WorldWideScience

Sample records for radiation hardened tele-robot

  1. The development of radiation hardened robot for nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Jung, Seung Ho; Kim, Byung Soo and others

    2000-04-01

    The work conducted in this stage covers development of core technology of tele-robot system including monitoring technique in high-level radioactive area, tele-sensing technology and radiation-hardened technology for the non-destructive tele-inspection system which monitors the primary coolant system during the normal operations of PHWR(Pressurized Heavy Water Reactor) NPPs and measures the decrease of bending part of feeder pipe during overall. Based on the developed core technology, the monitoring mobile robot system of the primary coolant system and the feeder pipe inspecting robot system are developed.

  2. The development of radiation hardened robot for nuclear facility

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Jung, Seung Ho; Kim, Byung Soo and others

    2000-04-01

    The work conducted in this stage covers development of core technology of tele-robot system including monitoring technique in high-level radioactive area, tele-sensing technology and radiation-hardened technology for the non-destructive tele-inspection system which monitors the primary coolant system during the normal operations of PHWR(Pressurized Heavy Water Reactor) NPPs and measures the decrease of bending part of feeder pipe during overall. Based on the developed core technology, the monitoring mobile robot system of the primary coolant system and the feeder pipe inspecting robot system are developed

  3. Radiation hardenable coating mixture

    International Nuclear Information System (INIS)

    Howard, D.D.

    1977-01-01

    This invention relates to coatings that harden under radiation and to their compositions. Specifically, this invention concerns unsaturated urethane resins polymerisable by addition and to compositions, hardening under the effect of radiation, containing these resins. These resins feature the presence of at least one unsaturated ethylenic terminal group of structure CH 2 =C and containing the product of the reaction of an organic isocyanate compound with at least two isocyanate groups and one polyester polyol with at least two hydroxyl groups, and one unsaturated monomer compound polymerisable by addition having a single active hydrogen group reacting with the isocyanate [fr

  4. RHOBOT: Radiation hardened robotics

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.C.; Posey, L.D. [Sandia National Labs., Albuquerque, NM (United States)

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  5. RHOBOT: Radiation hardened robotics

    International Nuclear Information System (INIS)

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program

  6. Radiation hardening coating material

    International Nuclear Information System (INIS)

    McDonald, W.H.; Prucnal, P.J.; DeMajistre, Robert.

    1977-01-01

    This invention concerns a radiation hardening coating material. First a resin is prepared by reaction of bisphenol diglycidylic ether with acrylic or methacrylic acids. Then the reactive solvent is prepared by reaction of acrylic or methacrylic acids with epichlorhydrine or epibromhydrine. Then a solution consisting of the resin dissolved in the reactive solvent is prepared. A substrate (wood, paper, polyesters, polyamines etc.) is coated with this composition and exposed to ionizing radiations (electron beams) or ultraviolet radiations [fr

  7. The Development of radiation hardened tele-robot system - Development of teleoperating technology using a universal master

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Je; Yang, Hyun Suk [Yonsei University, Seoul (Korea)

    1999-04-01

    A force-reflecting universal master for a teleoperating system has been designed and constructed, which can be used as an effective command input device for teleoperated robots. This report presents a full detail of the mechanism design and experiments related to the development of the force-reflecting masters. A real time virtual graphics display system which can be used as a powerful tool to predict any potential dangers and also to prevent an accident in advance has been developed and interfaced with the master. In order to transmit the force information of the slave to the operator effectively, the force-reflecting algorithm has been suggested and tested on the teleoperating system. The various master-slave systems have been tested in order to develop an efficient control algorithm for a teleoperating system with a force-reflecting master. A compliant device with the force/torque sensor capability has been also developed, which can be used as a passive position/force hybrid control device and as a sensor acquiring valid contact information of a slave with an environment. Experimental results showed that the developed teleoperating technology can be applied to a teleoperator system which interacts with the real environment. 21 refs., 103 figs., 2 tabs. (Author)

  8. The Development of Radiation hardened tele-robot system - Development of artificial force reflection control for teleoperated mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Jang; Hong, Sun Gi; Kang, Young Hoon; Kim, Min Soeng [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    1999-04-01

    One of the most important issues in teleoperation is to provide the sense of telepresence so as to conduct the task more reliably. In particular, teleoperated mobile robots are needed to have some kinds of backup system when the operator is blind for remote situation owing to the failure of vision system. In the first year, the idea of artificial force reflection was researched to enhance the reliability of operation when the mobile robot travels on the plain ground. In the second year, we extend previous results to help the teleoperator even when the robot climbs stairs. Finally, we apply the developed control algorithms to real experiments. The artificial force reflection method has two modes; traveling on the plain ground and climbing stairs. When traveling on the plain ground, the force information is artificially generated by using the range data from the environment while generating the impulse force when climbing stairs. To verify the validity of our algorithm, we develop the simulator which consists of the joystick and the visual display system. Through some experiments using this system, we confirm the validity and effectiveness of our new idea of artificial force reflection in the teleoperated mobile robot. 11 refs., 30 figs. (Author)

  9. Radiation-hardenable diluents for radiation-hardenable compositions

    International Nuclear Information System (INIS)

    Schuster, K.E.; Rosenkranz, H.J.; Furh, K.; Ruedolph, H.

    1979-01-01

    Radiation-crosslinkable diluents for radiation-hardenable compositions (binders) consisting of a mixture of triacrylates of a reaction product of trimethylol propane and ethylene oxide with an average degree of ethoxylation of from 2.5 to 4 are described. The ethoxylated trimethylol propane is substantially free from trimethylol propane and has the following distribution: 4 to 5% by weight of monoethoxylation product, 14 to 16% by weight of diethoxylation product, 20 to 30% by weight of triethoxylation product, 20 to 30% by weight of tetraethoxylation product, 16 to 18% by weight of pentaethoxylation product, and 6 to 8% by weight of hexaethoxylation product. The diluents effectively reduce the viscosity of radiation-hardenable compositions and do not have any adverse effect upon their reactivity or upon the properties of the resulting hardened products

  10. Radiation-hardened bulk CMOS technology

    International Nuclear Information System (INIS)

    Dawes, W.R. Jr.; Habing, D.H.

    1979-01-01

    The evolutionary development of a radiation-hardened bulk CMOS technology is reviewed. The metal gate hardened CMOS status is summarized, including both radiation and reliability data. The development of a radiation-hardened bulk silicon gate process which was successfully implemented to a commercial microprocessor family and applied to a new, radiation-hardened, LSI standard cell family is also discussed. The cell family is reviewed and preliminary characterization data is presented. Finally, a brief comparison of the various radiation-hardened technologies with regard to performance, reliability, and availability is made

  11. Radiation hardening of diagnostics

    International Nuclear Information System (INIS)

    Siemon, R.E.

    1991-01-01

    The world fusion program has advanced to the stage where it is appropriate to construct a number of devices for the purpose of burning DT fuel. In these next-generation experiments, the expected flux and fluence of 14 MeV neutrons and associated gamma rays will pose a significant challenge to the operation and diagnostics of the fusion device. Radiation effects include structural damage to materials such as vacuum windows and seals, modifications to electrical properties such as electrical conductivity and dielectric strength and impaired optical properties such as reduced transparency and luminescence of windows and fiber optics during irradiation. In preparation for construction and operation of these new facilities, the fusion diagnostics community needs to work with materials scientists to develop a better understanding of radiation effects, and to undertake a testing program aimed at developing workable solutions for this multi-faceted problem. A unique facility to help in this regard is the Los Alamos Spallation Radiation Effects Facility, a neutron source located at the beam stop of the world's most powerful accelerator, the Los Alamos Meson Physics Facility (LAMPF). The LAMPF proton beam generates 10 16 neutrons per second because of ''spallation'' reactions when the protons collide with the copper nuclei in the beam stop

  12. Construction Tele-Robotics System with AR Presentation

    International Nuclear Information System (INIS)

    Ootsubo, K; Kawamura, T; Yamada, H

    2013-01-01

    Tele-Robotics system using bilateral control is an effective tool for task in disaster scenes, and also in extreme environments. The conventional systems are equipped with a few color video cameras captures view of the task field, and their video images are sent to the operator via some network. Usually, the images are captured only from some fixed angles. So the operator cannot obtain intuitively 3D-sense of the task field. In our previous study, we proposed a construction tele-robotics system based on VR presentation. The operator intuits the geometrical states of the robot presented by CG, but the information of the surrounding environment is not included like a video image. So we thought that the task efficiency could be improved by appending the CG image to the video image. In this study, we developed a new presentation system based on augmented reality (AR). In this system, the CG image, which represents 3D geometric information for the task, is overlaid on the video image. In this study, we confirmed the effectiveness of the system experimentally. Additionally, we verified its usefulness to reduction of the communication delay associated with a tele-robotics system.

  13. Radiation hardening of semiconductor parts

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This chapter is an overview of total-ionizing-dose and single-event hardening techniques and should be used as a guide to a range of research publications. It should be stressed that there is no clear and simple route to a radiation-tolerant silicon integrated circuit. What works for one fabrication process may not work for another, and there are many complex interactions within individual processes and designs. The authors have attempted to highlight the most important factors and those process changes which should bring improved hardness. The main point is that radiation-hardening as a procedure must be approached in a methodical fashion and with a good understanding of the response mechanisms involved

  14. Radiation-hardened control system

    International Nuclear Information System (INIS)

    Vandermolen, R.I.; Smith, S.F.; Emery, M.S.

    1993-01-01

    A radiation-hardened bit-slice control system with associated input/output circuits was developed to prove that programmable circuits could be constructed to successfully implement intelligent functions in a highly radioactive environment. The goal for this effort was to design and test a programmable control system that could withstand a minimum total dose of 10 7 rads (gamma). The Radiation Hardened Control System (RHCS) was tested in operation at a dose rate that ranged up to 135 krad/h, with an average total dose of 10.75 Mrads. Further testing beyond the required 10 7 rads was also conducted. RHCS performed properly through the target dose of 10 7 rads, and sporadic intermittent failures in some programmable logic devices were noted after ∼ 13 Mrads

  15. Radiation hardening of smart electronics

    International Nuclear Information System (INIS)

    Mayo, C.W.; Cain, V.R.; Marks, K.A.; Millward, D.G.

    1991-02-01

    Microprocessor based ''smart'' pressure, level, and flow transmitters were tested to determine the radiation hardness of this class of electronic instrumentation for use in reactor building applications. Commercial grade Complementary Metal Oxide Semiconductor (CMOS) integrated circuits used in these transmitters were found to fail at total gamma dose levels between 2500 and 10,000 rad. This results in an unacceptably short lifetime in many reactor building radiation environments. Radiation hardened integrated circuits can, in general, provide satisfactory service life for normal reactor operations when not restricted to the extremely low power budget imposed by standard 4--20 mA two-wire instrument loops. The design of these circuits will require attention to vendor radiation hardness specifications, dose rates, process control with respect to radiation hardness factors, and non-volatile programmable memory technology. 3 refs., 2 figs

  16. The development of radiation hardened tele-robot system - Development of path-planning and control technology for tele-operated redundant manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Pyung Hun; Park, Ki Cheol; Park, Suk Ho [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    1999-04-01

    This project focuses on the development of the control system for a teleoperated redundant manipulator, which performs many tasks dexterously, while avoiding obstacles, instead of human workers in the extreme situations like nuclear power plants. To this end, four consecutive research works have been performed. First, two new methods for global path-planning have been developed to inspect the global behavior of the redundant manipulator. Second, characteristics of optimal solutions(COS) under inequality constraints have been analyzed and, using the COS, how to greatly enhance the conventional redundancy resolution methods in terms of performance and repeatability has also been proposed. Third, an effective control method for a redundant manipulator has been developed, which incorporates all kinds of physical limits into practical inequality constraints and is computationally efficient for real-time purposes. Finally, using this control method as the controller of the slave redundant manipulator and developing a master manipulator, the inertial torque and gravitation torque of which are negligible, a force-reflected teleoperation control system has been developed. Through the teleoperation control system, human operator can accurately control the position and the force of the end-effector of the slave manipulator while feeling the interaction force between the slave and the workpiece. In addition, the slave redundant manipulator autonomously can control the impedance and can optimize a given performance measure while avoiding physical limits such as joint angle limits and obstacles. 49 refs., 43 figs., 10 tabs. (Author)

  17. A Novel Radiation Hardened CAM

    CERN Document Server

    Shojaii, Seyed Ruhollah; The ATLAS collaboration

    2018-01-01

    This poster describes an innovative Content Addressable Memory cell with radiation hardened (RH-CAM) architecture. The RH-CAM is designed in a commercial 28 nm CMOS technology. The circuit has been simulated in worst-case conditions, and the effects due to single particles are analyzed injecting a fault current into a circuit node. The proposed architecture can perform on-time pattern recognition tasks in harsh environments, such as very front-end electronics in hadron colliders and in space applications.

  18. Radiation hardening of integrated circuits technologies

    International Nuclear Information System (INIS)

    Auberton-Herve, A.J.; Leray, J.L.

    1991-01-01

    The radiation hardening studies started in the mid decade -1960-1970. To survive the different military or space radiative environment, a new engineering science borned, to understand the degradation of electronics components. The different solutions to improve the electronic behavior in such environment, have been named radiation hardening of the technologies. Improvement of existing technologies, and qualification method have been widely studied. However, at the other hand, specific technologies was developped : The Silicon On Insulator technologies for CMOS or Bipolar. The HSOI3HD technology (supported by DGA-CEA DAM and LETI with THOMSON TMS) offers today the highest hardening level for the integration density of hundreds of thousand transistors on the same silicon. Full complex systems would be realized on a single die with a technological radiation hardening and no more system hardening

  19. Radiation hardened COTS-based 32-bit microprocessor

    International Nuclear Information System (INIS)

    Haddad, N.; Brown, R.; Cronauer, T.; Phan, H.

    1999-01-01

    A high performance radiation hardened 32-bit RISC microprocessor based upon a commercial single chip CPU has been developed. This paper presents the features of radiation hardened microprocessor, the methods used to radiation harden this device, the results of radiation testing, and shows that the RAD6000 is well-suited for the vast majority of space applications. (authors)

  20. Radiation dose effects, hardening of electronic components

    International Nuclear Information System (INIS)

    Dupont-Nivet, E.

    1991-01-01

    This course reviews the mechanism of interaction between ionizing radiation and a silicon oxide type dielectric, in particular the effect of electron-hole pairs creation in the material. Then effects of cumulated dose on electronic components and especially in MOS technology are examined. Finally methods hardening of these components are exposed. 93 refs

  1. Radiation Hardening of Silicon Detectors

    CERN Multimedia

    Leroy, C; Glaser, M

    2002-01-01

    %RD48 %title\\\\ \\\\Silicon detectors will be widely used in experiments at the CERN Large Hadron Collider where high radiation levels will cause significant bulk damage. In addition to increased leakage current and charge collection losses worsening the signal to noise, the induced radiation damage changes the effective doping concentration and represents the limiting factor to long term operation of silicon detectors. The objectives are to develop radiation hard silicon detectors that can operate beyond the limits of the present devices and that ensure guaranteed operation for the whole lifetime of the LHC experimental programme. Radiation induced defect modelling and experimental results show that the silicon radiation hardness depends on the atomic impurities present in the initial monocrystalline material.\\\\ \\\\ Float zone (FZ) silicon materials with addition of oxygen, carbon, nitrogen, germanium and tin were produced as well as epitaxial silicon materials with epilayers up to 200 $\\mu$m thickness. Their im...

  2. Thermomechanical properties of radiation hardened oligoesteracrylates

    International Nuclear Information System (INIS)

    Lomonosova, N.V.; Chikin, Yu.A.

    1984-01-01

    Thermomechanical properties of radiation hardened oligoesteracrylates are studied by the methods of isothermal heating and thermal mechanics. Films of dimethacrylate of ethylene glycol, triethylene glycol (TGM-3), tetraethylene glycol, tridecaethylene glycol and TGM-3 mixture with methyl methacrylate hardened by different doses (5-150 kGy) using Co 60 installation with a dose rate of 2x10 -3 kGy/s served as a subject of the research. During oligoesteracrylate hargening a space network is formed, chain sections between lattice points of which are in a stressed state. Maximum of deformation is observed at 210-220 deg C on thermomechanical curves of samples hardened by doses > 5 kGy, which form and intensity is dependent on an absorbed dose. Presence of a high-temperature maximum on diaqrams of isometric heating of spatially cross-linked oligoesteracrylates is discovered. High thermal stability of three-dimensional network of radiation hardened oligoesteracrylates provides satisfactory tensile properties (40% of initial strength) in sample testing an elevated temperatures (200-250 deg C)

  3. Radiation-hardened optoelectronic components: detectors

    International Nuclear Information System (INIS)

    Wiczer, J.J.

    1986-01-01

    In this talk, we will survey recent research in the area of radiation hardened optical detectors. We have studied conventional silicon photodiode structures, special radiation hardened silicon photodiodes, and special double heterojunction AlGaAs/GaAs photodiodes in neutron, gamma, pulsed x-ray and charged particle environments. We will present results of our work and summarize other research in this area. Our studies have shown that detectors can be made to function acceptably after exposures to neutron fluences of 10 15 n/cm 2 , total dose gamma exposures of 10 8 rad (Si), and flash x-ray environments of 10 8 rad/sec (Si). We will describe detector structures that can operate through these conditions, pre-rad and post-rad operational characteristics, and experimental conditions that produced these results. 23 refs., 10 figs., 1 tab

  4. Novel circuits for radiation hardened memories

    International Nuclear Information System (INIS)

    Haraszti, T.P.; Mento, R.P.; Moyer, N.E.; Grant, W.M.

    1992-01-01

    This paper reports on implementation of large storage semiconductor memories which combine radiation hardness with high packing density, operational speed, and low power dissipation and require both hardened circuit and hardened process technologies. Novel circuits, including orthogonal shuffle type of write-read arrays, error correction by weighted bidirectional codes and associative iterative repair circuits, are proposed for significant improvements of SRAMs' immunity against the effects of total dose and cosmic particle impacts. The implementation of the proposed circuit resulted in fault-tolerant 40-Mbit and 10-Mbit monolithic memories featuring a data rate of 120 MHz and power dissipation of 880 mW. These experimental serial-parallel memories were fabricated with a nonhardened standard CMOS processing technology, yet provided a total dose hardness of 1 Mrad and a projected SEU rate of 1 x 10 - 12 error/bit/day. Using radiation hardened processing improvements by factors of 10 to 100 are predicted in both total dose hardness and SEU rate

  5. BUSFET -- A radiation-hardened SOI transistor

    International Nuclear Information System (INIS)

    Schwank, J.R.; Shaneyfelt, M.R.; Draper, B.L.; Dodd, P.E.

    1999-01-01

    The total-dose hardness of SOI technology is limited by radiation-induced charge trapping in gate, field, and SOI buried oxides. Charge trapping in the buried oxide can lead to back-channel leakage and makes hardening SOI transistors more challenging than hardening bulk-silicon transistors. Two avenues for hardening the back-channel are (1) to use specially prepared SOI buried oxides that reduce the net amount of trapped positive charge or (2) to design transistors that are less sensitive to the effects of trapped charge in the buried oxide. In this work, the authors propose a partially-depleted SOI transistor structure for mitigating the effects of trapped charge in the buried oxide on radiation hardness. They call this structure the BUSFET--Body Under Source FET. The BUSFET utilizes a shallow source and a deep drain. As a result, the silicon depletion region at the back channel caused by radiation-induced charge trapping in the buried oxide does not form a conducting path between source and drain. Thus, the BUSFET structure design can significantly reduce radiation-induced back-channel leakage without using specially prepared buried oxides. Total dose hardness is achieved without degrading the intrinsic SEU or dose rate hardness of SOI technology. The effectiveness of the BUSFET structure for reducing total-dose back-channel leakage depends on several variables, including the top silicon film thickness and doping concentration, and the depth of the source. 3-D simulations show that for a body doping concentration of 10 18 cm -3 , a drain bias of 3 V, and a source depth of 90 nm, a silicon film thickness of 180 nm is sufficient to almost completely eliminate radiation-induced back-channel leakage. However, for a doping concentration of 3 x 10 17 cm -3 , a thicker silicon film (300 nm) must be used

  6. Radiation hardening of MOS devices by boron

    International Nuclear Information System (INIS)

    Danchenko, V.

    1975-01-01

    A novel technique is disclosed for radiation hardening of MOS devices and specifically for stabilizing the gate threshold potential at room temperature of a radiation subjected MOS field-effect device of the type having a semiconductor substrate, an insulating layer of oxide on the substrate, and a gate electrode disposed on the insulating layer. In the preferred embodiment, the novel inventive technique contemplates the introduction of boron into the insulating oxide, the boron being introduced within a layer of the oxide of about 100A to 300A thickness immediately adjacent the semiconductor-insulator interface. The concentration of boron in the oxide layer is preferably maintained on the order of 10 atoms/ cm 3 . The novel technique serves to reduce and substantially annihilate radiation induced positive gate charge accumulations, which accumulations, if not eliminated, would cause shifting of the gate threshold potential of a radiation subjected MOS device, and thus render the device unstable and/or inoperative. (auth)

  7. An Innovative Radiation Hardened CAM Architecture

    CERN Document Server

    Shojaii, Seyed Ruhollah; The ATLAS collaboration

    2018-01-01

    This article describes an innovative Content Addressable Memory (CAM) cell with radiation hardened (RH) architecture. The RH-CAM is designed in a commercial 28 nm CMOS technology. The circuit has been simulated in worst-case conditions, and the effects due to single particles have been analyzed by injecting a current pulse into a circuit node. The proposed architecture is suitable for on-time pattern recognition tasks in harsh environments, such as front-end electronics in hadron colliders and in space applications.

  8. Radiation-hardened nonvolatile MNOS RAM

    International Nuclear Information System (INIS)

    Wrobel, T.F.; Dodson, W.H.; Hash, G.L.; Jones, R.V.; Nasby, R.D.; Olson, R.J.

    1983-01-01

    A radiation hardened nonvolatile MNOS RAM is being developed at Sandia National Laboratories. The memory organization is 128 x 8 bits and utilizes two p-channel MNOS transistors per memory cell. The peripheral circuitry is constructed with CMOS metal gate and is processed with standard Sandia rad-hard processing techniques. The devices have memory retention after a dose-rate exposure of 1E12 rad(Si)/s, are functional after total dose exposure of 1E6 rad(Si), and are dose-rate upset resistant to levels of 7E8 rad(Si)/s

  9. Radiation-hardened CMOS integrated circuits

    International Nuclear Information System (INIS)

    Pikor, A.; Reiss, E.M.

    1980-01-01

    Substantial effort has been directed at radiation-hardening CMOS integrated circuits using various oxide processes. While most of these integrated circuits have been successful in demonstrating megarad hardness, further investigations have shown that the 'wet-oxide process' is most compatible with the RCA CD4000 Series process. This article describes advances in the wet-oxide process that have resulted in multimegarad hardness and yield to MIL-M-38510 screening requirements. The implementation of these advances into volume manufacturing is geared towards supplying devices for aerospace requirements such as the Defense Meterological Satellite program (DMSP) and the Global Positioning Satellite (GPS). (author)

  10. Configurable Radiation Hardened High Speed Isolated Interface ASIC, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NVE Corporation will design and build an innovative, low cost, flexible, configurable, radiation hardened, galvanically isolated, interface ASIC chip set that will...

  11. Open Source Radiation Hardened by Design Technology

    Science.gov (United States)

    Shuler, Robert

    2016-01-01

    The proposed technology allows use of the latest microcircuit technology with lowest power and fastest speed, with minimal delay and engineering costs, through new Radiation Hardened by Design (RHBD) techniques that do not require extensive process characterization, technique evaluation and re-design at each Moore's Law generation. The separation of critical node groups is explicitly parameterized so it can be increased as microcircuit technologies shrink. The technology will be open access to radiation tolerant circuit vendors. INNOVATION: This technology would enhance computation intensive applications such as autonomy, robotics, advanced sensor and tracking processes, as well as low power applications such as wireless sensor networks. OUTCOME / RESULTS: 1) Simulation analysis indicates feasibility. 2)Compact voting latch 65 nanometer test chip designed and submitted for fabrication -7/2016. INFUSION FOR SPACE / EARTH: This technology may be used in any digital integrated circuit in which a high level of resistance to Single Event Upsets is desired, and has the greatest benefit outside low earth orbit where cosmic rays are numerous.

  12. Radiation-hardened microwave communications system

    International Nuclear Information System (INIS)

    Smith, S.F.; Crutcher, R.I.; Vandermolen, R.I.

    1990-01-01

    The consolidated fuel reprocessing program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been developing signal transmission techniques and equipment to improve the efficiency of remote handling operations for nuclear applications. These efforts have been largely directed toward the goals of (a) remotely controlling bilateral force-reflecting servomanipulators for dexterous manipulation-based operations in remote maintenance tasks and (b) providing television viewing of the work site. In September 1987, developmental microwave transceiving hardware operating with dish antennas was demonstrated in the advanced integrated maintenance system (AIMS) facility at ORNL, successfully implementing both high-quality one-way television transmissions and simultaneous bidirectional digital control data transmissions with very low error rates. Initial test results based on digital transmission at a 1.0-Mbaud data rate indicated that the error rates of the microwave system were comparable to those of a hardwired system. During these test intervals, complex manipulator operations were performed, and the AIMS transporter was moved repeatedly without adverse effects on data integrity. Results of these tests have been factored into subsequent phases of the development program, with an ultimate goal of designing a fully radiation-hardened microwave signal transmission system for use in nuclear facilities

  13. Maestro: a tele-robotic system for decommissioning of nuclear plants

    International Nuclear Information System (INIS)

    Desbats, P.; Idasiak, J.M.

    2008-01-01

    Compared to electric manipulators, hydraulic manipulators can handle higher payloads with respect to their size and mass. However, due to their limited positioning resolution and dexterity, they are usually disqualified for precise tele-manipulation and high quality tele-operation. More over, experience feedback has shown that on-the-shelf hydraulic manipulators are not reliable when performing high demanding tasks in tele-operation for dismantling applications. In order to solve this problem, CEA (Commissariat l'Energie Atomique), in collaboration with Cybernetix company, has developed a computer-aided, high-precision remote handling system with force-feedback featuring the advanced hydraulic tele-robotic arm Maestro. (authors)

  14. A Radiation Hardened Housekeeping Slave Node (RH-HKSN) ASIC

    Data.gov (United States)

    National Aeronautics and Space Administration — This projects seeks to continue the development of the Radiation Hardened Housekeeping Slave Node (RH-HKSN) ASIC. The effort has taken parallel paths by implementing...

  15. Technologies Enabling Custom Radiation-Hardened Component Development, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Two primary paths are available for the creation of a Rad-Hard ASIC. The first approach is to use a radiation hardened process such as existing Rad-Hard foundries....

  16. Space Qualified, Radiation Hardened, Dense Monolithic Flash Memory, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation hardened nonvolatile memories for space is still primarily confined to EEPROM. There is high density effective or cost effective NVM solution available to...

  17. Radiation Hardened Ethernet PHY and Switch Fabric, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Innoflight will develop a new family of radiation hardened (up to 3 Mrad(Si)), fault-tolerant, high data-rate (up to 8 Gbps), low power Gigabit Ethernet PHY and...

  18. Space Qualified, Radiation Hardened, Dense Monolithic Flash Memory, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro proposes to build a radiation hardened by design (RHBD) flash memory, using a modified version of our RH-eDRAM Memory Controller to solve all the single...

  19. Radiation hardening of metals irradiated by heavy ions

    International Nuclear Information System (INIS)

    Didyk, A.Yu.; Skuratov, V.A.; Mikhajlova, N.Yu.; Regel', V.R.

    1988-01-01

    The damage dose dependence in the 10 -4 -10 -2 dpa region of radiation hardening of Al, V, Ni, Cu irradiated by xenon ions with 124 MeV energy is investigated using the microhardness technique and transmission electron microscope. It is shown that the pure metals radiation hardening is stimulated for defects clusters with the typical size less than 5 nm, as in the case of neutron and the light charge ion irradiation

  20. Radiation-chemical hardening of phenol-formaldehyde oligomers

    International Nuclear Information System (INIS)

    Shlapatskaya, V.V.; Omel'chenko, S.I.

    1978-01-01

    Radiation-chemical hardening of phenol formaldehyde oligomers of the resol type has been studied in the presence of furfural and diallylphthalate diluents. The samples have been hardened on an electron accelerator at an electron energy of 1.0-1.1 MeV and a dose rate of 2-3 Mrad/s. The kinetics of hardening has been studied on the yield of gel fraction within the range of absorbed doses from 7 to 400 Mrad. Radiation-chemical hardening of the studied compositions is activated with sensitizers, namely, amines, metal chlorides, and heterocyclic derivatives of metals. Furfural and diallylphthalate compositions are suitable for forming glass-fibre plastic items by the wet method and coatings under the action of ionizing radiations

  1. Exploration of a radiation hardening stabilized voltage power supply

    International Nuclear Information System (INIS)

    Xie Zeyuan; Xu Xianguo

    2014-01-01

    This paper mainly introduces the design method of radiation hardening stabilized voltage power supply that makes use of commercial radiation resistant electronic devices and the test results of radiation performance of the power supply and devices are presented in detail. The experiment results show that the hardened power supply can normally work until 1000 Gy (Si) total dose and 1 × 10 14 n/cm 2 neutron radiation, and it doesn't latchup at about 1 × l0 9 Gy (Si)/s gamma transient dose rate. (authors)

  2. Radiation hardening revisited: Role of intracascade clustering

    DEFF Research Database (Denmark)

    Singh, B.N.; Foreman, A.J.E.; Trinkaus, H.

    1997-01-01

    be explained in terms of conventional dispersed-barrier hardening because (a) the grown-in dislocations are not free, and (b) irradiation-induced defect clusters are not rigid indestructible Orowan obstacles. A new model called 'cascade-induced source hardening' is presented where glissile loops produced...... directly in cascades are envisaged to decorate the grown-in dislocations so that they cannot act as dislocation sources. The upper yield stress is related to the breakaway stress which is necessary to pull the dislocation away from the clusters/loops decorating it. The magnitude of the breakaway stress has...

  3. Radiation-hardened bulk Si-gate CMOS microprocessor family

    International Nuclear Information System (INIS)

    Stricker, R.E.; Dingwall, A.G.F.; Cohen, S.; Adams, J.R.; Slemmer, W.C.

    1979-01-01

    RCA and Sandia Laboratories jointly developed a radiation-hardened bulk Si-gate CMOS technology which is used to fabricate the CDP-1800 series microprocessor family. Total dose hardness of 1 x 10 6 rads (Si) and transient upset hardness of 5 x 10 8 rads (Si)/sec with no latch up at any transient level was achieved. Radiation-hardened parts manufactured to date include the CDP-1802 microprocessor, the CDP-1834 ROM, the CDP-1852 8-bit I/O port, the CDP-1856 N-bit 1 of 8 decoder, and the TCC-244 256 x 4 Static RAM. The paper is divided into three parts. In the first section, the basic fundamentals of the non-hardened C 2 L technology used for the CDP-1800 series microprocessor parts is discussed along with the primary reasons for hardening this technology. The second section discusses the major changes in the fabrication sequence that are required to produce radiation-hardened devices. The final section details the electrical performance characteristics of the hardened devices as well as the effects of radiation on device performance. Also included in this section is a discussion of the TCC-244 256 x 4 Static RAM designed jointly by RCA and Sandia Laboratories for this application

  4. Hardening by means of ionising radiation

    International Nuclear Information System (INIS)

    Spoor, H.; Demmler, K.

    1979-01-01

    The polymerisable ethylic unsaturated mixture can be hardened by means of electron irradiation and used as a corrosion preventive layer. The mixture mainly consists of at least a di-olefinic unsaturated polyester, partial esters of polycarbonic acids, in particular the monoester of dicarbonic acids, with a copolymerizable C-C double bond, and mono-olefine unsaturated hydrocarbons, for example vinyl aromatics. The coatings exhibit good adhesion to the substrate, in particular to metal, and good flexibility. (DG) [de

  5. Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery.

    Science.gov (United States)

    Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell

    2011-06-01

    This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information.

  6. Radiation response of two Harris semiconductor radiation hardened 1k CMOS RAMs

    International Nuclear Information System (INIS)

    Abare, W.E.; Huffman, D.D.; Moffett, G.E.

    1982-01-01

    This paper describes the testing of two types 1K CMOS static RAMs in various transient and steady state ionizing radiation environments. Type HM 6551R (256x4 bits) and type HM 6508R (1024x1 bit) RAMs were evaluated. The RAMs are radiation hardened versions of Harris' commercial RAMs. A brief description of the radiation hardened process is presented

  7. Radiation Hardened 10BASE-T Ethernet Physical Layer (PHY)

    Science.gov (United States)

    Lin, Michael R. (Inventor); Petrick, David J. (Inventor); Ballou, Kevin M. (Inventor); Espinosa, Daniel C. (Inventor); James, Edward F. (Inventor); Kliesner, Matthew A. (Inventor)

    2017-01-01

    Embodiments may provide a radiation hardened 10BASE-T Ethernet interface circuit suitable for space flight and in compliance with the IEEE 802.3 standard for Ethernet. The various embodiments may provide a 10BASE-T Ethernet interface circuit, comprising a field programmable gate array (FPGA), a transmitter circuit connected to the FPGA, a receiver circuit connected to the FPGA, and a transformer connected to the transmitter circuit and the receiver circuit. In the various embodiments, the FPGA, transmitter circuit, receiver circuit, and transformer may be radiation hardened.

  8. Development and verification of ground-based tele-robotics operations concept for Dextre

    Science.gov (United States)

    Aziz, Sarmad

    2013-05-01

    The Special Purpose Dextreous Manipulator (Dextre) is the latest addition to the on-orbit segment of the Mobile Servicing System (MSS); Canada's contribution to the International Space Station (ISS). Launched in March 2008, the advanced two-armed robot is designed to perform various ISS maintenance tasks on robotically compatible elements and on-orbit replaceable units using a wide variety of tools and interfaces. The addition of Dextre has increased the capabilities of the MSS, and has introduced significant complexity to ISS robotics operations. While the initial operations concept for Dextre was based on human-in-the-loop control by the on-orbit astronauts, the complexities of robotic maintenance and the associated costs of training and maintaining the operator skills required for Dextre operations demanded a reexamination of the old concepts. A new approach to ISS robotic maintenance was developed in order to utilize the capabilities of Dextre safely and efficiently, while at the same time reducing the costs of on-orbit operations. This paper will describe the development, validation, and on-orbit demonstration of the operations concept for ground-based tele-robotics control of Dextre. It will describe the evolution of the new concepts from the experience gained from the development and implementation of the ground control capability for the Space Station Remote Manipulator System; Canadarm 2. It will discuss the various technical challenges faced during the development effort, such as requirements for high positioning accuracy, force/moment sensing and accommodation, failure tolerance, complex tool operations, and the novel operational tools and techniques developed to overcome them. The paper will also describe the work performed to validate the new concepts on orbit and will discuss the results and lessons learned from the on-orbit checkout and commissioning of Dextre using the newly developed tele-robotics techniques and capabilities.

  9. Process for hardening synthetic resins by ionizing radiation

    International Nuclear Information System (INIS)

    Hesse, W.; Ritz, J.

    1975-01-01

    Synthetic resins containing hydroxy groups and polymerizable carbon-carbon bonds are reacted with diketenes to yield aceto ester derivatives, which when reacted with metal compounds to form chelates, and mixed with copolymerizable monomers, are capable of being hardened by unusually low radiation doses to form coatings and articles with superior properties. (E.C.B.)

  10. Simulation of Hamming Coding and Decoding for Microcontroller Radiation Hardening

    OpenAIRE

    Rehab I. Abdul Rahman; Mazhar B. Tayel

    2015-01-01

    This paper presents a method of hardening the 8051 micro-controller, able to assure reliable operation in the presence of bit flips caused by radiation. Aiming at avoiding such faults in the 8051 micro-controller, Hamming code protection was used in its SRAM memory and registers. A VHDL code has been used for this hamming code protection.

  11. Sequential circuit design for radiation hardened multiple voltage integrated circuits

    Science.gov (United States)

    Clark, Lawrence T [Phoenix, AZ; McIver, III, John K.

    2009-11-24

    The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.

  12. Radiation-hardened CMOS integrated circuits

    International Nuclear Information System (INIS)

    Derbenwick, G.F.; Hughes, R.C.

    1977-01-01

    Electronic circuits that operate properly after exposure to ionizing radiation are necessary for nuclear weapon systems, satellites, and apparatus designed for use in radiation environments. The program to develop and theoretically model radiation-tolerant integrated circuit components has resulted in devices that show an improvement in hardness up to a factor of ten thousand over earlier devices. An inverter circuit produced functions properly after an exposure of 10 6 Gy (Si) which, as far as is known, is the record for an integrated circuit

  13. Design considerations for a radiation hardened nonvolatile memory

    International Nuclear Information System (INIS)

    Murray, J.R.

    1993-01-01

    Sub-optimal design practices can reduce the radiation hardness of a circuit even though it is fabricated in a radiation hardened process. This is especially true for a nonvolatile memory, as compared to a standard digital circuit, where high voltages and unusual bias conditions are required. This paper will discuss the design technique's used in the development of a 64K EEPROM (Electrically Erasable Programmable Read Only Memory) to maximize radiation hardness. The circuit radiation test results will be reviewed in order to provide validation of the techniques

  14. Radiation hardening and embrittlement of some refractory metals and alloys

    International Nuclear Information System (INIS)

    Fabritsiev, S.; Pokrovskyb

    2007-01-01

    Tungsten is proposed for application in the ITER divertor and limiter as plasma facing material. The tungsten operation temperature in the ITER divertor is relatively high. Hence, the ductile properties of tungsten will be controlled by the low temperature radiation embrittlement. The mechanism of radiation hardening and embrittlement under neutron irradiation at low temperature is well studied for FCC metals, in particular for copper. At the same time, low-temperature radiation hardening of BCC materials, in particular for refractory metals, is less studied. This study presents the results of investigation into radiation hardening and embrittlement of pure metals: W, Mo and Nb, and W-Re and Ta-4W alloys. The materials were in the annealed conditions. The specimens were irradiated in the SM-2 reactor to doses of 10 -4 -10 -1 dpa at 80 C and then tested for tension at 80 C. The study of the stress-strain curves of unirradiated specimens revealed a yield drop for W, Mo, Nb, Ta-4W, W-Re. After the yield drop some metals (Mo,Nb) retain their capability for strain hardening and demonstrate a high elongation (20-50%). Radiation hardening is maximum in Mo (∝400MPa) and minimum in Nb (∝100 MPa). In this case the dependence slope for Nb is similar to that for pure copper irradiated in SM-2 under the same conditions. Ii and Ta-4W have a higher slope. Measurement of electrical resistivity of irradiated specimens showed that for all materials it is increased monotonously with an increase in the irradiation dose. A minimum gain in electrical resistivity with a dose was observed for Nb (∝3% at 0.1 dpa). As for Mo it was essentially higher, i.e. ∝ 30%. The gain was maximum for W-Re alloy. Comparison of radiation hardening dose dependencies obtained in this study with the data for FCC metals (Cu) showed that in spite of the quantitative difference the qualitative behavior of these two classes of metals is similar. (orig.)

  15. Radiation effects in semiconductors: technologies for hardened integrated circuits

    International Nuclear Information System (INIS)

    Charlot, J.M.

    1983-09-01

    Various technologies are used to manufacture integrated circuits for electronic systems. But for specific applications, including those with radiation environment, it is necessary to choose an appropriate technologie or to improve a specific one in order to reach a definite hardening level. The aim of this paper is to present the main effects induced by radiation (neutrons and gamma rays) into the basic semiconductor devices, to explain some physical degradation mechanisms and to propose solutions for hardened integrated circuit fabrication. The analysis involves essentially the monolithic structure of the integrated circuits and the isolation technology of active elements. In conclusion, the advantages of EPIC and SOS technologies are described and the potentialities of new technologies (GaAs and SOI) are presented

  16. Radiation effects in semiconductors: technologies for hardened integrated circuits

    International Nuclear Information System (INIS)

    Charlot, J.M.

    1984-01-01

    Various technologies are used to manufacture integrated circuits for electronic systems. But for specific applications, including those with radiation environment, it is necessary to choose an appropriate technology or to improve a specific one in order to reach a definite hardening level. The aim of this paper is to present the main effects induced by radiation (neutrons and gamma rays) into the basic semiconductor devices, to explain some physical degradation mechanisms and to propose solutions for hardened integrated circuit fabrication. The analysis involves essentially the monolithic structure of the integrated circuits and the isolation technology of active elements. In conclusion, the advantages of EPIC and SOS technologies are described and the potentialities of new technologies (GaAs and SOI) are presented. (author)

  17. Coatings hardenable by ionizing radiation and their applications

    International Nuclear Information System (INIS)

    Aronoff, E.J.; Labana, S.S.

    1976-01-01

    The invention deals with the production of a coating medium which can be hardened by ionizing radiation. The composition includes tetravinyl compounds containing no free hydroxyl groups which were obtained by the conversion of di-epoxides with acryl or methacryl acid via the intermediary step of a divinyl ester condensation product. The intermediary product is converted with acryloyl or methacryloyl halides. The mass still contains non-polymerisable solvent (such as tolual, xylol), pigments and fillers. It is of advantage if the di-epoxide has a molecular weight of 140 to 500. Furthermore, coatings are to be made of this coating medium which are hardened by ionizing radiation at temperatures between 20 0 C and 70 0 C. 19 examples. (HK) [de

  18. Radiation hardened equipment and material data base

    International Nuclear Information System (INIS)

    Sumita, Kenji; Yamaoka, Hitoshi; Kakuta, Tsunemi; Shono, Yoshihiko; Nakamura, Tetsuo; Nakase, Yoshiaki; Furuta, Junichiro.

    1988-01-01

    In order to collect and put in order the results regarding radiation-withstanding equipment and materials, the Osaka Nuclear Science Association organized the committee composed of the experts in various fields in fiscal year 1986 for the purpose of building up the data base, and began the activity. From the trend of the research and development and the usefulness for the future, the fields of collecting data were decided as organic materials, optical fibers, semiconductor elements and compound semiconductors. By fiscal year 1987, the building-up of the prototype data base was aimed at, and system configuration, the making of the formats on the items and attributes of collected data, the action test of the system and so on were carried out. Under the background of the upgrading of LWRs, the development of FBRs and nuclear fusion reactors, the construction of a reprocessing plant and a low level waste storage facility, and the progress of various advanced technologies, the research on the equipment and materials having excellent radiation resistance and the development for heightening the performance have been carried out in many places separately, accordingly the activity for building up the prototype data base was begun, and about 600 cases were collected. (Kako, I.)

  19. Multi-MGy Radiation Hardened Camera for Nuclear Facilities

    International Nuclear Information System (INIS)

    Girard, Sylvain; Boukenter, Aziz; Ouerdane, Youcef; Goiffon, Vincent; Corbiere, Franck; Rolando, Sebastien; Molina, Romain; Estribeau, Magali; Avon, Barbara; Magnan, Pierre; Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Raine, Melanie

    2015-01-01

    There is an increasing interest in developing cameras for surveillance systems to monitor nuclear facilities or nuclear waste storages. Particularly, for today's and the next generation of nuclear facilities increasing safety requirements consecutive to Fukushima Daiichi's disaster have to be considered. For some applications, radiation tolerance needs to overcome doses in the MGy(SiO 2 ) range whereas the most tolerant commercial or prototypes products based on solid state image sensors withstand doses up to few kGy. The objective of this work is to present the radiation hardening strategy developed by our research groups to enhance the tolerance to ionizing radiations of the various subparts of these imaging systems by working simultaneously at the component and system design levels. Developing radiation-hardened camera implies to combine several radiation-hardening strategies. In our case, we decided not to use the simplest one, the shielding approach. This approach is efficient but limits the camera miniaturization and is not compatible with its future integration in remote-handling or robotic systems. Then, the hardening-by-component strategy appears mandatory to avoid the failure of one of the camera subparts at doses lower than the MGy. Concerning the image sensor itself, the used technology is a CMOS Image Sensor (CIS) designed by ISAE team with custom pixel designs used to mitigate the total ionizing dose (TID) effects that occur well below the MGy range in classical image sensors (e.g. Charge Coupled Devices (CCD), Charge Injection Devices (CID) and classical Active Pixel Sensors (APS)), such as the complete loss of functionality, the dark current increase and the gain drop. We'll present at the conference a comparative study between these radiation-hardened pixel radiation responses with respect to conventional ones, demonstrating the efficiency of the choices made. The targeted strategy to develop the complete radiation hard camera

  20. Multi-MGy Radiation Hardened Camera for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Sylvain; Boukenter, Aziz; Ouerdane, Youcef [Universite de Saint-Etienne, Lab. Hubert Curien, UMR-CNRS 5516, F-42000 Saint-Etienne (France); Goiffon, Vincent; Corbiere, Franck; Rolando, Sebastien; Molina, Romain; Estribeau, Magali; Avon, Barbara; Magnan, Pierre [ISAE, Universite de Toulouse, F-31055 Toulouse (France); Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Raine, Melanie [CEA, DAM, DIF, F-91297 Arpajon (France)

    2015-07-01

    There is an increasing interest in developing cameras for surveillance systems to monitor nuclear facilities or nuclear waste storages. Particularly, for today's and the next generation of nuclear facilities increasing safety requirements consecutive to Fukushima Daiichi's disaster have to be considered. For some applications, radiation tolerance needs to overcome doses in the MGy(SiO{sub 2}) range whereas the most tolerant commercial or prototypes products based on solid state image sensors withstand doses up to few kGy. The objective of this work is to present the radiation hardening strategy developed by our research groups to enhance the tolerance to ionizing radiations of the various subparts of these imaging systems by working simultaneously at the component and system design levels. Developing radiation-hardened camera implies to combine several radiation-hardening strategies. In our case, we decided not to use the simplest one, the shielding approach. This approach is efficient but limits the camera miniaturization and is not compatible with its future integration in remote-handling or robotic systems. Then, the hardening-by-component strategy appears mandatory to avoid the failure of one of the camera subparts at doses lower than the MGy. Concerning the image sensor itself, the used technology is a CMOS Image Sensor (CIS) designed by ISAE team with custom pixel designs used to mitigate the total ionizing dose (TID) effects that occur well below the MGy range in classical image sensors (e.g. Charge Coupled Devices (CCD), Charge Injection Devices (CID) and classical Active Pixel Sensors (APS)), such as the complete loss of functionality, the dark current increase and the gain drop. We'll present at the conference a comparative study between these radiation-hardened pixel radiation responses with respect to conventional ones, demonstrating the efficiency of the choices made. The targeted strategy to develop the complete radiation hard camera

  1. Photopolymerizable masses and their hardening using radiation

    International Nuclear Information System (INIS)

    Bassemir, R.W.; Carlick, D.J.; Dennis, R.; Feig, G.; Nass, G.; Sprenger, G.

    1975-01-01

    The photo-polymerizable mass consists of a compound of the group of pre-polymers including the dimers and trimers of a polyethylene unsaturated ester of an aliphatic alcohol from the pentaerythrital and polypentaerythrital group. Bound to it is a photo-initiating compound of the acyloin derivates group, of aromatic, aliphatic or alicyclic hydrocarbons with at least one halogen atom on the aromatic nucleus, on the carbon drain or the alicyclic nucleus. Mixtures of substances of the individual groups can be used with those of the other group. The ester is e.g. an acryl, methacryl or itaconic acid ester and the halogen atom e.g. a chlorine, bromine or iodine atom. The photo-polymerizable compound is present in the mass to a weight percent of 15 to 98 and the initiating compound 2 to 85 wt.%. The mass is subjected to ultra-violet as well as to electron or gamma radiation. (DG/LH) [de

  2. Process controls for radiation hardened aluminum gate bulk silicon CMOS

    International Nuclear Information System (INIS)

    Gregory, B.L.

    1975-01-01

    Optimized dry oxides have recently yielded notable improvements in CMOS radiation-hardness. By following the proper procedures and recipes, it is now possible to produce devices which will function satisfactorily after exposure to a total ionizing dose in excess of 10 6 RADS (Si). This paper is concerned with the controls required on processing parameters once the optimized process is defined. In this process, the pre-irradiation electrical parameters must be closely controlled to insure that devices will function after irradiation. In particular, the specifications on n- and p-channel threshold voltages require tight control of fixed oxide charge, surface-state density, oxide thickness, and substrate and p-well surface concentrations. In order to achieve the above level of radiation hardness, certain processing procedures and parameters must also be closely controlled. Higher levels of cleanliness are required in the hardened process than are commonly required for commercial CMOS since, for hardened dry oxides, no impurity gettering can be employed during or after oxidation. Without such gettering, an unclean oxide is unacceptable due to bias-temperature instability. Correct pre-oxidation cleaning, residual surface damage removal, proper oxidation and annealing temperatures and times, and the correct metal sintering cycle are all important in determining device hardness. In a reproducible, hardened process, each of these processing steps must be closely controlled. (U.S.)

  3. Radiation-hardened micro-electronics for nuclear instrumentation

    International Nuclear Information System (INIS)

    Van Uffelen, M.

    2007-01-01

    The successful development and deployment of future fission and thermonuclear fusion reactors depends to a large extent on the advances of different enabling technologies. Not only the materials need to be custom engineered but also the instrumentation, the electronics and the communication equipment need to support operation in this harsh environment, with expected radiation levels during maintenance up to several MGy. Indeed, there are yet no commercially available electronic devices available off-the-shelf which demonstrated a satisfying operation at these extremely high radiation levels. The main goal of this task is to identify commercially available radiation tolerant technologies, and to design dedicated and integrated electronic circuits, using radiation hardening techniques, both at the topological and architectural level. Within a stepwise approach, we first design circuits with discrete components and look for an equivalent integrated technology. This will enable us to develop innovative instrumentation and communication tools for the next generation of nuclear reactors, where both radiation hardening and miniaturization play a dominant role

  4. BUSFET - A Novel Radiation-Hardened SOI Transistor

    International Nuclear Information System (INIS)

    Schwank, J.R.; Shaneyfelt, M.R.; Draper, B.L.; Dodd, P.E.

    1999-01-01

    The total-dose hardness of SOI technology is limited by radiation-induced charge trapping in gate, field, and SOI buried oxides. Charge trapping in the buried oxide can lead to back-channel leakage and makes hardening SOI transistors more challenging than hardening bulk-silicon transistors. Two avenues for hardening the back-channel are (1) to use specially prepared SOI buried oxides that reduce the net amount of trapped positive charge or (2) to design transistors that are less sensitive to the effects of trapped charge in the buried oxide. In this work, we propose a new partially-depleted SOI transistor structure that we call the BUSFET--Body Under Source FET. The BUSFET utilizes a shallow source and a deep drain. As a result, the silicon depletion region at the back channel caused by radiation-induced charge trapping in the buried oxide does not form a conducting path between source and drain. Thus, the BUSFET structure design can significantly reduce radiation-induced back-channel leakage without using specially prepared buried oxides. Total dose hardness is achieved without degrading the intrinsic SEU and dose rate hardness of SOI technology. The effectiveness of the BUSFET structure for reducing total-dose back-channel leakage depends on several variables, including the top silicon film thickness and doping concentration and the depth of the source. 3-D simulations show that for a doping concentration of 10 18 cm -3 and a source depth of 90 nm, a silicon film thickness of 180 nm is sufficient to almost completely eliminate radiation-induced back-channel leakage. However, for a doping concentration of 3x10 17 cm -3 , a thicker silicon film (300 nm) must be used

  5. Design optimization of radiation-hardened CMOS integrated circuits

    International Nuclear Information System (INIS)

    1975-01-01

    Ionizing-radiation-induced threshold voltage shifts in CMOS integrated circuits will drastically degrade circuit performance unless the design parameters related to the fabrication process are properly chosen. To formulate an approach to CMOS design optimization, experimentally observed analytical relationships showing strong dependences between threshold voltage shifts and silicon dioxide thickness are utilized. These measurements were made using radiation-hardened aluminum-gate CMOS inverter circuits and have been corroborated by independent data taken from MOS capacitor structures. Knowledge of these relationships allows one to define ranges of acceptable CMOS design parameters based upon radiation-hardening capabilities and post-irradiation performance specifications. Furthermore, they permit actual design optimization of CMOS integrated circuits which results in optimum pre- and post-irradiation performance with respect to speed, noise margins, and quiescent power consumption. Theoretical and experimental results of these procedures, the applications of which can mean the difference between failure and success of a CMOS integrated circuit in a radiation environment, are presented

  6. Radiation-hardened CMOS/SOS LSI circuits

    International Nuclear Information System (INIS)

    Aubuchon, K.G.; Peterson, H.T.; Shumake, D.P.

    1976-01-01

    The recently developed technology for building radiation-hardened CMOS/SOS devices has now been applied to the fabrication of LSI circuits. This paper describes and presents results on three different circuits: an 8-bit adder/subtractor (Al gate), a 256-bit shift register (Si gate), and a polycode generator (Al gate). The 256-bit shift register shows very little degradation after 1 x 10 6 rads (Si), with an increase from 1.9V to 2.9V in minimum operating voltage, a decrease of about 20% in maximum frequency, and little or no change in quiescent current. The p-channel thresholds increase from -0.9V to -1.3V, while the n-channel thresholds decrease from 1.05 to 0.23V, and the n-channel leakage remains below 1nA/mil. Excellent hardening results were also obtained on the polycode generator circuit. Ten circuits were irradiated to 1 x 10 6 rads (Si), and all continued to function well, with an increase in minimum power supply voltage from 2.85V to 5.85V and an increase in quiescent current by a factor of about 2. Similar hardening results were obtained on the 8-bit adder, with the minimum power supply voltage increasing from 2.2V to 4.6V and the add time increasing from 270 to 350 nsec after 1 x 10 6 rads (Si). These results show that large CMOS/SOS circuits can be hardened to above 1 x 10 6 rads (Si) with either the Si gate or Al gate technology. The paper also discusses the relative advantages of the Si gate versus the Al gate technology

  7. Radiation Effects and Hardening Techniques for Spacecraft Microelectronics

    Science.gov (United States)

    Gambles, J. W.; Maki, G. K.

    2002-01-01

    The natural radiation from the Van Allen belts, solar flares, and cosmic rays found outside of the protection of the earth's atmosphere can produce deleterious effects on microelectronics used in space systems. Historically civil space agencies and the commercial satellite industry have been able to utilize components produced in special radiation hardened fabrication process foundries that were developed during the 1970s and 1980s under sponsorship of the Departments of Defense (DoD) and Energy (DoE). In the post--cold war world the DoD and DoE push to advance the rad--hard processes has waned. Today the available rad--hard components lag two-plus technology node generations behind state- of-the-art commercial technologies. As a result space craft designers face a large performance gap when trying to utilize available rad--hard components. Compounding the performance gap problems, rad--hard components are becoming increasingly harder to get. Faced with the economic pitfalls associated with low demand versus the ever increasing investment required for integrated circuit manufacturing equipment most sources of rad--hard parts have simply exited this market in recent years, leaving only two domestic US suppliers of digital rad--hard components. This paper summarizes the radiation induced mechanisms that can cause digital microelectronics to fail in space, techniques that can be applied to mitigate these failure mechanisms, and ground based testing used to validate radiation hardness/tolerance. The radiation hardening techniques can be broken down into two classes, Hardness By Process (HBP) and Hardness By Design (HBD). Fortunately many HBD techniques can be applied to commercial fabrication processes providing space craft designer with radiation tolerant Application Specific Integrated Circuits (ASICs) that can bridge the performance gap between the special HBP foundries and the commercial state-of-the-art performance.

  8. Principles and techniques of radiation hardening. Volume 2. Transient radiation effects in electronics (TREE)

    International Nuclear Information System (INIS)

    Rudie, N.J.

    1976-01-01

    The three-volume book is intended to serve as a review of the effects of thermonuclear explosion induced radiation (x-rays, gamma rays, and beta particles) and the resulting electromagnetic pulse (EMP). Volume 2 deals with the following topics: radiation effects on quartz crystals, tantalum capacitors, bipolar semiconductor devices and integrated circuits, field effect transistors, and miscellaneous electronic devices; hardening electronic systems to photon and neutron radiation; nuclear radiation source and/or effects simulation techniques; and radiation dosimetry

  9. Radiation-Hardened Memristor-based Memory for Extreme Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA space exploration missions require radiation-hardened memory technologies that can survive and operate over a wide temperature range. Memristors...

  10. Radiation hardening of CMOS-based circuitry in SMART transmitters

    International Nuclear Information System (INIS)

    Loescher, D.H.

    1993-02-01

    Process control transmitters that incorporate digital signal processing could be used advantageously in nuclear power plants; however, because such transmitters are too sensitive to radiation, they are not used. The Electric Power Research Institute sponsored work at Sandia National Laboratories under EPRI contract RP2614-58 to determine why SMART transmitters fail when exposed to radiation and to design and demonstrate SMART transmitter circuits that could tolerate radiation. The term ''SMART'' denotes transmitters that contain digital logic. Tests showed that transmitter failure was caused by failure of the complementary metal oxide semiconductors (CMOS)-integrated circuits which are used extensively in commercial transmitters. Radiation-hardened replacements were not available for the radiation-sensitive CMOS circuits. A conceptual design showed that a radiation-tolerant transmitter could be constructed. A prototype for an analog-to-digital converter subsection worked satisfactorily after a total dose of 30 megarads(Si). Encouraging results were obtained from preliminary bench-top tests on a dc-to-dc converter for the power supply subsection

  11. A Radiation Hardened by Design CMOS ASIC for Thermopile Readouts

    Science.gov (United States)

    Quilligan, G.; Aslam, S.; DuMonthier, J.

