WorldWideScience

Sample records for radiation graphite crystal

  1. DGR, GGR; molecular dynamical codes for simulating radiation damages in diamond and graphite crystals

    International Nuclear Information System (INIS)

    Taji, Yukichi

    1984-06-01

    Development has been made of molecular dynamical codes DGR and GGR to simulate radiation damages yielded in the diamond and graphite structure crystals, respectively. Though the usual molecular dynamical codes deal only with the central forces as the mutual interactions between atoms, the present codes can take account of noncentral forces to represent the effect of the covalent bonds characteristic of diamond or graphite crystals. It is shown that lattice defects yielded in these crystals are stable by themselves in the present method without any supports of virtual surface forces set on the crystallite surfaces. By this effect the behavior of lattice defects has become possible to be simulated in a more realistic manner. Some examples of the simulation with these codes are shown. (author)

  2. Neutron transmission through pyrolytic graphite crystals

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M. [Reactor Physics Department NRC, Reactor Physics Division, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 13759 (Egypt); Habib, N. [Reactor Physics Department NRC, Reactor Physics Division, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 13759 (Egypt)]. E-mail: nadiahabib15@yahoo.com; Fathaalla, M. [Reactor Physics Department NRC, Reactor Physics Division, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 13759 (Egypt)

    2006-05-15

    Calculation of the total cross-section, neutron transmission and removal coefficient of pyrolytic graphite (PG) for thermal neutron energies were carried out using an additive formula. The formula takes into account the variation of thermal diffuse and Bragg scattering cross-sections in terms of PG temperature and mosaic spread for neutron energies in the range 1 meV to 1 eV. A computer code PG has been developed which allow calculations for the graphite in its hexagonal close-packed structure, when its c-direction is parallel with incident neutron beam (parallel orientation). The calculated total neutron cross-sections for PG in parallel orientation at different mosaic spreads were compared with the measured values. An overall agreement is indicated between the formula fits and experimental data at room and liquid nitrogen temperatures. A feasibility study for use of PG crystals as second-order neutron filter is detailed in terms of mosaic spread, optimum thickness and temperature. The calculated removal coefficients of PG crystals show that such crystals are high efficiency second-order filter within neutron energy intervals (4-7 meV) and (10-15 meV)

  3. Neutron transmission through pyrolytic graphite crystal II

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M., E-mail: mamdouhshihata@yahoo.com [Reactor Physics Department, NRC, AEAE, Cairo (Egypt); Habib, N. [Reactor Physics Department, NRC, AEAE, Cairo (Egypt); Bashter, I.; Saleh, A. [Faculty of Science, Zagazig University (Egypt)

    2011-04-15

    The measured neutron transmissions through 6.7 mm thick pyroletic graphite (PG) crystal set at different take-off-angles with respect to the beam, as a function of wavelength, were compared with the calculated values using a general formula. An adapted version of the computer package graphite was developed in order to provide the required calculations in the neutron energy range from 0.1 MeV to 10 eV. An overall agreement was obtained between the formula fits and the measured data at different take-off-angles. The major dips in transmission caused by various reflections were identified. From the shape of the dips due to 0 0 l reflections, the mosaic spread of the used PG crystal has been determined within an accuracy of 0.12{sup o}. A feasibility study is carried out on using two PG crystals to select from the reactor spectrum a neutron monochromatic beam with wavelengths longer than 0.3 nm and almost free from accompanying higher-order reflections. Calculation shows that 2 mm thick highly oriented PG (0.5{sup o} FWHM on mosaic spread) crystal set at glancing angle 20.0{sup o} reflects first-order monochromatic neutrons with 0.3 nm wavelengths. When 6.0 cm thick PG crystal (2{sup o} FWHM on mosaic spread) set at 60.63{sup o} take-off-angle is inserted on the way of the reflected neutrons, it transmits more than 70% of the first-order neutrons while attenuating the high- order ones by more than 20 times. Similar results were obtained when the selected monochromatic neutrons had wavelengths longer than 0.3 nm.

  4. Crystallization degree change of expanded graphite by milling and annealing

    International Nuclear Information System (INIS)

    Tang Qunwei; Wu Jihuai; Sun Hui; Fang Shijun

    2009-01-01

    Expanded graphite was ball milled with a planetary mill in air atmosphere, and subsequently thermal annealed. The samples were characterized by using X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA). It was found that in the milling initial stage (less than 12 h), the crystallization degree of the expanded graphite declined gradually, but after milling more than 16 h, a recrystallization of the expanded graphite toke place, and ordered nanoscale expanded graphite was formed gradually. In the annealing initial stage, the non-crystallization of the graphite occurred, but, beyond an annealing time, recrystallizations of the graphite arise. Higher annealing temperature supported the recrystallization. The milled and annealed expanded graphite still preserved the crystalline structure as raw material and hold high thermal stability.

  5. Graphite crystals grown within electromagnetically levitated metallic droplets

    International Nuclear Information System (INIS)

    Amini, Shaahin; Kalaantari, Haamun; Mojgani, Sasan; Abbaschian, Reza

    2012-01-01

    Various graphite morphologies were observed to grow within the electromagnetically levitated nickel–carbon melts, including primary flakes and spheres, curved surface graphite and eutectic flakes, as well as engulfed and entrapped particles. As the supersaturated metallic solutions were cooled within the electromagnetic (EM) levitation coil, the primary graphite flakes and spheres formed and accumulated near the periphery of the droplet due to EM circulation. The primary graphite islands, moreover, nucleated and grew on the droplet surface which eventually formed a macroscopic curved graphite crystal covering the entire liquid. Upon further cooling, the liquid surrounding the primary graphite went under a coupled eutectic reaction while the liquid in the center formed a divorced eutectic due to EM mixing. This brought about the formation of graphite fine flakes and agglomerated particles close to the surface and in the center of the droplet, respectively. The graphite morphologies, growth mechanisms, defects, irregularities and growth instabilities were interpreted with detailed optical and scanning electron microscopies.

