, immunofluorescence vital stains (LIVE/DEAD[reg] EUKOLIGHT TM ) and trypan blue. The majority of these studies were performed with DU-145 human prostate cells. Data was analyzed to determine the component of cell inactivation resulting from apoptosis with the modified linear quadratic equation, -1n (SF) = (α a + α p ) D + β p D 2 , were α a represents cell inactivation by radiation-induced apoptosis, α p and β p represent cell death by proliferative mechanisms and D represents radiation dose. Results: These studies indicated that DU-145 cell death after radiation occurs over two distinct time periods. The first phase of death begins shortly after irradiation and plateaus within 16-24 hr. This process of cell death has properties consistent with apoptosis as determined by 3'-OH DNA end-labeling and nucleosome ladder assays. The second phase of cell death (determined by viability staining) begins approximately 48 hr after irradiation and continues until the remainder of inactivated cells express their death. This longer phase of cell inactivation probably represents proliferative cell death and other non-apoptotic mechanisms. The five different assays were performed on DU-145 cells 24 hr after irradiation with 10 Gy. Significant nucleosome ladders

  10. Inactivation of enteropathogenic E. coli by solar disinfection (SODIS) under simulated sunlight conditions

    CSIR Research Space (South Africa)

    Ubomba-Jaswa, Eunice

    2008-12-01

    Full Text Available of limitations. An important limitation is the lack of SODIS inactivation studies on some waterborne pathogens in the developing world. SODIS inactivation of enteropathogenic E. coli (EPEC), a major cause of infantile diarrhoea is reported for the first time...

  11. Inactivation of acetylcholinesterase by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride.

    Science.gov (United States)

    Zang, Lun-Yi; Misra, Hara P

    2003-12-01

    The neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been shown to reversibly inhibit the activity of acetylcholinesterase. The inactivation of the enzyme was detected by monitoring the accumulation of yellow color produced from the reaction between thiocholine and dithiobisnitrobenzoate ion. The kinetic parameter, Km for the substrate (acetylthiocholine), was found to be 0.216 mM and Ki for MPTP inactivation of acetylcholinesterase was found to be 2.14 mM. The inactivation of enzyme by MPTP was found to be dose-dependent. It was found that MPTP is neither a substrate of AChE nor the time-dependent inactivator. The studies of reaction kinetics indicate the inactivation of AChE to be a linear mixed-type inhibition. The dilution assays indicate that MPTP is a reversible inhibitor for AChE. These data suggest that once MPTP enters the basal ganglia of the brain, it can inactivate the acetylcholinesterase enzyme and thereby increase the acetylcholine level in the basal ganglia of brain, leading to potential cell dysfunction. It appears that the nigrostriatal toxicity by MPTP leading to Parkinson's disease-like syndrome may, in part, be mediated via the acetylcholinesterase inactivation.

  12. Conformational lock and dissociative thermal inactivation of lentil seedling amine oxidase.

    Science.gov (United States)

    Moosavi-Nejad, S Zahra; Moosavi-Movahedi, Ali-Akbar; Rezaei-Tavirani, Mostafa; Floris, Giovanni; Medda, Rosaria

    2003-03-31

    The kinetics of thermal inactivation of copper-containing amine oxidase from lentil seedlings were studied in a 100 mM potassium phosphate buffer, pH 7, using putrescine as the substrate. The temperature range was between 47-60 degrees C. The thermal inactivation curves were not linear at 52 and 57 degrees C; three linear phases were shown. The first phase gave some information about the number of dimeric forms of the enzyme that were induced by the higher temperatures using the "conformational lock" pertaining theory to oligomeric enzyme. The "conformational lock" caused two additional dimeric forms of the enzyme when the temperature increased to 57 degrees C. The second and third phases were interpreted according to a dissociative thermal inactivation model. These phases showed that lentil amine oxidase was reversibly-dissociated before the irreversible thermal inactivation. Although lentil amine oxidase is not a thermostable enzyme, its dimeric structure can form "conformational lock," conferring a structural tolerance to the enzyme against heat stress.

  13. Inactivation of Mycobacterium avium with free chlorine.

    Science.gov (United States)

    Luh, Jeanne; Mariñas, Benito J

    2007-07-15

    The inactivation kinetics of Mycobacterium avium with free chlorine was characterized by two stages: an initial phase at a relatively fast rate followed by a slower second stage of pseudo first-order kinetics. The inactivation rate of each stage was approximately the same for all experiments performed at a certain condition of pH and temperature; however, variability was observed for the disinfectant exposure at which the transition between the two stages occurred. This variability was not a function of the initial disinfectant concentration, the initial bacterial density, or the bacterial stock. However, the transition to the second stage varied more significantly at high temperatures (30 degrees C), while lower variability was observed at lower temperatures (5 and 20 degrees C). Experiments conducted at pH values in the range of 6-9 revealed that the inactivation of M. avium was primarily due to hypochlorous acid, with little contribution from hypochlorite ion within this pH range. The inactivation kinetics was represented with a two-population model. The activation energies for the resulting pseudo first-order rate constants for the populations with fast and slow kinetics were 100.3 and 96.5 kJ/mol, respectively. The magnitude of these values suggested that for waters of relatively high pH and low temperatures, little inactivation of M. avium would be achieved within treatment plants, providing a seeding source for distribution systems.

  14. Acute Vhl gene inactivation induces cardiac HIF-dependent erythropoietin gene expression.

    Directory of Open Access Journals (Sweden)

    Marta Miró-Murillo

    Full Text Available Von Hippel Lindau (Vhl gene inactivation results in embryonic lethality. The consequences of its inactivation in adult mice, and of the ensuing activation of the hypoxia-inducible factors (HIFs, have been explored mainly in a tissue-specific manner. This mid-gestation lethality can be also circumvented by using a floxed Vhl allele in combination with an ubiquitous tamoxifen-inducible recombinase Cre-ER(T2. Here, we characterize a widespread reduction in Vhl gene expression in Vhl(floxed-UBC-Cre-ER(T2 adult mice after dietary tamoxifen administration, a convenient route of administration that has yet to be fully characterized for global gene inactivation. Vhl gene inactivation rapidly resulted in a marked splenomegaly and skin erythema, accompanied by renal and hepatic induction of the erythropoietin (Epo gene, indicative of the in vivo activation of the oxygen sensing HIF pathway. We show that acute Vhl gene inactivation also induced Epo gene expression in the heart, revealing cardiac tissue to be an extra-renal source of EPO. Indeed, primary cardiomyocytes and HL-1 cardiac cells both induce Epo gene expression when exposed to low O(2 tension in a HIF-dependent manner. Thus, as well as demonstrating the potential of dietary tamoxifen administration for gene inactivation studies in UBC-Cre-ER(T2 mouse lines, this data provides evidence of a cardiac oxygen-sensing VHL/HIF/EPO pathway in adult mice.

  15. Vaccines for veterinary, made with the help of radiative technique

    International Nuclear Information System (INIS)

    Bulkhanov, R.U.; Butaev, M.K.; Mirsaev, B.Sh.; Ryasnaynskiy, I.V.; Yuldashev, R.Yu.

    2004-01-01

    Full text: In applied radiology scientists usually use stimulating, mutagenic and inactivating effects of gamma-radiation. In this report there are the results of gamma-radiation inactivating effect for radiovaccine making biotechnology development for veterinary. Inactivation with hamma-irradiation gives us opportunity to make highly immunogenic vaccines, which cause minimum damage of antigenic contaminants structure. With the help of radiative biotechnology we can produce highly effective monoassociated and polyvalented radiovaccines against the most wide-spread infections disease in agricultural animals, young animals in particular (calves, lambs, sucking-pigs). These diseases include such infection diseases as colibacterioses, salmonellosis, pasterellosis, which cause much economic damage to stockbreeding i.e. loss of cattle, slow growth of young animal, lack of offsprings, decrease of reproduction properties. Monovaccines are used for these disease prophylaxis as well as associated and polyvalented vaccines. Taking into consideration the necessity of vaccine improvement and great amount of associated vaccines, one of the main problems of veterinary is the development of vaccines of new generation, which can induce immunity against several diseases in agricultural animals. That is why, radiative biotechnology of radiovaccines creation was developed and is used in radiative laboratory of Uzbek Scientific Veterinary Institute (Bulkhanov R.U., 1999, 2001), A ssociated radiovaccine against colibacteriosis, salmonellosis of calves, kids , 'Associated radiovaccine against colibacteriosis and salmonellosis of calves', 'Polyvalented radiovaccine against pasterellosis, salmonellosis and colibacteriosis in agricultural animals' were developed with the help of radiative biotechnology and are successfully used in veterinary practice. The advantage of these radiovaccines is that they produce one year immunity and you need twice less dosage and revaccinations. More than

  16. Evaluation of eco-friendly zwitterionic detergents for enveloped virus inactivation.

    Science.gov (United States)

    Conley, Lynn; Tao, Yinying; Henry, Alexis; Koepf, Edward; Cecchini, Douglas; Pieracci, John; Ghose, Sanchayita

    2017-04-01

    Inclusion of a detergent in protein biotherapeutic purification processes is a simple and very robust method for inactivating enveloped viruses. The detergent Triton X-100 has been used for many years and is part of the production process of several commercial therapeutic proteins. However, recent ecological studies have suggested that Triton X-100 and its break-down products can potentially behave as endocrine disrupters in aquatic organisms, raising concerns from an environmental impact perspective. As such, discharge of Triton X-100 into the waste water treatment plants is regulated in some jurisdictions, and alternative detergents for viral inactivation are required. In this work, we report on the identification and evaluation of more eco-friendly detergents as viable replacements for Triton X-100. Five detergent candidates with low to moderate environmental impact were initially identified and evaluated with respect to protein stability, followed by proof-of-concept virus inactivation studies using a model enveloped virus. From the set of candidates lauryldimethylamine N-oxide (LDAO) was identified as the most promising detergent due to its low ecotoxicity, robust anti-viral activity (LRV >4 at validation set-point conditions with X-MuLX), and absence of any negative impact on protein function. This detergent exhibited effective and robust virus inactivation in a broad range of protein concentrations, solution conductivities, pHs, and in several different cell culture fluid matrices. The only process parameter which correlated with reduced virus inactivation potency was LDAO concentration, and then only when the concentration was reduced to below the detergent's critical micelle concentration (CMC). Additionally, this work also demonstrated that LDAO was cleared to below detectable levels after Protein A affinity chromatography, making it suitable for use in a platform process that utilizes this chromatographic mode for protein capture. All these findings

  17. Inactivation of viruses in municipal effluent by chlorine.

    OpenAIRE

    Hajenian, H. G.; Butler, M.

    1980-01-01

    The influence of pH and temperature on the efficiency of chlorine inactivation of two unrelated picornaviruses in a typical urban wastewater effluent was examined. Temperature, unlike pH, had relatively little effect on the rate of inactivation. The pH effect was complex and the two viruses differed. The f2 coliphage was more sensitive to chlorine at low pH, but at all values there was a threshold above which additional chlorine resulted in very rapid inactivation. The amount of chlorine requ...

  18. Light-driven photosensitizer uptake increases Candida albicans photodynamic inactivation.

    Science.gov (United States)

    Romano, Renan A; Pratavieira, Sebastião; Silva, Ana P da; Kurachi, Cristina; Guimarães, Francisco E G

    2017-11-01

    Photodynamic Inactivation (PDI) is based on the use of a photosensitizer (PS) and light that results mainly in the production of reactive oxygen species, aiming to produce microorganism cell death. PS incubation time and light dose are key protocol parameters that influence PDI response; the correct choice of them can increase the efficiency of inactivation. The results of this study show that a minor change in the PDI protocol, namely light-driven incubation leads to a higher photosensitizer and more uniform cell uptake inside the irradiated zone. Furthermore, as the uptake increases, the damage caused by PDI also increases. The proposed light-driven incubation prior to the inactivation illumination dose has advantages when compared to the traditional PDI treatments since it can be more selective and effective. Using a violet light as pre-illumination (light-driven incubation) source and a red-light system as PDI source, it was possible to demonstrate that when compared to the traditional protocol of dark incubation, the pre-illuminated cell culture showed an inactivation increase of 7 log units. These in vitro results performed in Candida albicans cells may result in the introduction of a new protocol for PDI. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Nucleus incertus inactivation impairs spatial learning and memory in rats.

    Science.gov (United States)

    Nategh, Mohsen; Nikseresht, Sara; Khodagholi, Fariba; Motamedi, Fereshteh

    2015-02-01

    Nucleus incertus (NI) is a pontine nucleus which releases mainly GABA and relaxin-3 in rats. Its suggested functions include response to stress, arousal, and modulation of hippocampal theta rhythm. Since the role of NI in learning and memory has not been well characterized, therefore the involvement of this nucleus in spatial learning and memory and the aftermath hippocampal levels of c-fos and pCREB were evaluated. NI was targeted by implanting cannula in male rats. For reference memory, NI was inactivated by lidocaine (0.4 μl, 4%) at three stages of acquisition, consolidation and retrieval in Morris water maze paradigm. For working memory, NI was inactivated in acquisition and retrieval phases. Injection of lidocaine prior to the first training session of reference memory significantly increased the distance moved, suggesting that inactivation of NI delays acquisition in this spatial task. Inactivation also interfered with the retrieval phase of spatial reference memory, as the time in target quadrant for lidocaine group was less, and the escape latency was higher compared to the control group. However, no difference was observed in the consolidation phase. In the working memory task, with inter-trial intervals of 75 min, the escape latency was higher when NI was inactivated in the retrieval phase. In addition, c-fos and pCREB/CREB levels decreased in NI-inhibited rats. This study suggests that nucleus incertus might participate in acquisition of spatial reference, and retrieval of both spatial reference and working memory. Further studies should investigate possible roles of NI in the hippocampal plasticity. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Effective inactivation of a wide range of viruses by pasteurization.

    Science.gov (United States)

    Gröner, Albrecht; Broumis, Connie; Fang, Randel; Nowak, Thomas; Popp, Birgit; Schäfer, Wolfram; Roth, Nathan J

    2018-01-01

    Careful selection and testing of plasma reduces the risk of blood-borne viruses in the starting material for plasma-derived products. Furthermore, effective measures such as pasteurization at 60°C for 10 hours have been implemented in the manufacturing process of therapeutic plasma proteins such as human albumin, coagulation factors, immunoglobulins, and enzyme inhibitors to inactivate blood-borne viruses of concern. A comprehensive compilation of the virus reduction capacity of pasteurization is presented including the effect of stabilizers used to protect the therapeutic protein from modifications during heat treatment. The virus inactivation kinetics of pasteurization for a broad range of viruses were evaluated in the relevant intermediates from more than 15 different plasma manufacturing processes. Studies were carried out under the routine manufacturing target variables, such as temperature and product-specific stabilizer composition. Additional studies were also performed under robustness conditions, that is, outside production specifications. The data demonstrate that pasteurization inactivates a wide range of enveloped and nonenveloped viruses of diverse physicochemical characteristics. After a maximum of 6 hours' incubation, no residual infectivity could be detected for the majority of enveloped viruses. Effective inactivation of a range of nonenveloped viruses, with the exception of nonhuman parvoviruses, was documented. Pasteurization is a very robust and reliable virus inactivation method with a broad effectiveness against known blood-borne pathogens and emerging or potentially emerging viruses. Pasteurization has proven itself to be a highly effective step, in combination with other complementary safety measures, toward assuring the virus safety of final product. © 2017 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  1. Physical inactivation and stabilization of sludges

    International Nuclear Information System (INIS)

    Alexandre, D.

    1979-07-01

    High temperature conditioning of sludge is a stabilization process that insures sterilization. Both thermal pasteurization and irradiation are inactivation processes. Viruses and parasites are inactivated at 70-80 0 C. Total bacterial destruction requires higher temperatures and/or detention time. Radio sensitivity of pathogens and pertinent treatment parameters are examined. If sludge is to be land disposed, disinfection requires irradiation doses ranging 500 Krad; if cattle feeding is considered, the required dose is 1 Mrad

  2. Viral inactivation in hemotherapy: systematic review on inactivators with action on nucleic acids

    Directory of Open Access Journals (Sweden)

    Patricia Marial Sobral

    2012-01-01

    Full Text Available The aim of this study was to conduct a systematic review on the photoinactivators used in hemotherapy, with action on viral genomes. The SciELO, Science Direct, PubMed and Lilacs databases were searched for articles. The inclusion criterion was that these should be articles on inactivators with action on genetic material that had been published between 2000 and 2010. The key words used in identifying such articles were "hemovigilance", "viral inactivation", "photodynamics", "chemoprevention" and "transfusion safety". Twenty-four articles on viral photoinactivation were found with the main photoinactivators covered being: methylene blue, amotosalen HCl, S-303 frangible anchor linker effector (FRALE, riboflavin and inactin. The results showed that methylene blue has currently been studied least, because it diminishes coagulation factors and fibrinogen. Riboflavin has been studied most because it is a photoinactivator of endogenous origin and has few collateral effects. Amotosalen HCl is effective for platelets and is also used on plasma, but may cause changes both to plasma and to platelets, although these are not significant for hemostasis. S-303 FRALE may lead to neoantigens in erythrocytes and is less indicated for red-cell treatment; in such cases, PEN 110 is recommended. Thus, none of the methods for pathogen reduction is effective for all classes of agents and for all blood components, but despite the high cost, these photoinactivators may diminish the risk of blood-transmitted diseases.

  3. Inactivation of complement by Loxosceles reclusa spider venom.

    Science.gov (United States)

    Gebel, H M; Finke, J H; Elgert, K D; Cambell, B J; Barrett, J T

    1979-07-01

    Zymosan depletion of serum complement in guinea pigs rendered them highly resistant to lesion by Loxosceles reclusa spider venom. Guinea pigs deficient in C4 of the complement system are as sensitive to the venom as normal guinea pigs. The injection of 35 micrograms of whole recluse venom intradermally into guinea pigs lowered their complement level by 35.7%. Brown recluse spider venom in concentrations as slight as 0.02 micrograms protein/ml can totally inactivate one CH50 of guinea pig complement in vitro. Bee, scorpion, and other spider venoms had no influence on the hemolytic titer of complement. Fractionation of recluse spider venom by Sephadex G-200 filtration separated the complement-inactivating property of the venom into three major regions which could be distinguished on the basis of heat stability as well as size. None was neutralized by antivenom. Polyacrylamide gel electrophoresis of venom resolved the complement inactivators into five fractions. Complement inactivated by whole venom or the Sephadex fractions could be restored to hemolytic activity by supplements of fresh serum but not by heat-inactivated serum, pure C3, pure C5, or C3 and C5 in combination.

  4. Numerical evaluation of lactoperoxidase inactivation during continuous pulsed electric field processing.

    Science.gov (United States)

    Buckow, Roman; Semrau, Julius; Sui, Qian; Wan, Jason; Knoerzer, Kai

    2012-01-01

    A computational fluid dynamics (CFD) model describing the flow, electric field and temperature distribution of a laboratory-scale pulsed electric field (PEF) treatment chamber with co-field electrode configuration was developed. The predicted temperature increase was validated by means of integral temperature studies using thermocouples at the outlet of each flow cell for grape juice and salt solutions. Simulations of PEF treatments revealed intensity peaks of the electric field and laminar flow conditions in the treatment chamber causing local temperature hot spots near the chamber walls. Furthermore, thermal inactivation kinetics of lactoperoxidase (LPO) dissolved in simulated milk ultrafiltrate were determined with a glass capillary method at temperatures ranging from 65 to 80 °C. Temperature dependence of first order inactivation rate constants was accurately described by the Arrhenius equation yielding an activation energy of 597.1 kJ mol(-1). The thermal impact of different PEF processes on LPO activity was estimated by coupling the derived Arrhenius model with the CFD model and the predicted enzyme inactivation was compared to experimental measurements. Results indicated that LPO inactivation during combined PEF/thermal treatments was largely due to thermal effects, but 5-12% enzyme inactivation may be related to other electro-chemical effects occurring during PEF treatments. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  5. Inactivation of human and simian rotaviruses by ozone

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, J.M.; Chen, Y.S.; Lindburg, K.; Morales, D.

    1987-09-01

    The inactivation of simian rotavirus Sa-11 and human rotavirus type 2 (Wa) by ozone was compared at 4/sup 0/C by using single-particle virus stocks. Although the human strain was clearly more sensitive, both virus types were rapidly inactivated by ozone concentrations of 0.25 mg/liter or greater at all pH levels tested. Comparison of the virucidal activity of ozone with that of chlorine in identical experiments indicated little significant difference in rotavirus-inactivating efficiencies when the disinfectants were used at concentrations of 0.25 mg/liter or greater.

  6. Inactivation and mutation of cultured mammalian cells by aluminium characteristic ultrasoft X-rays

    International Nuclear Information System (INIS)

    Goodhead, D.T.

    1977-01-01

    Microdosimetric distributions for aluminium K characteristic ultrasoft X-rays and 4 He ion track intersections have been calculated and used to analyse recent biological results obtained with these radiations. Results on inactivation and mutation-induction to thioguanine resistance of both V79 Chinese hamster cells and HF19 human diploid fibroblasts in vitro were analysed in terms of the Kellerer-Rossi 'theory of dual radiation action'. The small quantum energy of the aluminium X-ray photons and the very short length of the secondary electrons which they produce highlight the inadequacy of the model. It has been shown that the model predicted r.b.e. values in conflict with those observed unless an additional variable was introduced, but that the introduction of such a variable created mathematical inconsistencies. The experimental evidence is contrary to the conventional usage and basis of the model. (author)

  7. Cofilin-1 inactivation leads to proteinuria--studies in zebrafish, mice and humans.

    Directory of Open Access Journals (Sweden)

    Sharon Ashworth

    Full Text Available BACKGROUND: Podocytes are highly specialized epithelial cells on the visceral side of the glomerulus. Their interdigitating primary and secondary foot processes contain an actin based contractile apparatus that can adjust to changes in the glomerular perfusion pressure. Thus, the dynamic regulation of actin bundles in the foot processes is critical for maintenance of a well functioning glomerular filtration barrier. Since the actin binding protein, cofilin-1, plays a significant role in the regulation of actin dynamics, we examined its role in podocytes to determine the impact of cofilin-1 dysfunction on glomerular filtration. METHODS AND FINDINGS: We evaluated zebrafish pronephros function by dextran clearance and structure by TEM in cofilin-1 morphant and mutant zebrafish and we found that cofilin-1 deficiency led to foot process effacement and proteinuria. In vitro studies in murine and human podocytes revealed that PMA stimulation induced activation of cofilin-1, whereas treatment with TGF-β resulted in cofilin-1 inactivation. Silencing of cofilin-1 led to an accumulation of F-actin fibers and significantly decreased podocyte migration ability. When we analyzed normal and diseased murine and human glomerular tissues to determine cofilin-1 localization and activity in podocytes, we found that in normal kidney tissues unphosphorylated, active cofilin-1 was distributed throughout the cell. However, in glomerular diseases that affect podocytes, cofilin-1 was inactivated by phosphorylation and observed in the nucleus. CONCLUSIONS: Based on these in vitro and in vivo studies we concluded cofilin-1 is an essential regulator for actin filament recycling that is required for the dynamic nature of podocyte foot processes. Therefore, we describe a novel pathomechanism of proteinuria development.

  8. Mutual inactivation of Notch receptors and ligands facilitates developmental patterning.

    Directory of Open Access Journals (Sweden)

    David Sprinzak

    2011-06-01

    Full Text Available Developmental patterning requires juxtacrine signaling in order to tightly coordinate the fates of neighboring cells. Recent work has shown that Notch and Delta, the canonical metazoan juxtacrine signaling receptor and ligand, mutually inactivate each other in the same cell. This cis-interaction generates mutually exclusive sending and receiving states in individual cells. It generally remains unclear, however, how this mutual inactivation and the resulting switching behavior can impact developmental patterning circuits. Here we address this question using mathematical modeling in the context of two canonical pattern formation processes: boundary formation and lateral inhibition. For boundary formation, in a model motivated by Drosophila wing vein patterning, we find that mutual inactivation allows sharp boundary formation across a broader range of parameters than models lacking mutual inactivation. This model with mutual inactivation also exhibits robustness to correlated gene expression perturbations. For lateral inhibition, we find that mutual inactivation speeds up patterning dynamics, relieves the need for cooperative regulatory interactions, and expands the range of parameter values that permit pattern formation, compared to canonical models. Furthermore, mutual inactivation enables a simple lateral inhibition circuit architecture which requires only a single downstream regulatory step. Both model systems show how mutual inactivation can facilitate robust fine-grained patterning processes that would be difficult to implement without it, by encoding a difference-promoting feedback within the signaling system itself. Together, these results provide a framework for analysis of more complex Notch-dependent developmental systems.

  9. Characterization of radiation-induced Apoptosis in rodent cell lines

    International Nuclear Information System (INIS)

    Guo, Min; Chen, Changhu; Ling, C.C.

    1997-01-01

    For REC:myc(ch1), Rat1 and Rat1:myc b cells, we determined the events in the development of radiation-induced apoptosis to be in the following order: cell division followed by chromatin condensation, membrane blebbing, loss of adhesion and the uptake of vital dye. Experimental data which were obtained using 4 He ions of well defined energies and which compared the dependence of apoptosis and clonogenic survival on 4 He range strongly suggested that in our cells both apoptosis and loss of clonogenic survival resulted from radiation damage to the cell nucleus. Corroboratory evidence was that BrdU incorporation sensitized these cells to radiation-induced apoptosis. Comparing the dose response for apoptosis and the clonogenic survival curves for Rat1 and Rat1:myc b cells, we concluded that radiation-induced cell inactivation as assayed by clonogenic survival, and that a modified linear-quadratic model, proposed previously, modeled such a contribution effectively. In the same context, the selective increase in radiation-induced apoptosis. Comparing the dose response for apoptosis and the clonogenic survival curves for Rat1 and Rat1:myc b cells, we concluded that radiation-induced apoptosis contributed to the overall radiation-induced cell inactivation as assayed by clonogenic survival, and that a modified linear-quadratic model, proposed previously, modeled such a contribution effectively. In the same context, the selective increase in radiation-induced apoptosis during late S and G 2 phases reduced the relative radioresistance observed for clonogenic survival during late S and G 2 phases. 30 refs., 8 figs

  10. Evaluation of Different Dose-Response Models for High Hydrostatic Pressure Inactivation of Microorganisms

    Directory of Open Access Journals (Sweden)

    Sencer Buzrul

    2017-09-01

    Full Text Available Modeling of microbial inactivation by high hydrostatic pressure (HHP requires a plot of the log microbial count or survival ratio versus time data under a constant pressure and temperature. However, at low pressure and temperature values, very long holding times are needed to obtain measurable inactivation. Since the time has a significant effect on the cost of HHP processing it may be reasonable to fix the time at an appropriate value and quantify the inactivation with respect to pressure. Such a plot is called dose-response curve and it may be more beneficial than the traditional inactivation modeling since short holding times with different pressure values can be selected and used for the modeling of HHP inactivation. For this purpose, 49 dose-response curves (with at least 4 log10 reduction and ≥5 data points including the atmospheric pressure value (P = 0.1 MPa, and with holding time ≤10 min for HHP inactivation of microorganisms obtained from published studies were fitted with four different models, namely the Discrete model, Shoulder model, Fermi equation, and Weibull model, and the pressure value needed for 5 log10 (P5 inactivation was calculated for all the models above. The Shoulder model and Fermi equation produced exactly the same parameter and P5 values, while the Discrete model produced similar or sometimes the exact same parameter values as the Fermi equation. The Weibull model produced the worst fit (had the lowest adjusted determination coefficient (R2adj and highest mean square error (MSE values, while the Fermi equation had the best fit (the highest R2adj and lowest MSE values. Parameters of the models and also P5 values of each model can be useful for the further experimental design of HHP processing and also for the comparison of the pressure resistance of different microorganisms. Further experiments can be done to verify the P5 values at given conditions. The procedure given in this study can also be extended for

  11. Safety of a Trivalent Inactivated Influenza Vaccine in Health Care Workers in Kurdistan Province, Western Iran; A Longitudinal Follow-up Study.

    Science.gov (United States)

    Soltani, Jafar; Jamil Amjadi, Mohamad

    2014-03-01

    We studied the safety of a trivalent inactivated surface antigen (split virion, inactivated) influenza vaccine, Begrivac® (Novartis Company), widely used in health care workers in Kurdistan. A longitudinal follow-up study was performed in Sanandaj city, west of Iran, recruiting 936 people. A questionnaire was completed for each participant, and all symptoms or abnormal physical findings were recorded. In part 1 of the study, the post-vaccination complaints were headache (5.3%), fever (7.9%), weakness (9.6%), chills (10.1%), sweating (10.5%), arthralgia (20.2%), and malaise (21.5%). Swelling of the injection site was seen in 267 (30.3%) participants, and pruritus of the injection site was seen in 290 (32.9%) participants. Redness and induration were also reported in 42.5% of the participants. Local reactions were mainly mild and lasted for 1-2 days. No systemic reactions were reported in the second part of the study. None of the participants experienced any inconvenience. We concluded that local adverse reactions after the trivalent inactivated split influenza vaccine, Begrivac®, in health care workers were far more common than expected. Continuous surveillance is needed to assess the potential risks and benefits of newly produced influenza vaccines.