    2012-01-01

    A radiation hardened by design (RHBD) mixed-signal application specific integrated circuit (ASIC) has been designed for a thermopile readout for operation in the harsh Jovian orbital environment. The multi-channel digitizer (MCD) ASIC includes 18 low noise amplifier channels which have tunable gain/filtering coefficients, a 16-bit sigma-delta analog-digital converter (SDADC) and an on-chip controller. The 18 channels, SDADC and controller were designed to operate with immunity to single event latchup (SEL) and to at least 10 Mrad total ionizing dose (TID). The ASIC also contains a radiation tolerant 16-bit 20 MHz Nyquist ADC for general purpose instrumentation digitizer needs. The ASIC is currently undergoing fabrication in a commercial 180 nm CMOS process. Although this ASIC was designed specifically for the harsh radiation environment of the NASA led JEO mission it is suitable for integration into instrumentation payloads 011 the ESA JUICE mission where the radiation hardness requirements are slightly less stringent.

  12. Paint and binding material to be hardened by ionizing radiations

    International Nuclear Information System (INIS)

    Johnson, O.B.; Labana, S.S.

    1976-01-01

    The invention concerns a paint binding material which can be hardened due to the effect of ionising radiation, consisting of a dispersion of a) an ethylene unsaturated material in b) at least one vinyl monomer. Component (a) is a reaction product of graded rubber particles (0.1 - 4 μm) and an ethylene unsaturated component with a reactive epoxy-, hydroxy- or carbonyl-group, which is connected to the rubber by ester or urethane links. The rubber particles have a core of cross linked elastomer acrylic polymers, an outer shell of reactive groups and an intermediate layer made from the core monomer and the shell. 157 examples explain the manufacturing process. The paint is suitable for covering articles which will later be subject to distortion. (UWI) [de

  13. Radiation Hardened NULL Convention Logic Asynchronous Circuit Design

    Directory of Open Access Journals (Sweden)

    Liang Zhou

    2015-10-01

    Full Text Available This paper proposes a radiation hardened NULL Convention Logic (NCL architecture that can recover from a single event latchup (SEL or single event upset (SEU fault without deadlock or any data loss. The proposed architecture is analytically proved to be SEL resistant, and by extension, proved to be SEU resistant. The SEL/SEU resistant version of a 3-stage full-word pipelined NCL 4 × 4 unsigned multiplier was implemented using the IBM cmrf8sf 130 nm 1.2 V process at the transistor level and simulated exhaustively with SEL fault injection to validate the proposed architectures. Compared with the original version, the SEL/SEU resilient version has 1.31× speed overhead, 2.74× area overhead, and 2.79× energy per operation overhead.

  14. Imposing motion constraints to a force reflecting tele-robot through real-time simulation of a virtual mechanism

    International Nuclear Information System (INIS)

    Joly, L.; Andriot, C.

    1995-01-01

    In a tele-operation system, assistance can be given to the operator by constraining the tele-robot position to remain within a restricted subspace of its workspace. A new approach to motion constraint is presented in this paper. The control law is established simulating a virtual ideal mechanism acting as a jig, and connected to the master and slave arms via springs and dampers. Using this approach, it is possible to impose any (sufficiently smooth) motion constraint to the system, including non linear constraints (complex surfaces) involving coupling between translations and rotations and physical equivalence ensures that the controller is passive. Experimental results obtained with a 6-DOF tele-operation system are given. Other applications of the virtual mechanism concept include hybrid position-force control and haptic interfaces. (authors). 11 refs., 7 figs

  15. Imposing motion constraints to a force reflecting tele-robot through real-time simulation of a virtual mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Joly, L.; Andriot, C.

    1995-12-31

    In a tele-operation system, assistance can be given to the operator by constraining the tele-robot position to remain within a restricted subspace of its workspace. A new approach to motion constraint is presented in this paper. The control law is established simulating a virtual ideal mechanism acting as a jig, and connected to the master and slave arms via springs and dampers. Using this approach, it is possible to impose any (sufficiently smooth) motion constraint to the system, including non linear constraints (complex surfaces) involving coupling between translations and rotations and physical equivalence ensures that the controller is passive. Experimental results obtained with a 6-DOF tele-operation system are given. Other applications of the virtual mechanism concept include hybrid position-force control and haptic interfaces. (authors). 11 refs., 7 figs.

  16. Hardening device, by inserts, of electronic component against radiation

    International Nuclear Information System (INIS)

    Val, C.

    1987-01-01

    The hardening device includes at least two materials, one with high atomic number with respect to the other. One of these materials is set as inserts in a layer of the other material. The hardening device is then made by stacking of such layers, the insert density varying from one layer to the other, making thus vary the atomic number resulting from the hardening device along its thickness, following a predefined law [fr

  17. A radiation-hardened SOI-based FPGA

    International Nuclear Information System (INIS)

    Han Xiaowei; Wu Lihua; Zhao Yan; Li Yan; Zhang Qianli; Chen Liang; Zhang Guoquan; Li Jianzhong; Yang Bo; Gao Jiantou; Wang Jian; Li Ming; Liu Guizhai; Zhang Feng; Guo Xufeng; Chen, Stanley L.; Liu Zhongli; Yu Fang; Zhao Kai

    2011-01-01

    A radiation-hardened SRAM-based field programmable gate array VS1000 is designed and fabricated with a 0.5 μm partial-depletion silicon-on-insulator logic process at the CETC 58th Institute. The new logic cell (LC), with a multi-mode based on 3-input look-up-table (LUT), increases logic density about 12% compared to a traditional 4-input LUT The logic block (LB), consisting of 2 LCs, can be used in two functional modes: LUT mode and distributed read access memory mode. The hierarchical routing channel block and switch block can significantly improve the flexibility and routability of the routing resource. The VS1000 uses a CQFP208 package and contains 392 reconfigurable LCs, 112 reconfigurable user I/Os and IEEE 1149.1 compatible with boundary-scan logic for testing and programming. The function test results indicate that the hardware and software cooperate successfully and the VS1000 works correctly. Moreover, the radiation test results indicate that the VS1000 chip has total dose tolerance of 100 krad(Si), a dose rate survivability of 1.5 x 10 11 rad(Si)/s and a neutron fluence immunity of 1 x 10 14 n/cm 2 . (semiconductor integrated circuits)

  18. Radiation hardened high efficiency silicon space solar cell

    International Nuclear Information System (INIS)

    Garboushian, V.; Yoon, S.; Turner, J.

    1993-01-01

    A silicon solar cell with AMO 19% Beginning of Life (BOL) efficiency is reported. The cell has demonstrated equal or better radiation resistance when compared to conventional silicon space solar cells. Conventional silicon space solar cell performance is generally ∼ 14% at BOL. The Radiation Hardened High Efficiency Silicon (RHHES) cell is thinned for high specific power (watts/kilogram). The RHHES space cell provides compatibility with automatic surface mounting technology. The cells can be easily combined to provide desired power levels and voltages. The RHHES space cell is more resistant to mechanical damage due to micrometeorites. Micro-meteorites which impinge upon conventional cells can crack the cell which, in turn, may cause string failure. The RHHES, operating in the same environment, can continue to function with a similar crack. The RHHES cell allows for very efficient thermal management which is essential for space cells generating higher specific power levels. The cell eliminates the need for electrical insulation layers which would otherwise increase the thermal resistance for conventional space panels. The RHHES cell can be applied to a space concentrator panel system without abandoning any of the attributes discussed. The power handling capability of the RHHES cell is approximately five times more than conventional space concentrator solar cells

  19. Formulating the strength factor α for improved predictability of radiation hardening

    Energy Technology Data Exchange (ETDEWEB)

    Tan, L., E-mail: tanl@ornl.gov; Busby, J.T.

    2015-10-15

    Analytical equations were developed to calculate the strength factors of precipitates, Frank loops, and cavities in austenitic alloys, which strongly depend on barrier type, size, geometry and density, as well as temperature. Calculated strength factors were successfully used to estimate radiation hardening using the broadly employed dispersed barrier-hardening model, leading to good agreement with experimentally measured hardening in neutron-irradiated type 304 and 316 stainless steel variants. The formulated strength factor provides a route for more reliable hardening predictions and can be easily incorporated into component simulations and design.

  20. Radiation Hardened Electronics Destined For Severe Nuclear Reactor Environments

    Energy Technology Data Exchange (ETDEWEB)

    Holbert, Keith E. [Arizona State Univ., Tempe, AZ (United States); Clark, Lawrence T. [Arizona State Univ., Tempe, AZ (United States)

    2016-02-19

    Post nuclear accident conditions represent a harsh environment for electronics. The full station blackout experience at Fukushima shows the necessity for emergency sensing capabilities in a radiation-enhanced environment. This NEET (Nuclear Energy Enabling Technologies) research project developed radiation hardened by design (RHBD) electronics using commercially available technology that employs commercial off-the-shelf (COTS) devices and present generation circuit fabrication techniques to improve the total ionizing dose (TID) hardness of electronics. Such technology not only has applicability to severe accident conditions but also to facilities throughout the nuclear fuel cycle in which radiation tolerance is required. For example, with TID tolerance to megarads of dose, electronics could be deployed for long-term monitoring, inspection and decontamination missions. The present work has taken a two-pronged approach, specifically, development of both board and application-specific integrated circuit (ASIC) level RHBD techniques. The former path has focused on TID testing of representative microcontroller ICs with embedded flash (eFlash) memory, as well as standalone flash devices that utilize the same fabrication technologies. The standalone flash devices are less complicated, allowing better understanding of the TID response of the crucial circuits. Our TID experiments utilize biased components that are in-situ tested, and in full operation during irradiation. A potential pitfall in the qualification of memory circuits is the lack of rigorous testing of the possible memory states. For this reason, we employ test patterns that include all ones, all zeros, a checkerboard of zeros and ones, an inverse checkerboard, and random data. With experimental evidence of improved radiation response for unbiased versus biased conditions, a demonstration-level board using the COTS devices was constructed. Through a combination of redundancy and power gating, the demonstration

  1. Superconducting (radiation hardened) magnets for mirror fusion devices

    International Nuclear Information System (INIS)

    Henning, C.D.; Dalder, E.N.C.; Miller, J.R.; Perkins, J.R.

    1983-01-01

    Superconducting magnets for mirror fusion have evolved considerably since the Baseball II magnet in 1970. Recently, the Mirror Fusion Test Facility (MFTF-B) yin-yang has been tested to a full field of 7.7 T with radial dimensions representative of a full scale reactor. Now the emphasis has turned to the manufacture of very high field solenoids (choke coils) that are placed between the tandem mirror central cell and the yin-yang anchor-plug set. For MFTF-B the choke coil field reaches 12 T, while in future devices like the MFTF-Upgrade, Fusion Power Demonstration and Mirror Advanced Reactor Study (MARS) reactor the fields are doubled. Besides developing high fields, the magnets must be radiation hardened. Otherwise, thick neutron shields increase the magnet size to an unacceptable weight and cost. Neutron fluences in superconducting magnets must be increased by an order of magnitude or more. Insulators must withstand 10 10 to 10 11 rads, while magnet stability must be retained after the copper has been exposed to fluence above 10 19 neutrons/cm 2

  2. Estimation of radiation hardening in ferritic steels using the cluster dynamics models

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jun Hyun; Kim, Whung Whoe; Hong, Jun Hwa [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    Evolution of microstructure under irradiation brings about the mechanical property changes of materials, of which the major concern is radiation hardening in this work. Radiation hardening is generally expressed in terms of an increase in yield strength as a function of radiation dose and temperature. Cluster dynamics model for radiation hardening has been developed to describe the evolution of point defects clusters (PDCs) and copperrich precipitates (CRPs). While the mathematical models developed by Stoller focus on the evolution of PDCs in ferritic steels under neutron irradiation, we slightly modify the model by including the CRP growth and estimate the magnitude of hardening induced by PDC and CRP. The model is then used to calculate the changes in yield strength of RPV steels. The calculation results are compared to measured yield strength values, obtained from surveillance testing of PWR vessel steels in France.

  3. Study on radiation damage of electron and γ-rays and mechanism of nuclear hardening

    International Nuclear Information System (INIS)

    Jing Tao

    2001-01-01

    Radiation damage effects of electrons and γ-rays are presented. The damage defects are studied by experimental methods. On the basis of these studies the damage mechanism and nuclear hardening techniques are studied

  4. Radiation effects on radiation-hardened KU and KS-4V optical fibres

    International Nuclear Information System (INIS)

    Ivanov, A.A.; Tugarinov, S.N.; Kaschuck, Y.A.; Krasilnikov, A.V.; Bender, S.E.

    1999-01-01

    The aim of this work was to test the un-pretreated and the hardened (H 2 -loaded and pre-irradiated) KS-4V and KU optical fibres in reactor environment by in-situ measurements of both the radiation-induced loss and the luminescence in the visible spectral region. Both the radio-luminescent and the transmission spectra were in-situ detected during irradiation by charge-coupled-device (CCD) linear detector in the visible spectral region of 400 to 700 nm. The radiation induced loss spectra at the fast neutron fluence of 2*10 6 n/cm 2 shows the hardened, H 2 -loading and pre-irradiating effects in the both KU and KS-4V fibres. KU un-pretreated fibre shows a big radiation absorption band of non-bridging oxygen centered at the wavelength of 630 nm. It appears that the KS-4V hardened fibre has a specific point in the loss spectrum in the vicinity of 460 nm. Other measurements were performed, particularly after reactor shutdown and at 3 different neutron fluences with constant neutron flux after restarting

  5. The capability of pulsed laser radiation for cutting band saws hardening

    Directory of Open Access Journals (Sweden)

    Marinin Evgeny

    2017-01-01

    Full Text Available The article deals with the possibilities of pulsed laser radiation for hardening the band saws. The regimes of pulsed laser hardening the band saws of 1 mm thick made of tool steel 9CrV are grounded theoretically and experimentally tested. Selected and justified modes of treatment harden in the autohardening mode without additional heat removal. The results of the experimental research of microhardness are presented and formed as a result of processing of the microstructure. Selected modes increase the microhardness of the surface to 8500 MPa and form ultra highly dispersed structure in the surface layer characterized by high resistance to abrasion.

  6. Multi-arm multilateral haptics-based immersive tele-robotic system (HITS) for improvised explosive device disposal

    Science.gov (United States)

    Erickson, David; Lacheray, Hervé; Lai, Gilbert; Haddadi, Amir

    2014-06-01

    This paper presents the latest advancements of the Haptics-based Immersive Tele-robotic System (HITS) project, a next generation Improvised Explosive Device (IED) disposal (IEDD) robotic interface containing an immersive telepresence environment for a remotely-controlled three-articulated-robotic-arm system. While the haptic feedback enhances the operator's perception of the remote environment, a third teleoperated dexterous arm, equipped with multiple vision sensors and cameras, provides stereo vision with proper visual cues, and a 3D photo-realistic model of the potential IED. This decentralized system combines various capabilities including stable and scaled motion, singularity avoidance, cross-coupled hybrid control, active collision detection and avoidance, compliance control and constrained motion to provide a safe and intuitive control environment for the operators. Experimental results and validation of the current system are presented through various essential IEDD tasks. This project demonstrates that a two-armed anthropomorphic Explosive Ordnance Disposal (EOD) robot interface can achieve complex neutralization techniques against realistic IEDs without the operator approaching at any time.

  7. BUSFET - A Novel Radiation-Hardened SOI Transistor

    International Nuclear Information System (INIS)

    Dodd, P.E.; Draper, B.L.; Schwank, J.R.; Shaneyfelt, M.R.

    1999-01-01

    A partially-depleted SOI transistor structure has been designed that does not require the use of specially-processed hardened buried oxides for total-dose hardness and maintains the intrinsic SEU and dose rate hardness advantages of SOI technology

  8. Principles and techniques of radiation hardening. Volume 3. Electromagnetic pulse (EMP) and system generated EMP

    International Nuclear Information System (INIS)

    Rudie, N.J.

    1976-01-01

    The three-volume book is intended to serve as a review of the effects of thermonuclear explosion induced radiation (x-rays, gamma rays, and beta particles) and the resulting electromagnetic pulse (EMP). Volume 3 deals with the following topics: selected fundamentals of electromagnetic theory; EMP induced currents on antennas and cables; the EMP response of electronics; EMP hardening; EMP testing; injection currents; internal electromagnetic pulse (IEMP); replacement currents; and system generated electromagnetic pulse (SGEMP) hardening

  9. Characterization of Radiation Hardened Bipolar Linear Devices for High Total Dose Missions

    Science.gov (United States)

    McClure, Steven S.; Harris, Richard D.; Rax, Bernard G.; Thorbourn, Dennis O.

    2012-01-01

    Radiation hardened linear devices are characterized for performance in combined total dose and displacement damage environments for a mission scenario with a high radiation level. Performance at low and high dose rate for both biased and unbiased conditions is compared and the impact to hardness assurance methodology is discussed.

  10. Radiation-hardened I2L 8*8 multiplier circuit

    International Nuclear Information System (INIS)

    Doyle, B.R.; Kreps, S.A.; Van Vonno, N.W.; Lake, G.W.

    1979-01-01

    Development of improved Substrate Fed I 2 L (SFL) processing has been combined with geometry and fanout constraints to design a radiation hardened LSI 8.8 Multiplier. This study describes details of the process and circuit design and gives resultant electrical and radiation test performance

  11. Study of radiation hardening in reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Nogiwa, Kimihiro; Nishimura, Akihiko

    2008-01-01

    In order to investigate the dependence of hardening on copper precipitate diameter and density, in-situ transmission electron microscopy (TEM) observations during tensile tests of dislocation gliding through copper rich-precipitates in thermally aged and neutron irradiated Fe-Cu alloys were performed. The obstacle strength has been estimated from the critical bow-out angle, φ, of dislocations. The obstacle distance on the dislocation line measured from in-situ TEM observations were compared with number density and diameter measured by 3D-AP (three dimensional atom probe) and TEM observation. A comparison is made between hardening estimation based on the critical bowing angles and those obtained from conventional tensile tests. (author)

  12. Radiation hardening of optical fibers and fiber sensors for space applications: recent advances

    Science.gov (United States)

    Girard, S.; Ouerdane, Y.; Pinsard, E.; Laurent, A.; Ladaci, A.; Robin, T.; Cadier, B.; Mescia, L.; Boukenter, A.

    2017-11-01

    In these ICSO proceedings, we review recent advances from our group concerning the radiation hardening of optical fiber and fiber-based sensors for space applications and compare their benefits to state-of-the-art results. We focus on the various approaches we developed to enhance the radiation tolerance of two classes of optical fibers doped with rare-earths: the erbium (Er)-doped ones and the ytterbium/erbium (Er/Yb)-doped ones. As a first approach, we work at the component level, optimizing the fiber structure and composition to reduce their intrinsically high radiation sensitivities. For the Erbium-doped fibers, this has been achieved using a new structure for the fiber that is called Hole-Assisted Carbon Coated (HACC) optical fibers whereas for the Er/Ybdoped optical fibers, their hardening was successfully achieved adding to the fiber, the Cerium element, that prevents the formation of the radiation-induced point defects responsible for the radiation induced attenuation in the infrared part of the spectrum. These fibers are used as part of more complex systems like amplifiers (Erbium-doped Fiber Amplifier, EDFA or Yb-EDFA) or source (Erbium-doped Fiber Source, EDFS or Yb- EDFS), we discuss the impact of using radiation-hardened fibers on the system radiation vulnerability and demonstrate the resistance of these systems to radiation constraints associated with today and future space missions. Finally, we will discuss another radiation hardening approach build in our group and based on a hardening-by-system strategy in which the amplifier is optimized during its elaboration for its future mission considering the radiation effects and not in-lab.

  13. Influence of oxygen impurity atoms on defect clusters and radiation hardening in neutron-irradiated vanadium

    International Nuclear Information System (INIS)

    Bajaj, R.; Wechsler, M.S.

    1975-01-01

    Single crystal TEM samples and polycrystalline tensile samples of vanadium containing 60-640 wt ppm oxygen were irradiated at about 100 0 C to about 1.3 x 10 19 neutrons/cm 2 (E greater than 1 MeV) and post-irradiation annealed up to 800 0 C. The defect cluster density increased and the average size decreased with increasing oxygen concentration. Higher oxygen concentrations caused the radiation hardening and radiation-anneal hardening to increase. The observations are consistent with the nucleation of defect clusters by small oxygen or oxygen-point defect complexes and the trapping of oxygen at defect clusters upon post-irradiation annealing

  14. The development of advanced robotics technology in high radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Cho, Jaiwan; Lee, Nam Ho; Choi, Young Soo; Park, Soon Yong; Lee, Jong Min; Park, Jin Suk; Kim, Seung Ho; Kim, Byung Soo; Moon, Byung Soo

    1997-07-01

    In the tele-operation technology using tele-presence in high radiation environment, stereo vision target tracking by centroid method, vergence control of stereo camera by moving vector method, stereo observing system by correlation method, horizontal moving axis stereo camera, and 3 dimensional information acquisition by stereo image is developed. Also, gesture image acquisition by computer vision and construction of virtual environment for remote work in nuclear power plant. In the development of intelligent control and monitoring technology for tele-robot in hazardous environment, the characteristics and principle of robot operation. And, robot end-effector tracking algorithm by centroid method and neural network method are developed for the observation and survey in hazardous environment. 3-dimensional information acquisition algorithm by structured light is developed. In the development of radiation hardened sensor technology, radiation-hardened camera module is designed and tested. And radiation characteristics of electric components is robot system is evaluated. Also 2-dimensional radiation monitoring system is developed. These advanced critical robot technology and telepresence techniques developed in this project can be applied to nozzle-dam installation /removal robot system, can be used to realize unmanned remotelization of nozzle-dam installation / removal task in steam generator of nuclear power plant, which can be contributed for people involved in extremely hazardous high radioactivity area to eliminate their exposure to radiation, enhance their task safety, and raise their working efficiency. (author). 75 refs., 21 tabs., 15 figs.

  15. The development of advanced robotics technology in high radiation environment

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Cho, Jaiwan; Lee, Nam Ho; Choi, Young Soo; Park, Soon Yong; Lee, Jong Min; Park, Jin Suk; Kim, Seung Ho; Kim, Byung Soo; Moon, Byung Soo.

    1997-07-01

    In the tele-operation technology using tele-presence in high radiation environment, stereo vision target tracking by centroid method, vergence control of stereo camera by moving vector method, stereo observing system by correlation method, horizontal moving axis stereo camera, and 3 dimensional information acquisition by stereo image is developed. Also, gesture image acquisition by computer vision and construction of virtual environment for remote work in nuclear power plant. In the development of intelligent control and monitoring technology for tele-robot in hazardous environment, the characteristics and principle of robot operation. And, robot end-effector tracking algorithm by centroid method and neural network method are developed for the observation and survey in hazardous environment. 3-dimensional information acquisition algorithm by structured light is developed. In the development of radiation hardened sensor technology, radiation-hardened camera module is designed and tested. And radiation characteristics of electric components is robot system is evaluated. Also 2-dimensional radiation monitoring system is developed. These advanced critical robot technology and telepresence techniques developed in this project can be applied to nozzle-dam installation /removal robot system, can be used to realize unmanned remotelization of nozzle-dam installation / removal task in steam generator of nuclear power plant, which can be contributed for people involved in extremely hazardous high radioactivity area to eliminate their exposure to radiation, enhance their task safety, and raise their working efficiency. (author). 75 refs., 21 tabs., 15 figs

  16. Process for hardening an alkyd resin composition using ionizing radiation. [electron beams, gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T; Murata, K; Maruyama, T

    1969-11-27

    In an alkyd resin composition having free hydroxide radicals and containing a conjugated unsaturated fatty acid and/or oil as a component thereof, a process for hardening an alkyd resin composition comprises the steps of dissolving into a vinyl monomer, the product obtained by the semi-esterification reaction of said hydroxide radicals with acid anhydrides having polymerizable radicals and hardening by ionizing radiation to provide a coating with a high degree of cross-linking, with favorable properties such as toughness, hardness, chemical resistance and resistance to weather and with the feasibility of being applied as the ground and finish coat on metals, wood, paper, outdoor construction or the like. Any kind of ionization radiation, particularly accelerated electron beams, ..gamma.. radiation can be used at 50/sup 0/C to -5/sup 0/C for a few seconds or minutes, permitting continuous operation. In one example, 384 parts of phthalic anhydride, 115 parts of pentaerythritol, 233 parts of trimethylol ethane, 288 parts of tung fatty acid and 49 parts of para-tertiary-butyl benzoic acid are mixed and heated with 60 parts of xylene to an acid value of 12. In addition, 271 parts of maleic anhydride and 0.6 parts of hydroquinone are admixed with the content and heated to terminate the reaction. 100 parts of a 50% stylene solution of this alkyd resin are mixed with 1 part of a 60% toluene solution of cobalt naphthenate, and then coated on a glass plate and irradiated with high energy electron beams of 300 kV with a dose of 5 Mrad for 1 sec.

  17. High temperature, radiation hardened electronics for application to nuclear power plants

    International Nuclear Information System (INIS)

    Gover, J.E.

    1980-01-01

    Electronic circuits were developed and built at Sandia for many aerospace and energy systems applications. Among recent developments were high temperature electronics for geothermal well logging and radiation hardened electronics for a variety of aerospace applications. Sandia has also been active in technology transfer to commercial industry in both of these areas

  18. Update on radiation-hardened microcomputers for robotics and teleoperated systems

    International Nuclear Information System (INIS)

    Sias, F.R. Jr.; Tulenko, J.S.

    1993-01-01

    Since many programs sponsored by the Department of Defense are being canceled, it is important to select carefully radiation-hardened microprocessors for projects that will mature (or will require continued support) several years in the future. At the present time there are seven candidate 32-bit processors that should be considered for long-range planning for high-performance radiation-hardened computer systems. For Department of Energy applications it is also important to consider efforts at standardization that require the use of the VxWorks operating system and hardware based on the VMEbus. Of the seven processors, one has been delivered and is operating and other systems are scheduled to be delivered late in 1993 or early in 1994. At the present time the Honeywell-developed RH32, the Harris RH-3000 and the Harris RHC-3000 are leading contenders for meeting DOE requirements for a radiation-hardened advanced 32-bit microprocessor. These are all either compatible with or are derivatives of the MIPS R3000 Reduced Instruction Set Computer. It is anticipated that as few as two of the seven radiation-hardened processors will be supported by the space program in the long run

  19. Radiation hardenable impregnating agents for the consolidating conservation of wooden objects

    International Nuclear Information System (INIS)

    Schaudy, R.

    1985-01-01

    Radiation hardenable impregnating agents offer some advantages over the conventional agents. At the author's institution objects up to 110 cm length can be impregnated for conservation. More than 200 monomers and resins have been investigated. The procedure of impregnation is outlined and some kinds of wooden objects conserved in this way listed. (G.W.)

  20. Non-destructive screening method for radiation hardened performance of large scale integration

    International Nuclear Information System (INIS)

    Zhou Dong; Xi Shanbin; Guo Qi; Ren Diyuan; Li Yudong; Sun Jing; Wen Lin

    2013-01-01

    The space radiation environment could induce radiation damage on the electronic devices. As the performance of commercial devices is generally superior to that of radiation hardened devices, it is necessary to screen out the devices with good radiation hardened performance from the commercial devices and applying these devices to space systems could improve the reliability of the systems. Combining the mathematical regression analysis with the different physical stressing experiments, we investigated the non-destructive screening method for radiation hardened performance of the integrated circuit. The relationship between the change of typical parameters and the radiation performance of the circuit was discussed. The irradiation-sensitive parameters were confirmed. The pluralistic linear regression equation toward the prediction of the radiation performance was established. Finally, the regression equations under stress conditions were verified by practical irradiation. The results show that the reliability and accuracy of the non-destructive screening method can be elevated by combining the mathematical regression analysis with the practical stressing experiment. (authors)

  1. Radiation hardening and irradiation testing of in-cell electronics for MA23/APM

    International Nuclear Information System (INIS)

    Friant, A.

    1988-09-01

    We relate briefly the radiation hardening method used to guarantee a gamma resistance of 10 Mrad for the whole electronic equipment associated with the slave arm of MA23 M servomanipulator which will be set up in cell 404 in Marcoule (APM). We describe the radiation testing of electronic devices and of the various subsystems designed by the D. LETI groups involved in the MA23/APM project

  2. Radiation Effects and Component Hardening testing program at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Draper, J.V.; Weil, B.S.; Chesser, J.B.

    1993-01-01

    This paper describes Phase II of the Radiation Effects and Component Hardening (REACH) testing program, performed as part of the joint collaborative agreement between the United States Department of Energy (USDOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan, Components and materials were submitted to 10 5 R/hr gamma radiation fields for 10,000 hr, producing accumulated doses of 10 9 R; most performed as expected

  3. Development of radiation hardened pixel sensors for charged particle detection

    CERN Document Server

    Koziel, Michal

    2014-01-01

    CMOS Pixel Sensors are being developed since a few years to equip vertex detectors for future high-energy physics experiments with the crucial advantages of a low material budget and low production costs. The features simultaneously required are a short readout time, high granularity and high tolerance to radiation. This thesis mainly focuses on the radiation tolerance studies. To achieve the targeted readout time (tens of microseconds), the sensor pixel readout was organized in parallel columns restricting in addition the readout to pixels that had collected the signal charge. The pixels became then more complex, and consequently more sensitive to radiation. Different in-pixel architectures were studied and it was concluded that the tolerance to ionizing radiation was limited to 300 krad with the 0.35- m fabrication process currently used, while the targeted value was several Mrad. Improving this situation calls for implementation of the sensors in processes with a smaller feature size which naturally imp...

  4. Optimized radiation-hardened erbium doped fiber amplifiers for long space missions

    Science.gov (United States)

    Ladaci, A.; Girard, S.; Mescia, L.; Robin, T.; Laurent, A.; Cadier, B.; Boutillier, M.; Ouerdane, Y.; Boukenter, A.

    2017-04-01

    In this work, we developed and exploited simulation tools to optimize the performances of rare earth doped fiber amplifiers (REDFAs) for space missions. To describe these systems, a state-of-the-art model based on the rate equations and the particle swarm optimization technique is developed in which we also consider the main radiation effect on REDFA: the radiation induced attenuation (RIA). After the validation of this tool set by confrontation between theoretical and experimental results, we investigate how the deleterious radiation effects on the amplifier performance can be mitigated following adequate strategies to conceive the REDFA architecture. The tool set was validated by comparing the calculated Erbium-doped fiber amplifier (EDFA) gain degradation under X-rays at ˜300 krad(SiO2) with the corresponding experimental results. Two versions of the same fibers were used in this work, a standard optical fiber and a radiation hardened fiber, obtained by loading the previous fiber with hydrogen gas. Based on these fibers, standard and radiation hardened EDFAs were manufactured and tested in different operating configurations, and the obtained data were compared with simulation data done considering the same EDFA structure and fiber properties. This comparison reveals a good agreement between simulated gain and experimental data (vulnerability in terms of gain. The presented approach is a complementary and effective tool for hardening by device techniques and opens new perspectives for the applications of REDFAs and lasers in harsh environments.

  5. Progress report on the neutral beam radiation hardening study

    International Nuclear Information System (INIS)

    Lee, J.D.; Condit, R.H.; Hoenig, C.L.; Wilcox, T.P.; Erickson, J.

    1978-01-01

    A neutral beam injector as presently conceived directly views the plasma it is sustaining. In turn the injector is exposed to the primary fusion neutrons plus secondary neutrons and gammas streaming back up the neutral beam duct. The intent of this work is to examine representative beam lines to see how performance and lifetimes could be affected by this radiation environment and to determine how unacceptable effects could be alleviated. Potential radiation induced problems addressed in this report have been limited to: (1) overheating of cryopanels and insulators, (2) gamma flux induced electrical conductivity increase of insulators, and (3) neutron and gamma fluence induced damage to insulator materials

  6. Evaluation method of radiation stability of hardened cement paste with chemical additives

    Energy Technology Data Exchange (ETDEWEB)

    Medvedev, Vyacheslav; Pustovgar, Andrey [National Research Univ. ' Moscow State Univ. of Civil Engineering' (MSUCE), Moscow (Russian Federation); National Research Univ. ' Moscow State Univ. of Civil Engineering' (MSUCE), Moscow (Russian Federation). Scientific Research Inst. of Constructional Materials and Technologies; Denisov, Alexander; Soloviev, Vitaly [National Research Univ. ' Moscow State Univ. of Civil Engineering' (MSUCE), Moscow (Russian Federation)

    2013-07-01

    The influence of additives on the radiation resistance of the concrete will occur through the influence of radiation changes of hardened cement paste on radiation changes of concrete and can be quite significant. The test sequence was produced according to the modified method. The samples were prepared in the form of prisms with the following dimensions: 10 mm x 10 mm, 30 mm long. Measurement series were produced after each heating and cooling sequence. Then the difference between the values before and after heating was calculated. (orig.)

  7. A COTS-based single board radiation-hardened computer for space applications

    International Nuclear Information System (INIS)

    Stewart, S.; Hillman, R.; Layton, P.; Krawzsenek, D.

    1999-01-01

    There is great community interest in the ability to use COTS (Commercial-Off-The-Shelf) technology in radiation environments. Space Electronics, Inc. has developed a high performance COTS-based radiation hardened computer. COTS approaches were selected for both hardware and software. Through parts testing, selection and packaging, all requirements have been met without parts or process development. Reliability, total ionizing dose and single event performance are attractive. The characteristics, performance and radiation resistance of the single board computer will be presented. (authors)

  8. New technologies for radiation-hardening analog to digital converters

    Science.gov (United States)

    Gauthier, M. K.

    1982-01-01

    Surveys of available Analog to Digital Converters (ADC) suitable for precision applications showed that none have the proper combination of accuracy and radiation hardness to meet space and/or strategic weapon requirements. A development program which will result in an ADC device which will serve a number of space and strategic applications. Emphasis was placed on approaches that could be integrated onto a single chip within three to five years.

  9. New technologies for radiation-hardening analog to digital converters

    International Nuclear Information System (INIS)

    Gauthier, M.K.

    1982-12-01

    Surveys of available Analog to Digital Converters (ADC) suitable for precision applications showed that none have the proper combination of accuracy and radiation hardness to meet space and/or strategic weapon requirements. A development program which will result in an ADC device which will serve a number of space and strategic applications. Emphasis was placed on approaches that could be integrated onto a single chip within three to five years

  10. A radiation hardened digital fluxgate magnetometer for space applications

    Science.gov (United States)

    Miles, D. M.; Bennest, J. R.; Mann, I. R.; Millling, D. K.

    2013-09-01

    Space-based measurements of Earth's magnetic field are required to understand the plasma processes responsible for energising particles in the Van Allen radiation belts and influencing space weather. This paper describes a prototype fluxgate magnetometer instrument developed for the proposed Canadian Space Agency's (CSA) Outer Radiation Belt Injection, Transport, Acceleration and Loss Satellite (ORBITALS) mission and which has applications in other space and suborbital applications. The magnetometer is designed to survive and operate in the harsh environment of Earth's radiation belts and measure low-frequency magnetic waves, the magnetic signatures of current systems, and the static background magnetic field. The new instrument offers improved science data compared to its predecessors through two key design changes: direct digitisation of the sensor and digital feedback from two cascaded pulse-width modulators combined with analog temperature compensation. These provide an increase in measurement bandwidth up to 450 Hz with the potential to extend to at least 1500 Hz. The instrument can resolve 8 pT on a 65 000 nT field with a magnetic noise of less than 10 pT/√Hz at 1 Hz. This performance is comparable with other recent digital fluxgates for space applications, most of which use some form of sigma-delta (ΣΔ) modulation for feedback and omit analog temperature compensation. The prototype instrument was successfully tested and calibrated at the Natural Resources Canada Geomagnetics Laboratory.

  11. Total dose and dose rate radiation characterization of EPI-CMOS radiation hardened memory and microprocessor devices

    International Nuclear Information System (INIS)

    Gingerich, B.L.; Hermsen, J.M.; Lee, J.C.; Schroeder, J.E.

    1984-01-01

    The process, circuit discription, and total dose radiation characteristics are presented for two second generation hardened 4K EPI-CMOS RAMs and a first generation 80C85 microprocessor. Total dose radiation performance is presented to 10M rad-Si and effects of biasing and operating conditions are discussed. The dose rate sensitivity of the 4K RAMs is also presented along with single event upset (SEU) test data

  12. Microhardness technique for determination of radiation hardening in austenitic stainless steel using

    International Nuclear Information System (INIS)

    Hofman, A.

    1995-01-01

    The use of microhardness technique to determine the radiation hardening has been studied. Microhardness measurements have been conducted on austenitic stainless steel 0H18N10T irradiated up to 2·10 23 nm -2 . It was determined that the increase in microhardness varies directly with the measured increase in the 0,2% offret yield strength and has been found that microhardness technique may be an effective tool to measurements of radiation induced hardening. Based on the results and Cahoon's relation that σ 0,2 (MPa)=3,27HV(0,1) n method for evaluating the yield stress σ 0,2 by microhardness technique is analyzed. 14 refs., 3 figs., 3 tabs

  13. Development of a radiation hardened ANDROS robot for environmental restoration and waste management operations

    International Nuclear Information System (INIS)

    Tulenko, J.S.; Youk, G.; Ekdahl, D.; Liu, H.; Zhou, H.; Phillips, K.; Sias, F.; Jones, S.; Cable, T.; Harvey, H.

    1995-01-01

    A radiation hardened and tolerant version of the ANDROS V-A and VI-A system has been developed by a team composed of engineers and scientists from REMOTEC, Inc. and the University of Florida. The final upgrade of the major control components to a hardness level greater than one megarad is detailed. Over twelve hundred parts were reviewed. The project has completed its Phase 1 and Phase 2 SBIR redesign with the upgrade of all control components. The facilities at the University of Florida which include a linear accelerator and multiple cobalt irradiators have provided the capability to perform the extensive testing required. The commercial production of this radiation hardened ANDROS makes available a mobile platform that can serve as a main work and inspection system for hazardous tasks facing the world nuclear industry

  14. Radiation-Hardened Electronics for Advanced Communications Systems

    Science.gov (United States)

    Whitaker, Sterling

    2015-01-01

    Novel approach enables high-speed special-purpose processors Advanced reconfigurable and reprogrammable communication systems will require sub-130-nanometer electronics. Legacy single event upset (SEU) radiation-tolerant circuits are ineffective at speeds greater than 125 megahertz. In Phase I of this project, ICs, LLC, demonstrated new base-level logic circuits that provide SEU immunity for sub-130-nanometer high-speed circuits. In Phase II, the company developed an innovative self-restoring logic (SRL) circuit and a system approach that provides high-speed, SEU-tolerant solutions that are effective for sub-130-nanometer electronics scalable to at least 22-nanometer processes. The SRL system can be used in the design of NASA's next-generation special-purpose processors, especially reconfigurable communication processors.

  15. The Development of a Radiation Hardened Robot for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seung Ho; Kim, Chang Hoi; Seo, Yong Chil (and others)

    2007-04-15

    We has been developed two remotely controlled robotic systems. One is a underwater vehicle for inspection of the internal structures of PWRs and retrieving foreign stubs in the reactor pressure vessels and reactor coolant pipes. The other robotic system consists of a articulated-type mobile robot capable of recovering the failure of the fuel exchange machine and a mini modular mobile robot for inspection of feeder pipes with ultrasonic array sensors in PHWRs. The underwater robot has been designed by considering radiation effect, underwater condition, and accessibility to the working area. The size of underwater robot is designed to enter the cold legs. A extendable manipulator is mounted on the mobile robot, which can restore nuclear fuel exchange machine. The mini modular mobile robot is composed of dual inch worm mechanisms, which are constructed by two gripper bodies that can fix the robot body on to the pipe and move along the longitudinal and to rotate in a circumferential direction to access all of the outer surfaces of the pipe.

  16. Radiation hardening techniques for rare-earth based optical fibers and amplifiers

    International Nuclear Information System (INIS)

    Girard, Sylvain; Marcandella, Claude; Vivona, Marilena; Prudenzano, Luciano Mescia F.; Laurent, Arnaud; Robin, Thierry; Cadier, Benoit; Pinsard, Emmanuel; Ouerdane, Youcef; Boukenter, Aziz; Cannas, Marco; Boscaino, Roberto

    2012-01-01

    Er/Yb doped fibers and amplifiers have been shown to be very radiation sensitive, limiting their integration in space. We present an approach including successive hardening techniques to enhance their radiation tolerance. The efficiency of our approach is demonstrated by comparing the radiation responses of optical amplifiers made with same lengths of different rare-earth doped fibers and exposed to gamma-rays. Previous studies indicated that such amplifiers suffered significant degradation for doses exceeding 10 krad. Applying our techniques significantly enhances the amplifier radiation resistance, resulting in a very limited degradation up to 50 krad. Our optimization techniques concern the fiber composition, some possible pre-treatments and the interest of simulation tools used to harden by design the amplifiers. We showed that adding cerium inside the fiber phospho-silicate-based core strongly decreases the fiber radiation sensitivity compared to the standard fiber. For both fibers, a pre-treatment with hydrogen permits to enhance again the fiber resistance. Furthermore, simulations tools can also be used to improve the tolerance of the fiber amplifier by helping identifying the best amplifier configuration for operation in the radiative environment. (authors)

  17. Radiation hardening at 77 K in Zn and Cu single crystals at low doses

    International Nuclear Information System (INIS)

    Gonzalez, H.C.; Bisogni, E.A.

    1980-01-01

    There is controversy about radiation hardening phenomenon and its additivity with other hardening mechanisms. The purpose of this work is to contribute to the understanding of this subject, through measurements made in Zn and Cu single crystals. Post-irradiation measurements of yield stress of Zn, made on different single crystals, show a direct proportionality to the 0.5 power of the dose. It is determined that for a dose greater than 3.7 x 10 16 neutrons cm -2 s -1 there is always cleavage. The maximum critical resolved shear stress measured is about 8.82 MPa. In order to study additivity it is necessary to lower experimental errors. A micro tensile machine is designed to operate in the CNEA facility RA1 in a bath of liquid N 2 . Experimental measurements of yield stress with dose are carried out in-situ on the same single crystals. Experimental results on Cu and Zn show that radiation induced yield stress increases with a 0.5 power law. It must be taken into account that the definition of radiation induced yield stress stands for radiation created obstacles operating alone. The radiation induced yield stress adds algebraically to the athermal component of the initial yield stress but is not exactly additive to the other thermally activated mechanisms. A gradual transition from one to the other type of obstacles is observed. (author)

  18. Thin film silicon on silicon nitride for radiation hardened dielectrically isolated MISFET's

    International Nuclear Information System (INIS)

    Neamen, D.; Shedd, W.; Buchanan, B.

    1975-01-01

    The permanent ionizing radiation effects resulting from charge trapping in a silicon nitride isolation dielectric have been determined for a total ionizing dose up to 10 7 rads (Si). Junction FET's, whose active channel region is directly adjacent to the silicon-silicon nitride interface, were used to measure the effects of the radiation induced charge trapping in the Si 3 N 4 isolation dielectric. The JFET saturation current and channel conductance versus junction gate voltage and substrate voltage were characterized as a function of the total ionizing radiation dose. The experimental results on the Si 3 N 4 are compared to results on similar devices with SiO 2 dielectric isolation. The ramifications of using the silicon nitride for fabricating radiation hardened dielectrically isolated MIS devices are discussed

  19. Radiation-Hardened Circuitry Using Mask-Programmable Analog Arrays. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Jr., Charles L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ericson, Milton Nance [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bobrek, Miljko [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Blalock, Benjamin [Univ. of Tennessee, Knoxville, TN (United States)

    2015-12-01

    As the recent accident at Fukushima Daiichi so vividly demonstrated, telerobotic technologies capable of withstanding high radiation environments need to be readily available to enable operations, repair, and recovery under severe accident scenarios where human entry is extremely dangerous or not possible. Telerobotic technologies that enable remote operation in high dose rate environments have undergone revolutionary improvement over the past few decades. However, much of this technology cannot be employed in nuclear power environments due the radiation sensitivity of the electronics and the organic insulator materials currently in use. This is the final report of the activities involving the NEET 2 project Radiation Hardened Circuitry Using Mask-Programmable Analog Arrays. We present a detailed functional block diagram of the proposed data acquisition system, the thought process leading to technical decisions, the implemented system, and the tested results from the systems. This system will be capable of monitoring at least three parameters of importance to nuclear reactor monitoring: temperature, radiation level, and pressure.

  20. Radiation Hardened Telerobotic Dismantling System Development Final Report CRADA No. TC-1340-96

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lightman, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    This project was a collaborative effort between the University of California, LLNL and RedZone Robotics, Inc. for the development of radiation-hardened telerobotic dismantling systems for use in applications such as nuclear facility remediation, nuclear accident response, and Chemobyltype remediation. The project supported the design, development, fabrication and testing of a Ukrainian robotic systems. The project was completed on time and within budget. All deliverables were completed. The final project deliverables were consistent with the plans developed in the original project with the exception that the fabricated systems remained in Ukraine.

  1. Proposed radiation hardened mobile vehicle for Chernobyl dismantlement and nuclear accident response

    International Nuclear Information System (INIS)

    Rowland, M.S.; Holliday, M.A.; Karpachov, J.A.

    1995-01-01

    Researchers are developing a radiation hardened, Telerobotic Dismantling System (TDS) to remediate the Chernobyl facility. To withstand the severe radiation fields, the robotic system, will rely on electrical motors, actuators, and relays proven in the Chernobyl power station. Due to its dust suppression characteristics and ability to cut arbitrary materials the authors propose using a water knife as the principle tool to slice up the large fuel containing masses. The front end of the robot will use a minimum number of moving parts by locating most of the susceptible and bulky components outside the work area. Hardened and shielded video cameras will be designed for remote control and viewing of the robotic functions. Operators will supervise and control robot movements based on feedback from a suite of sensory systems that would include vision systems, radiation detection and measurement systems and force reflection systems. A gripper will be instrumented with a variety of sensors (e.g. force, torque, or tactile), allowing varying debris surface properties to be grasped. The gripper will allow the operator to manipulate and segregate debris items without entering the radiologically and physically dangerous dismantlement operations area. The robots will initially size reduce the FCM's to reduce the primary sources of the airborne radionuclides. The robot will then remove the high level waste for packaging or decontamination, and storage nearby

  2. Design and implementation of a programming circuit in radiation-hardened FPGA

    International Nuclear Information System (INIS)

    Wu Lihua; Han Xiaowei; Zhao Yan; Liu Zhongli; Yu Fang; Chen, Stanley L.

    2011-01-01

    We present a novel programming circuit used in our radiation-hardened field programmable gate array (FPGA) chip. This circuit provides the ability to write user-defined configuration data into an FPGA and then read it back. The proposed circuit adopts the direct-access programming point scheme instead of the typical long token shift register chain. It not only saves area but also provides more flexible configuration operations. By configuring the proposed partial configuration control register, our smallest configuration section can be conveniently configured as a single data and a flexible partial configuration can be easily implemented. The hierarchical simulation scheme, optimization of the critical path and the elaborate layout plan make this circuit work well. Also, the radiation hardened by design programming point is introduced. This circuit has been implemented in a static random access memory (SRAM)-based FPGA fabricated by a 0.5 μm partial-depletion silicon-on-insulator CMOS process. The function test results of the fabricated chip indicate that this programming circuit successfully realizes the desired functions in the configuration and read-back. Moreover, the radiation test results indicate that the programming circuit has total dose tolerance of 1 x 10 5 rad(Si), dose rate survivability of 1.5 x 10 11 rad(Si)/s and neutron fluence immunity of 1 x 10 14 n/cm 2 .

  3. Design and implementation of a programming circuit in radiation-hardened FPGA

    Science.gov (United States)

    Lihua, Wu; Xiaowei, Han; Yan, Zhao; Zhongli, Liu; Fang, Yu; Chen, Stanley L.

    2011-08-01

    We present a novel programming circuit used in our radiation-hardened field programmable gate array (FPGA) chip. This circuit provides the ability to write user-defined configuration data into an FPGA and then read it back. The proposed circuit adopts the direct-access programming point scheme instead of the typical long token shift register chain. It not only saves area but also provides more flexible configuration operations. By configuring the proposed partial configuration control register, our smallest configuration section can be conveniently configured as a single data and a flexible partial configuration can be easily implemented. The hierarchical simulation scheme, optimization of the critical path and the elaborate layout plan make this circuit work well. Also, the radiation hardened by design programming point is introduced. This circuit has been implemented in a static random access memory (SRAM)-based FPGA fabricated by a 0.5 μm partial-depletion silicon-on-insulator CMOS process. The function test results of the fabricated chip indicate that this programming circuit successfully realizes the desired functions in the configuration and read-back. Moreover, the radiation test results indicate that the programming circuit has total dose tolerance of 1 × 105 rad(Si), dose rate survivability of 1.5 × 1011 rad(Si)/s and neutron fluence immunity of 1 × 1014 n/cm2.

  4. Radiation-hardened optically reconfigurable gate array exploiting holographic memory characteristics

    Science.gov (United States)

    Seto, Daisaku; Watanabe, Minoru

    2015-09-01

    In this paper, we present a proposal for a radiation-hardened optically reconfigurable gate array (ORGA). The ORGA is a type of field programmable gate array (FPGA). The ORGA configuration can be executed by the exploitation of holographic memory characteristics even if 20% of the configuration data are damaged. Moreover, the optoelectronic technology enables the high-speed reconfiguration of the programmable gate array. Such a high-speed reconfiguration can increase the radiation tolerance of its programmable gate array to 9.3 × 104 times higher than that of current FPGAs. Through experimentation, this study clarified the configuration dependability using the impulse-noise emulation and high-speed configuration capabilities of the ORGA with corrupt configuration contexts. Moreover, the radiation tolerance of the programmable gate array was confirmed theoretically through probabilistic calculation.

  5. A radiation-hardened 1K-bit dielectrically isolated random access memory

    International Nuclear Information System (INIS)

    Sandors, T.J.; Boarman, J.W.; Kasten, A.J.; Wood, G.M.

    1982-01-01

    Dielectric Isolation has been used for many years as the bipolar technology for latch-up free, radiation hardened integrated circuits in strategic systems. The state-of-the-art up to this point has been the manufacture of MSI functions containing a maximum of several hundred isolated components. This paper discusses a 1024 Bit Random Access Memory chip containing over 4000 dielectrically isolated components which has been designed for strategic radiation environments. The process utilized and the circuit design of the 1024 Bit RAM have been previously discussed. The techniques used are similar to those employed for the MX digital integrated circuits except for specific items required to make this a true LSI technology. These techniques, along with electrical and radiation data for the RAM, are presented

  6. Radiation Hardened Structured ASIC Platform for Rapid Chip Development for Very High Speed System on a Chip (SoC) and Complex Digital Logic Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation Hardened Application Specific Integrated Circuits (ASICs) provide for the highest performance, lowest power and size for Space Missions. In order to...

  7. Using a novel spectroscopic reflectometer to optimize a radiation-hardened submicron silicon-on-sapphire CMOS process

    International Nuclear Information System (INIS)

    Do, N.T.; Zawaideh, E.; Vu, T.Q.; Warren, G.; Mead, D.; Do, N.T.; Li, G.P.; Tsai, C.S.

    1999-01-01

    A radiation-hardened sub-micron silicon-on-sapphire CMOS process is monitored and optimized using a novel optical technique based on spectroscopic reflectometry. Quantitative measurements of the crystal quality, surface roughness, and device radiation hardness show excellent correlation between this technique and the Atomic Force Microscopy. (authors)

  8. Architecture and performance of radiation-hardened 64-bit SOS/MNOS memory

    International Nuclear Information System (INIS)

    Kliment, D.C.; Ronen, R.S.; Nielsen, R.L.; Seymour, R.N.; Splinter, M.R.

    1976-01-01

    This paper discusses the circuit architecture and performance of a nonvolatile 64-bit MNOS memory fabricated on silicon on sapphire (SOS). The circuit is a test vehicle designed to demonstrate the feasibility of a high-performance, high-density, radiation-hardened MNOS/SOS memory. The array is organized as 16 words by 4 bits and is fully decoded. It utilizes a two-(MNOS) transistor-per-bit cell and differential sensing scheme and is realized in PMOS static resistor load logic. The circuit was fabricated and tested as both a fast write random access memory (RAM) and an electrically alterable read only memory (EAROM) to demonstrate design and process flexibility. Discrete device parameters such as retention, circuit electrical characteristics, and tolerance to total dose and transient radiation are presented

  9. Investigation of epitaxial silicon layers as a material for radiation hardened silicon detectors

    International Nuclear Information System (INIS)

    Li, Z.; Eremin, V.; Ilyashenko, I.; Ivanov, A.; Verbitskaya, E.

    1997-12-01

    Epitaxial grown thick layers (≥ 100 micrometers) of high resistivity silicon (Epi-Si) have been investigated as a possible candidate of radiation hardened material for detectors for high-energy physics. As grown Epi-Si layers contain high concentration (up to 2 x 10 12 cm -3 ) of deep levels compared with that in standard high resistivity bulk Si. After irradiation of test diodes by protons (E p = 24 GeV) with a fluence of 1.5 x 10 11 cm -2 , no additional radiation induced deep traps have been detected. A reasonable explanation is that there is a sink of primary radiation induced defects (interstitial and vacancies), possibly by as-grown defects, in epitaxial layers. The ''sinking'' process, however, becomes non-effective at high radiation fluences (10 14 cm -2 ) due to saturation of epitaxial defects by high concentration of radiation induced ones. As a result, at neutron fluence of 1 x 10 14 cm -2 the deep level spectrum corresponds to well-known spectrum of radiation induced defects in high resistivity bulk Si. The net effective concentration in the space charge region equals to 3 x 10 12 cm -3 after 3 months of room temperature storage and reveals similar annealing behavior for epitaxial as compared to bulk silicon

  10. Study of interaction among silicon, lithium, oxygen and radiation-induced defects for radiation-hardened solar cells

    Science.gov (United States)

    Berman, P. A.

    1973-01-01

    In order to improve reliability and the useful lifetime of solar cell arrays for space use, a program was undertaken to develop radiation-hardened lithium-doped silicon solar cells. These cells were shown to be significantly more resistant to degradation by ionized particles than the presently used n-p nonlithium-doped silicon solar cells. The results of various analyses performed to develop a more complete understanding of the physics of the interaction among lithium, silicon, oxygen, and radiation-induced defects are presented. A discussion is given of those portions of the previous model of radiation damage annealing which were found to be in error and those portions which were upheld by these extensive investigations.

  11. Efficient, radiation-hardened, 800-keV neutral beam injection system

    International Nuclear Information System (INIS)

    Anderson, O.A.; Cooper, W.S.; Goldberg, D.A.; Ruby, L.; Soroka, L.; Fink, J.H.

    1982-10-01

    Recent advances and new concepts in negative ion generation, transport, acceleration, and neutrailzation make it appear likely that an efficient, radiation-hardened neutral beam injection system could be developed in time for the proposed FED-A tokamak. These new developments include the operation of steady-state H - ion sources at over 5 A per meter of source length, the concept of using strong-focussing electrostatic structures for low-gradient dc acceleration of high-current sheet beams of negative ions and the transport of these beams around corners, and the development of powerful oxygen-iodine chemical lasers which will make possible the efficient conversion of the negative ions to neutrals using a photodetachment scheme in which the ion beam passes through the laser cavity

  12. Effects of initial microstructure and helium production on radiation hardening in F82H Steels

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, N.; Wakai, E.; Takada, F.; Jitsukawa, S. [Japan Atomic Energy Agency, Naga-gun, Ibaraki-ken (Japan); Katoh, Y. [Oak Ridge Noational Laboratory, TN (United States)

    2007-07-01

    Full text of publication follows: Fission neutron irradiation to steels doped with isotope boron-10 is frequently conducted to study effects of the helium production on mechanical properties. The intrinsic mechanical properties of F82H steels could have been changed due to the boron doping. Recently, we reported that co-doping with boron and nitrogen to F82H (F82H+B+N) improved the mechanical properties of F82H doped only with boron. The mechanical properties of F82H+B+N are successfully comparable with the non-doped F82H before irradiation. In order to evaluate the effects of initial microstructure and helium production on radiation hardening, F82H and F82H+B+N were irradiate d Specimens used in this study were standard F82H martensitic steels, F82H steels doped with 60 mass ppm {sup 10}B and 200 ppm N (F82H+10B+N) and F82H steels doped with 60 mass ppm {sup 11}B and 200 ppm N (F82H+11B+N). Initial microstructures were changed by tempering conditions, and the tempering temperatures were at 700, 750 and 780 deg. C. Irradiation was performed at nominally 250 deg. C to 2 dpa in JMTR. Tensile properties were measured for the specimens before and after irradiation. Change of yield stress due to the irradiation in the F82H+11B+N steels depended strongly on the initial microstructure and hardness before irradiation. The radiation hardening due to helium production in the F82H+10B+N steels was less than 60 MPa in these experiments. Size of dimple in the fracture surface of specimen with helium production was larger than that with non-helium production. (authors)

  13. Radiation Hardening and Verification Procedure for Compact Flip-Flop Design

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Inyong; Sung, Seung Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    For radiation-related applications applying electronic devices in nuclear, space, medicine, and scientific experiment, single event transients (SETs) and single event upsets (SEUs) are become primary concern since they can cause malfunctions in a system by affecting the signal transition and flipping digital bits. The D flip-flop as a register is generally used in digital circuits that require data stability and high speed. For many years, radiation-hardened-by-design (RHBD) circuits have been gradually developed from traditional circuit architectures. One of common methods is to exploit redundancy in an important circuit block to preserve the correct signal. This technique uses a voting process to have a correct output when other duplicated systems fail due to a single event effect (SEE) including SET and SEU. For instance, B. Olson applied the redundancy technique, formally referred the triple modular redundancy (TMR). Other researchers use various error detection and correction (EDAC) algorithms including redundant bits in the storage circuits to detect and correct errors at the system level. practical experiments at radiation exposure facilities. Korea Atomic Energy Research Institute (KAERI) operates a laboratory with high energy radioactive isotope, {sup 60}Co in Jeongeup, Korea. The facility can provide various experiments requiring experimental environment changes by controlling radiation activity and radiated energy. The future direction on RHBD circuits would be integration with the digital DFF presented in this paper and analog front-end units such as OP-amp for charge sensitive or shaping amplifier. Analog-to-digital converters (ADCs) are also major components necessarily imbedded in the most of sensor related electronics. Thus RHBD techniques are inevitably required to protect these circuits from SEE; specifically, SEUs for digital logics and SETs for analog signals. Since most ADCs consist of both analog and digital circuits in their architectures

  14. Radiation-hardened gate-around n-MOSFET structure for radiation-tolerant application-specific integrated circuits

    International Nuclear Information System (INIS)

    Lee, Min Su; Lee, Hee Chul

    2012-01-01

    To overcome the total ionizing dose effect on an n-type metal-oxide-semiconductor field-effect transistor (n-MOSFET), we designed a radiation-hardened gate-around n-MOSFET structure and evaluated it through a radiation-exposure experiment. Each test device was fabricated in a commercial 0.35-micron complementary metal-oxide-semiconductor (CMOS) process. The fabricated devices were evaluated under a total dose of 1 Mrad (Si) at a dose rate of 250 krad/h to obtain very high reliability for space electronics. The experimental results showed that the gate-around n-MOSFET structure had very good performance against 1 Mrad (Si) of gamma radiation, while the conventional n-MOSFET experienced a considerable amount of radiation-induced leakage current. Furthermore, a source follower designed with the gate-around transistor worked properly at 1 Mrad (Si) of gamma radiation while a source follower designed with the conventional n-MOSFET lost its functionality.