  6. Graphite

    Science.gov (United States)

    Robinson, Gilpin R.; Hammarstrom, Jane M.; Olson, Donald W.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Graphite is a form of pure carbon that normally occurs as black crystal flakes and masses. It has important properties, such as chemical inertness, thermal stability, high electrical conductivity, and lubricity (slipperiness) that make it suitable for many industrial applications, including electronics, lubricants, metallurgy, and steelmaking. For some of these uses, no suitable substitutes are available. Steelmaking and refractory applications in metallurgy use the largest amount of produced graphite; however, emerging technology uses in large-scale fuel cell, battery, and lightweight high-strength composite applications could substantially increase world demand for graphite.Graphite ores are classified as “amorphous” (microcrystalline), and “crystalline” (“flake” or “lump or chip”) based on the ore’s crystallinity, grain-size, and morphology. All graphite deposits mined today formed from metamorphism of carbonaceous sedimentary rocks, and the ore type is determined by the geologic setting. Thermally metamorphosed coal is the usual source of amorphous graphite. Disseminated crystalline flake graphite is mined from carbonaceous metamorphic rocks, and lump or chip graphite is mined from veins in high-grade metamorphic regions. Because graphite is chemically inert and nontoxic, the main environmental concerns associated with graphite mining are inhalation of fine-grained dusts, including silicate and sulfide mineral particles, and hydrocarbon vapors produced during the mining and processing of ore. Synthetic graphite is manufactured from hydrocarbon sources using high-temperature heat treatment, and it is more expensive to produce than natural graphite.Production of natural graphite is dominated by China, India, and Brazil, which export graphite worldwide. China provides approximately 67 percent of worldwide output of natural graphite, and, as the dominant exporter, has the ability to set world prices. China has significant graphite reserves, and

  7. Radiation creep of graphite. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Blackstone, R [Commission of the European Communities, Petten (Netherlands). Joint Nuclear Research Center

    1977-03-01

    Graphite, a class of materials with many unique and unusual properties, shows a remarkably high creep ductility under irradiation. As this behaviour compensates to some extent some of the more worrying radiation effects, such as dimensional changes and their strong temperature dependence, it is a property of large technological interest. There are various ways of observing and measuring in-pile creep of graphite, varying in degree of sophistication and in cost, in accuracy and in the type of data that is generated. This paper attempts to review briefly the various experimental methods, and the knowledge generated so far. An indication is given of the areas in which further knowledge is wanted.

  8. Radiation creep of graphite. An introduction

    International Nuclear Information System (INIS)

    Blackstone, R.

    1977-01-01

    Graphite, a class of materials with many unique and unusual properties, shows a remarkably high creep ductility under irradiation. As this behavior compensates to some extent some of the more worrying radiation effects, such as dimensional changes and their strong temperature dependence, it is a property of large technological interest. There are various ways of observing and measuring in-pile creep of graphite, varying in degree of sophistication and in cost, in accuracy and in the type of data that is generated. This paper attempts to review briefly the various experimental methods, and the knowledge generated so far. An indication is given of the areas in which further knowledge is wanted

  9. Radiation creep of graphite. An introduction

    International Nuclear Information System (INIS)

    Blackstone, R.

    1977-01-01

    Graphite, a class of materials with many unique and unusual properties, shows a remarkably high creep ductility under irradiation. As this behaviour compensates to some extent some of the more worrying radiation effects, such as dimensional changes and their strong temperature dependence, it is a property of large technological interest. There are various ways of observing and measuring in-pile creep of graphite, varying in degree of sophistication and in cost, in accuracy and in the type of data that is generated. This paper attempts to review briefly the various experimental methods, and the knowledge generated so far. An indication is given of the areas in which further knowledge is wanted. (Auth.)

  10. Physics of radiation effects in crystals

    CERN Document Server

    Johnson, RA

    1986-01-01

    ``Physics of Radiation Effects in Crystals'' is presented in two parts. The first part covers the general background and theory of radiation effects in crystals, including the theory describing the generation of crystal lattice defects by radiation, the kinetic approach to the study of the disposition of these defects and the effects of the diffusion of these defects on alloy compositions and phases. Specific problems of current interest are treated in the second part and include anisotropic dimensional changes in x-uranium, zirconium and graphite, acceleration of thermal creep in reactor ma

  11. Dislocation density and graphitization of diamond crystals

    International Nuclear Information System (INIS)

    Pantea, C.; Voronin, G.A.; Zerda, T.W.; Gubicza, J.; Ungar, T.

    2002-01-01

    Two sets of diamond specimens compressed at 2 GPa at temperatures varying between 1060 K and 1760 K were prepared; one in which graphitization was promoted by the presence of water and another in which graphitization of diamond was practically absent. X-ray diffraction peak profiles of both sets were analyzed for the microstructure by using the modified Williamson-Hall method and by fitting the Fourier coefficients of the measured profiles by theoretical functions for crystallite size and lattice strain. The procedures determined mean size and size distribution of crystallites as well as the density and the character of the dislocations. The same experimental conditions resulted in different microstructures for the two sets of samples. They were explained in terms of hydrostatic conditions present in the graphitized samples

  12. Neutron transmission measurements of poly and pyrolytic graphite crystals

    Science.gov (United States)

    Adib, M.; Abbas, Y.; Abdel-Kawy, A.; Ashry, A.; Kilany, M.; Kenawy, M. A.