  12. Patulin reduction in apple juice by inactivated Alicyclobacillus spp.

    Science.gov (United States)

    Yuan, Y; Wang, X; Hatab, S; Wang, Z; Wang, Y; Luo, Y; Yue, T

    2014-12-01

    This study aimed to investigate the reduction of patulin (PAT) in apple juice by 12 inactivated Alicyclobacillus strains. The reduction rate of PAT by each strain was determined by high-performance liquid chromatography (HPLC). The results indicated that the removal of PAT was strain specific. Alicyclobacillus acidoterrestris 92 and A. acidoterrestris 96 were the most effective ones among the 12 tested strains in the removal of PAT. Therefore, these two strains were selected to study the effects of incubation time, initial PAT concentration and bacteria powder amount on PAT removal abilities of Alicyclobacillus. The highest PAT reduction rates of 88·8 and 81·6% were achieved after 24-h incubation with initial PAT concentration of 100 μg l(-1) and bacteria powder amount of 40 g l(-1) , respectively. Moreover, it was found that the treatment by these 12 inactivated Alicyclobacillus strains had no negative effect on the quality parameters of apple juice. Similar assays were performed in supermarket apple juice, where inactivated Alicyclobacillus cells could efficiently reduce PAT content. Taken together, these data suggest the possible application of this strategy as a means to detoxify PAT-contaminated juices. Inactivated Alicyclobacillus cells can efficiently reduce patulin concentration in apple juice. It provides a theoretical foundation for recycling of Alicyclobacillus cells from spoiled apple juice to reduce the source of pollution and the cost of juice industry. This is the first report on the use of Alicyclobacillus to remove patulin from apple juice. © 2014 The Society for Applied Microbiology.

  13. Biological effects of low-dose ionizing radiation exposure; Biologische Wirkungen niedriger Dosen ionisierender Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst (comps.)

    2009-07-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  14. Action spectra in mammalian cells exposed to ultraviolet radiation

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    A review is given of the literature published since 1977 on action spectra in mammalian cells exposed to ultraviolet radiation in the wavelength region above 220 nm. Action spectra for lethal events are discussed for cell inactivation in normal cells, growth arrested cells and photosensitive cells. Action spectra for non-lethal events are also discussed in relation to pyrimidine dimer formation, photoreactivation and the use of photosensitisers. It was concluded from these studies that damage to the DNA, and the extent of the repair of this damage, seems to determine a cell's response to such parameters as inactivation, mutation, transformation, latent viral activation, cellular viral capacity and ultraviolet enhanced viral reactivation. In addition to the direct effects of UV on DNA, photosensitization of cellular responses with chemicals such as 8-MOP extend the wavelength range at which damage can be demonstrated. (U.K.)

  15. Effect of rising time of rectangular pulse on inactivation of staphylococcus aureus by pulsed electric field

    Science.gov (United States)

    Zhang, Ruobing; Liang, Dapeng; Zheng, Nanchen; Xiao, Jianfu; Mo, Mengbin; Li, Jing

    2013-03-01

    Pulsed electric field (PEF) is a novel non-thermal food processing technology that involves the electric discharge of high voltage short pulses through the food product. In PEF study, rectangular pulses are most commonly used for inactivating microorganisms. However, little information is available on the inactivation effect of rising time of rectangular pulse. In this paper, inactivation effects, electric field strength, treatment time and conductivity on staphylococcus aureus inactivation were investigated when the pulse rising time is reduced from 2.5 μs to 200 ns. Experimental results showed that inactivation effect of PEF increased with electric field strength, solution conductivity and treatment time. Rising time of the rectangular pulse had a significant effect on the inactivation of staphylococcus aureus. Rectangular pulses with a rising time of 200 ns had a better inactivation effect than that with 2 μs. In addition, temperature increase of the solution treated by pulses with 200 ns rising time was lower than that with 2 μs. In order to obtain a given inactivation effect, treatment time required for the rectangular pulse with 200 ns rise time was shorter than that with 2 μs.

  16. Effect of rising time of rectangular pulse on inactivation of staphylococcus aureus by pulsed electric field

    International Nuclear Information System (INIS)

    Zhang, Ruobing; Liang, Dapeng; Xiao, Jianfu; Mo, Mengbin; Li, Jing; Zheng, Nanchen

    2013-01-01

    Pulsed electric field (PEF) is a novel non-thermal food processing technology that involves the electric discharge of high voltage short pulses through the food product. In PEF study, rectangular pulses are most commonly used for inactivating microorganisms. However, little information is available on the inactivation effect of rising time of rectangular pulse. In this paper, inactivation effects, electric field strength, treatment time and conductivity on staphylococcus aureus inactivation were investigated when the pulse rising time is reduced from 2.5 μs to 200 ns. Experimental results showed that inactivation effect of PEF increased with electric field strength, solution conductivity and treatment time. Rising time of the rectangular pulse had a significant effect on the inactivation of staphylococcus aureus. Rectangular pulses with a rising time of 200 ns had a better inactivation effect than that with 2 μs. In addition, temperature increase of the solution treated by pulses with 200 ns rising time was lower than that with 2 μs. In order to obtain a given inactivation effect, treatment time required for the rectangular pulse with 200 ns rise time was shorter than that with 2 μs.

  17. X inactivation in females with X-linked Charcot-Marie-Tooth disease.

    LENUS (Irish Health Repository)

    Murphy, Sinéad M

    2012-07-01

    X-linked Charcot-Marie-Tooth disease (CMT1X) is the second most common inherited neuropathy, caused by mutations in gap junction beta-1 (GJB1). Males have a uniformly moderately severe phenotype while females have a variable phenotype, suggested to be due to X inactivation. We aimed to assess X inactivation pattern in females with CMT1X and correlate this with phenotype using the CMT examination score to determine whether the X inactivation pattern accounted for the variable phenotype in females with CMT1X. We determined X inactivation pattern in 67 females with CMT1X and 24 controls using the androgen receptor assay. We were able to determine which X chromosome carried the GJB1 mutation in 30 females. There was no difference in X inactivation pattern between patients and controls. In addition, there was no correlation between X inactivation pattern in blood and phenotype. A possible explanation for these findings is that the X inactivation pattern in Schwann cells rather than in blood may explain the variable phenotype in females with CMT1X.

  18. Induction of prophages in spores of Bacillus subtilis by ultraviolet irradiation from synchrotron orbital radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sadaie, Y.; Kada, T.; Ohta, Y. (National Inst. of Genetics, Mishima, Shizuoka (Japan)); Kobayashi, K.; Hieda, K.; Ito, T.

    1984-06-01

    Prophages were induced from Bacillus subtilis spores lysogenic with SP02 by ultraviolet (160 nm to 240 nm) irradiation from synchrotron orbital radiation (SR UV). SR UV at around 220 nm was most effective in the inactivation of spores and prophage induction from lysogenic spores, suggesting that the lesions are produced on the DNA molecule which eventually induces signals to inactivate the phage repressor.

  19. Induction of prophages in spores of Bacillus subtilis by ultraviolet irradiation from synchrotron orbital radiation

    International Nuclear Information System (INIS)

    Sadaie, Y.; Kada, T.; Ohta, Y.; Kobayashi, K.; Hieda, K.; Ito, T.

    1984-01-01

    Prophages were induced from Bacillus subtilis spores lysogenic with SP02 by ultraviolet (160 nm to 240 nm) irradiation from synchrotron orbital radiation (SR UV). SR UV at around 220 nm was most effective in the inactivation of spores and prophage induction from lysogenic spores, suggesting that the lesions are produced on the DNA molecule which eventually induces signals to inactivate the phage repressor. (author)

  20. Combining Lactic Acid Spray with Near-Infrared Radiation Heating To Inactivate Salmonella enterica Serovar Enteritidis on Almond and Pine Nut Kernels.

    Science.gov (United States)

    Ha, Jae-Won; Kang, Dong-Hyun

    2015-07-01

    The aim of this study was to investigate the efficacy of near-infrared radiation (NIR) heating combined with lactic acid (LA) sprays for inactivating Salmonella enterica serovar Enteritidis on almond and pine nut kernels and to elucidate the mechanisms of the lethal effect of the NIR-LA combined treatment. Also, the effect of the combination treatment on product quality was determined. Separately prepared S. Enteritidis phage type (PT) 30 and non-PT 30 S. Enteritidis cocktails were inoculated onto almond and pine nut kernels, respectively, followed by treatments with NIR or 2% LA spray alone, NIR with distilled water spray (NIR-DW), and NIR with 2% LA spray (NIR-LA). Although surface temperatures of nuts treated with NIR were higher than those subjected to NIR-DW or NIR-LA treatment, more S. Enteritidis survived after NIR treatment alone. The effectiveness of NIR-DW and NIR-LA was similar, but significantly more sublethally injured cells were recovered from NIR-DW-treated samples. We confirmed that the enhanced bactericidal effect of the NIR-LA combination may not be attributable to cell membrane damage per se. NIR heat treatment might allow S. Enteritidis cells to become permeable to applied LA solution. The NIR-LA treatment (5 min) did not significantly (P > 0.05) cause changes in the lipid peroxidation parameters, total phenolic contents, color values, moisture contents, and sensory attributes of nut kernels. Given the results of the present study, NIR-LA treatment may be a potential intervention for controlling food-borne pathogens on nut kernel products. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Fetal calf serum heat inactivation and lipopolysaccharide contamination influence the human T lymphoblast proteome and phosphoproteome

    Directory of Open Access Journals (Sweden)

    Rahman Hazir

    2011-11-01

    Full Text Available Abstract Background The effects of fetal calf serum (FCS heat inactivation and bacterial lipopolysaccharide (LPS contamination on cell physiology have been studied, but their effect on the proteome of cultured cells has yet to be described. This study was undertaken to investigate the effects of heat inactivation of FCS and LPS contamination on the human T lymphoblast proteome. Human T lymphoblastic leukaemia (CCRF-CEM cells were grown in FCS, either non-heated, or heat inactivated, having low ( Results A total of four proteins (EIF3M, PRS7, PSB4, and SNAPA were up-regulated when CCRF-CEM cells were grown in media supplemented with heat inactivated FCS (HE as compared to cells grown in media with non-heated FCS (NHE. Six proteins (TCPD, ACTA, NACA, TCTP, ACTB, and ICLN displayed a differential phosphorylation pattern between the NHE and HE groups. Compared to the low concentration LPS group, regular levels of LPS resulted in the up-regulation of three proteins (SYBF, QCR1, and SUCB1. Conclusion The present study provides new information regarding the effect of FCS heat inactivation and change in FCS-LPS concentration on cellular protein expression, and post-translational modification in human T lymphoblasts. Both heat inactivation and LPS contamination of FCS were shown to modulate the expression and phosphorylation of proteins involved in basic cellular functions, such as protein synthesis, cytoskeleton stability, oxidative stress regulation and apoptosis. Hence, the study emphasizes the need to consider both heat inactivation and LPS contamination of FCS as factors that can influence the T lymphoblast proteome.

  2. Inactivation of possible microorganism food contaminants on packaging foils using nonthermal plasma and hydrogen peroxide

    International Nuclear Information System (INIS)

    Scholtz, V.; Khun, J.; Soušková, H.; Čeřovský, M.

    2015-01-01

    The inactivation effect of nonthermal plasma generated in electric discharge burning in air atmosphere with water or hydrogen peroxide aerosol for the application to the microbial decontamination of packaging foils is studied. The microbial inactivation is studied on two bacterial, two yeasts, and two filamentous micromycete species. The inactivation of all contaminating microorganisms becomes on the area of full 8.5 cm in diameter circular sample after short times of several tens of seconds. Described apparatus may present a possible alternative method of microbial decontamination of food packaging material or other thermolabile materials

  3. Inactivation of possible microorganism food contaminants on packaging foils using nonthermal plasma and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Scholtz, V., E-mail: Vladimir.Scholtz@vscht.cz; Khun, J. [Institute of Chemical Technology in Prague, Department of Physics and Measurements, Faculty of Chemical Engineering (Czech Republic); Soušková, H. [Institute of Chemical Technology in Prague, Department of Computing and Control Engineering, Faculty of Chemical Engineering (Czech Republic); Čeřovský, M. [Institute of Chemical Technology in Prague, Department of Food Preservation, Faculty of Food and Biochemical Technology (Czech Republic)

    2015-07-15

    The inactivation effect of nonthermal plasma generated in electric discharge burning in air atmosphere with water or hydrogen peroxide aerosol for the application to the microbial decontamination of packaging foils is studied. The microbial inactivation is studied on two bacterial, two yeasts, and two filamentous micromycete species. The inactivation of all contaminating microorganisms becomes on the area of full 8.5 cm in diameter circular sample after short times of several tens of seconds. Described apparatus may present a possible alternative method of microbial decontamination of food packaging material or other thermolabile materials.

  4. Gamma radiation effect on biological activity and enzymatic properties of snake venoms

    International Nuclear Information System (INIS)

    Herrera, E.; Yarleque, A.; Campos, S.; Zavaleta, A.

    1986-01-01

    The effect of gamma radiation, from Co-60, on the biological activity and on some enzymatic activities, present in the venoms of Lachesis muta and Bothrops atrox, using samples of dried venom that had been irradiated at a dose of 0.1, 0.5 and 1.0 Mrad have been studied. Variations in the degree of hemorrhage and local necrosis were observed in albino mice injected subcutaneously with venoms of both types. The reduction of the biological activity was greater for the local hemorrhagic effect and was dependent on the doses of irradiation. The specific activity of various enzymes, present in both venoms, is affected by the gamma radiation, at a dose of 0.1 Mrad the order of increasing inactivation being: exonuclease (4%), phospholipase (24%), caseinolytic enzyme (20%), tamesterase (33%), a thrombine-like enzyme (40%), fibrinolytic enzyme (41%), 5'-nucleotidase (50%) and endonuclease (55%). The enzymatic inactivation was augmented by 0.5 and 1.0 Mrad, without maintaining an arithmetic relation. The enzyme of major resistance to the radiation was exonuclease, whereas 5'-nucleotidase and endonuclease were the most sensitive. No significant changes were observed in the spectrum of UV absorbtion (range 260 to 290 nm) nor in the contents of L-tyrosine in the irradiated venoms

  5. Glutathione mediation of papain inactivation by hydrogen peroxide and hydroxyl radicals

    International Nuclear Information System (INIS)

    Lin, W.S.; Armstrong, D.A.

    1977-01-01

    Glutathione reacts with papainCys 25 SOH, formed by the reaction of papain with hydrogen peroxide, to give papainCys 25 SSG. Subsequent reaction of this mixed disulfide with glutathione is slow (k -1 sec -1 ). However, at 30 0 C it is readily cleaved by cysteine to form active papain, i.e., papainCys 25 SH. Glutathione resembles cysteine in protecting papain by the scavenging of .OH radicals, but, unlike cysteine, glutathione gave no evidence for the repair of enzyme radical lesions or for the conversion of papainCys 25 S. radicals to repairable derivatives. Its overall effectiveness for reducing the radiation inactivation of papain in aqueous solution is much less than that of cysteine

  6. MPLEx: a method for simultaneous pathogen inactivation and extraction of samples for multi-omics profiling

    Energy Technology Data Exchange (ETDEWEB)

    Burnum-Johnson, Kristin E.; Kyle, Jennifer E.; Eisfeld, Amie J.; Casey, Cameron P.; Stratton, Kelly G.; Gonzalez, Juan F.; Habyarimana, Fabien; Negretti, Nicholas M.; Sims, Amy C.; Chauhan, Sadhana; Thackray, Larissa B.; Halfmann, Peter J.; Walters, Kevin B.; Kim, Young-Mo; Zink, Erika M.; Nicora, Carrie D.; Weitz, Karl K.; Webb-Robertson, Bobbie-Jo M.; Nakayasu, Ernesto S.; Ahmer, Brian; Konkel, Michael E.; Motin, Vladimir; Baric, Ralph S.; Diamond, Michael S.; Kawaoka, Yoshihiro; Waters, Katrina M.; Smith, Richard D.; Metz, Thomas O.

    2017-01-01

    The continued emergence and spread of infectious agents is of increasing concern due to increased population growth and the associated increased livestock production to meet food demands, increased urbanization and land-use changes, and greater travel. A systems biology approach to infectious disease research can significantly advance our understanding of host-pathogen relationships and facilitate the development of new therapies and vaccines. Molecular characterization of infectious samples outside of appropriate biosafety containment can only take place subsequent to pathogen inactivation. Herein, we describe a modified Folch extraction using chloroform/methanol that facilitates the molecular characterization of infectious samples by enabling simultaneous pathogen inactivation and extraction of proteins, metabolites, and lipids for subsequent mass spectrometry-based multi-omics measurements. This metabolite, protein and lipid extraction (MPLEx) method resulted in complete inactivation of bacterial and viral pathogens with exposed lipid membranes, including Yersinia pestis, Salmonella Typhimurium, and Campylobacter jejuni in pure culture, and Yersinia pestis, Campylobacter jejuni, West Nile, MERS-CoV, Ebola, and influenza H7N9 viruses in infection studies. Partial inactivation was observed for pathogens without exposed lipid membranes including 99.99% inactivation of community-associated methicillin-resistant Staphylococcus aureus, 99.6% and >99% inactivation of Clostridium difficile spores and vegetative cells, respectively, and 50% inactivation of adenovirus type 5. To demonstrate that MPLEx yields biomaterial of sufficient quality for subsequent multi-omics analyses, we highlight select proteomics, metabolomics and lipidomics data from human epithelial lung cells infected with wild-type and mutant forms of influenza H7N9. We believe that MPLEx will facilitate systems biology studies of infectious samples by enabling simultaneous pathogen inactivation and multi

  7. Effective Thermal Inactivation of the Spores of Bacillus cereus Biofilms Using Microwave.

    Science.gov (United States)

    Park, Hyong Seok; Yang, Jungwoo; Choi, Hee Jung; Kim, Kyoung Heon

    2017-07-28

    Microwave sterilization was performed to inactivate the spores of biofilms of Bacillus cereus involved in foodborne illness. The sterilization conditions, such as the amount of water and the operating temperature and treatment time, were optimized using statistical analysis based on 15 runs of experimental results designed by the Box-Behnken method. Statistical analysis showed that the optimal conditions for the inactivation of B. cereus biofilms were 14 ml of water, 108°C of temperature, and 15 min of treatment time. Interestingly, response surface plots showed that the amount of water is the most important factor for microwave sterilization under the present conditions. Complete inactivation by microwaves was achieved in 5 min, and the inactivation efficiency by microwave was obviously higher than that by conventional steam autoclave. Finally, confocal laser scanning microscopy images showed that the principal effect of microwave treatment was cell membrane disruption. Thus, this study can contribute to the development of a process to control food-associated pathogens.

  8. ALTERNATIVE EQUATIONS FOR DYNAMIC BEHAVIOR OF IONIC CHANNEL ACTIVATION AND INACTIVATION GATES

    Directory of Open Access Journals (Sweden)

    Mahmut ÖZER

    2003-03-01

    Full Text Available In this paper, alternative equations for dynamics of ionic channel activation and inactivation gates are proposed based on the path probability method. Dynamic behavior of a voltage-gated ionic channel is modeled by the conventional Hodgkin-Huxley (H-H mathematical formalism. In that model, conductance of the channel is defined in terms of activation and inactivation gates. Dynamics of the activation and inactivation gates is modeled by first-order differential equations dependent on the gate variable and the membrane potential. In the new approach proposed in this study, dynamic behavior of activation and inactivation gates is modeled by a firstorder differential equation dependent on internal energy and membrane potential by using the path probability method which is widely used in statistical physics. The new model doesn't require the time constant and steadystate values which are used explicitly in the H-H model. The numerical results show validity of the proposed method.

  9. An inactivated yellow fever 17DD vaccine cultivated in Vero cell cultures.

    Science.gov (United States)

    Pereira, Renata C; Silva, Andrea N M R; Souza, Marta Cristina O; Silva, Marlon V; Neves, Patrícia P C C; Silva, Andrea A M V; Matos, Denise D C S; Herrera, Miguel A O; Yamamura, Anna M Y; Freire, Marcos S; Gaspar, Luciane P; Caride, Elena

    2015-08-20

    Yellow fever is an acute infectious disease caused by prototype virus of the genus Flavivirus. It is endemic in Africa and South America where it represents a serious public health problem causing epidemics of hemorrhagic fever with mortality rates ranging from 20% to 50%. There is no available antiviral therapy and vaccination is the primary method of disease control. Although the attenuated vaccines for yellow fever show safety and efficacy it became necessary to develop a new yellow fever vaccine due to the occurrence of rare serious adverse events, which include visceral and neurotropic diseases. The new inactivated vaccine should be safer and effective as the existing attenuated one. In the present study, the immunogenicity of an inactivated 17DD vaccine in C57BL/6 mice was evaluated. The yellow fever virus was produced by cultivation of Vero cells in bioreactors, inactivated with β-propiolactone, and adsorbed to aluminum hydroxide (alum). Mice were inoculated with inactivated 17DD vaccine containing alum adjuvant and followed by intracerebral challenge with 17DD virus. The results showed that animals receiving 3 doses of the inactivated vaccine (2 μg/dose) with alum adjuvant had neutralizing antibody titers above the cut-off of PRNT50 (Plaque Reduction Neutralization Test). In addition, animals immunized with inactivated vaccine showed survival rate of 100% after the challenge as well as animals immunized with commercial attenuated 17DD vaccine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Reactive radical-driven bacterial inactivation by hydrogen-peroxide-enhanced plasma-activated-water

    Science.gov (United States)

    Wu, Songjie; Zhang, Qian; Ma, Ruonan; Yu, Shuang; Wang, Kaile; Zhang, Jue; Fang, Jing

    2017-08-01

    The combined effects of plasma activated water (PAW) and hydrogen peroxide (H2O2), PAW/HP, in sterilization were investigated in this study. To assess the synergistic effects of PAW/HP, S. aureus was selected as the test microorganism to determine the inactivation efficacy. Also, the DNA/RNA and proteins released by the bacterial suspensions under different conditions were examined to confirm membrane integrity. Additionally, the intracellular pH (pHi) of S. aureus was measured in our study. Electron spin resonance spectroscopy (ESR) was employed to identify the presence of radicals. Finally, the oxidation reduction potential (ORP), conductivity and pH were measured. Our results revealed that the inactivation efficacy of PAW/HP is much greater than that of PAW, while increased H2O2 concentration result in higher inactivation potential. More importantly, as compared with PAW, the much stronger intensity ESR signals and higher ORP in PAW/HP suggests that the inactivation mechanism of the synergistic effects of PAW/HP: more reactive oxygen species (ROS) and reactive nitrogen species (RNS), especially OH and NO radicals, are generated in PAW combined with H2O2 resulting in more deaths of the bacteria.

  11. Enteric virus removal inactivation by coal-based media

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.; Chaudhuri, M. [Indian Institute of Technology, Kanpur (India). Dept. of Civil Engineering

    1995-02-01

    Four coal-based media, viz. alum-pretreated or ferric hydroxide-impregnated Giridih bituminous coal and lignite (alum-GBC, Fe-GBC; alum-lignite and Fe-Lignite) were laboratory tested to assess their potential in removing/inactivating enteric viruses in water. Batch-sorption screening tests, employing a poliovirus-spiked canal water, indicated high poliovirus sorption by Fe-GBC and alum-GBC in a short contact time of 5 min. Based on the results of further batch-sorption tests, using silver incorporated media (alum/Ag-GBC, alum-GBC-Ag and Fe-GBC-Ag), as well as aesthetic water quality consideration and previous findings on removal of coliforms and turbidity, alum/Ag-GBC, alum-GBC and alum-GBC-AG were included in downflow column studies employing poliovirus-spiked canal water. All three media showed potential in removing/inactivating enteric viruses. In a separate column study employing a joint challenge of poliovirus and rotavirus, alum/Ag-GBC removed 59.3-86.5% of the viruses along with more than 99% reduction in indigenous heterotrophic bacteria. Alum/silver-pretreated bituminous coal medium appears promising for use in household water filters in rural areas of the developing world. However, improved medium preparation to further enhance its efficiency is needed; also, its efficacy in removing/inactivating indigenous enteric bacteria, viruses and protozoa has to be ensured and practicalities or economics of application need to be considered.

  12. Radiation effects on biochemical systems

    International Nuclear Information System (INIS)

    Seddon, G.M.

    2000-04-01

    Xanthine oxidase catalyses the oxidative hydroxylation of hypoxanthine, xanthine and a wide range of carbonyl compounds. The enzyme exists as an oxidase and a dehydrogenase; both catalyze the oxidation of the same substrates. Steady state radiolysis and pulse radiolysis were used to generate oxidative and reductive free radicals. Their effects on the enzymatic activity of xanthine oxidase were determined. Initially inactivation studies were carried out to evaluate the extent to which radiolysis in aqueous solution affects the enzyme activity. Values of D 37 and G inactivation were calculated following irradiation in the presence of free radical scavengers and in the presence of catalase and superoxide dismutase. The kinetic constants Vmax and Km were also determined following radiolysis. The effect of ionising radiation on the iron content of xanthine oxidase was measured using atomic absorption spectrometry. Native gel electrophoresis and iso-electric focussing were performed in an attempt to demonstrate changes in the overall structure of the enzyme. The binding of xanthine oxidase to heparin was carried out by measuring, (1) the displacement of methylene blue (MB + ) from a heparin-MB + complex, (2) affinity chromatography and, (3) pulse radiolysis. The effect of irradiation on the binding process was investigated using techniques (1) and (2). Finally the radiation-induced conversion of xanthine oxidase to dehydrogenase was established. The results indicate that xanthine oxidase is inactivated greatest in the presence of air and irradiation causes Vmax to he reduced and Km to increase. The iron content of irradiated xanthine oxidase is unaffected. Electrophoresis shows the enzyme becomes fragmented and the isoelectric points of the fragments vary over a wide range of pH. Binding of xanthine oxidase to heparin as measured by displacement of MB + from a heparin-MB + complex suggests that irradiation increases the affinity of the enzyme for the polyanion, whereas

  13. Pulsed-light inactivation of pathogenic and spoilage bacteria on cheese surface.

    Science.gov (United States)

    Proulx, J; Hsu, L C; Miller, B M; Sullivan, G; Paradis, K; Moraru, C I

    2015-09-01

    Cheese products are susceptible to postprocessing cross-contamination by bacterial surface contamination during slicing, handling, or packaging, which can lead to food safety issues and significant losses due to spoilage. This study examined the effectiveness of pulsed-light (PL) treatment on the inactivation of the spoilage microorganism Pseudomonas fluorescens, the nonenterohemorrhagic Escherichia coli ATCC 25922 (nonpathogenic surrogate of Escherichia coli O157:H7), and Listeria innocua (nonpathogenic surrogate of Listeria monocytogenes) on cheese surface. The effects of inoculum level and cheese surface topography and the presence of clear polyethylene packaging were evaluated in a full factorial experimental design. The challenge microorganisms were grown to early stationary phase and subsequently diluted to reach initial inoculum levels of either 5 or 7 log cfu/slice. White Cheddar and process cheeses were cut into 2.5×5 cm slices, which were spot-inoculated with 100 µL of bacterial suspension. Inoculated cheese samples were exposed to PL doses of 1.02 to 12.29 J/cm(2). Recovered survivors were enumerated by standard plate counting or the most probable number technique, as appropriate. The PL treatments were performed in triplicate and data were analyzed using a general linear model. Listeria innocua was the least sensitive to PL treatment, with a maximum inactivation level of 3.37±0.2 log, followed by P. fluorescens, with a maximum inactivation of 3.74±0.8 log. Escherichia coli was the most sensitive to PL, with a maximum reduction of 5.41±0.1 log. All PL inactivation curves were nonlinear, and inactivation reached a plateau after 3 pulses (3.07 J/cm(2)). The PL treatments through UV-transparent packaging and without packaging consistently resulted in similar inactivation levels. This study demonstrates that PL has strong potential for decontamination of the cheese surface. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc

  14. Inactivation of Listeria monocytogenes in milk by pulsed electric field.

    Science.gov (United States)

    Reina, L D; Jin, Z T; Zhang, Q H; Yousef, A E

    1998-09-01

    Pasteurized whole, 2%, and skim milk were inoculated with Listeria monocytogenes Scott A and treated with high-voltage pulsed electric field (PEF). The effects of milk composition (fat content) and PEF parameters (electric field strength, treatment time, and treatment temperature) on the inactivation of the bacterium were studied. No significant differences were observed in the inactivation of L. monocytogenes Scott A in three types of milk by PEF treatment. With treatment at 25 degrees C, 1- to 3-log reductions of L. monocytogenes were observed. PEF lethal effect was a function of field strength and treatment time. Higher field strength or longer treatment time resulted in a greater reduction of viable cells. A 4-log reduction of the bacterium was obtained by increasing the treatment temperature to 50 degrees C. Results indicate that the use of a high-voltage PEF is a promising technology for inactivation of foodborne pathogens.

  15. Effects of elevated environmental temperature combined with radiation on the organism

    Energy Technology Data Exchange (ETDEWEB)

    Tsapkov, M M

    1981-01-01

    Literature data concerning the combined effects of ionizing radiation and elevated temperatures on the physiological functions of laboratory animals is reviewed. The data demonstrate effects of combined exposures on the cardiovascular system, impairments in the enzymatic activity of various tissues and the inactivation of chromosomal repair processes following radiation damage. The degree of radiation damage depends both on the radiation dose and the duration of the temperature factor, although elevated temperatures accelerate the elimination of radioactive substances from the body. A need for further experimental data for the evaluation of human working conditions and radiation safety is expressed.

  16. Bacteria response to non-thermal physical factors: A study on ...

    African Journals Online (AJOL)

    The response of Staphylococcus aureus germ to the action of ionizing radiation and cold plasma jet was studied in the frame of a comparative experimental research. The inactivation effect of electromagnetic ionizing radiations provided by medical X-ray device has resulted in up to 75% diminution of bacterial cell density, ...