  15. Development of a hardened X-ray imager for the Megajoule Laser radiative environment

    International Nuclear Information System (INIS)

    Rousseau, A.

    2014-01-01

    Thermonuclear fusion experiments are led on Megajoule class laser facility by imploding a capsule filled with Deuterium and Tritium. In this context, it is necessary to diagnose the core size and the shape of the compressed target in order to provide valuable information and identify reasons for failure. State of the art X-ray imaging diagnostics cannot realize measurements without being perturbed by the nuclear background. The diagnostic that has been designed in this thesis combine high spatial resolution X-ray imaging at high energy and radiation tolerance to nuclear background. We have first guaranteed, theoretically and experimentally, survivability of X ray multilayer coating to energetic neutrons irradiation. Consequently, we have design the X-ray imaging system in order to achieve 5 μm resolution in a spectral range up to 95 keV. The X-ray image has then been converted into visible light in order to be easily transferred through a hardened optical relay to a protected area where the optical analyser is set. This analyser, combining light amplifier and pixelised detector, has also been studied and a novel method has been developed to reduce nuclear related transient perturbations on the device. This by parts design associated with Monte-Carlo Simulation (GEANT4) and experimental campaign on FCI facility (OMEGA) led to a coherent diagnostic architecture which will sustain high level of nuclear perturbation. (author) [fr

  16. Radiation-Hardened Circuitry Using Mask-Programmable Analog Arrays. Report 3

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Jr, Charles L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shelton, Jacob H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ericson, Milton Nance [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Blalock, Benjamin [Univ. of Tennessee, Knoxville, TN (United States)

    2015-03-01

    As the recent accident at Fukushima Daiichi so vividly demonstrated, telerobotic technologies capable of withstanding high radiation environments need to be readily available to enable operations, repair, and recovery under severe accident scenarios when human entry is extremely dangerous or not possible. Telerobotic technologies that enable remote operation in high dose rate environments have undergone revolutionary improvement over the past few decades. However, much of this technology cannot be employed in nuclear power environments because of the radiation sensitivity of the electronics and the organic insulator materials currently in use. This is a report of the activities involving Task 3 of the Nuclear Energy Enabling Technologies (NEET) 2 project Radiation Hardened Circuitry Using Mask-Programmable Analog Arrays [1]. Evaluation of the performance of the system for both pre- and post-irradiation as well as operation at elevated temperature will be performed. Detailed performance of the system will be documented to ensure the design meets requirements prior to any extended evaluation. A suite of tests will be developed which will allow evaluation before and after irradiation and during temperature. Selection of the radiation exposure facilities will be determined in the early phase of the project. Radiation exposure will consist of total integrated dose (TID) up to 200 kRad or above with several intermediate doses during test. Dose rates will be in various ranges determined by the facility that will be used with a target of 30 kRad/hr. Many samples of the pre-commercial devices to be used will have been tested in previous projects to doses of at least 300 kRad and temperatures up to 125C. The complete systems will therefore be tested for performance at intermediate doses. Extended temperature testing will be performed up to the limit of the commercial sensors. The test suite performed at each test point will consist of operational testing of the three basic

  17. A Spacecraft Housekeeping System-on-Chip in a Radiation Hardened Structured ASIC

    Science.gov (United States)

    Suarez, George; DuMonthier, Jeffrey J.; Sheikh, Salman S.; Powell, Wesley A.; King, Robyn L.

    2012-01-01

    Housekeeping systems are essential to health monitoring of spacecraft and instruments. Typically, sensors are distributed across various sub-systems and data is collected using components such as analog-to-digital converters, analog multiplexers and amplifiers. In most cases programmable devices are used to implement the data acquisition control and storage, and the interface to higher level systems. Such discrete implementations require additional size, weight, power and interconnect complexity versus an integrated circuit solution, as well as the qualification of multiple parts. Although commercial devices are readily available, they are not suitable for space applications due the radiation tolerance and qualification requirements. The Housekeeping System-o n-A-Chip (HKSOC) is a low power, radiation hardened integrated solution suitable for spacecraft and instrument control and data collection. A prototype has been designed and includes a wide variety of functions including a 16-channel analog front-end for driving and reading sensors, analog-to-digital and digital-to-analog converters, on-chip temperature sensor, power supply current sense circuits, general purpose comparators and amplifiers, a 32-bit processor, digital I/O, pulse-width modulation (PWM) generators, timers and I2C master and slave serial interfaces. In addition, the device can operate in a bypass mode where the processor is disabled and external logic is used to control the analog and mixed signal functions. The device is suitable for stand-alone or distributed systems where multiple chips can be deployed across different sub-systems as intelligent nodes with computing and processing capabilities.

  18. Radiation Hardened Structured ASIC Platform with Compensation of Delay for Temperature and Voltage Variations for Multiple Redundant Temporal Voting Latch Technology

    Science.gov (United States)

    Ardalan, Sasan (Inventor)

    2018-01-01

    The invention relates to devices and methods of maintaining the current starved delay at a constant value across variations in voltage and temperature to increase the speed of operation of the sequential logic in the radiation hardened ASIC design.

  19. A MGy radiation-hardened sensor instrumentation link for nuclear reactor monitoring and remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Verbeeck, Jens; Cao, Ying [KU Leuven - KUL, Div. LRD-MAGyICS, Kasteelpark Arenberg 10, 3001 Heverlee (Belgium); Van Uffelen, Marco; Mont Casellas, Laura; Damiani, Carlo; Morales, Emilio Ruiz; Santana, Roberto Ranz [Fusion for Energy - F4E, c/Josep,n deg. 2, Torres Diagonal Litoral, Ed. B3, 08019 Barcelona (Spain); Meek, Richard; Haist, Bernhard [Oxford Technologies Ltd. OTL, 7 Nuffield Way, Abingdon OX14 1RL (United Kingdom); De Cock, Wouter; Vermeeren, Ludo [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Steyaert, Michiel [KU Leuven, ESAT-MICAS, KasteelparkArenberg 10, 3001 Heverlee (Belgium); Leroux, Paul [KU Leuven, ESAT-MICAS, KasteelparkArenberg 10, 3001 Heverlee (Belgium)

    2015-07-01

    Decommissioning, dismantling and remote handling applications in nuclear facilities all require robotic solutions that are able to survive in radiation environments. Recently raised safety, radiation hardness and cost efficiency demands from both the nuclear regulatory and the society impose severe challenges in traditional methods. For example, in case of the dismantling of the Fukushima sites, solutions that survive accumulated doses higher than 1 MGy are mandatory. To allow remote operation of these tools in nuclear environments, electronics were used to be shielded with several centimeters of lead or even completely banned in these solutions. However, shielding electronics always leads to bulky and heavy solutions, which reduces the flexibility of robotic tools. It also requires longer repair time and produces extra waste further in a dismantling or decommissioning cycle. In addition, often in current reactor designs, due to size restrictions and the need to inspect very tight areas there are limitations to the use of shielding. A MGy radiation-hardened sensor instrumentation link developed by MAGyICS provides a solution to build a flexible, easy removable and small I and C module with MGy radiation tolerance without any shielding. Hereby it removes all these pains to implement electronics in robotic tools. The demonstrated solution in this poster is developed for ITER Remote Handling equipments operating in high radiation environments (>1 MGy) in and around the Tokamak. In order to obtain adequately accurate instrumentation and control information, as well as to ease the umbilical management, there is a need of front-end electronics that will have to be located close to those actuators and sensors on the remote handling tool. In particular, for diverter remote handling, it is estimated that these components will face gamma radiation up to 300 Gy/h (in-vessel) and a total dose of 1 MGy. The radiation-hardened sensor instrumentation link presented here, consists

  20. Radiation hardening of oxygen-doped niobium by 14-MeV neutrons

    International Nuclear Information System (INIS)

    Bradley, E.R.; Jones, R.H.

    1983-09-01

    The flow properties of niobium containing 185 and 480 wt ppM oxygen have been studied following irradiation at 300K with T(d,n) neutrons to fluence levels ranging from 6 x 10 20 to 2 x 10 22 m -2 . Two hardening stages connected by a plateau region were observed in the niobium containing 185 wt ppM oxygen. Increasing the oxygen content by 300 wt ppM oxygen shifted the beginning of the high-fluence hardening stage from 6 x 10 21 to 1 x 10 21 m -2 , thereby eliminating the plateau region. This shift resulted in 1.5 times more hardening in the oxygen-doped niobium irradiated to fluence levels above 5 x 10 21 m -2

  1. Contribution to the study of ionizing radiation effects on bipolar technologies: application to the hardening of integrated circuits

    International Nuclear Information System (INIS)

    Briand, R.

    2001-01-01

    The use of analog integrated circuits in radiation environments raises the problem of their behaviour with respect to the different effects induced by particles and radiations. The first chapter of this thesis presents the origins of radiations and the different topologies of bipolar transistors. The effects of ionizing radiations on bipolar components, like cumulative dose, dose rates, and single events, are detailed in three distinct chapters with the same scientifical approach. The simulation of the physical degradation phenomena of the components allows to establish original electrical models coming from the understanding of the induced mechanisms. These models are used to evaluate the degradations occurring in linear analogic circuits. Common and original hardening methods are presented, some of which are applied to bipolar integrated circuit technologies. Finally, experimental laser beam test techniques are presented, which are used to reproduce the dose rate and the single events. (J.S.)

  2. Use of pre-irradiated commercial MOSFETs in a power supply hardened to withstand gamma radiation

    International Nuclear Information System (INIS)

    Marceau, M.; Huillet, H.

    1999-01-01

    This paper describes the approach used to design a hardened power supply capable of operating to a total gamma irradiation dose of 10 kGy(Si). Pre-irradiation of power MOSFETs proved to be necessary, and the paper also discusses the effects of this treatment. (authors)

  3. Electron bombardment cross-linking of coating materials. Pt.2. Analysis of patent literature on formulating radiation-hardenable binders

    International Nuclear Information System (INIS)

    Mileo, J.-C.

    1976-01-01

    The process of drying paints and varnishes by electron irradiation is analyzed from the chemical standpoint. A review is made of the different methods of producing radiation hardenable resins that have resulted in abundant patent literature. These resins are classified according to the nature of the reactive unsaturations they contain: unsaturations of the maleic ester type; simple (meth)acrylic esters and amides; β-hydroxyl (meth)acrylic esters, their (un)saturated esters and other derivatives; siloxanes; maleimides; allylic unsaturations; saturated resins [fr

  4. Evaluation of the Leon3 soft-core processor within a Xilinx radiation-hardened field-programmable gate array.

    Energy Technology Data Exchange (ETDEWEB)

    Learn, Mark Walter

    2012-01-01

    The purpose of this document is to summarize the work done to evaluate the performance of the Leon3 soft-core processor in a radiation environment while instantiated in a radiation-hardened static random-access memory based field-programmable gate array. This evaluation will look at the differences between two soft-core processors: the open-source Leon3 core and the fault-tolerant Leon3 core. Radiation testing of these two cores was conducted at the Texas A&M University Cyclotron facility and Lawrence Berkeley National Laboratory. The results of these tests are included within the report along with designs intended to improve the mitigation of the open-source Leon3. The test setup used for evaluating both versions of the Leon3 is also included within this document.

  5. The use of microhardness tests to determine the radiation hardening of austenitic stainless steel; Zastosowanie pomiarow mikrotwardosci dla okreslenia umocnienia radiacyjnego stali austenitycznej napromienionej neutronami

    Energy Technology Data Exchange (ETDEWEB)

    Hofman, A.; Kochanski, T.; Malczyk, A.

    1994-12-31

    The use of microhardness technique to determine the radiation hardening has been studied. Microhardness measurements have been conducted on austenitic stainless steel OH18N1OT irradiated up to 2x10{sup 19} ncm{sup -2}. It was determined that the increase in microhardness varies directly with the measured increase in the 0.2% offset yield strength and has been found that microhardness technique may be an effective tool to measurements of radiation induced hardening. (author). 18 refs, 3 figs, 3 tabs.

  6. Evaluation on the Effect of Composition on Radiation Hardening and Embrittlement in Model FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Briggs, Samuel A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Edmondson, Philip [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hu, Xunxiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Littrell, Kenneth C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parish, Chad M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    This report details the findings of post-radiation mechanical testing and microstructural characterization performed on a series of model and commercial FeCrAl alloys to assist with the development of a cladding technology with enhanced accident tolerance. The samples investigated include model alloys with simple ferritic grain structure and two commercial alloys with minor solute additions. These samples were irradiated in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to nominal doses of 7.0 dpa near or at Light Water Reactor (LWR) relevant temperatures (300-400 C). Characterization included a suite of techniques including small angle neutron scattering (SANS), atom probe tomography (APT), and transmission based electron microscopy techniques. Mechanical testing included tensile tests at room temperature on sub-sized tensile specimens. The goal of this work was to conduct detailed characterization and mechanical testing to begin establishing empirical and/or theoretical structure-property relationships for radiation-induced hardening and embrittlement in the FeCrAl alloy class. Development of such relationships will provide insight on the performance of FeCrAl alloys in an irradiation environment and will enable further development of the alloy class for applications within a LWR environment. A particular focus was made on establishing trends, including composition and radiation dose. The report highlights in detail the pertinent findings based on this work. This report shows that radiation hardening in the alloys is primarily composition dependent due to the phase separation in the high-Cr FeCrAl alloys. Other radiation induced/enhanced microstructural features were less dependent on composition and when observed at low number densities, were not a significant contributor to the observed mechanical responses. Pre-existing microstructure in the alloys was found to be important, with grain boundaries and pre-existing dislocation

  7. Effect of Pigment Colouring on Physico-mechanical Properties of Hardened Cement Paste and Response of Colour Intensity to UV Radiation

    International Nuclear Information System (INIS)

    Khattab, M.M.; Abdel-Rahman, H.A.; Hassan, M.S.

    2010-01-01

    In this work, different ratios of pigment colour was mixed with cement paste during mixing. The pigment colour used was Phthalocyanine Green. The effect of pigment colouring on hardened cement paste (HCP) was characterized in terms of compressive strength, IR spectroscopic analysis and X-ray diffraction. In addition, the effect of UV radiation on the colour strength of hardened cement paste/pigment colour composites was investigated. The results indicated that the increase in the ratio of pigment colour was accompanied with a slight decrease in the values of compressive strength. The exposure of the coloured hardened cement paste to UV radiation for long lengths of time causes a little effect on the colour intensity

  8. Challenges in hardening technologies using shallow-trench isolation

    International Nuclear Information System (INIS)

    Shaneyfelt, M.R.; Dodd, P.E.; Draper, B.L.; Flores, R.S.

    1998-02-01

    Challenges related to radiation hardening CMOS technologies with shallow-trench isolation are explored. Results show that trench hardening can be more difficult than simply replacing the trench isolation oxide with a hardened field oxide

  9. Minimalist fault-tolerance techniques for mitigating single-event effects in non-radiation-hardened microcontrollers

    Science.gov (United States)

    Caldwell, Douglas Wyche

    Commercial microcontrollers--monolithic integrated circuits containing microprocessor, memory and various peripheral functions--such as are used in industrial, automotive and military applications, present spacecraft avionics system designers an appealing mix of higher performance and lower power together with faster system-development time and lower unit costs. However, these parts are not radiation-hardened for application in the space environment and Single-Event Effects (SEE) caused by high-energy, ionizing radiation present a significant challenge. Mitigating these effects with techniques which require minimal additional support logic, and thereby preserve the high functional density of these devices, can allow their benefits to be realized. This dissertation uses fault-tolerance to mitigate the transient errors and occasional latchups that non-hardened microcontrollers can experience in the space radiation environment. Space systems requirements and the historical use of fault-tolerant computers in spacecraft provide context. Space radiation and its effects in semiconductors define the fault environment. A reference architecture is presented which uses two or three microcontrollers with a combination of hardware and software voting techniques to mitigate SEE. A prototypical spacecraft function (an inertial measurement unit) is used to illustrate the techniques and to explore how real application requirements impact the fault-tolerance approach. Low-cost approaches which leverage features of existing commercial microcontrollers are analyzed. A high-speed serial bus is used for voting among redundant devices and a novel wire-OR output voting scheme exploits the bidirectional controls of I/O pins. A hardware testbed and prototype software were constructed to evaluate two- and three-processor configurations. Simulated Single-Event Upsets (SEUs) were injected at high rates and the response of the system monitored. The resulting statistics were used to evaluate

  10. Improved Design of Radiation Hardened, Wide-Temperature Analog and Mixed-Signal Electronics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA space exploration projects require avionic systems, components, and controllers that are capable of operating in the extreme temperature and radiation...

  11. Radiation hardening commercial off-the-shelf erbium doped fibers by optimal photo-annealing source

    Science.gov (United States)

    Peng, Tz-Shiuan; Liu, Ren-Young; Lin, Yen-Chih; Mao, Ming-Hua; Wang, Lon A.

    2017-09-01

    Erbium doped fibers (EDFs) based devices are widely employed in space for optical communication [1], remote sensing [2], and navigation applications, e.g. interferometric fiber optic gyroscope (IFOG). However, the EDF suffers severely radiation induced attenuation (RIA) in radiation environments, e.g. space applications and nuclear reactors [3].

  12. A radiation-hardened two transistor memory cell for monolithic active pixel sensors in STAR experiment

    International Nuclear Information System (INIS)

    Wei, X; Dorokhov, A; Hu, Y; Gao, D

    2011-01-01

    Radiation tolerance of Monolithic Active Pixel Sensors (MAPS) is dramatically decreased when intellectual property (IP) memories are integrated for fast readout application. This paper presents a new solution to improve radiation hardness and avoid latch-up for memory cell design. The tradeoffs among radiation tolerance, area and speed are significantly considered and analyzed. The cell designed in 0.35 μm process satisfies the radiation tolerance requirements of STAR experiment. The cell size is 4.55 x 5.45 μm 2 . This cell is smaller than the IP memory cell based on the same process and is only 26% of a radiation tolerant 6T SRAM cell used in previous contribution. The write access time of the cell is less than 2 ns, while the read access time is 80 ns.

  13. Using a novel spectroscopic reflectometer to optimize a radiation-hardened submicron silicon-on-sapphire CMOS process; Utilisation d'une nouvelle reflectometrie spectroscopique pour optimiser un procede de fabrication CMOS/SOS durci aux radiations

    Energy Technology Data Exchange (ETDEWEB)

    Do, N.T.; Zawaideh, E.; Vu, T.Q.; Warren, G.; Mead, D. [Raytheon Systems company, Microelectronics Div., Newport Beach, California (United States); Li, G.P.; Tsai, C.S. [California Univ., School of Engineering, Newport Beach, CA (United States)

    1999-07-01

    A radiation-hardened sub-micron silicon-on-sapphire CMOS process is monitored and optimized using a novel optical technique based on spectroscopic reflectometry. Quantitative measurements of the crystal quality, surface roughness, and device radiation hardness show excellent correlation between this technique and the Atomic Force Microscopy. (authors)

  14. Radiation hardening of InP solar cells for space applications

    International Nuclear Information System (INIS)

    Vilela, M. F.; Freundlich, A.; Monier, C.; Newman, F.; Aguilar, L.

    1998-01-01

    The aim of this work is to develop a radiation resistant thin InP-based solar cells for space applications on more mechanically resistant, lighter, and cheaper substrates. In this paper, we present the development of a p + /nn + InP-based solar cell structures with very thin emitter and base layers. A thin emitter helps to increase the collection of carriers generated by high energy incident photons from the solar spectrum. The use of a thin n base structure should improve the radiation resistance of this already radiation resistant technology. A remarkable improvement of high energy photons response is shown for InP solar cells with emitters 400 A thick

  15. Study of planar pixel sensors hardener to radiations for the upgrade of the ATLAS vertex detector

    International Nuclear Information System (INIS)

    Benoit, M.

    2011-05-01

    In this work, we present a study, using TCAD (Technology Computer-Assisted Design) simulation, of the possible methods of designing planar pixel sensors by reducing their inactive area and improving their radiation hardness for use in the Insertable B-Layer (IBL) project and for SLHC upgrade phase for the ATLAS experiment. Different physical models available have been studied to develop a coherent model of radiation damage in silicon that can be used to predict silicon pixel sensor behavior after exposure to radiation. The Multi-Guard Ring Structure, a protection structure used in pixel sensor design was studied to obtain guidelines for the reduction of inactive edges detrimental to detector operation while keeping a good sensor behavior through its lifetime in the ATLAS detector. A campaign of measurement of the sensor process parameters and electrical behavior to validate and calibrate the TCAD simulation models and results are also presented. A model for diode charge collection in highly irradiated environment was developed to explain the high charge collection observed in highly irradiated devices. A simple planar pixel sensor digitization model to be used in test beam and full detector system is detailed. It allows for easy comparison between experimental data and prediction by the various radiation damage models available. The digitizer has been validated using test beam data for unirradiated sensors and can be used to produce the first full scale simulation of the ATLAS detector with the IBL that include sensor effects such as slim edge and thinning of the sensor. (author)

  16. Radiation hardening in sol-gel derived Er3+-doped silica glasses

    International Nuclear Information System (INIS)

    Hari Babu, B.; León Pichel, Mónica; Ollier, Nadège; El Hamzaoui, Hicham; Bigot, Laurent; Savelii, Inna; Bouazaoui, Mohamed; Poumellec, Bertrand; Lancry, Matthieu; Ibarra, Angel

    2015-01-01

    The aim of the present paper is to report the effect of radiation on the Er 3+ -doped sol-gel silica glasses. A possible application of these sol-gel glasses could be their use in harsh radiation environments. The sol-gel glasses are fabricated by densification of erbium salt-soaked nanoporous silica xerogels through polymeric sol-gel technique. The radiation-induced attenuation of Er 3+ -doped sol-gel silica is found to increase with erbium content. Electron paramagnetic resonance studies reveal the presence of E′ δ point defects. This happens in the sol-gel aluminum-silica glass after an exposure to γ-rays (kGy) and in sol-gel silica glass after an exposure to electrons (MGy). The concentration levels of these point defects are much lower in γ-ray irradiated sol-gel silica glasses. When the samples are co-doped with Al, the exposure to γ-ray radiation causes a possible reduction of the erbium valence from Er 3+ to Er 2+ ions. This process occurs in association with the formation of aluminum oxygen hole centers and different intrinsic point defects

  17. Radiation-hardened MRAM-based LUT for non-volatile FPGA soft error mitigation with multi-node upset tolerance

    Science.gov (United States)

    Zand, Ramtin; DeMara, Ronald F.

    2017-12-01

    In this paper, we have developed a radiation-hardened non-volatile lookup table (LUT) circuit utilizing spin Hall effect (SHE)-magnetic random access memory (MRAM) devices. The design is motivated by modeling the effect of radiation particles striking hybrid complementary metal oxide semiconductor/spin based circuits, and the resistive behavior of SHE-MRAM devices via established and precise physics equations. The models developed are leveraged in the SPICE circuit simulator to verify the functionality of the proposed design. The proposed hardening technique is based on using feedback transistors, as well as increasing the radiation capacity of the sensitive nodes. Simulation results show that our proposed LUT circuit can achieve multiple node upset (MNU) tolerance with more than 38% and 60% power-delay product improvement as well as 26% and 50% reduction in device count compared to the previous energy-efficient radiation-hardened LUT designs. Finally, we have performed a process variation analysis showing that the MNU immunity of our proposed circuit is realized at the cost of increased susceptibility to transistor and MRAM variations compared to an unprotected LUT design.

  18. Radiation hardening of sol gel-derived silica fiber preforms through fictive temperature reduction.

    Science.gov (United States)

    Hari Babu, B; Lancry, Matthieu; Ollier, Nadege; El Hamzaoui, Hicham; Bouazaoui, Mohamed; Poumellec, Bertrand

    2016-09-20

    The impact of fictive temperature (Tf) on the evolution of point defects and optical attenuation in non-doped and Er3+-doped sol-gel silica glasses was studied and compared to Suprasil F300 and Infrasil 301 glasses before and after γ-irradiation. To this aim, sol-gel optical fiber preforms have been fabricated by the densification of erbium salt-soaked nanoporous silica xerogels through the polymeric sol-gel technique. These γ-irradiated fiber preforms have been characterized by FTIR, UV-vis-NIR absorption spectroscopy, electron paramagnetic resonance, and photoluminescence measurements. We showed that a decrease in the glass fictive temperature leads to a decrease in the glass disorder and strained bonds. This mainly results in a lower defect generation rate and thus less radiation-induced attenuation in the UV-vis range. Furthermore, it was found that γ-radiation "hardness" is higher in Er3+-doped sol-gel silica compared to un-doped sol-gel silica and standard synthetic silica glasses. The present work demonstrates an effective strategy to improve the radiation resistance of optical fiber preforms and glasses through glass fictive temperature reduction.

  19. Radiation-hardened optical amplifier based on multicore fiber for telecommunication satellites

    Science.gov (United States)

    Filipowicz, M.; Napierała, M.; Murawski, M.; Ostrowski, L.; Szostkiewicz, L.; Mergo, P.; Kechagias, M.; Farzana, J.; Stampoulidis, L.; Kehayas, E.; Crabb, J.; Nasilowski, T.

    2017-10-01

    Our research results concerning a space-dedicated C-band optical amplifier for application in telecommunication satellites are presented in this article. The device is based on a 7-core microstructured fiber where independent access to each core is granted by an all fiber fan-in/ fan-out coupler. The amplifier properties are described as well as its performance after irradiation to a maximal dose of 100 kRad. Also the difference between two kinds of fiber material compositions is discussed with regard to radiation resistance.

  20. Operating characteristics of radiation-hardened silicon pixel detectors for the CMS experiment

    CERN Document Server

    Hyosung, Cho

    2002-01-01

    The Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) will have forward silicon pixel detectors as its innermost tracking device. The pixel devices will be exposed to the harsh radiation environment of the LHC. Prototype silicon pixel detectors have been designed to meet the specification of the CMS experiment. No guard ring is required on the n/sup +/ side, and guard rings on the p/sup +/ side are always kept active before and after type inversion. The whole n/sup +/ side is grounded and connected to readout chips, which greatly simplifies detector assembling and improves the stability of bump-bonded readout chips on the n/sup +/ side. Operating characteristics such as the leakage current, the full depletion voltage, and the potential distributions over guard rings were tested using standard techniques. The tests are discussed in this paper. (9 refs).

  1. Design concept for radiation hardening of low power and low voltage dynamic memories

    International Nuclear Information System (INIS)

    Schleifer, H.; Ropp, T.V.D.; Reczek, W.

    1995-01-01

    A radiation hard low power, low voltage dynamic memory is obtained by the use of a dummy cell concept. Compared to conventional dummy cell concepts, this concept applies a fully sized dummy cell. By optimizing the dummy cell precharge voltage for 5 V and 3 V operation and the timing of the dummy word-line, the overall soft error rate (SER) of the chip is improved by 2 orders of magnitude. An additional improvement of 1 order of magnitude is possible for 3 V operation by adjusting substrate bias and cell plate voltage. The results are verified by an accelerated SER measurement with a radium 226 source and an additional field soft error study

  2. The development of radiation hardened robot for nuclear facility - Development of embedded controller for hydraulic robot

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Kook; Kim, Jae Kwon [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    2000-04-01

    We designed and implemented a reliable hierarchical control system for hydraulic robots for nuclear power plant maintenance. In hazardous environments such as nuclear power plants, robot systems or automated equipment should be used instead of human being for maintenance and repair. Such robot should guarantee high reliability in hazardous environments such as high radiation or high temperature. The overall system is composed of three hierarchical subsystems: i) supervisory controller in safe zone for operator interaction with monitoring and commanding and graphic user interface, ii) master controller in semi-hazardous zone for control function, and iii) slave controller in hazardous zone for sensing and actuation. These subsystems are connected with suitable communication channels: a) master-slave communication channel implemented with CAN (Control Area Network) and b) supervisory-master communication with Ethernet. The master and the slave controllers construct a feedback closed-loop control system. In order to improve reliability, the slave controller is duplicated using cold-standby scheme, and master-slave communication channel is also duplicated. The overall system is implemented harmonically, and we obtained fast control interval of 1msec, which is sufficient for high-performance real-time control. 12 refs., 58 figs., 13 tabs. (Author)

  3. Radiation hardening: study of production velocity and post-irradiation recovery of defect clusters produced by neutron irradiation at 77 K

    International Nuclear Information System (INIS)

    Gonzalez, Hector C.; Miralles, Monica T.

    1999-01-01

    This work includes three basic studies using radiation hardening of Cu single crystals irradiated at 77 K in the RA-1-reactor of CNEA: 1) The initial of a production curve of defect clusters originated during radiation until 5.2 x 10 20 n m 2 . The shape of the curve is compared with those obtained from measurement of resistivity increased (Δρ) with neutronic doses (φt) and the acceptance of the linear dependency of Δρ with Frenkel Pairs concentration (PFs); 2) The isochronal hardening recovery in the temperature interval of stage V (T > 450 K). The existence of the sub-stages Vb (∼ 550 K) and Vc (∼ 587 K), determined for the first time from hardening measurements, are shown and compared with results obtained by other techniques; 3) Isothermal recoveries performed in the temperature interval of the sub-stage Vc to determine phenomenologically the apparent activation energy of the sub-stage. The value obtained was in agreement with the energy for Cu vacancies auto diffusion. (author)

  4. A hardenability test proposal

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, N.V.S.N. [Ingersoll-Rand (I) Ltd., Bangalore (India)

    1996-12-31

    A new approach for hardenability evaluation and its application to heat treatable steels will be discussed. This will include an overview and deficiencies of the current methods and discussion on the necessity for a new approach. Hardenability terminology will be expanded to avoid ambiguity and over-simplification as encountered with the current system. A new hardenability definition is proposed. Hardenability specification methods are simplified and rationalized. The new hardenability evaluation system proposed here utilizes a test specimen with varying diameter as an alternative to the cylindrical Jominy hardenability test specimen and is readily applicable to the evaluation of a wide variety of steels with different cross-section sizes.

  5. Hardening Azure applications

    CERN Document Server

    Gaurav, Suraj

    2015-01-01

    Learn what it takes to build large scale, mission critical applications -hardened applications- on the Azure cloud platform. This 208 page book covers the techniques and engineering principles that every architect and developer needs to know to harden their Azure/.NET applications to ensure maximum reliability and high availability when deployed at scale. While the techniques are implemented in .NET and optimized for Azure, the principles here will also be valuable for users of other cloud-based development platforms. Applications come in a variety of forms, from simple apps that can be bui

  6. Concrete, hardened: Self desiccation

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Hansen, Kurt Kielsgaard; Persson, Bertil

    1999-01-01

    The test method covers the determination of internal relative humidity (RH) in hardened concrete and cement mortar using RH instruments. The determination of RH is done on crushed samples of concrete or cement motar. This test method is only for measuring equipment which gives off or takes up...

  7. Why semiconductors must be hardened when used in space

    International Nuclear Information System (INIS)

    Winokur, P.S.

    2000-01-01

    The natural space radiation environment presents a great challenge to present and future satellite systems with significant assets in space. Defining requirements for such systems demands knowledge about the space radiation environment and its effects on electronics and optoelectronics technologies, as well as suitable risk assessment of the uncertainties involved. For mission of high radiation levels, radiation-hardened integrated circuits will be required to preform critical mission functions. The most successful systems in space will be those that are best able to blend standard commercial electronics with custom radiation-hardened electronics in a mix that is suitable for the system of interest

  8. LDRD Final Report - Investigations of the impact of the process integration of deposited magnetic films for magnetic memory technologies on radiation hardened CMOS devices and circuits - LDRD Project (FY99)

    International Nuclear Information System (INIS)

    Myers, David R.; Jessing, Jeffrey R.; Spahn, Olga B.; Shaneyfelt, Marty R.

    2000-01-01

    This project represented a coordinated LLNL-SNL collaboration to investigate the feasibility of developing radiation-hardened magnetic non-volatile memories using giant magnetoresistance (GMR) materials. The intent of this limited-duration study was to investigate whether giant magnetoresistance (GMR) materials similar to those used for magnetic tunnel junctions (MTJs) were process compatible with functioning CMOS circuits. Sandia's work on this project demonstrated that deposition of GMR materials did not affect the operation nor the radiation hardness of Sandia's rad-hard CMOS technology, nor did the integration of GMR materials and exposure to ionizing radiation affect the magnetic properties of the GMR films. Thus, following deposition of GMR films on rad-hard integrated circuits, both the circuits and the films survived ionizing radiation levels consistent with DOE mission requirements. Furthermore, Sandia developed techniques to pattern deposited GMR films without degrading the completed integrated circuits upon which they were deposited. The present feasibility study demonstrated all the necessary processing elements to allow fabrication of the non-volatile memory elements onto an existing CMOS chip, and even allow the use of embedded (on-chip) non-volatile memories for system-on-a-chip applications, even in demanding radiation environments. However, funding agencies DTRA, AIM, and DARPA did not have any funds available to support the required follow-on technology development projects that would have been required to develop functioning prototype circuits, nor were such funds available from LDRD nor from other DOE program funds

  9. Grind hardening process

    CERN Document Server

    Salonitis, Konstantinos

    2015-01-01

    This book presents the grind-hardening process and the main studies published since it was introduced in 1990s.  The modelling of the various aspects of the process, such as the process forces, temperature profile developed, hardness profiles, residual stresses etc. are described in detail. The book is of interest to the research community working with mathematical modeling and optimization of manufacturing processes.

  10. Radiation hardening lacquer binding agent based on a polyester resin with at least 3.5 double links pr. 1000 molecular weight units

    International Nuclear Information System (INIS)

    Crimlisk, D.J.; Wright, A.; Groves, T.E.

    1976-01-01

    The binding agent is suitable for hardening by electrons with an energy of between 100,000 and 500,000eV. It consists mainly of a solution of a polyester resin with at least 3.5 double links per 1000 mol, in an olefine-unsaturated monomer. The molecular weight of the polyester is between 800 and 1100 and the ratio of the number of double links in the monomer to that in the resin (degree of unsaturation) is in the range 0.75-2.0, or more specifically, between 1 and 1.5. Cellulose acetate/butyrate (CAB) and/or a butylated melamine/formaldehyde resin may be added to improve the surface properties. Likewise from 0.1 to 0.5% polyethylene wax may be added to give a better surface finish and hardness. (JIW)

  11. DMILL circuits. The hardened electronics decuples its performances

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Thanks to the DMILL (mixed logic-linear hardening) technology under development at the CEA, MHS, a French company specialized in the fabrication of integrated circuits now produces hardened electronic circuits ten times more resistant to radiations than its competitors. Outside the initial market (several thousands of circuits for the LHC particle accelerator of Geneva), a broad choice of applications is opened to this technology: national defense, space, civil nuclear and medical engineering, and high temperature applications. Short paper. (J.S.)

  12. Practical aspects of systems hardening

    International Nuclear Information System (INIS)

    Shepherd, W.J.

    1989-01-01

    Applications of hardening technology in a practical system require a balance between the factors governing affordability, producibility, and survivability of the finished design. Without careful consideration of the top-level system operating constraints, a design engineer may find himself with a survivable but overweight, unproductive, expensive design. This paper explores some lessons learned in applying hardening techniques to several laser communications programs and is intended as an introductory guide to novice designers faced with the task of hardening a space system

  13. Nuclear effects hardened shelters

    International Nuclear Information System (INIS)

    Lindke, P.

    1990-01-01

    This paper reports on the Houston Fearless 76 Government Projects Group that has been actively engaged for more than twenty-five years as a sub-contractor and currently as a prime contractor in the design, manufacture, repair and logistics support of custom mobile ground stations and their equipment accommodations. Other associated products include environmental control units (ECU's), mobilizers for shelters and a variety of mobile power generation units (MPU's). Since 1984, Houston Fearless 76 has designed and manufactured four 8 foot by 8 foot x 22 foot nuclear hardened mobile shelters. These shelters were designed to contain electronic data processing/reduction equipment. One shelter is currently being operated by the Air Force as a Defense Intelligence Agency (DIA) approved and certified Special Compartmented Information Facility (SCIF). During the development and manufacturing process of the shelters, we received continual technical assistance and design concept evaluations from Science Applications International Corporation (SAIC) Operations Analysis and Logistics Engineering Division and the Nondestructive Inspection Lab at McClellan AFB. SAIC was originally employed by the Air Force to design the nuclear hardening specifications applied to these shelters

  14. LDRD Final Report - Investigations of the impact of the process integration of deposited magnetic films for magnetic memory technologies on radiation-hardened CMOS devices and circuits - LDRD Project (FY99)

    Energy Technology Data Exchange (ETDEWEB)

    MYERS,DAVID R.; JESSING,JEFFREY R.; SPAHN,OLGA B.; SHANEYFELT,MARTY R.

    2000-01-01

    This project represented a coordinated LLNL-SNL collaboration to investigate the feasibility of developing radiation-hardened magnetic non-volatile memories using giant magnetoresistance (GMR) materials. The intent of this limited-duration study was to investigate whether giant magnetoresistance (GMR) materials similar to those used for magnetic tunnel junctions (MTJs) were process compatible with functioning CMOS circuits. Sandia's work on this project demonstrated that deposition of GMR materials did not affect the operation nor the radiation hardness of Sandia's rad-hard CMOS technology, nor did the integration of GMR materials and exposure to ionizing radiation affect the magnetic properties of the GMR films. Thus, following deposition of GMR films on rad-hard integrated circuits, both the circuits and the films survived ionizing radiation levels consistent with DOE mission requirements. Furthermore, Sandia developed techniques to pattern deposited GMR films without degrading the completed integrated circuits upon which they were deposited. The present feasibility study demonstrated all the necessary processing elements to allow fabrication of the non-volatile memory elements onto an existing CMOS chip, and even allow the use of embedded (on-chip) non-volatile memories for system-on-a-chip applications, even in demanding radiation environments. However, funding agencies DTRA, AIM, and DARPA did not have any funds available to support the required follow-on technology development projects that would have been required to develop functioning prototype circuits, nor were such funds available from LDRD nor from other DOE program funds.

  15. Mechanism of degradation of surface hardening at elevated temperature in TiAlV-alloys by in situ synchrotron radiation diffraction

    CERN Document Server

    Berberich, F; Kreissig, U; Schell, N; Mücklich, A

    2003-01-01

    The surface hardness of the technically important alloy Ti-6Al-4V (wt.%) can be improved by nitrogen implantation. The structural mechanisms of hardening and of the stability of the improved hardness at elevated temperatures are studied. Ion implanted (II) and plasma immersion ion implanted (PII) samples were used. The formation of small TiN crystallites was detected in the as-implanted state, but only for the II samples a considerable surface hardness increase (factor 3) is observed. The in situ XRD experiments showed, that the TiN phase is stable up to temperatures of 650 deg. C for both types of implantation. At higher temperature Ti sub 2 N is formed which is stable up to 770 deg. C. ERDA results indicate a diffusion of nitrogen into the bulk material. The redistribution of N is responsible for the hardness changes: a slight decrease for II samples but an improvement by a factor of 2.5 for PII samples. The improvements/degradations of hardness and wear are discussed in correlation with the nitrogen depth ...

  16. Radiation-Hardening of Best-In-Class SiGe Mixed-Signal and RF Electronics for Ultra-Wide Temperature Range, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative, reliable, low-power, and low-noise electronics that can operate over a wide temperature range and high radiation are critical for future NASA missions....

  17. Enhancing Tele-robotics with Immersive Virtual Reality

    Science.gov (United States)

    2017-11-03

    The spheres displayed in the virtual environment represent the real-world readings from the robot in real-time from its LRF and sonar sensors. In...Inc., is comprised of an advanced graphics rendering engine, sound engine, and physics and animation engines. This game engine is capable of delivering

  18. SRT project: tele-robotics maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    Gomez-Santamaria, J.; Calleja, J.M.; Carmena, P.; Avello, A.; Rubio, Y.A.

    2001-01-01

    The main aim of the SRT project was to develop a family of robots to help in the operation of nuclear power plants. Four robotic systems were developed and this paper focuses on three of them: ANAES -a steam leak detector through noise analysis-, MALIBA -a master-slave tele-operation system with force feedback- and ROBICEN -a compact pneumatic wall climbing robot-. ANAES (the Spanish acronym of spectrum analysis) consists of a set of sensor heads attached to a computer. Each head has two microphones and a video camera installed on it, and a DC motor that rotates the head. The heads are shielded with lead and boron steel, especially near the video camera. The noise generated by the plant is recorded every day at the same time and the software compares the recorded noise with the mean values of past records. The system can discern whether the noise has remarkably changed and, through phase analysis of the sound recorded by both microphones, identifies the direction of arrival (DOA) of the new noise, probably a steam leak. Using several heads, the new noise source can be identified. The video camera can be used to ease the location of the steam leaks. The stationariness of the measured noise has been tested in C.N. Cofrentes -a Spanish BWR-6 reactor-. A finished system with six heads has recently been installed in the MSR (moisture separator reheater) of the same plant. MALIBA is a master-slave tele-operated system with force feedback. It consists of two robots: a Stewart platform used as master robot and an open chain robot used as slave. The slave robot follows faithfully the movements of the master, and the master robot can reflect a force proportional to the force exerted by the slave on the environment. Three tools have been developed for the slave robot: a robot hand that includes a small video camera, a pneumatic drill and a rectifier. The results obtained have shown its effectiveness for the designed operations. ROBICEN is a lightweight pneumatic robot weighting 3 kg designed for the inspection of rad waste cylindrical tanks. The design is very compact (its length is 215 mm). (authors)

  19. SRT project: tele-robotics maintenance of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Santamaria, J. [Iberdrola SA, Madrid (Spain); Calleja, J.M.; Carmena, P. [Endesa, Madrid (Spain); Avello, A.; Rubio, Y.A. [CEIT-Centro de Estudias e Investigaciones Tecnicas de Guipuzcoa, San Sebastian (Spain)

    2001-07-01

    The main aim of the SRT project was to develop a family of robots to help in the operation of nuclear power plants. Four robotic systems were developed and this paper focuses on three of them: ANAES -a steam leak detector through noise analysis-, MALIBA -a master-slave tele-operation system with force feedback- and ROBICEN -a compact pneumatic wall climbing robot-. ANAES (the Spanish acronym of spectrum analysis) consists of a set of sensor heads attached to a computer. Each head has two microphones and a video camera installed on it, and a DC motor that rotates the head. The heads are shielded with lead and boron steel, especially near the video camera. The noise generated by the plant is recorded every day at the same time and the software compares the recorded noise with the mean values of past records. The system can discern whether the noise has remarkably changed and, through phase analysis of the sound recorded by both microphones, identifies the direction of arrival (DOA) of the new noise, probably a steam leak. Using several heads, the new noise source can be identified. The video camera can be used to ease the location of the steam leaks. The stationariness of the measured noise has been tested in C.N. Cofrentes -a Spanish BWR-6 reactor-. A finished system with six heads has recently been installed in the MSR (moisture separator reheater) of the same plant. MALIBA is a master-slave tele-operated system with force feedback. It consists of two robots: a Stewart platform used as master robot and an open chain robot used as slave. The slave robot follows faithfully the movements of the master, and the master robot can reflect a force proportional to the force exerted by the slave on the environment. Three tools have been developed for the slave robot: a robot hand that includes a small video camera, a pneumatic drill and a rectifier. The results obtained have shown its effectiveness for the designed operations. ROBICEN is a lightweight pneumatic robot weighting 3 kg designed for the inspection of rad waste cylindrical tanks. The design is very compact (its length is 215 mm). (authors)

  20. Coating compositions hardenable by ionization beams

    International Nuclear Information System (INIS)

    Chaudhari, D.; Haering, E.; Dobbelstein, A.; Hoselmann, W.

    1976-01-01

    Coating compositions hardenable by ionizing radiation are described which contain as binding agents a mixture of at least 1 unsaturated olefin compound containing urethane groups, and at least 1 further unsaturated olefin compound that may be copolymerized. The unsaturated olefin compound containing the urethane groups is a reaction product of a compound containing carboxylic acid groups and a compound containing at least 1 isocyanate group where the mixture of the two olefins may contain conventional additives of the lacquer industry. 6 claims, no drawings

  1. Harwell hardens Staeubli Puma

    International Nuclear Information System (INIS)

    Watson, C.J.H.

    1992-01-01

    The Remote Handling and Robotics Department at Harwell, has argued that it ought to be possible to combine all the advantages of the industrial robot - its off-the-shelf availability, low cost and high reliability - with the specific requirements of the nuclear industry, by subjecting an industrial robot to a programme of ''nuclear engineering''. After a careful evaluation, they selected the Staubli Unimation Puma 760 robot as the first candidate for this programme. Three years, and several Pound 100,000s later, they have launched on the market the world's first Nuclear Engineered Advanced Telerobot, or NEATER, as it is called. The device is manufactured by Staubli Unimation, to the same mechanical and QA standards as a standard PUMA, but with all the non-metallic components replaced by radiation tolerant materials. These were chosen by Harwell, after extensive radiation testing and design work, to ensure that the whole robot can tolerate up to 100 MRads - i.e. the highest radiation dose that a robot is likely to experience in a normal nuclear facility. It is controlled, like a normal PUMA, by a VAL 2 industrial robot controller, but this is ''front-ended'' by the Harwell Telerobotic Controller, a PC-based controller, which takes human commands from mechanical ''Input Device'' and translates these into VAL commands, which can then be interpreted by the VAL 2 controller in the normal way. (Author)

  2. DEVELOPMENT AND RESEARCH OF ULTRASONIC OSCILLATORY SYSTEM FOR HARDENING OF SPRING PLATE BILLETS

    Directory of Open Access Journals (Sweden)

    V. A. Tomilo

    2015-01-01

    Full Text Available Various schemes of ultrasonic oscillatory system are developed: with a «force nonsensitive» support, with a «force sensitive» support, with the deforming steel balls in bulk. Results of the ultrasonic treatment showed that hardening of a surface of the samples took place when the vibration amplitude of a radiator exceeds a certain level. The level of hardening increases with increase in amplitude of fluctuations of a radiator. Higher level of hardening is registered when the surface is treated by steel balls.

  3. Transient hardened power FETs

    International Nuclear Information System (INIS)

    Dawes, W.R. Jr.; Fischer, T.A.; Huang, C.C.C.; Meyer, W.J.; Smith, C.S.; Blanchard, R.A.; Fortier, T.J.

    1986-01-01

    N-channel power FETs offer significant advantages in power conditioning circuits. Similiarily to all MOS technologies, power FET devices are vulnerable to ionizing radiation, and are particularily susceptible to burn-out in high dose rate irradiations (>1E10 rads(Si)/sec.), which precludes their use in many military environments. This paper will summarize the physical mechanisms responsible for burn-out, and discuss various fabrication techniques designed to improve the transient hardness of power FETs. Power FET devices were fabricated with several of these techniques, and data will be presented which demonstrates that transient hardness levels in excess of 1E12 rads(Si)/sec. are easily achievable

  4. Influence of Hardening Model on Weld Residual Stress Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, Jonathan; Gunnars, Jens (Inspecta Technology AB, Stockholm (Sweden))

    2009-06-15

    This study is the third stage of a project sponsored by the Swedish Radiation Safety Authority (SSM) to improve the weld residual stress modelling procedures currently used in Sweden. The aim of this study was to determine which material hardening model gave the best agreement with experimentally measured weld residual stress distributions. Two girth weld geometries were considered: 19mm and 65mm thick girth welds with Rin/t ratios of 10.5 and 2.8, respectively. The FE solver ABAQUS Standard v6.5 was used for analysis. As a preliminary step some improvements were made to the welding simulation procedure used in part one of the project. First, monotonic stress strain curves and a mixed isotropic/kinematic hardening model were sourced from the literature for 316 stainless steel. Second, more detailed information was obtained regarding the geometry and welding sequence for the Case 1 weld (compared with phase 1 of this project). Following the preliminary step, welding simulations were conducted using isotropic, kinematic and mixed hardening models. The isotropic hardening model gave the best overall agreement with experimental measurements; it is therefore recommended for future use in welding simulations. The mixed hardening model gave good agreement for predictions of the hoop stress but tended to under estimate the magnitude of the axial stress. It must be noted that two different sources of data were used for the isotropic and mixed models in this study and this may have contributed to the discrepancy in predictions. When defining a mixed hardening model it is difficult to delineate the relative contributions of isotropic and kinematic hardening and for the model used it may be that a greater isotropic hardening component should have been specified. The kinematic hardening model consistently underestimated the magnitude of both the axial and hoop stress and is not recommended for use. Two sensitivity studies were also conducted. In the first the effect of using a

  5. Influence of Hardening Model on Weld Residual Stress Distribution

    International Nuclear Information System (INIS)

    Mullins, Jonathan; Gunnars, Jens

    2009-06-01

    This study is the third stage of a project sponsored by the Swedish Radiation Safety Authority (SSM) to improve the weld residual stress modelling procedures currently used in Sweden. The aim of this study was to determine which material hardening model gave the best agreement with experimentally measured weld residual stress distributions. Two girth weld geometries were considered: 19mm and 65mm thick girth welds with Rin/t ratios of 10.5 and 2.8, respectively. The FE solver ABAQUS Standard v6.5 was used for analysis. As a preliminary step some improvements were made to the welding simulation procedure used in part one of the project. First, monotonic stress strain curves and a mixed isotropic/kinematic hardening model were sourced from the literature for 316 stainless steel. Second, more detailed information was obtained regarding the geometry and welding sequence for the Case 1 weld (compared with phase 1 of this project). Following the preliminary step, welding simulations were conducted using isotropic, kinematic and mixed hardening models. The isotropic hardening model gave the best overall agreement with experimental measurements; it is therefore recommended for future use in welding simulations. The mixed hardening model gave good agreement for predictions of the hoop stress but tended to under estimate the magnitude of the axial stress. It must be noted that two different sources of data were used for the isotropic and mixed models in this study and this may have contributed to the discrepancy in predictions. When defining a mixed hardening model it is difficult to delineate the relative contributions of isotropic and kinematic hardening and for the model used it may be that a greater isotropic hardening component should have been specified. The kinematic hardening model consistently underestimated the magnitude of both the axial and hoop stress and is not recommended for use. Two sensitivity studies were also conducted. In the first the effect of using a

  6. Working hardening modelization in zirconium alloys

    International Nuclear Information System (INIS)

    Sanchez, P.; Pochettino, Alberto A.

    1999-01-01

    Working hardening effects on mechanical properties and crystallographic textures formation in Zr-based alloys are studied. The hardening mechanisms for different grain deformations and topological conditions of simple crystal yield are considered. Results obtained show that the differences in the cold rolling textures (L and T textures) can be related with hardening microstructural parameters. (author)

  7. Radiation-hardened microwave communications system

    Science.gov (United States)

    Smith, S. F.; Bible, D. W.; Crutcher, R. I.; Hannah, J. H.; Moore, J. A.; Nowlin, C. H.; Vandermolen, R. I.; Chagnot, D.; Leroy, A.

    1993-03-01

    To develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory (ORNL). Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe radio-frequency (RF) multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced microwave signal transmission system configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high baud-rate digital data links at total gamma dose tolerance levels exceeding 10(exp 7) rads and at elevated ambient temperatures.

  8. Radiation-hardened microwave communications system

    International Nuclear Information System (INIS)

    Smith, S.F.; Bible, D.W.; Crutcher, R.I.; Hannah, J.H.; Moore, J.A.; Nowlin, C.H.; Vandermolen, R.I.; Chagnot, D.; LeRoy, A.

    1993-01-01

    To develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory (ORNL). Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe radio-frequency (RF) multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced microwave signal transmission system configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high baud-rate digital data links at total gamma dose tolerance levels exceeding 10 7 rads and at elevated ambient temperatures

  9. Solution hardening and strain hardening at elevated temperatures

    International Nuclear Information System (INIS)

    Kocks, U.F.

    1982-10-01

    Solutes can significantly increase the rate of strain hardening; as a consequence, the saturation stress, at which strain hardening tends to cease for a given temperature and strain rate, is increased more than the yield stress: this is the major effect of solutes on strength at elevated temperatures, especially in the regime where dynamic strain-aging occurs. It is shown that local solute mobility can affect both the rate of dynamic recovery and the dislocation/dislocation interaction strength. The latter effect leads to multiplicative solution strengthening. It is explained by a new model based on repeated dislocation unlocking, in a high-temperature limit, which also rationalizes the stress dependence of static and dynamic strain-aging, and may help explain the plateau of the yield stress at elevated temperatures. 15 figures

  10. Coating compositions hardenable by ionization beams

    International Nuclear Information System (INIS)

    Chaudhari, D.; Haering, E.; Dobbelstein, A.; Hoselmann, W.

    1976-01-01

    Coating compositions hardenable by ionizing radiation comprise as binding agents a mixture of A. at least 1 unsaturated olefin compound containing urethane groups, and B. at least 1 further unsaturated olefin compound that may be copolymerized. The unsaturated olefin compound A. containing the urethane groups in a reaction product of (a) a compound of the general formula (CHR 1 = CR 2 COOCH 2 CH(OH)CH 2 O CO-)/sub n/R where n is 1 or 2, where R stands for a straight chain or branched alkyl group of valence n, where R 1 is hydrogen, methyl; or the group -COOCH 2 CH(OH)CH 2 OCOR 3 - where R 3 is a monovalent alkyl residue and where R 2 is hydrogen or methyl, and (b) a compound containing at least 1 isocyanate group where the mixture of (A) and (B) may contain conventional additives of the lacquer industry. 6 claims

  11. Superheat effect on bainite steel hardenability

    International Nuclear Information System (INIS)

    Kubachek, V.V.; Sklyuev, P.V.

    1978-01-01

    The bainite hardenability of 34KhN1M and 35 KhN1M2Ph steels has been investigated by the end-face hardening technique. It is established that, as the temperature of austenitization rises from 900 to 1280 deg C, the temperature of bainite transformation increases and bainite hardenability of the steels falls off. A repeated slow heating to 900 deg C of previously overheated 34KhN1M steel breaks up grain, lowers the temperature of the bainite transformation and raises the hardenability to values obtained with ordinary hardening from 900 deg C. A similar heating of previously overheated 35KhN1M2Ph steel is accompanied by restoration of initial coarse grains and maintenance of both the elevated bainite transformation temperature and to lower hardenability corresponding to hardening from the temperature of previous overheating

  12. A non-linear kinematic hardening function

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1977-05-01

    Based on the classical theory of plasticity, and accepting the von Mises criterion as the initial yield criterion, a non-linear kinematic hardening function applicable both to Melan-Prager's and to Ziegler's hardening rule is proposed. This non-linear hardening function is determined by means of the uniaxial stress-strain curve, and any such curve is applicable. The proposed hardening function considers the problem of general reversed loading, and a smooth change in the behaviour from one plastic state to another nearlying plastic state is obtained. A review of both the kinematic hardening theory and the corresponding non-linear hardening assumptions is given, and it is shown that material behaviour is identical whether Melan-Prager's or Ziegler's hardening rule is applied, provided that the von Mises yield criterion is adopted. (author)

  13. Scintillation-Hardened GPS Receiver

    Science.gov (United States)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  14. Energetic model of metal hardening

    Directory of Open Access Journals (Sweden)

    Ignatova O.N.