    The total neutron cross-section measurements of polycrystalline graphite have been carried out in a neutron wavelength from 0.04 to 0.78 nm. This work also presents the neutron transmission measurements of pyrolytic graphite (PG) crystal in a neutron wavelength band from 0.03 to 0.50 nm, at different orientations of the PG crystal with regard to the beam direction. The measurements were performed using three time-of-flight (TOF) spectrometers installed in front of three of the ET-RR-1 reactor horizontal channels. The average value of the coherent scattering amplitude for polycrystalline graphite was calculated and found to be bcoh = (6.61 ± 0.07) fm. The behaviour of neutron transmission through the PG crystal, while oriented at different angles with regard to the beam direction, shows dips at neutron wavelengths corresponding to the reflections from (hkl) planes of hexagonal graphite structure. The positions of the observed dips are found to be in good agreement with the calculated ones. It was also found that a 40 mm thick PG crystal is quite enough to reduce the second-order contamination of the neutron beam from 2.81 to 0.04, assuming that the incident neutrons have a Maxwell distribution with neutron gas temperature 330 K.

  13. Neutron transmission measurements of poly and pyrolytic graphite crystals

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.; Kilany, M.

    1989-01-01

    The total neutron cross-section measurements of polycrystalline graphite have been carried out in a neutron wavelength from 0.04 to 0.78 nm. This work also presents the neutron transmission measurements of pyrolytic graphite (PG) crystal in a neutron wavelength band from 0.03 to 0.50 nm, at different orientations of the PG crystal with regard to the beam direction. The measurements were performed using three time-of-flight (TOF) spectrometers installed in front of three of the ET-RR-1 reactor horizontal channels. The average value of the coherent scattering amplitude for polycrystalline graphite was calculated and found to be b coh = (6.61 ± 0.07) fm. The behaviour of neutron transmission through the PG crystal, while orientated at different angles with regard to the beam direction, shows dips at neutron wavelengths corresponding to the reflections from (hk1) planes of hexagonal graphite structure. The positions of the observed dips are found to be in good agreement with the calculated ones. It was also found that a 40 mm thick PG crystal is quite enough to reduce the second-order contamination of the neutron beam from 2.81 to 0.04, assuming that the incident neutrons have a Maxwell distribution with neutron gas temperature 330 K. (author)

  14. Effect of gamma radiation on graphite - PTFE dry lubrication system

    Science.gov (United States)

    Singh, Sachin; Tyagi, Mukti; Seshadri, Geetha; Tyagi, Ajay Kumar; Varshney, Lalit

    2017-12-01

    An effect of gamma radiation on lubrication behavior of graphite -PTFE dry lubrication system has been studied using (TR-TW-30L) tribometer with thrust washer attachment in plane contact. Different compositions of graphite and PTFE were prepared and irradiated by gamma rays. Gamma radiation exposure significantly improves the tribological properties indicated by decrease in coefficient of friction and wear properties of graphite -PTFE dry lubrication system. SEM and XRD analysis confirm the physico-chemical modification of graphite-PTFE on gamma radiation exposure leading to a novel dry lubrication system with good slip and anti friction properties.

  15. Graphite epoxy composite degradation by space radiation

    International Nuclear Information System (INIS)

    Taheri, M.; Sandquist, G.M.; Slaughter, D.M.; Bennion, J.

    1991-01-01

    The radiation environment in space is a critical consideration for successful operation in space. All manned space missions with a duration of more than a few days are subjected to elevated ionizing radiation exposures, which are a threat to both personnel and structures in space. The increasing demands for high-performance materials as structural components in the aerospace, aircraft, and defense industries have led to the development of materials such as graphite fiber-reinforced, epoxy resin matrix composites (Gr/Ep). These materials provide important advantages over conventional structural materials, such as ultrahigh specific strength, enhanced specific moduli, and better fatigue resistance. The fact that most advanced composite materials under cyclic fatigue loading evidence little or no observable crack growth prior to rapid fracture suggests that for fail-safe considerations of parts subject to catastrophic failure, a detailed evaluation of radiation damage from very energetic particle is crucial. The Gr/Ep components are believed to suffer severe degradation in space due to highly penetrating secondary radiation, mainly from neutrons and protons. Investigation into the performance and stability of Gr/Ep materials are planned

  16. Selection, rejection and optimisation of pyrolytic graphite (PG) crystal analysers for use on the new IRIS graphite analyser bank

    International Nuclear Information System (INIS)

    Marshall, P.J.; Sivia, D.S.; Adams, M.A.; Telling, M.T.F.