  17. Change in carbohydrates of chicken and quail ovomucoids by gamma radiation

    International Nuclear Information System (INIS)

    Lee, Young-Keun; Matsuhashi, Shinpei; Kume, Tamikazu

    1999-01-01

    The radiation effects on the carbohydrates in chicken ovomucoid, a protease inhibitor as a typical allergenic glycoprotein of egg white, were investigated to clarify its role for the trypsin inhibitory activity on irradiation. The trypsin inhibitory activity of chicken ovomucoid decreased exponentially as a function of the radiation dose. In O 2 , the inactivation of chicken ovomucoid was protected remarkably in comparison to that in N 2 . With protein blotting, protein was degraded in O 2 and aggregated in N 2 . The patterns of carbohydrate blotting were similar to those of protein blotting. These results show that there could be a structural interrelationship between the active site and carbohydrate moiety. Sugar chains in a low molecular weight fraction (MW 2 were higher than in N 2 . From the high-performance liquid chromatography (HPLC) patterns of the degradation of sugar chains, all peaks of the oligosaccharides decreased with an increase of radiation dose and more remarkable in O 2 than in N 2 . It shows that the oligosaccharides of ovomucoids could be released significantly in O 2 by the degradation associated with γ-radiation. These results suggest that oxygen could play a protective role in the inactivation of ovomucoids by the removal of reducing species generated by γ-radiation and ionizing radiation could cause overall conformational changes by the degradation and release of oligosaccharides, as well as alter the bioactivity of ovomucoid

  18. THERMODYNAMICS AND KINETICS OF THERMAL INACTIVATION OF PEROXIDASE FROM MANGOSTEEN (GARCINIA MANGOSTANA L. PERICARP

    Directory of Open Access Journals (Sweden)

    MAHSA ZIABAKHSH DEYLAMI

    2014-06-01

    Full Text Available Mangosteen (Garcinia mangostana L. pericarp is an abundant source of phytochemicals. Blanching prior to further process stabilizes these valuable compounds. In this research, crude peroxidase (POD was extracted from mangosteen peel using Triton X-100. Kinetics of POD inactivation was studied over temperature range of 60- 100°C. The inactivation kinetics followed a monophasic first-order model with k values between 1.93×10-2- 8.14×10-2 min-1. The decreasing trend of k values with increasing temperature indicates a faster inactivation of peroxidase from mangosteen pericarp at higher temperatures. The activation energy (Ea of 35.06 kJ/mol was calculated from the slope of Arrhenius plot. Thermodynamic parameters (∆H, ∆G, ∆S for inactivation of peroxidase at different temperatures (60-100°C were studied in detail. The results of this research will help to design pre-processing conditions of mangosteen pericarp as a source of antioxidants.

  19. 'In vitro' studies on the interaction of rickettsia and macrophages. I. Effect of ultraviolet light on 'Coxiella burnetii' inactivation and macrophage enzymes: uv-inactivated 'C. burnetii'/macrophage enzymes. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Little, J.S.; Kishimoto, R.A.; Canonico, P.G.

    1979-09-04

    The inactivation of Coxiella burnetii in suspension or in cultures of guinea pig peritoneal macrophages by ultraviolet (UV) light was studied. The effect of UV treatment on the activity of macrophage organelle marker enzymes and their subsequent equilibration in linear sucrose gradients was also determined. It was shown that UV treatment of 600 microwatts/sq cm for 15 sec at a distance of 10 cm inactivated C. burnetii, either in suspension (10 to the 8th power organisms/ML) or within guinea pig peritoneal macrophages. Similar UV treatment had little effect on the activity or equilibration of macrophage organelle marker enzymes in linear sucrose gradients. However, longer exposure caused considerable inactivatioin of these enzymes.

  20. Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms.

    Science.gov (United States)

    Rattanakul, Surapong; Oguma, Kumiko

    2018-03-01

    To demonstrate the effectiveness of UV light-emitting diodes (UV-LEDs) to disinfect water, UV-LEDs at peak emission wavelengths of 265, 280, and 300 nm were adopted to inactivate pathogenic species, including Pseudomonas aeruginosa and Legionella pneumophila, and surrogate species, including Escherichia coli, Bacillus subtilis spores, and bacteriophage Qβ in water, compared to conventional low-pressure UV lamp emitting at 254 nm. The inactivation profiles of each species showed either a linear or sigmoidal survival curve, which both fit well with the Geeraerd's model. Based on the inactivation rate constant, the 265-nm UV-LED showed most effective fluence, except for with E. coli which showed similar inactivation rates at 265 and 254 nm. Electrical energy consumption required for 3-log 10 inactivation (E E,3 ) was lowest for the 280-nm UV-LED for all microbial species tested. Taken together, the findings of this study determined the inactivation profiles and kinetics of both pathogenic bacteria and surrogate species under UV-LED exposure at different wavelengths. We also demonstrated that not only inactivation rate constants, but also energy efficiency should be considered when selecting an emission wavelength for UV-LEDs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Antimicrobial blue light inactivation of Methicillin-resistant Staphylococcus aureus

    Science.gov (United States)

    Wang, Yucheng; Dai, Tianhong; Gu, Ying

    2016-10-01

    Background: With the increasing emergence of multidrug-resistant (MDR) bacterial strains, there is a pressing need for the development of alternative treatment for infections. Antimicrobial blue light (aBL) has provided a simple and effective approach. Methods: We first investigated the effectiveness of aBL (415 nm) inactivation of USA300 LAClux (a communityacquired Methicillin-resistant Staphylococcus aureus strain) both in the planktonic and biofilm forms. The survival of the bacteria in suspensions was determined by serial dilution and that of the biofilm-embedded bacteria was determined by bioluminescence quantification. Using a mouse model of thermal burn infected with USA300 LAClux, we further assessed the effectiveness of aBL for treating localized infections. Bioluminescence imaging was performed to monitor in real time bacterial viability in vivo. Results: In vitro study showed that, for the planktonic counterpart of the bacteria or the 24-h-old biofilms, an irradiance of 55 mW/cm2 for 60 min resulted in a 4.61 log10 or 2.56 log10 inactivation, respectively. In vivo study using infected mouse burns demonstrated that a 2.56-log10 inactivation was achieved after 100-mW/cm2 irradiation for 62 min. Conclusions: aBL is a potential alternative approach for treating Methicillin-resistant Staphylococcus aureus infections.

  2. Inactivation as a new regulatory mechanism for neuronal Kv7 channels

    DEFF Research Database (Denmark)

    Jensen, Henrik Sindal; Grunnet, Morten; Olesen, Søren-Peter

    2007-01-01

    neuronal channels and are important for controlling excitability. Kv7.1 channels have been considered the only Kv7 channels to undergo inactivation upon depolarization. However, here we demonstrate that inactivation is also an intrinsic property of Kv7.4 and Kv7.5 channels, which inactivate to a larger...

  3. Quantum chromodynamics as the sequential fragmenting with inactivation

    International Nuclear Information System (INIS)

    Botet, R.

    1996-01-01

    We investigate the relation between the modified leading log approximation of the perturbative QCD and the sequential binary fragmentation process. We will show that in the absence of inactivation, this process is equivalent to the QCD gluodynamics. The inactivation term yields a precise prescription of how to include the hadronization in the QCD equations. (authors)

  4. Thermal and Carbon Dioxide Inactivation of Alkaline Phosphatase in Buffer and Milk

    Directory of Open Access Journals (Sweden)

    Osman Erkmen

    2004-01-01

    Full Text Available The effects of temperature and CO2 treatment on the inactivation of alkaline phosphatase (ALP were studied. The thermal stability of ALP was found to be significantly (P< 0.05 different in glycine/NaOH buffer, pasteurized milk and raw milk. ALP was completely inactivated in the buffer at 60, 70 and 80 °C but approximately 12 % of activity was present at 50 °C after 55 min of treatment. The time required for complete inactivation of the enzyme in the buffer was reduced from 50 to 4 min as temperature increased from 60 to 80 °C. Complete inactivation of the enzyme in pasteurized milk was achieved at 70 and 80 °C but 28 and 15 % of ALP activity was still present at 50 and 60 °C after 120 min of treatment. Inactivation time for raw milk was reduced nearly 18-fold by increasing temperature from 50 to 70 °C. ALP in the buffer exposed to CO2 (under atmospheric pressure treatment at different temperatures showed a decrease in enzyme activity. Inactivation was found to be higher as the temperature increased from 20 to 50 °C. At the end of a 30-min treatment, residual ALP activity was found to be 84 and 19 % at 20 and 50 °C, respectively. Faster drop in pH and enzyme activity occurred within 5 min. The change in pH and enzyme activity dependant on CO2 treatment was not observed in raw milk mainly due to strong buffering capacity of milk.

  5. Inactivation of human enteric virus surrogates by high-intensity ultrasound.

    Science.gov (United States)

    Su, Xiaowei; Zivanovic, Svetlana; D'Souza, Doris H

    2010-09-01

    Foodborne viruses, especially human noroviruses, are recognized as leading causes of nonbacterial gastroenteritis worldwide. Development of effective inactivation methods is of great importance to control their spread. In this study, the effect of high-intensity ultrasound (HIUS) on the infectivity of three foodborne virus surrogates was investigated. The three surrogates, murine norovirus (MNV-1), feline calicivirus (FCV-F9), and MS2 bacteriophage, were diluted in phosphate-buffered saline (PBS) or orange juice to a titer of approximately 6 log(10) PFU/mL or approximately 4 log(10) PFU/mL. The ultrasound treatment was performed in duplicate by immersing the HIUS probe in virus-containing solution that was cooled in ice-water and sonicated at 20 kHz for 2, 5, 10, 15, 20, and 30 min with 30 sec on and 30 sec off. The infectivity of the recovered viruses after each ultrasound treatment was evaluated in duplicate using standardized plaque assays and compared to untreated controls. The results show that HIUS effectiveness depended on the virus type, the initial titer of the viruses, and the virus suspension solution. At titers of approximately 4 log(10) PFU/mL in PBS, feline calicivirus (FCV)-F9, MS2, and murine norovirus (MNV)-1 required 5-, 10-, and 30-min treatment, respectively, for complete inactivation. At initial titers of approximately 4 log(10) PFU/mL in orange juice, FCV-F9 required a 15-min treatment for complete inactivation and only a 1.55 log(10) PFU/mL reduction was achieved for MNV-1 in orange juice after 30-min treatment. Thus, inactivation by HIUS in orange juice was much lower than in PBS. Experiments using titers of approximately 6 log(10) PFU/mL showed decreased effects compared to those using titers of approximately 4 log(10) PFU/mL. These results indicate that HIUS alone is not sufficient to inactivate virus in food. Hurdle technologies that combine HIUS with antimicrobials, heat, or pressure should be explored for viral inactivation.

  6. Carvacrol suppresses high pressure high temperature inactivation of Bacillus cereus spores.

    Science.gov (United States)

    Luu-Thi, Hue; Corthouts, Jorinde; Passaris, Ioannis; Grauwet, Tara; Aertsen, Abram; Hendrickx, Marc; Michiels, Chris W

    2015-03-16

    The inactivation of bacterial spores generally proceeds faster and at lower temperatures when heat treatments are conducted under high pressure, and high pressure high temperature (HPHT) processing is, therefore, receiving an increased interest from food processors. However, the mechanisms of spore inactivation by HPHT treatment are poorly understood, particularly at moderately elevated temperature. In the current work, we studied inactivation of the spores of Bacillus cereus F4430/73 by HPHT treatment for 5 min at 600MPa in the temperature range of 50-100°C, using temperature increments of 5°C. Additionally, we investigated the effect of the natural antimicrobial carvacrol on spore germination and inactivation under these conditions. Spore inactivation by HPHT was less than about 1 log unit at 50 to 70°C, but gradually increased at higher temperatures up to about 5 log units at 100°C. DPA release and loss of spore refractility in the spore population were higher at moderate (≤65°C) than at high (≥70°C) treatment temperatures, and we propose that moderate conditions induced the normal physiological pathway of spore germination resulting in fully hydrated spores, while at higher temperatures this pathway was suppressed and replaced by another mechanism of pressure-induced dipicolinic acid (DPA) release that results only in partial spore rehydration, probably because spore cortex hydrolysis is inhibited. Carvacrol strongly suppressed DPA release and spore rehydration during HPHT treatment at ≤65°C and also partly inhibited DPA release at ≥65°C. Concomitantly, HPHT spore inactivation was reduced by carvacrol at 65-90°C but unaffected at 95-100°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Scale down of the inactivated polio vaccine production process

    NARCIS (Netherlands)

    Thomassen, Y.E.; Oever, van 't R.; Vinke, C.M.; Spiekstra, A.; Wijffels, R.H.; Pol, van der L.A.; Bakker, W.A.M.

    2013-01-01

    The anticipated increase in the demand for inactivated polio vaccines resulting from the success in the polio eradication program requires an increase in production capacity and cost price reduction of the current inactivated polio vaccine production processes. Improvement of existing production

  8. Comparative Study on the Efficiency of the Photodynamic Inactivation of Candida albicans Using CdTe Quantum Dots, Zn(II Porphyrin and Their Conjugates as Photosensitizers

    Directory of Open Access Journals (Sweden)

    Osnir S. Viana

    2015-05-01

    Full Text Available The application of fluorescent II-VI semiconductor quantum dots (QDs as active photosensitizers in photodymanic inactivation (PDI is still being evaluated. In the present study, we prepared 3 nm size CdTe QDs coated with mercaptosuccinic acid and conjugated them electrostatically with Zn(II meso-tetrakis (N-ethyl-2-pyridinium-2-yl porphyrin (ZnTE-2-PyP or ZnP, thus producing QDs-ZnP conjugates. We evaluated the capability of the systems, bare QDs and conjugates, to produce reactive oxygen species (ROS and applied them in photodynamic inactivation in cultures of Candida albicans by irradiating the QDs and testing the hypothesis of a possible combined contribution of the PDI action. Tests of in vitro cytotoxicity and phototoxicity in fibroblasts were also performed in the presence and absence of light irradiation. The overall results showed an efficient ROS production for all tested systems and a low cytotoxicity (cell viability >90% in the absence of radiation. Fibroblasts incubated with the QDs-ZnP and subjected to irradiation showed a higher cytotoxicity (cell viability <90% depending on QD concentration compared to the bare groups. The PDI effects of bare CdTe QD on Candida albicans demonstrated a lower reduction of the cell viability (~1 log10 compared to bare ZnP which showed a high microbicidal activity (~3 log10 when photoactivated. The QD-ZnP conjugates also showed reduced photodynamic activity against C. albicans compared to bare ZnP and we suggest that the conjugation with QDs prevents the transmembrane cellular uptake of the ZnP molecules, reducing their photoactivity.

  9. Cytolytic T lymphocyte responses to metabolically inactivated stimulator cells. I. Metabolic inactivation impairs both CD and LD antigen signals

    International Nuclear Information System (INIS)

    Kelso, A.; Boyle, W.

    1982-01-01

    The effects of metabolic inactivation of spleen cells on antigen presentation to precursors of alloreactive cytolytic T lymphocytes (T/sub c/) were examined. By serological methods, populations inactivated by ultraviolet irradiation, glutaraldehyde fixation or plasma membrane isolation were found to retain normal levels of H-2K/D and Ia antigens. However, comparison of the antigen doses required to stimulate secondary T/sub c/ responses in mixed leukocyte culture showed that the inactivated preparations were approximately 10-fold less immunogenic than X-irradiated spleen cells. Their total inability to stimulate primary cytolytic responses pointed to at least a 100-fold impairment of immunogenicity for unprimed T/sub c/ precursors in the case of uv-irradiated and glutaraldehyde-treated stimulator cells, and at least a 10-fold impairment for membrane fragments. Experiments showing that the capacity of cell monolayers to absorb precursor T/sub c/ from unprimed spleen populations was reduced following uv-irradiation or glutaraldehyde treatment provided direct evidence that this loss of immunogenicity was due in part to suboptimal antigen presentation to precursor T/sub c/. It is concluded that, in addition to the traditional view that these treatments damage the ''LD'' signal to helper T lymphocytes, metabolic inactivation also impairs recognition of ''CD'' determinants by precursor T/sub c/

  10. Quantum chromodynamics as the sequential fragmenting with inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Botet, R. [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique des Solides; Ploszajczak, M. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)

    1996-12-31

    We investigate the relation between the modified leading log approximation of the perturbative QCD and the sequential binary fragmentation process. We will show that in the absence of inactivation, this process is equivalent to the QCD gluodynamics. The inactivation term yields a precise prescription of how to include the hadronization in the QCD equations. (authors). 15 refs.

  11. The assessment of efficacy of porcine reproductive respiratory syndrome virus inactivated vaccine based on the viral quantity and inactivation methods

    Directory of Open Access Journals (Sweden)

    Lee Byeongchun

    2011-06-01

    Full Text Available Abstract Background There have been many efforts to develop efficient vaccines for the control of porcine reproductive and respiratory syndrome virus (PRRSV. Although inactivated PRRSV vaccines are preferred for their safety, they are weak at inducing humoral immune responses and controlling field PRRSV infection, especially when heterologous viruses are involved. Results In all groups, the sample to positive (S/P ratio of IDEXX ELISA and the virus neutralization (VN titer remained negative until challenge. While viremia did not reduce in the vaccinated groups, the IDEXX-ELISA-specific immunoglobulin G increased more rapidly and to significantly greater levels 7 days after the challenge in all the vaccinated groups compared to the non-vaccinated groups (p 6 PFU/mL PRRSV vaccine-inoculated and binary ethylenimine (BEI-inactivated groups 22 days after challenge (p Conclusions The inactivated vaccine failed to show the humoral immunity, but it showed different immune response after the challenge compared to mock group. Although the 106 PFU/mL-vaccinated and BEI-inactivated groups showed significantly greater VN titers 22 days after challenge, all the groups were already negative for viremia.

  12. A study on the effect of treatment of compound feed with ionizing radiation on feeding broiler chickens

    International Nuclear Information System (INIS)

    Chotinski, D.; Tsvetanov, I.; Stanchev, Kh.; Bokhorov, O.; Korudzhijski, N.; Dzhurov, A.

    1987-01-01

    An experiment was conducted with 600 broiler chickens divided into 4 groups, whereas chickens of the control group were offered untreated compound feed and those of the experimental groups were given preliminary treated compound feed with 0.35, 0.7 and 1.0 Mrad, respectively. General chemical analysis of the nonradiated and radiated with different doses of gamma rays feed was carried out in advance, the count of bacteria cells per gram of feed was also determined. Followed up was also the weight development of chickens and the feed to gain ratio. The morphological examinations of some organs were also perfomed. Treatment with gamma rays in doses of 0.35 to 1.0 Mrad inactivated enterobacteria, excepting Bac. subtilis. The general chemical content of feed and weight development of chickens were not markedly effected by radiation. The feed to gain ratio decreased, but with the increase in the radiation dose also rose. No histological changes of the organs were observed upon feeding preliminary irradiated compound feeds

  13. Heat inactivation kinetics of Hypocrea orientalis β-glucosidase with enhanced thermal stability by glucose.

    Science.gov (United States)

    Xu, Xin-Qi; Shi, Yan; Wu, Xiao-Bing; Zhan, Xi-Lan; Zhou, Han-Tao; Chen, Qing-Xi

    2015-11-01

    Thermal inactivation kinetics of Hypocrea orientalis β-glucosidase and effect of glucose on thermostability of the enzyme have been determined in this paper. Kinetic studies showed that the thermal inactivation was irreversible and first-order reaction. The microscopic rate constants for inactivation of free enzyme and substrate-enzyme complex were both determined, which suggested that substrates can protect β-glucosidase against thermal deactivation effectively. On the other hand, glucose was found to protect β-glucosidase from heat inactivation to remain almost whole activity below 70°C at 20mM concentration, whereas the apparent inactivation rate of BG decreased to be 0.3×10(-3)s(-1) in the presence of 5mM glucose, smaller than that of sugar-free enzyme (1.91×10(-3)s(-1)). The intrinsic fluorescence spectra results showed that glucose also had stabilizing effect on the conformation of BG against thermal denaturation. Docking simulation depicted the interaction mode between glucose and active residues of the enzyme to produce stabilizing effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The roles of the various plasma agents in the inactivation of bacteria

    International Nuclear Information System (INIS)

    Lu Xinpei; Xiong Qing; Tang Zhiyuan; Xiong Zhilan; Hu Jing; Jiang Zhonghe; Pan Yuan; Ye Tao; Cao Yingguang; Sun Ziyong

    2008-01-01

    The roles of various plasma agents in the inactivation of bacteria have recently been investigated. However, up to now, the effect of the charged particles on the inactivation of bacteria is not well understood. In this paper, an atmospheric pressure plasma jet device, which generates a cold plasma plume carrying a peak current of 300 mA, is used to investigate the role of the charged particles in the inactivation process. It is found that the charged particles play a minor role in the inactivation process when He/N 2 (3%) is used as working gas. On the other hand, when He/O 2 (3%) is used, the charged particles are expected to play an important role in the inactivation of bacteria. Further analysis shows that the negative ions O 2 - might be the charged particles that are playing the role. Besides, it is found that the active species, including O, O 3 , and metastable state O 2 *, can play a crucial role in the inactivation of the bacteria. However, the excited He*, N 2 C 3 Π u , and N 2 + B 2 Σ u + have no significant direct effect on the inactivation of bacteria. It is also concluded that heat and UV play no or minor role in the inactivation process

  15. Mechanism of Cd2+-coordination during Slow Inactivation in Potassium Channels

    Science.gov (United States)

    Raghuraman, H.; Cordero-Morales, Julio F.; Jogini, Vishwanath; Pan, Albert C.; Kollewe, Astrid; Roux, Benoît; Perozo, Eduardo

    2013-01-01

    Summary In K+ channels, rearrangements of the pore outer-vestibule have been associated with C-type inactivation gating. Paradoxically, the crystal structure of Open/C-type inactivated KcsA suggest these movements to be modest in magnitude. Here, we show that under physiological conditions, the KcsA outer-vestibule undergoes relatively large dynamic rearrangements upon inactivation. External Cd2+ enhances the rate of C-type inactivation in an outer-vestibule cysteine mutant (Y82C) via metal-bridge formation. This effect is not present in a non-inactivating mutant (E71A/Y82C). Tandem dimer and tandem tetramer constructs of equivalent cysteine mutants in KcsA and Shaker K+ channels demonstrate that these Cd2+ metal bridges are formed only between adjacent subunits. This is well supported by molecular dynamics simulations. Based on the crystal structure of Cd2+-bound Y82C-KcsA in the closed state, together with EPR distance measurements in the KcsA outer-vestibule, we suggest that subunits must dynamically come in close proximity as the channels undergo inactivation. PMID:22771214

  16. Quantitative analysis of wet-heat inactivation in bovine spongiform encephalopathy

    International Nuclear Information System (INIS)

    Matsuura, Yuichi; Ishikawa, Yukiko; Bo, Xiao; Murayama, Yuichi; Yokoyama, Takashi; Somerville, Robert A.; Kitamoto, Tetsuyuki; Mohri, Shirou

    2013-01-01

    Highlights: ► We quantitatively analyzed wet-heat inactivation of the BSE agent. ► Infectivity of the BSE macerate did not survive 155 °C wet-heat treatment. ► Once the sample was dehydrated, infectivity was observed even at 170 °C. ► A quantitative PMCA assay was used to evaluate the degree of BSE inactivation. - Abstract: The bovine spongiform encephalopathy (BSE) agent is resistant to conventional microbial inactivation procedures and thus threatens the safety of cattle products and by-products. To obtain information necessary to assess BSE inactivation, we performed quantitative analysis of wet-heat inactivation of infectivity in BSE-infected cattle spinal cords. Using a highly sensitive bioassay, we found that infectivity in BSE cattle macerates fell with increase in temperatures from 133 °C to 150 °C and was not detected in the samples subjected to temperatures above 155 °C. In dry cattle tissues, infectivity was detected even at 170 °C. Thus, BSE infectivity reduces with increase in wet-heat temperatures but is less affected when tissues are dehydrated prior to the wet-heat treatment. The results of the quantitative protein misfolding cyclic amplification assay also demonstrated that the level of the protease-resistant prion protein fell below the bioassay detection limit by wet-heat at 155 °C and higher and could help assess BSE inactivation. Our results show that BSE infectivity is strongly resistant to wet-heat inactivation and that it is necessary to pay attention to BSE decontamination in recycled cattle by-products

  17. Quantitative analysis of wet-heat inactivation in bovine spongiform encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, Yuichi; Ishikawa, Yukiko; Bo, Xiao; Murayama, Yuichi; Yokoyama, Takashi [Prion Disease Research Center, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan); Somerville, Robert A. [The Roslin Institute and Royal (Dick) School of Veterinary Studies, Roslin, Midlothian, EH25 9PS (United Kingdom); Kitamoto, Tetsuyuki [Division of CJD Science and Technology, Department of Prion Research, Center for Translational and Advanced Animal Research on Human Diseases, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai 980-8575 (Japan); Mohri, Shirou, E-mail: shirou@affrc.go.jp [Prion Disease Research Center, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)

    2013-03-01

    Highlights: ► We quantitatively analyzed wet-heat inactivation of the BSE agent. ► Infectivity of the BSE macerate did not survive 155 °C wet-heat treatment. ► Once the sample was dehydrated, infectivity was observed even at 170 °C. ► A quantitative PMCA assay was used to evaluate the degree of BSE inactivation. - Abstract: The bovine spongiform encephalopathy (BSE) agent is resistant to conventional microbial inactivation procedures and thus threatens the safety of cattle products and by-products. To obtain information necessary to assess BSE inactivation, we performed quantitative analysis of wet-heat inactivation of infectivity in BSE-infected cattle spinal cords. Using a highly sensitive bioassay, we found that infectivity in BSE cattle macerates fell with increase in temperatures from 133 °C to 150 °C and was not detected in the samples subjected to temperatures above 155 °C. In dry cattle tissues, infectivity was detected even at 170 °C. Thus, BSE infectivity reduces with increase in wet-heat temperatures but is less affected when tissues are dehydrated prior to the wet-heat treatment. The results of the quantitative protein misfolding cyclic amplification assay also demonstrated that the level of the protease-resistant prion protein fell below the bioassay detection limit by wet-heat at 155 °C and higher and could help assess BSE inactivation. Our results show that BSE infectivity is strongly resistant to wet-heat inactivation and that it is necessary to pay attention to BSE decontamination in recycled cattle by-products.

  18. Influvac, a trivalent inactivated subunit influenza vaccine.

    Science.gov (United States)

    Zuccotti, Gian Vincenzo; Fabiano, Valentina

    2011-01-01

    Influenza represents a major sanitary and socio-economic burden and vaccination is universally considered the most effective strategy for preventing the disease and its complications. Traditional influenza vaccines have been on the market since the late 1940s, with million of doses administered annually worldwide, and demonstrated a substantial efficacy and safety. The trivalent inactivated subunit vaccine has been available for more than 25 years and has been studied in healthy children, adults and the elderly and in people affected by underlying chronic medical conditions. We describe vaccine technology focusing on subunit vaccine production procedures and mode of action and provide updated information on efficacy and safety available data. A review of efficacy and safety data in healthy subjects and in high risk populations from major sponsor- and investigator-driven studies. The vaccine showed a good immunogenicity and a favorable safety profile in all target groups. In the panorama of actually available influenza vaccines, trivalent inactivated subunit vaccine represents a well-established tool for preventing flu and the associated complications.

  19. Photomimetic effect of serotonin on yeast cells irradiated by far-UV radiation

    International Nuclear Information System (INIS)

    Fraikin, G.Y.; Strakhovskaya, M.G.; Rubin, L.B.

    1982-01-01

    The effect of serotonin on the survival of far-UV irradiated cells of the yeast Candida guilliermondii was studied. Serotonin was found to have a photomimetic property. Preincubation of cells with serotonin results in protection against far-UV inactivation, whereas the post-radiation treatment with serotonin causes a potentiation of far-UV lethality. Both effects are similar to those produced by near-UV (334 nm) radiation. The observations provide support to the previously proposed idea that photosynthesized serotonin is the underlying cause of the two effects of near-UV radiation, photoprotection and potentiation of far-UV lethality. Experiments with an excision-deficient strain of the yeast Saccharomyces cerevisiae suggest that the effect of serotonin is by its binding to DNA. (author)

  20. Sexually localized expression of pseudo-self compatibility (PSC) in Petunia X hybrida Hort : 2. Stylar inactivation.

    Science.gov (United States)

    Dana, M N; Ascher, P D

    1986-01-01

    A previously identified S-linked stylar-inactivation PSC factor (Flaschenriem and Ascher 1979b) was studied for its location relative to S. Plants exhibiting complete stylar-inactivation PSC were those with higher multigenic PSC background level than plants with only S-linked partial stylar-inactivation PSC. A pollen-mediated pseudo-self compatibility (PMPSC) adjustment factor was offered as a device to focus on stylar-inactivation PSC by removing some male origin, multigenic PSC. The stylar inactivation factor was not tightly linked to S but affected expression of only the allele to which it was linked. A three part interacting association of genetic material governing self incompatibility (SI) is proposed. The parts of S are the SI identity gene, S-specific PSC genes and, finally, PSC genes which are not S-specific in action. The complete association is termed the SI-complex.