    2011-01-01

    Full Text Available Based on Bailey hypothesis on the link between strain hardening and elastic lattice defect energy this paper suggests a shear strength energetic model that takes into consideration plastic strain intensity and rate as well as softening related to temperature annealing and dislocation annihilation. Metal strain hardening was demonstrated to be determined only by elastic strain energy related to the energy of accumulated defects. It is anticipated that accumulation of the elastic energy of defects is governed by plastic work. The suggested model has a reasonable agreement with the available experimental data for copper up to P = 70 GPa , for aluminum up to P = 10 GPa and for tantalum up to P = 20 GPa.

  15. Design Methodologies and to Combat Radiation Induced Corruption in FPGAs and SoCs, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Traditional radiation hardened by process (RHBP) and radiation hardened by design (RHBD) techniques have seen success in mitigating the effects of radiation induced...

  16. Study of a design criterion for 316L irradiated represented by a strain hardened material

    International Nuclear Information System (INIS)

    Gouin, H.

    1999-01-01

    The aim of this study is to analyse the consequence of radiation on different structure submitted to imposed displacement loading and for damages due to plastic instability or rupture. The main consequence of radiation is a material hardening with a ductility decrease. This effect is similar to initial mechanical hardening: the mechanical properties (determined on smooth tensile specimen) evolve in the same way while irradiation or mechanical hardening increase. So in this study, radiation hardening is simulated by mechanical hardening (swaging). Tests were carried out for which two damages were considered: plastic instability and rupture. These two damages were studied with initial mechanical hardening (5 tested hammering rate 0, 15, 25, 35 and 45% on 316L stainless steel). Likewise two types of loading were studied: tensile or bending loading on specimens with or without geometrical singularities (notches). From tensile tests, two deformation criteria are proposed for prevention against the two quoted damages. Numerical study is carried out allowing to confirm hypothesis made at the time of the tensile test result interpretation and to validate the rupture criterion by applying on bending test. (author)

  17. Induction Hardening of External Gear

    Science.gov (United States)

    Bukanin, V. A.; Ivanov, A. N.; Zenkov, A. E.; Vologdin, V. V.; Vologdin, V. V., Jr.

    2018-03-01

    Problems and solution of gear induction hardening are described. Main attention is paid to the parameters of heating and cooling systems. ELTA 7.0 program has been used to obtain the required electrical parameters of inductor, power sources, resonant circuits, as well as to choose the quenching media. Comparison of experimental and calculated results of investigation is provided. In order to compare advantages and disadvantages of single- and dual-frequency heating processes, many variants of these technologies were simulated. The predicted structure and hardness of steel gears are obtained by use of the ELTA data base taken into account the Continuous Cooling Transformation diagrams.

  18. Optimization of resistively hardened latches

    International Nuclear Information System (INIS)

    Gagne, G.; Savaria, Y.

    1990-01-01

    The design of digital circuits tolerant to single-event upsets is considered. The results of a study are presented on which an analytical model was used to predict the behavior of a standard resistively hardened latch. It is shown that a worst case analysis for all possible single-event upset situations (on the latch or in the logic) can be derived from studying the effects of a transient disturbed write cycle. The existence of an intrinsic minimum write period to tolerate a transient of a given duration is also demonstrated

  19. Instabilities in power law gradient hardening materials

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2005-01-01

    Tension and compression instabilities are investigated for specimens with dimensions in the micron range. A finite strain generalization of a higher order strain gradient plasticity theory is implemented in a finite element scheme capable of modeling power law hardening materials. Effects...... of gradient hardening are found to delay the onset of localization under plane strain tension, and significantly reduce strain gradients in the localized zone. For plane strain compression gradient hardening is found to increase the load-carrying capacity significantly....

  20. Influence of Cooling Condition on the Performance of Grinding Hardened Layer in Grind-hardening

    Science.gov (United States)

    Wang, G. C.; Chen, J.; Xu, G. Y.; Li, X.

    2018-02-01

    45# steel was grinded and hardened on a surface grinding machine to study the effect of three different cooling media, including emulsion, dry air and liquid nitrogen, on the microstructure and properties of the hardened layer. The results show that the microstructure of material surface hardened with emulsion is pearlite and no hardened layer. The surface roughness is small and the residual stress is compressive stress. With cooling condition of liquid nitrogen and dry air, the specimen surface are hardened, the organization is martensite, the surface roughness is also not changed, but high hardness of hardened layer and surface compressive stress were obtained when grinding using liquid nitrogen. The deeper hardened layer grinded with dry air was obtained and surface residual stress is tensile stress. This study provides an experimental basis for choosing the appropriate cooling mode to effectively control the performance of grinding hardened layer.

  1. CMOS/SOS 4k Rams hardened to 100 Krads (s:)

    International Nuclear Information System (INIS)

    Napoli, L.S.; Heagerty, W.F.; Smeltzer, R.K.; Yeh, J.L.

    1982-01-01

    Two CMOS/SOS 4K memories were fabricated with a recently developed, hardened SOS process. Memory functionality after radiation doses well in excess of 100 Krads(Si) was demonstrated. The critical device processing steps were identified. The radiationinduced failure mode of the memories is understood in terms of the circuit organization and the radiation behavior of the individual transistors in the memories

  2. Hardening of niobium alloys at precrystallization annealing

    International Nuclear Information System (INIS)

    Vasil'eva, E.V.; Pustovalov, V.A.

    1989-01-01

    Niobium base alloys were investigated. It is shown that precrystallization annealing of niobium-molybdenum, niobium-vanadium and niobium-zirconium alloys elevates much more sufficiently their resistance to microplastic strains, than to macroplastic strains. Hardening effect differs sufficiently for different alloys. The maximal hardening is observed for niobium-vanadium alloys, the minimal one - for niobium-zirconium alloys

  3. Investigation of a Hardened Cement Paste Grout

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Sørensen, Eigil Verner

    This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S.......This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S....

  4. SU-E-I-62: Assessing Radiation Dose Reduction and CT Image Optimization Through the Measurement and Analysis of the Detector Quantum Efficiency (DQE) of CT Images Using Different Beam Hardening Filters

    International Nuclear Information System (INIS)

    Collier, J; Aldoohan, S; Gill, K

    2014-01-01

    Purpose: Reducing patient dose while maintaining (or even improving) image quality is one of the foremost goals in CT imaging. To this end, we consider the feasibility of optimizing CT scan protocols in conjunction with the application of different beam-hardening filtrations and assess this augmentation through noise-power spectrum (NPS) and detector quantum efficiency (DQE) analysis. Methods: American College of Radiology (ACR) and Catphan phantoms (The Phantom Laboratory) were scanned with a 64 slice CT scanner when additional filtration of thickness and composition (e.g., copper, nickel, tantalum, titanium, and tungsten) had been applied. A MATLAB-based code was employed to calculate the image of noise NPS. The Catphan Image Owl software suite was then used to compute the modulated transfer function (MTF) responses of the scanner. The DQE for each additional filter, including the inherent filtration, was then computed from these values. Finally, CT dose index (CTDIvol) values were obtained for each applied filtration through the use of a 100 mm pencil ionization chamber and CT dose phantom. Results: NPS, MTF, and DQE values were computed for each applied filtration and compared to the reference case of inherent beam-hardening filtration only. Results showed that the NPS values were reduced between 5 and 12% compared to inherent filtration case. Additionally, CTDIvol values were reduced between 15 and 27% depending on the composition of filtration applied. However, no noticeable changes in image contrast-to-noise ratios were noted. Conclusion: The reduction in the quanta noise section of the NPS profile found in this phantom-based study is encouraging. The reduction in both noise and dose through the application of beam-hardening filters is reflected in our phantom image quality. However, further investigation is needed to ascertain the applicability of this approach to reducing patient dose while maintaining diagnostically acceptable image qualities in a

  5. Comparison of Thermal Creep Strain Calculation Results Using Time Hardening and Strain Hardening Rules

    International Nuclear Information System (INIS)

    Kim, Junehyung; Cheon, Jinsik; Lee, Byoungoon; Lee, Chanbock

    2014-01-01

    One of the design criteria for the fuel rod in PGSFR is the thermal creep strain of the cladding, because the cladding is exposed to a high temperature for a long time during reactor operation period. In general, there are two kind of calculation scheme for thermal creep strain: time hardening and strain hardening rules. In this work, thermal creep strain calculation results for HT9 cladding by using time hardening and strain hardening rules are compared by employing KAERI's current metallic fuel performance analysis code, MACSIS. Also, thermal creep strain calculation results by using ANL's metallic fuel performance analysis code, LIFE-METAL which adopts strain hardening rule are compared with those by using MACSIS. Thermal creep strain calculation results for HT9 cladding by using time hardening and strain hardening rules were compared by employing KAERI's current metallic fuel performance analysis code, MACSIS. Also, thermal creep strain calculation results by using ANL's metallic fuel performance analysis code, LIFE-METAL which adopts strain hardening rule were compared with those by using MACSIS. Tertiary creep started earlier in time hardening rule than in strain hardening rule. Also, calculation results by MACSIS with strain hardening and those obtained by using LIFE-METAL were almost identical to each other

  6. Electron beam hardened paint binder

    International Nuclear Information System (INIS)

    Johnson, O.B.; Labana, S.S.

    1976-01-01

    The invention concerns a paint binder hardened by the effect of electron beams (0.1-100 Mrad/sec). It consists of a dispersion of (A) an ethylenic unsaturated material in (B) at least one vinyl monomer. The component (A) in a reaction product of degraded rubber particles (0.1-4 μm) and an ethylenic unsaturated component with a reactive epoxy, hydroxy or carboxy group which is bonded to the rubber particles by ester or urethane compounds. The rubber particles possess a nucleus and a cross-linked elastomeric acryl polymer, an outer shell with reactive groups and an intermediate layer formed by the monomers of the nucleus and the shell. The manner of production is described in great detail and supplemented by 157 examples. The coatings are suitable to coat articles which will be subject to deformation. (UWI) [de

  7. Extracting material response from simple mechanical tests on hardening-softening-hardening viscoplastic solids

    Science.gov (United States)

    Mohan, Nisha

    Compliant foams are usually characterized by a wide range of desirable mechanical properties. These properties include viscoelasticity at different temperatures, energy absorption, recoverability under cyclic loading, impact resistance, and thermal, electrical, acoustic and radiation-resistance. Some foams contain nano-sized features and are used in small-scale devices. This implies that the characteristic dimensions of foams span multiple length scales, rendering modeling their mechanical properties difficult. Continuum mechanics-based models capture some salient experimental features like the linear elastic regime, followed by non-linear plateau stress regime. However, they lack mesostructural physical details. This makes them incapable of accurately predicting local peaks in stress and strain distributions, which significantly affect the deformation paths. Atomistic methods are capable of capturing the physical origins of deformation at smaller scales, but suffer from impractical computational intensity. Capturing deformation at the so-called meso-scale, which is capable of describing the phenomenon at a continuum level, but with some physical insights, requires developing new theoretical approaches. A fundamental question that motivates the modeling of foams is `how to extract the intrinsic material response from simple mechanical test data, such as stress vs. strain response?' A 3D model was developed to simulate the mechanical response of foam-type materials. The novelty of this model includes unique features such as the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality. Suggestive links from atomistic simulations of foams were borrowed to formulate a physically informed hardening material input function. Motivated by a model that qualitatively captured the response of foam-type vertically aligned carbon nanotube (VACNT) pillars under uniaxial compression [2011,"Analysis of

  8. Radiometric assessment of quality of concrete mix with respect to hardened concrete strength

    International Nuclear Information System (INIS)

    Czechowski, J.

    1983-01-01

    The experiments have confirmed the relationship between the intensity of backscattered gamma radiation and the density of fresh concrete, and also between the flow of backscattered fast neutrons and the water content. From the said two parameters it is possible to derive the compression strength of concrete over the determined period of mix hardening, e.g., after 28 days. For a certain composition of concrete it is possible to derive empirical relations between the intensity of backscattered gamma radiation and neutrons and concrete strength after hardening and to construct suitable nomograms. (Ha)

  9. Environmental hardening of a mobile-manipulator system for nuclear environments

    International Nuclear Information System (INIS)

    Jones, S.L.; Cable, T.; Tulenko, J.S.; Toshkov, S.; Sias, F.R. Jr.

    1993-01-01

    This research report discusses the radiation hardening of a commercially available mobile robot, the REMOTEC ANDROS. This hardening effort is culminating in the availability of a megarad hardened mobile platform to access areas in nuclear facilities with extremely high levels of radiation (0.1 to 1 Mrad). These radiation levels may be encountered both during routine repair and monitoring activities and accident situations. The project has completed a phase-I U.S. Department of Energy Small Business Innovative Research contract and is now in a phase-II effort with completion scheduled in early 1995. The research involves the evaluation of the material and electrical components of an ANDROS robot to determine the anticipated radiation hardness of the current production version and evaluation of the components that must be replaced or modified to harden the system to higher radiation levels. The work being reported is based on an evaluation of the complete list of all electronic, electrical, and mechanical parts used in the robot and includes initial experimental radiation evaluations performed at the University of Florida

  10. Laser Surface Hardening of Groove Edges

    Science.gov (United States)

    Hussain, A.; Hamdani, A. H.; Akhter, R.; Aslam, M.

    2013-06-01

    Surface hardening of groove-edges made of 3Cr13 Stainless Steel has been carried out using 500 W CO2 laser with a rectangular beam of 2.5×3 mm2. The processing speed was varied from 150-500 mm/min. It was seen that the hardened depth increases with increase in laser interaction time. A maximum hardened depth of around 1mm was achieved. The microhardness of the transformed zone was 2.5 times the hardness of base metal. The XRD's and microstructural analysis were also reported.

  11. Radiation damage of the construction materials, Phase II, Microstructure and grain size effects on irradiation hardening of low carbon steel for reactor tanks; Radijaciono ostecenje konstrukcionih materijala, II faza, Uticaj velicine zrna i mikrostrukture na radijaciono otvrdnjavanje niskougljenicnih celika za reaktorske sudove

    Energy Technology Data Exchange (ETDEWEB)

    Lazarevic, Dj; Milasin, N [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1964-05-15

    Influence of grain size on radiation damage of different steel types was investigated intensely during past few years. But the obtained data did not enable complete answer. The objective of here described experiments was to obtain new data about the influence of grain size on radiation hardening of the steel for reactor vessel fabrication. The steel was exposed to integral fast neutron flux bigger than 10{sup 19} n/cm{sup 2} and irradiation temperature less than 100 deg C. As a part of VISA-2/1 project these investigations we redone in cooperation with the CEN Saclay. Simultaneously, experimental procedures applied for obtaining samples with different grain sizes produced steels with different macrostructure. For that reason possible influence of microstructure should ne taken into account. In fact, it was found that the performance of samples depended more on microstructure than on the grain size. The most important results obtain from this experiments indicate the following: (1) samples with different grain size having ferrite-perlite structure showed the same tensile strength; (2) samples with cementite on the grain boundaries showed more intensive hardening after irradiation; (3) samples exposed to {gamma} radiation for obtaining bigger grains showed decreased hardening than samples deformed under room temperature and exposed to {alpha} radiation. Experiments were performed under 150 deg C. samples with ferrite-perlite microstructure showed further smaller increase of tensile limit and hardening. Uticaj velicine zrna na radijaciono otvrdnjavanje razlicitih tipova celika intenzivno je proucavan u toku poslednjih nekoliko godina. Medjutim, dobijeni podaci nisu omogucili da se u potpunosti odgovori na pitanje. Opisani eksperimenti imali su za cilj da pruze nove podatke o uticaju velicine zrna na radijaciono otvrdnjavanje date vrste celika za reaktorski sud, pri integralnom fluksu brzih neutrona > 10{sup 19} n/cm{sup 2} i temperaturi ozracivanja < 100 deg C. Kao

  12. Ferroelectric memories: A possible answer to the hardened nonvolatile question

    International Nuclear Information System (INIS)

    Messenger, G.C.; Coppage, F.N.

    1988-01-01

    Ferroelectric memory cells have been fabricated using a process compatible with semiconductor VLSI (Very Large-Scale Integration) manufacturing techniques which are basically nonvolatile and radiation hard. The memory can be made NDRO (Nondestructive Readout) for strategic systems using several techniques; the most practical is probably a rapid read/restore in combination with EDAC software. This memory can replace plated wire and will have substantial advantages in cost, weight, size, power and speed. It provides a practical cost-competitive solution to the need for nonvolatile RAM in all hardened tactical, avionic, and space systems

  13. A brief review of cavity swelling and hardening in irradiated copper and copper alloys

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1990-01-01

    The literature on radiation-induced swelling and hardening in copper and its alloy is reviewed. Void formation does not occur during irradiation of copper unless suitable impurity atoms such as oxygen or helium are present. Void formation occurs for neutron irradiation temperatures of 180 to 550 degree C, with peak swelling occurring at ∼320 degree C for irradiation at a damage rate of 2 x 10 -7 dpa/s. The post-transient swelling rate has been measured to be ∼0.5%/dpa at temperatures near 400 degree C. Dispersion-strengthened copper has been found to be very resistant to void swelling due to the high sink density associated with the dispersion-stabilized dislocation structure. Irradiation of copper at temperatures below 400 degree C generally causes an increase in strength due to the formation of defect clusters which inhibit dislocation motion. The radiation hardening can be adequately described by Seeger's dispersed barrier model, with a barrier strength for small defect clusters of α ∼ 0.2. The radiation hardening apparently saturates for fluences greater than ∼10 24 n/m 2 during irradiation at room temperature due to a saturation of the defect cluster density. Grain boundaries can modify the hardening behavior by blocking the transmission of dislocation slip bands, leading to a radiation- modified Hall-Petch relation between yield strength and grain size. Radiation-enhanced recrystallization can lead to softening of cold-worked copper alloys at temperatures above 300 degree C

  14. The microstructural origin of work hardening stages

    DEFF Research Database (Denmark)

    Hughes, D. A.; Hansen, N.

    2018-01-01

    The strain evolution of the flow stress and work hardening rate in stages III and IV is explored by utilizing a fully described deformation microstructure. Extensive measurements by transmission electron microscopy reveal a hierarchical subdivision of grains by low angle incidental dislocation...... addition of the classical Taylor and Hall-Petch formulations. Model predictions agree closely with experimental values of flow stress and work hardening rate in stages III and IV. Strong connections between the evolutionary stages of the deformation microstructure and work hardening rates create a new...... (modern) basis for the classic problem of work hardening in metals and alloys. These connections lead the way for the future development of ultra high strength ductile metals produced via plastic deformation.(c) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved....

  15. COMPLEX SURFACE HARDENING OF STEEL ARTICLES

    Directory of Open Access Journals (Sweden)

    A. V. Kovalchuk

    2014-01-01

    Full Text Available The method of complex surface hardening of steel detailswas designed. The method is a compound of two processes of hardening: chemical heat treatment and physical vapor deposition (PVD of the coating. The result, achieved in this study is much higher, than in other work on this topic and is cumulative. The method designed can be used in mechanical engineering, medicine, energetics and is perspective for military and space technologies.

  16. Skin hardening effect in patients with polymorphic light eruption: comparison of UVB hardening in hospital with a novel home UV-hardening device.

    Science.gov (United States)

    Franken, S M; Genders, R E; de Gruijl, F R; Rustemeyer, T; Pavel, S

    2013-01-01

    An effective prophylactic treatment of patients with polymorphic light eruption (PLE) consists of repeated low, gradually increasing exposures to UVB radiation. This so-called UV(B) hardening induces better tolerance of the skin to sunlight. SunshowerMedical company (Amsterdam) has developed an UV (B) source that can be used during taking shower. The low UV fluence of this apparatus makes it an interesting device for UV hardening. In a group of PLE patients, we compared the effectiveness of the irradiation with SunshowerMedical at home with that of the UVB treatment in the hospital. The PLE patients were randomized for one of the treatments. The hospital treatment consisted of irradiations with broad-band UVB (Waldmann 85/UV21 lamps) twice a week during 6 weeks. The home UV-device was used each day with the maximal irradiation time of 6 min. The outcome assessment was based on the information obtained from patients' dermatological quality of life (DLQI) questionnaires, the ability of both phototherapies to reduce the provocation reaction and from the patients' evaluation of the long-term benefits of their phototherapies. Sixteen patients completed treatment with SunshowerMedical and thirteen completed treatment in hospital. Both types of phototherapy were effective. There was a highly significant improvement in DLQI with either treatment. In most cases, the hardening reduced or even completely suppressed clinical UV provocation of PLE. The patients using SunshowerMedical at home were, however, much more content with the treatment procedure than the patients visiting the dermatological units. Both treatments were equally effective in the induction of skin tolerance to sunlight in PLE patients. However, the home treatment was much better accepted than the treatment in the hospital. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.

  17. The secondary hardening phenomenon in strain-hardened MP35N alloy

    International Nuclear Information System (INIS)

    Asgari, S.; El-Danaf, E.; Shaji, E.; Kalidindi, S.R.; Doherty, R.D.

    1998-01-01

    Mechanical testing and microscopy techniques were used to investigate the influence of aging on the structure and strengthening of MP35N alloy. It was confirmed that aging the deformed material at 600 C for 4 h provided additional strengthening, here referred to as secondary hardening, in addition to the primary strain hardening. The secondary hardening phenomenon was shown to be distinctly different from typical age hardening processes in that it only occurred in material deformed beyond a certain cold work level. At moderate strains, aging caused a shift in the entire stress-strain curve of the annealed material to higher stresses while at high strains, it produced shear localization and limited work softening. The secondary hardening increment was also found to be grain size dependent. The magnitude of the secondary hardening appeared to be controlled by the flow stress in the strain hardened material. A model is proposed to explain the observations and is supported by direct experimental evidence. The model is based on formation of h.c.p. nuclei through the Suzuki mechanism, that is segregation of solute atoms to stacking faults, on aging the strain hardened material. The h.c.p. precipitates appear to thicken only in the presence of high dislocation density produced by prior cold work

  18. Simultaneous surface engineering and bulk hardening of precipitation hardening stainless steel

    DEFF Research Database (Denmark)

    Frandsen, Rasmus Berg; Christiansen, Thomas; Somers, Marcel A. J.

    2006-01-01

    This article addresses simultaneous bulk precipitation hardening and low temperature surface engineering of two commercial precipitation hardening stainless steels: Sandvik Nanoflex® and Uddeholm Corrax®. Surface engineering comprised gaseous nitriding or gaseous carburising. Microstructural....... The duration and temperature of the nitriding/carburising surface hardening treatment can be chosen in agreement with the thermal treatment for obtaining optimal bulk hardness in the precipitation hardening stainless steel....... characterisation of the cases developed included X-ray diffraction analysis, reflected light microscopy and micro-hardness testing. It was found that the incorporation of nitrogen or carbon resulted in a hardened case consisting of a combination of (tetragonal) martensite and expanded (cubic) austenite...

  19. Precipitation and Hardening in Magnesium Alloys

    Science.gov (United States)

    Nie, Jian-Feng

    2012-11-01

    Magnesium alloys have received an increasing interest in the past 12 years for potential applications in the automotive, aircraft, aerospace, and electronic industries. Many of these alloys are strong because of solid-state precipitates that are produced by an age-hardening process. Although some strength improvements of existing magnesium alloys have been made and some novel alloys with improved strength have been developed, the strength level that has been achieved so far is still substantially lower than that obtained in counterpart aluminum alloys. Further improvements in the alloy strength require a better understanding of the structure, morphology, orientation of precipitates, effects of precipitate morphology, and orientation on the strengthening and microstructural factors that are important in controlling the nucleation and growth of these precipitates. In this review, precipitation in most precipitation-hardenable magnesium alloys is reviewed, and its relationship with strengthening is examined. It is demonstrated that the precipitation phenomena in these alloys, especially in the very early stage of the precipitation process, are still far from being well understood, and many fundamental issues remain unsolved even after some extensive and concerted efforts made in the past 12 years. The challenges associated with precipitation hardening and age hardening are identified and discussed, and guidelines are outlined for the rational design and development of higher strength, and ultimately ultrahigh strength, magnesium alloys via precipitation hardening.

  20. Effect of hardening on the crack growth rate of austenitic stainless steels in primary PWR conditions

    International Nuclear Information System (INIS)

    Castano, M.L.; Garcia, M.S.; Diego, G. de; Gomez-Briceno, D.; Francia, L.

    2002-01-01

    Intergranular cracking of non-sensitized materials, found in light water reactor (LWR) components exposed to neutron radiation, has been attributed to Irradiation Assisted Stress Corrosion Cracking (IASCC). Cracking of baffle former bolts, fabricated of AISI-316L and AISI-347, have been reported in some Europeans and US PWR plants. Examinations of removed bolts indicate the intergranular cracking characteristics can be associated with IASCC phenomena. Neutron radiation produce critical modifications of the microstructure and microchemical of stainless steels such hardening due to irradiation and Radiation Induce Segregation (RIS) at grain boundaries, among others. Chromium depletion at grain boundary due to RIS seems to justify the intergranular cracking of irradiated materials, both in plant and in lab tests, at high electrochemical corrosion potential (BWR-NWC environments), but it is not enough to explain cracking at low corrosion potential (BWR-HWC and PWR environments). In these latter conditions, hardening is considered a possible additional mechanism to explain the behavior of irradiated material. Radiation Hardening can be simulated in non irradiated material by mechanical deformation. Although some differences exists in the types of defects produced by radiation and mechanical deformation, it is accepted that the study of the stress corrosion behavior of unirradiated austenitic steels with different hardening levels would contribute to the understanding of IASCC mechanism. In order to evaluate the influence of hardening on the stress corrosion susceptibility of austenitic steels, crack growth rate tests with 316L and 347 stainless steels with nominal yield strengths from 500 to 900 MPa, produced by cold work are being carried out at 340 deg C in PWR conditions. Preliminary results indicate that crack propagation was obtained in the 316Lss and 347ss cold worked, even with a yield strength of 550 MPa. (authors)

  1. A procedure for the hardening of materials

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1984-01-01

    A method of hardening metals or ceramics which have fcc, bcc or hcp structures in which two species of differing atomic radii are introduced into the material to be hardened. One species is of a size such that it can diffuse through the lattice normally. The other is of a size such that it can diffuse readily only along dislocations. Ion bombardment is the preferred method of introducing the species with different atomic radii. The material to be hardened is subjected to heat and plastic deformation so as to cause a large number of dislocations with jogs. The species meet at the jogs where they interact and are trapped and set up strain fields which prevent further deformation of the material. (author)

  2. An Anisotropic Hardening Model for Springback Prediction

    Science.gov (United States)

    Zeng, Danielle; Xia, Z. Cedric

    2005-08-01

    As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test.

  3. An Anisotropic Hardening Model for Springback Prediction

    International Nuclear Information System (INIS)

    Zeng, Danielle; Xia, Z. Cedric

    2005-01-01

    As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test

  4. Hardening and microstructural evolution of A533b steels irradiated with Fe ions and electrons

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, H., E-mail: watanabe@riam.kyushu-u.ac.jp [Research Institute for Applied Mechanics, Kyushu University, 6-1, Kasuga-kouenn, Kasugashi, Fukuoka, 816-8580 (Japan); Arase, S. [Interdisciplinary Graduate School of Kyushu University, 6-1, Kasuga-kouenn, Kasugashi, Fukuoka, 816-8580 (Japan); Yamamoto, T.; Wells, P. [Dept. Chemical Engineering, UCSB Engineering II, RM3357, Santa Barbara, CA, 93106-5080 (United States); Onishi, T. [Interdisciplinary Graduate School of Kyushu University, 6-1, Kasuga-kouenn, Kasugashi, Fukuoka, 816-8580 (Japan); Odette, G.R. [Dept. Chemical Engineering, UCSB Engineering II, RM3357, Santa Barbara, CA, 93106-5080 (United States)

    2016-04-01

    Radiation hardening and embrittlement of A533B steels is heavily dependent on the Cu content. In this study, to investigate the effect of copper on the microstructural evolution of these materials, A533B steels with different Cu levels were irradiated with 2.4 MeV Fe ions and 1.0 MeV electrons. Ion irradiation was performed from room temperature (RT) to 350 °C with doses up to 1 dpa. At RT and 290 °C, low dose (<0.1 dpa) hardening trend corresponded with ΔH ∝ (dpa){sup n}, with n initially approximately 0.5 and consistent with a barrier hardening mechanism, but saturating at ≈0.1 dpa. At higher dose levels, the radiation-induced hardening exhibited a strong Cu content dependence at 290 °C, but not at 350 °C. Electron irradiation using high-voltage electron microscopy revealed the growth of interstitial-type dislocation loops and enrichment of Ni, Mn, and Si in the vicinities of pre-existing dislocations at doses for which the radiation-induced hardness due to ion irradiation was prominent.

  5. Technology of hardening fills for mined spaces

    International Nuclear Information System (INIS)

    Simek, P.; Holas, M.; Chyla, A.; Pech, P.

    1985-01-01

    The technology is described of hardening fills for mined spaces of uranium deposits in North Bohemian chalk. A special equipment was developed for the controlled preparation of a hardening mixture. The composition of the fill is determined by the strength of the filled rock, expecially by the standard strength, i.e., the minimal strength of the filling under uniaxial pressure. The said parameter determines the consumption of binding materials and thereby the total costs of the filling. A description is presented of the filling technology, including rabbit tube transport of the mixture and quality control. (Pu)

  6. Effects of solute elements on hardening of thermally-aged RPV model alloys

    International Nuclear Information System (INIS)

    Dohi, Kenji; Nishida, Kenji; Nomoto, Akiyoshi; Soneda, Naoki; Liu, Li; Sekimura, Naoto; Li Zhengcao

    2012-01-01

    The investigation of effects of solute elements on the copper-enriched cluster, which is a cause of radiation embrittlement of reactor pressure vessel steels, is needed in order to understand the mechanism of the hardening and the cluster formation. The dependence of the hardness change and the formation of thermally-aged Fe-Cu model alloys doped Ni, Si and Mn on aging time are investigated using Vickers harness tester and three dimensional atom probe. Ni addition suppresses hardening, and Si addition accelerates hardening slightly at the initial stage of the aging. Mn addition accelerates hardening much more but does not almost affect the peak hardness. Ni and Si addition increase the number density and the size of the cluster, while Mn addition remarkably increases the number density and the size of the cluster at the initial stage of the aging. In addition, there is no clear correlation between the square root of the volume fraction of the clusters and the hardness change for all of the alloys. The reasons are considered to be the decrease in the solute hardening caused by the cluster formation and the difference in the shear modulus of the cluster due to the difference in the chemical composition of the cluster. (author)

  7. [Microstructural changes in hardened beans (Phaseolus vulgaris)].

    Science.gov (United States)

    Mujica, Maria Virginia; Granito, Marisela; Soto, Naudy

    2015-06-01

    (Phaseolus vulgaris). The hardening of Phaseolus vulgaris beans stored at high temperature and high relative humidity is one of the main constraints for consumption. The objective of this research was to evaluate by scanning electron microscopy, structural changes in cotyledons and testa of the hardened beans. The freshly harvested grains were stored for twelve months under two conditions: 5 ° C-34% RH and 37 ° C-75% RH, in order to promote hardening. The stored raw and cooked grains were lyophilized and fractured. The sections of testa and cotyledons were observed in an electron microscope JSM-6390. After twelve months, grains stored at 37 ° C-75% RH increased their hardness by 503%, whereas there were no significant changes in grains stored at 5 ° C-34% RH. At the microstructural level, the cotyledons of the raw grains show clear differences in appearance of the cell wall, into the intercellular space size and texture matrix protein. There were also differences in compaction of palisade and sub-epidermal layer in the testa of raw grains. After cooking, cotyledon cells of the soft grains were well separated while these ofhard grains were seldom separated. In conclusion, the found differences in hard and soft grains showed a significant participation of both structures, cotyledons and testa, in the grains hardening.

  8. CASE-HARDENING OF STAINLESS STEEL

    DEFF Research Database (Denmark)

    2004-01-01

    The invention relates to case-hardening of a stainless steel article by means of gas including carbon and/or nitrogen, whereby carbon and/or nitrogen atoms diffuse through the surface into the article. The method includes activating the surface of the article, applying a top layer on the activated...

  9. Radiation modification of materials

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1987-01-01

    Industrial and radiation chemical processes of material modification based on cross-linking of polymers as a result of radiation are considered. Among them are production of cables and rods with irradiated modified insulation, production of hardened and thermo-shrinkaging polymer products (films, tubes, fashioned products), production of radiation cross-linked polyethylene foam, technology of radiation vulcanization of elastomers. Attention is paid to radiation plants on the basis of γ-sources and electron acceleratos as well as to radiation conditions

  10. Structural heredity influence upon principles of strain wave hardening

    Science.gov (United States)

    Kiricheck, A. V.; Barinov, S. V.; Yashin, A. V.

    2017-02-01

    It was established experimentally that by penetration of a strain wave through material hardened not only the technological modes of processing, but also a technological heredity - the direction of the fibers of the original macrostructure have an influence upon the diagram of microhardness. By penetration of the strain wave along fibers, the degree of hardening the material is less, however, a product is hardened throughout its entire section mainly along fibers. In the direction of the strain waves across fibers of the original structure of material, the degree of material hardening is much higher, the depth of the hardened layer with the degree of hardening not less than 50% makes at least 3 mm. It was found that under certain conditions the strain wave can completely change the original structure of the material. Thus, a heterogeneously hardened structure characterized by the interchange of harder and more viscous areas is formed, which is beneficial for assurance of high operational properties of material.

  11. Hydrogen embrittlement susceptibility of laser-hardened 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Tsay, L.W.; Lin, Z.W. [Nat. Taiwan Ocean Univ., Keelung (Taiwan). Inst. of Mater. Eng.; Shiue, R.K. [Institute of Materials Sciences and Engineering, National Dong Hwa University, Hualien, Taiwan (Taiwan); Chen, C. [Institute of Materials Sciences and Engineering, National Taiwan University, Taipei, Taiwan (Taiwan)

    2000-10-15

    Slow strain rate tensile (SSRT) tests were performed to investigate the susceptibility to hydrogen embrittlement of laser-hardened AISI 4140 specimens in air, gaseous hydrogen and saturated H{sub 2}S solution. Experimental results indicated that round bar specimens with two parallel hardened bands on opposite sides along the loading axis (i.e. the PH specimens), exhibited a huge reduction in tensile ductility for all test environments. While circular-hardened (CH) specimens with 1 mm hardened depth and 6 mm wide within the gauge length were resistant to gaseous hydrogen embrittlement. However, fully hardened CH specimens became susceptible to hydrogen embrittlement for testing in air at a lower strain rate. The strength of CH specimens increased with decreasing the depth of hardened zones in a saturated H{sub 2}S solution. The premature failure of hardened zones in a susceptible environment caused the formation of brittle intergranular fracture and the decrease in tensile ductility. (orig.)

  12. Hardened Solar Array High Temperature Adhesive.

    Science.gov (United States)

    1981-04-01

    SHERWOOO. D SASIU.IS F3361S-0-C-201S UNCLASSI ED 1AC-SCG-IOOIIR AFVAL-TR-OL-201? NLm,,hinii EhhhEE11I1 AFWAL-TR-81- 2017 i : HARDENED SOLAR ARRAY D HIGH...Tg and as a consequence forms a film on the container and also precipitates as tacky waxlike particles, rather than the desired flocullated

  13. Fatigue of coated and laser hardened steels

    International Nuclear Information System (INIS)

    La Cruz, P. de.

    1990-01-01

    In the present work the effect of ion nitriding, laser hardening and hot dip galvanizing upon the fatigue limit and notch sensitivity of a B-Mn Swedish steel SS 2131 have been investigated. The fatigue tests were performed in plane reverse bending fatigue (R=1). The quenched and tempered condition was taken as the reference condition. The microstructure, microhardness, fracture surface and coating appearance of the fatigue surface treated specimens were studied. Residual stress and retained austenite measurements were also carried out. It was found that ion nitriding improves the fatigue limit by 53 % for smooth specimens and by 115 % for notched specimens. Laser hardening improves the fatigue limit by 18 % and 56 % for smooth and notched specimen respectively. Hot dip galvanizing gives a slight deterioration of the fatigue limit (9 % and 10 % for smooth and notched specimen respectively). Ion nitriding and laser hardening decrease the value of the notch sensitivity factor q by 78 % and 65 % respectively. Hot dip galvanizing does not modify it. A simple schematic model based on a residual stress distribution, has been used to explain the different effects. It seems that the presence of the higher compressive residual stresses and the higher uniformity of the microstructure may be the causes of the better fatigue performance of ion nitrided specimens. (119 refs.) (author)

  14. Beam hardening correction algorithm in microtomography images

    International Nuclear Information System (INIS)

    Sales, Erika S.; Lima, Inaya C.B.; Lopes, Ricardo T.; Assis, Joaquim T. de

    2009-01-01

    Quantification of mineral density of bone samples is directly related to the attenuation coefficient of bone. The X-rays used in microtomography images are polychromatic and have a moderately broad spectrum of energy, which makes the low-energy X-rays passing through a sample to be absorbed, causing a decrease in the attenuation coefficient and possibly artifacts. This decrease in the attenuation coefficient is due to a process called beam hardening. In this work the beam hardening of microtomography images of vertebrae of Wistar rats subjected to a study of hyperthyroidism was corrected by the method of linearization of the projections. It was discretized using a spectrum in energy, also called the spectrum of Herman. The results without correction for beam hardening showed significant differences in bone volume, which could lead to a possible diagnosis of osteoporosis. But the data with correction showed a decrease in bone volume, but this decrease was not significant in a confidence interval of 95%. (author)

  15. Beam hardening correction algorithm in microtomography images

    Energy Technology Data Exchange (ETDEWEB)

    Sales, Erika S.; Lima, Inaya C.B.; Lopes, Ricardo T., E-mail: esales@con.ufrj.b, E-mail: ricardo@lin.ufrj.b [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear; Assis, Joaquim T. de, E-mail: joaquim@iprj.uerj.b [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Inst. Politecnico. Dept. de Engenharia Mecanica

    2009-07-01

    Quantification of mineral density of bone samples is directly related to the attenuation coefficient of bone. The X-rays used in microtomography images are polychromatic and have a moderately broad spectrum of energy, which makes the low-energy X-rays passing through a sample to be absorbed, causing a decrease in the attenuation coefficient and possibly artifacts. This decrease in the attenuation coefficient is due to a process called beam hardening. In this work the beam hardening of microtomography images of vertebrae of Wistar rats subjected to a study of hyperthyroidism was corrected by the method of linearization of the projections. It was discretized using a spectrum in energy, also called the spectrum of Herman. The results without correction for beam hardening showed significant differences in bone volume, which could lead to a possible diagnosis of osteoporosis. But the data with correction showed a decrease in bone volume, but this decrease was not significant in a confidence interval of 95%. (author)

  16. GRAVITY PIPELINE TRANSPORT FOR HARDENING FILLING MIXTURES

    Directory of Open Access Journals (Sweden)

    Leonid KROUPNIK

    2015-12-01

    Full Text Available In underground mining of solid minerals becoming increasingly common development system with stowing hardening mixtures. In this case the natural ore array after it is replaced by an artificial excavation of solidified filling mixture consisting of binder, aggregates and water. Such a mixture is prepared on the surface on special stowing complexes and transported underground at special stowing pipelines. However, it is transported to the horizons of a few kilometers, which requires a sustainable mode of motion of such a mixture in the pipeline. Hardening stowing mixture changes its rheological characteristics over time, which complicates the calculation of the parameters of pipeline transportation. The article suggests a method of determining the initial parameters of such mixtures: the status coefficient, indicator of transportability, coefficient of hydrodynamic resistance to motion of the mixture. These indicators characterize the mixture in terms of the possibility to transport it through pipes. On the basis of these indicators is proposed methodology for calculating the parameters of pipeline transport hardening filling mixtures in drift mode when traffic on the horizontal part of the mixture under pressure column of the mixture in the vertical part of the backfill of the pipeline. This technique allows stable operation is guaranteed to provide pipeline transportation.

  17. Preparation of Self Hardening-modelling Polyurethane for Wood Repairing and Cracks Injection

    International Nuclear Information System (INIS)

    Meligi, G.A.; Elnahas, H.H.; Ammar, A.H.

    2014-01-01

    Self hardening composite as a modelling clay was prepared from polyurethane, two parts (A) and (B) where (A) contains polyol (polyether), vinyl acetate versatic ester copolymer (VAcVe) and magnesium silicate or wood powder and (B) contains toluene diisocyanate (TDI) as a hardening agent. The two parts mixed thoroughly giving soft putty like feel, open working time 1-2 h and cures hard overnight (24 h full cure). Factors affecting working time and full cure were evaluated. Also, measurements of surface hardness, compressive strength, scanning electron microscopy (SEM), water absorption and effect of ionizing radiation were studied. The suggestion for using the prepared polyurethane composite as clay dries as hard as a rock in the field of wood repair and cracks injection for building walls were recommended. Keywords: Polyurethane, modelling clay, radiation, wood repair and cracks injection.

  18. Radiation

    International Nuclear Information System (INIS)

    2013-01-01

    The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter

  19. On residual stresses and fatigue of laser hardened steels

    International Nuclear Information System (INIS)

    Lin, Ru.

    1992-01-01

    This thesis deals with studies on residual stresses and fatigue properties of laser-transformation hardened steels. Two types of specimens, cylinders and fatigue specimens were used in the studies. The cylinders, made of Swedish steels SS 2244 and SS 2258 which correspond to AISI 4140 and AISI 52100 respectively, were locally hardened by a single scan of laser beam in the longitudinal direction, with various laser parameters. Residual stress distributions across the hardened tracks were measured by means of X-ray diffraction. The origins of residual stresses were investigated and discussed. For the fatigue specimens, including smooth and notched types made of Swedish steels SS 2244, SS 2225 and SS 1572 (similar to AISI 4140, AISI 4130 and AISI 1035, respectively), laser hardening was carried out in the gauge section. The residual stress field induced by the hardening process and the fatigue properties by plane bending fatigue test were studied. In order to investigate the stability of the residual stress field, stress measurements were also made on specimens being loaded near the fatigue limits for over 10 7 cycles. Further the concept of local fatigue strength was employed to correlate quantitatively the effect of hardness and residual stress field on the fatigue limits. In addition a group of smooth specimens of SS 2244 was induction hardened and the hardening results were compared with the corresponding laser hardened ones in terms of residual stress and fatigue behaviour. It has been found that compressive stresses exist in the hardened zone of all the specimens studied. The laser hardening condition, the specimen and how the hardening is carried out can significantly affect the residual stress field. Laser hardening can greatly improve the fatigue properties by inducing a hardened and compressed surface layer. (112 refs.)(au)

  20. On residual stresses and fatigue of laser hardened steels

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ru.

    1992-01-01

    This thesis deals with studies on residual stresses and fatigue properties of laser-transformation hardened steels. Two types of specimens, cylinders and fatigue specimens were used in the studies. The cylinders, made of Swedish steels SS 2244 and SS 2258 which correspond to AISI 4140 and AISI 52100 respectively, were locally hardened by a single scan of laser beam in the longitudinal direction, with various laser parameters. Residual stress distributions across the hardened tracks were measured by means of X-ray diffraction. The origins of residual stresses were investigated and discussed. For the fatigue specimens, including smooth and notched types made of Swedish steels SS 2244, SS 2225 and SS 1572 (similar to AISI 4140, AISI 4130 and AISI 1035, respectively), laser hardening was carried out in the gauge section. The residual stress field induced by the hardening process and the fatigue properties by plane bending fatigue test were studied. In order to investigate the stability of the residual stress field, stress measurements were also made on specimens being loaded near the fatigue limits for over 10[sup 7] cycles. Further the concept of local fatigue strength was employed to correlate quantitatively the effect of hardness and residual stress field on the fatigue limits. In addition a group of smooth specimens of SS 2244 was induction hardened and the hardening results were compared with the corresponding laser hardened ones in terms of residual stress and fatigue behaviour. It has been found that compressive stresses exist in the hardened zone of all the specimens studied. The laser hardening condition, the specimen and how the hardening is carried out can significantly affect the residual stress field. Laser hardening can greatly improve the fatigue properties by inducing a hardened and compressed surface layer. (112 refs.)(au).

  1. Fatigue hardening and softening studies on strain hardened 18-8 austenitic stainless steel

    International Nuclear Information System (INIS)

    Ramakrishna Prasad, C.; Vasudevan, R.

    1976-01-01

    Metals when subjected to fatigue harden or soften depending on their previous mechanical history. Annealed or mildly cold worked metals are known to harden while severely cold worked metals soften when subjected to fatigue loading. In the present work samples of austenitic 18-8 steel cold worked to 11% and 22% reduction in area were mounted in a vertical pulsator and fatigued in axial tension-compression. Clear cut effects were produced and it was noticed that these depended on the extent of cold work, the amplitude as well as the number of cycles of fatigue and mean stress if any. (orig.) [de

  2. Laser transformation hardening effect on hardening zone features and surface hardness of tool steel AISI D2

    Directory of Open Access Journals (Sweden)

    D. Lesyk

    2017-06-01

    Full Text Available The relationship of technological input regimes of the laser transformation hardening on change the hardening depth, hardening width, and hardening angle, as well as surface hardness of the tool steel AISI D2 using multifactor experiment with elements of the analysis of variance and regression equations was determined. The laser transformation hardening process implemented by controlling the heating temperature using Nd:YAG fiber laser with scanner, pyrometer and proportional-integral-differential controller. The linear and quadratic regression models are developed, as well as response surface to determine the effect of the heating temperature and feed rate of the treated surface on the energy density of the laser beam, hardening depths, hardening width, hardening angle, and surface hardness are designed. The main effect on the energy density of the laser beam has a velocity laser treatment, on the other hand, the main effect on the geometrical parameters of the laser hardened zone and surface hardness has temperature heating are shown. The optimum magnitudes of the heating temperature (1270 °C and feed rate of the treated surface (90 mm/min for laser transformation hardening of the tool steel AISI D2 using fiber laser with scanner were defined.

  3. Effect of yield strength on stress corrosion crack propagation under PWR and BWR environments of hardened stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Castano, M.L.; Garcia, M.S.; Diego, G. de; Gomez-Briceno, D. [CIEMAT, Nuclear Fission Department, Structural Materials Program, Avda. Complutense 22, 28040 Madrid (Spain)

    2004-07-01

    Core components of light water reactor (LWR), mainly made of austenitic stainless steels (SS), subjected to stress and exposed to relatively high fast neutron flux may suffer a cracking process termed as Irradiation Assisted Stress Corrosion Cracking (IASCC). Neutron radiation leads to critical modifications in material characteristics, which can modify their stress corrosion cracking (SCC) response. Current knowledge highlights three fundamental factors, induced by radiation, as primary contributors to IASCC of core materials: Radiation Induced Segregation (RIS) at grain boundaries, Radiation Hardening and Radiolysis. Most of the existing literature on IASCC is focussed on the influence of RIS, mainly chromium depletion, which can promote IASCC in oxidizing environments, such a Boiling Water Reactor (BWR) under normal water chemistry. However, in non-oxidizing environments, such as primary water of Pressurized Water Reactor (PWR) or BWR hydrogen water chemistry, the role played by chromium depletion at grain boundary on IASCC behaviour of highly irradiated material is irrelevant. One important issue with limited study is the effect of radiation induced hardening. The role of hardening on IASCC is became stronger considered, especially for environments where other factors, like micro-chemistry, have no significant influence. To formulate the mechanism of IASCC, a well-established method is to isolate and quantify the effect of individual parameters. The use of unirradiated material and the simulation of the irradiation effects is a procedure used with success for evaluating the influence of irradiation effects. Radiation hardening can be simulated by mechanical deformation and, although some differences exist in the types of defects produced, it is believed that the study of the SCC behaviour of unirradiated materials with different hardening levels would contribute to the understanding of IASCC mechanism. In order to evaluate the influence of hardening on the

  4. SCRIPT: Tele-robotics at Home; Functional Architecture and Clinical Application

    NARCIS (Netherlands)

    Prange, Grada Berendina; Hermens, Hermanus J.; Schäfer, J.; Nasr, N.; Mountain, G.; Stienen, Arno; Amirabdollahian, F

    2012-01-01

    After the event of a stroke, patients have at least 12 months during which their brains are highly susceptible to the benefits of neuro-rehabilitation treatments. On the other hand, due to the high costs of clinical neurorehabilitation, post-stroke treatments are limited in all countries to only a

  5. The development of Windows based control system for the tele-robotics

    International Nuclear Information System (INIS)

    Kim, Byung Soo; Kim, Seung Ho; Seo, Yong Chil; Kim, Ki Ho; Hwang, Suk Yeoung; Kim, Chang Hoi; Jung, Seung Ho; Lee, Young Kwang

    1998-03-01

    The WSCS (Windows-based Supervisory Control System) has been developed for the efficient control of the mobile robot in the hazardous area, such as reactor surroundings of HPWR (Heavy Pressurized Water Reactor). The WSCS is basically computer program which consists windows menu-program, socket-based communication program, force reflection joystick program, and OpenGL-based 3D graphic program. Also, the WSCS includes the force control algorithm of a master control device ( in this case, joystick) for the enhanced operability. To evaluate the effectiveness of the designed WSCS and the force reflection control algorithm, a series of experiments has been made in such a way that human operators command the desired motion of robot by manipulating the joystick in the virtual environment. As a result, it was proven that the designed WSCS is very easy-to-use and effective. Also, the developed force reflection algorithm is more efficient than that of general tele-operation, even though there are some difference in human dexterity. In near future, the WSCS will be applied in the next version of KAEROT. (author). 11 refs., 14 tabs., 1 fig

  6. Application of submerged induction hardening; Ekichu koshuha yakiire no jitsuyoka

    Energy Technology Data Exchange (ETDEWEB)

    Nishimori, Y; Nagai, Y; Amii, Y [Mazda Motor Corp., Hiroshima (Japan); Tanaka, Y [Netsuren Co. Ltd., Tokyo (Japan); Mizuma, T [Toyo Advanced Technologies Co. Ltd., Hiroshima (Japan)

    1997-10-01

    As a cost-cutting measure, the linerless diesel engine was adopted by applying submerged induction hardening process which can harden partial inner surface of cylinder block bore. In applying this process, (1) development of induction coil which can form any shape of quenched pattern and (2) the development of machining technology which can hone precisely the distorted bore after quenching, were important. With these improvements, submerged Induction hardening was made practical. 1 ref., 11 figs.

  7. Investigation of srawberry hardening in low temperatures in vitro

    OpenAIRE

    Lukoševičiūtė, Vanda; Rugienius, Rytis; Kavaliauskaitė, Danguolė

    2007-01-01

    Cold resistance of different strawberry varieties in vitro and ability to retain hardening after defrosting and repeated hardening. Phytohormons – gibberellin and abscisic acid added in the growing medium were investigated in Horticulture plant genetic and biotechnology department of LIH. We tried to model common conditions in temperate zone when freeze-thaw cycles often occur during wintertime. For investigation in vitro strawberries for the first time hardened in light at the temperature of...

  8. Environmental hardening of robots for nuclear maintenance and surveillance tasks

    International Nuclear Information System (INIS)

    Hintenlang, D.E.; Tulenko, J.S.; Wheeler, R.; Roy, T.

    1990-01-01

    The University of Florida, in cooperation with the Universities of Texas, Tennessee, and Michigan and Oak Ridge National Laboratory, is developing an advanced robotic system for the US Department of Energy under the University Program for Robotics for Advanced Reactors. As part of this program, the University of Florida has been pursuing the development of environmentally hardened components so that autonomous robotic systems can successfully carry out their tasks under the most extreme expected environmental conditions. This requirement means that the designed robotic system with its onboard computer-based intelligence must be able to successfully complete tasks in toxic, radioactive, wet, temperature extremes, and other physically impairing environments. As part of this program, a study was carried out to determine the environmental conditions that should be set as the design criteria for robotic systems to maintain reasonable operations for nuclear plants in the course of maintenance, testing, and surveillance under all conditions, including plant upset. It was decided that Florida would build a combined environmental testing facility to test specific devices in high-radiation/high-temperature combined environments. This environmental test chamber has been built and successfully tested to over 250 degree F. This facility will provide some of the first combined temperatures/radiation data for many large-scale integrated components

  9. Induction surface hardening of hard coated steels

    Energy Technology Data Exchange (ETDEWEB)

    Pantleon, K.; Kessler, O.; Hoffann, F.; Mayr, P. [Stiftung Inst. fuer Werkstofftechnik, Bremen (Germany)

    1999-11-01

    The properties of hard coatings deposited using CVD processes are usually excellent. However, high deposition temperatures negatively influence the substrate properties, especially in the case of low alloyed steels. Therefore, a subsequent heat treatment is necessary to restore the properties of steel substrates. Here, induction surface hardening is used as a method of heat treatment after the deposition of TiN hard coatings on AISI 4140 (DIN42CrMo4) substrates. The influences of the heat treatment on both the coating and the substrate properties are discussed in relation to the parameters of induction heating. Thereby, the heating time, heating atmosphere and the power input into the coating-substrate compounds are varied. As a result of induction surface hardening, the properties of the substrates are improved without losing good coating properties. High hardness values in the substrate near the interface allow the AISI 4140 substrates to support TiN hard coatings very well. Consequently, higher critical loads are measured in scratch tests after the heat treatment. Also, compressive residual stresses in the substrate are generated. In addition, only a very low distortion appears. (orig.)

  10. Advantages of dry hardened cask storage over wet storage for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Romanato, Luiz Sergio, E-mail: romanato@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil). Dept. da Qualidade

    2011-07-01

    Pools are generally used to store and maintain spent nuclear fuel assemblies for cooling, after removed from reactors. After three to five years stored in the pools, spent fuel can be reprocessed or sent to a final disposition in a geological repository and handled as radioactive waste or sent to another site waiting for future solution. Spent fuel can be stored in dry or wet installations, depending on the method adopted by the nuclear plant. If this storage were exclusively wet, at the installation decommissioning in the future, another solution for storage will need to be found. Today, after a preliminary cooling, the spent fuel assemblies can be removed from the pool and sent to dry hardened storage installations. This kind of storage does not need complex radiation monitoring and it is safer than wet storage. Brazil has two nuclear reactors in operation, a third reactor is under construction and they use wet spent fuel storage . Dry hardened casks use metal or both metal and concrete for radiation shielding and they are safe, especially during an earthquake. An earthquake struck Japan on March 11, 2011 damaging Fukushima Daiichi nuclear power plant. The occurrence of earthquakes in Brazil is very small but dry casks can resist to other events, including terrorist acts, better than pools. This paper shows the advantages of dry hardened cask storage in comparison with the wet storage (water pools) for spent nuclear fuel. (author)

  11. Advantages of dry hardened cask storage over wet storage for spent nuclear fuel

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2011-01-01

    Pools are generally used to store and maintain spent nuclear fuel assemblies for cooling, after removed from reactors. After three to five years stored in the pools, spent fuel can be reprocessed or sent to a final disposition in a geological repository and handled as radioactive waste or sent to another site waiting for future solution. Spent fuel can be stored in dry or wet installations, depending on the method adopted by the nuclear plant. If this storage were exclusively wet, at the installation decommissioning in the future, another solution for storage will need to be found. Today, after a preliminary cooling, the spent fuel assemblies can be removed from the pool and sent to dry hardened storage installations. This kind of storage does not need complex radiation monitoring and it is safer than wet storage. Brazil has two nuclear reactors in operation, a third reactor is under construction and they use wet spent fuel storage . Dry hardened casks use metal or both metal and concrete for radiation shielding and they are safe, especially during an earthquake. An earthquake struck Japan on March 11, 2011 damaging Fukushima Daiichi nuclear power plant. The occurrence of earthquakes in Brazil is very small but dry casks can resist to other events, including terrorist acts, better than pools. This paper shows the advantages of dry hardened cask storage in comparison with the wet storage (water pools) for spent nuclear fuel. (author)

  12. 1 Gb Radiation Hardened Nonvolatile Memory Development, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this effort is to identify, characterize and develop advanced semiconductor materials and fabrication process techniques, and design and produce a...

  13. High reliability EPI-base radiation hardened power transistor

    International Nuclear Information System (INIS)

    Clark, L.E.; Saltich, J.L.