    2000-01-01

    This report discusses design problems incurred by equipping the IRIS high-resolution inelastic spectrometer at the ISIS pulsed neutron source, UK with a new 4212 piece pyrolytic graphite crystal analyser array. Of the 4212 graphite pieces required, approximately 2500 will be newly purchased PG crystals with the remainder comprising of the currently installed graphite analysers. The quality of the new analyser pieces, with respect to manufacturing specifications, is assessed, as is the optimum arrangement of new PG pieces amongst old to circumvent degradation of the spectrometer's current angular resolution. Techniques employed to achieve these criteria include accurate calliper measurements, FORTRAN programming and statistical analysis. (author)

  17. Topological Characterization of Carbon Graphite and Crystal Cubic Carbon Structures.

    Science.gov (United States)

    Siddiqui, Wei Gao Muhammad Kamran; Naeem, Muhammad; Rehman, Najma Abdul

    2017-09-07

    Graph theory is used for modeling, designing, analysis and understanding chemical structures or chemical networks and their properties. The molecular graph is a graph consisting of atoms called vertices and the chemical bond between atoms called edges. In this article, we study the chemical graphs of carbon graphite and crystal structure of cubic carbon. Moreover, we compute and give closed formulas of degree based additive topological indices, namely hyper-Zagreb index, first multiple and second multiple Zagreb indices, and first and second Zagreb polynomials.

  18. Radiation Damage in Scintillating Crystals

    CERN Document Server

    Zhu Ren Yuan

    1998-01-01

    Crystal Calorimetry in future high energy physics experiments faces a new challenge to maintain its precision in a hostile radiation environment. This paper discusses the effects of radiation damage in scintillating crystals, and concludes that the predominant radiation damage effect in crystal scintillators is the radiation induced absorption, or color center formation, not the loss of the scintillation light yield. The importance of maintaining crystal's light response uniformity and the feasibility to build a precision crystal calorimeter under radiation are elaborated. The mechanism of the radiation damage in scintillating crystals is also discussed. While the damage in alkali halides is found to be caused by the oxygen or hydroxyl contamination, it is the structure defects, such as oxygen vacancies, cause damage in oxides. Material analysis methods used to reach these conclusions are presented in details.

  19. Low-energy electron observation of graphite and molybdenite crystals. Application to the study of graphite oxidation

    International Nuclear Information System (INIS)

    David, G.

    1969-01-01

    The LEED study of cleaved (0001) faces of crystals having a layered structure allowed to investigate flakes free of steps on graphite and molybdenite, to show twinning on natural graphite. By intensity measurements and computation in the case of a kinematical approximation it has been possible to determine an inner potential of 19 eV for graphite and to identify the direction of the Mo-S bond of the surface layer of molybdenite. The oxidation of graphite has been studied by observing changes, in symmetry of the diffraction patterns and by mass spectrometry of the gases evolved during the oxidation. No surface compounds have been detected and the carbon layers appeared to be peeled off one after the other. The oxidation took place at temperatures higher than 520 C under an oxygen pressure of 10 -5 torr. (author) [fr

  20. Single-crystal apatite nanowires sheathed in graphitic shells: synthesis, characterization, and application.

    Science.gov (United States)

    Jeong, Namjo; Cha, Misun; Park, Yun Chang; Lee, Kyung Mee; Lee, Jae Hyup; Park, Byong Chon; Lee, Junghoon

    2013-07-23

    Vertically aligned one-dimensional hybrid structures, which are composed of apatite and graphitic structures, can be beneficial for orthopedic applications. However, they are difficult to generate using the current method. Here, we report the first synthesis of a single-crystal apatite nanowire encapsulated in graphitic shells by a one-step chemical vapor deposition. Incipient nucleation of apatite and its subsequent transformation to an oriented crystal are directed by derived gaseous phosphorine. Longitudinal growth of the oriented apatite crystal is achieved by a vapor-solid growth mechanism, whereas lateral growth is suppressed by the graphitic layers formed through arrangement of the derived aromatic hydrocarbon molecules. We show that this unusual combination of the apatite crystal and the graphitic shells can lead to an excellent osteogenic differentiation and bony fusion through a programmed smart behavior. For instance, the graphitic shells are degraded after the initial cell growth promoted by the graphitic nanostructures, and the cells continue proliferation on the bare apatite nanowires. Furthermore, a bending experiment indicates that such core-shell nanowires exhibited a superior bending stiffness compared to single-crystal apatite nanowires without graphitic shells. The results suggest a new strategy and direction for bone grafting materials with a highly controllable morphology and material conditions that can best stimulate bone cell differentiation and growth.

  1. On the Crystallization of Compacted and Chunky Graphite from Liquid Multicomponent Iron-Carbon-Silicon-Based Melts

    Science.gov (United States)

    Stefanescu, D. M.; Huff, R.; Alonso, G.; Larrañaga, P.; De la Fuente, E.; Suarez, R.

    2016-08-01

    Extensive SEM work was carried out on deep-etched specimens to reveal the evolution of compacted and chunky graphite in magnesium-modified multicomponent Fe-C-Si alloys during early solidification and at room temperature. The findings of this research were then integrated in the current body of knowledge to produce an understanding of the crystallization of compacted and chunky graphite. It was confirmed that growth from the liquid for both compacted and chunky graphite occurs radially from a nucleus, as foliated crystals and dendrites. The basic building blocks of the graphite aggregates are hexagonal faceted graphite platelets with nanometer height and micrometer width. Thickening of the platelets occurs through growth of additional graphene layers nucleated at the ledges of the graphite prism. Additional thickening resulting in complete joining of the platelets may occur from the recrystallization of the amorphous carbon that has diffused from the liquid through the austenite, once the graphite aggregate is enveloped in austenite. With increasing magnesium levels, the foliated graphite platelets progressively aggregate along the c-axis forming clusters. The clusters that have random orientation, eventually produce blocky graphite, as the spaces between the parallel platelets disappear. This is typical for compacted graphite irons and tadpole graphite. The chunky graphite aggregates investigated are conical sectors of graphite platelets stacked along the c-axis. The foliated dendrites that originally develop radially from a common nucleus may aggregate along the c-axis forming blocky graphite that sometimes exhibits helical growth. The large number of defects (cavities) observed in all graphite aggregates supports the mechanism of graphite growth as foliated crystals and dendrites.