  1. Activation and inactivation of Bacillus pumilus spores by kiloelectron volt X-ray irradiation.

    Directory of Open Access Journals (Sweden)

    Thi Mai Hoa Ha

    Full Text Available In this study, we investigated the inactivation efficacy of endospore-forming bacteria, Bacillus pumilus, irradiated by low-energy X-rays of different beam qualities. The different low-energy X-rays studied had cut-off energies of 50, 100 and 150 keV. Bacillus pumilus spores (in biological indicator strips were irradiated at step doses between 6.5 to 390 Gy. The resulting bacteria populations were then quantified by a pour plate method. Results showed that X-rays of lower energies were more effective in inactivating bacterial spores. In addition, an increment in bacterial population was observed at doses below 13Gy. We attributed this increase to a radiation-induced activation of bacterial spores. Four kinetic models were then evaluated for their prediction of bacterial spore behavior under irradiation. This included: (i first-order kinetics model; (ii Shull model; (iii Sapru model; and (iv probabilistic model. From R2 and AIC analyses, we noted that the probabilistic model performed the best, followed by the Sapru model. We highlighted that for simplicity in curve fitting the Sapru model should be used instead of the probabilistic model. A 12-log reduction in bacterial population (corresponding to a sterility assurance level of 10-6 as required in the sterilization of medical devices was computed to be achievable at doses of 1000, 1600 and 2300 Gy for the three different X-ray cut-off energies respectively. These doses are an order in magnitude lesser than that required in gamma irradiation. This highlights the applicability of cheaper and safer table-top X-ray sources for sterilization application.

  2. Mechanism of inactivation of human leukocyte elastase by a chloromethyl ketone: kinetic and solvent isotope effect studies

    International Nuclear Information System (INIS)

    Stein, R.L.; Trainor, D.A.

    1986-01-01

    The mechanism of inactivation of human leukocyte elastase (HLE) by the chloromethyl ketone MeOSuc-Ala-Ala-Pro-Val-CH 2 Cl was investigated. The dependence of the first-order rate constant for inactivation on concentration of chloromethyl ketone is hyperbolic and suggests formation of a reversible Michaelis complex prior to covalent interaction between the enzyme and inhibitor. However, the observed Ki value is 10 microM, at least 10-fold lower than dissociation constants for complexes formed from interaction of HLE with structurally related substrates or reversible inhibitors, and suggests that Ki is a complex kinetic constant, reflecting the formation and accumulation of both the Michaelis complex and a second complex. It is proposed that this second complex is a hemiketal formed from attack of the active site serine on the carbonyl carbon of the inhibitor. The accumulation of this intermediate may be a general feature of reactions of serine proteases and chloromethyl ketones derived from specific peptides and accounts for the very low Ki values observed for these reactions. The solvent deuterium isotope effect (SIE) on the inactivation step (ki) is 1.58 +/- 0.07 and is consistent with rate-limiting, general-catalyzed attack of the active site His on the methylene carbon of the inhibitor with displacement of chloride anion. The general catalyst is thought to be the active site Asp. In contrast, the SIE on the second-order rate constant for HLE inactivation, ki/Ki, is inverse and equals 0.64 +/- 0.05

  3. Inactivation of RNA viruses by gamma irradiation

    International Nuclear Information System (INIS)

    Nonomiya, Takashi; Morimoto, Akinori; Iwatsuki, Kazuo; Tsutsumi, Takamasa; Ito, Hitoshi; Yamashiro, Tomio; Ishigaki, Isao.

    1992-01-01

    Four kinds of RNA viruses, Bluetongue virus (BT), Bovine Virus Diarrhea-Mucosal Disease virus (BVD·MD), Bovine Respiratory Syncytial virus (RS), Vesicular Stmatitis virus (VS), were subjected to various doses of gamma irradiation to determine the lethal doses. The D 10 values, which are the dose necessary to decimally reduce infectivity, ranged from 1.5 to 3.4 kGy under frozen condition at dry-ice temperature, and they increased to 2.6 to 5.0 kGy under frozen condition at dry-ice temperature. Serum neutralzing antibody titer of Infectious Bovine Rhinotracheitis (IBR) was not adversely changed by the exposure to 36 kGy of gamma-rays under frozen condition. Analysis of electrophoresis patterns of the bovine serum also reveales that the serum proteins were not remarkably affected, even when exposed to 36 kGy of gamma radiation under frozen condition. The results suggested that gamma irradiation under frozen condition is an effective means for inactivating both DNA and RNA viruses without adversely affecting serum proteins and neutralizing antibody titer. (author)

  4. Inactivation of RNA viruses by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nonomiya, Takashi; Morimoto, Akinori; Iwatsuki, Kazuo; Tsutsumi, Takamasa (Ministry of Agriculture, Forestry and fisheries, Yokohama, Kanagawa (Japan). Animal Quarantine Service); Ito, Hitoshi; Yamashiro, Tomio; Ishigaki, Isao

    1992-09-01

    Four kinds of RNA viruses, Bluetongue virus (BT), Bovine Virus Diarrhea-Mucosal Disease virus (BVD[center dot]MD), Bovine Respiratory Syncytial virus (RS), Vesicular Stmatitis virus (VS), were subjected to various doses of gamma irradiation to determine the lethal doses. The D[sub 10] values, which are the dose necessary to decimally reduce infectivity, ranged from 1.5 to 3.4 kGy under frozen condition at dry-ice temperature, and they increased to 2.6 to 5.0 kGy under frozen condition at dry-ice temperature. Serum neutralzing antibody titer of Infectious Bovine Rhinotracheitis (IBR) was not adversely changed by the exposure to 36 kGy of gamma-rays under frozen condition. Analysis of electrophoresis patterns of the bovine serum also reveales that the serum proteins were not remarkably affected, even when exposed to 36 kGy of gamma radiation under frozen condition. The results suggested that gamma irradiation under frozen condition is an effective means for inactivating both DNA and RNA viruses without adversely affecting serum proteins and neutralizing antibody titer. (author).

  5. Ebola Virus Inactivation by Detergents Is Annulled in Serum

    NARCIS (Netherlands)

    van Kampen, Jeroen J. A.; Tintu, Andrei; Russcher, Henk; Fraaij, Pieter L. A.; Reusken, Chantal B. E. M.; Rijken, Mikel; van Hellemond, Jaap J.; van Genderen, Perry J. J.; Koelewijn, Rob; de Jong, Menno D.; Haddock, Elaine; Fischer, Robert J.; Munster, Vincent J.; Koopmans, Marion P. G.

    2017-01-01

    Treatment of blood samples from hemorrhagic fever virus (HFV)-infected patients with 0.1% detergents has been recommended for virus inactivation and subsequent safe laboratory testing. However, data on virus inactivation by this procedure are lacking. Here we show the effect of this procedure on

  6. Inhibition of photosystem II by UV-B-radiation

    International Nuclear Information System (INIS)

    Tevini, M.; Pfister, K.

    1985-01-01

    The effect of UV-B-radiation on PSII activity of spinach chloroplasts was analyzed by measuring the integrity of the herbicide-binding protein (HBP 32), by measurement of fluorescence induction in the presence of Diuron (DCMU), and by mathematical analysis of the fluorescence induction curves. It was shown that UV-B inactivates the PSII α-centers but not PSII β-centers. However, the possibility cannot be excluded that in addition the donor site of PSII near the reaction center is attacked by UV-B-radiation. (orig.)

  7. Rapid Bedside Inactivation of Ebola Virus for Safe Nucleic Acid Tests

    DEFF Research Database (Denmark)

    Rosenstierne, Maiken Worsøe; Karlberg, Helen; Bragstad, Karoline

    2016-01-01

    Rapid bedside inactivation of Ebola virus would be a solution for the safety of medical and technical staff, risk containment, sample transport, and high-throughput or rapid diagnostic testing during an outbreak. We show that the commercially available Magna Pure lysis/binding buffer used...... for nucleic acid extraction inactivates Ebola virus. A rapid bedside inactivation method for nucleic acid tests is obtained by simply adding Magna Pure lysis/binding buffer directly into vacuum blood collection EDTA tubes using a thin needle and syringe prior to sampling. The ready-to-use inactivation vacuum...... tubes are stable for more than 4 months, and Ebola virus RNA is preserved in the Magna Pure lysis/binding buffer for at least 5 weeks independent of the storage temperature. We also show that Ebola virus RNA can be manually extracted from Magna Pure lysis/binding buffer-inactivated samples using...

  8. Radiation Studies, Vol.10

    International Nuclear Information System (INIS)

    Nadareishvili, K.; Tsitskishvili, M.; Chankseliani, Z.; Gelashvili, K.; Mtskhoetadze, A.; Oniani, T.; Todua, F.; Vepkhoadze, N.; Zaalishvili, T.

    2002-01-01

    'Radiation studies' - is a periodical edition of Scientific Research Center of Radiobiology and Radiation Ecology of Georgian Academy of Sciences, Problem Council of Radiobiology of Georgian Academy of Sciences and Georgian Academy of Ecological Sciences. The 10th volume of 'Radiation studies' reflects activities of above-mentioned institutions during previous two years and contains 26 articles, from which 17 are within the scope of INIS

  9. An empirical model for the induction of double strand breaks in DNA by the indirect' action of ionising radiation

    International Nuclear Information System (INIS)

    Watt, D.E.; Hill, S.J.A.

    1994-01-01

    For calculation of radiation effects at low doses near environmental levels it is necessary to model both ''direct'' and ''indirect'' effects along single charged particle tracks in the equilibrium spectrum generated by the radiation field. The modelling approach used here to determine the ''indirect'' contribution to the damage to the DNA in mammalian cells is first to study the transition of damage from the solid to liquid phases at different concentrations of enzyme targets (known to be inactivated by single target, single hit kinetics). The respective contributions from direct and indirect action can then be separated. Results obtained in this laboratory for the inactivation of dihydroorotate dehydrogenase have been supplemented by data taken from the literature. A simple model of the radiation action has been derived. It succeeds in correlating all the data within the range of concentrations, radical scavenger, and LET used. From the results, information is obtained on the role of the dose rate; on diffusion lengths, on the type of radical predominantly responsible (OH·) for the inactivation and on scavenging of radicals. Since water radicals are thought to be the main cause of indirect damage in mammalian cells it is a simple step to deduce from the enzyme results the probability of induction of single and double strand breaks in the DNA by making the assumption that basically the same radical kinetics are involved and then applying Poisson probabilities. (author)

  10. Mirasol PRT system inactivation efficacy evaluated in platelet concentrates by bacteria-contamination model

    Directory of Open Access Journals (Sweden)

    Jocić Miodrag

    2011-01-01

    Full Text Available Background/Aim. Bacterial contamination of blood components, primarily platelet concentrates (PCs, has been identified as one of the most frequent infectious complications in transfusion practice. PC units have a high risk for bacterial growth/multiplication due to their storage at ambient temperature (20 ± 2°C. Consequences of blood contamination could be effectively prevented or reduced by pathogen inactivation systems. The aim of this study was to determine the Mirasol pathogen reduction technology (PRT system efficacy in PCs using an artificial bacteria-contamination model. Methods. According to the ABO blood groups, PC units (n = 216 were pooled into 54 pools (PC-Ps. PC-Ps were divided into three equal groups, with 18 units in each, designed for an artificial bacteria-contamination. Briefly, PC-Ps were contaminated by Staphylococcus epidermidis, Staphylococcus aureus or Escherichia coli in concentrations 102 to 107 colony forming units (CFU per unit. Afterward, PC-Ps were underwent to inactivation by Mirasol PRT system, using UV (l = 265-370 nm activated riboflavin (RB. All PC-Ps were assayed by BacT/Alert Microbial Detection System for CFU quantification before and after the Mirasol treatment. Samples from non-inactivated PC-P units were tested after preparation and immediately following bacterial contamination. Samples from Mirasol treated units were quantified for CFUs one hour, 3 days and 5 days after inactivation. Results. A complete inactivation of all bacteria species was obtained at CFU concentrations of 102 and 103 per PC-P unit through storage/ investigation period. The most effective inactivation (105 CFU per PC-P unit was obtained in Escherichia coli setting. Contrary, inactivation of all the three tested bacteria species was unworkable in concentrations of ≥ 106 CFU per PC-P unit. Conclusion. Efficient inactivation of investigated bacteria types with a significant CFU depletion in PC-P units was obtained - 3 Log for all

  11. Inactivation of Bacillus spores inoculated in milk by Ultra High Pressure Homogenization.

    Science.gov (United States)

    Amador Espejo, Genaro Gustavo; Hernández-Herrero, M M; Juan, B; Trujillo, A J

    2014-12-01

    Ultra High-Pressure Homogenization treatments at 300 MPa with inlet temperatures (Ti) of 55, 65, 75 and 85 °C were applied to commercial Ultra High Temperature treated whole milk inoculated with Bacillus cereus, Bacillus licheniformis, Bacillus sporothermodurans, Bacillus coagulans, Geobacillus stearothermophilus and Bacillus subtilis spores in order to evaluate the inactivation level achieved. Ultra High-Pressure Homogenization conditions at 300 MPa with Ti = 75 and 85 °C were capable of a spore inactivation of ∼5 log CFU/mL. Furthermore, under these processing conditions, commercial sterility (evaluated as the complete inactivation of the inoculated spores) was obtained in milk, with the exception of G. stearothermophilus and B. subtilis treated at 300 MPa with Ti = 75 °C. The results showed that G. stearothermophilus and B. subtilis have higher resistance to the Ultra High-Pressure Homogenization treatments applied than the other microorganisms inoculated and that a treatment performed at 300 MPa with Ti = 85 °C was necessary to completely inactivate these microorganisms at the spore level inoculated (∼1 × 10(6) CFU/mL). Besides, a change in the resistance of B. licheniformis, B. sporothermodurans, G. stearothermophilus and B. subtilis spores was observed as the inactivation obtained increased remarkably in treatments performed with Ti between 65 and 75 °C. This study provides important evidence of the suitability of UHPH technology for the inactivation of spores in high numbers, leading to the possibility of obtaining commercially sterile milk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Inactivation of human and simian rotaviruses by chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Shiaw (Brookhaven National Lab., Upton, NY (USA)); Vaughn, J.M. (Univ. of New England College of Medicine, Biddeford, ME (USA))

    1990-05-01

    The inactivation of single-particle stocks of human (type 2, Wa) and simian (SA-11) rotaviruses by chlorine dioxide was investigated. Experiments were conducted at 4{degree}C in a standard phosphate-carbonate buffer. Both virus types were rapidly inactivated, within 20 s under alkaline conditions, when chlorine dioxide concentrations ranging from 0.05 to 0.2 mg/liter were used. Similar reductions of 10{sup 5}-fold in infectivity required additional exposure time of 120 s at 0.2 mg/liter for Wa and at 0.5 mg/liter for SA-11, respectively, at pH 6.0. The inactivation of both virus types was moderate a neutral pH, and the sensitivities to chlorine dioxide were similar. The observed enhancement of virucidal efficiency with increasing pH was contrary to earlier findings with chlorine- and ozone-treated rotavirus particles, where efficiencies decreased with increasing alkalinity. Comparison of 99.9% virus inactivation times revealed ozone to be the most effective virucidal agent among these three disinfectants.

  13. Weed seed inactivation in soil mesocosms via biosolarization with mature compost and tomato processing waste amendments.

    Science.gov (United States)

    Achmon, Yigal; Fernández-Bayo, Jesús D; Hernandez, Katie; McCurry, Dlinka G; Harrold, Duff R; Su, Joey; Dahlquist-Willard, Ruth M; Stapleton, James J; VanderGheynst, Jean S; Simmons, Christopher W

    2017-05-01

    Biosolarization is a fumigation alternative that combines passive solar heating with amendment-driven soil microbial activity to temporarily create antagonistic soil conditions, such as elevated temperature and acidity, that can inactivate weed seeds and other pest propagules. The aim of this study was to use a mesocosm-based field trial to assess soil heating, pH, volatile fatty acid accumulation and weed seed inactivation during biosolarization. Biosolarization for 8 days using 2% mature green waste compost and 2 or 5% tomato processing residues in the soil resulted in accumulation of volatile fatty acids in the soil, particularly acetic acid, and >95% inactivation of Brassica nigra and Solanum nigrum seeds. Inactivation kinetics data showed that near complete weed seed inactivation in soil was achieved within the first 5 days of biosolarization. This was significantly greater than the inactivation achieved in control soils that were solar heated without amendment or were amended but not solar heated. The composition and concentration of organic matter amendments in soil significantly affected volatile fatty acid accumulation at various soil depths during biosolarization. Combining solar heating with organic matter amendment resulted in accelerated weed seed inactivation compared with either approach alone. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Influence of induced recovery processes on the response of cells to UV radiation

    International Nuclear Information System (INIS)

    Rupert, C.S.; Hoy, C.A.

    1982-01-01

    Preconfluent PtK-2 cells exposed to strong daylight flourescent illumination - either on the culture dish or suspended in balanced salt solution - show curious inactivation kinetics. Colony-forming survival at first declines to a minimum value, and then, with continued exposure, increases again to nearly its original value, as though longer exposure equips cells to deal better with the radiation damage. Investigation with cut-off filters shows that the shorter wavelengths from the lamp (< 340 nm) are responsible for approx.= 90% of the initial inactivation, but monochromatic irradiation at 313 nm, 334 nm or 366 nm produces only inactivation (successively weaker for longer wavelengths). The observed response therefore cannot be merely the sum of the responses to single wavelengths. (orig./AJ)

  15. Volatile sulfur compounds in foods as a result of ionizing radiation

    Science.gov (United States)

    Ionizing radiation improves food safety and extends shelf life by inactivating food-borne pathogens and spoilage microorganisms. However, irradiation may induce the development of an off-odor, particularly at high doses. The off-odor has been called “irradiation odor”. Substantial evidence suggests ...

  16. Synergistic inactivation of anaerobic wastewater biofilm by free nitrous acid and hydrogen peroxide

    International Nuclear Information System (INIS)

    Jiang, Guangming; Yuan, Zhiguo

    2013-01-01

    Highlights: ► H 2 O 2 greatly enhances the inactivation of microorganisms in biofilms by FNA. ► About 2-log of inactivation of biofilm microbes was achieved by FNA + H 2 O 2 . ► FNA + H 2 O 2 reduced sulfide production and detached biofilm in reactors. -- Abstract: Free nitrous acid (FNA) was recently revealed to be a strong biocide for microbes in anaerobic biofilm, achieving approximately 1-log (90%) inactivation at a concentration of 0.2–0.3 mgHNO 2 -N/L with an exposure time longer than 6 h. The combined biocidal effects of FNA and hydrogen peroxide (H 2 O 2 ) on anaerobic wastewater biofilm are investigated in this study. H 2 O 2 greatly enhances the inactivation of microorganisms by FNA. About 2-log (99%) of microbial inactivation was achieved when biofilms were exposed to FNA at 0.2 mgN/L or above and H 2 O 2 at 30 mg/L or above for 6 h or longer. It was found, through response surface methodology and ridge analysis, that FNA is the primary inactivation agent and H 2 O 2 enhances its efficiency. The loss and the subsequent slow recovery of biological activity in biofilm reactors subjected to FNA and H 2 O 2 dosing confirmed that the chemical combination could achieve higher microbial inactivation than with FNA alone. Reaction simulation shows that intermediates of reactions between FNA and H 2 O 2 , like peroxynitrite and nitrogen dioxide, would be produced at elevated levels and are likely responsible for the synergism between FNA and H 2 O 2 . The combination of FNA and H 2 O 2 could potentially provide an effective solution to sewer biofilm control

  17. Synergistic inactivation of anaerobic wastewater biofilm by free nitrous acid and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Guangming, E-mail: gjiang@awmc.uq.edu.au [Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072 (Australia); Yuan, Zhiguo, E-mail: zhiguo@awmc.uq.edu.au [Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072 (Australia)

    2013-04-15

    Highlights: ► H{sub 2}O{sub 2} greatly enhances the inactivation of microorganisms in biofilms by FNA. ► About 2-log of inactivation of biofilm microbes was achieved by FNA + H{sub 2}O{sub 2}. ► FNA + H{sub 2}O{sub 2} reduced sulfide production and detached biofilm in reactors. -- Abstract: Free nitrous acid (FNA) was recently revealed to be a strong biocide for microbes in anaerobic biofilm, achieving approximately 1-log (90%) inactivation at a concentration of 0.2–0.3 mgHNO{sub 2}-N/L with an exposure time longer than 6 h. The combined biocidal effects of FNA and hydrogen peroxide (H{sub 2}O{sub 2}) on anaerobic wastewater biofilm are investigated in this study. H{sub 2}O{sub 2} greatly enhances the inactivation of microorganisms by FNA. About 2-log (99%) of microbial inactivation was achieved when biofilms were exposed to FNA at 0.2 mgN/L or above and H{sub 2}O{sub 2} at 30 mg/L or above for 6 h or longer. It was found, through response surface methodology and ridge analysis, that FNA is the primary inactivation agent and H{sub 2}O{sub 2} enhances its efficiency. The loss and the subsequent slow recovery of biological activity in biofilm reactors subjected to FNA and H{sub 2}O{sub 2} dosing confirmed that the chemical combination could achieve higher microbial inactivation than with FNA alone. Reaction simulation shows that intermediates of reactions between FNA and H{sub 2}O{sub 2}, like peroxynitrite and nitrogen dioxide, would be produced at elevated levels and are likely responsible for the synergism between FNA and H{sub 2}O{sub 2}. The combination of FNA and H{sub 2}O{sub 2} could potentially provide an effective solution to sewer biofilm control.

  18. Gamma-irradiation to inactivate thioglucosidase of crucifers

    International Nuclear Information System (INIS)

    Lessman, K.J.; McCaslin, B.D.

    1987-01-01

    The crucifers contain glucosinolates which through enzymatic hydrolysis give rise to toxicants that limit the use of oil-free meal obtainable from this plant family. Seeds from three crucifers were used to test gamma irradiation to inactivate enzyme systems as a step toward detoxification. Seeds of Crambe abyssinica Hochst (crambe), ground seeds of Sinapis alba L. (mustard), and seeds of Brassica napus L. (rape) were subjected to gamma-irradiation (6.25, 12.5, 25.0 and 50.4 Mrad) to inactivate thioglucosidase and/or destroy glucosinolates. Samples of ground seeds, their oil-free meals, previously irradiated ground seeds and their oil-free meals were assayed for glucose, a product of enzymatic hydrolysis of glucosinolates present in the crucifer seeds. The 50.4 Mrad exposure inactivated thioglucosidase but did not destroy glucosinolates. The fatty acid contents of extracted oils were affected. The amino acid profile of defatted crambe protein meal was affected, while that of white mustard was not

  19. Biophysics of radiation action

    International Nuclear Information System (INIS)

    Dertinger, H.

    1984-01-01

    Understanding the cellular response to ionizing radiation is not only necessary to meet the requirements of radioprotection, but also for medical application of radiation in cancer treatment. In terms of radiobiology, cancer therapy means the selective inactivation of malignant cells without affecting the normal healthy tissue. However, for several physical and biological reasons, this ideal situation is normally not attained. The elaboration of biophysical parameters that could be used to improve the selective sterilization of tumor cells has become one of the main activities of cellular radiobiology during the last two decades. Progress in this field has been facilitated by the development of tissue culture techniques allowing to grow and analyze cells in a synthetic nutrient medium. This chapter describes the physical and biological factors which determine cellular radiosensitivity and which are important to know for better understanding the cellular radiation action, in particular with reference to cancer treatment

  20. Acute toxicity and inactivation tests of CO2 on invertebrates in drinking water treatment systems.

    Science.gov (United States)

    Yin, Wen-Chao; Zhang, Jin-Song; Liu, Li-Jun; Zhao, Jian-Shu; Li, Tuo

    2011-01-01

    In addition to the esthetic problem caused by invertebrates, researchers are recently starting to be more aware of their potential importance in terms of public health. However, the inactivation methods of invertebrates which could proliferate in drinking water treatment systems are not well developed. The objective of this study is to assess the acute toxicity and inactivation effects of CO2 on familiar invertebrates in water treatment processes. The results of this study revealed that CO2 has a definite toxicity to familiar invertebrates. The values of 24-h LC50 (median lethal concentration) were calculated for each test with six groups of invertebrates. The toxicity of CO2 was higher with increasing concentrations in solution but was lower with the increase in size of the invertebrates. Above the concentration of 1,000 mg/L for the CO2 solution, the 100% inactivation time of all the invertebrates was less than 5 s, and in 15 min, the inactivation ratio showed a gradient descent with a decline in concentration. As seen for Mesocyclops thermocyclopoides, by dosing with a sodium bicarbonate solution first and adding a dilute hydrochloric acid solution 5 min later, it is possible to obtain a satisfactory inactivation effect in the GAC (granular activated carbon) filters.

  1. Molecular radiation biology: Future aspects

    International Nuclear Information System (INIS)

    Hagen, U.

    1990-01-01

    Future aspects of molecular radiation biology may be envisaged by looking for unsolved problems and ways to analyse them. Considering the endpoints of cellular radiation effects as cell inactivation, chromosome aberrations, mutation and transformation, the type of DNA damage in the irradiated cell and the mechanisms of DNA repair as excision repair, recombination repair and mutagenic repair are essential topics. At present, great efforts are made to identify, to clone and to sequence genes involved in the control of repair of DNA damage and to study their regulation. There are close relationships between DNA repair genes isolated from various organisms, which promises fast progress for the molecular analysis of repair processes in mammalian cells. More knowledge is necessary regarding the function of the gene products, i.e. enzymes and proteins involved in DNA repair. Effort should be made to analyse the enzymatic reactions, leading to an altered nucleotide sequence, encountered as a point mutation. Mislead mismatch repair and modulation of DNA polymerase might be possible mechanisms. (orig.)

  2. Adsorption, sedimentation, and inactivation of E. coli within wastewater treatment wetlands.

    Science.gov (United States)

    Boutilier, L; Jamieson, R; Gordon, R; Lake, C; Hart, W

    2009-09-01

    Bacteria fate and transport within constructed wetlands must be understood if engineered wetlands are to become a reliable form of wastewater treatment. This study investigated the relative importance of microbial treatment mechanisms in constructed wetlands treating both domestic and agricultural wastewater. Escherichia coli (E. coli) inactivation, adsorption, and settling rates were measured in the lab within two types of wastewater (dairy wastewater lagoon effluent and domestic septic tank effluent). In situ E. coli inactivation was also measured within a domestic wastewater treatment wetland and the adsorption of E. coli was also measured within the wetland effluent. Inactivation of E. coli appears to be the most significant contributor to E. coli removal within the wastewaters and wetland environments examined in this study. E. coli survived longer within the dairy wastewater (DW) compared to the domestic wastewater treatment wetland water (WW). First order rate constants for E. coli inactivation within the WW in the lab ranged from 0.09 day(-1) (d(-1)) at 7.6 degrees C to 0.18d(-1) at 22.8 degrees C. The average in situ rate constant observed within the domestic wetland ranged from 0.02 d(-1) to 0.03 d(-1) at an average water temperature of 17 degrees C. First order rate constants for E. coli inactivation within the DW ranged from 0.01 d(-1) at 7.7 degrees C to 0.04 d(-1) at 24.6 degrees C. Calculated distribution coefficients (K(d)) were 19,000 mL g(-1), 324,000 mL g(-1), and 293 mL g(-1) for E. coli with domestic septic tank effluent (STE), treated wetland effluent (WLE), and DW, respectively. Approximately 50%, 20%, and 90% of E. coli were "free floating" or associated with particles 5 microm within both the STE and DW, settling did not appear to contribute to E. coli removal within sedimentation experiments, indicating that the particles the bacteria were associated with had very small settling velocities. The results of this study highlight the

  3. The pulsed light inactivation of veterinary relevant microbial biofilms ...

    African Journals Online (AJOL)

    Results show that both Cryptosporidium and Giardia attach to biofilms in large numbers (100-1000 oo/cysts) in as little as 72 hours. Pulsed light successfully inactivated all test species (Listeria, Salmonella, Bacillus, Escherichia) in planktonic and biofilm form with an increase in inactivation for every increase in UV dose.

  4. Long-term effect of oral immunization against influenza with a gamma-inactivated vaccine in mice

    International Nuclear Information System (INIS)

    Noack, K.; Tischner, H.; Pohl, W.D.; Braeuniger, S.; Nordheim, W.

    1986-01-01

    NMRI mice were immunized orally twice within 10 days with an influenza vaccine inactivated by gamma radiation. The immunization with a relatively low dosis led to the occurence of low specific antibody titer in the lung lavage fluid up to 6th month. Despite of the low titer, immunized mice were protected against aerogenic infection for about 6 months. Protection was demonstrated in comparison to non-immunized mice by a limited increase of cells in bronchoalveolar lavage, low virus titer in the lung and survival of most animals after a lethal aerosol challenge with the live virus. (author)

  5. Modeling of human factor Va inactivation by activated protein C

    Directory of Open Access Journals (Sweden)

    Bravo Maria

    2012-05-01

    analysis of in vitro experiments and mathematical constructs we are able to produce a final validated model that includes 24 chemical reactions and interactions with 14 unique rate constants which describe the flux in concentrations of 24 species. Conclusion This study highlights the complexity of the inactivation process and provides a module of equations describing the Protein C pathway that can be integrated into existing comprehensive mathematical models describing tissue factor initiated coagulation.

  6. Inactivation of Heterosigma akashiwo in ballast water by circular orifice plate-generated hydrodynamic cavitation.

    Science.gov (United States)

    Feng, Daolun; Zhao, Jie; Liu, Tian

    2016-01-01

    The discharge of alien ballast water is a well-known, major reason for marine species invasion. Here, circular orifice plate-generated hydrodynamic cavitation was used to inactivate Heterosigma akashiwo in ballast water. In comparison with single- and multihole orifice plates, the conical-hole orifice plate yielded the highest inactivation percentage, 51.12%, and consumed only 6.84% energy (based on a 50% inactivation percentage). Repeating treatment, either using double series-connection or circling inactivation, elevated the inactivation percentage, yet consumed much more energy. The results indicate that conical-hole-generated hydrodynamic cavitation shows great potential as a pre-inactivation method for ballast water treatment.