    1978-01-01

    A high-voltage power transistor is described which is able to withstand fluences as high as 3 x 10 14 neutrons per square centimeter and still be able to operate satisfactorily. The collector may be made essentially half as thick and twice as heavily doped as normally and its base is made in two regions which together are essentially four times as thick as the normal power transistor base region. The base region has a heavily doped upper region and a lower region intermediate the upper heavily doped region and the collector. The doping in the intermediate region is as close to intrinsic as possible, in any event less than about 3 x 10 15 impurities per cubic centimeter. The second base region has small width in comparison to the first base region, the ratio of the first to the second being at least about 5 to 1. The base region having the upper heavily doped region and the intermediate or lower low doped region contributes to the higher breakdown voltage which the transistor is able to withstand. The high doping of the collector region essentially lowers that portion of the breakdown voltage achieved by the collector region. Accordingly, it is necessary to transfer certain of this breakdown capability to the base region and this is achieved by using the upper region of heavily doped and an intermediate or lower region of low doping

  14. Development of Radiation-Hardening Ceramic Composites for Fusion Applications

    International Nuclear Information System (INIS)

    Don Steiner

    2004-01-01

    This Progress Report describes work performed as a collaborative effort between Rensselaer Polytechnic Institute (RPI) and Oak Ridge National Laboratory (ORNL). This research is focused in four areas considered to be critical issues for using SiC fiber-reinforced SiC matrix composites (SiC/SiC) as structural materials in a fusion environment: (1) Calculation of the critical dose and temperature for amorphization of SiC by using the TRIM computer code to analyze ORNL and literature data; (2) Measurement of irradiation-induced creep in monolithic SiC or stoichiometric SiC fibers; (3) Determining the effects of high-temperature irradiation on monolithic SiC as part of ORNL's METS experiment; and (4) Gauging the effectiveness of polymer impregnation pyrolysis in improving SiC/SiC composite hermicity. Progress in each area is described, as well as plans for next year

  15. The development of radiation-hardened robot for nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Jung, S. H.; Kim, Chang Hoi; Seo, Yong Chil [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-11-01

    The objective of this project is to make a optimal design of differential planetary reducer through the stress analysis. The developed gears are able a high efficiency and manufactured with small size. This reducer of planetary type is able to transmit high rode torque in one stage. This light weight, high efficiency differential planetary reducer, as a new attempt of planetary reducer type, can obtain a high reduction ratio with the simple mechanism which is impossible with the traditional planetary reducer type. 19 refs., 26 figs., 11 tabs. (Author)

  16. Bake hardening of nanograin AA7075 aluminum alloy

    International Nuclear Information System (INIS)

    Dehghani, Kamran

    2011-01-01

    Highlights: ► The bake hardening behavior of AA7075 was studied and compared with its coarse-grain counterpart. ► Nanograin AA7075 exhibited 88–100% increase in bake hardenability. ► Nanograin AA7075 exhibited 36–38% increase in final yield strength after baking. ► Maximum bake hardenability and final yield stress were about 185 MPa and 719 MPa. - Abstract: In the present work, the bake hardening of nanostructured AA7075 aluminum alloy was compared with that of its coarse-grain counterpart. Surface severe plastic deformation (SSPD) was used to produce nanograin layers on both surfaces of workpieces. The nanostructured layers were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The thickness of nanostructured layer, having the grains of 50–110 nm, was about 75 μm on each side of workpiece. The bake hardenability of nanograin and coarse-grain AA7075 was then compared by pre-straining to 2, 4 and 6% followed by baking at 100 °C and 200 °C for 20 min. Comparing to coarse-grain case, there was about 88–100% increase in bake hardenability and about 36–38% increase in yield strength after the bake hardening of present nanograin AA7075. Such an increase in bake hardenability and strength was achieved when the thickness of two nanograin layers was about only one-tenth of the whole thickness.

  17. Work hardening correlation for monotonic loading based on state variables

    International Nuclear Information System (INIS)

    Huang, F.H.; Li, C.Y.

    1977-01-01

    An absolute work hardening correlation in terms of the hardness parameter and the internal stress based on the state variable approach was developed. It was found applicable to a variety of metals and alloys. This correlation predicts strain rate insensitive work hardening properties at low homologous temperatures and produces strain rate effects at higher homologous temperatures without involving thermally induced recovery processes

  18. Analysis of the work-hardening process in spheroidized steels

    International Nuclear Information System (INIS)

    Pacheco, J.L.

    1981-07-01

    An elementary model for the work-hardening process in duplex-structures steels (ferrite - spheroidite) is proposed and tested on low, medium and high carbon content, which seems to give good results concerning the influence of the volume fraction and particle size of the second phase on the work-hardening behaviour. (Author) [pt

  19. Design and characterization of cellulose nanocrystal-enhanced epoxy hardeners

    Science.gov (United States)

    Shane X. Peng; Robert J. Moon; Jeffrey P. Youngblood

    2014-01-01

    Cellulose nanocrystals (CNCs) are renewable, sustainable, and abundant nanomaterial widely used as reinforcing fillers in the field of polymer nanocomposites. In this study, two-part epoxy systems with CNC-enhanced hardeners were fabricated. Three types of hardeners, Jeffamine D400 (JD400), diethylenetriamine (DETA), and (±)-trans-1,2- diaminocyclohexane (DACH), were...

  20. ANISOTROPIC STRAIN-HARDENING IN POLYCRYSTALLINE COPPER AND ALUMINUM

    NARCIS (Netherlands)

    HESS, F

    1993-01-01

    A new viscoplastic model for the plastic stress-strain behaviour of f.c.c. metals is presented. In this model the strain hardening results from increasing dislocation densities. The observed stagnation of strain hardening after strain reversals is explained by a lowering of the increase in

  1. A review of the stages of work hardening

    Energy Technology Data Exchange (ETDEWEB)

    Rollett, A.D.; Kocks, U.F.

    1993-07-01

    Stages of work hardening are reviewed with emphasis on links between each stage. Simple quantitative descriptions are given for each stage. Similarities between stage I, easy glide, and stage IV, large strain hardening, are pointed out both in terms of magnitude of the hardening rate and of the underlying mechanism of dislocation debris accumulation. Stage II is described as an athermal hardening stage that occurs when statistical variations in the dislocation ``forest`` lead to geometrical storage of dislocations. The steadily decreasing hardening rate observed in stage III is characterized by the increasing rate of loss of dislocation density due to dynamic recovery. Stage III appears to have an asymptote to a saturation stress which is determined by the characteristics of the dislocation tangles, or cell walls. The imperfect nature of the dynamic recovery process, however, leads to the accumulation of dislocation debris and this, by analogy with stage 1, causes the apparent saturation stress to rise, thus causing stage IV.

  2. Keystroke Dynamics-Based Credential Hardening Systems

    Science.gov (United States)

    Bartlow, Nick; Cukic, Bojan

    abstract Keystroke dynamics are becoming a well-known method for strengthening username- and password-based credential sets. The familiarity and ease of use of these traditional authentication schemes combined with the increased trustworthiness associated with biometrics makes them prime candidates for application in many web-based scenarios. Our keystroke dynamics system uses Breiman’s random forests algorithm to classify keystroke input sequences as genuine or imposter. The system is capable of operating at various points on a traditional ROC curve depending on application-specific security needs. As a username/password authentication scheme, our approach decreases the system penetration rate associated with compromised passwords up to 99.15%. Beyond presenting results demonstrating the credential hardening effect of our scheme, we look into the notion that a user’s familiarity to components of a credential set can non-trivially impact error rates.

  3. Rapid cold hardening: a gut feeling.

    Science.gov (United States)

    Worland, M R; Convey, P; Luke ov , A

    2000-01-01

    This study examined the rate of cold hardening of a field population of Antarctic springtails and the effect of eating food with particular levels of ice nucleating activity on the animal's whole body freezing point. The SCPs of samples of c. 20, freshly collected, Cryptopygus antarcticus were measured hourly over a 32 hour collection period using differential scanning calorimetry and related to habitat temperature. The mean SCP of the springtails increased from -24 to -10 degree C during which time the habitat temperature warmed slowly from -2.5 to +2.5 degree C. In laboratory experiments, previously starved, cold tolerant springtails were fed on selected species of algae with measured SCP's but there was no clear correlation between the SCP of food and that of the animals after feeding. Microscopic examination of faecal pellets and guts from springtails showed that algal cells were completely destroyed during digestion.

  4. Radiation effects in optoelectronic devices

    International Nuclear Information System (INIS)

    Barnes, C.E.

    1977-03-01

    A summary is given of studies on radiation effects in light-emitting diodes, laser diodes, detectors, optical isolators and optical fibers. It is shown that the study of radiation damage in these devices can provide valuable information concerning the nature of the devices themselves, as well as methods of hardening these devices for applications in radiation environments

  5. Hardening of eucalyptus seedlings via salicylic acid application

    Directory of Open Access Journals (Sweden)

    Eduardo Henrique Lima Mazzuchelli

    2014-09-01

    Full Text Available The agricultural and forest productivity suffer restrictions imposed by water stress, high temperature and high solar radiation. This study aimed to evaluate the capacity of stress attenuation and growth promotion of salicylic acid (SA application in eucalyptus (E. urophylla x E. grandis hybrid seedlings under water stress. A completely randomized design, in a 3x4 factorial scheme (three water treatments: constant irrigation with daily replacement of 40% (CI40% or 100% (CI100% of evapotranspirated water, and temporary irrigation suspension with replacement of only 40% of evapotranspirated water (S40%; and four SA concentrations: 0 mg L-1, 100 mg L-1, 200 mg L-1 and 300 mg L-1, was used. Plant photosynthetic parameters and biometric features were evaluated. The stomatal limitation was higher in plants under S40% irrigation, however, the SA application reverted this result, allowing the maintenance of the photosynthetic potential. There was interaction between irrigation regimes and SA doses for number of leaves, leaf area/number of leaves ratio and shoot and root dry mass. It was concluded that the application of 200 mg L -1 of SA positively affected the growth of eucalyptus seedlings under water stress, being considered an auxiliary management technique to their hardening process.

  6. Modeling copper precipitation hardening and embrittlement in a dilute Fe-0.3at.%Cu alloy under neutron irradiation

    Science.gov (United States)

    Bai, Xian-Ming; Ke, Huibin; Zhang, Yongfeng; Spencer, Benjamin W.

    2017-11-01

    Neutron irradiation in light water reactors can induce precipitation of nanometer sized Cu clusters in reactor pressure vessel steels. The Cu precipitates impede dislocation gliding, leading to an increase in yield strength (hardening) and an upward shift of ductile-to-brittle transition temperature (embrittlement). In this work, cluster dynamics modeling is used to model the entire Cu precipitation process (nucleation, growth, and coarsening) in a Fe-0.3at.%Cu alloy under neutron irradiation at 300°C based on the homogenous nucleation mechanism. The evolution of the Cu cluster number density and mean radius predicted by the modeling agrees well with experimental data reported in literature for the same alloy under the same irradiation conditions. The predicted precipitation kinetics is used as input for a dispersed barrier hardening model to correlate the microstructural evolution with the radiation hardening and embrittlement in this alloy. The predicted radiation hardening agrees well with the mechanical test results in the literature. Limitations of the model and areas for future improvement are also discussed in this work.

  7. Hardening and softening mechanisms of pearlitic steel wire under torsion

    International Nuclear Information System (INIS)

    Zhao, Tian-Zhang; Zhang, Shi-Hong; Zhang, Guang-Liang; Song, Hong-Wu; Cheng, Ming

    2014-01-01

    Highlights: • Mechanical behavior of pearlitic steel wire is studied using torsion. • Work hardening results from refinement lamellar pearlitic structure. • Softening results from recovery, shear bands and lamellar fragmentations. • A microstructure based analytical flow stress model is established. - Abstract: The mechanical behaviors and microstructure evolution of pearlitic steel wires under monotonic shear deformation have been investigated by a torsion test and a number of electron microscopy techniques including scanning electron microscopy (SEM) and transmission electron microscopy (TEM), with an aim to reveal the softening and hardening mechanisms of a randomly oriented pearlitic structure during a monotonic stain path. Significantly different from the remarkable strain hardening in cold wire drawing, the strain hardening rate during torsion drops to zero quickly after a short hardening stage. The microstructure observations indicate that the inter-lamellar spacing (ILS) decreases and the dislocations accumulate with strain, which leads to hardening of the material. Meanwhile, when the strain is larger than 0.154, the enhancement of dynamic recovery, shear bands (SBs) and cementite fragmentations results in the softening and balances the strain hardening. A microstructure based analytical flow stress model with considering the influence of ILS on the mean free path of dislocations and the softening caused by SBs and cementite fragmentations, has been established and the predicted flow shear curve meets well with the measured curve in the torsion test

  8. Numerical and experimental comparison of plastic work-hardening rules

    International Nuclear Information System (INIS)

    Haisler, W.E.

    1977-01-01

    The purpose of this paper is to describe recent numerical and experimental correlation studies of several plastic work-hardening rules. The mechanical sublayer model and the combined kinematic-isotropic hardening rules are examined and the numerical results for several structural geometries are compared to experimental results. Both monotonic and cyclic loads are considered. The governing incremental plasticity relations are developed for both work-hardening models. The combined kinematic-isotropic hardening model is developed in terms of a ratio γ which controls the relative contribution of kinematic hardening (yield surface translation) and isotropic hardening (yield surface expansion). In addition to making use of a uniaxial stress-strain curve as input data, the model allows for the input of a yield surface size vs. uniaxial plastic strain curve obtained from a cyclic uniaxial reverse loading test. The mechanical sublayer model is developed in general form and a new method for determining the sublayer parameters (stress weighting factors and yield stresses) is presented. It is demonstrated that former procedures used to obtain the sublayer parameters are inconsistent for multiaxial loading. Numerical and experimental results are presented for a cylinder, circular plate with punch, and a steel pressure vessel. The numerical results are obtained with the computer program AGGIE I. The comparison study indicates that reasonable agreement is obtained with both hardening models; the choice depending upon whether the loading is monotonic or cyclic

  9. X-ray beam hardening correction for measuring density in linear accelerator industrial computed tomography

    International Nuclear Information System (INIS)

    Zhou Rifeng; Wang Jue; Chen Weimin

    2009-01-01

    Due to X-ray attenuation being approximately proportional to material density, it is possible to measure the inner density through Industrial Computed Tomography (ICT) images accurately. In practice, however, a number of factors including the non-linear effects of beam hardening and diffuse scattered radiation complicate the quantitative measurement of density variations in materials. This paper is based on the linearization method of beam hardening correction, and uses polynomial fitting coefficient which is obtained by the curvature of iron polychromatic beam data to fit other materials. Through theoretical deduction, the paper proves that the density measure error is less than 2% if using pre-filters to make the spectrum of linear accelerator range mainly 0.3 MeV to 3 MeV. Experiment had been set up at an ICT system with a 9 MeV electron linear accelerator. The result is satisfactory. This technique makes the beam hardening correction easy and simple, and it is valuable for measuring the ICT density and making use of the CT images to recognize materials. (authors)

  10. Work hardening behavior study of structural alloys for cryogenic applications

    International Nuclear Information System (INIS)

    Chu, D.; Morris, J.W. Jr.

    1992-01-01

    Previous investigation on aluminum-lithium alloys have indicated different dependencies of the work hardening behavior on temperature. This variation in temperature dependence is attributed to differences in microstructure rather than composition. An understanding of the microstructural effect on the observed thermal dependency is important as it may allow the tailoring of deformation properties through mechanical processing. Work hardening analyses on other aluminum alloys and a number of structural steels have been performed to better elucidate the role played by microstructure in determining the work hardening behavior. In the paper correlations between the differences in mechanical behavior and the various microstructures observed are presented

  11. Atomistic study of the hardening of ferritic iron by Ni-Cr decorated dislocation loops

    Science.gov (United States)

    Bonny, G.; Bakaev, A.; Terentyev, D.; Zhurkin, E.; Posselt, M.

    2018-01-01

    The exact nature of the radiation defects causing hardening in reactor structural steels consists of several components that are not yet clearly determined. While generally, the hardening is attributed to dislocation loops, voids and secondary phases (radiation-induced precipitates), recent advanced experimental and computational studies point to the importance of solute-rich clusters (SRCs). Depending on the exact composition of the steel, SRCs may contain Mn, Ni and Cu (e.g. in reactor pressure vessel steels) or Ni, Cr, Si, Mn (e.g. in high-chromium steels for generation IV and fusion applications). One of the hypotheses currently implied to explain their formation is the process of radiation-induced diffusion and segregation of these elements to small dislocation loops (heterogeneous nucleation), so that the distinction between SRCs and loops becomes somewhat blurred. In this work, we perform an atomistic study to investigate the enrichment of loops by Ni and Cr solutes and their interaction with an edge dislocation. The dislocation loops decorated with Ni and Cr solutes are obtained by Monte Carlo simulations, while the effect of solute segregation on the loop's strength and interaction mechanism is then addressed by large scale molecular dynamics simulations. The synergy of the Cr-Ni interaction and their competition to occupy positions in the dislocation loop core are specifically clarified.

  12. Characterization of the surface oxidation reaction and its influence on the radiation absorption during the surface laser hardening process of the 42CrMo4 steel; Caracterizacion de la reaccion de oxidacion superficial y su influencia sobre la absorcion de radiacion durante el proceso de temple superficial con laser para el acero 42CrMo4

    Energy Technology Data Exchange (ETDEWEB)

    Cordovilla, F.; Dominguez, J.; Sancho, P.; Garcia-Beltran, A.; Ocana, J. L.

    2016-10-01

    Surface laser hardening of steel is a process that produces an enormous interest due to its uncountable advantages in terms of quality and productivity against induction hardening The effective implantation of this process, nevertheless, is been hampered because of the lack of reliable and flexible predictive tools. There are different models focused on the temperature calculation, thought, few make a thorough analysis of the surface oxidation associated with the process and its important implications over the absorption coefficient. This work proposes and explains a coupled model temperature/ oxidation available in literature, applied, for the first time, for the simulation of simple processes carried out with different conditions of power and speed, for the 42CrMo4 steel. These conditions have been reproduced experimentally, tracking the maximum surface temperature and the oxide thickness. Both results have shown a high degree of coincidence whit theoretical predictions, confirming the capabilities and utility of the model. (Author)

  13. Stress corrosion cracking evaluation of precipitation-hardening stainless steel

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1970-01-01

    Accelerated test program results show which precipitation hardening stainless steels are resistant to stress corrosion cracking. In certain cases stress corrosion susceptibility was found to be associated with the process procedure.

  14. system hardening architecture for safer access to critical business

    African Journals Online (AJOL)

    eobe

    System hardening is a defence strategy, where several different security measures are applied at various layers, all of which .... commerce have tremendously imparted on corporate services ..... Technology and Exploring Engineering, Vol. 2,.

  15. Generation Mechanism of Work Hardened Surface Layer in Metal Cutting

    Science.gov (United States)

    Hikiji, Rikio; Kondo, Eiji; Kawagoishi, Norio; Arai, Minoru

    Finish machining used to be carried out in grinding, but it is being replaced by cutting with very small undeformed chip thickness. In ultra precision process, the effects of the cutting conditions and the complicated factors on the machined surface integrity are the serious problems. In this research, work hardened surface layer was dealt with as an evaluation of the machined surface integrity and the effect of the mechanical factors on work hardening was investigated experimentally in orthogonal cutting. As a result, it was found that work hardened surface layer was affected not only by the shear angle varied under the cutting conditions and the thrust force of cutting resistance, but also by the thrust force acting point, the coefficient of the thrust force and the compressive stress equivalent to the bulk hardness. Furthermore, these mechanical factors acting on the depth of the work hardened surface layer were investigated with the calculation model.

  16. System Hardening Architecture for Safer Access to Critical Business ...

    African Journals Online (AJOL)

    System Hardening Architecture for Safer Access to Critical Business Data. ... and the threat is growing faster than the potential victims can deal with. ... in this architecture are applied to the host, application, operating system, user, and the ...

  17. Radiation effects in LDD MOS devices

    International Nuclear Information System (INIS)

    Woodruff, R.L.; Adams, J.R.

    1987-01-01

    The purpose of this work is to investigate the response of lightly doped drain (LDD) n-channel transistors to ionizing radiation. Transistors were fabricated with conventional (non-LDD) and lightly doped drain (LDD) structures using both standard (non-hardened) and radiation hardened gate oxides. Characterization of the transistors began with a correlation of the total-dose effects due to 10 keV x-rays with Co-60 gamma rays. The authors find that for the gate oxides and transistor structures investigated in this work, 10 keV x-rays produce more fixed-charge guild-up in the gate oxide, and more interface charge than do Co-60 gamma rays. They determined that the radiation response of LDD transistors is similar to that of conventional (non-LDD) transistors. In addition, both standard and radiation-hardened transistors subjected to hot carrier stress before irradiation show a similar radiation response. After exposure to 1.0 x 10 6 rads(Si), non-hardened transistors show increased susceptibility to hot-carrier graduation, while the radiation-hardened transistors exhibit similar hot-carrier degradation to non-irradiated devices. The authors have demonstrated a fully-integrated radiation hardened process tht is solid to 1.0 x 10 6 rads(Si), and shows promise for achieving 1.0 x 10 7 rad(Si) total-dose capability

  18. Hardening of single crystals of magnesium by low neutron doses at 77 K

    International Nuclear Information System (INIS)

    Gonzalez, H.C.

    1984-01-01

    Radiation hardening in Mg single crystals at 77 K is studied with a microtensile machine operating in-situ in the CNEA reactor facility RA1. Experimental results show that the dose dependence of the yield stress is similar to that previously observed in irradiated Cu and Zn. The radiation-induced yield stress, due to the presence of radiation obstacles operating alone, increases according to a 0.5 power law. It adds algebraically to the athermal component of the initial yield stress, but is not exactly additive to the other thermally activated mechanisms. For doses higher than 4.5 x 10 16 neutrons/cm 2 , a strong instability in the deformation is observed. Post irradiation experiments in tensile tests performed with a hard machine show a continuous stress drop. This effect is attributed to the dislocation channeling phenomenon which takes place during the tensile test. (author)

  19. Micromilling of hardened tool steel for mould making applications

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    geometries as those characterizing injection moulding moulds. The realization of the micromilling process in connection with hardened tool steel as workpiece material is particularly challenging. The low strength of the miniaturized end mills implies reduction and accurate control of the chip load which...... wear. This paper presents the micromilling process applied to the manufacturing of micro injection moulding moulds in hardened tool steel, presenting experimental evidence and possible solutions to the above-mentioned issues....

  20. Developing precipitation hardenable high entropy alloys

    Science.gov (United States)

    Gwalani, Bharat

    High entropy alloys (HEAs) is a concept wherein alloys are constructed with five or more elements mixed in equal proportions; these are also known as multi-principle elements (MPEs) or complex concentrated alloys (CCAs). This PhD thesis dissertation presents research conducted to develop precipitation-hardenable high entropy alloys using a much-studied fcc-based equi-atomic quaternary alloy (CoCrFeNi). Minor additions of aluminium make the alloy amenable for precipitating ordered intermetallic phases in an fcc matrix. Aluminum also affects grain growth kinetics and Hall-Petch hardenability. The use of a combinatorial approach for assessing composition-microstructure-property relationships in high entropy alloys, or more broadly in complex concentrated alloys; using laser deposited compositionally graded AlxCrCuFeNi 2 (0 mechanically processed via conventional techniques. The phase stability and mechanical properties of these alloys have been investigated and will be presented. Additionally, the activation energy for grain growth as a function of Al content in these complex alloys has also been investigated. Change in fcc grain growth kinetic was studied as a function of aluminum; the apparent activation energy for grain growth increases by about three times going from Al0.1CoCrFeNi (3% Al (at%)) to Al0.3CoCrFeNi. (7% Al (at%)). Furthermore, Al addition leads to the precipitation of highly refined ordered L12 (gamma') and B2 precipitates in Al0.3CoCrFeNi. A detailed investigation of precipitation of the ordered phases in Al0.3CoCrFeNi and their thermal stability is done using atom probe tomography (APT), transmission electron microscopy (TEM) and Synchrotron X-ray in situ and ex situ analyses. The alloy strengthened via grain boundary strengthening following the Hall-Petch relationship offers a large increment of strength with small variation in grain size. Tensile strength of the Al0.3CoFeNi is increased by 50% on precipitation fine-scale gamma' precipitates

  1. Zinc coated sheet steel for press hardening

    Science.gov (United States)

    Ghanbari, Zahra N.

    Galvanized steels are of interest to enhance corrosion resistance of press-hardened steels, but concerns related to liquid metal embrittlement have been raised. The objective of this study was to assess the soak time and temperature conditions relevant to the hot-stamping process during which Zn penetration did or did not occur in galvanized 22MnB5 press-hardening steel. A GleebleRTM 3500 was used to heat treat samples using hold times and temperatures similar to those used in industrial hot-stamping. Deformation at both elevated temperature and room temperature were conducted to assess the coating and substrate behavior related to forming (at high temperature) and service (at room temperature). The extent of alloying between the coating and substrate was assessed on undeformed samples heat treated under similar conditions to the deformed samples. The coating transitioned from an α + Gamma1 composition to an α (bcc Fe-Zn) phase with increased soak time. This transition likely corresponded to a decrease in availability of Zn-rich liquid in the coating during elevated temperature deformation. Penetration of Zn into the substrate sheet in the undeformed condition was not observed for any of the processing conditions examined. The number and depth of cracks in the coating and substrate steel was also measured in the hot-ductility samples. The number of cracks appeared to increase, while the depth of cracks appeared to decrease, with increasing soak time and increasing soak temperature. The crack depth appeared to be minimized in the sample soaked at the highest soak temperature (900 °C) for intermediate and extended soak times (300 s or 600 s). Zn penetration into the substrate steel was observed in the hot-ductility samples soaked at each hold temperature for the shortest soak time (10 s) before being deformed at elevated temperature. Reduction of area and elongation measurements showed that the coated sample soaked at the highest temperature and longest soak time

  2. An experimental study on the influence of scatter and beam hardening in x-ray CT for dimensional metrology

    International Nuclear Information System (INIS)

    Lifton, J J; McBride, J W; Malcolm, A A

    2016-01-01

    Scattered radiation and beam hardening introduce artefacts that degrade the quality of data in x-ray computed tomography (CT). It is unclear how these artefacts influence dimensional measurements evaluated from CT data. Understanding and quantifying the influence of these artefacts on dimensional measurements is required to evaluate the uncertainty of CT-based dimensional measurements. In this work the influence of scatter and beam hardening on dimensional measurements is investigated using the beam stop array scatter correction method and spectrum pre-filtration for the measurement of an object with internal and external cylindrical dimensional features. Scatter and beam hardening are found to influence dimensional measurements when evaluated using the ISO50 surface determination method. On the other hand, a gradient-based surface determination method is found to be robust to the influence of artefacts and leads to more accurate dimensional measurements than those evaluated using the ISO50 method. In addition to these observations the GUM method for evaluating standard measurement uncertainties is applied and the standard measurement uncertainty due to scatter and beam hardening is estimated. (paper)

  3. Microstructure and grain size effects on irradiation hardening of low carbon steel for reactor tanks

    Energy Technology Data Exchange (ETDEWEB)

    Milasin, N [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1964-05-15

    Irradiation hardening of steel for reactor pressure vessels has been studied extensively during the past few years. A great number of experimental results concerning the behaviour of these steels in the radiation field and several review papers (1,2) have been published. Most of the papers deal with the effects of specific metallurgical factors or irradiation conditions (temperature, flux) on irradiation hardening and embrittlement. In addition, a number of experiments are performed to give evidence on the mechanism of irradiation hardening of these steels. However, this mechanism is still unknown due to the complexity of steel as a system. Among different methods used in radiation damage studies, the changes of mechanical properties have been mainly investigated. By using Hall-Petch's empirical relation, {sigma}{sub y}={sigma}{sub i}+k{sub y} d{sup -1/2} between lower yield stress, {sigma}{sub y}, and grain size, 2d, the information about the effect of irradiation on the parameters {sigma}{sub i} and k{sub y} is obtained. Taking as a base interpretation of {sigma}{sub i} and k{sub y} given by Petch and his co-workers it has been concluded that radiation does not change the stress to start slip but that it increase the friction that opposes the passage of free dislocations across a slip plane. In attempting to apply Hall-Petch's relation to one unirradiated ferritic steel with a carbon content higher than 0.15% some difficulties were encountered. The results obtained indicate that the influence of grain size can not be isolated from other factors introduced by the treatments used to produce different grain sizes. This paper deals with a similar problem in the case of irradiated steel. The results obtained give the changes of the mechanical properties of steel in neutron irradiation field as a function of microstructure and grain size. In addition, the mechanical properties of irradiated steel are measured after annealing at 150 deg C and 450 deg C. On the basis of

  4. Microstructure and grain size effects on irradiation hardening of low carbon steel for reactor tanks

    International Nuclear Information System (INIS)

    Milasin, N.

    1964-05-01

    Irradiation hardening of steel for reactor pressure vessels has been studied extensively during the past few years. A great number of experimental results concerning the behaviour of these steels in the radiation field and several review papers (1,2) have been published. Most of the papers deal with the effects of specific metallurgical factors or irradiation conditions (temperature, flux) on irradiation hardening and embrittlement. In addition, a number of experiments are performed to give evidence on the mechanism of irradiation hardening of these steels. However, this mechanism is still unknown due to the complexity of steel as a system. Among different methods used in radiation damage studies, the changes of mechanical properties have been mainly investigated. By using Hall-Petch's empirical relation, σ y =σ i +k y d -1/2 between lower yield stress, σ y , and grain size, 2d, the information about the effect of irradiation on the parameters σ i and k y is obtained. Taking as a base interpretation of σ i and k y given by Petch and his co-workers it has been concluded that radiation does not change the stress to start slip but that it increase the friction that opposes the passage of free dislocations across a slip plane. In attempting to apply Hall-Petch's relation to one unirradiated ferritic steel with a carbon content higher than 0.15% some difficulties were encountered. The results obtained indicate that the influence of grain size can not be isolated from other factors introduced by the treatments used to produce different grain sizes. This paper deals with a similar problem in the case of irradiated steel. The results obtained give the changes of the mechanical properties of steel in neutron irradiation field as a function of microstructure and grain size. In addition, the mechanical properties of irradiated steel are measured after annealing at 150 deg C and 450 deg C. On the basis of the experimental results obtained the relative microstructure and

  5. Process design of press hardening with gradient material property influence

    International Nuclear Information System (INIS)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-01-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  6. Radiations

    International Nuclear Information System (INIS)

    Pujol Mora, J.

    1999-01-01

    The exposition to ionizing radiations is a constant fact in the life of the human being and its utilization as diagnostic and therapeutic method is generalized. However, it is notorious how as years go on, the fear to the ionizing radiation seems to persist too, and this fact is not limited to the common individual, but to the technical personnel and professional personnel that labors with them same. (S. Grainger) [es

  7. Radiation

    International Nuclear Information System (INIS)

    Davidson, J.H.

    1986-01-01

    The basic facts about radiation are explained, along with some simple and natural ways of combating its ill-effects, based on ancient healing wisdom as well as the latest biochemical and technological research. Details are also given of the diet that saved thousands of lives in Nagasaki after the Atomic bomb attack. Special comment is made on the use of radiation for food processing. (U.K.)

  8. Study of a design criterion for 316L irradiated represented by a strain hardened material; Etude d'un critere de dimensionnement d'un acier 316L irradie represente par un materiau ecroui

    Energy Technology Data Exchange (ETDEWEB)

    Gouin, H

    1999-07-01

    The aim of this study is to analyse the consequence of radiation on different structure submitted to imposed displacement loading and for damages due to plastic instability or rupture. The main consequence of radiation is a material hardening with a ductility decrease. This effect is similar to initial mechanical hardening: the mechanical properties (determined on smooth tensile specimen) evolve in the same way while irradiation or mechanical hardening increase. So in this study, radiation hardening is simulated by mechanical hardening (swaging). Tests were carried out for which two damages were considered: plastic instability and rupture. These two damages were studied with initial mechanical hardening (5 tested hammering rate 0, 15, 25, 35 and 45% on 316L stainless steel). Likewise two types of loading were studied: tensile or bending loading on specimens with or without geometrical singularities (notches). From tensile tests, two deformation criteria are proposed for prevention against the two quoted damages. Numerical study is carried out allowing to confirm hypothesis made at the time of the tensile test result interpretation and to validate the rupture criterion by applying on bending test. (author)

  9. Radiation

    International Nuclear Information System (INIS)

    Winther, J.F.; Ulbak, K.; Dreyer, L.; Pukkala, E.; Oesterlind, A.

    1997-01-01

    Exposure to solar and ionizing radiation increases the risk for cancer in humans. Some 5% of solar radiation is within the ultraviolet spectrum and may cause both malignant melanoma and non-melanocytic skin cancer; the latter is regarded as a benign disease and is accordingly not included in our estimation of avoidable cancers. Under the assumption that the rate of occurrence of malignant melanoma of the buttocks of both men and women and of the scalp of women would apply to all parts of the body in people completely unexposed to solar radiation, it was estimated that approximately 95% of all malignant melanomas arising in the Nordic populations around the year 2000 will be due to exposure to natural ultraviolet radiation, equivalent to an annual number of about 4700 cases, with 2100 in men and 2600 in women, or some 4% of all cancers notified. Exposure to ionizing radiation in the Nordic countries occurs at an average effective dose per capita per year of about 3 mSv (Iceland, 1.1 mSv) from natural sources, and about 1 mSv from man-made sources. While the natural sources are primarily radon in indoor air, natural radionuclides in food, cosmic radiation and gamma radiation from soil and building materials, the man-made sources are dominated by the diagnostic and therapeutic use of ionizing radiation. On the basis of measured levels of radon in Nordic dwellings and associated risk estimates for lung cancer derived from well-conducted epidemiological studies, we estimated that about 180 cases of lung cancer (1% of all lung cancer cases) per year could be avoided in the Nordic countries around the year 2000 if indoor exposure to radon were eliminated, and that an additional 720 cases (6%) could be avoided annually if either radon or tobacco smoking were eliminated. Similarly, it was estimated that the exposure of the Nordic populations to natural sources of ionizing radiation other than radon and to medical sources will each give rise to an annual total of 2120

  10. Computer modelling of age hardening for cast aluminium alloys

    International Nuclear Information System (INIS)

    Wu, Linda; Ferguson, W George

    2009-01-01

    Age hardening, or precipitation hardening, is one of the most widely adopted techniques for strengthening of aluminium alloys. Although various age hardening models have been developed for aluminium alloys, from the large volume of literature reviewed, it appears that the bulk of the research has been concentrated on wrought aluminium alloys, only a few of the established precipitation models have been applied to the casting aluminium alloys. In the present work, there are two modelling methods that have been developed and applied to the casting aluminium alloys A356 and A357. One is based on the Shercliff-Ashby methodology to produce a process model, by which we mean a mathematical relationship between process variables (alloy composition, ageing temperature and time) and material properties (yield strength or hardness) through microstructure evolution (precipitate radius, volume fraction). The other method is based on the Kampmann and Wagner Numerical (KWN) model which deals with concomitant nucleation, growth and coarsening and is thus capable of predicting the full evolution of the particle size distribution and then a strength model is used to evaluate the resulting change in hardness or yield strength at room temperature by taking into account contributions from lattice resistance, solid solution hardening and precipitation hardening.

  11. General analytical shakedown solution for structures with kinematic hardening materials

    Science.gov (United States)

    Guo, Baofeng; Zou, Zongyuan; Jin, Miao

    2016-09-01

    The effect of kinematic hardening behavior on the shakedown behaviors of structure has been investigated by performing shakedown analysis for some specific problems. The results obtained only show that the shakedown limit loads of structures with kinematic hardening model are larger than or equal to those with perfectly plastic model of the same initial yield stress. To further investigate the rules governing the different shakedown behaviors of kinematic hardening structures, the extended shakedown theorem for limited kinematic hardening is applied, the shakedown condition is then proposed, and a general analytical solution for the structural shakedown limit load is thus derived. The analytical shakedown limit loads for fully reversed cyclic loading and non-fully reversed cyclic loading are then given based on the general solution. The resulting analytical solution is applied to some specific problems: a hollow specimen subjected to tension and torsion, a flanged pipe subjected to pressure and axial force and a square plate with small central hole subjected to biaxial tension. The results obtained are compared with those in literatures, they are consistent with each other. Based on the resulting general analytical solution, rules governing the general effects of kinematic hardening behavior on the shakedown behavior of structure are clearly.

  12. Neutron-irradiation + helium hardening and embrittlement modeling of 9% Cr-steels in an engineering perspective (HELENA)

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, Rachid

    2008-07-01

    This report provides a physically-based engineering model to estimate the radiation hardening of 9%Cr-steels under both displacement damage (dpa) and helium. The model is essentially based on the dispersed barrier hardening theory and the dynamic re-solution of helium under displacement cascades. However, a number of assumptions and simplifications were considered to obtain a simple description of irradiation hardening and embrittlement primarily relying on the available experimental data. As a result, two components were basically identified, the dpa component that can be associated with black dots and small loops and the He-component accounting for helium bubbles. The dpa component is strongly dependent on the irradiation temperature and its dependence law was based on a first-order annealing kinetics. The damage accumulation law was also modified to take saturation into account. Finally, the global kinetics of the damage accumulation kept defined, its amplitude is fitted to one experimental condition. The model was rationalized on an experimental database that mainly consists of {proportional_to}9%Cr-steels irradiated in the technologically important temperature range of 50 to 600 C up do 50 dpa and with a He-content up to {proportional_to}5000 appm, including neutron and proton irradiation as well as implantation. The test temperature effect is taken into account through a normalization procedure based on the change of the Young's modulus and the anelastic deformation that occurs at high temperature. Finally, the hardening-to-embrittlement correlation is obtained using the load diagram approach. Despite the large experimental scatter, inherent to the variety of the materials and irradiation as well as testing conditions, the obtained results are very promising. Improvement of the model performance is still possible by including He-hardening saturation and high temperature softening but unfortunately, at this stage, a number of conflicting experimental data

  13. Neutron-irradiation + helium hardening and embrittlement modeling of 9% Cr-steels in an engineering perspective (HELENA)

    International Nuclear Information System (INIS)

    Chaouadi, Rachid

    2008-01-01

    This report provides a physically-based engineering model to estimate the radiation hardening of 9%Cr-steels under both displacement damage (dpa) and helium. The model is essentially based on the dispersed barrier hardening theory and the dynamic re-solution of helium under displacement cascades. However, a number of assumptions and simplifications were considered to obtain a simple description of irradiation hardening and embrittlement primarily relying on the available experimental data. As a result, two components were basically identified, the dpa component that can be associated with black dots and small loops and the He-component accounting for helium bubbles. The dpa component is strongly dependent on the irradiation temperature and its dependence law was based on a first-order annealing kinetics. The damage accumulation law was also modified to take saturation into account. Finally, the global kinetics of the damage accumulation kept defined, its amplitude is fitted to one experimental condition. The model was rationalized on an experimental database that mainly consists of ∝9%Cr-steels irradiated in the technologically important temperature range of 50 to 600 C up do 50 dpa and with a He-content up to ∝5000 appm, including neutron and proton irradiation as well as implantation. The test temperature effect is taken into account through a normalization procedure based on the change of the Young's modulus and the anelastic deformation that occurs at high temperature. Finally, the hardening-to-embrittlement correlation is obtained using the load diagram approach. Despite the large experimental scatter, inherent to the variety of the materials and irradiation as well as testing conditions, the obtained results are very promising. Improvement of the model performance is still possible by including He-hardening saturation and high temperature softening but unfortunately, at this stage, a number of conflicting experimental data reported in literature should

  14. Influence of coolant motion on structure of hardened steel element

    Directory of Open Access Journals (Sweden)

    A. Kulawik

    2008-08-01

    Full Text Available Presented paper is focused on volumetric hardening process using liquid low melting point metal as a coolant. Effect of convective motion of the coolant on material structure after hardening is investigated. Comparison with results obtained for model neglecting motion of liquid is executed. Mathematical and numerical model based on Finite Element Metod is described. Characteristic Based Split (CBS method is used to uncouple velocities and pressure and finally to solve Navier-Stokes equation. Petrov-Galerkin formulation is employed to stabilize convective term in heat transport equation. Phase transformations model is created on the basis of Johnson-Mehl and Avrami laws. Continuous cooling diagram (CTPc for C45 steel is exploited in presented model of phase transformations. Temporary temperatures, phases participation, thermal and structural strains in hardening element and coolant velocities are shown and discussed.

  15. Investigation of magnesium oxychloride cement at the initial hardening stage

    Directory of Open Access Journals (Sweden)

    Averina Galina

    2018-01-01

    Full Text Available The paper investigates the process of variation of magnesium oxychloride cement deformations at the initial hardening stage depending on the activity of magnesium oxide powder which is determined by the parameters of the source material burning. Investigation is focused on magnesium cements obtained from pure magnesium hydroxide. Source materials were burnt at various temperatures with the purpose to obtain magnesium oxide powder with different activity. Regular content of hydrated phases was determined in hardened magnesium cement prepared on the basis of binders with different activity. The study reveals the influence of magnesium oxide powder activity on the process of deformation occurrence in hardened magnesium cement and its tendency to crack formation.

  16. Effect of ethephon on hardening of Pachystroma longifolium seedlings

    Directory of Open Access Journals (Sweden)

    João Alexandre Lopes Dranski

    2013-06-01

    Full Text Available Immediately after planting, tree seedlings face adverse environmental and biotic stresses that must be overcome to ensure survival and to yield a desirable growth. Hardening practices in the nursery may help improve seedling stress resistance through reduction of aboveground plant tissues and increased root volume and biomass. We conducted an assay to quantify changes in the morphogenesis following application of ethephon on seedlings of Pachystroma longifolium (Ness I. M. Johnst.during hardening. The results showed no effect of the ethephon treatments on the number of leaves but a reduction of up to 50% in seedling height increment, and an increase in stem diameter increment of up to 44% with the 600 mg L-1 ethephon treatment, which consequently altered seedling Dickson Quality Index. Our results indicate that ethephon may help to promote desired morphological changes that occur during seedling hardening in nurseries.

  17. Branching structure and strain hardening of branched metallocene polyethylenes

    International Nuclear Information System (INIS)

    Torres, Enrique; Li, Si-Wan; Costeux, Stéphane; Dealy, John M.

    2015-01-01

    There have been a number of studies of a series of branched metallocene polyethylenes (BMPs) made in a solution, continuous stirred tank reactor (CSTR) polymerization. The materials studied vary in branching level in a systematic way, and the most highly branched members of the series exhibit mild strain hardening. An outstanding question is which types of branched molecules are responsible for strain hardening in extension. This question is explored here by use of polymerization and rheological models along with new data on the extensional flow behavior of the most highly branched members of the set. After reviewing all that is known about the effects of various branching structures in homogeneous polymers and comparing this with the structures predicted to be present in BMPs, it is concluded that in spite of their very low concentration, treelike molecules with branch-on-branch structure provide a large number of deeply buried inner segments that are essential for strain hardening in these polymers

  18. Branching structure and strain hardening of branched metallocene polyethylenes

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Enrique; Li, Si-Wan; Costeux, Stéphane; Dealy, John M., E-mail: john.dealy@mcgill.ca [Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C4 (Canada)

    2015-09-15

    There have been a number of studies of a series of branched metallocene polyethylenes (BMPs) made in a solution, continuous stirred tank reactor (CSTR) polymerization. The materials studied vary in branching level in a systematic way, and the most highly branched members of the series exhibit mild strain hardening. An outstanding question is which types of branched molecules are responsible for strain hardening in extension. This question is explored here by use of polymerization and rheological models along with new data on the extensional flow behavior of the most highly branched members of the set. After reviewing all that is known about the effects of various branching structures in homogeneous polymers and comparing this with the structures predicted to be present in BMPs, it is concluded that in spite of their very low concentration, treelike molecules with branch-on-branch structure provide a large number of deeply buried inner segments that are essential for strain hardening in these polymers.

  19. Nonlinear kinematic hardening under non-proportional loading

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1979-07-01

    Within the framework of conventional plasticity theory, it is first determined under which conditions Melan-Prager's and Ziegler's kinematic hardening rules result in identical material behaviour. Next, assuming initial isotropy and adopting the von Mises yield criterion, a nonlinear kinematic hardening function is proposed for prediction of metal behaviour. The model assumes that hardening at a specific stress point depends on the direction of the new incremental loading. Hereby a realistic response is obtained for general reversed loading, and a smooth behaviour is assured, even when loading deviates more and more from proportional loading and ultimately results in reversed loading. The predictions of the proposed model for non-proportional loading under plane stress conditions are compared with those of the classical linear kinematic model, the isotropic model and with published experimental data. Finally, the limitations of the proposaed model are discussed. (author)

  20. Kinematic Hardening: Characterization, Modeling and Impact on Springback Prediction

    International Nuclear Information System (INIS)

    Alves, J. L.; Bouvier, S.; Jomaa, M.; Billardon, R.; Oliveira, M. C.; Menezes, L. F.

    2007-01-01

    The constitutive modeling of the materials' mechanical behavior, usually carried out using a phenomenological constitutive model, i.e., a yield criterion associated to the isotropic and kinematic hardening laws, is of paramount importance in the FEM simulation of the sheet metal forming processes, as well as in the springback prediction. Among others, the kinematic behavior of the yield surface plays an essential role, since it is indispensable to describe the Bauschinger effect, i.e., the materials' answer to the multiple tension-compression cycles to which material points are submitted during the forming process. Several laws are usually used to model and describe the kinematic hardening, namely: a) the Prager's law, which describes a linear evolution of the kinematic hardening with the plastic strain rate tensor b) the Frederick-Armstrong non-linear kinematic hardening, basically a non-linear law with saturation; and c) a more advanced physically-based law, similar to the previous one but sensitive to the strain path changes. In the present paper a mixed kinematic hardening law (linear + non-linear behavior) is proposed and its implementation into a static fully-implicit FE code is described. The material parameters identification for sheet metals using different strategies, and the classical Bauschinger loading tests (i.e. in-plane forward and reverse monotonic loading), are addressed, and their impact on springback prediction evaluated. Some numerical results concerning the springback prediction of the Numisheet'05 Benchmark no. 3 are briefly presented to emphasize the importance of a correct modeling and identification of the kinematic hardening behavior

  1. The application and processing of paints hardened by electron beams

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Electron beam hardening is a process for changing liquid surface coatings of different thicknesses by irradiation with electrons of high energy into solid, hard, elastic films. In contrast to the UV process, one can harden pigmented paints with electron beams. An electron accelerator, which remits free electrons is used as the energy source for starting the chemical reaction in the coating material. In order to irradiate flat parts, which were coated with liquid paint by rolling, pouring or spraying, equally with electrons, one must produce an 'electron curtain', similar to that in a paint pouring machine. (orig./PW) [de

  2. Influence of anisotropic hardening on longitudinal welding strains and stresses

    International Nuclear Information System (INIS)

    Gatovskij, K.M.; Revutskij, M.N.

    1981-01-01

    The algorithm and program for estimation of longitudinal welding strains and stresses with account of hardening and Bauschinger effect, which expand the possibilities of more complete description of stress change during thermodeformation welding cycles at bead surfacing on plate made of the 06Kh18N9T steel and AMg61 alloy. It is shown that for metals, deformation curves which are characterized by considerable yield moduli (Esub(T)/E>=0.05) hardening effect is considerable and its account leads to the decrease of stress level in the heataffected zone (down to 20%) [ru

  3. Aspect-oriented security hardening of UML design models

    CERN Document Server

    Mouheb, Djedjiga; Pourzandi, Makan; Wang, Lingyu; Nouh, Mariam; Ziarati, Raha; Alhadidi, Dima; Talhi, Chamseddine; Lima, Vitor

    2015-01-01

    This book comprehensively presents a novel approach to the systematic security hardening of software design models expressed in the standard UML language. It combines model-driven engineering and the aspect-oriented paradigm to integrate security practices into the early phases of the software development process. To this end, a UML profile has been developed for the specification of security hardening aspects on UML diagrams. In addition, a weaving framework, with the underlying theoretical foundations, has been designed for the systematic injection of security aspects into UML models. The

  4. Work hardening and plastic equation of state of tantalum

    International Nuclear Information System (INIS)

    Gypen, L.A.; Aernoudt, E.; Deruyttere, A.

    1983-01-01

    The influence of cold deformation on the thermal and athermal components of the flow stress of tantalum was investigated. Up to high deformation levels the strain hardening is due only to the development of internal stress fields; the effective stress remains almost constant. The athermal strain hardening of tantalum is parabolic at low deformation levels (epsilon < 0.5) and linear at high deformation levels, as for other bcc metals. Hart's plastic equation of state is shown to be valid for tantalum at room temperature in the whole deformation range investigated (from epsilon = 0.005 to epsilon = 2.8). (author)

  5. Microstructure and properties of cast iron after laser surface hardening

    Directory of Open Access Journals (Sweden)

    Stanislav

    2013-12-01

    Full Text Available Laser surface hardening of cast iron is not trivial due to the material’s heterogeneity and coarse-grained microstructure, particularly in massive castings. Despite that, hardening of heavy moulds for automotive industry is in high demand. The present paper summarises the findings collected over several years of study of materials structure and surface properties. Phase transformations in the vicinity of graphite are described using examples from production of body parts in automotive industry. The description relates to formation of martensite and carbide-based phases, which leads to hardness values above 65 HRC and to excellent abrasion resistance.

  6. Numerical simulations of progressive hardening by using ABAQUS FEA software

    Directory of Open Access Journals (Sweden)

    Domański Tomasz

    2018-01-01

    Full Text Available The paper concerns numerical simulations of progressive hardening include phase transformations in solid state of steel. Abaqus FEA software is used for numerical analysis of temperature field and phase transformations. Numerical subroutines, written in fortran programming language are used in computer simulations where models of the distribution of movable heat source, kinetics of phase transformations in solid state as well as thermal and structural strain are implemented. Model for evaluation of fractions of phases and their kinetics is based on continuous heating diagram and continuous cooling diagram. The numerical analysis of thermal fields, phase fractions and strain associated progressive hardening of elements made of steel were done.

  7. Effect of aluminizing on hardenability of steel (S45C)

    Science.gov (United States)

    Prayitno, D.; Sugiarto, R.

    2018-01-01

    The objective of research is to know the effect of aluminizing on hardenability of steel (S45C). The research methodologies were as follows. The Steels (S45C) were machined into the Jominy test samples. Next the samples were preheating at 700 ° C for 30 minutes and then the samples were dipped into the molten of aluminium for 3 minutes as a hot dip aluminizng method. The aluminium molten was 700 ° C. Then the samples were cooled into room temperatures. Finally the samples were into the jominy tested. The results show that the aluminizing (include the preheating process) increases the hardenability of steel (S45C).

  8. Structure of hardened alloys of Sr-Rh system

    International Nuclear Information System (INIS)

    Dobromyslov, A.V.; Taluth, N.I.

    1997-01-01

    Methods of X-ray diffraction analysis, optical metallography, transmission electron microscopy and hardness measurement were applied to study the structure of hardened zirconium-rhodium system alloys with rhodium contents up to 4.5 at.%. It is shown that in hardening alloys with rhodium concentration lower 2.2 at.% the eutectoid decomposition takes place and bainite-like structure is formed. A metastable ω-phase is formed in alloys with rhodium concentration equal to 2.65 at.% and above. The formation of ω-phase suppresses the process of eutectoid decomposition

  9. Changes in hardness of magnesium alloys due to precipitation hardening

    Directory of Open Access Journals (Sweden)

    Tatiana Oršulová

    2018-04-01

    Full Text Available This paper deals with the evaluation of changes in hardness of magnesium alloys during precipitation hardening that are nowadays widely used in different fields of industry. It focuses exactly on AZ31, AZ61 and AZ91 alloys. Observing material hardness changes serves as an effective tool for determining precipitation hardening parameters, such as temperature and time. Brinell hardness measurement was chosen based on experimental needs. There was also necessary to make chemical composition analysis and to observe the microstructures of tested materials. The obtained results are presented and discussed in this paper.

  10. Thermal stress ratcheting analysis of a time-hardening structure

    International Nuclear Information System (INIS)

    Hada, Kazuhiko

    1999-01-01

    Thermal stress ratcheting and shakedown is analyzed for a time-hardening structure: the yield stress increases as time goes on under exposure to neutron irradiation or thermal aging. New three modes of ratcheting and shakedown are identified as transition to other deformation modes. Stress regimes and thermal ratchet strains are formulated as a function of time-increasing yield stress. Moreover, a new model of trouble occurrence frequency as a modification to a bath-tube curve is proposed for calculating a time period of a thermal cycle. Application of the proposed formulation tells us a benefit of taking into account the time hardening due to neutron irradiation. (author)

  11. Radiation effects on microelectronics

    International Nuclear Information System (INIS)

    Gover, J.E.

    1987-01-01

    Applications of radiation-hardened microelectronics in nuclear power systems include (a) light water reactor (LWR) containment building, postaccident instrumentation that can operate through the beta and gamma radiation released in a design basis loss-of-coolant accident; (b) advanced LWR instrumentation and control systems employing distributed digital integrated circuit (IC) technology to achieve a high degree of artificial intelligence and thereby reduce the probability of operator error under accident conditions; (c) instrumentation, command, control and communication systems for space nuclear power applications that must operate during the neutron and gamma-ray core leakage environments as well as the background electron, proton, and heavy charged particle environments of space; and (d) robotics systems designed for the described functions. Advanced microelectronics offer advantages in cost and reliability over alternative approaches to instrumentation and control. No semiconductor technology is hard to all classes of radiation effects phenomena. As the effects have become better understood, however, significant progress has been made in hardening IC technology. Application of hardened microelectronics to nuclear power systems has lagged military applications because of the limited market potential of hardened instruments and numerous institutional impediments

  12. Radiation sensitivity of integrated circuits Pt. 1

    International Nuclear Information System (INIS)

    Bereczkine Kerenyi, Ilona

    1986-01-01

    The cosmic ray sensitivity of CMOS integrated circuits are overviewed in three parts. The aim is to analyze the effects of ionizing radiation on the degradation of electronic parameters, the effects of the electric state during irradiation, and the radiation hardening of ICs. In this Part 1 a general introduction of the response of semiconductors to cosmic radiation is given, and the radiation tolerance and hardening of small-scale integrated CMOS ICs is analyzed in detail. The devices include various basic inverters and simple gate ICs. (R.P.)

  13. CMOS optimization for radiation hardness

    International Nuclear Information System (INIS)

    Derbenwick, G.F.; Fossum, J.G.

    1975-01-01

    Several approaches to the attainment of radiation-hardened MOS circuits have been investigated in the last few years. These have included implanting the SiO 2 gate insulator with aluminum, using chrome-aluminum layered gate metallization, using Al 2 O 3 as the gate insulator, and optimizing the MOS fabrication process. Earlier process optimization studies were restricted primarily to p-channel devices operating with negative gate biases. Since knowledge of the hardness dependence upon processing and design parameters is essential in producing hardened integrated circuits, a comprehensive investigation of the effects of both process and design optimization on radiation-hardened CMOS integrated circuits was undertaken. The goals are to define and establish a radiation-hardened processing sequence for CMOS integrated circuits and to formulate quantitative relationships between process and design parameters and the radiation hardness. Using these equations, the basic CMOS design can then be optimized for radiation hardness and some understanding of the basic physics responsible for the radiation damage can be gained. Results are presented

  14. Disorientations and work-hardening behaviour during severe plastic deformation

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang

    2012-01-01

    Orientation differences develop during plastic deformation even in grains of originally uniform orientation. The evolution of these disorientations is modelled by dislocation dynamics taking into account different storage mechanisms. The predicted average disorientation angles across different ty...... pressure torsion, but also rationalizes the work-hardening behaviour at large plastic strains as well as a saturation of the flow stress....

  15. Preparation of Dispersion-Hardened Copper by Internal Oxidation

    DEFF Research Database (Denmark)

    Brøndsted, Povl; Sørensen, Ole Toft

    1978-01-01

    Internal oxidation experiments in CO2/CO atmospheres on Cu-Al alloys for preparation of dispersion-hardened Cu are described. The oxygen pressures of the atmospheres used in the experiments were controlled with a solid electrolyte oxygen cell based on ZrO2 (CaO). The particle size distributions o...

  16. Influence of alloying and secondary annealing on anneal hardening ...

    Indian Academy of Sciences (India)

    Unknown

    Influence of alloying and secondary annealing on anneal hardening effect at sintered copper alloys. SVETLANA NESTOROVIC. Technical Faculty Bor, University of Belgrade, Bor, Yugoslavia. MS received 11 February 2004; revised 29 October 2004. Abstract. This paper reports results of investigation carried out on sintered ...

  17. Influence of degree of deformation in rolling on anneal hardening ...

    Indian Academy of Sciences (India)

    Unknown

    Influence of degree of deformation in rolling on anneal hardening effect of a cast copper alloy. SVETLANA NESTOROVIC*, DESIMIR MARKOVIC and LJUBICA IVANIC. Technical Faculty Bor, University of Belgrade, Belgrade, Yugoslavia. MS received 15 May 2003. Abstract. This paper reports results of investigations carried ...

  18. Fatigue Hardening and Nucleation of Persistent Slip Bands in Copper

    DEFF Research Database (Denmark)

    Pedersen, Ole Bøcker; Winter, A. T.

    1982-01-01

    A study of fatigue hardening in single crystals of pure copper shows that, before saturation, stress-strain loops can display workhardening rates of about a third of the elastic shear modulus. These rates exceed tensile workhardening rates by roughly two orders of magnitude. This suggests that th...

  19. A unified theoretical and experimental study of anisotropic hardening

    International Nuclear Information System (INIS)

    Boehler, J.P.; Raclin, J.

    1981-01-01

    The purpose of this work is to develop a consistent formulation of the constitutive relations regarding anisotropic hardening materials. Attention is focused on the appearance and the evolution of mechanical anisotropies during irreversible processes, such as plastic forming and inelastic deformation of structures. The representation theorems for anisotropic tensor functions constitute a theoretical basis, allowing to reduce arbitrariness and to obtain a unified formulation of anisotropic hardening. In this approach, a general three-dimensional constitutive law is developed for prestrained initially orthotropic materials. Introduction of the plastic behavior results in the general forms of both the flow-law and the yield criterion. The developed theory is then specialized for the case of plane stress and different modes of anisotropic hardening are analyzed. A new generalization of the Von Mises criterion is proposed, in considering a homogeneous form of order two in stress and employing the simplest combinations of the basic invariants entering the general form of the yield condition. The proposed criterion involves specific terms accounting for the initial anisotropy, the deformation induced anisotropy and correlative terms between initial and induced anisotropy. The effects of prestrainings result in both isotropic and anisotropic hardening. An adequate experimental program, consisting of uniaxial tensile tests on oriented specimens of prestrained sheet-metal, was performed, in order to determine the specific form and the evolution of the anisotropic failure criterion for soft-steel subjected to different irreversible prestrainings. (orig.)