  2. Effect of gamma radiation on graphite – PTFE dry lubrication system

    International Nuclear Information System (INIS)

    Singh, Sachin; Tyagi, Mukti; Seshadri, Geetha; Tyagi, Ajay Kumar; Varshney, Lalit

    2017-01-01

    An effect of gamma radiation on lubrication behavior of graphite -PTFE dry lubrication system has been studied using (TR-TW-30L) tribometer with thrust washer attachment in plane contact. Different compositions of graphite and PTFE were prepared and irradiated by gamma rays. Gamma radiation exposure significantly improves the tribological properties indicated by decrease in coefficient of friction and wear properties of graphite -PTFE dry lubrication system. SEM and XRD analysis confirm the physico-chemical modification of graphite-PTFE on gamma radiation exposure leading to a novel dry lubrication system with good slip and anti friction properties. - Highlights: • Novel dry lubrication system of graphite -PTFE using gamma radiation. • Gamma radiation processing. • Reduction in coefficient of friction, frictional torque and wear loss of developed dry lubrication system.

  3. Improvement of graphite crystal analyzer for light elements on X-ray fluorescence holography measurement

    Science.gov (United States)

    Happo, Naohisa; Hada, Takuma; Kubota, Atsushi; Ebisu, Yoshihiro; Hosokawa, Shinya; Kimura, Koji; Tajiri, Hiroo; Matsushita, Tomohiro; Hayashi, Kouichi

    2018-05-01

    Using a graphite crystal analyzer, focused monochromatic fluorescent X-rays can be obtained on an X-ray fluorescence holography (XFH) measurement. To measure the holograms of elements lighter than Ti, we improved a cylindrical-type crystal analyzer and constructed a small C-shaped analyzer. Using the constructed C-shaped analyzer, a Ca Kα hologram of a fluorite single crystal was obtained, from which we reconstructed a clear atomic image. The XFH measurements for the K, Ca, and Sc elements become possible using the presently constructed analyzer.

  4. Electron transfer kinetics on natural crystals of MoS2 and graphite.

    Science.gov (United States)

    Velický, Matěj; Bissett, Mark A; Toth, Peter S; Patten, Hollie V; Worrall, Stephen D; Rodgers, Andrew N J; Hill, Ernie W; Kinloch, Ian A; Novoselov, Konstantin S; Georgiou, Thanasis; Britnell, Liam; Dryfe, Robert A W

    2015-07-21

    Here, we evaluate the electrochemical performance of sparsely studied natural crystals of molybdenite and graphite, which have increasingly been used for fabrication of next generation monolayer molybdenum disulphide and graphene energy storage devices. Heterogeneous electron transfer kinetics of several redox mediators, including Fe(CN)6(3-/4-), Ru(NH3)6(3+/2+) and IrCl6(2-/3-) are determined using voltammetry in a micro-droplet cell. The kinetics on both materials are studied as a function of surface defectiveness, surface ageing, applied potential and illumination. We find that the basal planes of both natural MoS2 and graphite show significant electroactivity, but a large decrease in electron transfer kinetics is observed on atmosphere-aged surfaces in comparison to in situ freshly cleaved surfaces of both materials. This is attributed to surface oxidation and adsorption of airborne contaminants at the surface exposed to an ambient environment. In contrast to semimetallic graphite, the electrode kinetics on semiconducting MoS2 are strongly dependent on the surface illumination and applied potential. Furthermore, while visibly present defects/cracks do not significantly affect the response of graphite, the kinetics on MoS2 systematically accelerate with small increase in disorder. These findings have direct implications for use of MoS2 and graphene/graphite as electrode materials in electrochemistry-related applications.

  5. Radiation hardness of undoped BGO crystals

    International Nuclear Information System (INIS)

    Sahu, S.K.; Peng, K.C.; Huang, H.C.; Wang, C.H.; Chang, Y.H.; Hou, W.S.; Ueno, K.; Chou, F.I.; Wei, Y.Y.

    1997-01-01

    We measured the radiation hardness of undoped BGO crystals from two different manufacturers. Such crystals are proposed to be used in a small-angle calorimeter of the BELLE detector of the KEK B-factory. Transparency and scintillation light output of the crystals were monitored to see the effect of radiation damage. The crystals show considerable radiation hardness up to 10.2 Mrad equivalent dose, which is much higher than the maximum expected dosage of 500 krad per year of running at BELLE. (orig.)

  6. Kelvin probe characterization of buried graphitic microchannels in single-crystal diamond

    International Nuclear Information System (INIS)

    Bernardi, E.; Battiato, A.; Olivero, P.; Vittone, E.; Picollo, F.

    2015-01-01

    In this work, we present an investigation by Kelvin Probe Microscopy (KPM) of buried graphitic microchannels fabricated in single-crystal diamond by direct MeV ion microbeam writing. Metal deposition of variable-thickness masks was adopted to implant channels with emerging endpoints and high temperature annealing was performed in order to induce the graphitization of the highly-damaged buried region. When an electrical current was flowing through the biased buried channel, the structure was clearly evidenced by KPM maps of the electrical potential of the surface region overlying the channel at increasing distances from the grounded electrode. The KPM profiling shows regions of opposite contrast located at different distances from the endpoints of the channel. This effect is attributed to the different electrical conduction properties of the surface and of the buried graphitic layer. The model adopted to interpret these KPM maps and profiles proved to be suitable for the electronic characterization of buried conductive channels, providing a non-invasive method to measure the local resistivity with a micrometer resolution. The results demonstrate the potential of the technique as a powerful diagnostic tool to monitor the functionality of all-carbon graphite/diamond devices to be fabricated by MeV ion beam lithography

  7. Manufacturing of a graphite calorimeter at Yazd Radiation Processing Center

    International Nuclear Information System (INIS)

    Ziaie, F.