  7. Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruonan; Wang, Guomin; Tian, Ying; Wang, Kaile [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhang, Jue, E-mail: zhangjue@pku.edu.cn [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China); Fang, Jing [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China)

    2015-12-30

    Highlights: • We propose a new approach to treat S. aureus inoculated on strawberries by PAW. • PAW could inactivate S. aureus on strawberries via the Log Reduction results, further confirmed by CLSM and SEM. • The short-lived ROS in PAW are considered the most important agents in inactivation process. • No significant change was found in color, firmness and pH of the PAW treated strawberries. - Abstract: Non-thermal plasma has been widely considered to be an effective method for decontamination of foods. Recently, numerous studies report that plasma-activated water (PAW) also has outstanding antibacterial ability. This study presents the first report on the potential of PAW for the inactivation of Staphylococcus aureus (S. aureus) inoculated on strawberries. PAW treatments achieved a reduction of S. aureus ranging from 1.6 to 2.3 log at day-0 storage, while 1.7 to 3.4 log at day-4 storage. The inactivation efficiency depended on the plasma-activated time for PAW generation and PAW-treated time of strawberries inoculated with S. aureus. LIVE/DEAD staining and scanning electron microscopy results confirm that PAW could damage the bacterial cell wall. Moreover, optical emission spectra and oxidation reduction potential results demonstrate the inactivation is mainly attributed to oxidative stress induced by reactive oxygen species in PAW. In addition, no significant change was found in color, firmness and pH of the PAW treated strawberries. Thus, PAW can be a promising alternative to traditional sanitizers applied in the fresh produce industry.

  8. Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce

    International Nuclear Information System (INIS)

    Ma, Ruonan; Wang, Guomin; Tian, Ying; Wang, Kaile; Zhang, Jue; Fang, Jing

    2015-01-01

    Highlights: • We propose a new approach to treat S. aureus inoculated on strawberries by PAW. • PAW could inactivate S. aureus on strawberries via the Log Reduction results, further confirmed by CLSM and SEM. • The short-lived ROS in PAW are considered the most important agents in inactivation process. • No significant change was found in color, firmness and pH of the PAW treated strawberries. - Abstract: Non-thermal plasma has been widely considered to be an effective method for decontamination of foods. Recently, numerous studies report that plasma-activated water (PAW) also has outstanding antibacterial ability. This study presents the first report on the potential of PAW for the inactivation of Staphylococcus aureus (S. aureus) inoculated on strawberries. PAW treatments achieved a reduction of S. aureus ranging from 1.6 to 2.3 log at day-0 storage, while 1.7 to 3.4 log at day-4 storage. The inactivation efficiency depended on the plasma-activated time for PAW generation and PAW-treated time of strawberries inoculated with S. aureus. LIVE/DEAD staining and scanning electron microscopy results confirm that PAW could damage the bacterial cell wall. Moreover, optical emission spectra and oxidation reduction potential results demonstrate the inactivation is mainly attributed to oxidative stress induced by reactive oxygen species in PAW. In addition, no significant change was found in color, firmness and pH of the PAW treated strawberries. Thus, PAW can be a promising alternative to traditional sanitizers applied in the fresh produce industry.

  9. Gynogenesis in carp, Cyprinus carpio L. and tench, Tinca tinca L. induced by 60Co radiation in highly homogeneous radiating field

    International Nuclear Information System (INIS)

    Pipota, J.; Linhart, O.

    1986-01-01

    The paper deals with a method of fertility inactivation of fish spermatozoa by gamma radiation. Spermatozoa mobility remained unchanged after irradiation. Irradiated sperm has been utilized to induced gynogenesis by means of retention of the second polar body and of mitotic gynogenesis, realized in carp for the first time. Homogeneity of gamma ray field was + - 1%. (author)

  10. Substrate-induced inactivation of the OXA2 beta-lactamase.

    Science.gov (United States)

    Ledent, P; Frère, J M

    1993-01-01

    The hydrolysis time courses of 22 beta-lactam antibiotics by the class D OXA2 beta-lactamase were studied. Among these, only three appeared to correspond to the integrated Henri-Michaelis equation. 'Burst' kinetics, implying branched pathways, were observed with most penicillins, cephalosporins and with flomoxef and imipenem. Kinetic parameters characteristic of the different phases of the hydrolysis were determined for some substrates. Mechanisms generally accepted to explain such reversible partial inactivations involving branches at either the free enzyme or the acyl-enzyme were inadequate to explain the enzyme behaviour. The hydrolysis of imipenem was characterized by the occurrence of two 'bursts', and that of nitrocefin by a partial substrate-induced inactivation complicated by a competitive inhibition by the hydrolysis product. PMID:8240304

  11. Optimising the inactivation of grape juice spoilage organisms by pulse electric fields.

    Science.gov (United States)

    Marsellés-Fontanet, A Robert; Puig, Anna; Olmos, Paola; Mínguez-Sanz, Santiago; Martín-Belloso, Olga

    2009-04-15

    The effect of some pulsed electric field (PEF) processing parameters (electric field strength, pulse frequency and treatment time), on a mixture of microorganisms (Kloeckera apiculata, Saccharomyces cerevisiae, Lactobacillus plantarum, Lactobacillus hilgardii and Gluconobacter oxydans) typically present in grape juice and wine were evaluated. An experimental design based on response surface methodology (RSM) was used and results were also compared with those of a factorially designed experiment. The relationship between the levels of inactivation of microorganisms and the energy applied to the grape juice was analysed. Yeast and bacteria were inactivated by the PEF treatments, with reductions that ranged from 2.24 to 3.94 log units. All PEF parameters affected microbial inactivation. Optimal inactivation of the mixture of spoilage microorganisms was predicted by the RSM models at 35.0 kV cm(-1) with 303 Hz pulse width for 1 ms. Inactivation was greater for yeasts than for bacteria, as was predicted by the RSM. The maximum efficacy of the PEF treatment for inactivation of microorganisms in grape juice was observed around 1500 MJ L(-1) for all the microorganisms investigated. The RSM could be used in the fruit juice industry to optimise the inactivation of spoilage microorganisms by PEF.

  12. Inactivation of Primate Prefrontal Cortex Impairs Auditory and Audiovisual Working Memory.

    Science.gov (United States)

    Plakke, Bethany; Hwang, Jaewon; Romanski, Lizabeth M

    2015-07-01

    The prefrontal cortex is associated with cognitive functions that include planning, reasoning, decision-making, working memory, and communication. Neurophysiology and neuropsychology studies have established that dorsolateral prefrontal cortex is essential in spatial working memory while the ventral frontal lobe processes language and communication signals. Single-unit recordings in nonhuman primates has shown that ventral prefrontal (VLPFC) neurons integrate face and vocal information and are active during audiovisual working memory. However, whether VLPFC is essential in remembering face and voice information is unknown. We therefore trained nonhuman primates in an audiovisual working memory paradigm using naturalistic face-vocalization movies as memoranda. We inactivated VLPFC, with reversible cortical cooling, and examined performance when faces, vocalizations or both faces and vocalization had to be remembered. We found that VLPFC inactivation impaired subjects' performance in audiovisual and auditory-alone versions of the task. In contrast, VLPFC inactivation did not disrupt visual working memory. Our studies demonstrate the importance of VLPFC in auditory and audiovisual working memory for social stimuli but suggest a different role for VLPFC in unimodal visual processing. The ventral frontal lobe, or inferior frontal gyrus, plays an important role in audiovisual communication in the human brain. Studies with nonhuman primates have found that neurons within ventral prefrontal cortex (VLPFC) encode both faces and vocalizations and that VLPFC is active when animals need to remember these social stimuli. In the present study, we temporarily inactivated VLPFC by cooling the cortex while nonhuman primates performed a working memory task. This impaired the ability of subjects to remember a face and vocalization pair or just the vocalization alone. Our work highlights the importance of the primate VLPFC in the processing of faces and vocalizations in a manner that

  13. Epigenetic inactivation of CHFR in human tumors.

    Science.gov (United States)

    Toyota, Minoru; Sasaki, Yasushi; Satoh, Ayumi; Ogi, Kazuhiro; Kikuchi, Takefumi; Suzuki, Hiromu; Mita, Hiroaki; Tanaka, Nobuyuki; Itoh, Fumio; Issa, Jean-Pierre J; Jair, Kam-Wing; Schuebel, Kornel E; Imai, Kohzoh; Tokino, Takashi

    2003-06-24

    Cell-cycle checkpoints controlling the orderly progression through mitosis are frequently disrupted in human cancers. One such checkpoint, entry into metaphase, is regulated by the CHFR gene encoding a protein possessing forkhead-associated and RING finger domains as well as ubiquitin-ligase activity. Although defects in this checkpoint have been described, the molecular basis and prevalence of CHFR inactivation in human tumors are still not fully understood. To address this question, we analyzed the pattern of CHFR expression in a number of human cancer cell lines and primary tumors. We found CpG methylation-dependent silencing of CHFR expression in 45% of cancer cell lines, 40% of primary colorectal cancers, 53% of colorectal adenomas, and 30% of primary head and neck cancers. Expression of CHFR was precisely correlated with both CpG methylation and deacetylation of histones H3 and H4 in the CpG-rich regulatory region. Moreover, CpG methylation and thus silencing of CHFR depended on the activities of two DNA methyltransferases, DNMT1 and DNMT3b, as their genetic inactivation restored CHFR expression. Finally, cells with CHFR methylation had an intrinsically high mitotic index when treated with microtubule inhibitor. This means that cells in which CHFR was epigenetically inactivated constitute loss-of-function alleles for mitotic checkpoint control. Taken together, these findings shed light on a pathway by which mitotic checkpoint is bypassed in cancer cells and suggest that inactivation of checkpoint genes is much more widespread than previously suspected.

  14. Comparative study of inactivation of herpes simplex virus types 1 and 2 by commonly used antiseptic agents

    International Nuclear Information System (INIS)

    Croughan, W.S.; Behbehani, A.M.

    1988-01-01

    A comparative study of the different reactions of herpes simplex virus types 1 and 2 to Lysol, Listerine, bleach, rubbing alcohol, Alcide disinfectant (Alcide Corp., Westport, Conn.), and various pHs, temperatures, and UV light exposures was performed. Both types of stock virus (titers of approximately 10(6) and 10(5.5) for types 1 and 2, respectively) were inactivated by 0.5% Lysol in 5 min; by Listerine (1:1 mixtures) in 5 min; by 2000 ppm (2000 microliters/liter) of bleach in 10 min; by rubbing alcohol (1:1 mixtures) at zero time; by Alcide disinfectant (0.2 ml of virus plus 2.0 ml of Alcide) at zero time; by pHs 3, 5, and 11 in 10 min; and by a temperature of 56 degrees C in 30 min. A germicidal lamp at a distance of 48 cm failed to completely inactivate the two types in 15 min. Type 1 showed slightly more resistance to Listerine and bleach and significantly more resistance to heat; moreover, pH 9 did not affect the infectivity of either type after 10 min

  15. Modification of sodium and potassium channel kinetics by diethyl ether and studies on sodium channel inactivation in the crayfish giant axon membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bean, Bruce Palmer [Univ. of Rochester, NY (United States)

    1979-01-01

    The effects of ether and halothane on membrane currents in the voltage clamped crayfish giant axon membrane were investigated. Concentrations of ether up to 300 mM and of halothane up to 32 mM had no effect on resting potential or leakage conductance. Ether and halothane reduced the size of sodium currents without changing the voltage dependence of the peak currents or their reversal potential. Ether and halothane also produced a reversible, dose-dependent speeding of sodium current decay at all membrane potentials. Ether reduced the time constants for inactivation, and also shifted the midpoint of the steady-state inactivation curve in the hyperpolarizing direction. Potassium currents were smaller with ether present, with no change in the voltage dependence of steady-state currents. The activation of potassium channels was faster with ether present. There was no apparent change in the capacitance of the crayfish giant axon membrane with ether concentrations of up to 100 mM. Experiments on sodium channel inactivation kinetics were performed using 4-aminopyridine to block potassium currents. Sodium currents decayed with a time course generally fit well by a single exponential. The time constant of decay was a steep function of voltage, especially in the negative resistance region of the peak current vs voltage relation.The time course of inactivation was very similar to that of the decay of the current at the same potential. The measurement of steady-state inactivation curves with different test pulses showed no shifts along the voltage asix. The voltage-dependence of the integral of sodium conductance was measured to test models of sodium channel inactivation in which channels must open before inactivating; the results appear inconsistent with some of the simplest cases of such models.

  16. UK-18,892: resistance to modification by aminoglycoside-inactivating enzymes.

    Science.gov (United States)

    Andrews, R J; Brammer, K W; Cheeseman, H E; Jevons, S

    1978-12-01

    UK-18,892, a new semisynthetic aminoglycoside, was active against bacteria possessing aminoglycoside-inactivating enzymes, with the exception of some known to possess AAC(6') or AAD(4') enzymes. This activity has been rationalized by using cell-free extracts of bacteria containing known inactivating enzymes, where it was shown that UK-18,892 was not a substrate for the APH(3'), AAD(2''), AAC(3), and AAC(2') enzymes. It was also demonstrated that UK-18,892 protected mice against lethal infections caused by organisms possessing aminoglycoside-inactivating enzymes.

  17. Using UVC Light-Emitting Diodes at Wavelengths of 266 to 279 Nanometers To Inactivate Foodborne Pathogens and Pasteurize Sliced Cheese

    Science.gov (United States)

    Kim, Soo-Ji; Kim, Do-Kyun

    2015-01-01

    UVC light is a widely used sterilization technology. However, UV lamps have several limitations, including low activity at refrigeration temperatures, a long warm-up time, and risk of mercury exposure. UV-type lamps only emit light at 254 nm, so as an alternative, UV light-emitting diodes (UV-LEDs) which can produce the desired wavelengths have been developed. In this study, we validated the inactivation efficacy of UV-LEDs by wavelength and compared the results to those of conventional UV lamps. Selective media inoculated with Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes were irradiated using UV-LEDs at 266, 270, 275, and 279 nm in the UVC spectrum at 0.1, 0.2, 0.5, and 0.7 mJ/cm2, respectively. The radiation intensity of the UV-LEDs was about 4 μW/cm2, and UV lamps were covered with polypropylene films to adjust the light intensity similar to those of UV-LEDs. In addition, we applied UV-LED to sliced cheese at doses of 1, 2, and 3 mJ/cm2. Our results showed that inactivation rates after UV-LED treatment were significantly different (P UV lamps at a similar intensity. On microbiological media, UV-LED treatments at 266 and 270 nm showed significantly different (P < 0.05) inactivation effects than other wavelength modules. For sliced cheeses, 4- to 5-log reductions occurred after treatment at 3 mJ/cm2 for all three pathogens, with negligible generation of injured cells. PMID:26386061

  18. Free chlorine and monochloramine inactivation kinetics of Aspergillus and Penicillium in drinking water.

    Science.gov (United States)

    Ma, Xiao; Bibby, Kyle

    2017-09-01

    Fungi are near-ubiquitous in potable water distribution systems, but the disinfection kinetics of commonly identified fungi are poorly studied. In the present study, laboratory scale experiments were conducted to evaluate the inactivation kinetics of Aspergillus fumigatus, Aspergillus versicolor, and Penicillium purpurogenum by free chlorine and monochloramine. The observed inactivation data were then fit to a delayed Chick-Watson model. Based on the model parameter estimation, the Ct values (integrated product of disinfectant concentration C and contact time t over defined time intervals) for 99.9% inactivation of the tested fungal strains ranged from 48.99 mg min/L to 194.7 mg min/L for free chlorine and from 90.33 mg min/L to 531.3 mg min/L for monochloramine. Fungal isolates from a drinking water system (Aspergillus versicolor and Penicillium purpurogenum) were more disinfection resistant than Aspergillus fumigatus type and clinical isolates. The required 99.9% inactivation Ct values for the tested fungal strains are higher than E. coli, a commonly monitored indicator bacteria, and within a similar range for bacteria commonly identified within water distribution systems, such as Mycobacterium spp. and Legionella spp. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Modelling fungal solid-state fermentation: The role of inactivation kinetics

    NARCIS (Netherlands)

    Smits, J.P.; Sonsbeek, H.M. van; Knol, W.; Tramper, J.; Geelhoed, W.; Peeters, M.; Rinzema, A.

    1999-01-01

    The theoretical mathematical models described in this paper are used to evaluate the effects of fungal biomass inactivation kinetics on a non- isothermal tray solid-state fermentation (SSF). The inactivation kinetics, derived from previously reported experiments done under isothermal conditions and

  20. A specific inactivator of mammalian C'4 isolated from nurse shark (Ginglymostoma cirratum) serum.

    Science.gov (United States)

    Jensen, J A

    1969-08-01

    A material which specifically inactivates mammalian C'4 was isolated from low ionic strength precipitates of nurse shark serum. The C'4 inactivator was not detected in whole serum. The conditions of its generation and its immunoelectrophoretic behavior seem to indicate that it is an enzymatically formed cleavage product of a precursor contained in whole shark serum. The inactivator was partially purified and characterized. It had an S-value of 3.3 (sucrose gradient) which was in agreement with its retardation on gel filtration, was stable between pH 5.0 and 10.0, had a half-life of 5 min at 56 degrees C, pH 7.5, was inactivated by trypsin and was nontoxic. Its powerful anticomplementary activity in vitro and in vivo was solely due to the rapid inactivation of C'4; no other complement components were affected. No cofactor requirement was observed for the equally rapid inactivation of highly purified human and guinea pig C'4. The kinetics of C'4 inactivation and TAME hydrolysis, the greater anodic mobility of inactivated human C'4, and the influence of temperature on the rate of inactivation suggest that the inactivator is an enzyme and C'4 its substrate. This conclusion was supported by the more recent detection of a split product of C'4. Intravenous administration of the C'4 inactivator could prevent lethal Forssman shock and suppress the Arthus reaction in guinea pigs; it prolonged significantly the rejection time of renal xenografts but had no detectable effect on passive cutaneous anaphylaxis. Anaphylatoxin could be generated in C'4 depleted guinea pig serum with the cobra venom factor, but not with immune precipitates. The possible relationship between C'1 esterase and the C'4 inactivator is discussed on the basis of similarities and dissimilarities.

  1. Studies on Aspergillus flavus

    International Nuclear Information System (INIS)

    Padwal-Desai, S.R.; Ghanekar, A.S.; Sreenivasan, A.

    1976-01-01

    In vitro studies were conducted on conidia of Aspergillus flavus Link (aflatoxin producing) and Aspergillus flavus oryzae (non-toxigenic) strains isolated and identified in this laboratory. These strains differed in resistance to heat and gamma radiation, the toxigenic strain being more resistant to both treatments. Results of tests on dose-modifying factors indicated that composition, temperature and pH of suspending media affected radiation resistance. On the other hand, the size of the initial population and the age of the conidia did not influence the radiation resistance of either strain. Studies on thermal inactivation of the conidia suggested that the temperature employed was more important than the time of heat treatment. Conidia of both strains showed a synergistic effect of combined heat and radiation treatments, although a heat-radiation sequence was more effective than a radiation-heat sequence. (author)

  2. Wastewater disinfection by peracetic acid: assessment of models for tracking residual measurements and inactivation.

    Science.gov (United States)

    Santoro, Domenico; Gehr, Ronald; Bartrand, Timothy A; Liberti, Lorenzo; Notarnicola, Michele; Dell'Erba, Adele; Falsanisi, Dario; Haas, Charles N

    2007-07-01

    With its potential for low (if any) disinfection byproduct formation and easy retrofit for chlorine contactors, peracetic acid (PAA) or use of PAA in combination with other disinfectant technologies may be an attractive alternative to chlorine-based disinfection. Examples of systems that might benefit from use of PAA are water reuse schemes or plants discharging to sensitive receiving water bodies. Though PAA is in use in numerous wastewater treatment plants in Europe, its chemical kinetics, microbial inactivation rates, and mode of action against microorganisms are not thoroughly understood. This paper presents results from experimental studies of PAA demand, PAA decay, and microbial inactivation, with a complementary modeling analysis. Model results are used to evaluate techniques for measurement of PAA concentration and to develop hypotheses regarding the mode of action of PAA in bacterial inactivation. Kinetic and microbial inactivation rate data were collected for typical wastewaters and may be useful for engineers in evaluating whether to convert from chlorine to PAA disinfection.

  3. Function of the activated protein C (APC) autolysis loop in activated FVIII inactivation.

    Science.gov (United States)

    Cramer, Thomas J; Gale, Andrew J

    2011-06-01

    Activated protein C (APC) binds to its substrates activated factor V (FVa) and activated factor VIII (FVIIIa) with a basic exosite that consists of loops 37, 60, 70 and the autolysis loop. These loops have a high density of basic residues, resulting in a positive charge on the surface of APC. Many of these residues are important in the interaction of APC with FVa and FVIIIa. The current study focused on the function of the autolysis loop in the interaction with FVIIIa. This loop was previously shown to interact with FVa, and it inhibits APC inactivation by plasma serpins. Charged residues of the autolysis loop were individually mutated to alanine and the activity of these mutants was assessed in functional FVIIIa inactivation assays. The autolysis loop was functionally important for FVIIIa inactivation. Mutation of R306, K311 and R314 each resulted in significantly reduced FVIIIa inactivation. The inactivating cleavages of FVIIIa at R336 and R562 were affected equally by the mutations. Protein S and FV stimulated cleavage at R562 more than cleavage at R336, independent of mutations in the autolysis loop. Together, these results confirmed that the autolysis loop plays a significant role as part of the basic exosite on APC in the interaction with FVIIIa. © 2011 Blackwell Publishing Ltd.

  4. Inactivation of high-risk human papillomaviruses by Holder pasteurization: implications for donor human milk banking.

    Science.gov (United States)

    Donalisio, Manuela; Cagno, Valeria; Vallino, Marta; Moro, Guido E; Arslanoglu, Sertac; Tonetto, Paola; Bertino, Enrico; Lembo, David

    2014-01-01

    Several studies have recently reported the detection of oncogenic human papillomaviruses (HPV) in human milk of a minority of lactating mothers. These findings raised safety concerns in the context of human donor milk banking given the potential risk of HPV transmission to recipient infants. The aim of this study was to investigate whether the Holder pasteurization, a procedure currently in use in human donor milk banks for milk pasteurization, completely inactivates high-risk and low-risk HPV. HPV pseudoviruses (PsV) were generated, spiked into cell culture medium or donor human milk and subjected to thermal inactivation. HPV PsV infectivity and morphological integrity was analyzed by cell-based assay and by electron microscopy, respectively. The Holder pasteurization completely inactivated the infectivity of high-risk (types 16 and 18) and low-risk (type 6) HPV both in cell culture medium and in human milk causing PsV particle disassembly. The results presented here indicate that the Holder pasteurization is an efficient procedure to inactivate high-risk and low-risk HPV thus preventing the potential risk of their transmission through human donor milk.

  5. Inactivation of Listeria innocua in skim milk by pulsed electric fields and nisin.

    Science.gov (United States)

    Calderón-Miranda, M L; Barbosa-Cánovas, G V; Swanson, B G

    1999-10-01

    Pulsed electric fields (PEF) is an emerging nonthermal processing technology used to inactivate microorganisms in liquid foods such as milk. PEF results in loss of cell membrane functionality that leads to inactivation of the microorganism. There are many processes that aid in the stability and safety of foods. The combination of different preservation factors, such as nisin and PEF, to control microorganisms should be explored. The objective of this research was to study the inactivation of Listeria innocua suspended in skim milk by PEF as well as the sensitization of PEF treated L. innocua to nisin. The selected electric field intensity was 30, 40 and 50 kV/cm and the number of pulses applied was 10.6, 21.3 and 32. The sensitization exhibited by PEF treated L. innocua to nisin was assessed for 10 or 100 IU nisin/ml. A progressive decrease in the population of L. innocua was observed for the selected field intensities, with the greatest reduction being 2 1/2 log cycles (U). The exposure of L. innocua to nisin after PEF had an additive effect on the inactivation of the microorganism as that exhibited by the PEF alone. As the electric field, number of pulses and nisin concentration increased, synergism was observed in the inactivation of L. innocua as a result of exposure to nisin after PEF. The reduction of L. innocua accomplished by exposure to 10 IU nisin/ml after 32 pulsed electric fields was 2, 2.7, and 3.4 U for an electric field intensity of 30, 40, and 50 kV/cm, respectively. Population of L. innocua subjected to 100 IU nisin/ml after PEF was 2.8-3.8 U for the selected electric field intensities and 32 pulses. The designed model for the inactivation of L. innocua as a result of the PEF followed by exposure to nisin proved to be accurate in the prediction of the inactivation of L. innocua in skim milk containing 1.2 or 37 IU nisin/ml. Inactivation of L. innocua in skim milk containing 37 IU nisin/ml resulted in a decrease in population of 3.7 U.

  6. 37 CFR 11.11 - Administrative suspension, inactivation, resignation, and readmission.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Administrative suspension, inactivation, resignation, and readmission. 11.11 Section 11.11 Patents, Trademarks, and Copyrights UNITED... Other Non-Patent Law § 11.11 Administrative suspension, inactivation, resignation, and readmission. (a...

  7. Immunogenicity of UV-inactivated measles virus

    International Nuclear Information System (INIS)

    Zahorska, R.; Mazur, N.; Korbecki, M.

    1978-01-01

    By means of the antigen extinction limit test it was shown that a triple dose vaccination of guinea pigs with UV-inactivated measles virus gave better results, than a single dose vaccination which was proved by the very low immunogenicity index. For both vaccination schemes (single and triple) the immune response was only sligthly influenced by a change of dose from 10 5 to 10 6 HadU 50 /ml or by the addition of aluminum adjuvant. In the antigen extinction limit test the antibody levels were determined by two methods (HIT and NT) the results of which were statistically equivalent. The UV-inactivated measles virus was also found to induce hemolysis-inhibiting antibodies. (orig.) [de

  8. Effects of ultraviolet laser radiation on Venezuelan equine encephalomyelitis virus

    International Nuclear Information System (INIS)

    Nikogosyan, D.N.; Kapituletz, S.P.; Smirnov, Y.A.

    1991-01-01

    The effects of usual low-intensity continuous (λ = 254 nm,I = 10 W/m 2 ) UV radiation and high-intensity laser nanosecond (λ = 266 nm, τ p = 10 ns, I = 10 9 W/m 2 ) or picosecond (λ = 266 nm, τ p = 23 ps, I = 10 12 W/m 2 ) UV radiation on Venezuelan equine encephalomyelitis virus (a member of the Togaviridae family) were compared. The quantum yields of infectivity inactivation, pyrimidine dimer formation and RNA-protein crosslinking were determined. (author)

  9. Effects of ionizing radiation and the molecular and cellular mechanisms

    International Nuclear Information System (INIS)

    1982-01-01

    This symposium with its 60 contributions presents a survey of the current state of the art in molecular radiation biophysics and radiobiology in the FRG. Many contributions show the trend of applying findings in these fields to cancer research. The various sessions have been devoted to: 1) Radiation chemistry of biomolecules; 2) DNA damage and repair; 3) Repair of DNA damage; 4) Cell proliferation and cell inactivation; 5) Cancerogenesis, mutation and chromosomal damage; 6) Effects of heavy ions. (AJ) [de

  10. Influenza (flu) vaccine (Inactivated or Recombinant): What you need to know

    Science.gov (United States)

    ... taken in its entirety from the CDC Inactivated Influenza Vaccine Information Statement (VIS) www.cdc.gov/vaccines/hcp/vis/vis-statements/flu.html CDC review information for Inactivated Influenza VIS: ...

  11. Key tumor suppressor genes inactivated by "greater promoter" methylation and somatic mutations in head and neck cancer

    NARCIS (Netherlands)

    Guerrero-Preston, Rafael; Michailidi, Christina; Marchionni, Luigi; Pickering, Curtis R.; Frederick, Mitchell J.; Myers, Jeffrey N.; Yegnasubramanian, Srinivasan; Hadar, Tal; Noordhuis, Maartje G.; Zizkova, Veronika; Fertig, Elana; Agrawal, Nishant; Westra, William; Koch, Wayne; Califano, Joseph; Velculescu, Victor E.; Sidransky, David

    Tumor suppressor genes (TSGs) are commonly inactivated by somatic mutation and/or promoter methylation; yet, recent high-throughput genomic studies have not identified key TSGs inactivated by both mechanisms. We pursued an integrated molecular analysis based on methylation binding domain sequencing

  12. The impact of atmospheric cold plasma treatment on inactivation of lipase and lipoxygenase of wheat germs

    DEFF Research Database (Denmark)

    Tolouie, Haniye; Mohammadifar, Mohammad Amin; Ghomi, Hamid

    2018-01-01

    Wheat germ is a by-product of milling process which contains large amount of nutrients. The shelf life of wheat germ could improve by inactivation of destructive endogenous enzymes especially lipase and lipoxygenase. In this work, the impact of atmospheric cold plasma treatment on the inactivation...... of lipase and lipoxygenase enzymes of wheat germ was studied. Dielectric barrier discharge plasma was utilized to treat wheat germs. The impact of treatment time and voltage of plasma on the inactivation of lipase and lipoxygenase were investigated as well. The higher voltage and treatment time led...

  13. Radical inactivation of a biological sulphydryl molecule

    International Nuclear Information System (INIS)

    Lin, W.S.; Lal, M.; Gaucher, G.M.; Armstrong, D.A.