  20. Epoxy modified bitumen : Chemical hardening and its interpretation

    NARCIS (Netherlands)

    Apostolidis, P.; Pipintakos, G.; van de Ven, M.F.C.; Liu, X.; Erkens, Sandra; Scarpas, Athanasios

    2018-01-01

    Epoxy modified bitumen (EMB) is a promising technology for long lasting paving materials ensuring higher resistance to rutting, oxygen- and moisture-induced damage. In this paper, an analysis of the chemical reactions that take place during the chemical hardening process (curing) of epoxy modified

  1. New Stainless Steel Alloys for Low Temperature Surface Hardening?

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2015-01-01

    The present contribution showcases the possibility for developing new surface hardenable stainless steels containing strong nitride/carbide forming elements (SNCFE). Nitriding of the commercial alloys, austenitic A286, and ferritic AISI 409 illustrates the beneficial effect of having SNCFE presen...

  2. The shrinkage of hardening cement paste and mortar

    NARCIS (Netherlands)

    Haas, de G.D.; Kreijger, P.C.; Niël, E.M.M.G.; Slagter, J.C.; Stein, H.N.; Theissing, E.M.; Wallendael, van M.

    1975-01-01

    This paper is an abstract from the report of the commission B10: "The influence of the shrinkage of cement on the shrink-age of concrete", of the Netherlands Committee for Concrete Research. Measurements of pulse velocity, volume shrinkage and heat of hydration on hardening portland cement support

  3. Hardening digital systems with distributed functionality: robust networks

    Science.gov (United States)

    Vaskova, Anna; Portela-Garcia, Marta; Garcia-Valderas, Mario; López-Ongil, Celia; Portilla, Jorge; Valverde, Juan; de la Torre, Eduardo; Riesgo, Teresa

    2013-05-01

    Collaborative hardening and hardware redundancy are nowadays the most interesting solutions in terms of fault tolerance achieved and low extra cost imposed to the project budget. Thanks to the powerful and cheap digital devices that are available in the market, extra processing capabilities can be used for redundant tasks, not only in early data processing (sensed data) but also in routing and interfacing1

  4. Surface Induction Hardening of Axi-Symmetric Bodies

    Czech Academy of Sciences Publication Activity Database

    Barglik, J.; Doležel, Ivo; Škopek, M.; Ulrych, B.

    2001-01-01

    Roč. 1, č. 1 (2001), s. 11-16 ISSN 1335-8243 R&D Projects: GA ČR GA102/01/0184 Grant - others:-(PL) 7T08603716 Keywords : induction heating * induction hardening * numerical solution Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  5. Coefficient of work-hardening in stage-IV

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1994-04-15

    Full Text Available The theory of work hardening in stage IV depends on the relation between the relative misorientation Psi of neighbouring subgrains and the plastic strain gamma (Psi = B gamma exp). The value of the constant B is suggested to be better related...

  6. Multiaxial ratcheting with advanced kinematic and directional distortional hardening rules

    Czech Academy of Sciences Publication Activity Database

    Feigenbaum, H. P.; Dugdale, J.; Dafalias, Y.F.; Kourousis, K. I.; Plešek, Jiří

    2012-01-01

    Roč. 49, č. 22 (2012), s. 3063-3076 ISSN 0020-7683 R&D Projects: GA MŠk(CZ) ME10024 Institutional research plan: CEZ:AV0Z20760514 Keywords : plasticity * directional distortional hardening * thermodynamics Subject RIV: JJ - Other Materials Impact factor: 1.871, year: 2012 http://www.sciencedirect.com/science/article/pii/S0020768312002612

  7. Surface modification on PMMA : PVDF polyblend: hardening under ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Polyblend; surface modification; microhardness; hardening; plasticization; segmental mobility. 1. Introduction. Polymeric materials have a specific feature of stability towards various aggressive chemical environments, which depends on a multiplicity of factors like structure and nature of the polymers and chemical ...

  8. Role of work hardening characteristics of matrix alloys in the ...

    Indian Academy of Sciences (India)

    Unknown

    with increasing prismatic punching of dislocations in the order 7075, 2014, 7010, 2024, 6061 and commercial purity aluminium leading to increased strength increments is noted. Keywords. Metal matrix composites; strengthening; work hardening rate; dislocation density. 1. Introduction. While in continuous fibre composites, ...

  9. Effect of hardening methods of moulding sands with water glass on structure of bonding bridges

    Directory of Open Access Journals (Sweden)

    M. Stachowicz

    2010-07-01

    Full Text Available Research on influence of hardening methods on structure of bonding bridges in moulding sands with sodium water glass is presented.Moulding sands with addition of 2.5 % of binder with molar module 2.0 were hardened with CO2 and dried in traditional way or hardenedwith microwaves. It was proved that the hardening method affects structure of bonding bridges, correlating with properties of the hardened moulding sands. It was found that strength of the moulding sands hardened with microwaves for 4 min is very close to that measured after traditional drying at 110 °C for 120 min. So, application of microwave hardening ensures significant shortening of the process time to the value comparable with CO2 hardening but guaranteeing over 10-fold increase of mechanical properties. Analysis of SEM images of hardened moulding sands permitted explaining differences in quality parameters of moulding sands by connecting them with structure of the created bonding bridges.

  10. Neutron flux and annealing effects on irradiation hardening of RPV materials

    Science.gov (United States)

    Chaouadi, R.; Gérard, R.

    2011-11-01

    This paper aims to examine an eventual effect of neutron flux, sometimes referred to as dose rate effect, on irradiation hardening of a typical A533B reactor pressure vessel steel. Tensile tests on both low flux (reactor surveillance data) and high flux (BR2 reactor) were performed in a large fluence range. The obtained results indicate two features. First, the surveillance data exhibit a constant (˜90 MPa) higher yield strength than the high flux data. However, this difference cannot be explained from a flux effect but most probably from differences in the initial tensile properties. The hardening kinetic of both low and high flux is the same. Annealing at low temperature, 345 °C/40 h, to eventually reveal unstable matrix damage did not affect both BR2 and surveillance specimens. This is confirmed by other annealing experimental data including both tensile and hardness measurements and tensile data on A508 forging and weld. It is suggested that the absence of flux effect on the tensile properties while different radiation-induced microstructures can be attributed to thermal ageing effects.

  11. OCCUPATIONAL ASTHMA CAUSED BY A HARDENER CONTAINING AN ALIPHATIC AND A CYCLOALIPHATIC DIAMINE

    NARCIS (Netherlands)

    ALEVA, RM; AALBERS, R; KOETER, GH; DEMONCHY, JGR

    An otherwise healthy 44-yr-old man experienced a serious attack of bronchial obstruction after working with resins and hardeners, releasing fumes of a mixture of an aliphatic and a cycloaliphatic diamine hardener. Eight hours after deliberate challenge with the hardener a large increase of airway

  12. Industrial processing with radiation

    International Nuclear Information System (INIS)

    Du Plessis, T.A.

    1976-01-01

    The use of large isotopic radiation sources and accelerators in industry is reviewed. The advantages of various sources of ionizing radiation are indicated, and the development and present status of radiation technology are briefly described. Attention is given to the role played by radiation processing in the cross-linking of polymers as applied to cable insulation, artificial limbs and packaging materials, as well as for improving natural rubber. In addition, attention is given to radiation as a possible means of synthesizing polymers, of hardening non-conventional coatings and of manufacturing polymer-wood composites, thereby improving the properties of softwoods. The possibility of improving natural fibres by means of radiation is discussed, and attention is given to the important role already played by radiation in the sterilization of medical products. Finally, reference is made to the role which radiation can play in reducing food spoilage, as well as in making sewage sludge suitable for agricultural purposes [af

  13. Precipitation hardenable iron-nickel-chromium alloy having good swelling resistance and low neutron absorbence

    International Nuclear Information System (INIS)

    Korenko, M.K.; Merrick, H.F.; Gibson, R.C.

    1982-01-01

    An iron-nickel-chromium age-hardenable alloy suitable for use in fast breeder reactor ducts and cladding utilizes the gamma-double prime strengthening phase and has a morphology of the gamma-double prime phase enveloping the gamma-prime phase and delta phase distributed at or near the grain boundaries. The alloy consists essentially of about 40-50 percent nickel, 7.5-14 percent chromium, 1.5-4 percent niobium, .25-.75 percent silicon, 1-3 percent titanium, .1-.5 percent aluminum, .02-1 percent carbon, .002-.015 percent boron, and the balance iron. Up to 2 percent manganese and up to .01 percent magnesium may be added to inhibit trace element effects; up to .1 percent zirconium may be added to increase radiation swelling resistance; and up to 3 percent molybdenum may be added to increase strength

  14. Design Features of Hardening Turners with Outstripping Plastic Deformation

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2014-01-01

    Full Text Available An efficiency of the cutting method with outstripping plastic deformation (OPD in lathe works is defined in many respects by design features of the add-on devices for mechanical hardening of a cut-off layer material in the course of cutting. Applied on lathes, deforming OPD devices can have differing dimensions, placement on the lathe, drive type (manual, electric, hydraulic, pneumatic, pneumohydraulic, electromagnetic, and autonomy degree towards the metalcutting equipment and industrial equipment.At the same time there are a number of inherent design features of work-hardening devices the modernized lathes with OPD use for machining. Now the OPD standard devices implement two principle construction options: loading device is placed on the machine or on the OPD slide support separate of the tool, or it is structurally aligned with the cutting tool. In the latter case the OPD device for turning is called a tool mandrel, which is mounted in a tool post of the machine or, at large dimensions, such a mandrel is mounted on the machine instead of the tool mandrel.When designing the OPD devices, is important to take into consideration production requirements and recommendations for the technological equipment, developed in the course of creation, working off and introduction of such installations for mechanical hardening of material. In compliance with it, OPD devices, their placement on the machine, and working displacements shouldn't limit technological capabilities of the applied metal-cutting equipment. OPD stresses have to be smoothly regulated, with maximum loads being limited to admissible values for the machine model to be modernized. It is necessary to ensure synchronized longitudinal and cross displacements of the cutting tool and OPD hardener with respect to the axis of billet rotation to enable regulation and readjustment of the hardener and tool placement. It ought to foresee the increased mobile components rigidity and manufacturing

  15. Devising Strain Hardening Models Using Kocks–Mecking Plots—A Comparison of Model Development for Titanium Aluminides and Case Hardening Steel

    Directory of Open Access Journals (Sweden)

    Markus Bambach

    2016-08-01

    Full Text Available The present study focuses on the development of strain hardening models taking into account the peculiarities of titanium aluminides. In comparison to steels, whose behavior has been studied extensively in the past, titanium aluminides possess a much larger initial work hardening rate, a sharp peak stress and pronounced softening. The work hardening behavior of a TNB-V4 (Ti–44.5Al–6.25Nb–0.8Mo–0.1B alloy is studied using isothermal hot compression tests conducted on a Gleeble 3500 simulator, and compared to the typical case hardening steel 25MoCrS4. The behavior is analyzed with the help of the Kocks-Mecking plots. In contrast to steel the TNB-V4 alloy shows a non-linear course of θ (i.e., no stage-III hardening initially and exhibits neither a plateau (stage IV hardening nor an inflection point at all deformation conditions. The present paper describes the development and application of a methodology for the design of strain hardening models for the TNB-V4 alloy and the 25CrMoS4 steel by taking the course of the Kocks-Mecking plots into account. Both models use different approaches for the hardening and softening mechanisms and accurately predict the flow stress over a wide range of deformation conditions. The methodology may hence assist in further developments of more sophisticated physically-based strain hardening models for TiAl-alloys.

  16. 2D beam hardening correction for micro-CT of immersed hard tissue

    Science.gov (United States)

    Davis, Graham; Mills, David

    2016-10-01

    Beam hardening artefacts arise in tomography and microtomography with polychromatic sources. Typically, specimens appear to be less dense in the center of reconstructions because as the path length through the specimen increases, so the X-ray spectrum is shifted towards higher energies due to the preferential absorption of low energy photons. Various approaches have been taken to reduce or correct for these artefacts. Pre-filtering the X-ray beam with a thin metal sheet will reduce soft energy X-rays and thus narrow the spectrum. Correction curves can be applied to the projections prior to reconstruction which transform measured attenuation with polychromatic radiation to predicted attenuation with monochromatic radiation. These correction curves can be manually selected, iteratively derived from reconstructions (this generally works where density is assumed to be constant) or derived from a priori information about the X-ray spectrum and specimen composition. For hard tissue specimens, the latter approach works well if the composition is reasonably homogeneous. In the case of an immersed or embedded specimen (e.g., tooth or bone) the relative proportions of mineral and "organic" (including medium and plastic container) species varies considerably for different ray paths and simple beam hardening correction does not give accurate results. By performing an initial reconstruction, the total path length through the container can be determined. By modelling the X-ray properties of the specimen, a 2D correction transform can then be created such that the predicted monochromatic attenuation can be derived as a function of both the measured polychromatic attenuation and the container path length.

  17. The effects of induction hardening on wear properties of AISI 4140 steel in dry sliding conditions

    International Nuclear Information System (INIS)

    Totik, Y.; Sadeler, R.; Altun, H.; Gavgali, M.

    2002-01-01

    Wear behaviour of induction hardened AISI 4140 steel was evaluated under dry sliding conditions. Specimens were induction hardened at 1000 Hz for 6, 10, 14, 18, 27 s, respectively, in the inductor which was a three-turn coil with a coupling distance of 2.8 mm. Normalised and induction hardened specimens were fully characterised before and after the wear testing using hardness, profilometer, scanning electron microscopy and X-ray diffraction. The wear tests using a pin-on-disc machine showed that the induction hardening treatments improved the wear behaviour of AISI 4140 steel specimens compared to normalised AISI 4140 steel as a result of residual stresses and hardened surfaces. The wear coefficients in normalised specimens are greater than that in the induction hardened samples. The lowest coefficient of the friction was obtained in specimens induction-hardened at 875 deg. C for 27 s

  18. The effects of induction hardening on wear properties of AISI 4140 steel in dry sliding conditions

    Energy Technology Data Exchange (ETDEWEB)

    Totik, Y.; Sadeler, R.; Altun, H.; Gavgali, M

    2002-02-15

    Wear behaviour of induction hardened AISI 4140 steel was evaluated under dry sliding conditions. Specimens were induction hardened at 1000 Hz for 6, 10, 14, 18, 27 s, respectively, in the inductor which was a three-turn coil with a coupling distance of 2.8 mm. Normalised and induction hardened specimens were fully characterised before and after the wear testing using hardness, profilometer, scanning electron microscopy and X-ray diffraction. The wear tests using a pin-on-disc machine showed that the induction hardening treatments improved the wear behaviour of AISI 4140 steel specimens compared to normalised AISI 4140 steel as a result of residual stresses and hardened surfaces. The wear coefficients in normalised specimens are greater than that in the induction hardened samples. The lowest coefficient of the friction was obtained in specimens induction-hardened at 875 deg. C for 27 s.

  19. Surface hardening of titanium alloys with melting depth controlled by heat sink

    Science.gov (United States)

    Oden, Laurance L.; Turner, Paul C.

    1995-01-01

    A process for forming a hard surface coating on titanium alloys includes providing a piece of material containing titanium having at least a portion of one surface to be hardened. The piece having a portion of a surface to be hardened is contacted on the backside by a suitable heat sink such that the melting depth of said surface to be hardened may be controlled. A hardening material is then deposited as a slurry. Alternate methods of deposition include flame, arc, or plasma spraying, electrodeposition, vapor deposition, or any other deposition method known by those skilled in the art. The surface to be hardened is then selectively melted to the desired depth, dependent on the desired coating thickness, such that a molten pool is formed of the piece surface and the deposited hardening material. Upon cooling a hardened surface is formed.

  20. Segmentation-free empirical beam hardening correction for CT

    Energy Technology Data Exchange (ETDEWEB)

    Schüller, Sören; Sawall, Stefan [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120 (Germany); Stannigel, Kai; Hülsbusch, Markus; Ulrici, Johannes; Hell, Erich [Sirona Dental Systems GmbH, Fabrikstraße 31, 64625 Bensheim (Germany); Kachelrieß, Marc, E-mail: marc.kachelriess@dkfz.de [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2015-02-15

    Purpose: The polychromatic nature of the x-ray beams and their effects on the reconstructed image are often disregarded during standard image reconstruction. This leads to cupping and beam hardening artifacts inside the reconstructed volume. To correct for a general cupping, methods like water precorrection exist. They correct the hardening of the spectrum during the penetration of the measured object only for the major tissue class. In contrast, more complex artifacts like streaks between dense objects need other techniques of correction. If using only the information of one single energy scan, there are two types of corrections. The first one is a physical approach. Thereby, artifacts can be reproduced and corrected within the original reconstruction by using assumptions in a polychromatic forward projector. These assumptions could be the used spectrum, the detector response, the physical attenuation and scatter properties of the intersected materials. A second method is an empirical approach, which does not rely on much prior knowledge. This so-called empirical beam hardening correction (EBHC) and the previously mentioned physical-based technique are both relying on a segmentation of the present tissues inside the patient. The difficulty thereby is that beam hardening by itself, scatter, and other effects, which diminish the image quality also disturb the correct tissue classification and thereby reduce the accuracy of the two known classes of correction techniques. The herein proposed method works similar to the empirical beam hardening correction but does not require a tissue segmentation and therefore shows improvements on image data, which are highly degraded by noise and artifacts. Furthermore, the new algorithm is designed in a way that no additional calibration or parameter fitting is needed. Methods: To overcome the segmentation of tissues, the authors propose a histogram deformation of their primary reconstructed CT image. This step is essential for the

  1. On use of radial evanescence remain term in kinematic hardening

    International Nuclear Information System (INIS)

    Geyer, P.

    1995-01-01

    This paper presents the interest which lies in non-linear kinematic hardening rule with radial evanescence remain term as proposed for modelling multiaxial ratchetting. From analytical calculations in the case of the tension/torsion test, this ratchetting is compared with that proposed by Armstrong and Frederick. A modification is then proposed for Chaboche's elastoplastic model with two non-linear kinematic variables, by coupling the two types of hardening by means of two scalar parameters. Identification of these two parameters returns to speculate on the directions of strain in order to adjust the ratchetting to experimental observations. Using biaxial ratchetting tests on stainless steel 316 L specimens at ambient temperature, it is shown that satisfactory modelling of multiaxial ratchetting is obtained. (author). 4 refs., 5 figs

  2. Segmentation-free empirical beam hardening correction for CT.

    Science.gov (United States)

    Schüller, Sören; Sawall, Stefan; Stannigel, Kai; Hülsbusch, Markus; Ulrici, Johannes; Hell, Erich; Kachelrieß, Marc

    2015-02-01

    The polychromatic nature of the x-ray beams and their effects on the reconstructed image are often disregarded during standard image reconstruction. This leads to cupping and beam hardening artifacts inside the reconstructed volume. To correct for a general cupping, methods like water precorrection exist. They correct the hardening of the spectrum during the penetration of the measured object only for the major tissue class. In contrast, more complex artifacts like streaks between dense objects need other techniques of correction. If using only the information of one single energy scan, there are two types of corrections. The first one is a physical approach. Thereby, artifacts can be reproduced and corrected within the original reconstruction by using assumptions in a polychromatic forward projector. These assumptions could be the used spectrum, the detector response, the physical attenuation and scatter properties of the intersected materials. A second method is an empirical approach, which does not rely on much prior knowledge. This so-called empirical beam hardening correction (EBHC) and the previously mentioned physical-based technique are both relying on a segmentation of the present tissues inside the patient. The difficulty thereby is that beam hardening by itself, scatter, and other effects, which diminish the image quality also disturb the correct tissue classification and thereby reduce the accuracy of the two known classes of correction techniques. The herein proposed method works similar to the empirical beam hardening correction but does not require a tissue segmentation and therefore shows improvements on image data, which are highly degraded by noise and artifacts. Furthermore, the new algorithm is designed in a way that no additional calibration or parameter fitting is needed. To overcome the segmentation of tissues, the authors propose a histogram deformation of their primary reconstructed CT image. This step is essential for the proposed

  3. An energy-based beam hardening model in tomography

    International Nuclear Information System (INIS)

    Casteele, E van de; Dyck, D van; Sijbers, J; Raman, E

    2002-01-01

    As a consequence of the polychromatic x-ray source, used in micro-computer tomography (μCT) and in medical CT, the attenuation is no longer a linear function of absorber thickness. If this nonlinear beam hardening effect is not compensated, the reconstructed images will be corrupted by cupping artefacts. In this paper, a bimodal energy model for the detected energy spectrum is presented, which can be used for reduction of artefacts caused by beam hardening in well-specified conditions. Based on the combination of the spectrum of the source and the detector efficiency, the assumption is made that there are two dominant energies which can describe the system. The validity of the proposed model is examined by fitting the model to the experimental datapoints obtained on a microtomograph for different materials and source voltages

  4. work hardening, recovery and recrystallization of alloys containing dispersed precipitates

    International Nuclear Information System (INIS)

    Padilha, A.F.

    1989-01-01

    This paper reviews the work hardening, recovery and recrystallization mechanisms in alloys containing dispersed precipitates. In the section on work hardening, the influence od spacing, particle size and shape on the density and distribution of dislocations have been discussed. They represent a large part of the energy stored in the material following drformation, which in turn is driving force for recrystallization. Next, the role of precipitates on recovery, on the formation and the growth of recrystallized regions has been discussed in detail. The competition between recovery and recrystallization and recrystallization of supersaturated solid solutions have also been mentioned. Finally, the technological relevance of the aspects treated in this paper has been discussed. (author) [pt

  5. Hardening by annealing and softening by deformation in nanostructured metals

    DEFF Research Database (Denmark)

    Huang, X.; Hansen, N.; Tsuji, N.

    2006-01-01

    We observe that a nanostructured metal can be hardened by annealing and softened when subsequently deformed, which is in contrast to the typical behavior of a metal. Microstructural investigation points to an effect of the structural scale on fundamental mechanisms of dislocation-dislocation and ......We observe that a nanostructured metal can be hardened by annealing and softened when subsequently deformed, which is in contrast to the typical behavior of a metal. Microstructural investigation points to an effect of the structural scale on fundamental mechanisms of dislocation....... As a consequence, the strength decreases and the ductility increases. These observations suggest that for materials such as the nanostructured aluminum studied here, deformation should be used as an optimizing procedure instead of annealing....

  6. Plasma nitriding - an eco friendly surface hardening process

    International Nuclear Information System (INIS)

    Mukherjee, S.

    2015-01-01

    Surface hardening is a process of heating the metal such that the surface gets only hardened. This process is adopted for many components like gears, cams, and crankshafts, which desire high hardness on the outer surface with a softer core to withstand the shocks. So, to attain such properties processes like carburising, nitriding, flame hardening and induction hardening are employed. Amongst these processes nitriding is the most commonly used process by many industries. In nitriding process the steel material is heated to a temperature of around 550 C and then exposed to atomic nitrogen. This atomic nitrogen reacts with iron and other alloying elements and forms nitrides, which are very hard in nature. By this process both wear resistance and hardness of the product can be increased. The atomic nitrogen required for this process can be obtained using ammonia gas (gas nitriding), cyanide based salt bath (liquid nitriding) and plasma medium (plasma nitriding). However, plasma nitriding has recently received considerable industrial interest owing to its characteristic of faster nitrogen penetration, short treatment time, low process temperature, minimal distortion, low energy use and easier control of layer formation compared with conventional techniques such as gas and liquid nitriding. This process can be used for all ferrous materials including stainless steels. Plasma nitriding is carried out using a gas mixture of nitrogen and hydrogen gas at sub atmospheric pressures hence, making it eco-friendly in nature. Plasma nitriding allows modification of the surface layers and hardness profiles by changing the gas mixture and temperature. The wide applicable temperature range enables a multitude of applications, beyond the possibilities of gas or salt bath processes. This has led to numerous applications of this process in industries such as the manufacture of machine parts for plastics and food processing, packaging and tooling as well as pumps and hydraulic, machine

  7. Numerical implementation of a model with directional distortional hardening

    Czech Academy of Sciences Publication Activity Database

    Marek, René; Plešek, Jiří; Hrubý, Zbyněk; Parma, Slavomír; Feigenbaum, H. P.; Dafalias, Y.F.

    2015-01-01

    Roč. 141, č. 12 (2015), 04015048-04015048 ISSN 0733-9399 R&D Projects: GA MŠk LH14018; GA ČR(CZ) GA15-20666S Institutional support: RVO:61388998 Keywords : plasticity * directional distortional hardening * finite-element procedures Subject RIV: JG - Metallurgy Impact factor: 1.346, year: 2015 http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0000954

  8. Account of low temperature hardening in calculation of permissible stresses

    International Nuclear Information System (INIS)

    Novikov, N.V.; Ul'yanenko, A.P.; Gorodyskij, N.I.

    1980-01-01

    Suggested is a calculation scheme of permissible stresses with the account of temperature hardening for steels and alloys, the dependences of strength, plasticity and rupture work of which on cooling temperature do not have threshold changes in a wide range of low temperatures (from 300 to 4.2 K). Application of the suggested scheme is considered on the example of 12Kh18N10T austenitic chromium-nickel steel

  9. Concrete hardened characterization using table scanner and microtomography computed

    International Nuclear Information System (INIS)

    Wilson, R.E.; Pessoa, J.R.; Assis, J.T. de; Dominguez, D.S.; Dias, L.A.; Santana, M. R.

    2016-01-01

    This paper proposes the use of image processing technologies to analyze hardened concrete samples obtained from table scanner and micro tomography. Techniques will be used to obtain numerical data on the distribution and geometry of aggregates and pores of the concrete, as well as their relative position. It is expected that the data obtained can produce information on the research of concrete pathologies such as AAR, and the freeze / thaw process. (author)

  10. Reduction of metal artifacts: beam hardening and photon starvation effects

    Science.gov (United States)

    Yadava, Girijesh K.; Pal, Debashish; Hsieh, Jiang

    2014-03-01

    The presence of metal-artifacts in CT imaging can obscure relevant anatomy and interfere with disease diagnosis. The cause and occurrence of metal-artifacts are primarily due to beam hardening, scatter, partial volume and photon starvation; however, the contribution to the artifacts from each of them depends on the type of hardware. A comparison of CT images obtained with different metallic hardware in various applications, along with acquisition and reconstruction parameters, helps understand methods for reducing or overcoming such artifacts. In this work, a metal beam hardening correction (BHC) and a projection-completion based metal artifact reduction (MAR) algorithms were developed, and applied on phantom and clinical CT scans with various metallic implants. Stainless-steel and Titanium were used to model and correct for metal beam hardening effect. In the MAR algorithm, the corrupted projection samples are replaced by the combination of original projections and in-painted data obtained by forward projecting a prior image. The data included spine fixation screws, hip-implants, dental-filling, and body extremity fixations, covering range of clinically used metal implants. Comparison of BHC and MAR on different metallic implants was used to characterize dominant source of the artifacts, and conceivable methods to overcome those. Results of the study indicate that beam hardening could be a dominant source of artifact in many spine and extremity fixations, whereas dental and hip implants could be dominant source of photon starvation. The BHC algorithm could significantly improve image quality in CT scans with metallic screws, whereas MAR algorithm could alleviate artifacts in hip-implants and dentalfillings.

  11. Partial electron beam hardening of cast iron camshafts

    Energy Technology Data Exchange (ETDEWEB)

    Csizmazia, A.; Reti, T. [Szechenyi Istvan Univ., Gyoer (Hungary); Horvath, M.; Olah, I. [Audi Hungaria Motor Kft., Gyoer (Hungary)

    2005-07-01

    In order to improve the local surface properties (hardness, wear and contact fatigue resistance) of cast iron camshafts, detailed experiments with partial electron beam hardening have been performed. It was found that the required case depth of 0.3-0.5 mm and surface hardness of 600-700 HV can be achieved by using appropriately selected, computer-controlled processing parameters (angular speed, specific energy input, beam deflection). (orig.)

  12. Heat Flow In Cylindrical Bodies During Laser Surface Transformation Hardening

    Science.gov (United States)

    Sandven, Ole A.

    1980-01-01

    A mathematical model for the transient heat flow in cylindrical specimens is presented. The model predicts the temperature distribution in the vicinity of a moving ring-shaped laser spot around the periphery of the outer surface of a cylinder, or the inner surface of a hollow cylinder. It can be used to predict the depth of case in laser surface transformation hardening. The validity of the model is tested against experimental results obtained on SAE 4140 steel.

  13. Description of hardening curves of fcc single- and polycrystals

    International Nuclear Information System (INIS)

    Mecking, H.

    1975-01-01

    Stress-strain curves are analyzed over their entire strain region and over a wide range of temperatures to arrive at a general analytic description of work-hardening curves. The data were obtained with fcc single and polycrystals, but there is experimental and theoretical evidence that the principles of the analysis are also applicable for other crystal structures and even for more complex technical materials. 9 figs, 1 table, 46 refs

  14. Effects of residual stress on irradiation hardening in stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, N.; Kondo, K.; Kaji, Y. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Miwa, Y. [Nuclear Energy and Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Ibaraki-ken (Japan)

    2007-07-01

    Full text of publication follows: Structural materials in fusion reactor with water cooling system will undergo corrosion in aqueous environment and heavier irradiation than that in LWR. Irradiation assisted stress corrosion (IASCC) may be induced in stainless steels exposed in these environment for a long term of reactor operation. The IASCC is considered to be caused in a welding zone. It is difficult to predict and estimate the IASCC, because several irradiation effects (irradiation hardening, swelling, irradiation induced stress relaxation, etc) work intricately. Firstly, effects of residual stress on irradiation hardening were investigated in stainless steels. Specimens used in this study were SUS316 and SUS316L. By bending deformation, the specimens with several % plastic strain, which corresponds to weld residual stress, were prepared. Ion irradiations of 12 MeV Ni{sup 3+} were performed at 330, 400 and 550 deg. C to 45 dpa in TIARA facility at JAEA. No bent specimen was simultaneously irradiated with the bent specimen. The residual stress was estimated by X-ray residual stress measurements before and after the irradiation. The micro-hardness was measured by using nano-indenter. The irradiation hardening and the stress relaxation were changed by irradiation under bending deformation. The residual stress did not relax even for the case of the higher temperature aging at 500 deg. C for the same time of irradiation. The residual stress after ion irradiation, however, relaxed at these experimental temperatures in SUS316L. The hardness was obviously suppressed in bent SUS316L irradiated at 300 deg. C to 6 or 12 dpa. It was evident that irradiation induced stress relaxation occasionally suppressed the irradiation hardening in SUS316L. (authors)

  15. Hardening in AlN induced by point defects

    International Nuclear Information System (INIS)

    Suematsu, H.; Mitchell, T.E.; Iseki, T.; Yano, T.

    1991-01-01

    Pressureless-sintered AIN was neutron irradiated and the hardness change was examined by Vickers indentation. The hardness was increased by irradiation. When the samples were annealed at high temperature, the hardness gradually decreased. Length was also found to increase and to change in the same way as the hardness. A considerable density of dislocation loops still remained, even after the hardness completely recovered to the value of the unirradiated sample. Thus, it is concluded that the hardening in AIN is caused by isolated point defects and small clusters of point defects, rather than by dislocation loops. Hardness was found to increase in proportion to the length change. If the length change is assumed to be proportional to the point defect density, then the curve could be fitted qualitatively to that predicted by models of solution hardening in metals. Furthermore, the curves for three samples irradiated at different temperatures and fluences are identical. There should be different kinds of defect clusters in samples irradiated at different conditions, e.g., the fraction of single point defects is the highest in the sample irradiated at the lowest temperature. Thus, hardening is insensitive to the kind of defects remaining in the sample and is influenced only by those which contribute to length change

  16. Recent developments in turning hardened steels - A review

    Science.gov (United States)

    Sivaraman, V.; Prakash, S.

    2017-05-01

    Hard materials ranging from HRC 45 - 68 such as hardened AISI H13, AISI 4340, AISI 52100, D2 STL, D3 STEEL Steel etc., need super hard tool materials to machine. Turning of these hard materials is termed as hard turning. Hard turning makes possible direct machining of the hard materials and also eliminates the lubricant requirement and thus favoring dry machining. Hard turning is a finish turning process and hence conventional grinding is not required. Development of the new advanced super hard tool materials such as ceramic inserts, Cubic Boron Nitride, Polycrystalline Cubic Boron Nitride etc. enabled the turning of these materials. PVD and CVD methods of coating have made easier the production of single and multi layered coated tool inserts. Coatings of TiN, TiAlN, TiC, Al2O3, AlCrN over cemented carbide inserts has lead to the machining of difficult to machine materials. Advancement in the process of hard machining paved way for better surface finish, long tool life, reduced tool wear, cutting force and cutting temperatures. Micro and Nano coated carbide inserts, nanocomposite coated PCBN inserts, micro and nano CBN coated carbide inserts and similar developments have made machining of hardened steels much easier and economical. In this paper, broad literature review on turning of hardened steels including optimizing process parameters, cooling requirements, different tool materials etc., are done.

  17. Influences of Steelmaking Slags on Hydration and Hardening of Concretes

    Science.gov (United States)

    Kirsanova, A. A.; Dildin, A. N.; Maksimov, S. P.

    2017-11-01

    It is shown that the slag of metallurgical production can be used in the construction industry as an active mineral additive for concrete. This approach allows us to solve environmental problems and reduce costs for the production of binder and concrete simultaneously. Most often slag is used in the form of a filler, an active mineral additive or as a part of a binder for artificial conglomerates. The introduction of slag allows one to notice a part of the cement, to obtain concretes that are more resistant to the impact of aggressive sulfate media. The paper shows the possibility of using recycled steel-smelting slags in the construction industry for the production of cement. An assessment was made of their effect on the hydration of the cement stone and hardening of the concrete together with the plasticizer under normal conditions. In the process of work, we used the slag of the Zlatoust Electrometallurgical Factory. Possible limitations of the content of steel-slag slag in concrete because of the possible presence of harmful impurities are shown. It is necessary to enter slag in conjunction with superplasticizers to reduce the flow of water mixing. Slags can be used as a hardening accelerator for cement concrete as they allow one to increase the degree of cement hydration and concrete strength. It is shown that slags can be used to produce fast-hardening concretes and their comparative characteristics with other active mineral additives are given.

  18. Importance of calcium and magnesium in water - water hardening

    Science.gov (United States)

    Barloková, D.; Ilavský, J.; Kapusta, O.; Šimko, V.

    2017-10-01

    Basic information about importance of calcium and magnesium in water, about their properties, effect to human health, problems what can cause under the lower ( 5 mmol/L) concentrations in water supply distribution systems, the most commonly used methods of water hardening are presented. The article contains the water hardening results carried out during the pilot plant experiments in WTP Hriňová and WTP Turček. For water hardening, treated water at the end of the process line, i.e., after coagulation, sedimentation and filtration, saturated with CO2 and filtrated through half-burnt dolomite material (PVD) was used. The results show that the filtration rate is 17.1 m/h in the case of WTP Hriňová and 15.2 m/h in the case of WTP Turček to achieve the recommended concentration of Ca and Mg in the treated water after the addition of CO2 and filtration through PVD. The longer the water contact time with PVD (depending on the CO2 content), the more water is enriched with magnesium, but the calcium concentration has not so much increased.

  19. Residual stress analysis of drive shafts after induction hardening

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Guilherme Vieira Braga; Rocha, Alexandre da Silva; Nunes, Rafael Menezes, E-mail: lemos_gl@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRS), Porto Algre, RS (Brazil); Hirsch, Thomas Karl [Stiftung Institut für Werkstofftechnik (IWT), Bremen (Germany)

    2014-08-15

    Typically, for automotive shafts, shape distortion manifests itself in most cases after the induction hardening by an effect known as bending. The distortion results in a boost of costs, especially due to machining parts in the hardened state to fabricate its final tolerances. In the present study, residual stress measurements were carried out on automotive drive shafts made of DIN 38B3 steel. The samples were selected in consequence of their different distortion properties by an industrial manufacturing line. One tested shaft was straightened, because of the considerable dimensional variation and the other one not. Firstly, the residual stress measurements were carried out by using a portable diffractometer, in order to avoid cutting the shafts and evaluate the original state of the stresses, and afterwards a more detailed analysis was realized by a conventional stationary diffractometer. The obtained results presented an overview of the surface residual stress profiles after induction hardening and displayed the influence of the straightening process on the redistribution of residual stresses. They also indicated that the effects of the straightening in the residual stresses cannot be neglected. (author)

  20. Significance of rate of work hardening in tempered martensite embrittlement

    International Nuclear Information System (INIS)

    Pietikainen, J.

    1995-01-01

    The main explanations for tempered martensite embrittlement are based on the effects of impurities and cementite precipitation on the prior austenite grain boundaries. There are some studies where the rate of work hardening is proposed as a potential reason for the brittleness. One steel was studied by means of a specially developed precision torsional testing device. The test steel had a high Si and Ni content so ε carbide and Fe 3 C appear in quite different tempering temperature ranges. The M S temperature is low enough so that self tempering does not occur. With the testing device it was possible to obtain the true stress - true strain curves to very high deformations. The minimum toughness was always associated with the minimum of rate of work hardening. The change of deformed steel volume before the loss of mechanical stability is proposed as at least one reason for tempered martensite embrittlement. The reasons for the minimum of the rate of work hardening are considered. (orig.)

  1. Temperature dependence of work hardening in sparsely twinning zirconium

    International Nuclear Information System (INIS)

    Singh, Jaiveer; Mahesh, S.; Roy, Shomic; Kumar, Gulshan; Srivastava, D.; Dey, G.K.; Saibaba, N.; Samajdar, I.

    2017-01-01

    Fully recrystallized commercial Zirconium plates were subjected to uniaxial tension. Tests were conducted at different temperatures (123 K - 623 K) and along two plate directions. Both directions were nominally unfavorable for deformation twinning. The effect of the working temperature on crystallographic texture and in-grain misorientation development was insignificant. However, systematic variation in work hardening and in the area fraction and morphology of deformation twins was observed with temperature. At all temperatures, twinning was associated with significant near boundary mesoscopic shear, suggesting a possible linkage with twin nucleation. A binary tree based model of the polycrystal, which explicitly accounts for grain boundary accommodation and implements the phenomenological extended Voce hardening law, was implemented. This model could capture the measured stress-strain response and twin volume fractions accurately. Interestingly, slip and twin system hardness evolution permitted multiplicative decomposition into temperature-dependent, and accumulated strain-dependent parts. Furthermore, under conditions of relatively limited deformation twinning, the work hardening of the slip and twin systems followed two phenomenological laws proposed in the literature for non-twinning single-phase face centered cubic materials.

  2. Helium-induced hardening effect in polycrystalline tungsten

    Science.gov (United States)

    Kong, Fanhang; Qu, Miao; Yan, Sha; Zhang, Ailin; Peng, Shixiang; Xue, Jianming; Wang, Yugang

    2017-09-01

    In this paper, helium induced hardening effect of tungsten was investigated. 50 keV He2+ ions at fluences vary from 5 × 1015 cm-2 to 5 × 1017 cm-2 were implanted into polycrystalline tungsten at RT to create helium bubble-rich layers near the surface. The microstructure and mechanical properties of the irradiated specimens were studied by TEM and nano-indentor. Helium bubble rich layers are formed in near surface region, and the layers become thicker with the rise of fluences. Helium bubbles in the area of helium concentration peak are found to grow up, while the bubble density is almost unchanged. Obvious hardening effect is induced by helium implantation in tungsten. Micro hardness increases rapidly with the fluence firstly, and more slowly when the fluence is above 5 × 1016 cm-2. The hardening effect of tungsten can be attributed to helium bubbles, which is found to be in agreement with the Bacon-Orowan stress formula. The growing diameter is the major factor rather than helium bubbles density (voids distance) in the process of helium implantation at fluences below 5 × 1017 cm-2.

  3. Radiation Effects in Carbon Nanoelectronics

    Directory of Open Access Journals (Sweden)

    Cory D. Cress

    2012-07-01

    Full Text Available We experimentally investigate the effects of Co-60 irradiation on the electrical properties of single-walled carbon nanotube and graphene field-effect transistors. We observe significant differences in the radiation response of devices depending on their irradiation environment, and confirm that, under controlled conditions, standard dielectric hardening approaches are applicable to carbon nanoelectronics devices.

  4. Radiation effects on microelectronics in space

    International Nuclear Information System (INIS)

    Srour, J.R.; McGarrity, J.M.

    1988-01-01

    The basic mechanisms of space radiation effects on microelectronics are reviewed in this paper. Topics discussed include the effects of displacement damage and ionizing radiation on devices and circuits, single event phenomena, dose enhancement, radiation effects on optoelectronic devices and passive components, hardening approaches, and simulation of the space radiation environment. A summary is presented of damage mechanisms that can cause temporary or permanent failure of devices and circuits operating in space

  5. Influence of Plastic Deformation on Low Temperature Surface Hardening of Austenitic and Precipitation Hardening Stainless Steels by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of three commercial austenitic stainless steels: AISI 304, EN 1.4369 and Sandvik Nanoflex® with various degrees of austenite stability. The materials were...... case included X-ray diffraction analysis, reflected light microscopy and microhardness. The results demonstrate that a case of expanded austenite develops and that, in particular, strain-induced martensite has a large influence on the nitrided zone....

  6. Influence of Microstructure and Process Conditions on Simultaneous Low-Temperature Surface Hardening and Bulk Precipitation Hardening of Nanoflex®

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas L.

    2015-01-01

    Precipitation hardening martensitic stainless steel Nanoflex was low-temperature nitrided or nitrocarburized. In these treatments, simultaneous hardening of the bulk, by precipitation hardening, and the surface by dissolving nitrogen/carbon can be obtained because the treatment temperatures...... and times for these essentially different hardening mechanisms are compatible. The effect of the processing history of the steel on the nitrided/nitrocarburized case was investigated by varying the amounts of austenite and martensite through variation of the degree of plastic deformation by tensile strain...... consisting of martensite results in the deepest nitrided case, while a shallow case develops on a microstructure consisting of austenite. For an initial microstructure consisting of both martensite and austenite a non-uniform case depth is achieved. Simultaneous bulk and surface hardening is only possible...

  7. Microstructural changes and strain hardening effects in abrasive contacts at different relative velocities and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rojacz, H., E-mail: rojacz@ac2t.at [AC2T research GmbH, Viktor-Kaplan-Straße 2C, 2700 Wiener Neustadt (Austria); Mozdzen, G. [Aerospace & Advanced Composites GmbH, Viktor-Kaplan-Straße 2F, 2700 Wiener Neustadt (Austria); Weigel, F.; Varga, M. [AC2T research GmbH, Viktor-Kaplan-Straße 2C, 2700 Wiener Neustadt (Austria)

    2016-08-15

    Strain hardening is commonly used to reach the full potential of materials and can be beneficial in tribological contacts. 2-body abrasive wear was simulated in a scratch test, aimed at strain hardening effects in various steels. Different working conditions were examined at various temperatures and velocities. Strain hardening effects and microstructural changes were analysed with high resolution scanning electron microscopy (HRSEM), electron backscatter diffraction (EBSD), micro hardness measurements and nanoindentation. Statistical analysing was performed quantifying the influence of different parameters on microstructures. Results show a crucial influence of temperature and velocity on the strain hardening in tribological contacts. Increased velocity leads to higher deformed microstructures and higher increased surface hardness at a lower depth of the deformed zones at all materials investigated. An optimised surface hardness can be achieved knowing the influence of velocity (strain rate) and temperature for a “tailor-made” surface hardening in tribological systems aimed at increased wear resistance. - Highlights: •Hardening mechanisms and their intensity in tribological contacts are dependent on relative velocity and temperature. •Beneficial surface hardened zones are formed at certain running-in conditions; the scientific background is presented here. •Ferritic-pearlitic steels strain hardens via grain size reduction and decreasing interlamellar distances in pearlite. •Austenitic steels show excellent surface hardening (120% hardness increase) by twinning and martensitic transformation. •Ferritic steels with hard phases harden in the ferrite phase as per Hall-Petch equation and degree of deformation.

  8. Microstructural changes and strain hardening effects in abrasive contacts at different relative velocities and temperatures

    International Nuclear Information System (INIS)

    Rojacz, H.; Mozdzen, G.; Weigel, F.; Varga, M.

    2016-01-01

    Strain hardening is commonly used to reach the full potential of materials and can be beneficial in tribological contacts. 2-body abrasive wear was simulated in a scratch test, aimed at strain hardening effects in various steels. Different working conditions were examined at various temperatures and velocities. Strain hardening effects and microstructural changes were analysed with high resolution scanning electron microscopy (HRSEM), electron backscatter diffraction (EBSD), micro hardness measurements and nanoindentation. Statistical analysing was performed quantifying the influence of different parameters on microstructures. Results show a crucial influence of temperature and velocity on the strain hardening in tribological contacts. Increased velocity leads to higher deformed microstructures and higher increased surface hardness at a lower depth of the deformed zones at all materials investigated. An optimised surface hardness can be achieved knowing the influence of velocity (strain rate) and temperature for a “tailor-made” surface hardening in tribological systems aimed at increased wear resistance. - Highlights: •Hardening mechanisms and their intensity in tribological contacts are dependent on relative velocity and temperature. •Beneficial surface hardened zones are formed at certain running-in conditions; the scientific background is presented here. •Ferritic-pearlitic steels strain hardens via grain size reduction and decreasing interlamellar distances in pearlite. •Austenitic steels show excellent surface hardening (120% hardness increase) by twinning and martensitic transformation. •Ferritic steels with hard phases harden in the ferrite phase as per Hall-Petch equation and degree of deformation.

  9. Comparative Study of Hardening Mechanisms During Aging of a 304 Stainless Steel Containing α'-Martensite

    Science.gov (United States)

    Jeong, S. W.; Kang, U. G.; Choi, J. Y.; Nam, W. J.

    2012-09-01

    Strain aging and hardening behaviors of a 304 stainless steel containing deformation-induced martensite were investigated by examining mechanical properties and microstructural evolution for different aging temperature and time. Introduced age hardening mechanisms of a cold rolled 304 stainless steel were the additional formation of α'-martensite, hardening of α'-martensite, and hardening of deformed austenite. The increased amount of α'-martensite at an aging temperature of 450 °C confirmed the additional formation of α'-martensite as a hardening mechanism in a cold rolled 304 stainless steel. Additionally, the increased hardness in both α'-martensite and austenite phases with aging temperature proved that hardening of both α'-martensite and austenite phases would be effective as hardening mechanisms in cold rolled and aged 304 stainless steels. The results suggested that among hardening mechanisms, hardening of an α'-martensite phase, including the diffusion of interstitial solute carbon atoms to dislocations and the precipitation of fine carbide particles would become a major hardening mechanism during aging of cold rolled 304 stainless steels.

  10. Effects of radiation on MOS structures and silicon devices

    International Nuclear Information System (INIS)

    Braeunig, D.; Fahrner, W.

    1983-02-01

    A comprehensive view of radiation effects on MOS structures and silicon devices is given. In the introduction, the interaction of radiation with semiconductor material is presented. In the next section, the electrical degradation of semiconductor devices due to this interaction is discussed. The commonly used hardening techniques are shown. The last section deals with testing of radiation hardness of devices. (orig.) [de

  11. Radiation hardness assurances categories for COTS technologies

    International Nuclear Information System (INIS)

    Hash, G.L.; Shaneyfelt, M.R.; Sexton, F.W.; Winokur, P.S.

    1997-01-01

    A comparison of the radiation tolerance of three commercial, and one radiation hardened SRAM is presented for four radiation environments. This work has shown the difficulty associated with strictly categorizing a device based solely on its radiation response, since its category depends on the specific radiation environment considered. For example, the 3.3-V Paradigm SRAM could be considered a radiation-tolerant device except for its SEU response. A more useful classification depends on the methods the manufacturer uses to ensure radiation hardness, i.e. whether specific design and process techniques have been used to harden the device. Finally, this work has shown that burned-in devices may fail functionally as much as 50% lower in total dose environments than non-burned-in devices. No burn-in effect was seen in dose-rate upset, latchup, or SEE environments. The user must ensure that total dose lot acceptance testing was performed on burned-in devices

  12. Radiation hard solar cell and array

    International Nuclear Information System (INIS)

    Russell, R.L.

    1975-01-01

    A power generating solar cell for a spacecraft solar array is hardened against transient response to nuclear radiation while permitting normal operation of the cell in a solar radiation environment by shunting the cell with a second solar cell whose contacts are reversed relative to the power cell to form a cell module, exposing the power cell only to the solar radiation in a solar radiation environment to produce an electrical output at the module terminals, and exposing both cells to the nuclear radiation in a nuclear radiation environment so that the radiation induced currents generated by the cells suppress one another

  13. Determination of the strain hardening rate of metals and alloys by X ray diffraction

    International Nuclear Information System (INIS)

    Cadalbert, Robert

    1977-01-01

    This report for engineering graduation is based on the study of X ray diffraction line profile which varies with the plastic strain rate of the metal. After some generalities of strain hardening (consequence of a plastic deformation on the structure of a polycrystalline metal, means to study a strain hardened structure, use of X ray diffraction to analyse the strain hardened crystalline structure), the author reports the strain hardening rate measurement by using X ray diffraction. Several aspects are addressed: principles, experimental technique, apparatus, automation and programming of the measurement cycle, method sensitivity and precision. In the next part, the author reports applications: measurement of the strain hardening rate in different materials (tubes with hexagonal profile, cylindrical tubes in austenitic steel), and study of the evolution of strain hardening with temperature [fr

  14. General Friction Model Extended by the Effect of Strain Hardening

    DEFF Research Database (Denmark)

    Nielsen, Chris V.; Martins, Paulo A.F.; Bay, Niels

    2016-01-01

    An extension to the general friction model proposed by Wanheim and Bay [1] to include the effect of strain hardening is proposed. The friction model relates the friction stress to the fraction of real contact area by a friction factor under steady state sliding. The original model for the real...... contact area as function of the normalized contact pressure is based on slip-line analysis and hence on the assumption of rigid-ideally plastic material behavior. In the present work, a general finite element model is established to, firstly, reproduce the original model under the assumption of rigid...

  15. Resonant frequency and elastic modulus measurements on hardened cement pastes

    International Nuclear Information System (INIS)

    Lee, D.J.

    1982-12-01

    A new technique for measuring resonant frequency and elastic modulus is described. This has been used on specimens of hardened cement paste containing water with no simulated waste, and the results compared with measurements of ultrasonic pulse velocity, dimensional movements and compressive strength made on the same formulations. In addition, measurements were made on a specimen containing simulated waste which demonstrated the applicability of the new technique for following the development of the mechanical properties of cemented simulant radioactive waste in the laboratory. (U.K.)

  16. Rationale simplified hardening training and recreational complexes future teachers

    Directory of Open Access Journals (Sweden)

    Verbludov I.B.

    2010-02-01

    Full Text Available Distribution in the modern world epidemiological diseases are influenza and acute respiratory viral infections requires a search for simplified, effective preventive means. The main direction of prevention of these diseases is to strengthen and enhance the activities of the immune system. Strengthening the protective systems of the body is directly related to the constant holding of different types of hardening. This study illustrates the possibility of using quenching air and water in the independent exercise training and recreational facilities in all conditions of students.

  17. Ductility and work hardening in nano-sized metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D. Z., E-mail: dzchen@caltech.edu [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125 (United States); Gu, X. W. [Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 (United States); An, Q.; Goddard, W. A. [Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125 (United States); Greer, J. R. [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125 (United States); The Kavli Nanoscience Institute, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-02-09

    In-situ nano-tensile experiments on 70 nm-diameter free-standing electroplated NiP metallic glass nanostructures reveal tensile true strains of ∼18%, an amount comparable to compositionally identical 100 nm-diameter focused ion beam samples and ∼3 times greater than 100 nm-diameter electroplated samples. Simultaneous in-situ observations and stress-strain data during post-elastic deformation reveal necking and work hardening, features uncharacteristic for metallic glasses. The evolution of free volume within molecular dynamics-simulated samples suggests a free surface-mediated relaxation mechanism in nano-sized metallic glasses.

  18. A project of X-ray hardening correction in large ICT

    International Nuclear Information System (INIS)

    Fang Min; Liu Yinong; Ni Jianping

    2005-01-01

    This paper presents a means of polychromatic X-ray beam hardening correction using a standard function to transform the polychromatic projection to monochromatic projection in large Industrial Computed Tomography (ICT). Some parameters were defined to verify the validity of hardening correction in large ICT and optimized. Simulated experiments were used to prove that without prior knowledge of the composition of the scanned object, the correction method using monochromatic reconstruction arithmetic could remove beam hardening artifact greatly. (authors)

  19. Increase of resistance to cracking on stress relieving of hardened steel

    International Nuclear Information System (INIS)

    Velichko, V.V.; Zabil'skij, V.V.; Mikheev, G.M.

    1995-01-01

    Regularities of increase of resistance to cracking during stress relieving of hardened low-alloyed steels were studied, using complex of methods. Effect of carbon, stress concentrator radius, duration and temperature of stress relieving was studies in particular. Results of investigating kinetics of change of physicomechanical properties, hydrogen desorption from hardened specimens showed, that increase of resistance to cracking was caused by desorption from grain boundaries of diffusion-mobile hydrogen, formed during hardening. 18 refs., 8 figs

  20. The method of modelling of relationships between hardenability and chemical composition of the constructional alloy steels

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Sitek, W.

    1998-01-01

    Basing on the experimental results of the hardenability investigations, which employed Jominy method, the model of the neural networks was developed and fully verified experimentally. The model makes it possible to obtain Jominy hardenability curves basing on the steel chemical composition. The model of neural networks, making it possible to design the steel chemical composition, basing on the known Jominy hardenability curve shape, was developed also and fully verified numerically. The practical usability of the models developed is presented. (author)

  1. Optimization of hardening/softening behavior of plane frame structures using nonlinear normal modes

    DEFF Research Database (Denmark)

    Dou, Suguang; Jensen, Jakob Søndergaard

    2016-01-01

    Devices that exploit essential nonlinear behavior such as hardening/softening and inter-modal coupling effects are increasingly used in engineering and fundamental studies. Based on nonlinear normal modes, we present a gradient-based structural optimization method for tailoring the hardening...... involving plane frame structures where the hardening/softening behavior is qualitatively and quantitatively tuned by simple changes in the geometry of the structures....

  2. Effect of dynamic strain aging on isotropic hardening in low cycle fatigue for carbon manganese steel

    International Nuclear Information System (INIS)

    Huang, Zhi Yong; Chaboche, Jean-Louis; Wang, Qing Yuan; Wagner, Danièle; Bathias, Claude

    2014-01-01

    Carbon–manganese steel A48 (French standard) is used in steam generator pipes of nuclear reactor pressure vessels at high temperatures (about 200 °C). The steel is sensitive to dynamic strain aging in monotonic tensile test and low cycle fatigue test at certain temperature range and strain rate. Its isotropic hardening behavior observed from experiments has a hardening, softening and hardening evolution with the effect of dynamic strain aging. The isotropic hardening model is improved by coupling the dislocation and dynamic strain aging theory to describe the behavior of A48 at 200 °C

  3. Effect of dynamic strain aging on isotropic hardening in low cycle fatigue for carbon manganese steel

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhi Yong, E-mail: huangzy@scu.edu.cn [Sichuan University, School of Aeronautics and Astronautics, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Chaboche, Jean-Louis [ONERA, DMSM, 29 avenue de la Division Lecerc, F-92320 Chatillon (France); Wang, Qing Yuan [Sichuan University, School of Aeronautics and Astronautics, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Wagner, Danièle; Bathias, Claude [Université ParisOuest Nanterre La Défense (France)

    2014-01-01

    Carbon–manganese steel A48 (French standard) is used in steam generator pipes of nuclear reactor pressure vessels at high temperatures (about 200 °C). The steel is sensitive to dynamic strain aging in monotonic tensile test and low cycle fatigue test at certain temperature range and strain rate. Its isotropic hardening behavior observed from experiments has a hardening, softening and hardening evolution with the effect of dynamic strain aging. The isotropic hardening model is improved by coupling the dislocation and dynamic strain aging theory to describe the behavior of A48 at 200 °C.

  4. Role of grain refinement in hardening of structural steels at preliminary thermomechanical treatment

    International Nuclear Information System (INIS)

    Bukhvalov, A.B.; Grigor'eva, E.V.; Davydova, L.S.; Degtyarev, M.V.; Levit, V.I.; Smirnova, N.A.; Smirnov, L.V.

    1981-01-01

    The hardening mechanism during preliminary thermomechanical treatment with deformation by cold rolling or hydroextrusion is studied on structural 37KhN3M1 and 38KhN3MFA steels. Specimens have been tested on static tension, impact strength and fracture toughness. It is shown that hydroextrusion application instead of rolling does not change the hardening effect of preliminary thermomechanical treatment (PTMT). It is established that the increase of preliminary deformation degree and the use of accelerated short term hardening heating provides a bett er grain refinement and the increase of PTMT hardening effect [ru

  5. Designing of the chemical composition of steels basing on the hardenability of constructional steels

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Sitek, W.

    2003-01-01

    The paper presents the original method of modelling of the relationships between chemical composition of alloy constructional steel and its hardenability, employing neural networks. Basing on the experimental results of the hardenability investigations, which employed Jominy method, the model of the neural networks was developed and fully verified experimentally. The model makes it possible to obtain Jominy hardenability curves basing on the steel chemical composition. The model of neural networks, making it possible to design the steel chemical composition, basing on the known Jominy hardenability curve shape, was developed also and fully verified numerically. (author)

  6. Strain hardening of aluminium alloy 3004 in the deep drawing and ironing processes

    International Nuclear Information System (INIS)

    Courbon, J.; Duval, J.L.