    2004-01-01

    In this work, a few quasi-adiabatic graphite calorimeters of different dimensions are described. The calorimeters have been manufactured by ourselves and studied for accurate absorbed dose measurements in 10 MeV electron beam. In order to prove the accuracy and reliability of dose measurements with the use of self designed graphite calorimeters (SCD), an inter comparison study was performed on these calorimeters and Risoe graphite calorimeters (SC,standard calorimeter) at different doses by using Rhodothron accelerator. The comparison shows conclusively of the optimal size, the results agreeing with those obtained with the Sc within 1%. (author)

  8. Graphite edge controlled registration of monolayer MoS{sub 2} crystal orientation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chun-I; Butler, Christopher John; Yang, Hung-Hsiang; Chu, Yu-Hsun; Luo, Chi-Hung; Sun, Yung-Che; Hsu, Shih-Hao; Yang, Kui-Hong Ou [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Huang, Jing-Kai; Hsing, Cheng-Rong; Wei, Ching-Ming, E-mail: cmw@phys.sinica.edu.tw; Li, Lain-Jong, E-mail: lanceli@gate.sinica.edu.tw [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Lin, Minn-Tsong, E-mail: mtlin@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China)

    2015-05-04

    Transition metal dichalcogenides such as the semiconductor MoS{sub 2} are a class of two-dimensional crystals. The surface morphology and quality of MoS{sub 2} grown by chemical vapor deposition are examined using atomic force and scanning tunneling microscopy techniques. By analyzing the moiré patterns from several triangular MoS{sub 2} islands, we find that there exist at least five different superstructures and that the relative rotational angles between the MoS{sub 2} adlayer and graphite substrate lattices are typically less than 3°. We conclude that since MoS{sub 2} grows at graphite step-edges, it is the edge structure which controls the orientation of the islands, with those growing from zig-zag (or armchair) edges tending to orient with one lattice vector parallel (perpendicular) to the step-edge.

  9. Enhanced and selective optical trapping in a slot-graphite photonic crystal.

    Science.gov (United States)

    Krishnan, Aravind; Huang, Ningfeng; Wu, Shao-Hua; Martínez, Luis Javier; Povinelli, Michelle L

    2016-10-03

    Applicability of optical trapping tools for nanomanipulation is limited by the available laser power and trap efficiency. We utilized the strong confinement of light in a slot-graphite photonic crystal to develop high-efficiency parallel trapping over a large area. The stiffness is 35 times higher than our previously demonstrated on-chip, near field traps. We demonstrate the ability to trap both dielectric and metallic particles of sub-micron size. We find that the growth kinetics of nanoparticle arrays on the slot-graphite template depends on particle size. This difference is exploited to selectively trap one type of particle out of a binary colloidal mixture, creating an efficient optical sieve. This technique has rich potential for analysis, diagnostics, and enrichment and sorting of microscopic entities.

  10. Surface structure modification of single crystal graphite after slow, highly charged ion irradiation

    Science.gov (United States)

    Alzaher, I.; Akcöltekin, S.; Ban-d'Etat, B.; Manil, B.; Dey, K. R.; Been, T.; Boduch, P.; Rothard, H.; Schleberger, M.; Lebius, H.

    2018-04-01

    Single crystal graphite was irradiated by slow, highly charged ions. The modification of the surface structure was studied by means of Low-Energy Electron Diffraction. The observed damage cross section increases with the potential energy, i.e. the charge state of the incident ion, at a constant kinetic energy. The potential energy is more efficient for the damage production than the kinetic energy by more than a factor of twenty. Comparison with earlier results hints to a strong link between early electron creation and later target atom rearrangement. With increasing ion fluence, the initially large-scale single crystal is first transformed into μ m-sized crystals, before complete amorphisation takes place.

  11. Characterization of a polychromatic neutron beam diffracted by pyrolytic graphite crystals

    CERN Document Server

    Byun, S H; Choi, H D

    2002-01-01

    The beam spectrum for polychromatic neutrons diffracted by pyrolytic graphite crystals was characterized. The theoretical beam spectrum was obtained using the diffraction model for a mosaic crystal. The lattice vibration effects were included in the calculation using the reported vibration amplitude of the crystal and the measured time-of-flight spectra in the thermal region. The calculated beam spectrum was compared with the results obtained in the absence of thermal motion. The lattice vibration effects became more important for the higher diffraction orders and a large decrease in the neutron flux induced by the vibrations was identified in the epithermal region. The validity of the beam spectrum was estimated by comparing with the effective quantities determined from prompt gamma-ray measurements and Cd-ratios measured both for 1/nu and non-1/nu nuclides.

  12. Radiation of ultrarelativistic particles passing through ideal and mosaic crystals

    International Nuclear Information System (INIS)

    Afanas'ev, A.M.