    1977-01-01

    Reactive species produced from the free radical-induced chain oxidation of low molecular weight sulphydryl-containing molecules in aerated solutions deactivate the sulphydryl-containing enzyme papain, forming both reparable mixed disulphides and non-reparable products. This inactivation is highly efficient for penicillamine and glutathione, but almost negligible with cysteine, which is a protector of papain for [cysteine] / [papain] >= 5 under all conditions used. In the case of glutathione, superoxide dismutase caused only a small reduction in the inactivation and peroxide yields were small, implying that the deactivating species are not .O 2 - but RSOO. radicals or products from them. For penicillamine, however, dimutase was highly effective and the peroxide yields were relatively large, demonstrating that .O 2 - or a radical with similar capabilities for forming H 2 O 2 and being deactivated by dismutase was involved. Although in the presence of dismutase penicillamine is a better protector of non-reparable papain inactivation than glutathione, it suffers from a deficiency in that the papain-penicillamine mixed disulphide, which is always formed, cannot be repaired by spontaneous reaction with RSH molecules. (author)

  14. A mathematical model for leukemogenesis of radiation-induced acute myeloid leukemia in C3H/He mice

    International Nuclear Information System (INIS)

    Kai, M.; Ban, N.

    2002-01-01

    We developed a mathematical model in leukemogenesis of acute myeloid leukemia(AML) in C3H/He mice irradiated. Our previous study indicated that the leukemogenesis of AML was associated with a deletion of chromosome 2 directly induced by acute radiation. We hypothesized that radiation-induced AML needs both inactivation of one allele of a causative gene directly induced by acute radiation and another mutational event at the other allele. We analyzed data using a two-stage stochastic model for carcinogenesis. Model fitting was based on the maximum likelihood method. Our model analysis suggested that a single exposure might induce the long-lasting delayed cell death of radiation-induced initiated cells, and that the incidence of AML may be determined through both radiation-induced initiation and persistent increase of delayed cell death of the initiated cell induced by radiation

  15. The use of ionising radiation from 60CO gamma source in controlling mouldiness in dried cocoa beans

    International Nuclear Information System (INIS)

    Appiah, Victoria

    2001-01-01

    Mouldiness in stored cocoa beans in Ghana and the production of aflatoxin have been studied. Based on actual weight of discarded beans, mouldy beans have been estimated to constitute 0.13 % and 0.00002 % of marketable beans at the farmers' level and the buying agents' depots respectively in the Tafo District. This is contrasted with an estimated value of 0.16 % obtained in a questionnaire type study involving farmers. Estimated mouldy beans at the Tema port was 0.69 % per year (based on the cut test) representing a financial loss of $1,688,637.19 per year at $989/T should the mouldy beans be discarded. Fifty-eight (58) internally- and externally- borne fungal species were isolated from dried cocoa beans. Of these, forty-eight (48) were internally- borne and ten (10) were superficial. Twenty-nine (29) of the internally occurring fungi have been recorded for the first time on cocoa beans in Ghana. Twenty-six (26) of the fungi isolated belong to Aspergillus group. They included A. parasiticus and A. flavus, which can produce aflatoxins. Five (5) belong to Penicillium, eight (8) to Fusarium and nineteen (19) to other species. Ionising radiation effectively controlled fungi associated with mouldiness in cocoa beans in a dose - dependent manner. A radiation dose of 6 kGy completely inactivated the moulds. A. flavus and A. tamarii were the most radiation - resistant moulds encountered. The moisture content of the beans before, during and after irradiation influenced the effect of radiation. The relative humidity during storage and the type of packaging also influenced the radiation effect. Conidia of A. flavus subjected to moist heat at temperatures 20 0 C to 60 0 C for 2.5, 5 and 10 min respectively were not significantly affected by heating up to 50 0 C. Heating an aqueous conidial suspension at 60 0 C for at least 2.5 min reduced the number of fungal colonies by at least 5 log cycles when the suspension was assayed on agar plate media. Heating at 59 0 C for 10 min

  16. UV disinfection of water. 1. Effect on microorganisms/virus conditions which can limit the use of UV radiation as a means of disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Skipperud, E; Johansen,; Myhrstad, J A [Statens Inst. for Folkehelse, Oslo (Norway)

    1978-01-01

    UV radiation has been found to have advantages over chloration for the disinfection of water. New regulations for dietary conditions on Norwegian ships introduced in 1974 led to increased use of UV disinfection, and this has in the following years spread to waterworks. The present article is based on a study to determine possible limitation. The nature of the injuries to the microorganisms is first discussed, together with repair mechanisms. A table is given showing the energy required for 90 and 100 percent inactivation of a number of microorganisms. Some other factors affecting UV inactivation are briefly mentioned. (JIW).

  17. White spot syndrome virus inactivation study by using gamma irradiation

    Science.gov (United States)

    Heidareh, Marzieh; Sedeh, Farahnaz Motamedi; Soltani, Mehdi; Rajabifar, Saeed; Afsharnasab, Mohammad; Dashtiannasab, Aghil

    2014-09-01

    The present study was conducted to investigate the effect of gamma irradiation on white spot syndrome virus (WSSV). White spot syndrome virus is a pathogen of major economic importance in cultured penaeid shrimp industries. White spot disease can cause mortalities reaching 100% within 3-10 days of gross signs appearing. During the period of culture, immunostimulant agents and vaccines may provide potential methods to protect shrimps from opportunistic and pathogenic microrganisms. In this study, firstly, WSSV was isolated from infected shrimp and then multiplied in crayfish. WSSV was purified from the infected crayfish haemolymph by sucrose gradient and confirmed by transmission electron microscopy. In vivo virus titration was performed in shrimp, Penaeus semisulcatus. The LD50 of live virus stock was calculated 10 5.4/mL. Shrimp post-larvae (1-2 g) were treated with gamma-irradiated (different doses) WSSV (100 to 10-4 dilutions) for a period of 10 days. The dose/survival curve for irradiated and un-irradiated WSSV was drawn; the optimum dose range for inactivation of WSSV and unaltered antigenicity was obtained 14-15 kGy. This preliminary information suggests that shrimp appear to benefit from treatment with gammairradiated WSSV especially at 14-15 KGy.

  18. Imprinted X chromosome inactivation: evolution of mechanisms in distantly related mammals

    Directory of Open Access Journals (Sweden)

    Shafagh A. Waters

    2015-03-01

    Full Text Available In females, X chromosome inactivation (XCI ensures transcriptional silencing of one of the two Xs (either in a random or imprinted fashion in somatic cells. Comparing this silencing between species has offered insight into different mechanisms of X inactivation, providing clues into the evolution of this epigenetic process in mammals. Long-noncoding RNAs have emerged as a common theme in XCI of therian mammals (eutherian and marsupial. Eutherian X inactivation is regulated by the noncoding RNA product of XIST, within a cis-acting master control region called the X inactivation center (XIC. Marsupials XCI is XIST independent. Instead, XCI is controlled by the long-noncoding RNA Rsx, which appears to be a functional analog of the eutherian XIST gene, insofar that its transcript coats the inactive X and represses activity of genes in cis. In this review we discuss XCI in eutherians, and contrast imprinted X inactivation in mouse and marsupials. We provide particular focus on the evolution of genomic elements that confer the unique epigenetic features that characterize the inactive X chromosome.

  19. Response surface methodology as a tool for modeling and optimization of Bacillus subtilis spores inactivation by UV/ nano-Fe0 process for safe water production.

    Science.gov (United States)

    Yousefzadeh, Samira; Matin, Atiyeh Rajabi; Ahmadi, Ehsan; Sabeti, Zahra; Alimohammadi, Mahmood; Aslani, Hassan; Nabizadeh, Ramin

    2018-04-01

    One of the most important aspects of environmental issues is the demand for clean and safe water. Meanwhile, disinfection process is one of the most important steps in safe water production. The present study aims at estimating the performance of UV, nano Zero-Valent Iron particles (nZVI, nano-Fe 0 ), and UV treatment with the addition of nZVI (combined process) for Bacillus subtilis spores inactivation. Effects of different factors on inactivation including contact time, initial nZVI concentration, UV irradiance and various aerations conditions were investigated. Response surface methodology, based on a five-level, two variable central composite design, was used to optimize target microorganism reduction and the experimental parameters. The results indicated that the disinfection time had the greatest positive impact on disinfection ability among the different selected independent variables. According to the results, it can be concluded that microbial reduction by UV alone was more effective than nZVI while the combined UV/nZVI process demonstrated the maximum log reduction. The optimum reduction of about 4 logs was observed at 491 mg/L of nZVI and 60 min of contact time when spores were exposed to UV radiation under deaerated condition. Therefore, UV/nZVI process can be suggested as a reliable method for Bacillus subtilis spores inactivation. Copyright © 2018. Published by Elsevier Ltd.

  20. Multi-Layered TiO2 Films towards Enhancement of Escherichia coli Inactivation

    Directory of Open Access Journals (Sweden)

    Sorachon Yoriya

    2016-09-01

    Full Text Available Crystalline TiO2 has shown its great photocatalytic properties in bacterial inactivation. This work presents a design fabrication of low-cost, layered TiO2 films assembled reactors and a study of their performance for a better understanding to elucidate the photocatalytic effect on inactivation of E. coli in water. The ability to reduce the number of bacteria in water samples for the layered TiO2 composing reactors has been investigated as a function of time, while varying the parameters of light sources, initial concentration of bacteria, and ratios of TiO2 film area and volume of water. Herein, the layered TiO2 films have been fabricated on the glass plates by thermal spray coating prior to screen printing, allowing a good adhesion of the films. Surface topology and crystallographic phase of TiO2 for the screen-printed active layer have been characterized, resulting in the ratio of anatase:rutile being 80:20. Under exposure to sunlight and a given condition employed in this study, the optimized film area:water volume of 1:2.62 has shown a significant ability to reduce the E. coli cells in water samples. The ratio of surface area of photocatalytic active base to volume of water medium is believed to play a predominant role facilitating the cells inactivation. The kinetic rate of inactivation and its behavior are also described in terms of adsorption of reaction species at different contact times.

  1. Abnormal X : autosome ratio, but normal X chromosome inactivation in human triploid cultures

    Directory of Open Access Journals (Sweden)

    Norwood Thomas H

    2006-07-01

    Full Text Available Abstract Background X chromosome inactivation (XCI is that aspect of mammalian dosage compensation that brings about equivalence of X-linked gene expression between females and males by inactivating one of the two X chromosomes (Xi in normal female cells, leaving them with a single active X (Xa as in male cells. In cells with more than two X's, but a diploid autosomal complement, all X's but one, Xa, are inactivated. This phenomenon is commonly thought to suggest 1 that normal development requires a ratio of one Xa per diploid autosomal set, and 2 that an early event in XCI is the marking of one X to be active, with remaining X's becoming inactivated by default. Results Triploids provide a test of these ideas because the ratio of one Xa per diploid autosomal set cannot be achieved, yet this abnormal ratio should not necessarily affect the one-Xa choice mechanism for XCI. Previous studies of XCI patterns in murine triploids support the single-Xa model, but human triploids mostly have two-Xa cells, whether they are XXX or XXY. The XCI patterns we observe in fibroblast cultures from different XXX human triploids suggest that the two-Xa pattern of XCI is selected for, and may have resulted from rare segregation errors or Xi reactivation. Conclusion The initial X inactivation pattern in human triploids, therefore, is likely to resemble the pattern that predominates in murine triploids, i.e., a single Xa, with the remaining X's inactive. Furthermore, our studies of XIST RNA accumulation and promoter methylation suggest that the basic features of XCI are normal in triploids despite the abnormal X:autosome ratio.

  2. N-type Cu2O Film for Photocatalytic and Photoelectrocatalytic Processes: Its stability and Inactivation of E. coli

    International Nuclear Information System (INIS)

    Xiong, Liangbin; Ng, Tsz Wai; Yu, Ying; Xia, Dehua; Yip, Ho Yin; Li, Guiying; An, Taicheng; Zhao, Huijun; Wong, Po Keung

    2015-01-01

    Highlights: • Photoelectrocatalytic inactivation of E. coli by Cu 2 O film was firstly reported. • 7 log of E. coli could be completely inactivated in 2 h by Cu 2 O with a 0.1 V bias. • Charge transfer between Cu 2 O and E. coli was monitored by electrochemical technique. • Inactivation of E. coli by electric charges of electrodes was in-depth investigated. • Stability of N-type Cu 2 O as a photocatalyst was studied for the first time. - ABSTRACT: Photoelectrocatalytic (PEC) inactivation of Escherichia coli K-12 by cuprous oxide (Cu 2 O) film irradiated by visible light is firstly reported. A complete inactivation of about 7 log of E. coli was obtained for Cu 2 O film within 6 h. The bacterial inactivation efficiency was significantly improved in a photoelectrochemical cell, in which 7 log of E. coli could be completely inactivated within 2 h by Cu 2 O film with a 0.1 V bias. Electric charge transfer between electrodes and E. coli, and electric charge inactivation towards E. coli were investigated using membrane-separated reactor combined with short circuit photocurrent technique. H 2 O 2 , hole, and toxicity of Cu 2 O film were found responsible for the inactivation of E. coli. Toxicity of copper ions (including Cu 2+ and Cu + ) leakage from Cu 2 O films was determined and the results showed that the amount of leakage copper ions was not toxic to E. coli. Finally, the Cu 2 O film was proved to be effective and reusable for PC and PEC inactivation of E. coli

  3. Stem-Cell Inactivation on Transplantation of Haemopoietic Cell Suspensions from Genetically Different Donors

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, R. V. [Institute of Biophysics, Ministry of Public Health of the USSR, Moscow, USSR (Russian Federation)

    1969-07-15

    The transplantation of a mixture of haemopoietic or lymphoid cells from two genetically different mice into lethally irradiated F{sub 1} recipients results in marked or total inactivation of the colony-forming units of the graft. This phenomenon is observed following transplantation of mixtures of spleen cells or bone-marrow cells from animals of different genotypes: CBA + C57BL, A + CBA, A + C57BL, C3H + C57BL, CBA + (CBA x C57BL) F{sub 1}. Maximum inactivation is observed when lymph-node cells of one genotype are transplanted with spleen or bone-marrow cells of another genotype. Use of non-syngenic kidney cells or lymphoid cells inactivated by irradiation as one component of the mixture shows that inactivation of genetically heterogeneous stem cells requires the participation of viable lymphoid cells. The inactivation phenomenon is also observed with Jerne's method. This shows that inactivation affects not only colony-forming cells but also the immunologically competent precursors of antibody-producing cells. (author)

  4. Development of Singlet Oxygen Luminescence Kinetics during the Photodynamic Inactivation of Green Algae

    Directory of Open Access Journals (Sweden)

    Tobias Bornhütter

    2016-04-01

    Full Text Available Recent studies show the feasibility of photodynamic inactivation of green algae as a vital step towards an effective photodynamic suppression of biofilms by using functionalized surfaces. The investigation of the intrinsic mechanisms of photodynamic inactivation in green algae represents the next step in order to determine optimization parameters. The observation of singlet oxygen luminescence kinetics proved to be a very effective approach towards understanding mechanisms on a cellular level. In this study, the first two-dimensional measurement of singlet oxygen kinetics in phototrophic microorganisms on surfaces during photodynamic inactivation is presented. We established a system of reproducible algae samples on surfaces, incubated with two different cationic, antimicrobial potent photosensitizers. Fluorescence microscopy images indicate that one photosensitizer localizes inside the green algae while the other accumulates along the outer algae cell wall. A newly developed setup allows for the measurement of singlet oxygen luminescence on the green algae sample surfaces over several days. The kinetics of the singlet oxygen luminescence of both photosensitizers show different developments and a distinct change over time, corresponding with the differences in their localization as well as their photosensitization potential. While the complexity of the signal reveals a challenge for the future, this study incontrovertibly marks a crucial, inevitable step in the investigation of photodynamic inactivation of biofilms: it shows the feasibility of using the singlet oxygen luminescence kinetics to investigate photodynamic effects on surfaces and thus opens a field for numerous investigations.

  5. Experiments with a homologous, inactivated canine parvovirus vaccine in vaccination programmers for dogs.

    Science.gov (United States)

    Wilson, J H; Hermann-Dekkers, W M

    1982-01-01

    The significance of canine parvovirus (CPV) infections as a permanent threat susceptible dogs, in particular pups, made the authors develop three liquid homologous inactivated adjuvant CPV vaccines that were compatible with existing canine vaccines and could be incorporated in current vaccination programmes. On vaccine (Kavak Parvo) contained only the CPV component, the second product (Kavak i-LP) also contained two inactivated leptospiral antigens, and the third vaccine (Kavak i-HLP) contained in addition an inactivated canine hepatitis virus. This paper reports on the studies conducted to test the safety and efficacy of the three products. They were used as such and as diluents for freeze dried vaccines containing live attenuated measles, distemper, and hepatitis viruses. The study was performed in a breeding kennel where all dogs were free from CPV antibodies and the nonvaccinated sentinels remained so for the course of the study. All vaccines proved to be safe in dogs of all ages, including pregnant bitches. The efficacy of the CPV component was studied both by monitoring antibody titres for more than a year and by challenge exposure of some dogs to virulent CPV. The results obtained from these studies prove that the CPV component used in the three vaccines can be incorporated as indicated in the recommended canine vaccination programmes. The observations that the inactivated CPV and hepatitis components do induce an active immunity in pups that are still protected by low levels of maternally derived antibodies against these viruses, make those vaccines very suitable in breeding kennels. Additional studies on a comparative basis are being continued in edemically CPV infected breeding kennels to quantify the significance of these observations in these special conditions.

  6. The Eag domain regulates the voltage-dependent inactivation of rat Eag1 K+ channels.

    Directory of Open Access Journals (Sweden)

    Ting-Feng Lin

    Full Text Available Eag (Kv10 and Erg (Kv11 belong to two distinct subfamilies of the ether-à-go-go K+ channel family (KCNH. While Erg channels are characterized by an inward-rectifying current-voltage relationship that results from a C-type inactivation, mammalian Eag channels display little or no voltage-dependent inactivation. Although the amino (N-terminal region such as the eag domain is not required for the C-type inactivation of Erg channels, an N-terminal deletion in mouse Eag1 has been shown to produce a voltage-dependent inactivation. To further discern the role of the eag domain in the inactivation of Eag1 channels, we generated N-terminal chimeras between rat Eag (rEag1 and human Erg (hERG1 channels that involved swapping the eag domain alone or the complete cytoplasmic N-terminal region. Functional analyses indicated that introduction of the homologous hERG1 eag domain led to both a fast phase and a slow phase of channel inactivation in the rEag1 chimeras. By contrast, the inactivation features were retained in the reverse hERG1 chimeras. Furthermore, an eag domain-lacking rEag1 deletion mutant also showed the fast phase of inactivation that was notably attenuated upon co-expression with the rEag1 eag domain fragment, but not with the hERG1 eag domain fragment. Additionally, we have identified a point mutation in the S4-S5 linker region of rEag1 that resulted in a similar inactivation phenotype. Biophysical analyses of these mutant constructs suggested that the inactivation gating of rEag1 was distinctly different from that of hERG1. Overall, our findings are consistent with the notion that the eag domain plays a critical role in regulating the inactivation gating of rEag1. We propose that the eag domain may destabilize or mask an inherent voltage-dependent inactivation of rEag1 K+ channels.

  7. Polyelectrolyte-Functionalized Nanofiber Mats Control the Collection and Inactivation of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Katrina A. Rieger

    2016-04-01

    Full Text Available Quantifying the effect that nanofiber mat chemistry and hydrophilicity have on microorganism collection and inactivation is critical in biomedical applications. In this study, the collection and inactivation of Escherichia coli K12 was examined using cellulose nanofiber mats that were surface-functionalized using three polyelectrolytes: poly (acrylic acid (PAA, chitosan (CS, and polydiallyldimethylammonium chloride (pDADMAC. The polyelectrolyte functionalized nanofiber mats retained the cylindrical morphology and average fiber diameter (~0.84 µm of the underlying cellulose nanofibers. X-ray photoelectron spectroscopy (XPS and contact angle measurements confirmed the presence of polycations or polyanions on the surface of the nanofiber mats. Both the control cellulose and pDADMAC-functionalized nanofiber mats exhibited a high collection of E. coli K12, which suggests that mat hydrophilicity may play a larger role than surface charge on cell collection. While the minimum concentration of polycations needed to inhibit E. coli K12 was 800 µg/mL for both CS and pDADMAC, once immobilized, pDADMAC-functionalized nanofiber mats exhibited a higher inactivation of E. coli K12, (~97%. Here, we demonstrate that the collection and inactivation of microorganisms by electrospun cellulose nanofiber mats can be tailored through a facile polyelectrolyte functionalization process.

  8. Polyelectrolyte-Functionalized Nanofiber Mats Control the Collection and Inactivation of Escherichia coli

    Science.gov (United States)

    Rieger, Katrina A.; Porter, Michael; Schiffman, Jessica D.

    2016-01-01

    Quantifying the effect that nanofiber mat chemistry and hydrophilicity have on microorganism collection and inactivation is critical in biomedical applications. In this study, the collection and inactivation of Escherichia coli K12 was examined using cellulose nanofiber mats that were surface-functionalized using three polyelectrolytes: poly (acrylic acid) (PAA), chitosan (CS), and polydiallyldimethylammonium chloride (pDADMAC). The polyelectrolyte functionalized nanofiber mats retained the cylindrical morphology and average fiber diameter (~0.84 µm) of the underlying cellulose nanofibers. X-ray photoelectron spectroscopy (XPS) and contact angle measurements confirmed the presence of polycations or polyanions on the surface of the nanofiber mats. Both the control cellulose and pDADMAC-functionalized nanofiber mats exhibited a high collection of E. coli K12, which suggests that mat hydrophilicity may play a larger role than surface charge on cell collection. While the minimum concentration of polycations needed to inhibit E. coli K12 was 800 µg/mL for both CS and pDADMAC, once immobilized, pDADMAC-functionalized nanofiber mats exhibited a higher inactivation of E. coli K12, (~97%). Here, we demonstrate that the collection and inactivation of microorganisms by electrospun cellulose nanofiber mats can be tailored through a facile polyelectrolyte functionalization process. PMID:28773422

  9. Genetic analysis of radiation-induced mouse thymic lymphomas

    International Nuclear Information System (INIS)

    Kominami, R.; Wakabayashi, Y.; Niwa, O.

    2003-01-01

    Mouse thymic lymphomas are one of the classic models of radiation-induced malignancies, and the model has been used for the study of genes involved in carcinogenesis. ras oncogenes are the first isolate which undergoes mutations in 10 to 30 % of lymphomas, and p16INK4a and p19ARF in the INK4a-ARF locus are also frequently inactivated. In our previous study, the inactivation of Ikaros, a key regurator of lymphoid system, was found in those lymphomas, and it was suggested that there are other responsible genes yet to be discovered. On the other hand, genetic predisposition to radiation-induced lymphoma often differs in different strains, and this reflects the presence of low penetrance genes that can modify the impact of a given mutation. Little study of such modifiers or susceptibility genes has been performed, either. Recent availability of databases on mouse genome information and the power of mouse genetic system underline usefulness of the lymphoma model in search for novel genes involved, which may provide clues to molecular mechanisms of development of the radiogenic lymphoma and also genes involved in human lymphomas and other malignancies. Accordingly, we have carried out positional cloning for the two different types of tumor-related genes. In this symposium, our current progress is presented that includes genetic mapping of susceptibility/ resistance loci on mouse chromosomes 4, 5 and 19, and also functional analysis of a novel tumor suppressor gene, Rit1/Bcl11b, that has been isolated from allelic loss (LOH) mapping and sequence analysis for γ -ray induced mouse thymic lymphomas

  10. Ultra-violet radiation for the inactivation of microorganisms in hydroponics

    International Nuclear Information System (INIS)

    Buyanosvsky, G.; Gale, J.; Degani, N.

    1981-01-01

    The growth of microorganisms in the nutrient solution of a circulating hydroponic system was suppressed by ultra-violet radiation. Applied for three hours daily (572 Jm -2 h -1 ) throughout experiments in which tomato and corn were grown, it was effective in reducing the population of microorganisms from between 500-800 x 10 3 to 10-50 x 10 3 cells per ml. (orig.)

  11. Ultra-violet radiation for the inactivation of microorganisms in hydroponics

    Energy Technology Data Exchange (ETDEWEB)

    Buyanosvsky, G; Gale, J [Ben-Gurion Univ. of the Negev, Beersheva (Israel). Jacob Blaustein Inst. for Desert Research; Degani, N [Israel Atomic Energy Commission, Beersheba. Nuclear Research Center-Negev

    1981-01-01

    The growth of microorganisms in the nutrient solution of a circulating hydroponic system was suppressed by ultra-violet radiation. Applied for three hours daily (572 Jm/sup -2/h/sup -1/) throughout experiments in which tomato and corn were grown, it was effective in reducing the population of microorganisms from between 500-800 x 10/sup 3/ to 10-50 x 10/sup 3/ cells per ml.

  12. Efficient Bacteria Inactivation by Ultrasound in Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    Leonel Ernesto Amabilis-Sosa

    2018-04-01

    Full Text Available The reuse of treated wastewaters could contribute to reducing water stress. In this research, ultrasound application on bacterial inactivation in municipal wastewater (MWW was evaluated. Total and fecal coliforms were used as standard fecal indicators; volatile suspended solids (VSS were analyzed too. Samples were taken from the effluent of secondary clarifiers. In addition, inactivation tests were carried out on pure cultures of E. coli (EC and B. subtilis (BS. Sonication was performed at 20 kHz, 35% amplitude and 600 W/L for 15, 30 and 45 min. After 15 min of sonication, bacterial density was reduced by 1.85 Log10 MPN/100 mL for EC and 3.16 Log10 CFU/mL for BS. After 30 min, no CFU/mL of BS were observed in MWW and, after 45 min, the reduction of total and fecal coliforms was practically 6.45 Log10 MPN/100mL. Inactivation mechanism was made by cavitation, which causes irreversible damage to the cell wall. Although high bacterial densities were employed, percentages of inactivation >99% were reached at 45 min. This research contributes to the implementation of ultrasound as a disinfection technique with high potential due to its high efficiency without producing byproducts. In fact, the water meets the guidelines for reuse in direct human contact services.

  13. Chemical Addressability of Ultraviolet-Inactivated Viral Nanoparticles (VNPs)

    Science.gov (United States)

    Rae, Chris; Koudelka, Kristopher J.; Destito, Giuseppe; Estrada, Mayra N.; Gonzalez, Maria J.; Manchester, Marianne

    2008-01-01

    Background Cowpea Mosaic Virus (CPMV) is increasingly being used as a nanoparticle platform for multivalent display of molecules via chemical bioconjugation to the capsid surface. A growing variety of applications have employed the CPMV multivalent display technology including nanoblock chemistry, in vivo imaging, and materials science. CPMV nanoparticles can be inexpensively produced from experimentally infected cowpea plants at high yields and are extremely stable. Although CPMV has not been shown to replicate in mammalian cells, uptake in mammalian cells does occur in vitro and in vivo. Thus, inactivation of the virus RNA genome is important for biosafety considerations, however the surface characteristics and chemical reactivity of the particles must be maintained in order to preserve chemical and structural functionality. Methodology/Principal Findings Short wave (254 nm) UV irradiation was used to crosslink the RNA genome within intact particles. Lower doses of UV previously reported to inactivate CPMV infectivity inhibited symptoms on inoculated leaves but did not prohibit systemic virus spread in plants, whereas higher doses caused aggregation of the particles and an increase in chemical reactivity further indicating broken particles. Intermediate doses of 2.0–2.5 J/cm2 were shown to maintain particle structure and chemical reactivity, and cellular binding properties were similar to CPMV-WT. Conclusions These studies demonstrate that it is possible to inactivate CPMV infectivity while maintaining particle structure and function, thus paving the way for further development of CPMV nanoparticles for in vivo applications. PMID:18830402

  14. Chemical addressability of ultraviolet-inactivated viral nanoparticles (VNPs.

    Directory of Open Access Journals (Sweden)

    Chris Rae

    2008-10-01

    Full Text Available Cowpea Mosaic Virus (CPMV is increasingly being used as a nanoparticle platform for multivalent display of molecules via chemical bioconjugation to the capsid surface. A growing variety of applications have employed the CPMV multivalent display technology including nanoblock chemistry, in vivo imaging, and materials science. CPMV nanoparticles can be inexpensively produced from experimentally infected cowpea plants at high yields and are extremely stable. Although CPMV has not been shown to replicate in mammalian cells, uptake in mammalian cells does occur in vitro and in vivo. Thus, inactivation of the virus RNA genome is important for biosafety considerations, however the surface characteristics and chemical reactivity of the particles must be maintained in order to preserve chemical and structural functionality.Short wave (254 nm UV irradiation was used to crosslink the RNA genome within intact particles. Lower doses of UV previously reported to inactivate CPMV infectivity inhibited symptoms on inoculated leaves but did not prohibit systemic virus spread in plants, whereas higher doses caused aggregation of the particles and an increase in chemical reactivity further indicating broken particles. Intermediate doses of 2.0-2.5 J/cm(2 were shown to maintain particle structure and chemical reactivity, and cellular binding properties were similar to CPMV-WT.These studies demonstrate that it is possible to inactivate CPMV infectivity while maintaining particle structure and function, thus paving the way for further development of CPMV nanoparticles for in vivo applications.