    1993-01-01

    The evolution of material hardening resulting from the canmaking operations on aluminium beverage cans has been investigated. Tensile tests in cup walls revealed that deep drawing induced softening in the hoop direction and hardening in the meridian direction. This anisotropy is retained in the ironing operation. Changes in strain path on a heavily cold-rolled material probably cause such a complex behaviour. To determine hardening laws for deep drawing, simple shear tests were thus performed because of the strain path similarity. They allowed to determine hardening laws over larger strains than tension could reach and revealed a saturation of stress. Altogether they proved adapted to the understanding of deep drawing. (orig.)

  7. Physical and Thermodynamical Properties of Water Phases in Hardening Portland Cement Systems

    DEFF Research Database (Denmark)

    Hansen, T. Bæk

    The present study is devoted to the description of water phases in hardening portland cement paste systems containing a significant amount of micro-filler and having a low to moderate water/powder ratio. Emphasis has been placed on the early stages of the hardening process.......The present study is devoted to the description of water phases in hardening portland cement paste systems containing a significant amount of micro-filler and having a low to moderate water/powder ratio. Emphasis has been placed on the early stages of the hardening process....

  8. Latent hardening size effect in small-scale plasticity

    Science.gov (United States)

    Bardella, Lorenzo; Segurado, Javier; Panteghini, Andrea; Llorca, Javier

    2013-07-01

    We aim at understanding the multislip behaviour of metals subject to irreversible deformations at small-scales. By focusing on the simple shear of a constrained single-crystal strip, we show that discrete Dislocation Dynamics (DD) simulations predict a strong latent hardening size effect, with smaller being stronger in the range [1.5 µm, 6 µm] for the strip height. We attempt to represent the DD pseudo-experimental results by developing a flow theory of Strain Gradient Crystal Plasticity (SGCP), involving both energetic and dissipative higher-order terms and, as a main novelty, a strain gradient extension of the conventional latent hardening. In order to discuss the capability of the SGCP theory proposed, we implement it into a Finite Element (FE) code and set its material parameters on the basis of the DD results. The SGCP FE code is specifically developed for the boundary value problem under study so that we can implement a fully implicit (Backward Euler) consistent algorithm. Special emphasis is placed on the discussion of the role of the material length scales involved in the SGCP model, from both the mechanical and numerical points of view.

  9. Latent hardening size effect in small-scale plasticity

    International Nuclear Information System (INIS)

    Bardella, Lorenzo; Panteghini, Andrea; Segurado, Javier; Llorca, Javier

    2013-01-01

    We aim at understanding the multislip behaviour of metals subject to irreversible deformations at small-scales. By focusing on the simple shear of a constrained single-crystal strip, we show that discrete Dislocation Dynamics (DD) simulations predict a strong latent hardening size effect, with smaller being stronger in the range [1.5 µm, 6 µm] for the strip height. We attempt to represent the DD pseudo-experimental results by developing a flow theory of Strain Gradient Crystal Plasticity (SGCP), involving both energetic and dissipative higher-order terms and, as a main novelty, a strain gradient extension of the conventional latent hardening. In order to discuss the capability of the SGCP theory proposed, we implement it into a Finite Element (FE) code and set its material parameters on the basis of the DD results. The SGCP FE code is specifically developed for the boundary value problem under study so that we can implement a fully implicit (Backward Euler) consistent algorithm. Special emphasis is placed on the discussion of the role of the material length scales involved in the SGCP model, from both the mechanical and numerical points of view. (paper)

  10. Nuclear EMP: key suppression device parameters for EMP hardening

    International Nuclear Information System (INIS)

    Durgin, D.L.; Brown, R.M.

    1975-03-01

    The electrical transients induced by EMP exhibit unique characteristics which differ considerably from transients associated with other phenomena such as lightning, switching, and circuit malfunctions. The suppression techniques developed to handle more common transients, though not necessarily the same devices, can be used for EMP damage protection. The suppression devices used for circuit level EMP protection are referred to as Terminal Protection Devices (TPD). Little detailed data describing the response of TPD's to EMP-related transients have been published. While most vendors publish specifications for TPD performance, there is little standardization of parameters and TPD response models are not available. This lack of parameter standardization has resulted in a proliferation of test data that is sometimes conflicting and often not directly comparable. This paper derives and/or defines a consistent set of parameters based on EMP circuit hardening requirements and on measurable component parameters and is concerned only with use of TPD's to prevent permanent damage. Three sets of parameters pertaining to pertinent TPD functional characteristics were defined as follows: standby parameters, protection parameters, and failure parameters. These parameters are used to evaluate a representative sample of TPD's and the results are presented in matrix form to facilitate the selection of devices for specific hardening problems

  11. Hardening parts by chrome plating in manufacture and repair

    Science.gov (United States)

    Astanin, V. K.; Pukhov, E. V.; Stekolnikov, Y. A.; Emtsev, V. V.; Golikova, O. A.

    2018-03-01

    In the engineering industry, galvanic coatings are widely used to prolong the service life of the machines, which contribute to the increase in the strength of the parts and their resistance to environmental influences, temperature and pressure drops, wear and fretting corrosion. Galvanic coatings have been widely applied in engineering, including agriculture, aircraft building, mining, construction, and electronics. The article focuses on the manufacturing methods of new agricultural machinery parts and the repair techniques of worn parts by chrome plating. The main attention is paid to the unstable methods of chromium deposition (in pulsed and reversing modes) in low-concentration electrolytes, which makes it possible to increase the reliability and durability of the hardened parts operation by changing the conditions of electrocrystallization, that is, directed formation of the structure and texture, thickness, roughness and microhardness of chromium plating. The practical recommendations are given on the current and temperature regimes of chromium deposition and composition of baths used for the restoration and hardening of the machine parts. Moreover, the basic methods of machining allowances removal are analysed.

  12. Electron beam hardening type copper plate printing ink

    International Nuclear Information System (INIS)

    Kawamura, Eiji; Inoue, Mitsuo; Kusaki, Satoichiro

    1989-01-01

    Copper plate printing is the printing method of filling ink in the parts of concave printing elements on a type area, and transferring the ink to a base, and it is the feature that the ink in the printing element parts of a print rises. Copper plate prints show profound feeling, in addition, its effect of preventing forgery is high. This method is generally called engraving printing, and is used frequently for printing various bills and artistic prints. The electron beam irradiation apparatus installed in the laboratory of the Printing Bureau, Ministry of Finance, is an experimental machine of area beam type, and is so constructed as to do batch conveyance and web conveyance. As the ink in printing element parts rises, the offset at the delivery part of a printing machine becomes a problem. Electron beam is superior in its transparency, and can dry instantaneously to the inside of opaque ink. At 200 kV of acceleration voltage, the ink of copper plate prints can be hardened by electron beam irradiation. The dilution monomers as the vehicle for ink were tested for their dilution capability and the effect of electron beam hardening. The problem in the utilization of electron beam is the deterioration of papers, and the counter-measures were tested. (K.I.)

  13. idRHa+ProMod - Rail Hardening Control System

    International Nuclear Information System (INIS)

    Ferro, L

    2016-01-01

    idRHa+ProMod is the process control system developed by Primetals Technologies to foresee the thermo-mechanical evolution and micro-structural composition of rail steels subjected to slack quenching into idRHa+ Rail Hardening equipments in a simulation environment. This tool can be used both off-line or in-line, giving the user the chance to test and study the best cooling strategies or letting the automatic control system free to adjust the proper cooling recipe. Optimization criteria have been tailored in order to determine the best cooling conditions according to the metallurgical requirements imposed by the main rail standards and also taking into account the elastoplastic bending phenomena occurring during all stages of the head hardening process. The computational core of idRHa+ProMod is a thermal finite element procedure coupled with special algorithms developed to work out the main thermo-physical properties of steel, to predict the non-isothermal austenite decomposition into all the relevant phases and subsequently to evaluate the amount of latent heat of transformation released, the compound thermal expansion coefficient and the amount of plastic deformation in the material. Air mist and air blades boundary conditions have been carefully investigated by means of pilot plant tests aimed to study the jet impingement on rail surfaces and the cooling efficiency at all working conditions. Heat transfer coefficients have been further checked and adjusted directly on field during commissioning. idRHa+ is a trademark of Primetals Technologies Italy Srl (paper)

  14. Origin of honeycombs: Testing the hydraulic and case hardening hypotheses

    Science.gov (United States)

    Bruthans, Jiří; Filippi, Michal; Slavík, Martin; Svobodová, Eliška

    2018-02-01

    Cavernous weathering (cavernous rock decay) is a global phenomenon, which occurs in porous rocks around the world. Although honeycombs and tafoni are considered to be the most common products of this complex process, their origin and evolution are as yet not fully understood. The two commonly assumed formation hypotheses - hydraulic and case hardening - were tested to elucidate the origin of honeycombs on sandstone outcrops in a humid climate. Mechanical and hydraulic properties of the lips (walls between adjacent pits) and backwalls (bottoms of pits) of the honeycombs were determined via a set of established and novel approaches. While the case hardening hypothesis was not supported by the determinations of either tensile strength, drilling resistance or porosity, the hydraulic hypothesis was clearly supported by field measurements and laboratory tests. Fluorescein dye visualization of capillary zone, vapor zone, and evaporation front upon their contact, demonstrated that the evaporation front reaches the honeycomb backwalls under low water flow rate, while the honeycomb lips remain dry. During occasional excessive water flow events, however, the evaporation front may shift to the lips, while the backwalls become moist as a part of the capillary zone. As the zone of evaporation corresponds to the zone of potential salt weathering, it is the spatial distribution of the capillary and vapor zones which dictates whether honeycombs are created or the rock surface is smoothed. A hierarchical model of factors related to the hydraulic field was introduced to obtain better insights into the process of cavernous weathering.

  15. Dislocation Starvation and Exhaustion Hardening in Mo-alloy Nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Claire [University of California, Berkeley & LBNL; Bei, Hongbin [ORNL; Lowry, M. B. [University of California, Berkeley; Oh, Jason [Hysitron, Inc., MN; Asif, S.A. Syed [Hysitron, Inc., MN; Warren, O. [Hysitron, Inc., MN; Shan, Zhiwei [Xi' an Jiaotong University, China & Hysitron, Inc., MN; George, Easo P [ORNL; Minor, Andrew [University of California, Berkeley & LBNL

    2012-01-01

    The evolution of defects in Mo alloy nanofibers with initial dislocation densities ranging from 0 to 1.6 1014 m2 were studied using an in situ push-to-pull device in conjunction with a nanoindenter in a transmission electron microscope. Digital image correlation was used to determine stress and strain in local areas of deformation. When they had no initial dislocations the Mo alloy nanofibers suffered sudden catastrophic elongation following elastic deformation to ultrahigh stresses. At the other extreme fibers with a high dislocation density underwent sustained homogeneous deformation after yielding at much lower stresses. Between these two extremes nanofibers with intermediate dislocation densities demonstrated a clear exhaustion hardening behavior, where the progressive exhaustion of dislocations and dislocation sources increases the stress required to drive plasticity. This is consistent with the idea that mechanical size effects ( smaller is stronger ) are due to the fact that nanostructures usually have fewer defects that can operate at lower stresses. By monitoring the evolution of stress locally we find that exhaustion hardening causes the stress in the nanofibers to surpass the critical stress predicted for self-multiplication, supporting a plasticity mechanism that has been hypothesized to account for the rapid strain softening observed in nanoscale bcc materials at high stresses.

  16. idRHa+ProMod - Rail Hardening Control System

    Science.gov (United States)

    Ferro, L.

    2016-03-01

    idRHa+ProMod is the process control system developed by Primetals Technologies to foresee the thermo-mechanical evolution and micro-structural composition of rail steels subjected to slack quenching into idRHa+ Rail Hardening equipments in a simulation environment. This tool can be used both off-line or in-line, giving the user the chance to test and study the best cooling strategies or letting the automatic control system free to adjust the proper cooling recipe. Optimization criteria have been tailored in order to determine the best cooling conditions according to the metallurgical requirements imposed by the main rail standards and also taking into account the elastoplastic bending phenomena occurring during all stages of the head hardening process. The computational core of idRHa+ProMod is a thermal finite element procedure coupled with special algorithms developed to work out the main thermo-physical properties of steel, to predict the non-isothermal austenite decomposition into all the relevant phases and subsequently to evaluate the amount of latent heat of transformation released, the compound thermal expansion coefficient and the amount of plastic deformation in the material. Air mist and air blades boundary conditions have been carefully investigated by means of pilot plant tests aimed to study the jet impingement on rail surfaces and the cooling efficiency at all working conditions. Heat transfer coefficients have been further checked and adjusted directly on field during commissioning. idRHa+ is a trademark of Primetals Technologies Italy Srl

  17. High Resolution, Radiation Tolerant Focal Plane Array for Lunar And Deep Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerius Photonics and its partners propose the development of a high resolution, radiation hardened 3-D FLASH Focal Plane Array (FPA), with performance expected to be...

  18. The effects of emitter-tied field plates on lateral PNP ionizing radiation response

    International Nuclear Information System (INIS)

    Barnaby, H.J.; Schrimpf, R.D.; Cirba, C.R.; Pease, R.L.; Fleetwood, D.M.; Kosier, S.L.

    1998-03-01

    Radiation response comparisons of lateral PNP bipolar technologies reveal that device hardening may be achieved by extending the emitter contact over the active base. The emitter-tied field plate suppresses recombination of carriers with interface traps

  19. Radiation Induced Fault Analysis for Wide Temperature BiCMOS Circuits, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — State of the art Radiation Hardened by Design (RHBD) techniques do not account for wide temperature variations in BiCMOS process. Silicon-Germanium BiCMOS process...

  20. On use of radial evanescence remain term in kinematic hardening

    International Nuclear Information System (INIS)

    Geyer, P.

    1995-10-01

    A fine modelling of the material' behaviour can be necessary to study the mechanical strength of nuclear power plant' components under cyclic loads. Ratchetting is one of the last phenomena for which numerical models have to be improved. We discuss in this paper on use of radial evanescence remain term in kinematic hardening to improve the description of ratchetting in biaxial loading tests. It's well known that Chaboche elastoplastic model with two non linear kinematic hardening variables initially proposed by Armstrong and Frederick, usually over-predicts accumulation of ratchetting strain. Burlet and Cailletaud proposed in 1987 a non linear kinematic rule with a radial evanescence remain term. The two models lead to identical formulation for proportional loadings. In the case of a biaxial loading test (primary+secondary loading), Burlet and Cailletaud model leads to accommodation, when Chaboche one's leads to ratchetting with a constant increment of strain. So we can have an under-estimate with the first model and an over-estimate with the second. An easy method to improve the description of ratchetting is to combine the two kinematic rules. Such an idea is already used by Delobelle in his model. With analytical results in the case of tension-torsion tests, we show in a first part of the paper, the interest of radial evanescence remain term in the non linear kinematic rule to describe ratchetting: we give the conditions to get adaptation, accommodation or ratchetting and the value of the strain increment in the last case. In the second part of the paper, we propose to modify the elastoplastic Chaboche model by coupling the two types of hardening by means of two scalar parameters which can be identified independently on biaxial loading tests. Identification of these two parameters returns to speculate on the directions of strain in order to adjust the ratchetting to experimental observations. We use the experimental results on the austenitic steel 316L at room

  1. THE MECHANISM OF HARDENING OF ALLOYED STEELS IN IMPULSE MAGNETIC FIELD

    Directory of Open Access Journals (Sweden)

    A. V. Alifanov

    2012-01-01

    Full Text Available In this paper, a model describing the mechanism of hardening steels in a pulsed magnetic field is provided. The model is based on the consideration of induction currents in the grain bulk ferrite, on the surface of the workpiece near the inductor. The influence of doping efficiency of the process of hardening is established.

  2. Experiment research on grind-hardening of AISI5140 steel based on thermal copensation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiang Ming; Ren, Ying Hui; Zheng, Bo; Zhou, Zhixiong [College of Mechanical and Vehicle Engineering, Hunan University, Changsha, Hunan (China); Deng, Zhao Hui [Key Laboratory for High Efficiency and Precision Machining of Difficult-to-Cut Material of Hunan Province, Hunan (China)

    2016-08-15

    The grind-hardening process utilizes the heat generated to induce martensitic phase transformation. However, the maximum achievable harden layer depth is limited due to high grinding forces, and the tensile residual stress appears on the ground surface in the grind-hardening process. This paper proposes a new grind-hardening technology using thermal compensation. The workpiece of AISI5140 steel is preheated by electric resistance heating, and ground under the condition of the workpiece temperature 25°C, 120°C, 180°C and 240°C. The grinding force, harden layer depth and surface quality including residual stress on ground surface, surface roughness and micro-hardness are investigated. The experimental results show that a deep harden layer with a fine grain martensite can be obtained with the thermal compensation. The ground workpiece surface produces a certain compressive residual stress, and the residual compressive stress value increases with preheating temperature. As the preheating temperature increases, grinding force slightly decreases, while there is slightly increment of surface roughness. Compared with the conventional grind-hardening process, both the harden layer depth and residual stress distribution are significantly improved.

  3. MOULDING MIXTURES HARDENING PROCESS BASED ON LIGNIN-BASE SULPHONATE BINDER

    Directory of Open Access Journals (Sweden)

    V. N. Ektova

    2004-01-01

    Full Text Available Hardening of agglutinant sands on lignosulphonate binding agent is the result of two processes: oxidation-reduction in the system lignosulphonate acids — persulfuric natrium in the early stages of hardening and hydration of cement in the latter stages.

  4. Anomalous precipitation hardening in Al-(1 wt%)Cu thin films

    NARCIS (Netherlands)

    Bergers, L. J. C.; De Hosson, J. Th. M.; Geers, M. G. D.; Hoefnagels, J. P. M.

    2018-01-01

    This paper concentrates on the precipitation hardening of Al-(1 wt%)Cu thin films. It is shown that in contrast to bulk, the well-known approach of precipitation hardening in confined systems like thin layers and thin films does not operate in the conventional way. This work analyses and discusses

  5. Method of case hardening depth testing by using multifunctional ultrasonic testing instrument

    International Nuclear Information System (INIS)

    Salchak, Y A; Sednev, D A; Ardashkin, I B; Kroening, M

    2015-01-01

    The paper describes usability of ultrasonic case hardening depth control applying standard instrument of ultrasonic inspections. The ultrasonic method of measuring the depth of the hardened layer is proposed. Experimental series within the specified and multifunctional ultrasonic equipment are performed. The obtained results are compared with the results of a referent method of analysis. (paper)

  6. An outbreak of contact dermatitis from toluenesulfonamide formaldehyde resin in a nail hardener

    NARCIS (Netherlands)

    de Wit, F. S.; de Groot, A. C.; Weyland, J. W.; Bos, J. D.

    1988-01-01

    8 cases of contact dermatitis from toluenesulfonamide formaldehyde resin in a nail hardener are presented. Most patients had used nail lacquers containing this resin for many years without trouble, but became sensitized to the resin shortly after the introduction of this particular nail hardener. A

  7. Development of Test Method for Simple Shear and Prediction of Hardening Behavior Considering the Branchings Effect

    International Nuclear Information System (INIS)

    Kim, Dongwook; Bang, Sungsik; Kim, Minsoo; Lee, Hyungyil; Kim, Naksoo

    2013-01-01

    In this study we establish a process to predict hardening behavior considering the Branchings effect for zircaloy-4 sheets. When a metal is compressed after tension in forming, the yield strength decreases. For this reason, the Branchings effect should be considered in FE simulations of spring-back. We suggested a suitable specimen size and a method for determining the optimum tightening torque for simple shear tests. Shear stress-strain curves are obtained for five materials. We developed a method to convert the shear load-displacement curve to the effective stress-strain curve with Fea. We simulated the simple shear forward/reverse test using the combined isotropic/kinematic hardening model. We also investigated the change of the load-displacement curve by varying the hardening coefficients. We determined the hardening coefficients so that they follow the hardening behavior of zircaloy-4 in experiments

  8. Development of Test Method for Simple Shear and Prediction of Hardening Behavior Considering the Branchings Effect

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongwook; Bang, Sungsik; Kim, Minsoo; Lee, Hyungyil; Kim, Naksoo [Sogang Univ., Seoul (Korea, Republic of)

    2013-10-15

    In this study we establish a process to predict hardening behavior considering the Branchings effect for zircaloy-4 sheets. When a metal is compressed after tension in forming, the yield strength decreases. For this reason, the Branchings effect should be considered in FE simulations of spring-back. We suggested a suitable specimen size and a method for determining the optimum tightening torque for simple shear tests. Shear stress-strain curves are obtained for five materials. We developed a method to convert the shear load-displacement curve to the effective stress-strain curve with Fea. We simulated the simple shear forward/reverse test using the combined isotropic/kinematic hardening model. We also investigated the change of the load-displacement curve by varying the hardening coefficients. We determined the hardening coefficients so that they follow the hardening behavior of zircaloy-4 in experiments.

  9. Research on SEU hardening of heterogeneous Dual-Core SoC

    Science.gov (United States)

    Huang, Kun; Hu, Keliu; Deng, Jun; Zhang, Tao

    2017-08-01

    The implementation of Single-Event Upsets (SEU) hardening has various schemes. However, some of them require a lot of human, material and financial resources. This paper proposes an easy scheme on SEU hardening for Heterogeneous Dual-core SoC (HD SoC) which contains three techniques. First, the automatic Triple Modular Redundancy (TMR) technique is adopted to harden the register heaps of the processor and the instruction-fetching module. Second, Hamming codes are used to harden the random access memory (RAM). Last, a software signature technique is applied to check the programs which are running on CPU. The scheme need not to consume additional resources, and has little influence on the performance of CPU. These technologies are very mature, easy to implement and needs low cost. According to the simulation result, the scheme can satisfy the basic demand of SEU-hardening.

  10. Unit rupture work as a criterion for quantitative estimation of hardenability in steel

    International Nuclear Information System (INIS)

    Kramarov, M.A.; Orlov, E.D.; Rybakov, A.B.

    1980-01-01

    Shown is possible utilization of high sensitivity of resistance to fracture of structural steel to the hardenability degree in the course of hardening to find the quantitative estimation of the latter one. Proposed is a criterion kappa, the ratio of the unit rupture work in the case of incomplete hardenability (asub(Tsub(ih))) under investigation, and the analoguc value obtained in the case of complete hardenability Asub(Tsub(Ch)) at the testing temperature corresponding to the critical temperature Tsub(100(M). Confirmed is high criterion sensitivity of the hardened steel structure on the basis of experimental investigation of the 40Kh, 38KhNM and 38KhNMFA steels after isothermal hold-up at different temperatures, corresponding to production of various products of austenite decomposition

  11. Evaluation of hardening by ion irradiation in molybdenum using nanoindentation techniques

    International Nuclear Information System (INIS)

    Iwakiri, Hirotomi; Watanabe, Hideo; Yoshida, Naoaki

    1997-01-01

    As a part of fundamental research on interaction of plasma and wall, some model experiments on loading of particles such as He, H and so forth suffered by plasma facing material were conducted for Mo in high Z material. As an evaluation method for it, nanoindentation technique was proposed. By this method, the hardness evaluation in surface neighboring damage range was conducted. As a result, in the helium irradiated materials, sufficient hardening was observed even at low dpa range impossible to recognize hardening on heavy ion and deuterium irradiated materials, and extreme hardening was established by formation of helium bubble at high dpa region. Furthermore, in the helium irradiated materials, recovery of hardening could not be observed even for annealed materials at 1173 K for 1 hr after irradiation. From such results, hardening promotion work due to helium and extreme thermal stability of the formed defects were elucidated. (B.K.)

  12. Hardening cookies in web-based systems for better system integrity

    International Nuclear Information System (INIS)

    Mohamad Safuan Sulaiman; Mohd Dzul Aiman Aslan; Saaidi Ismail; Abdul Aziz Mohd Ramli; Abdul Muin Abdul Rahman; Siti Nurbahyah Hamdan; Norlelawati Hashimuddin; Sufian Norazam Mohamed Aris

    2012-01-01

    IT Center (ITC) as technical support and provider for most of web-based systems in Nuclear Malaysia has conducted a study to investigate cookie vulnerability in a system for better integrity. A part of the result has found that cookies in a web-based system in Nuclear Malaysia can be easily manipulated. The main objective of the study is to harden the vulnerability of the cookies. Two levels of security procedures have been used and enforced which consist of 1) Penetration test (Pen Test) 2) Hardening procedure. In one of the system, study has found that 121 attempts threats have been detected after the hardening enforcement from 23 March till 20 September 2012. At this stage, it can be concluded that cookie vulnerability in the system has been hardened and integrity has been assured after the enforcement. This paper describes in detail the penetration and hardening process of cookie vulnerability for better supporting web-based system in Nuclear Malaysia. (author)

  13. Numerical analysis of drilling hole work-hardening effects in hole-drilling residual stress measurement

    Science.gov (United States)

    Li, H.; Liu, Y. H.

    2008-11-01

    The hole-drilling strain gage method is an effective semi-destructive technique for determining residual stresses in the component. As a mechanical technique, a work-hardening layer will be formed on the surface of the hole after drilling, and affect the strain relaxation. By increasing Young's modulus of the material near the hole, the work-hardening layer is simplified as a heterogeneous annulus. As an example, two finite rectangular plates submitted to different initial stresses are treated, and the relieved strains are measured by finite element simulation. The accuracy of the measurement is estimated by comparing the simulated residual stresses with the given initial ones. The results are shown for various hardness of work-hardening layer. The influence of the relative position of the gages compared with the thickness of the work-hardening layer, and the effect of the ratio of hole diameter to work-hardening layer thickness are analyzed as well.

  14. Strain path and work-hardening behavior of brass

    International Nuclear Information System (INIS)

    Sakharova, N.A.; Fernandes, J.V.; Vieira, M.F.

    2009-01-01

    Plastic straining in metal forming usually includes changes of strain path, which are frequently not taken into account in the analysis of forming processes. Moreover, strain path change can significantly affect the mechanical behavior and microstructural evolution of the material. For this reason, a combination of several simple loading test sequences is an effective way to investigate the dislocation microstructure of sheet metals under such forming conditions. Pure tension and rolling strain paths and rolling-tension strain path sequences were performed on brass sheets. A study of mechanical behavior and microstructural evolution during the simple and the complex strain paths was carried out, within a wide range of strain values. The appearance and development of deformation twinning was evident. It was shown that strain path change promotes the onset of premature twinning. The work-hardening behavior is discussed in terms of the twinning and dislocation microstructure evolution, as revealed by transmission electron microscopy

  15. Quenching and hardening in the transverse quasi-elastic peak

    International Nuclear Information System (INIS)

    Alberico, W.M.; Molinari, A.; Ericson, M.

    1981-09-01

    We study in the RPA framework the response of symmetric, infinite nuclear matter to a spin-isospin sensitive probe with both σ.q and σ.xq couplings. The two responses, similar in the low-q region, differ markedly for moderate momenta (>=1fm -1 ). Indeed, whereas the longitudinal one displays a softening and an enhancement (due to the attractive character of the associated particle-hole force), the transverse response is quenched and hardened with respect to the free Fermi gas. The existing experimental data, which we analyze, are compatible with our results. We also explore the total strengths and find that for repulsive forces they are appreciably reduced by the RPA correlations. Large part of this quenching comes from the Δ excitation (LLEE effect), but some reduction is still present even when the nucleonic degrees of freedom are neglected. This illustrates a violation of strength conservation brougth about by the RPA correlations in the spin-isospin channel

  16. Leaching behaviour of tritium from a hardened cement paste

    International Nuclear Information System (INIS)

    Matsuzuru, H.; Moriyama, N.; Ito, A.

    1979-01-01

    Leaching of tritium from a hardened cement paste into an aqueous phase has been studied to assess the safety of solidification of the tritiated liquid waste with cement. Leaching tests were carried out in accordance with the method recommended by the International Atomic Energy Agency. The leaching fraction was measured as functions of the waste-cement wt ratio (Wa/C), temperature of leachant and curing time. the tritium leachability of cements follows the order: alumina cement > Portland cement > slag cement. The fraction of tritium leached increases with increasing Wa/C and temperature and decreasing curing period. A deionized water as a leachant gives a slightly higher leachability than the synthetic sea water. The coating of the specimen surface with bitumen reduces the leachability to about 5% of its value for the specimen without coating. (author)

  17. Investigation of selective oxidation in bake hardenable steel

    International Nuclear Information System (INIS)

    Madeira, Laureanny; Lins, Vanessa Cunha Freitas; Faria, Guilherme Augusto de; Guimaraes, Juliana Porto; Alvarenga, Evandro de Azevedo; Vilela, Jose Mario Carneiro

    2010-01-01

    The present work aims to characterize a steel bake hardenable (BH), annealed in three different dew points (-60°C, -30°C and 0°C), as the occurrence of selective oxidation, using the techniques of X-ray photo electronic spectroscopy (XPS), glow discharge optical emission spectroscopy (GDOES) and atomic force microscopy (AFM). The analysis by XPS showed that the alloying elements oxidized at different intensities for each dew point. Analysis by GDOES revealed that the surface and subsurface concentrations of these elements also varied with the dew point. The AFM images revealed that the size and shape of the oxides were different for each dew point. At the dew points of -30°C and -60°C the formation of oxides was local, while at 0°C the growth of oxides occurred uniform y on the surface of steels. (author)

  18. A plastic damage model with stress triaxiality-dependent hardening

    International Nuclear Information System (INIS)

    Shen Xinpu; Shen Guoxiao; Zhou Lin

    2005-01-01

    Emphases of this study were placed on the modelling of plastic damage behaviour of prestressed structural concrete, with special attention being paid to the stress-triaxiality dependent plastic hardening law and the corresponding damage evolution law. A definition of stress triaxiality was proposed and introduced in the model presented here. Drucker-Prager -type plasticity was adopted in the formulation of the plastic damage constitutive equations. Numerical validations were performed for the proposed plasticity-based damage model with a driver subroutine developed in this study. The predicted stress-strain behaviour seems reasonably accurate for the uniaxial tension and uniaxial compression compared with the experimental data reported in references. Numerical calculations of compressions under various hydrostatic stress confinements were carried out in order to validate the stress triaxiality dependent properties of the model. (authors)

  19. Identifying Vulnerabilities and Hardening Attack Graphs for Networked Systems

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Sudip; Vullinati, Anil K.; Halappanavar, Mahantesh; Chatterjee, Samrat

    2016-09-15

    We investigate efficient security control methods for protecting against vulnerabilities in networked systems. A large number of interdependent vulnerabilities typically exist in the computing nodes of a cyber-system; as vulnerabilities get exploited, starting from low level ones, they open up the doors to more critical vulnerabilities. These cannot be understood just by a topological analysis of the network, and we use the attack graph abstraction of Dewri et al. to study these problems. In contrast to earlier approaches based on heuristics and evolutionary algorithms, we study rigorous methods for quantifying the inherent vulnerability and hardening cost for the system. We develop algorithms with provable approximation guarantees, and evaluate them for real and synthetic attack graphs.

  20. Simulation of the ASDEX divertor performance after hardening

    International Nuclear Information System (INIS)

    Schneider, W.; Lackner, K.; Neuhauser, J.; Wunderlich, R.

    1985-05-01

    Two combined computer models - a fluid description of the plasma scrape-off layer (SOLID) and a Monte-Carlo code for the neutral gas dynamics (DEGAS) - are used to assess changes in the divertor performance expected from the modifications in geometry needed for hardening the ASDEX divertor chamber for long-pulse, high-power heating. Stand-alone DEGAS calculations with assumed fixed scrape-off plasma parameters predict a doubling of the neutral escape probability, which, however, still remains so low, that achievement of the high divertor recycling regime can be expected over roughly the same operational regime as before modifications. This conclusion is also supported by fully self-consistent calculations with the combined model. Due to the reduced divertor, a significant reduction is predicted in the divertor time constant, which is expected to affect transient phenomena. (orig.)

  1. Precipitation hardening in dilute Al–Zr alloys

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Lamarão Souza

    2018-01-01

    Full Text Available The aim of this study was to investigate the effect of solute content (hipoperitectic Al–0.22 wt.%Zr and hiperperitectic Al–0.32 wt.%Zr on the precipitation hardening and microstructural evolution of dilute Al–Zr alloys isothermally aged. The materials were conventionally cast in a muffle furnace, solidified in a water-cooled Cu mold and subsequently heat-treated at the temperature of 650 K (377 °C for 4, 12, 24, 100 and 400 h. Mechanical characterization was performed at room temperature, using a microhardness tester and microstructural characterization was carried out on a Transmission Electron Microscope – TEM. The observed microhardness values increased during isothermal aging, due to the precipitation of nanometer-scale Al3Zr L12 particles. Peak strength was achieved within 100 h of aging. After aging for 400 h, microhardness values presented a slight decrease for both alloys, thus indicating overaging due to the coalescence of precipitates. Microhardness values increased with solute content, due to the precipitation of a higher number density of finer precipitates. After 400 h of heat-treating, coalescence was higher for the alloy with lower solute content and, also, the presence of antiphase boundaries – APBs, planar faults associated with the L12 to D023 structural transition, were observed. Comparing theoretical calculations of the increment in strength due to precipitation strengthening with experimental results, it was observed that their values are in reasonable agreement. The Orowan dislocation looping mechanism takes place during precipitation hardening for both alloys in the peak hardness condition.

  2. The influence of limited kinematic hardening in shakedown analysis

    International Nuclear Information System (INIS)

    Nery, Domingos E.S.; Jospin, Reinaldo R.; Zouain, Nestor

    2009-01-01

    The use of the Design by Analysis concept is a trend in modern pressure vessel and piping calculations. DBA flexibility allow us to deal with unexpected configurations detected at in-service inspections. It is also important, in life extension calculations, when deviations of the original standard hypothesis adopted initially in Design by Formula, can happen. To apply the DBA to structures under variable mechanic and thermal loads, it is necessary that, alternate plasticity and incremental collapse (with instantaneous plastic collapse as a particular case), be precluded. These are two basic failure modes considered by ASME or European Standards in DBA. The shakedown theory is the tool available to achieve this goal. In order to apply it, is necessary only the range of the variable loads and the material properties. Precise, robust and efficient algorithms to solve the very large nonlinear optimization problems generated in numerical applications of the shakedown theory is a recent achievement. Zouain and co-workers developed one of these algorithms for elastic ideally-plastic materials. But, it is necessary to consider more realistic material properties in real practical applications. This paper shows an enhancement of this algorithm to dealing with limited kinematic hardening, a typical property of the usual steels. This is done using internal thermodynamic variables. A discrete algorithm is obtained using a plane stress, mixed finite element, with internal variable. An example, a beam encased in an end, under constant axial force and variable moment is presented to show the importance of considering the limited kinematic hardening in a shakedown analysis. (author)

  3. Effect of cold work hardening on stress corrosion cracking of stainless steels in primary water of pressurized water reactors

    International Nuclear Information System (INIS)

    Raquet, O.; Herms, E.; Vaillant, F.; Couvant, T.; Boursier, J.M.

    2004-01-01

    A R and D program is carried out in CEA and EDF laboratories to investigate separately the effects of factors which could contribute to IASCC mechanism. In the framework of this study, the influence of cold work on SCC of ASSs in primary water is studied to supply additional knowledge concerning the contribution of radiation hardening on IASCC of ASSs. Solution annealed ASSs, essentially of type AISI 304(L) and AISI 316(L), are generally considered very resistant to SCC in nominal primary water. However, Constant Extension Rate Tests (CERTs), performed on cold pressed humped specimens in nominal primary water at 360 deg. C, reveal that these materials can exhibit a high SCC susceptibility: deepest cracks reach 1 mm (mean crack growth rate about 1 μm.h -1 ) and propagation is mainly intergranular for 304L and mainly transgranular for 316L. Indeed, work hardening in conjunction with high localized deformation can promote SCC. The influence of the nature of the cold work (shot peening, reaming, cold rolling, counter sinking, fatigue work hardening and tensile deformation) is investigated by means of screening CERTs performed with smooth specimens in 304L at 360 deg. C. For a given cold work hardening level, the susceptibility to crack initiation strongly depends on the cold working process, and no propagation is observed for a hardness level lower than 300 ±10 HV(0.49N). The propagation of cracks is observed only for dynamic loadings like CERT, traction/relaxation tests and crack growth rate tests performed with CT specimens under trapezoidal loading. Although crack initiation is observed for constant load and constant deformation tests, crack propagation do not seem to occur under these mechanical solicitations for 17000 hours of testing, even for hardness levels higher than 450 HV(0.49N). The mean crack growth rate increases when the hardness increases. An important R and D program is in progress to complement these results and to develop a SCC model for ASSs in

  4. Assessment of the effects of atmospheric neutrons on onboard electronic equipment and search for hardening solutions

    International Nuclear Information System (INIS)

    Renard, S.

    2013-01-01

    This work deals with the impact of atmospheric neutrons on complex electronic components such as built-in memories or processors. The first part describes the radiation environment, the neutron-matter interaction and the consequences on electronic devices, and presents the commonly used experimental simulations and the testing methods. The potential of laser beam for testing is highlighted. The second chapter presents the development of a testing platform for various types of memories (MRAM and SDRAM). The equipment and the dedicated software are described. A testing platform for processor is also presented. The third chapter is dedicated to the presentation of a 4 Mbit bulk-type SRAM memory and of its testing involving a laser beam equipment. Several results show the presence of error clusters that may endangered the memory as a whole. These error clusters are due to the architecture of the internal addressing scheme of the memory. The simulation of these error clusters must be improved in order to define an optimized strategy of hardening

  5. Mixed logic style adder circuit designed and fabricated using SOI substrate for irradiation-hardened experiment

    Science.gov (United States)

    Yuan, Shoucai; Liu, Yamei

    2016-08-01

    This paper proposed a rail to rail swing, mixed logic style 28-transistor 1-bit full adder circuit which is designed and fabricated using silicon-on-insulator (SOI) substrate with 90 nm gate length technology. The main goal of our design is space application where circuits may be damaged by outer space radiation; so the irradiation-hardened technique such as SOI structure should be used. The circuit's delay, power and power-delay product (PDP) of our proposed gate diffusion input (GDI)-based adder are HSPICE simulated and compared with other reported high-performance 1-bit adder. The GDI-based 1-bit adder has 21.61% improvement in delay and 18.85% improvement in PDP, over the reported 1-bit adder. However, its power dissipation is larger than that reported with 3.56% increased but is still comparable. The worst case performance of proposed 1-bit adder circuit is also seen to be less sensitive to variations in power supply voltage (VDD) and capacitance load (CL), over a wide range from 0.6 to 1.8 V and 0 to 200 fF, respectively. The proposed and reported 1-bit full adders are all layout designed and wafer fabricated with other circuits/systems together on one chip. The chip measurement and analysis has been done at VDD = 1.2 V, CL = 20 fF, and 200 MHz maximum input signal frequency with temperature of 300 K.

  6. NEW APPROACH FOR TECHNOLOGY OF VOLUMETRIC – SUPERFICIAL HARDENING OF GEAR DETAILS OF THE BACK AXLE OF MOBILE MACHINES

    Directory of Open Access Journals (Sweden)

    A. I. Mihluk

    2010-01-01

    Full Text Available The new approach for technology of volumetric – superficial hardening of gear details of the back axle made of steel lowered harden ability is offered. This approach consisting in formation of intense – hardened condition on all surface of a detail.

  7. Radiation tolerance of NPN bipolar technology with 30 GHz Ft

    International Nuclear Information System (INIS)

    Flament, O.; Synold, S.; Pontcharra, J. de; Niel, S.

    1999-01-01

    The ionizing dose and neutron radiation tolerance of Si QSA bipolar technology has been investigated. The transistors exhibit good radiation tolerance up to 100 krad and 5 10 13 n/cm 2 without any special fabrication steps to harden the technology to the studied effects. (authors)

  8. Ceramic component with reinforced protection against radiations

    International Nuclear Information System (INIS)

    Dubuisson, J.; Laville, H.; Le Gal, P.

    1986-01-01

    Ceramic components hardened against radiations are claimed (for example capacitors or ceramic substrates for semiconductors). They are prepared with a sintered ceramic containing a high proportion of heavy atoms (for instance barium titanate and a bismuth salt) provided with a glass layer containing a high proportion of light atoms. The two materials are joined by vitrification producing a diffusion zone at the interface [fr

  9. Development of Bake Hardening Effect by Plastic Deformation and Annealing Conditions

    Directory of Open Access Journals (Sweden)

    Kvačkaj, T.

    2006-01-01

    Full Text Available The paper deals with the classification of steel sheets for automotives industry on the basis of strength and structural characteristics. Experimental works were aimed to obtain the best possible strengthening parameters as well as work hardening and solid solution ferrite hardening, which are the result of thermal activation of interstitial carbon atoms during paint-baking of auto body. Hardening process coming from interstitial atoms is realized as two-step process. The first step is BH (bake hardening effect achieved by interaction of interstitial atoms with dislocations. The Cottrels atmosphere is obtained. The second step of BH effect is to produced the hardening from precipitation of the carbon atoms in e-carbides, or formation of Fe32C4 carbides. WH (work hardening effect is obtained as dislocation hardening from plastic deformations during sheet deep drawing. Experimental works were aimed at as to achieve such plastic material properties after cold rolling, annealing and skin-pass rolling, which would be able to classify the material ZStE220BH into the drawing categories at the level of DQ – DDQ. As resulting from the experimental results, the optimal treatment conditions for the maximal sum (WH+BH = 86 MPa are as follows: total cold rolling deformation ecold = 65 %, annealing temperature Tanneal. = 700 °C.

  10. Effects of solute elements on irradiation hardening and microstructural evolution in low alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Katsuhiko, E-mail: fujiik@inss.co.jp [Institute of Nuclear Safety System Inc., 64 Sata, Mihama 919-1205 (Japan); Ohkubo, Tadakatsu, E-mail: OHKUBO.Tadakatsu@nims.go.jp [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Fukuya, Koji, E-mail: fukuya@inss.co.jp [Institute of Nuclear Safety System Inc., 64 Sata, Mihama 919-1205 (Japan)

    2011-10-01

    The effects of the elements Mn, Ni, Si and Cu on irradiation hardening and microstructural evolution in low alloy steels were investigated in ion irradiation experiments using five kinds of alloys prepared by removing Mn, Ni and Si from, and adding 0.05 wt.%Cu to, the base alloy (Fe-1.5Mn-0.5Ni-0.25Si). The alloy without Mn showed less hardening and the alloys without Ni or Si showed more hardening. The addition of Cu had hardly any influence on hardening. These facts indicated that Mn enhanced hardening and that Ni and Si had some synergetic effects. The formation of solute clusters was not confirmed by atom probe (AP) analysis, whereas small dislocation loops were identified by TEM observation. The difference in hardening between the alloys with and without Mn was qualitatively consistent with loop formation. However, microstructural components that were not detected by the AP and TEM were assumed to explain the hardening level quantitatively.

  11. Applicability of Voce equation for tensile flow and work hardening behaviour of P92 ferritic steel

    International Nuclear Information System (INIS)

    Sainath, G.; Choudhary, B.K.; Christopher, J.; Isaac Samuel, E.; Mathew, M.D.

    2015-01-01

    Detailed analysis of true stress (σ)-true plastic strain (ε) data indicated that tensile flow behaviour of P92 ferritic steel can be adequately described by Voce equation at strain rates ranging from 3.16 × 10 −5 to 1.26 × 10 −3  s −1 over a temperature range 300–923 K. The steel exhibited two-stage work hardening in the variations of instantaneous work hardening rate (θ = dσ/dε) with stress. At all the strain rates, the variations in σ-ε, θ-σ and work hardening parameters associated with Voce equation with temperature exhibited three distinct temperature regimes. At intermediate temperatures, the variations in σ-ε, θ-σ and work hardening parameters with temperature and strain rate exhibited anomalous behaviour due to the occurrence of dynamic strain ageing in the steel. The shift in θ-σ towards low stresses, and rapid decrease in flow stress and work hardening parameters with increasing temperature and decreasing strain rate suggested dominance of dynamic recovery at high temperatures. - Highlights: • Tensile flow and work hardening behaviour of P92 steel has been examined. • Applicability of Voce equation to P92 steel is demonstrated. • Three temperature regimes in flow and work hardening has been observed. • Good match between predicted and the experimental tensile properties has been shown

  12. Plastic limit pressure of spherical vessels with combined hardening involving large deformation

    International Nuclear Information System (INIS)

    Leu, S.-Y.; Liao, K.-C.; Lin, Y.-C.

    2014-01-01

    The paper aims to investigate plastic limit pressure of spherical vessels of nonlinear combined isotropic/kinematic hardening materials. The Armstrong-Frederick kinematic hardening model is adopted and the Voce hardening law is incorporated for isotropic hardening behavior. Analytically, we extend sequential limit analysis to deal with combined isotropic/kinematic hardening materials. Further, exact solutions of plastic limit pressure were developed analytically by conducting both static and kinematic limit analysis. The onset of instability was also derived and solved iteratively by Newton's method. Numerically, elastic–plastic analysis is also performed by the commercial finite-element code ABAQUS incorporated with the user subroutine UMAT implemented with user materials of combined hardening. Finally, the problem formulation and the solution derivations presented here are validated by a very good agreement between the numerical results of exact solutions and the results of elastic–plastic finite-element analysis by ABAQUS. -- Highlights: • Sequential limit analysis is extended to consider combined hardening. • Exact solutions of plastic limit pressure are developed. • The onset of instability of a spherical vessel is derived and solved numerically

  13. Hardening and softening analysis of pure titanium based on the dislocation density during torsion deformation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Han; Li, Fuguo, E-mail: fuguolx@nwpu.edu.cn; Li, Jinghui; Ma, Xinkai; Li, Jiang; Wan, Qiong

    2016-08-01

    The hardening and softening phenomena during torsion deformation are studied based on the Taylor dislocation model for pure titanium. The hardening and softening phenomena are observed through the hardness analysis during micro-indentation test and micro-hardness test. Besides, the variations of indentation size also verify the existence of hardening and softening phenomena during torsion. The variations of geometric necessary dislocations (GNDs) and statistic store dislocations (SSDs) state that the positions of high dislocation density and low dislocation density correspond to the positions of hardening and softening. The results from the microstructure, grain boundaries evolution and twins analysis indicate the twins play an important role in appearance of hardening and softening phenomena. The appearance of hardening and softening phenomena are attributed to the combination of different slip systems and twinning systems combining with the Schmid Factor (SF) analysis and the transmission electron microscope (TEM). The appearance of hardening and softening phenomena can be explained by the Taylor dislocation theory based on TEM analysis. - Highlights: • The phenomena can be characterized by Taylor dislocation model. • The variation of GNDs leads to the phenomena. • The phenomena are proved by micro-hardness, indentation hardness. • The {10-12} twin and {11-24} twin play an important role in the phenomena.

  14. Radiation stability of chromium low alloys

    International Nuclear Information System (INIS)

    Chakin, V.P.; Kazakov, V.A.

    1990-01-01

    Radiation effect on the behaviour of mechanical properties and structure of chromium low alloys such as VKh-2K, KhP-3, VKhM in the wide range of temperatures and neutron fluences is studied. Radiation stability of the alloys is shown to be limited by low-temperature radiation embrittlement (LTRE), caused by radiation hardening as a result of formation of radiation-induced defects such as dislocation loops and vacancy voids in the structure. The methods for prevention LTRE of chromium alloys are suggested. 8 refs.; 8 figs

  15. Work Hardening Behavior of 1020 Steel During Cold-Beating Simulation

    Science.gov (United States)

    CUI, Fengkui; LING, Yuanfei; XUE, Jinxue; LIU, Jia; LIU, Yuhui; LI, Yan

    2017-03-01

    The present research of cold-beating formation mainly focused on roller design and manufacture, kinematics, constitutive relation, metal flow law, thermo-mechanical coupling, surface micro-topography and microstructure evolution. However, the research on surface quality and performance of workpieces in the process of cold-beating is rare. Cold-beating simulation experiment of 1020 steel is conducted at room temperature and strain rates ranging from 2000 to 4000 s-1 base on the law of plastic forming. According to the experimental data, the model of strain hardening of 1020 steel is established, Scanning Electron Microscopy(SEM) is conducted, the mechanism of the work hardening of 1020 steel is clarified by analyzing microstructure variation of 1020 steel. It is found that the strain rate hardening effect of 1020 steel is stronger than the softening effect induced by increasing temperatures, the process of simulation cold-beating cause the grain shape of 1020 steel significant change and microstructure elongate significantly to form a fibrous tissue parallel to the direction of deformation, the higher strain rate, the more obvious grain refinement and the more hardening effect. Additionally, the change law of the work hardening rate is investigated, the relationship between dislocation density and strain, the relationship between work hardening rate and dislocation density is obtained. Results show that the change trend of the work hardening rate of 1020 steel is divided into two stages, the work hardening rate decreases dramatically in the first stage and slowly decreases in the second stage, finally tending toward zero. Dislocation density increases with increasing strain and strain rate, work hardening rate decreases with increasing dislocation density. The research results provide the basis for solving the problem of improving the surface quality and performance of workpieces under cold-beating formation of 1020 steel.

  16. HARDENING OF CRANE RAILS BY PLASMA DISCRETE-TIME SURFACE TREATMENT

    Directory of Open Access Journals (Sweden)

    S. S. Samotugin

    2017-01-01

    Full Text Available Crane wheels and rails are subjected to intensive wear in the process of operation. Therefore, improvement of these components’ performance can be considered a task of high importance. A promising direction in this regard is surface treatment by highly concentrated energy flows such as laser beams or plasma jets. This thesis suggests that the use of gradient plasma surface treatment can improve the performance of crane rails. A research was conducted, according to which hardened zones were deposited on crane rails under different treatment modes. Microhardness was measured both at the surface and in depth using custom-made microsections. The article includes the results of study of plasma surface hardening effects on wear resistance of crane rails. Change of plasma surface treatment parameters (current, plasma torch movement speed, argon gas flow rate allows for desired steel hardness and structure, while the choice of optimal location for hardened zones makes it possible to significantly improve wear resistance and crack resistance. As a result of plasma surface hardening, the fine-grained martensite structure is obtained with mainly lamellar morphology and higher hardness rate compared toinduction hardening or overlaying. Wear test of carbon steels revealed that plasma surfacing reduces abrasive wear rate compared to the irinitial state by 2 to 3 times. Enough sharp boundary between hardened and non-hardened portions has a positive effect on the performance of parts under dynamic loads, contributing to the inhibition of cracks during the transition from solid to a soft metal. For carbon and low alloy rail steels, the properties achieved by plasma surface hardening can effectively replace induction hardening or overlaying.The mode range for plasma surface treatment that allow sobtaining a surface layer with certain operating properties has been determined.

  17. Hardening and formation of dislocation structures in LiF crystals irradiated with MeV-GeV ions

    CERN Document Server

    Manika, I; Schwartz, K; Trautmann, C

    2002-01-01

    Material modifications of LiF crystals irradiated with Au, Pb and Bi ions of MeV to GeV energy are studied by means of microindentation measurements and dislocation etching. Above a critical irradiation fluence of 10 sup 9 ions/cm sup 2 , the microhardness can improve by a factor of 2 in the bulk and by more than 3 on the surface. Radiation-induced hardening follows the evolution of the energy loss along the ion path. Annealing experiments indicate that complex defect aggregates created in the tracks play a major role for the hardness change. Evidence for severe structural modifications is found when etching indentation impressions in highly irradiated crystals leading to similar pattern as in amorphous or micro-grained materials. Dislocation etching also reveals long-range stress fields extending far beyond the implantation zone deep into the nonirradiated crystal.

  18. Hardening Embrittlement and Non-Hardening Embrittlement of Welding-Heat-Affected Zones in a Cr-Mo Low Alloy Steel

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2018-06-01

    Full Text Available The embrittlement of heat affected zones (HAZs resulting from the welding of a P-doped 2.25Cr-1Mo steel was studied by the analysis of the fracture appearance transition temperatures (FATTs of the HAZs simulated under a heat input of 45 kJ/cm with different peak temperatures. The FATTs of the HAZs both with and without tempering increased with the rise of the peak temperature. However, the FATTs were apparently lower for the tempered HAZs. For the as-welded (untempered HAZs, the FATTs were mainly affected by residual stress, martensite/austenite (M/A islands, and bainite morphology. The observed embrittlement is a hardening embrittlement. On the other hand, the FATTs of the tempered HAZs were mainly affected by phosphorus grain boundary segregation, thereby causing a non-hardening embrittlement. The results demonstrate that the hardening embrittlement of the as-welded HAZs was more severe than the non-hardening embrittlement of the tempered HAZs. Consequently, a post-weld heat treatment should be carried out if possible so as to eliminate the hardening embrittlement.

  19. Understanding of radiation effect on sinks in aluminum materials for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sang Il; Kim, Ji Hyun [UNIST, Daejeon (Korea, Republic of)

    2015-05-15

    Aluminum and its alloy are widely used in structural materials for research reactor such as guide tube and cladding because of its physical properties such as high thermal conductivity, neutron economy and corrosion resistant properties. Although aluminum and its alloy have excellent characteristic, radiation induced hardening and swelling are still important safety concern. From microstructural analysis, it was confirmed that dislocation loop, void and precipitate are major sinks which induced swelling and hardening. Among these defects, precipitation such as Mg{sub 2}Si and Si were generated by reaction between alloy elements and transmutations. Therefore, radiation induced swelling and hardening can be predicted by analyzing these defect. However, quantitative analysis of these defects has not been done by computational tools. Therefore, it is unclear that specific mechanism of alloy element effects on the irradiation swelling and hardening in aluminum alloys. Historically, radiation induced phenomena such as swelling, growth and hardening is simulated by Mean Field Radiation Damage Theory (MFRDT). From the MFRDT, reactions of irradiation defect and sink are calculated and then sink density is evolved at each type of sinks. The aim of this study is understanding of radiation effect on sink behavior. From the simplified reaction mechanism, defect concentration, sink density and irradiation hardening are calculated at each sink type. Transmutation effect was mostly dominant and dislocation loop and void effect were negligible.

  20. Work-hardening of dual-phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, Florian

    2016-07-01

    Exhibiting good mechanical properties for cold-sheet forming, low-alloyed dual-phase (DP) steels are nowadays widely used for automotive applications. The composite-like microstructure of DP steels is composed of a low-carbon ductile ferrite-matrix and 10 - 60 vol.% hard martensitic inclusions. A nonlinear mean-field model and full-field finite-element simulations are applied to investigate three major topics: the influence of grain-size distribution, grain-level plasticity and derivation of an original material-model. The plastic behavior of polycrystals is assumed to be grain-size dependent in this work. The distribution of grain-sizes is taken to be lognormal. It is found that grain-size dispersion leads to a decrease of the material strength, in particular for small mean diameters around one micron. The numerical results from the mean-field model are confirmed notably well by means of a simple analytical expression. The micromechanical behavior of DP steels is investigated by full-field RVE simulations with a crystal-plasticity based ferrite-matrix and von Mises-type martensite inclusions. To examine the martensite influence, full-field simulation results of DP steels have been compared to an RVE in which martensite is substituted by ferrite. After quenching, a higher grain-boundary area covered by martensite facilitates an increased average dislocation-density. For uniaxial deformations above ∝10%, however, the grain-size dependent relation reverses. With more surrounding martensite, the local crystal-plasticity material-model exhibits hardening at a slower rate. A nonlinear mean-field model of Hashin-Shtrikman type is employed as framework for the original material-model for DP steels. The model incorporates the interaction of ferrite and martensite via incompatibility-induced long-range stresses in an averaged sense. The proposed model combines works of Ashby (1970) and Brown and Stobbs (1971a) to simulate the ferrite behavior. Based on the composite model

  1. NINJA: a noninvasive framework for internal computer security hardening

    Science.gov (United States)

    Allen, Thomas G.; Thomson, Steve

    2004-07-01

    Vulnerabilities are a growing problem in both the commercial and government sector. The latest vulnerability information compiled by CERT/CC, for the year ending Dec. 31, 2002 reported 4129 vulnerabilities representing a 100% increase over the 2001 [1] (the 2003 report has not been published at the time of this writing). It doesn"t take long to realize that the growth rate of vulnerabilities greatly exceeds the rate at which the vulnerabilities can be fixed. It also doesn"t take long to realize that our nation"s networks are growing less secure at an accelerating rate. As organizations become aware of vulnerabilities they may initiate efforts to resolve them, but quickly realize that the size of the remediation project is greater than their current resources can handle. In addition, many IT tools that suggest solutions to the problems in reality only address "some" of the vulnerabilities leaving the organization unsecured and back to square one in searching for solutions. This paper proposes an auditing framework called NINJA (acronym for Network Investigation Notification Joint Architecture) for noninvasive daily scanning/auditing based on common security vulnerabilities that repeatedly occur in a network environment. This framework is used for performing regular audits in order to harden an organizations security infrastructure. The framework is based on the results obtained by the Network Security Assessment Team (NSAT) which emulates adversarial computer network operations for US Air Force organizations. Auditing is the most time consuming factor involved in securing an organization's network infrastructure. The framework discussed in this paper uses existing scripting technologies to maintain a security hardened system at a defined level of performance as specified by the computer security audit team. Mobile agents which were under development at the time of this writing are used at a minimum to improve the noninvasiveness of our scans. In general, noninvasive

  2. Reducing beam hardening effects and metal artefacts using Medipix3RX: With applications from biomaterial science

    CERN Document Server

    Rajendran, K; de Ruiter, N J A; Chernoglazov, A I; Panta, R K; Butler, A P H; Butler, P H; Bell, S T; Anderson, N G; Woodfield, T B F; Tredinnick, S J; Healy, J L; Bateman, C J; Aamir, R; Doesburg, R M N; Renaud, P F; Gieseg, S P; Smithies, D J; Mohr, J L; Mandalika, V B H; Opie, A M T; Cook, N J; Ronaldson, J P; Nik, S J; Atharifard, A; Clyne, M; Bones, P J; Bartneck, C; Grasset, R; Schleich, N; Billinghurst, M

    2014-01-01

    This paper discusses methods for reducing beam hardening effects using spectral data for biomaterial applications. A small-animal spectral scanner operating in the diagnostic energy range was used. We investigate the use of photon-processing features of the Medipix3RX ASIC in reducing beam hardening and associated artefacts. A fully operational charge summing mode was used during the imaging routine. We present spectral data collected for metal alloy samples, its analysis using algebraic 3D reconstruction software and volume visualisation using a custom volume rendering software. Narrow high energy acquisition using the photon-processing detector revealed substantial reduction in beam hardening effects and metal artefacts.