    1977-01-01

    When a charged particle passes through an ideal crystal, then besides the transition radiation, a new kind of radiation, connected with the periodic structure of the crystal is produced. The influence of mosaic structure of a crystal on the intensity of this radiation is considered. Simple analytical expressions for the integral intensity of this radiation for the case of an ideal crystal are obtained. The results show, that the integral radiation intensity depends weakly on the degree of crystal perfection

  13. Synthesis of Graphite Oxide with Different Surface Oxygen Contents Assisted Microwave Radiation

    Directory of Open Access Journals (Sweden)

    Adriana Ibarra-Hernández

    2018-02-01

    Full Text Available Graphite oxide is synthesized via oxidation reaction using oxidant compounds that have lattice defects by the incorporation of unlike functional groups. Herein, we report the synthesis of the graphite oxide with diverse surface oxygen content through three (B, C, D different modified versions of the Hummers method assisted microwave radiation compared with the conventional graphite oxide sample obtained by Hummers method (A. These methods allow not only the production of graphite oxide but also reduced graphene oxide, without undergoing chemical, thermal, or mechanical reduction steps. The values obtained of C/O ratio were ~2, 3.4, and ~8.5 for methodologies C, B, and D, respectively, indicating the presence of graphite oxide and reduced graphene oxide, according to X-ray photoelectron spectroscopy. Raman spectroscopy of method D shows the fewest structural defects compared to the other methodologies. The results obtained suggest that the permanganate ion produces reducing species during graphite oxidation. The generation of these species is attributed to a reversible reaction between the permanganate ion with π electrons, ions, and radicals produced after treatment with microwave radiation.

  14. Characterization of radiation damage induced by swift heavy ions in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Christian

    2016-05-15

    Graphite is a classical material in neutron radiation environments, being widely used in nuclear reactors and power plants as a moderator. For high energy particle accelerators, graphite provides ideal material properties because of the low Z of carbon and its corresponding low stopping power, thus when ion projectiles interact with graphite is the energy deposition rather low. This work aims to improve the understanding of how the irradiation with swift heavy ions (SHI) of kinetic energies in the range of MeV to GeV affects the structure of graphite and other carbon-based materials. Special focus of this project is given to beam induced changes of thermo-mechanical properties. For this purpose the Highly oriented pyrolytic graphite (HOPG) and glassy carbon (GC) (both serving as model materials), isotropic high density polycrystalline graphite (PG) and other carbon based materials like carbon fiber carbon composites (CFC), chemically expanded graphite (FG) and molybdenum carbide enhanced graphite composites (MoC) were exposed to different ions ranging from {sup 131}Xe to {sup 238}U provided by the UNILAC accelerator at GSI in Darmstadt, Germany. To investigate structural changes, various in-situ and off-line measurements were performed including Raman spectroscopy, x-ray diffraction and x-ray photo-electron spectroscopy. Thermo-mechanical properties were investigated using the laser-flash-analysis method, differential scanning calorimetry, micro/nano-indentation and 4-point electrical resistivity measurements. Beam induced stresses were investigated using profilometry. Obtained results provided clear evidence that ion beam-induced radiation damage leads to structural changes and degradation of thermal, mechanical and electrical properties of graphite. PG transforms towards a disordered sp2 structure, comparable to GC at high fluences. Irradiation-induced embrittlement is strongly reducing the lifetime of most high-dose exposed accelerator components. For

  15. Crystallization method employing microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chu, P; Dwyer, F G; Vartuli, J C

    1992-12-01

    This invention relates to a method of crystallizing materials from aqueous crystallization media. Zeolite materials, both natural and synthetic, have been demonstrated in the past to have catalytic properties for various types of hydrocarbon conversion. Certain zeolitic materials are ordered, porous crystalline metallosilicates having a definite crystalline structure as determined by X-ray diffraction within which there are a number of smaller cavities which may be interconnected by a number of still smaller channels or pores. These cavities and pores are uniform in size within a specific zeolite material. Since the dimensions of these pores are such as to accept for adsorption molecules of certain dimensions while rejecting those of large dimensions, these materials have come to be known as molecular sieves and are utilized in a variety of ways to take advantage of these properties. (author). 3 tabs.

  16. Crystallization method employing microwave radiation

    International Nuclear Information System (INIS)

    Chu, P.; Dwyer, F.G.; Vartuli, J.C.

    1992-01-01

    This invention relates to a method of crystallizing materials from aqueous crystallization media. Zeolite materials, both natural and synthetic, have been demonstrated in the past to have catalytic properties for various types of hydrocarbon conversion. Certain zeolitic materials are ordered, porous crystalline metallosilicates having a definite crystalline structure as determined by X-ray diffraction within which there are a number of smaller cavities which may be interconnected by a number of still smaller channels or pores. These cavities and pores are uniform in size within a specific zeolite material. Since the dimensions of these pores are such as to accept for adsorption molecules of certain dimensions while rejecting those of large dimensions, these materials have come to be known as molecular sieves and are utilized in a variety of ways to take advantage of these properties. (author). 3 tabs

  17. 75 FR 27602 - In the Matter of BVR Technologies Ltd. (n/k/a Technoprises Ltd.), Crystal Graphite Corp., Devine...

    Science.gov (United States)

    2010-05-17

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] In the Matter of BVR Technologies Ltd. (n/k/a Technoprises Ltd.), Crystal Graphite Corp., Devine Entertainment Corp., GEE TEN Ventures, Inc., National Construction, Inc. (n/k/a E.G. Capital, Inc.), SHEP Technologies, Inc., and WHEREVER.Net Holding Corp.; Order...