  15. Decontamination Efficacy of Ultraviolet Radiation against Biofilms of Common Nosocomial Bacteria.

    Science.gov (United States)

    Tingpej, Pholawat; Tiengtip, Rattana; Kondo, Sumalee

    2015-06-01

    Ultraviolet radiation (UV) is commonly used to destroy microorganisms in the health-care environment. However, the efficacy of UV radiation against bacteria growing within biofilms has never been studied. To measure the sterilization effectiveness of UV radiation against common healthcare associated pathogens growing within biofilms. Staphylococcus aureus, Methicillin-resistant S. aureus (MRSA), Streptococcus epidermidis, Escherichia coli, ESBL-producing E. coli, Pseudomonas aeruginosa and Acinetobacter baumannii were cultivated in the Calgary Biofilm Device. Their biofilms were placed 50 cm from the UV lamp within the Biosafety Cabinet. Viability test, crystal violet assay and a scanning electron microscope were used to evaluate the germicidal efficacy. Within 5 minutes, UV radiation could kill S. aureus, MRSA, S. epidermidis, A. baumannii and ESBL-producing E. coli completely while it required 20 minutes and 30 minutes respectively to kill E. coli and P. aeruginosa. However, the amounts of biomass and the ultrastructure between UV-exposed biofilms and controls were not significantly different. UV radiation is effective in inactivating nosocomial pathogens grown within biofilms, but not removing biofilms and EPS. The biofilm of P. aeruginosa was the most durable.

  16. Non-linear pressure/temperature-dependence of high pressure thermal inactivation of proteolytic Clostridium botulinum type B in foods.

    Directory of Open Access Journals (Sweden)

    Maximilian B Maier

    Full Text Available The effect of high pressure thermal (HPT processing on the inactivation of spores of proteolytic type B Clostridium botulinum TMW 2.357 in four differently composed low-acid foods (green peas with ham, steamed sole, vegetable soup, braised veal was studied in an industrially feasible pressure range and temperatures between 100 and 120°C. Inactivation curves exhibited rapid inactivation during compression and decompression followed by strong tailing effects. The highest inactivation (approx. 6-log cycle reduction was obtained in braised veal at 600 MPa and 110°C after 300 s pressure-holding time. In general, inactivation curves exhibited similar negative exponential shapes, but maximum achievable inactivation levels were lower in foods with higher fat contents. At high treatment temperatures, spore inactivation was more effective at lower pressure levels (300 vs. 600 MPa, which indicates a non-linear pressure/temperature-dependence of the HPT spore inactivation efficiency. A comparison of spore inactivation levels achievable using HPT treatments versus a conventional heat sterilization treatment (121.1°C, 3 min illustrates the potential of combining high pressures and temperatures to replace conventional retorting with the possibility to reduce the process temperature or shorten the processing time. Finally, experiments using varying spore inoculation levels suggested the presence of a resistant fraction comprising approximately 0.01% of a spore population as reason for the pronounced tailing effects in survivor curves. The loss of the high resistance properties upon cultivation indicates that those differences develop during sporulation and are not linked to permanent modifications at the genetic level.

  17. Drying of liquid food droplets : enzyme inactivation and multicomponent diffusion

    NARCIS (Netherlands)

    Meerdink, G.

    1993-01-01

    In this thesis the drying of liquid food droplets is studied from three different points of view: drying kinetics, enzyme inactivation and multicomponent diffusion. Mathematical models are developed and validated experimentally.

    Drying experiments are performed with suspended

  18. Studies on education for radiation and courses of study (2009)

    International Nuclear Information System (INIS)

    Sakuraba, Kazuhiro; Nakamura, Hideo; Ukai, Mitsuko

    2009-01-01

    The Courses of Study are provided as the standards for educational courses in all schools in Japan. The new Courses of Study have been started this year. In this research, we revealed the ways how to teach radiation using the Courses of Study (2009). Education for radiation was first opened for the third grade of secondary school children. The contents in terms of radiation education in this Courses of Study (2009) are the characterization and application of radiation. To promote this new study courses, the knowledge about radiation of young man and woman were also studied. We concluded it is necessary to start radiation education from elementary school. Furthermore to apply the Courses of Study effectively, we need the comments on radiation education from the researcher of radiation. After the comments, teachers are able to make precise educational materials for their own children. (author)

  19. A biotechnological project with a gamma radiation source of 100,000 Ci

    International Nuclear Information System (INIS)

    Lombardo, J.H.; Smolko, E.E.

    1990-01-01

    A project for the production of radiovaccines and other bio-medical products is presented which includes a radiation facility provided with a gamma ray source equivalent to 100,000 Ci of Co-60. The whole process incorporates novel basic features in virus production and inactivation steps. The former is carried out in animals previously subjected to immunodepression through electromagnetic radiation. The latter is obtained at low temperatures by using either electromagnetic or particle radiations. A vaccine manufacture process is shown to illustrate the utilization of ionizing radiations to obtain a foot and mouth disease virus (FMDV) vaccine with good antigenic quality and low cost. (author)

  20. Review: Efficiency of physical and chemical treatments on the inactivation of dairy bacteriophages

    Directory of Open Access Journals (Sweden)

    Daniela Marta Guglielmotti

    2012-01-01

    Full Text Available Bacteriophages can cause great economic losses due to fermentation failure in dairy plants. Hence, physical and chemical treatments of raw material and/or equipment are mandatory to maintain phage levels as low as possible. Regarding thermal treatments used to kill pathogenic bacteria or achieve longer shelf-life of dairy products, neither low temperature long time (LTLT nor high temperature short time (HTST pasteurization were able to inactivate most lactic acid bacteria (LAB phages. Even though most phages did not survive 90ºC for 2 min, there were some that resisted 90ºC for more than 15 min (conditions suggested by the International Dairy Federation, IDF, for complete phage destruction. Among biocides tested, ethanol showed variable effectiveness in phage inactivation, since only phages infecting dairy cocci and Lactobacillus helveticus were reasonably inactivated by this alcohol, whereas isopropanol was in all cases highly ineffective. In turn, peracetic acid has consistently proved to be very fast and efficient to inactivate dairy phages, whereas efficiency of sodium hypochlorite was variable, even among different phages infecting the same LAB species. Both alkaline chloride foam and ethoxylated nonylphenol with phosphoric acid were remarkably efficient, trait probably related to their highly alkaline or acidic pH values in solution, respectively. Photocatalysis using UV light and TiO2 has been recently reported as a feasible option to industrially inactivate phages infecting diverse LAB species. Processes involving high pressure were barely used for phage inactivation, but until now most studied phages revealed high resistance to these treatments. To conclude, and given the great phage diversity found on dairies, it is always advisable to combine different anti-phage treatments (biocides, heat, high pressure, photocatalysis, rather than using them separately at extreme conditions.

  1. Use of In Situ-Generated Dimethyldioxirane for Inactivation of Biological Agents

    National Research Council Canada - National Science Library

    Wallace, William H; Bushway, Karen E; Miller, Susan D; Delcomyn, Carrie A; Renard, Jean J; Henley, Michael V

    2005-01-01

    ...) at neutral pH, was investigated for inactivation of biological warfare agent simulants. The DMDO solution inactivated bacterial spores, fungal spores, vegetative bacterial cells, viruses, and protein by 7 orders of magnitude in less than 10 min...

  2. High pressure processing's potential to inactivate norovirus and other fooodborne viruses

    Science.gov (United States)

    High pressure processing (HPP) can inactivate human norovirus. However, all viruses are not equally susceptible to HPP. Pressure treatment parameters such as required pressure levels, initial pressurization temperatures, and pressurization times substantially affect inactivation. How food matrix ...

  3. Antigenic characterization of a formalin-inactivated poliovirus vaccine derived from live-attenuated Sabin strains.

    Science.gov (United States)

    Tano, Yoshio; Shimizu, Hiroyuki; Martin, Javier; Nishimura, Yorihiro; Simizu, Bunsiti; Miyamura, Tatsuo

    2007-10-10

    A candidate inactivated poliovirus vaccine derived from live-attenuated Sabin strains (sIPV), which are used in the oral poliovirus vaccine (OPV), was prepared in a large-production scale. The modification of viral antigenic epitopes during the formalin inactivation process was investigated by capture ELISA assays using type-specific and antigenic site-specific monoclonal antibodies (MoAbs). The major antigenic site 1 was modified during the formalin inactivation of Sabin 1. Antigenic sites 1-3 were slightly modified during the formalin inactivation of Sabin 2 strain. Sites 1 and 3 were altered on inactivated Sabin 3 virus. These alterations were different to those shown by wild-type Saukett strain, used in conventional IPV (cIPV). It has been previously reported that type 1 sIPV showed higher immunogenicity to type 1 cIPV whereas types 2 and 3 sIPV induced lower level of immunogenicity than their cIPV counterparts. Our results suggest that the differences in epitope structure after formalin inactivation may account, at least in part, for the observed differences in immunogenicity between Sabin and wild-type inactivated poliovaccines.

  4. Interaction effect of gamma rays and thermal neutrons on the inactivation of odontoglossum ringspot virus isolated from orchid

    International Nuclear Information System (INIS)

    Mori, Itsuhiko; Inouye, Narinobu.

    1977-01-01

    The effect of gamma rays or thermal neutrons and their interaction effects on the inactivation of the infectivity of Odontoglossum ringspot virus (ORSV) in buffered crude sap of the plant tissue were studied. The inactivation effect of gamma ray on ORSV varied in different ionic strength of the phosphate buffer solutions. Borax enhanced this effect. In interaction effect of gamma and neutron irradiation, irradiation orders, that is, n → γ and γ → n, gave different inactivation pattern. (author)

  5. Chlorine inactivation of fungal spores on cereal grains.

    Science.gov (United States)

    Andrews, S; Pardoel, D; Harun, A; Treloar, T

    1997-04-01

    Although 0.4% chlorine for 2 min has been recommended for surface disinfection of food samples before direct plating for fungal enumeration, this procedure may not be adequate for highly contaminated products. The effectiveness of a range of chlorine solutions was investigated using barley samples artificially contaminated with four different concentrations of Aspergillus flavus. A. niger, A. ochraceus, Eurotium repens, Penicillium brevicompactum P. chrysogenum and Cladosporium cladosporioides. At initial contamination levels greater than 10(4)/g, 0.4% chlorine did not inactivate sufficient spores to produce less than 20% contamination. Of the test fungi, ascospores of E. repens were the most resistant to chlorine inactivation, whereas the conidia of C. cladosporioides were the most sensitive. Rinsing the samples with 70% ethanol improved the effectiveness of the recommended surface disinfection procedure. However, some ethanol appears to permeate into the grains and may inactivate sensitive internal fungi, although a minimal effect only was observed on wheat infected with Alternaria.

  6. Drying characteristic, enzyme inactivation and browning pigmentation kinetics of controlled humidity-convective drying of banana slices

    Science.gov (United States)

    Sarpong, Frederick; Yu, Xiaojie; Zhou, Cunshan; Oteng-Darko, Patricia; Amenorfe, Leticia Peace; Wu, Bengang; Bai, Junwen; Ma, Haile

    2018-04-01

    Investigating the kinetics of enzyme activities and browning indexes in food are very essential in understanding the enzyme inactivation and browning pigmentation reaction during drying processing. In order to understand and predict accurately the enzyme inactivation and browning pigmentation of banana slices using Relative Humidity (RH)-convective hot air dryer aided by ultrasound (US) pretreatment, this study was conducted. Drying was carried out with 20 kHz frequency of US-pretreatment using three durations (10 20 and 30 min) and RH (10 20 and 30%) conditions at 70 °C and 2.0 m/s air velocity. The kinetic study of both enzyme inactivation and browning pigmentation results were compared to their relevance of fit in terms of coefficient of correlation (R2), the root mean square error (RMSE) and the reduced chi-square (χ 2). First order and second-order polynomial kinetic model fitted well for enzyme inactivation and browning indexes respectively. Both enzymes inactivation kinetics and enzymatic browning index (EBI) declined significantly (p drying time in all drying conditions and rate of decrease intensified in longer US-pretreatment duration and lower RH conditions. However, shorter US-pretreatment duration and higher RH conditions reduced the non- enzymatic browning index (NBI) significantly. Again, longer US-pretreatment duration and lower RH shortened the drying time but adversely created more microspores from the micrograph study. Longer US pretreatment and lower RH decrease significantly (p < 0.05) the L* and b* values whereas the a* values was increased.

  7. Studies on the mechanism of stable graft--host tolerance in canine and human radiation chimeras

    International Nuclear Information System (INIS)

    Storb, R.; Tsoi, M.S.; Weiden, P.L.; Graham, T.C.; Thomas, E.D.

    1976-01-01

    In studies with dogs, marrow donors were immunized against their chimeras by repeated skin grafts which they rejected. Lymphocytes from chimeras and donors were tested for cell inhibition by exposure to skin fibroblasts from chimeras and donors. Results were not compatible with the concept that tolerance in radiation chimeras is maintained by serum-blocking factors. They provide circumstantial evidence against the possibility that the stable chimeric state is the result of the deletion of a close or inactivation of donor lymphocytes specifically responsive for host antigens. They are most consistent with the possibility that a suppressor-cell population is responsible for the maintenance of tolerance. Human recipients of marrow transplants were tested with the cell inhibition assay. Although the incidence of positive cell inhibition and blocking was somewhat higher than in the dog, results were not compatible with the concept that serum blocking is the sole mechanism for maintaining the stable chimeric state in human patients

  8. Inactivation of viruses in labile blood derivatives. II. Physical methods

    International Nuclear Information System (INIS)

    Horowitz, B.; Wiebe, M.E.; Lippin, A.; Vandersande, J.; Stryker, M.H.

    1985-01-01

    The thermal inactivation of viruses in labile blood derivatives was evaluated by addition of marker viruses (VSV, Sindbis, Sendai, EMC) to anti-hemophilic factor (AHF) concentrates. The rate of virus inactivation at 60 degrees C was decreased by at least 100- to 700-fold by inclusion of 2.75 M glycine and 50 percent sucrose, or 3.0 M potassium citrate, additives which contribute to retention of protein biologic activity. Nonetheless, at least 10(4) infectious units of each virus was inactivated within 10 hours. Increasing the temperature from 60 to 70 or 80 degrees C caused a 90 percent or greater loss in AHF activity. An even greater decline in the rate of virus inactivation was observed on heating AHF in the lyophilized state, although no loss in AHF activity was observed after 72 hours of heating at 60 degrees C. Several of the proteins present in lyophilized AHF concentrates displayed an altered electrophoretic mobility as a result of exposure to 60 degrees C for 24 hours. Exposure of lyophilized AHF to irradiation from a cobalt 60 source resulted in an acceptable yield of AHF at 1.0, but not at 2.0, megarads. At 1 megarad, greater than or equal to 6.0 logs of VSV and 3.3 logs of Sindbis virus were inactivated

  9. Simultaneous atrazine degradation and E. coli inactivation by simulated solar photo-Fenton-like process using persulfate.

    Science.gov (United States)

    Garkusheva, Natalya; Matafonova, Galina; Tsenter, Irina; Beck, Sara; Batoev, Valeriy; Linden, Karl

    2017-07-29

    This work evaluated the feasibility of a photo-Fenton-like process using persulfate (PS) and ferrous iron (Fe 2+ ) under simulated solar radiation for degrading the herbicide atrazine (ATZ, 6-Chloro-N-ethyl-N'-isopropyl-1,3,5-triazine-2,4-diamine) and inactivating E. coli. Milli Q water, lake water, and diluted wastewater effluents were spiked both simultaneously and separately with ATZ (4 mg/L) and E. coli (10 5 CFU/mL), and exposed to treatment. A method for determining the average irradiance throughout the water media in the UV(A+B) range of the Xe lamp emission was developed for bench-scale experiments. These values were used to calculate the UV(A+B) fluences and the solar UV(A+B) energy doses per unit of volume (Q UV(A+B) , kJ/L). The obtained kinetic data were presented versus energy dose. Treatment of lake water at near-neutral pH was ineffective via the photo-Fenton-like process, attaining only 20% ATZ removal and 1-log reduction of E. coli. In Milli Q water and wastewater, the complete degradation of ATZ in the absence of bacteria was observed at an average energy dose of 1.5 kJ/L (60 min), while in the presence of cells the degradation efficiency was ∼60%. When ATZ was present, E. coli inactivation was also affected in Milli Q water, with 1.4-log reduction (93%) at a dose of 1.6 kJ/L (60 min), whereas in wastewater complete inactivation was achieved at a lower dose of 1.3 kJ/L (45 min). The energy requirements on a Q UV(A+B) basis for simultaneous 90% ATZ removal and 99.99% E. coli inactivation in Milli Q water and wastewater were shown to be less than 10 kJ/L. This suggests the solar/PS/Fe 2+ system is promising for simultaneous treatment and disinfection of wastewater effluents.

  10. Sequential and Simultaneous Applications of UV and Chlorine for Adenovirus Inactivation.

    Science.gov (United States)

    Rattanakul, Surapong; Oguma, Kumiko; Takizawa, Satoshi

    2015-09-01

    Adenoviruses are water-borne human pathogens with high resistance to UV disinfection. Combination of UV treatment and chlorination could be an effective approach to deal with adenoviruses. In this study, human adenovirus 5 (HAdV-5) was challenged in a bench-scale experiment by separate applications of UV or chlorine and by combined applications of UV and chlorine in either a sequential or simultaneous manner. The treated samples were then propagated in human lung carcinoma epithelial cells to quantify the log inactivation of HAdV-5. When the processes were separate, a fluence of 100 mJ/cm(2) and a CT value of 0.02 mg min/L were required to achieve 2 log inactivation of HAdV-5 by UV disinfection and chlorination, respectively. Interestingly, synergistic effects on the HAdV-5 inactivation rates were found in the sequential process of chlorine followed by UV (Cl2-UV) (p simultaneous application of UV/Cl2. This implies that a pretreatment with chlorine may increase the sensitivity of the virus to the subsequent UV disinfection. In conclusion, this study suggests that the combined application of UV and chlorine could be an effective measure against adenoviruses as a multi-barrier approach in water disinfection.

  11. Inactivation of Template-Directed Misfolding of Infectious Prion Protein by Ozone

    Science.gov (United States)

    Ding, Ning; Price, Luke M.; Braithwaite, Shannon L.; Balachandran, Aru; Belosevic, Miodrag

    2012-01-01

    Misfolded prions (PrPSc) are well known for their resistance to conventional decontamination processes. The potential risk of contamination of the water environment, as a result of disposal of specified risk materials (SRM), has raised public concerns. Ozone is commonly utilized in the water industry for inactivation of microbial contaminants and was tested in this study for its ability to inactivate prions (263K hamster scrapie = PrPSc). Treatment variables included initial ozone dose (7.6 to 25.7 mg/liter), contact time (5 s and 5 min), temperature (4°C and 20°C), and pH (pH 4.4, 6.0, and 8.0). Exposure of dilute suspensions of the infected 263K hamster brain homogenates (IBH) (0.01%) to ozone resulted in the in vitro destruction of the templating properties of PrPSc, as measured by the protein misfolding cyclic amplification (PMCA) assay. The highest levels of prion inactivation (≥4 log10) were observed with ozone doses of 13.0 mg/liter, at pH 4.4 and 20°C, resulting in a CT (the product of residual ozone concentration and contact time) value as low as 0.59 mg · liter−1 min. A comparison of ozone CT requirements among various pathogens suggests that prions are more susceptible to ozone degradation than some model bacteria and protozoa and that ozone treatment may be an effective solution for inactivating prions in water and wastewater. PMID:22138993

  12. Unilateral lateral entorhinal inactivation impairs memory expression in trace eyeblink conditioning.

    Directory of Open Access Journals (Sweden)

    Stephanie E Tanninen

    Full Text Available Memory in trace eyeblink conditioning is mediated by an inter-connected network that involves the hippocampus (HPC, several neocortical regions, and the cerebellum. This network reorganizes after learning as the center of the network shifts from the HPC to the medial prefrontal cortex (mPFC. Despite the network reorganization, the lateral entorhinal cortex (LEC plays a stable role in expressing recently acquired HPC-dependent memory as well as remotely acquired mPFC-dependent memory. Entorhinal involvement in recent memory expression may be attributed to its previously proposed interactions with the HPC. In contrast, it remains unknown how the LEC participates in memory expression after the network disengages from the HPC. The present study tested the possibility that the LEC and mPFC functionally interact during remote memory expression by examining the impact of pharmacological inactivation of the LEC in one hemisphere and the mPFC in the contralateral hemisphere on memory expression in rats. Memory expression one day and one month after learning was significantly impaired after LEC-mPFC inactivation; however, the degree of impairment was comparable to that after unilateral LEC inactivation. Unilateral mPFC inactivation had no effect on recent or remote memory expression. These results suggest that the integrity of the LEC in both hemispheres is necessary for memory expression. Functional interactions between the LEC and mPFC should therefore be tested with an alternative design.

  13. Heat- and radiation effects on the hemaglutinating- and mitogenic activity of phytohemaglutinins

    International Nuclear Information System (INIS)

    Mancini Filho, J.; Vizeu, D.M.; Lajolo, F.M.

    1975-01-01

    The effect of ionizing radiation on hemaglutinating and mitogenic activity of phytohemaglutinins (PHA) in solution is studied. 10 Krad (electron beam) are neede for the destruction of 50% of the aglutinating capacity. The mitogenic effect is more resistent to irradiation (70 Krad for 50% inactivation) may be because both effects are due to different molecules. Changes were also followed by electrophoresis in polyacrylamida. The resistence to irradiation showed to be exponential function of the concentration of PHA in solution. (author) [pt

  14. Susceptibility of ATM-deficient pancreatic cancer cells to radiation.

    Science.gov (United States)

    Ayars, Michael; Eshleman, James; Goggins, Michael

    2017-05-19

    Ataxia telangiectasia mutated (ATM) is inactivated in a significant minority of pancreatic ductal adenocarcinomas and may be predictor of treatment response. We determined if ATM deficiency renders pancreatic cancer cells more sensitive to fractionated radiation or commonly used chemotherapeutics. ATM expression was knocked down in three pancreatic cancer cell lines using ATM-targeting shRNA. Isogenic cell lines were tested for sensitivity to several chemotherapeutic agents and radiation. DNA repair kinetics were analyzed in irradiated cells using the comet assay. We find that while rendering pancreatic cancer cells ATM-deficient did not significantly change their sensitivity to several chemotherapeutics, it did render them exquisitely sensitized to radiation. Pancreatic cancer ATM status may help predict response to radiotherapy.

  15. Charge immobilization of the voltage sensor in domain IV is independent of sodium current inactivation.

    Science.gov (United States)

    Sheets, Michael F; Hanck, Dorothy A

    2005-02-15

    Recovery from fast inactivation in voltage-dependent Na+ channels is associated with a slow component in the time course of gating charge during repolarization (i.e. charge immobilization), which results from the slow movement of the S4 segments in domains III and IV (S4-DIII and S4-DIV). Previous studies have shown that the non-specific removal of fast inactivation by the proteolytic enzyme pronase eliminated charge immobilization, while the specific removal of fast inactivation (by intracellular MTSET modification of a cysteine substituted for the phenylalanine in the IFM motif, ICMMTSET, in the inactivation particle formed by the linker between domains III and IV) only reduced the amount of charge immobilization by nearly one-half. To investigate the molecular origin of the remaining slow component of charge immobilization we studied the human cardiac Na+ channel (hH1a) in which the outermost arginine in the S4-DIV, which contributes approximately 20% to total gating charge (Qmax), was mutated to a cysteine (R1C-DIV). Gating charge could be fully restored in R1C-DIV by exposure to extracellular MTSEA, a positively charged methanethiosulphonate reagent. The RIC-DIV mutation was combined with ICMMTSET to remove fast inactivation, and the gating currents of R1C-DIV-ICM(MTSET) were recorded before and after modification with MTSEAo. Prior to MTSEAo, the time course of the gating charge during repolarization (off-charge) was best described by a single fast time constant. After MTSEA, the off-charge had both fast and slow components, with the slow component accounting for nearly 35% of Qmax. These results demonstrate that the slow movement of the S4-DIV during repolarization is not dependent upon the normal binding of the inactivation particle.

  16. Using UVC Light-Emitting Diodes at Wavelengths of 266 to 279 Nanometers To Inactivate Foodborne Pathogens and Pasteurize Sliced Cheese.

    Science.gov (United States)

    Kim, Soo-Ji; Kim, Do-Kyun; Kang, Dong-Hyun

    2016-01-01

    UVC light is a widely used sterilization technology. However, UV lamps have several limitations, including low activity at refrigeration temperatures, a long warm-up time, and risk of mercury exposure. UV-type lamps only emit light at 254 nm, so as an alternative, UV light-emitting diodes (UV-LEDs) which can produce the desired wavelengths have been developed. In this study, we validated the inactivation efficacy of UV-LEDs by wavelength and compared the results to those of conventional UV lamps. Selective media inoculated with Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes were irradiated using UV-LEDs at 266, 270, 275, and 279 nm in the UVC spectrum at 0.1, 0.2, 0.5, and 0.7 mJ/cm(2), respectively. The radiation intensity of the UV-LEDs was about 4 μW/cm(2), and UV lamps were covered with polypropylene films to adjust the light intensity similar to those of UV-LEDs. In addition, we applied UV-LED to sliced cheese at doses of 1, 2, and 3 mJ/cm(2). Our results showed that inactivation rates after UV-LED treatment were significantly different (P < 0.05) from those of UV lamps at a similar intensity. On microbiological media, UV-LED treatments at 266 and 270 nm showed significantly different (P < 0.05) inactivation effects than other wavelength modules. For sliced cheeses, 4- to 5-log reductions occurred after treatment at 3 mJ/cm(2) for all three pathogens, with negligible generation of injured cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. EVALUATION OF REACTOGENICITY, SAFETY AND IMMUNOGENICITY OF INACTIVATED MONOVALENT VACCINE IN CHILDREN

    Directory of Open Access Journals (Sweden)

    A.N. Mironov

    2010-01-01

    Full Text Available NPO «Microgen» developed vaccine «PANDEFLU» — influenza inactivated subunit adsorbed monovalent vaccine, strain A/California/7/2009 (H1N1, for specific prophylaxis of pandemic influenza in different age groups of citizens. Reactogenicity, safety and immunogenicity were analyzed in a study of volunteers 18–60 years old. The article presents results of administration of vaccine «PANDEFLU» in children. The study performed in two clinical centers proves good tolerability, reactogenicity, safety and high immunogenicity of this vaccine.Key words: children, influenza, influenza virus А/H1N1, inactivated influenza vaccine, reactogenicity, safety, immunogenicity.(Voprosy sovremennoi pediatrii — Current Pediatrics. – 2010;9(4:106-109

  18. Primary radiation damage and disturbance in cell divisions

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Lee, Yun-Jong; Kim, Jae-Hun; Petin, Vladislav G.; Nili, Mohammad

    2008-01-01

    Survived cells from a homogeneous population exposed to ionizing radiation form various colonies of different sizes and morphology on a solid nutrient medium, which appear at different time intervals after irradiation. Such a phenomenon agrees well with the modern theory of microdosimetry and classical hit-and-target models of radiobiology. According to the hit-principle, individual cells exposed to the same dose of radiation are damaged in different manners. It means that the survived cells can differ in the content of sublethal damage (hits) produced by the energy absorbed into the cell and which is not enough to give rise to effective radiation damage which is responsible for cell killing or inactivation. In diploid yeast cells, the growth rate of cells from 250 colonies of various sizes appeared at different time intervals after irradiation with 600 Gy of gamma radiation from a 60 Co isotopic source was analyzed. The survival rate after irradiation was 20%. Based on the analyses results, it was possible to categorize the clones grown from irradiated cells according to the number of sub-lesions from 1 to 4. The clones with various numbers of sub-lesions were shown to be different in their viability, radiosensitivity, sensitivity to environmental conditions, and the frequency of recombination and respiratory deficient mutations. Cells from unstable clones exhibited an enhanced radiosensitivity, and an increased portion of morphologically changed cells, nonviable cells and respiration mutants, as well. The degree of expression of the foregoing effects was higher if the number of primary sublethal lesions was greater in the originally irradiated cell. Disturbance in cell division can be characterized by cell inactivation or incorrect distribution of mitochondria between daughter cells. Thus, the suggested methodology of identification of cells with a definite number of primary sublethal lesions will promote further elucidation of the nature of primary radiation

  19. Microbial inactivation and cytotoxicity evaluation of UV irradiated coconut water in a novel continuous flow spiral reactor.

    Science.gov (United States)

    Bhullar, Manreet Singh; Patras, Ankit; Kilanzo-Nthenge, Agnes; Pokharel, Bharat; Yannam, Sudheer Kumar; Rakariyatham, Kanyasiri; Pan, Che; Xiao, Hang; Sasges, Michael

    2018-01-01

    A continuous-flow UV reactor operating at 254nm wave-length was used to investigate inactivation of microorganisms including bacteriophage in coconut water, a highly opaque liquid food. UV-C inactivation kinetics of two surrogate viruses (MS2, T1UV) and three bacteria (E. coli ATCC 25922, Salmonella Typhimurium ATCC 13311, Listeria monocytogenes ATCC 19115) in buffer and coconut water were investigated (D 10 values ranging from 2.82 to 4.54mJ·cm -2 ). A series of known UV-C doses were delivered to the samples. Inactivation levels of all organisms were linearly proportional to UV-C dose (r 2 >0.97). At the highest dose of 30mJ·cm -2 , the three pathogenic organisms were inactivated by >5 log 10 (pUV-C irradiation effectively inactivated bacteriophage and pathogenic microbes in coconut water. The inactivation kinetics of microorganisms were best described by log linear model with a low root mean square error (RMSE) and high coefficient of determination (r 2 >0.97). Models for predicting log reduction as a function of UV-C irradiation dose were found to be significant (pUV-C treatment did not generate cytotoxic compounds in the coconut water. This study clearly demonstrated that high levels of inactivation of pathogens can be achieved in coconut water, and suggested potential method for UV-C treatment of other liquid foods. This research paper provides scientific evidence of the potential benefits of UV-C irradiation in inactivating bacterial and viral surrogates at commercially relevant doses of 0-120mJ·cm -2 . The irradiated coconut water showed no cytotoxic effects on normal intestinal and healthy mice liver cells. UV-C irradiation is an attractive food preservation technology and offers opportunities for horticultural and food processing industries to meet the growing demand from consumers for healthier and safe food products. This study would provide technical support for commercialization of UV-C treatment of beverages. Copyright © 2017 Elsevier Ltd. All

  20. Radiation sensitivity of human lung cancer cell lines

    International Nuclear Information System (INIS)

    Carmichael, J.; Degraff, W.G.; Gamson, J.; Russo, G.; Mitchell, J.B.; Gazdar, A.F.; Minna, J.D.; Levitt, M.L.