  3. Some aspects of plasticity in hardened face-centred cubic metals

    International Nuclear Information System (INIS)

    Jackson, P.J.; Nathanson, P.D.K.

    1978-01-01

    The plasticity of crystals of f.c.c. metals hardened by solute atoms, neutron irradiation, quenching and by dislocation distributions not characteristic of the active mode of testing is reviewed, with emphasis being placed on the simiularity of slip after various hardening treatments. Normal work hardening is not treated. The reasons for this exclusion are discussed. It is concluded that correlated slip is a normal aspect of deformation, and that diffuse uncorrelated slip occurs only when secondary dislocation multiplication is promoted, e.g. by obstacles introduced by prior slip, or by the presence of hard impenetrable obstacles of another material or phase [af

  4. Niobium effects on the austenitic grain growth and hardenability of steels for mechanical construction

    International Nuclear Information System (INIS)

    Vieira, R.R.; Arruda Camargo, L.M. de; Oliveira Junior, G.G. de; Dias Filho, A.G.C.

    1983-01-01

    The austenitic grain growth and hardenability of SAE 86XX and 5120 steels modified with 0,001 to 0,20 per-cent niobium content were studied when submitted to case hardening and quenching heat treatments. The results show that niobium controlS the austenite grain size better than molybdenum up to 950 0 C austenitization temperature. The hardenability, evaluated by the Jominy test which the modified SAE 8640 steels, is more strongly inflencied by the grain refining resulting from niobium addition than by any other supposed effect. (Author) [pt

  5. Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations

    International Nuclear Information System (INIS)

    Queyreau, Sylvain; Monnet, Ghiath; Devincre, Benoit

    2010-01-01

    Rule of mixtures are an essential feature of the modeling of plastic deformation in complex materials in which more than one strain-hardening mechanism is involved. In this work, use is made of dislocation dynamics simulations to characterize the individual and the superposed contributions of two major mechanisms of crystal plasticity, i.e. Orowan strengthening and forest hardening. Based on a formal description of each hardening mechanism, evidence is presented to show that a quadratic rule of mixtures has the ability to predict quantitatively the flow stress of complex materials such as reactor pressure vessel steel.

  6. Nonlinear response to the multiple sine wave excitation of a softening--hardening system

    International Nuclear Information System (INIS)

    Koplik, B.; Subudhi, M.; Curreri, J.

    1979-01-01

    In studying the earthquake response of the HTGR core, it was observed that the system can display softening--hardening characteristics. This is of great consequence in evaluating the structural safety aspects of the core. In order to obtain a better understanding of the governing parameters, an investigation was undertaken with a single-degree-of-freedom system having a softening--hardening spring characteristic and excited by multiple sine waves. A parametric study varying the input amplitudes and the spring characteristic was performed. Transients were introduced into the system, and the jump phenomena between the lower softening characteristics to the higher hardening curve was studied

  7. Structural characterisation of oxygen diffusion hardened alpha-tantalum PVD-coatings on titanium.

    Science.gov (United States)

    Hertl, C; Koll, L; Schmitz, T; Werner, E; Gbureck, U

    2014-08-01

    Titanium substrates were coated with tantalum layers of 5 μm thickness using physical vapour deposition (PVD). The tantalum layers showed a (110)-preferred orientation. The coated samples were hardened by oxygen diffusion. Using X-ray diffraction the crystallographic structure of the tantalum coatings was characterised, comparing untreated and diffusion hardened specimen conditions. Oxygen depth profiles were determined by glow discharge spectrometry. The hardening effect of the heat treatment was examined by Vickers microhardness testing. The increase of surface hardness caused by oxygen diffusion was at least 50%. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Instability analysis of a fully plastic center-cracked strip of a power hardening material

    International Nuclear Information System (INIS)

    Zahoor, A.; Paris, P.C.

    1978-01-01

    An approach for predicting unstable crack growth in a power hardening material is discussed. A fully plastic center-cracked strip of finite width under plane strain conditions, which involves J-controlled crack growth, is analyzed. The conditions for unstable crack growth are identified in terms of a non-dimensional parameter, the Tearing Modulus, T, which incorporates the effect of elastic system compliance on the cracked structure as well as the influence of hardening. Numerical results also illustrate the strong influences on stability of both the strain hardening characteristics of the material and certain geometrical proportions which greatly influence the system compliance. (author)

  9. Secondary Hardening Behavior in Super Duplex Stainless Steels during LCF in Dynamic Strain Ageing Regime

    OpenAIRE

    Chai, Guocai; Andersson, Marcus

    2013-01-01

    Cyclic deformation behaviors in five modified duplex stainless steel S32705 grades have been studied at 20 °C, 200 °C, 250° and 350 °C. The influence of temperature and nitrogen concentration on the occurrence of the second hardening phenomenon, in the stress response curve was focused. An increase in nitrogen concentration can have a positive effect on dynamic strain ageing by increasing the first hardening and also the second hardening behavior during cyclic deformation. Furthermore, an inc...

  10. Characterization of the work hardening structure of austenitic steels by X-ray diffraction. Application to the determination of work hardening gradients and the study of recovery

    International Nuclear Information System (INIS)

    Cadalbert, Robert; Baron, J.L.

    1977-01-01

    A method has been developed to determine quantitatively the work hardening of austenitic steels by measurement of the broadening of X-ray diffraction lines. This simple, rapid, accurate and sensible method enables to determine work hardening variations in the thickness of a material. The complete automation of the measurement cycle using a small computer enables to carry out numerous determinations and to process data with accuracy. The unit developed is well adapted to the testing of metallic materials. It is also possible with this method to study the evolution of work hardening in a metal as a function of heat treatments. For instance, the determination of the recovery curves of the crystal lattice in austenitic steels allows to investigate the influence of additions (Mo, Ti) on the recovery kinetics [fr

  11. Surface finishing and levelling of thermomechanically hardened rolled steel

    International Nuclear Information System (INIS)

    Grosval'd, V.G.; Bashchenko, A.P.; Grishkov, A.I.; Gutnik, M.V.; Kanevskij, B.L.; Nikozov, A.I.; Sedov, N.D.; Prosin, K.A.; Safonov, L.I.

    1975-01-01

    The finishing of high-strength merchant shapes from alloy steel was tried out under industrial conditions with the equipment of metallurgical plants. After thermomechanical hardening in the production line of the rolling mill, 30KhGSN2A and 40Kh1NVA steel rounds 32 and 31 mm in diameter were straightened on a two-roller straightening machine designed by the All-Union Scientific Research Institute for Metallurgical Machinery (VNII Metmash). This made possible subsequent turning and grinding of the rods. The conditions of straightening, turning and grinding have been worked so as to obtain thermomechanically strengthened and ground rolled products approximating the gauged and ground metal in shape geometry and surface finish. It is shown that the labour-consuming operation of turning can be eliminated by reducing the machining pass of the rolled product, and this lowers the labour required for the finishing operations by 75%. After grinding with 40- and 25-grain abrasive wheels, high strength rolled shapes were obtained with a diameter of 30-0.20 mm and a surface finish of class 6-5 satisfying the technical specifications. (author)

  12. Waste tyre rubberized concrete: properties at fresh and hardened state.

    Science.gov (United States)

    Aiello, M A; Leuzzi, F

    2010-01-01

    The main objective of this paper is to investigate the properties of various concrete mixtures at fresh and hardened state, obtained by a partial substitution of coarse and fine aggregate with different volume percentages of waste tyres rubber particles, having the same dimensions of the replaced aggregate. Workability, unit weight, compressive and flexural strength and post-cracking behaviour were evaluated and a comparison of the results for the different rubcrete mixtures were proposed in order to define the better mix proportions in terms of mechanical properties of the rubberized concrete. Results showed in this paper were also compared to data reported in literature. Moreover, a preliminary geometrical, physical and mechanical characterization on scrap tyre rubber shreds was made. The rubberized concrete mixtures showed lower unit weight compared to plain concrete and good workability. The results of compressive and flexural tests indicated a larger reduction of mechanical properties of rubcrete when replacing coarse aggregate rather than fine aggregate. On the other hand, the post-cracking behaviour of rubberized concrete was positively affected by the substitution of coarse aggregate with rubber shreds, showing a good energy absorption and ductility indexes in the range observed for fibrous concrete, as suggested by standard (ASTM C1018-97, 1997). 2010 Elsevier Ltd. All rights reserved.

  13. Design of rapid hardening engineered cementitious composites for sustainable construction

    Directory of Open Access Journals (Sweden)

    Marushchak Uliana

    2017-12-01

    Full Text Available This paper deals with design of environmentally friendly Rapid Hardening Engineered Cementitious Composite (RHECC nanomodified with ultrafine mineral additives, polycarboxylate ether based superplasticizer, calcium hydrosilicate nanoparticles and dispersal reinforced by fibers. The incremental coefficient of surface activity was proposed in order to estimation of ultrafine supplementary materials (fly ash, methakaolin, microsilica efficiency. A characterization of RHECC’s compressive and flexural properties at different ages is reported in this paper. Early compressive strength of ECC is 45-50 MPa, standard strength – 84-95 MPa and parameter Rc2/Rc28 – 65–70%. The microstructure of the cement matrix and RHECC was investigated. The use of ultrafine mineral supplementary materials provides reinforcement of structure on micro- and nanoscale level (cementing matrix due to formation of sub-microreinforcing hydrate phase as AFt- and C-S-H phases in unclinker part of cement matrix, resulting in the phenomena of “self-reinforcement” on the microstructure level. Designed RHECC may be regarded as lower brittle since the crack resistance coefficient is higher comparison to conventional fine grain concrete.

  14. On estimating the effective diffusive properties of hardened cement pastes

    International Nuclear Information System (INIS)

    Stora, E.; Bary, B.; Stora, E.; He, Qi-Chang

    2008-01-01

    The effective diffusion coefficients of hardened cement pastes can vary between a few orders of magnitude. The paper aims at building a homogenization model to estimate these macroscopic diffusivities and capture such strong variations. For this purpose, a three-scale description of the paste is proposed, relying mainly on the fact that the initial cement grains hydrate forming a complex microstructure with a multi-scale pore structure. In particular, porosity is found to be well connected at a fine scale. However, only a few homogenization schemes are shown to be adequate to account for such connectivity. Among them, the mixed composite spheres assemblage estimate (Stora, E., He, Q.-C., Bary, B.: J. Appl. Phys. 100(8), 084910, 2006a) seems to be the only one that always complies with rigorous bounds and is consequently employed to predict the effects of this fine porosity on the material effective diffusivities. The model proposed provides predictions in good agreement with experimental results and is consistent with the numerous measurements of critical pore diameters issued from mercury intrusion porosimetry tests. The evolution of the effective diffusivities of cement pastes subjected to leaching is also assessed by adopting a simplified scenario of the decalcification process. (authors)

  15. Aqueous electrochemistry of precipitation-hardened nickel base alloys

    International Nuclear Information System (INIS)

    Hosoya, K.; Ballinger, R.; Prybylowski, J.; Hwang, I.S.

    1990-11-01

    An investigation has been conducted to explore the importance of local crack tip electrochemical processes in precipitation-hardened Ni-Cr-Fe alloys driven by galvanic couples between grain boundary precipitates and the local matrix. The electrochemical behavior of γ' [Ni 3 (Al,Ti)] has been determined as a function of titanium concentration, temperature, and solution pH. The electrochemical behavior of Ni-Cr-Fe solid solution alloys has been investigated as a function of chromium content for a series of 10 Fe-variable Cr (6--18%)-balance Ni alloys, temperature, and pH. The investigation was conducted in neutral and pH3 solutions over the temperature range 25--300 degree C. The results of the investigation show that the electrochemical behavior of these systems is a strong function of temperature and composition. This is especially true for the γ' [Ni 3 (Al,Ti)] system where a transition from active/passive behavior to purely active behavior and back again occurs over a narrow temperature range near 100 degree C. Behavior of this system was also found to be a strong function of titanium concentration. In all cases, the Ni 3 (Al,Ti) phase was active with respect to the matrix. The peak in activity near 100 degree C correlates well with accelerated crack growth in this temperature range, observed in nickel-base alloy X-750 heat treated to precipitate γ' on the grain boundaries. 20 refs., 23 figs., 3 tabs

  16. THE HEAT TREATMENT ANALYSIS OF E110 CASE HARDENING STEEL

    Directory of Open Access Journals (Sweden)

    MAJID TOLOUEI-RAD

    2016-03-01

    Full Text Available This paper investigates mechanical and microstructural behaviour of E110 case hardening steel when subjected to different heat treatment processes including quenching, normalizing and tempering. After heat treatment samples were subjected to mechanical and metallographic analysis and the properties obtained from applying different processes were analysed. The heat treatment process had certain effects on the resultant properties and microstructures obtained for E110 steel which are described in details. Quenching produced a martensitic microstructure characterized by significant increase in material’s hardness and a significant decreased in its impact energy. Annealed specimens produced a coarse pearlitic microstructure with minimal variation in hardness and impact energy. For normalized samples, fine pearlitic microstructure was identified with a moderate increase in hardness and significant reduction in impact energy. Tempering had a significant effect on quenched specimens, with a substantial rise in material ductility and reduction of hardness with increasing tempering temperature. Furthermore, Results provide additional substantiation of temper embrittlement theory for low-carbon alloys, and indicate potential occurrence of temper embrittlement for fine pearlitic microstructures.

  17. Spectroscopic investigation of Ni speciation in hardened cement paste.

    Science.gov (United States)

    Vespa, M; Dähn, R; Grolimund, D; Wieland, E; Scheidegger, A M

    2006-04-01

    Cement-based materials play an important role in multi-barrier concepts developed worldwide for the safe disposal of hazardous and radioactive wastes. Cement is used to condition and stabilize the waste materials and to construct the engineered barrier systems (container, backfill, and liner materials) of repositories for radioactive waste. In this study, Ni uptake by hardened cement paste has been investigated with the aim of improving our understanding of the immobilization process of heavy metals in cement on the molecular level. X-ray absorption spectroscopy (XAS) coupled with diffuse reflectance spectroscopy (DRS) techniques were used to determine the local environment of Ni in cement systems. The Ni-doped samples were prepared at two different water/cement ratios (0.4, 1.3) and different hydration times (1 hour to 1 year) using a sulfate-resisting Portland cement. The metal loadings and the metal salts added to the system were varied (50 up to 5000 mg/kg; NO3(-), SO4(2-), Cl-). The XAS study showed that for all investigated systems Ni(ll) is predominantly immobilized in a layered double hydroxide (LDH) phase, which was corroborated by DRS measurements. Only a minor extent of Ni(ll) precipitates as Ni-hydroxides (alpha-Ni(OH)2 and beta-Ni(OH)2). This finding suggests that Ni-Al LDH, rather than Ni-hydroxides, is the solubility-limiting phase in the Ni-doped cement system.

  18. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  19. Precipitation hardened nickel-base alloys for sour gas environments

    International Nuclear Information System (INIS)

    Igarashi, M.; Mukai, S.; Kudo, T.; Okada, Y.; Ikeda, A.

    1987-01-01

    SCC (Stress Corrosion Cracking) in sour gas environments of γ'(gamma prime: Ni/sub 3/(Ti and/or Al)) and γ''(gamma double prime: Ni/sub 3/Nb) precipitation hardened nickel-base alloys has been studied using the SSRT (Slow Strain Rate Tensile) test, anodic polarization measurement and transmission electron microscopy (TEM). The γ'-type alloy containing Ti was more susceptible to SCC in the SSRT tests up to 350 0 F(450 K) than the γ''-type alloy containing Nb. The susceptibility to SCC was related to their deformation structures in terms of stress localization and sensitivity to pitting corrosion in H/sub 2/S solutions. TEM observation showed the γ'-type alloy deformed by the superlattice dislocations in coplanar structures. This mode of deformation induced the stress localization to some boundaries such as grain boundary and as a result the susceptibility to SCC of the γ'-type alloy was increased. On the other hand, the γ''-type alloy deformed by the massive dislocation not in coplanar structures so that it was less susceptible to SCC in terms of the stress localization. The anodic polarization measurement suggested the γ'-type alloy was more susceptible to pitting corrosion compared with the γ''-type alloy

  20. Designing Security-Hardened Microkernels For Field Devices

    Science.gov (United States)

    Hieb, Jeffrey; Graham, James

    Distributed control systems (DCSs) play an essential role in the operation of critical infrastructures. Perimeter field devices are important DCS components that measure physical process parameters and perform control actions. Modern field devices are vulnerable to cyber attacks due to their increased adoption of commodity technologies and that fact that control networks are no longer isolated. This paper describes an approach for creating security-hardened field devices using operating system microkernels that isolate vital field device operations from untrusted network-accessible applications. The approach, which is influenced by the MILS and Nizza architectures, is implemented in a prototype field device. Whereas, previous microkernel-based implementations have been plagued by poor inter-process communication (IPC) performance, the prototype exhibits an average IPC overhead for protected device calls of 64.59 μs. The overall performance of field devices is influenced by several factors; nevertheless, the observed IPC overhead is low enough to encourage the continued development of the prototype.

  1. Design of rapid hardening engineered cementitious composites for sustainable construction

    Science.gov (United States)

    Marushchak, Uliana; Sanytsky, Myroslav; Sydor, Nazar

    2017-12-01

    This paper deals with design of environmentally friendly Rapid Hardening Engineered Cementitious Composite (RHECC) nanomodified with ultrafine mineral additives, polycarboxylate ether based superplasticizer, calcium hydrosilicate nanoparticles and dispersal reinforced by fibers. The incremental coefficient of surface activity was proposed in order to estimation of ultrafine supplementary materials (fly ash, methakaolin, microsilica) efficiency. A characterization of RHECC's compressive and flexural properties at different ages is reported in this paper. Early compressive strength of ECC is 45-50 MPa, standard strength - 84-95 MPa and parameter Rc2/Rc28 - 65-70%. The microstructure of the cement matrix and RHECC was investigated. The use of ultrafine mineral supplementary materials provides reinforcement of structure on micro- and nanoscale level (cementing matrix) due to formation of sub-microreinforcing hydrate phase as AFt- and C-S-H phases in unclinker part of cement matrix, resulting in the phenomena of "self-reinforcement" on the microstructure level. Designed RHECC may be regarded as lower brittle since the crack resistance coefficient is higher comparison to conventional fine grain concrete.

  2. Surface hardening of two cast irons by friction stir processing

    International Nuclear Information System (INIS)

    Fujii, Hidetoshi; Kikuchi, Toshifumi; Nogi, Kiyoshi; Yamaguchi, Yasufumi; Kiguchi, Shoji

    2009-01-01

    The Friction Stir Processing (FSP) was applied to the surface hardening of cast irons. Flake graphite cast iron (FC300) and nodular graphite cast iron (FCD700) were used to investigate the validity of this method. The matrices of the FC300 and FC700 cast irons are pearlite. The rotary tool is a 25mm diameter cylindrical tool, and the travelling speed was varied between 50 and 150mm/min in order to control the heat input at the constant rotation speed of 900rpm. As a result, it has been clarified that a Vickers hardness of about 700HV is obtained for both cast irons. It is considered that a very fine martensite structure is formed because the FSP generates the heat very locally, and a very high cooling rate is constantly obtained. When a tool without an umbo (probe) is used, the domain in which graphite is crushed and striated is minimized. This leads to obtaining a much harder sample. The hardness change depends on the size of the martensite, which can be controlled by the process conditions, such as the tool traveling speed and the load. Based on these results, it was clarified that the FSP has many advantages for cast irons, such as a higher hardness and lower distortion. As a result, no post surface heat treatment and no post machining are required to obtain the required hardness, while these processes are generally required when using the traditional methods.

  3. Nanoparticle amount, and not size, determines chain alignment and nonlinear hardening in polymer nanocomposites

    Science.gov (United States)

    Varol, H. Samet; Meng, Fanlong; Hosseinkhani, Babak; Malm, Christian; Bonn, Daniel; Bonn, Mischa; Zaccone, Alessio

    2017-01-01

    Polymer nanocomposites—materials in which a polymer matrix is blended with nanoparticles (or fillers)—strengthen under sufficiently large strains. Such strain hardening is critical to their function, especially for materials that bear large cyclic loads such as car tires or bearing sealants. Although the reinforcement (i.e., the increase in the linear elasticity) by the addition of filler particles is phenomenologically understood, considerably less is known about strain hardening (the nonlinear elasticity). Here, we elucidate the molecular origin of strain hardening using uniaxial tensile loading, microspectroscopy of polymer chain alignment, and theory. The strain-hardening behavior and chain alignment are found to depend on the volume fraction, but not on the size of nanofillers. This contrasts with reinforcement, which depends on both volume fraction and size of nanofillers, potentially allowing linear and nonlinear elasticity of nanocomposites to be tuned independently. PMID:28377517

  4. Numerical predicting of the structure and stresses state in hardened element made of tool steel

    Directory of Open Access Journals (Sweden)

    A. Bokota

    2008-03-01

    Full Text Available The paper presents numerical model of thcrmal phcnomcna, phasc transformation and mcchanical phcnomcna associated with hardeningof carbon tool steel. Model for evaluation or fractions OF phases and their kinetics bascd on continuous heating diagram (CHT andcontinuous cooling diagram (CCT. The stresses generated during hardening were assumed to rcsult from ~hermal load. stntcturaI plasticdeformations and transformation plasricity. Thc hardened material was assumed to be elastic-plastic, and in ordcr to mark plastic strains the non-isothermal plastic law of flow with the isotropic hardening and condition plasticity of Huber-Misses were used. TherrnophysicaI values of mechanical phenomena dependent on bo~hth e phase composition and temperature. In the numerical example thc simulated estimation of the phasc Fraction and strcss distributions in the hardened axisimmetrical elemcnt was performed.

  5. PERSPECTIVE TECHNOLOGIES OF THERMAL HARDENING OF LARGE-SIZE ARTICLES OF TWO-PHASE TITANIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    V. N. Fedulov

    2005-01-01

    Full Text Available The article is dedicated to the development and industrial assimilation of the fundamentally new methods of thermal strengthening of large articles out of hardenable titanic alloys.

  6. Model Identification and FE Simulations: Effect of Different Yield Loci and Hardening Laws in Sheet Forming

    Science.gov (United States)

    Flores, P.; Duchêne, L.; Lelotte, T.; Bouffioux, C.; El Houdaigui, F.; Van Bael, A.; He, S.; Duflou, J.; Habraken, A. M.

    2005-08-01

    The bi-axial experimental equipment developed by Flores enables to perform Baushinger shear tests and successive or simultaneous simple shear tests and plane-strain tests. Such experiments and classical tensile tests investigate the material behavior in order to identify the yield locus and the hardening models. With tests performed on two steel grades, the methods applied to identify classical yield surfaces such as Hill or Hosford ones as well as isotropic Swift type hardening or kinematic Armstrong-Frederick hardening models are explained. Comparison with the Taylor-Bishop-Hill yield locus is also provided. The effect of both yield locus and hardening model choice will be presented for two applications: Single Point Incremental Forming (SPIF) and a cup deep drawing.

  7. EFFECT OF HARDENER ON MECHANICAL PROPERTIES OF CARBON FIBRE REINFORCED PHENOLIC RESIN COMPOSITES

    Directory of Open Access Journals (Sweden)

    S. SULAIMAN

    2008-04-01

    Full Text Available In this paper the effect of hardener on mechanical properties of carbon reinforced phenolic resin composites is investigated. Carbon fibre is one of the most useful reinforcement materials in composites, its major use being the manufacture of components in the aerospace, automotive, and leisure industries. In this study, carbon fibres are hot pressed with phenolic resin with various percentages of carbon fibre and hardener contents that range from 5-15%. Composites with 15% hardener content show an increase in flexural strength, tensile strength and hardness. The ultimate tensile strength (UTS, flexural strength and hardness for 15% hardener are 411.9 MPa, 51.7 MPa and 85.4 HRR respectively.

  8. Model Identification and FE Simulations: Effect of Different Yield Loci and Hardening Laws in Sheet Forming

    International Nuclear Information System (INIS)

    Flores, P.; Lelotte, T.; Bouffioux, C.; El Houdaigui, F.; Habraken, A.M.; Duchene, L.; Bael, A. van; He, S.; Duflou, J.

    2005-01-01

    The bi-axial experimental equipment developed by Flores enables to perform Baushinger shear tests and successive or simultaneous simple shear tests and plane-strain tests. Such experiments and classical tensile tests investigate the material behavior in order to identify the yield locus and the hardening models. With tests performed on two steel grades, the methods applied to identify classical yield surfaces such as Hill or Hosford ones as well as isotropic Swift type hardening or kinematic Armstrong-Frederick hardening models are explained. Comparison with the Taylor-Bishop-Hill yield locus is also provided. The effect of both yield locus and hardening model choice will be presented for two applications: Single Point Incremental Forming (SPIF) and a cup deep drawing

  9. Nonlinear dynamics of spring softening and hardening in folded-mems comb drive resonators

    KAUST Repository

    Elshurafa, Amro M.; Khirallah, Kareem; Tawfik, Hani H.; Emira, Ahmed; Abdel Aziz, Ahmed K S; Sedky, Sherif M.

    2011-01-01

    This paper studies analytically and numerically the spring softening and hardening phenomena that occur in electrostatically actuated microelectromechanical systems comb drive resonators utilizing folded suspension beams. An analytical expression

  10. Simulating the influence of scatter and beam hardening in dimensional computed tomography

    Science.gov (United States)

    Lifton, J. J.; Carmignato, S.

    2017-10-01

    Cone-beam x-ray computed tomography (XCT) is a radiographic scanning technique that allows the non-destructive dimensional measurement of an object’s internal and external features. XCT measurements are influenced by a number of different factors that are poorly understood. This work investigates how non-linear x-ray attenuation caused by beam hardening and scatter influences XCT-based dimensional measurements through the use of simulated data. For the measurement task considered, both scatter and beam hardening are found to influence dimensional measurements when evaluated using the ISO50 surface determination method. On the other hand, only beam hardening is found to influence dimensional measurements when evaluated using an advanced surface determination method. Based on the results presented, recommendations on the use of beam hardening and scatter correction for dimensional XCT are given.

  11. Literature survey on phase composition of hardened cement paste containing fly ash

    International Nuclear Information System (INIS)

    Otsuka, Taku; Yamamoto, Takeshi

    2015-01-01

    The purpose of this literature survey is to collect the knowledge on the effect of fly ash in hardened cement paste and the information about evaluation of physicochemical performance based on phase composition of hardened cement paste. The performance of hardened cement paste containing fly ash is affected by the property of fly ash, hydration of cement and pozzolanic reaction of fly ash. Some properties of fly ash such as density and chemical composition are reflected in phase composition, showing the progress of cement hydration and pozzolanic reaction. Therefore clarification of the relationship of phase composition and performance will lead to appropriate evaluation of the property of fly ash. The amount of pore, chemical shrinkage, pore solution, compressive strength, Young modulus and alkali silica reaction have relations to the phase composition of hardened cement paste. It is considered as future subject to clarify the relationship of phase composition and performance for various properties of fly ash. (author)

  12. Induction hardening of tool steel for heavily loaded aircraft engine components

    Directory of Open Access Journals (Sweden)

    Rokicki P.

    2017-03-01

    Full Text Available Induction hardening is an innovative process allowing modification of the materials surface with more effective, cheaper and more reproducible way to compare with conventional hardening methods used in the aerospace industry. Unfortunately, high requirements and strict regulation concerning this branch of the industry force deep research allowing to obtain results that would be used for numerical modelling of the process. Only by this way one is able to start the industrial application of the process. The main scope of presented paper are results concerning investigation of microstructure evolution of tool steel after single-frequency induction hardening process. The specimens that aim in representing final industrial products (as heavily loaded gears, were heat- -treated with induction method and subjected to metallographic preparation, after which complex microstructure investigation was performed. The results obtained within the research will be a basis for numerical modelling of the process of induction hardening with potential to be introduced for the aviation industrial components.

  13. Plastic limit analysis with non linear kinematic strain hardening for metalworking processes applications

    International Nuclear Information System (INIS)

    Chaaba, Ali; Aboussaleh, Mohamed; Bousshine, Lahbib; Boudaia, El Hassan

    2011-01-01

    Limit analysis approaches are widely used to deal with metalworking processes analysis; however, they are applied only for perfectly plastic materials and recently for isotropic hardening ones excluding any kind of kinematic hardening. In the present work, using Implicit Standard Materials concept, sequential limit analysis approach and the finite element method, our objective consists in extending the limit analysis application for including linear and non linear kinematic strain hardenings. Because this plastic flow rule is non associative, the Implicit Standard Materials concept is adopted as a framework of non standard plasticity modeling. The sequential limit analysis procedure which considers the plastic behavior with non linear kinematic strain hardening as a succession of perfectly plastic behavior with yielding surfaces updated after each sequence of limit analysis and geometry updating is applied. Standard kinematic finite element method together with a regularization approach is used for performing two large compression cases (cold forging) in plane strain and axisymmetric conditions

  14. The Use of Fuzzy Systems for Forecasting the Hardenability of Steel

    Directory of Open Access Journals (Sweden)

    Sitek W.

    2016-06-01

    Full Text Available The goal of the research carried out was to develop the fuzzy systems, allowing the determination of the Jominy hardenability curve based on the chemical composition of structural steels for quenching and tempering. Fuzzy system was created to calculate hardness of the steel, based on the alloying elements concentrations, and to forecast the hardenability curves. This was done based on information from the PN-EN 10083-3: 2008. Examples of hardenability curves calculated for exemplar steels were presented. Results of the research confirmed that fuzzy systems are a useful tool in evaluation the effect of alloying elements on the properties of materials compared to conventional methods. It has been demonstrated the practical usefulness of the developed models which allows forecasting the steels’ Jominy hardenability curve.

  15. Stage IV work-hardening related to disorientations in dislocation structures

    DEFF Research Database (Denmark)

    Pantleon, W.

    2004-01-01

    The effect of deformation-induced disorientations on the work-hardening of metals is modelled based on dislocation dynamics. Essentially, Kocks’ dislocation model describing stage III hardening is extended to stage IV by incorporation of excess dislocations related to the disorientations....... Disorientations evolving from purely statistical reasons — leading to a square root dependence of the average disorientation angle on strain — affect the initial work-hardening rate (and the saturation stress) of stage III only slightly. On the other hand, deterministic contributions to the development...... of disorientations, as differences in the activated slip systems across boundaries, cause a linear increase of the flow stress at large strains. Such a constant work-hardening rate is characteristic for stage IV....

  16. Improving precipitation hardening behavior of Mg−Zn based alloys with Ce−Ca microalloying additions

    Energy Technology Data Exchange (ETDEWEB)

    Langelier, B., E-mail: langelb@mcmaster.ca [Mechanical & Mechatronics Engineering, The University of Waterloo, N2L 3G1 (Canada); Canadian Centre for Electron Microscopy, McMaster University, L8S 4L8 (Canada); Korinek, A. [Canadian Centre for Electron Microscopy, McMaster University, L8S 4L8 (Canada); Donnadieu, P. [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Esmaeili, S. [Mechanical & Mechatronics Engineering, The University of Waterloo, N2L 3G1 (Canada)

    2016-10-15

    The precipitation hardening behavior of newly developed Mg−Zn−Ca−Ce alloys, with modified texture and improved ductility, is studied to delineate the microstructural characteristics that lead to effective hardening upon ageing treatments. Advanced electron microscopy and atom probe techniques are used to analyze the structural characteristics in relevance to the hardening potential. It has been found that the formation of a new basal precipitate phase, which evolves from a single atomic layer GP zone, and is finely distributed in both under-aged and peak-aged microstructures, has a significant impact in the improvement of the hardening response compared with the base Mg−Zn alloys. It has also been found that the β′{sub 1} rod precipitates, commonly formed during ageing treatments of Mg−Zn alloys, have their size and distribution significantly refined in the Ca−Ce containing alloys. The role of alloy chemistry in the formation of the fine basal plate GP zones and the refinement in β′{sub 1} precipitation and their relationships to the hardening behavior are discussed. It is proposed that Ca microalloying governs the formation of the GP zones and the enhancement of hardening, particularly in the under-aged conditions, but that this is aided by a beneficial effect from Ce. - Highlights: • Ce−Ca microalloying additions improve hardening in Mg−Zn, over Ce or Ca alone. • Improved hardening is due to refined β′{sub 1} rods, and fine basal plate precipitates. • Atom probe tomography identifies Ca in both β′{sub 1} and the fine basal plates. • The fine basal plates originate as ordered monolayer GP zones with 1:1 Zn:Ca (at.%). • With ageing GP zones become more Zn-rich and transform to the fine basal plates.

  17. Cellular Composites with Ambient and Autoclaved Type of Hardening with Application of Nanostructured Binder

    International Nuclear Information System (INIS)

    Nelyubova, V; Pavlenko, N; Netsvet, D

    2015-01-01

    The research presents the dimensional and structural characteristics of nonhydrational hardening binders - nanostructured binders. Rational areas of their use in composites for construction purposes are given. The paper presents the results of the development of natural hardening foam concrete and aerated autoclaved concrete for thermal insulating and construction and thermal insulating purposes. Thus nanostructured binder (NB) in the composites was used as a primary binder and a high reactive modifier. (paper)

  18. Effect of ferrite-martensite interface morphology on bake hardening response of DP590 steel

    International Nuclear Information System (INIS)

    Chakraborty, Arnab; Adhikary, Manashi; Venugopalan, T.; Singh, Virender; Nanda, Tarun; Kumar, B. Ravi

    2016-01-01

    The effect of martensite spatial distribution and its interface morphology on the bake hardening characteristics of a dual phase steel was investigated. In one case, typical industrial continuous annealing line parameters were employed to anneal a 67% cold rolled steel to obtain a dual phase microstructure. In the other case, a modified annealing process with changed initial heating rates and peak annealing temperature was employed. The processed specimens were further tensile pre-strained within 1–5% strain range followed by a bake hardening treatment at 170 °C for 20 min. It was observed that industrial continuous annealing line processed specimen showed a peak of about 70 MPa in bake-hardening index at 2% pre-strain level. At higher pre-strain values a gradual drop in bake-hardening index was observed. On the contrary, modified annealing process showed near uniform bake-hardening response at all pre-strain levels and a decrease could be noted only above 4% pre-strain. The evolving microstructure at each stage of annealing process and after bake-hardening treatment was studied using field emission scanning electron microscope. The microstructure analysis distinctly revealed differences in martensite spatial distribution and interface morphologies between each annealing processes employed. The modified process showed predominant formation of martensite within the ferrite grains with serrated lath martensite interfaces. This nature of the martensite was considered responsible for the observed improvement in the bake-hardening response. Furthermore, along with improved bake-hardening response negligible loss in tensile ductility was also noted. This behaviour was correlated with delayed micro-crack initiation at martensite interface due to serrated nature.

  19. Age-hardening susceptibility of high-Cr ODS ferritic steels and SUS430 ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dongsheng, E-mail: chen.dongsheng85@gmail.com [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kimura, Akihiko; Han, Wentuo; Je, Hwanil [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2015-10-15

    Highlights: • The role of oxide particles in α/α′ phase decomposition behavior; microstructure of phase decomposition observed by TEM. • The characteristics of ductility loss caused by age-hardening. • Correlation of phase decomposition and age-hardening explained by dispersion strengthened models. • Age-hardening susceptibility of ODS steels and SUS430 steel. - Abstract: The effect of aging on high-Cr ferritic steels was investigated with focusing on the role of oxide particles in α/α′ phase decomposition behavior. 12Cr-oxide dispersion strengthened (ODS) steel, 15Cr-ODS steel and commercial SUS430 steel were isothermally aged at 475 °C for up to 10,000 h. Thermal aging caused a larger hardening in SUS430 than 15Cr-ODS, while 12Cr-ODS showed almost no hardening. A characteristic of the ODS steels is that the hardening was not accompanied by the significant loss of ductility that was observed in SUS430 steel. After aging for 2000 h, SUS430 steel shows a larger ductile–brittle transition temperature (DBTT) shift than 15Cr-ODS steel, which suggests that the age-hardening susceptibility is lower in 15Cr-ODS steel than in conventional SUS430 steel. Thermal aging leaded to a large number of Cr-rich α′ precipitates, which were confirmed by transmission electron microscopy (TEM). Correlation of age-hardening and phase decomposition was interpreted by Orowan type strengthening model. Results indicate that oxide particles cannot only suppress ductility loss, but also may influence α/α′ phase decomposition kinetics.

  20. Comparison of hardenability calculation methods of the heat-treatable constructional steels

    Energy Technology Data Exchange (ETDEWEB)

    Dobrzanski, L.A.; Sitek, W. [Division of Tool Materials and Computer Techniques in Metal Science, Silesian Technical University, Gliwice (Poland)

    1995-12-31

    Evaluation has been made of the consistency of calculation of the hardenability curves of the selected heat-treatable alloyed constructional steels with the experimental data. The study has been conducted basing on the analysis of present state of knowledge on hardenability calculation employing the neural network methods. Several calculation examples and comparison of the consistency of calculation methods employed are included. (author). 35 refs, 2 figs, 3 tabs.

  1. Synthesis of a new hardener agent for self-healing epoxy resins

    Science.gov (United States)

    Raimondo, Marialuigia; Guadagno, Liberata; Naddeo, Carlo; Longo, Pasquale; Mariconda, Annaluisa; Agovino, Anna

    2014-05-01

    Actually, the development of smart composites capable of self-repair in aeronautical structures is still at the planning stage owing to complex issues to overcome. One of the critical points in the development of self-healing epoxy resin is related to the impossibility to employ primary amines as hardeners. In this paper, the synthesis of a new hardener for self-healing resins is shown together with applicability conditions/ranges.

  2. Demonstration of finite element simulations in MOOSE using crystallographic models of irradiation hardening and plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Anirban [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wen, Wei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez Saez, Enrique [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-31

    This report describes the implementation of a crystal plasticity framework (VPSC) for irradiation hardening and plastic deformation in the finite element code, MOOSE. Constitutive models for irradiation hardening and the crystal plasticity framework are described in a previous report [1]. Here we describe these models briefly and then describe an algorithm for interfacing VPSC with finite elements. Example applications of tensile deformation of a dog bone specimen and a 3D pre-irradiated bar specimen performed using MOOSE are demonstrated.

  3. Reducing beam hardening effects and metal artefacts using Medipix3RX: With applications from biomaterial science

    OpenAIRE

    Rajendran, K.; Walsh, M. F.; de Ruiter, N. J. A.; Chernoglazov, A. I.; Panta, R. K.; Butler, A. P. H.; Butler, P. H.; Bell, S. T.; Anderson, N. G.; Woodfield, T. B. F.; Tredinnick, S. J.; Healy, J. L.; Bateman, C. J.; Aamir, R.; Doesburg, R. M. N.

    2013-01-01

    This paper discusses methods for reducing beam hardening effects using spectral data for biomaterial applications. A small-animal spectral scanner operating in the diagnostic energy range was used. We investigate the use of photon-processing features of the Medipix3RX ASIC in reducing beam hardening and associated artefacts. A fully operational charge summing mode was used during the imaging routine. We present spectral data collected for metal alloy samples, its analysis using algebraic 3D r...

  4. Influence of laser hardening with weld penetration onto mechanical and fatigue properties of 40H steel

    International Nuclear Information System (INIS)

    Napadlek, W.; Przetakiewicz, W.

    2003-01-01

    In the article were described investigations results of mechanical properties (hardness, R 0.2 , R m , A 5 , Z) and fatigue properties (rotary bending) of the 40H steel samples, being quenched and tempered, induction and laser hardened. In the laser hardened samples with weld penetration of top layer cracking process in fatigue strength is started mainly in weld penetration area as structural notch. (author)

  5. Experimental drying shrinkage of hardened cement pastes as a function of relative humidity

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Baroghel, V.B.

    1996-01-01

    The results of an experimental study concerning drying shrinkage measured as a function of relative humidity on thin specimens of mature hardened cement pastes are presented. The results obtained at two laboratories are compared.......The results of an experimental study concerning drying shrinkage measured as a function of relative humidity on thin specimens of mature hardened cement pastes are presented. The results obtained at two laboratories are compared....

  6. Work hardening and mechanical equation of state in some metals in monotonic loading

    International Nuclear Information System (INIS)

    Wire, G.L.; Ellis, F.V.; Li, C.Y.

    The work hardening coefficients of Type 316 stainless steel, niobium, and 1100 aluminum alloy are measured in tensile tests. It is demonstrated experimentally that in the measured stress, plastic strain rate, and temperature range the work hardening coefficient depends only on stress and plastic strain rate. The significance of the experimental results is discussed in terms of the concept of the mechanical equation of state for plastic deformation. 13 figures

  7. Linear Friction Welding Process Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel

    Science.gov (United States)

    2014-04-11

    Carpenter Custom 465 precipitation-hardened martensitic stainless steel to develop a linear friction welding (LFW) process model for this material...Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel The views, opinions and/or findings contained in this report are... Martensitic Stainless Steel Report Title An Arbitrary Lagrangian-Eulerian finite-element analysis is combined with thermo-mechanical material

  8. Hardening of alloys in glow discharge with the use of pulsed electric current

    International Nuclear Information System (INIS)

    Shipko, M.N.; Pomel'nikova, A.S.; Solunin, A.M.; Solunin, M.A.

    2002-01-01

    The effect of ex/ternal pulsed electric field on the thickness of a hardened surface layer of a Nd-Fe-B system alloy during chemical heat treatment in a glow discharge is studied. The relationship is established between the hardened layer thickness and the frequency of external electric field which is verified by derived equations for the relation between electron energy and pulsed electric field frequency [ru

  9. Hardening XL. Induction technology with rotating crankshaft; Haerten XL. Induktionstechnik mit rotierender Kurbelwelle

    Energy Technology Data Exchange (ETDEWEB)

    Dappen, Stefan; Schibisch, Dirk M. [SMS Elotherm GmbH, Remscheid (Germany)

    2013-03-15

    Crankshafts are used in combustion engines, transforming the con rod's stroke into a rotary motion for driving the axle shaft. Along with this, torsional and flexural fatigue appears and demands a special heat treatment process. The induction hardening with a rotating crankshaft has mostly replaced competitive methods and provides the engine builders with a flexible production process for varying geometries, different hardening zones as well as increasing production rates. (orig.)

  10. Comparison of single and consecutive dual frequency induction surface hardening of gear wheels

    Science.gov (United States)

    Barglik, J.; Ducki, K.; Kukla, D.; Mizera, J.; Mrówka-Nowotnik, G.; Sieniawski, J.; Smalcerz, A.

    2018-05-01

    Mathematical modelling of single and consecutive dual - frequency induction surface hardening systems are presented and compared. The both models are solved by the 3D FEM-based professional software supported by a number of own numerical procedures. The methodology is illustrated with some examples of surface induction hardening of a gear wheel made of steel 41Cr4. The computations are in a good accordance with experiments provided on the laboratory stand.

  11. Method for determining the hardness of strain hardening articles of tungsten-nickel-iron alloy

    International Nuclear Information System (INIS)

    Wallace, S.A.

    1984-01-01

    The present invention is directed to a rapid nondestructive method for determining the extent of strain hardening in an article of tungsten-nickel-iron alloy. The method comprises saturating the article with a magnetic field from a permanent magnet, measuring the magnetic flux emanating from the article, comparing the measurements of the magnetic flux emanating from the article with measured magnetic fluxes from similarly shaped standards of the alloy with known amounts of strain hardening to determine the hardness

  12. Residual stresses relaxation in surface-hardened half-space under creep conditions

    Directory of Open Access Journals (Sweden)

    Vladimir P. Radchenko

    2015-09-01

    Full Text Available We developed the method for solving the problem of residual stresses relaxation in surface-hardened layer of half-space under creep conditions. At the first stage we made the reconstruction of stress-strain state in half-space after plastic surface hardening procedure based on partial information about distribution for one residual stress tensor component experimentally detected. At the second stage using a numerical method we solve the problem of relaxation of self-balanced residual stresses under creep conditions. To solve this problem we introduce the following Cartesian system: x0y plane is aligned with hardened surface of half-space and 0z axis is directed to the depth of hardened layer. We also introduce the hypotheses of plane sections parallel to x0z and y0z planes. Detailed analysis of the problem has been done. Comparison of the calculated data with the corresponding test data was made for plane specimens (rectangular parallelepipeds made of EP742 alloy during T=650°C after the ultrasonic hardening with four hardening modes. We use half-space to model these specimens because penetration's depth of residual stresses is less than specimen general size in two digit exponent. There is enough correspondence of experimental and calculated data. It is shown that there is a decay (in modulus of pressing residual stresses under creep in 1.4–1.6 times.

  13. Study on the Influence of the Work Hardening Models Constitutive Parameters Identification in the Springback Prediction

    International Nuclear Information System (INIS)

    Oliveira, M.C.; Menezes, L. F.; Alves, J.L.; Chaparro, B.M.

    2005-01-01

    The main goal of this work is to determine the influence of the work hardening model in the numerical prediction of springback. This study will be performed according with the specifications of the first phase of the 'Benchmark 3' of the Numisheet'2005 Conference: the 'Channel Draw'. Several work hardening constitutive models are used in order to allow a better description of the different material mechanical behavior. Two are classical pure isotropic hardening models described by a power law (Swift) or a Voce type saturation equation. Those two models were also combined with a non-linear (Lemaitre and Chaboche) kinematic hardening rule. The final one is the Teodosiu microstructural hardening model. The study is performed for two commonly used steels of the automotive industry: mild (DC06) and dual phase (DP600) steels. The mechanical characterization, as well as the constitutive parameters identification of each work hardening models, was performed by LPMTM, based on an appropriate set of experimental data such as uniaxial tensile tests, monotonic and Bauschinger simple shear tests and orthogonal strain path tests, all at various orientations with respect to the rolling direction. All the simulations were carried out with the CEMUC's home code DD3IMP (contraction of 'Deep Drawing 3-D IMPlicit code')

  14. Influence of cyclic temperature changes on the microstructure of AISI 4140 after laser surface hardening

    International Nuclear Information System (INIS)

    Miokovic, T.; Schulze, V.; Voehringer, O.; Loehe, D.

    2007-01-01

    In recent years laser surface hardening using pulsed laser sources has become an increasingly established technology in engineering industry and has opened up wider possibilities for the application of selective surface hardening. However, the choice of the process parameters is generally based on experience rather than on their empirical influence on the resulting microstructure, and for hardening processes with cyclic temperature changes, almost no correlations between process parameters and hardening results are known. Therefore, some problems regarding the choice of the process parameters and their influence on the resulting microstructure still remain. In particular, there is a lack of data concerning the effect of cyclic temperature changes on hardening. To facilitate process optimization, this paper deals with a detailed characterization of the microstructures created in quenched and tempered AISI 4140 (German grade 42CrMo4) steel following a temperature-dependent laser surface hardening treatment. The structure properties were obtained from microhardness measurements, scanning electron microscopy investigations and X-ray diffraction analysis of retained austenite

  15. Influence of cyclic temperature changes on the microstructure of AISI 4140 after laser surface hardening

    Energy Technology Data Exchange (ETDEWEB)

    Miokovic, T. [Institute of Materials Science and Engineering I, University of Karlsruhe, 76131 Karlsruhe (Germany); Schulze, V. [Institute of Materials Science and Engineering I, University of Karlsruhe, 76131 Karlsruhe (Germany)]. E-mail: volker.schulze@mach.uni-karlsruhe.de; Voehringer, O. [Institute of Materials Science and Engineering I, University of Karlsruhe, 76131 Karlsruhe (Germany); Loehe, D. [Institute of Materials Science and Engineering I, University of Karlsruhe, 76131 Karlsruhe (Germany)

    2007-01-15

    In recent years laser surface hardening using pulsed laser sources has become an increasingly established technology in engineering industry and has opened up wider possibilities for the application of selective surface hardening. However, the choice of the process parameters is generally based on experience rather than on their empirical influence on the resulting microstructure, and for hardening processes with cyclic temperature changes, almost no correlations between process parameters and hardening results are known. Therefore, some problems regarding the choice of the process parameters and their influence on the resulting microstructure still remain. In particular, there is a lack of data concerning the effect of cyclic temperature changes on hardening. To facilitate process optimization, this paper deals with a detailed characterization of the microstructures created in quenched and tempered AISI 4140 (German grade 42CrMo4) steel following a temperature-dependent laser surface hardening treatment. The structure properties were obtained from microhardness measurements, scanning electron microscopy investigations and X-ray diffraction analysis of retained austenite.

  16. DISTRIBUTED EXTERNAL SURFACE HARDENING OF CAR DESIGN BY WINDING

    Directory of Open Access Journals (Sweden)

    O. V. Fomin

    2017-04-01

    Full Text Available Purpose. The paper involves coverage of features and results of the research conducted by the authors to determine the feasibility and establishment of pre-stressed-strained state of freight cars by winding in order to improve their strength characteristics. It is also necessary to present the theoretical justification for the effectiveness of the application of this method for car designs and an appropriate example for the tank-car. Methodology. The conducted study is based on an analysis of known works on the subject, mathematical justification and computer modeling. At the calculations of rolling stock components contemporary conventional techniques were used. Findings. Authors found that the winding method for pre-stressed-strained state is effective and appropriate for use in the construction of railway rolling stock and, in particular freight cars. Freight car designs with the pre-stressed-strained state are characterized by a number of strength advantages, among which there is an improvement of the work on the perception of operational loads and resource conservation. Originality. For the first time it is proposed the improvement of bearing capacity of freight car constructions through the creation of its component in the directed stress-strained state. It is also for the first time proposed the use of distributed external surface hardening by the method of winding to create a pre-stress-strained state of structural components of freight cars. The methods for winding designs of freight cars and their implementation were considered. Practical value. The studies developed a number of technical solutions for improving the design of freight cars and tank-container, which has been patented. Corresponding solutions for the tank-car are partially presented. Practical implementation of such solutions will significantly improve the technical, economic and operational performances of car designs.

  17. A One Chip Hardened Solution for High Speed SpaceWire System Implementations. Session: Components

    Science.gov (United States)

    Marshall, Joseph R.; Berger, Richard W.; Rakow, Glenn P.

    2007-01-01

    An Application Specific Integrated Circuit (ASIC) that implements the SpaceWire protocol has been developed in a radiation hardened 0.25 micron CMOS technology. This effort began in March 2003 as a joint development between the NASA Goddard Space Flight Center (GSFC) and BAE Systems. The BAE Systems SpaceWire ASIC is comprised entirely of reusable core elements, many of which are already flight-proven. It incorporates a router with 4 SpaceWire ports and two local ports, dual PC1 bus interfaces, a microcontroller, 32KB of internal memory, and a memory controller for additional external memory use. The SpaceWire cores are also reused in other ASICs under development. The SpaceWire ASIC is planned for use on the Geostationary Operational Environmental Satellites (GOES)-R, the Lunar Reconnaissance Orbiter (LRO) and other missions. Engineering and flight parts have been delivered to programs and users. This paper reviews the SpaceWire protocol and those elements of it that have been built into the current and next SpaceWire reusable cores and features within the core that go beyond the current standard and can be enabled or disabled by the user. The adaptation of SpaceWire to BAE Systems' On Chip Bus (OCB) for compatibility with the other reusable cores will be reviewed and highlighted. Optional configurations within user systems and test boards will be shown. The physical implementation of the design will be described and test results from the hardware will be discussed. Application of this ASIC and other ASICs containing the SpaceWire cores and embedded microcontroller to Plug and Play and reconfigurable implementations will be described. Finally, the BAE Systems roadmap for SpaceWire developments will be updated, including some products already in design as well as longer term plans.

  18. EFFECT OF HARDENING TIME ON DEFORMATION-STRENGTH INDICATORS OF CONCRETE FOR INJECTION WITH A TWO-STAGE EXPANSION DURING HARDENING IN WATER

    Directory of Open Access Journals (Sweden)

    Tatjana N. Zhilnikova

    2017-01-01

    Full Text Available Abstract. Objectives Concretes for injection with a two-stage expansion are a kind of selfstressing concrete obtained with the use of self-stressing cement.The aim of the work is to study the influence of the duration of aging on the porosity, strength and self-stress of concrete hardening in water, depending on the expansion value at the first stage. At the first stage, the compacted concrete mixture is expanded to ensure complete filling of the formwork space. At the second stage, the hardening concrete expands due to the formation of an increased amount of ettringite. This process is prolonged in time, with the amount of self-stress and strength dependant on the conditions of hardening. Methods  Experimental evaluation of self-stress, strength and porosity of concretes that are permanently hardened in water, under air-moist and air-dry conditions after different expansion at the first stage. The self-stress of cement stone is the result of superposition of two processes: the hardening of the structure due to hydration of silicates and its expansion as a result of hydration of calcium aluminates with the subsequent formation of ettringite. The magnitude of self-stress is determined by the ratio of these two processes. The self-stress of the cement stone changes in a manner similar to the change in its expansion. The stabilisation of expansion is accompanied by stabilisation of self-stress of cement stone. Results  The relationship of self-stress, strength and porosity of concrete for injection with a two-stage expansion on the duration and humidity conditions of hardening, taking into account the conditions of deformation limitation at the first stage, is revealed. Conclusion During prolonged hardening in an aqueous medium, self-stresses are reduced up to 25% with the exception of expansion at the first stage and up to 20% with an increase in volume up to 5% at the first stage. The increase in compressive strength is up to 28% relative to

  19. TH-CD-202-02: A Preliminary Study Evaluating Beam-Hardening Artifact Reduction On CT Direct Electron-Density Images

    Energy Technology Data Exchange (ETDEWEB)

    Li, H; Dolly, S; Zhao, T; Anastasio, M; Mutic, S [Washington University School of Medicine, Saint Louis, MO (United States); Ritter, A; Colombo, V; Raupach, R; Huenemohr, N [Siemens Healthcare GmbH, Deutschland (Germany); Mistry, N [Siemens Medical Solutions USA, Malvern, PA (United States); Yu, L [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: A prototype reconstruction algorithm that can provide direct electron density (ED) images from single energy CT scans is being currently developed by Siemens Healthcare GmbH. This feature can eliminate the need for kV specific calibration curve for radiation treatemnt planning. An added benefit is that beam-hardening artifacts are also reduced on direct-ED images due to the underlying material decomposition. This study is to quantitatively analyze the reduction of beam-hardening artifacts on direct-ED images and suggest additional clinical usages. Methods: HU and direct-ED images were reconstructed on a head phantom scanned on a Siemens Definition AS CT scanner at five tube potentials of 70kV, 80kV, 100kV, 120kV and 140kV respectively. From these images, mean, standard deviation (SD), and local NPS were calculated for regions of interest (ROI) of same locations and sizes. A complete analysis of beam-hardening artifact reduction and image quality improvement was conducted. Results: Along with the increase of tube potentials, ROI means and SDs decrease on both HU and direct-ED images. The mean value differences between HU and direct-ED images are up to 8% with absolute value of 2.9. Compared to that on HU images, the SDs are lower on direct-ED images, and the differences are up to 26%. Interestingly, the local NPS calculated from direct-ED images shows consistent values in the low spatial frequency domain for images acquired from all tube potential settings, while varied dramatically on HU images. This also confirms the beam -hardening artifact reduction on ED images. Conclusions: The low SDs on direct-ED images and relative consistent NPS values in the low spatial frequency domain indicate a reduction of beam-hardening artifacts. The direct-ED image has the potential to assist in more accurate organ contouring, and is a better fit for the desired purpose of CT simulations for radiotherapy.

  20. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Makoto, E-mail: makoto.fukuda@qse.tohoku.ac.jp [Tohoku University, Sendai, 980-8579 (Japan); Kiran Kumar, N.A.P.; Koyanagi, Takaaki; Garrison, Lauren M. [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Snead, Lance L. [Massachusetts Institute of Technology, Cambridge, MA, 02139 (United States); Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Hasegawa, Akira [Tohoku University, Sendai, 980-8579 (Japan)

    2016-10-15

    Neutron irradiation to single crystal pure tungsten was performed in the mixed spectrum High Flux Isotope Reactor (HFIR). To investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ∼90–∼800 °C and fast neutron fluences were 0.02–9.00 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. The hardness and microstructure changes exhibited a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV). Irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten. - Highlights: • The microstructure and irradiation hardening of single crystal pure W irradiated in HFIR was investigated. • The neutron energy spectrum influence was evaluated by comparing the HFIR results with previous work in Joyo and JMTR. • In the dose range up to ∼1 dpa, the neutron energy spectrum influence of irradiation hardening was not clear. • In the dose range above 1 dpa, the neutron energy influence on irradiation hardening and microstructural development was clearly observed. • The irradiation induced precipitates caused significant irradiation hardening of pure W irradiated in HFIR.