    1989-01-01

    X-Ray survival curves were determined using a panel of 17 human lung cancer cell lines, with emphasis on non-small cell lung cancer (NSCLC). In contrast to classic small cell lung cancer (SCLC) cell lines, NSCLC cell lines were generally less sensitive to radiation as evidenced by higher radiation survival curve extrapolation numbers, surviving fraction values following a 2Gy dose (SF2) and the mean inactivation dose values (D) values. The spectrum of in vitro radiation responses observed was similar to that expected in clinical practice, although mesothelioma was unexpectedly sensitive in vitro. Differences in radiosensitivity were best distinguished by comparison of SF2 values. Some NSCLC lines were relatively sensitive, and in view of this demonstrable variability in radiation sensitivity, the SF2 value may be useful for in vitro predictive assay testing of clinical specimens. (author)

  1. Bacterial spore inactivation at 45-65 °C using high pressure processing: study of Alicyclobacillus acidoterrestris in orange juice.

    Science.gov (United States)

    Silva, Filipa V M; Tan, Eng Keat; Farid, Mohammed

    2012-10-01

    High pressure processing (HPP) is a new non-thermal technology commercially used to pasteurize fruit juices and extend shelf-life, while preserving delicate aromas/flavours and bioactive constituents. Given the spoilage incidents and economic losses due to Alicyclobacillus acidoterrestris in the fruit juice industry, the use of high pressure (200 MPa - 600 MPa) in combination with mild temperature (45 °C-65 °C) for 1-15 min, to inactivate these spores in orange juice were investigated. As expected, the higher the temperature, pressure and time, the larger was the A. acidoterrestris inactivation. The survival curves were described by the first order Bigelow model. For 200 MPa, D(45 °C) = 43.9 min, D(55 °C) = 28.8 min, D(65 °C) = 5.0 min and z-value = 21.3 °C. At 600 MPa, D(45 °C) = 12.9 min, D(55 °C) = 7.0 min, D(65 °C) = 3.4 min and z-value = 34.4 °C. Spores were inactivated at 45 °C and 600 MPa, and at 65 °C only 200 MPa was needed to achieve reduction in spore numbers. Results demonstrated that HPP allowed A. acidoterrestris spore inactivation at lower temperatures (45-65 °C) than conventional thermal processing (85-95 °C) without pressure, yielding a fresher and higher quality preserved food. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Non-random X chromosome inactivation in an affected twin in a monozygotic twin pair discordant for Wiedemann-Beckwith syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Oestavik, R.E.; Eiklid, K.; Oerstavik, K.H. [Ulleval Univ. Hospital, Oslo (Norway)] [and others

    1995-03-27

    Wiedemann-Beckwith syndrome (WBS) is a syndrome including exomphalos, macroglossia, and generalized overgrowth. The locus has been assigned to 11p15, and genomic imprinting may play a part in the expression of one or more genes involved. Most cases are sporadic. An excess of female monozygotic twins discordant for WBS have been reported, and it has been proposed that this excess could be related to the process of X chromosome inactivation. We have therefore studied X chromosome inactivation in 13-year-old monozygotic twin girls who were discordant for WBS. In addition, both twins had Tourette syndrome. The twins were monochorionic and therefore the result of a late twinning process. This has also been the case in previously reported discordant twin pairs with information on placentation. X chromosome inactivation was determined in DNA from peripheral blood cells by PCR analysis at the androgen receptor locus. The affected twin had a completely skewed X inactivation, where the paternal allele was on the active X chromosome in all cells. The unaffected twin had a moderately skewed X inactivation in the same direction, whereas the mother had a random pattern. Further studies are necessary to establish a possible association between the expression of WBS and X chromosome inactivation. 18 refs., 2 figs., 1 tab.

  3. Effects of inactivation of the anterior interpositus nucleus on the kinematic and dynamic control of multijoint movement.

    Science.gov (United States)

    Cooper, S E; Martin, J H; Ghez, C

    2000-10-01

    We previously showed that inactivating the anterior interpositus nucleus in cats disrupts prehension; paw paths, normally straight and accurate, become curved, hypometric, and more variable. In the present study, we determined the joint kinematic and dynamic origins of this impairment. Animals were restrained in a hammock and trained to reach and grasp a cube of meat from a narrow food well at varied heights; movements were monitored using the MacReflex analysis system. The anterior interpositus nucleus was inactivated by microinjection of the GABA agonist muscimol (0.25-0.5 microgram in 0.5 microliter saline). For each joint, we computed the torque due to gravity, inertial resistance (termed self torque), interjoint interactions (termed interaction torque), and the combined effects of active muscle contraction and passive soft tissue stretch (termed generalized muscle torque). Inactivation produced significant reductions in the amplitude, velocity, and acceleration of elbow flexion. However, these movements continued to scale normally with target height. Shoulder extension was reduced by inactivation but wrist angular displacement and velocity were not. Inactivation also produced changes in the temporal coordination between elbow, shoulder, and wrist kinematics. Dynamic analysis showed that elbow flexion both before and during inactivation was produced by the combined action of muscle and interaction torque, but that the timing depended on muscle torque. Elbow interaction and muscle torques were scaled to target height both before and during inactivation. Inactivation produced significant reductions in elbow flexor interaction and muscle torques. The duration of elbow flexor muscle torque was prolonged to compensate for the reduction in flexor interaction torque. Shoulder extension was produced by extensor interaction and muscle torques both before and during inactivation. Inactivation produced a reduction in shoulder extension, primarily by reduced interaction

  4. Infectious Causes of Cholesteatoma and Treatment of Infected Ossicles prior to Reimplantation by Hydrostatic High-Pressure Inactivation

    Science.gov (United States)

    Hinz, Rebecca

    2015-01-01

    Chronic inflammation, which is caused by recurrent infections, is one of the factors contributing to the pathogenesis of cholesteatoma. If reimplantation of autologous ossicles after a surgical intervention is intended, inactivation of planktonic bacteria and biofilms is desirable. High hydrostatic pressure treatment is a procedure, which has been used to inactivate cholesteatoma cells on ossicles. Here we discuss the potential inactivating effect of high hydrostatic pressure on microbial pathogens including biofilms. Recent experimental data suggest an incomplete inactivation at a pressure level, which is tolerable for the bone substance of ossicles and results at least in a considerable reduction of pathogen load. Further studies are necessary to access how far this quantitative reduction of pathogens is sufficient to prevent ongoing chronic infections, for example, due to forming of biofilms. PMID:25705686

  5. Endotoxin inactivation via steam-heat treatment in dilute simethicone emulsions used in biopharmaceutical processes.

    Science.gov (United States)

    Britt, Keith A; Galvin, Jeffrey; Gammell, Patrick; Nti-Gyabaah, Joseph; Boras, George; Kolwyck, David; Ramirez, José G; Presente, Esther; Naugle, Gregory

    2014-01-01

    Simethicone emulsion is used to regulate foaming in cell culture operations in biopharmaceutical processes. It is also a potential source of endotoxin contamination. The inactivation of endotoxins in dilute simethicone emulsions was assessed as a function of time at different steam temperatures using a Limulus amebocyte lysate kinetic chromogenic technique. Endotoxin inactivation from steam-heat treatment was fit to a four-parameter double exponential decay model, which indicated that endotoxin inactivation was biphasic, consisting of fast and slow regimes. In the fast regime, temperature-related effects were dominant. Transitioning into the slow regime, the observed temperature dependence diminished, and concentration-related effects became increasingly significant. The change in the Gibbs free energy moving through the transition state indicated that a large energy barrier must be overcome for endotoxin inactivation to occur. The corresponding Arrhenius pre-exponential factor was >10(12) s(-1) suggesting that endotoxins in aqueous solution exist as aggregates. The disorder associated with the endotoxin inactivation reaction pathway was assessed via the change in entropy moving through the transition state. This quantity was positive indicating that endotoxin inactivation may result from hydrolysis of individual endotoxin molecules, which perturbs the conformation of endotoxin aggregates, thereby modulating the biological activity observed. Steam-heat treatment decreased endotoxin levels by 1-2 logarithm (log) reduction (LRV), which may be practically relevant depending on incoming raw material endotoxin levels. Antifoam efficiency and cell culture performance were negligibly impacted following steam-heat treatment. The results from this study show that steam-heat treatment is a viable endotoxin control strategy that can be implemented to support large-scale biopharmaceutical manufacturing. © 2014 American Institute of Chemical Engineers.

  6. Selection of inactivation medium for fungal spores in clinical wastes by supercritical carbon dioxide.

    Science.gov (United States)

    Noman, Efaq; Norulaini Nik Ab Rahman, Nik; Al-Gheethi, Adel; Nagao, Hideyuki; Talip, Balkis A; Ab Kadir, Omar

    2018-05-21

    The present study aimed to select the best medium for inactivation of Aspergillus fumigatus, Aspergillus spp. in section Nigri, A. niger, A. terreus var. terreus, A. tubingensis, Penicillium waksmanii, P. simplicissimum, and Aspergillus sp. strain no. 145 spores in clinical wastes by using supercritical carbon dioxide (SC-CO 2 ). There were three types of solutions used including normal saline, seawater, distilled water, and physiological saline with 1% of methanol; each solution was tested at 5, 10, and 20 mL of the water contents. The experiments were conducted at the optimum operating parameters of supercritical carbon dioxide (30 MPa, 75 °C, 90 min). The results showed that the inactivation rate was more effective in distilled water with the presence of 1% methanol (6 log reductions). Meanwhile, the seawater decreases inactivation rate more than normal saline (4.5 vs. 5.1 log reduction). On the other hand, the experiments performed with different volumes of distilled water (5, 10, and 20 mL) indicated that A. niger spores were completely inactivated with 10 mL of distilled water. The inactivation rate of fungal spores decreased from 6 to 4.5 log as the amount of distilled water increased from 10 to 20 mL. The analysis for the spore morphology of A. fumigatus and Aspergillus spp. in section Nigri using scanning electron microscopy (SEM) has revealed the role of temperature and pressure in the SC-CO 2 in the destruction of the cell walls of the spores. It can be concluded that the distilled water represent the best medium for inactivation of fungal spores in the clinical solid wastes by SC-CO 2 .

  7. Apoptosis signaling and radiation protection

    International Nuclear Information System (INIS)

    Morita, Akinori; Suzuki, Norio; Hosoi, Yoshio

    2005-01-01

    Radiation protection by apoptosis control is the suppression of cell death in highly radiosensitive tissues. This paper describes the outline of radiation-induced apoptosis framework, apoptosis-concerned target molecules possibly related to apoptosis by radiation and their inhibitors. Although there are intrinsic (via mitochondria) and extrinsic (via death receptor) pathways in apoptosis, this review mainly mentions the former which is more important in radiation-induced apoptosis. Those molecules known at present in the apoptosis are caspase, Bcl-2 family and p53. Caspase, a group of cystein proteases, initiates apoptosis but its inhibition is known not always to result in apoptosis suppression, suggesting the existence of caspase-independent pathways. Bcl-2 family involves apoptosis-suppressing (possessing BH domains) and -promoting (lacking BH domains or possessing BH3 domain alone/BH3-only protein) groups. Two p53-transcription-dependent and one -independent pathways in p53-induced apoptosis are known and p53 can be a most possible target molecule since it positions at the start of apoptosis. Authors have found a vanadate inactivates p53. Inhibitors affecting upstream molecules of apoptosis will be the most useful candidate for apoptosis suppression/radiation protection. (S.I.) 106 refs

  8. Inactivation of murine norovirus by chemical biocides on stainless steel

    Science.gov (United States)

    2009-01-01

    Background Human norovirus (NoV) causes more than 80% of nonbacterial gastroenteritis in Europe and the United States. NoV transmission via contaminated surfaces may be significant for the spread of viruses. Therefore, measures for prevention and control, such as surface disinfection, are necessary to interrupt the dissemination of human NoV. Murine norovirus (MNV) as a surrogate for human NoV was used to study the efficacy of active ingredients of chemical disinfectants for virus inactivation on inanimate surfaces. Methods The inactivating properties of different chemical biocides were tested in a quantitative carrier test with stainless steel discs without mechanical action. Vacuum-dried MNV was exposed to different concentrations of alcohols, peracetic acid (PAA) or glutaraldehyde (GDA) for 5 minutes exposure time. Detection of residual virus was determined by endpoint-titration on RAW 264.7 cells. Results PAA [1000 ppm], GDA [2500 ppm], ethanol [50% (v/v)] and 1-propanol [30% (v/v)] were able to inactivate MNV under clean conditions (0.03% BSA) on the carriers by ≥ 4 log10 within 5 minutes exposure time, whereas 2-propanol showed a reduced effectiveness even at 60% (v/v). Furthermore, there were no significant differences in virus reduction whatever interfering substances were used. When testing with ethanol, 1- and 2-propanol, results under clean conditions were nearly the same as in the presence of dirty conditions (0.3% BSA plus 0.3% erythrocytes). Conclusion Products based upon PAA, GDA, ethanol and 1-propanol should be used for NoV inactivation on inanimate surfaces. Our data provide valuable information for the development of strategies to control NoV transmission via surfaces. PMID:19583832

  9. Inactivation of murine norovirus by chemical biocides on stainless steel

    Directory of Open Access Journals (Sweden)

    Steinmann Jörg

    2009-07-01

    Full Text Available Abstract Background Human norovirus (NoV causes more than 80% of nonbacterial gastroenteritis in Europe and the United States. NoV transmission via contaminated surfaces may be significant for the spread of viruses. Therefore, measures for prevention and control, such as surface disinfection, are necessary to interrupt the dissemination of human NoV. Murine norovirus (MNV as a surrogate for human NoV was used to study the efficacy of active ingredients of chemical disinfectants for virus inactivation on inanimate surfaces. Methods The inactivating properties of different chemical biocides were tested in a quantitative carrier test with stainless steel discs without mechanical action. Vacuum-dried MNV was exposed to different concentrations of alcohols, peracetic acid (PAA or glutaraldehyde (GDA for 5 minutes exposure time. Detection of residual virus was determined by endpoint-titration on RAW 264.7 cells. Results PAA [1000 ppm], GDA [2500 ppm], ethanol [50% (v/v] and 1-propanol [30% (v/v] were able to inactivate MNV under clean conditions (0.03% BSA on the carriers by ≥ 4 log10 within 5 minutes exposure time, whereas 2-propanol showed a reduced effectiveness even at 60% (v/v. Furthermore, there were no significant differences in virus reduction whatever interfering substances were used. When testing with ethanol, 1- and 2-propanol, results under clean conditions were nearly the same as in the presence of dirty conditions (0.3% BSA plus 0.3% erythrocytes. Conclusion Products based upon PAA, GDA, ethanol and 1-propanol should be used for NoV inactivation on inanimate surfaces. Our data provide valuable information for the development of strategies to control NoV transmission via surfaces.

  10. Role of free radicals in the initiation and promotion of radiation transformation in vitro

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Troll, W.; Little, J.B.

    1984-01-01

    We have studied the effects of superoxide dismutase (SOD), catalase, Cu(II) (3,5-diisopropylsalicylate)2 (CuDIPS) and other copper compounds on radiation transformation in vitro using C3H 10T1/2 cells. When present only during irradiation, high concentrations of SOD in the medium enhanced transformation, while catalase, inactivated SOD (autoclaved), CuDIPS, cupric chloride and cuprous chloride inhibited the initiation phase of radiation transformation. SOD, catalase and CuDIPS did not affect the expression phase of radiation transformation. Suppression of the TPA enhancement of transformation by catalase was a highly significant effect, while the suppression by SOD was not of statistical significance. Our results suggest that hydrogen peroxide (H 2 O 2 ) may be important in the cellular damage leading to malignant transformation

  11. Role of free radicals in the initiation and promotion of radiation transformation in vitro

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Little, J.B.; Troll, W.

    1984-01-01

    The effects of superoxide dismutase (SOD), catalase, Cu(II) (3,5-diisopropylsalicylate) 2 (CuDIPS) and other copper compounds on radiation transformation in vitro have been studied using C3H 10T1/2 cells. When present only during irradiation, high concentrations of SOD in the medium enhanced transformation, while catalase, inactivated SOD (autoclaved), CuDIPS, cupric chloride and cuprous chloride inhibited the initiation phase of radiation transformation. SOD, catalase and CuDIPS did not affect the expression phase of radiation transformation. Suppression of the TPA enhancement of transformation by catalase was a highly significant effect, while the suppression by SOD was not of statistical significance. These results suggest that hydrogen peroxide (H 2 O 2 ) may be important in the cellular damage leading to malignant transformation. (author)

  12. Comparative study of the conformational lock, dissociative thermal inactivation and stability of euphorbia latex and lentil seedling amine oxidases.

    Science.gov (United States)

    Amani, M; Moosavi-Movahedi, A A; Floris, G; Longu, S; Mura, A; Moosavi-Nejad, S Z; Saboury, A A; Ahmad, F

    2005-04-01

    The thermal stability of copper/quinone containing amine oxidases from Euphorbia characias latex (ELAO) and lentil seedlings (LSAO) was measured in 100 mM potassium phosphate buffer (pH 7.0) following changes in absorbance at 292 nm. ELAO was shown to be about 10 degrees C more stable than LSAO. The dissociative thermal inactivation of ELAO was studied using putrescine as substrate at different temperatures in the range 47-70 degrees C, and a "conformational lock" was developed using the theory pertaining to oligomeric enzyme. Moreover ELAO was shown to be more stable towards denaturants than LSAO, as confirmed by dodecyl trimethylammonium bromide denaturation curves. A comparison of the numbers of contact sites in inter-subunits of ELAO relative to LSAO led us to conclude that the higher stability of ELAO to temperature and towards denaturants was due to the presence of larger number of contact sites in the conformational lock of the enzyme. This study also gives a putative common mechanism for thermal inactivation of amine oxidases and explains the importance of C-terminal conserved amino acids residues in this class of enzymes.

  13. Normal X-inactivation mosaicism in corneas of heterozygous FlnaDilp2/+ female mice--a model of human Filamin A (FLNA diseases

    Directory of Open Access Journals (Sweden)

    Douvaras Panagiotis

    2012-02-01

    Full Text Available Abstract Background Some abnormalities of mouse corneal epithelial maintenance can be identified by the atypical mosaic patterns they produce in X-chromosome inactivation mosaics and chimeras. Human FLNA/+ females, heterozygous for X-linked, filamin A gene (FLNA mutations, display a range of disorders and X-inactivation mosaicism is sometimes quantitatively unbalanced. FlnaDilp2/+ mice, heterozygous for an X-linked filamin A (Flna nonsense mutation have variable eye, skeletal and other abnormalities, but X-inactivation mosaicism has not been investigated. The aim of this study was to determine whether X-inactivation mosaicism in the corneal epithelia of FlnaDilp2/+ mice was affected in any way that might predict abnormal corneal epithelial maintenance. Results X-chromosome inactivation mosaicism was studied in the corneal epithelium and a control tissue (liver of FlnaDilp2/+ and wild-type (WT female X-inactivation mosaics, hemizygous for the X-linked, LacZ reporter H253 transgene, using β-galactosidase histochemical staining. The corneal epithelia of FlnaDilp2/+ and WT X-inactivation mosaics showed similar radial, striped patterns, implying epithelial cell movement was not disrupted in FlnaDilp2/+ corneas. Corrected stripe numbers declined with age overall (but not significantly for either genotype individually, consistent with previous reports suggesting an age-related reduction in stem cell function. Corrected stripe numbers were not reduced in FlnaDilp2/+ compared with WT X-inactivation mosaics and mosaicism was not significantly more unbalanced in the corneal epithelia or livers of FlnaDilp2/+ than wild-type Flna+/+ X-inactivation mosaics. Conclusions Mosaic analysis identified no major effect of the mouse FlnaDilp2 mutation on corneal epithelial maintenance or the balance of X-inactivation mosaicism in the corneal epithelium or liver.

  14. Effects of blue or violet light on the inactivation of Staphylococcus aureus by riboflavin-5'-phosphate photolysis.

    Science.gov (United States)

    Wong, Tak-Wah; Cheng, Chien-Wei; Hsieh, Zong-Jhe; Liang, Ji-Yuan

    2017-08-01

    The light sensitive compound riboflavin-5'-phosphate (or flavin mononucleotide, FMN) generates reactive oxygen species (ROS) upon photo-irradiation. FMN is required by all flavoproteins because it is a cofactor of biological blue-light receptors. The photochemical effects of FMN after irradiation by blue or violet light on the inactivation of Staphylococcus aureus strains, including a methicillin-resistant strain (MRSA), were investigated in this study. Upon blue- or violet-light photo-treatment, FMN was shown to inactivate S. aureus due to the generated ROS. Effective bacterial inactivation can be achieved by FMN photolysis without an exogenous electron provider. Inactivation rates of 94.9 and 95.2% in S. aureus and MRSA, respectively, can be reached by blue light irradiation (2.0mW/cm 2 ) with 120μM FMN for 120min. A lower FMN concentration and a shorter time are required to reach similar effects by violet light irradiation. Inactivation rates of 96.3 and 97.0% in S. aureus and MRSA, respectively, can be reached by violet light irradiation (1.0mW/cm 2 ) with 30μM FMN for 30min. The sensitivity of the inherent photosensitizers is lower under blue-light irradiation. A long exposure photolytic treatment of FMN by blue light is required to inactivate S. aureus. Violet light was found to be more efficient in S. aureus inactivation at the same radiant intensity. FMN photolysis with blue or violet light irradiation enhanced the inactivation rates of S. aureus and MRSA. FMN photochemical treatment could be a supplemental technique in hygienic decontamination processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Studies on the radiosensitivity and DNA damage by ionizing radiation in microorganisms

    International Nuclear Information System (INIS)

    Choi, E.H.

    1980-01-01

    Sensitivity of food-borne microorganisms to 60 Co gamma radiation and their radiosensitization by heat and chemical preservatives in the presence of nitrogen or oxygen gas were investigated with eight species of bacteria and twelve species of molds. Radiosensitivity of all tested bacteria was examined to give D 10 values of 11-30 krad for vegetative cells and 185-470 krad for spores. Conidia of molds showed dose-survival curves of sigmoidal type which had D 10 values of 15-37 krad and induction doses of 12-75 krad. Sal. typhimurium (10 min at 45 0 C) and spores of B. subtilis 168 (30 min at 95 0 C) showed a synergistic effect of inactivation with postirradiation heating, whereas E. coli B/r (15 min at 50 0 C) and Pen. expansum (10 min at 50 0 C) were synergistically inactivated by both pre- and post-irradiation heating. On the other hand vegetative cells (10 min at 45 0 C) and spores (10 min at 80 0 C) of B. megaterium NRRL B-1368 did not show any synergistic effects with the pre- or postirradiation heating. Heating before or after irradiation induced more breaks of DNA single strands of E. coil B/r than the irradiation alone. However the repair process of the broken DNA was not observed. Irradiation in the presence of oxygen gas caused more increase in break and repair of DNA single strands whereas the treatment in the presence of nitrogen gas resulted in a decrease. (author)

  16. “Redundancy” of Endocannabinoid Inactivation: New Challenges and Opportunities for Pain Control

    Science.gov (United States)

    2012-01-01

    Redundancy of metabolic pathways and molecular targets is a typical feature of all lipid mediators, and endocannabinoids, which were originally defined as endogenous agonists at cannabinoid CB1 and CB2 receptors, are no exception. In particular, the two most studied endocannabinoids, anandamide and 2-arachidonoylglycerol, are inactivated through alternative biochemical routes, including hydrolysis and oxidation, and more than one enzyme might be used even for the same type of inactivating reaction. These enzymes also recognize as substrates other concurrent lipid mediators, whereas, in turn, endocannabinoids might interact with noncannabinoid receptors with subcellular distribution and ultimate biological actions either similar to or completely different from those of cannabinoid receptors. Even splicing variants of endocannabinoid hydrolyzing enzymes, such as FAAH-1, might play distinct roles in endocannabinoid inactivation. Finally, the products of endocannabinoid catabolism may have their own targets, with biological roles different from those of cannabinoid receptors. These peculiarities of endocannabinoid signaling have complicated the use of inhibitors of its inactivation mechanisms as a safer and more efficacious alternative to the direct targeting of cannabinoid receptors for the treatment of several pathological conditions, including pain. However, new strategies, including the rediscovery of “dirty drugs”, and the use of certain natural products (including non-THC cannabis constituents), are emerging that might allow us to make a virtue of necessity and exploit endocannabinoid redundancy to develop new analgesics. PMID:22860203

  17. Combination of microsecond and nanosecond pulsed electric field treatments for inactivation of Escherichia coli in water samples.

    Science.gov (United States)

    Žgalin, Maj Kobe; Hodžić, Duša; Reberšek, Matej; Kandušer, Maša

    2012-10-01

    Inactivation of microorganisms with pulsed electric fields is one of the nonthermal methods most commonly used in biotechnological applications such as liquid food pasteurization and water treatment. In this study, the effects of microsecond and nanosecond pulses on inactivation of Escherichia coli in distilled water were investigated. Bacterial colonies were counted on agar plates, and the count was expressed as colony-forming units per milliliter of bacterial suspension. Inactivation of bacterial cells was shown as the reduction of colony-forming units per milliliter of treated samples compared to untreated control. According to our results, when using microsecond pulses the level of inactivation increases with application of more intense electric field strengths and with number of pulses delivered. Almost 2-log reductions in bacterial counts were achieved at a field strength of 30 kV/cm with eight pulses and a 4.5-log reduction was observed at the same field strength using 48 pulses. Extending the duration of microsecond pulses from 100 to 250 μs showed no improvement in inactivation. Nanosecond pulses alone did not have any detectable effect on inactivation of E. coli regardless of the treatment time, but a significant 3-log reduction was achieved in combination with microsecond pulses.

  18. Nondeterministic computational fluid dynamics modeling of Escherichia coli inactivation by peracetic acid in municipal wastewater contact tanks.

    Science.gov (United States)

    Santoro, Domenico; Crapulli, Ferdinando; Raisee, Mehrdad; Raspa, Giuseppe; Haas, Charles N

    2015-06-16

    Wastewater disinfection processes are typically designed according to heuristics derived from batch experiments in which the interaction among wastewater quality, reactor hydraulics, and inactivation kinetics is often neglected. In this paper, a computational fluid dynamics (CFD) study was conducted in a nondeterministic (ND) modeling framework to predict the Escherichia coli inactivation by peracetic acid (PAA) in municipal contact tanks fed by secondary settled wastewater effluent. The extent and variability associated with the observed inactivation kinetics were both satisfactorily predicted by the stochastic inactivation model at a 95% confidence level. Moreover, it was found that (a) the process variability induced by reactor hydraulics is negligible when compared to the one caused by inactivation kinetics, (b) the PAA dose required for meeting regulations is dictated equally by the fixed limit of the microbial concentration as well as its probability of occurrence, and (c) neglecting the probability of occurrence during process sizing could lead to an underestimation of the PAA dose required by as much as 100%. Finally, the ND-CFD model was used to generate sizing information in the form of probabilistic disinfection curves relating E. coli inactivation and probability of occurrence with the average PAA dose and PAA residual concentration at the outlet of the contact tank.

  19. Mutagenicity of monoadducts and cross-links induced in Aspergillus nidulans by 8-methoxypsoralen plus 365 nm radiation

    International Nuclear Information System (INIS)

    Scott, B.R.; Maley, M.A.

    1981-01-01

    8-Methoxypsoralen plus 365 nm radiation induces mutation at the methionine supressor loci of Aspergillus inhibitor-deficient conidia at low doses of near-UV radiation with one-hit kinetics and at higher near-UV radiation doses with two-hit kinetics. These results and others suggest that both monoadducts and cross-links, formed by 8-methoxypsoralen and DNA upon exposure to UV radiation, are capable of inducing mutation. Evidence is also presented that induced furocoumarin cross-links are responsible for the inactivation of the Aspergillus conidium. (author)

  20. Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates

    Science.gov (United States)

    Fahey, Jed W.; Stephenson, Katherine K.; Wade, Kristina L.; Talalay, Paul

    2013-01-01

    Infections by Helicobacter pylori are very common, causing gastroduodenal inflammation including peptic ulcers, and increasing the risk of gastric neoplasia. The isothiocyanate (ITC) sulforaphane [SF; 1-isothiocyanato-4-(methylsulfinyl)butane] derived from edible crucifers such as broccoli is potently bactericidal against Helicobacter, including antibiotic-resistant strains, suggesting a possible dietary therapy. Gastric H. pylori infections express high urease activity which generates ammonia, neutralizes gastric acidity, and promotes inflammation. The finding that SF inhibits (inactivates) urease (jack bean and Helicobacter) raised the issue of whether these properties might be functionally related. The rates of inactivation of urease activity depend on enzyme and SF concentrations and show first order kinetics. Treatment with SF results in time-dependent increases in the ultraviolet absorption of partially purified Helicobacter urease in the 280–340 nm region. This provides direct spectroscopic evidence for the formation of dithiocarbamates between the ITC group of SF and cysteine thiols