  18. Gold clusters sliding on graphite: a possible quartz crystal microbalance experiment?

    International Nuclear Information System (INIS)

    Pisov, S; Tosatti, E; Tartaglino, U; Vanossi, A

    2007-01-01

    A large measured two-dimensional (2D) diffusion coefficient of gold nanoclusters on graphite has been known experimentally and theoretically for about a decade. When subjected to a lateral force, these clusters should slide with an amount of friction that can be measured. We examine the hypothetical possibility of measuring by quartz crystal microbalance (QCM) the phononic sliding friction of gold clusters in the size range around 250 atoms on a graphite substrate between 300 and 600 K. Assuming the validity of Einstein's relations of ordinary Brownian motion and making use of the experimentally available activated behaviour of the diffusion coefficients, we can predict the sliding friction and slip times as a function of temperature. It is found that a prototypical deposited gold cluster could yield slip times at the standard measurable size of 10 -9 s for temperatures around 450-500 K, or 200 0 C. Since gold nanoclusters may also melt at around these temperatures, QCM could offer the additional chance of observing this phenomenon through a frictional change

  19. Calculation of radiation heat generation on a graphite reflector side of IAN-R1 Reactor

    International Nuclear Information System (INIS)

    Duque O, J.; Velez A, L.H.

    1987-01-01

    Calculation methods for radiation heat generation in nuclear reactor, based on the point kernel approach are revisited and applied to the graphite reflector of IAN-R1 reactor. A Fortran computer program was written for the determination of total heat generation in the reflector, taking 1155 point in it

  20. Near-field thermal radiation between hyperbolic metamaterials: Graphite and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. L.; Zhang, R. Z.; Zhang, Z. M., E-mail: zhuomin.zhang@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2013-11-18

    The near-field radiative heat transfer for two hyperbolic metamaterials, namely, graphite and vertically aligned carbon nanotubes (CNTs), is investigated. Graphite is a naturally existing uniaxial medium, while CNT arrays can be modeled as an effective anisotropic medium. Different hyperbolic modes can be separately supported by these materials in certain infrared regions, resulting in a strong enhancement in near-field heat transfer. It is predicted that the heat flux between two CNT arrays can exceed that between SiC plates at any vacuum gap distance and is about 10 times higher with a 10 nm gap.

  1. Simulating Neutron Radiation Damage of Graphite by In-situ Electron Irradiation

    International Nuclear Information System (INIS)

    Mironov, Brindusa E; Freeman, H M; Brydson, R M D; Westwood, A V K; Scott, A J

    2014-01-01

    Radiation damage in nuclear grade graphite has been investigated using transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). Changes in the structure on the atomic scale and chemical bonding, and the relationship between each were of particular interest. TEM was used to study damage in nuclear grade graphite on the atomic scale following 1.92×10 8 electrons nm −2 of electron beam exposure. During these experiments EELS spectra were also collected periodically to record changes in chemical bonding and structural disorder, by analysing the changes of the carbon K-edge. Image analysis software from the 'PyroMaN' research group provides further information, based on (002) fringe analysis. The software was applied to the micrographs of electron irradiated virgin 'Pile Grade A' (PGA) graphite to quantify the extent of damage from electron beam exposure

  2. Radiation induced color in topaz crystals

    International Nuclear Information System (INIS)

    Castagnet, A.C.; Rocca, H.C.C.; Rostilato, M.E.C.M.

    1989-08-01

    The presence of defects and impurities in the crystal lattice alters the eletric field distribution within the crystal, allowing the electrons to occupy energy levels in the forbbiden band. Ionizing radiation supply the required energy to permit the electrons originaly bound to lattice atoms, to occupy effectively those intermediate levels, forming color centers. Dependig upon the nature and energy of the radiation, it is possible to produce defects in regions of the crystal, generating color centers. Based on these premises, a technique to induce color in originally colorless topaz, by using the IEA-R1 nuclear reactor, was developed at Engineering and Industrial Application Department (TE). Samples were irradiated inside iron capsules coated with cadmium foils. The iron, and principaly the cadmium, absorb the thermal neutrons that could activate crystal impurities generating long-lived radioisotopes. The epithermal neutrons that overpass the iron and cadmium barriers interact with the crystal atoms, causing lattice defects which give rise to color center, by subsequent ionization processes. The procedure used at TE induces permanent blue color, in natural colorless topaz. (author) [pt

  3. Radiation effects in corundum single crystals

    International Nuclear Information System (INIS)

    Gevorkyan, V.A.; Harutunyan, V.V.; Hakhverdyan, E.A.

    2005-01-01

    On the basis of new experimental results and analysis of publications it is shown that in the lattice of corundum crystals the high-energy particles create stable structural defects due to knocking out of atoms from normal sites of the anionic sublattice; this leads to the formation of F and F '+ centers as well as to other complex [Al i '+ F] type color centers. The essence of 'radiation memory' effect in corundum single crystals is that the high-energy particles irradiation, annealing at high temperatures and additional irradiation by X-rays result in the restoration of some spectral bands of the optical absorption in the range 200-650 nm

  4. Effects of ultraviolet and electron radiations on graphite-reinforced polysulfone and epoxy resins

    International Nuclear Information System (INIS)

    Giori, C.; Yamauchi, T.

    1984-01-01

    Degradation mechanisms have been investigated for graphite/polysulfone and graphite/epoxy laminates exposed to ultraviolet and high-energy electron radiations in vacuum up to 960 equivalent sun hours and 10 9 rads, respectively. Based on GC and combined GC/MS analysis of volatile by-products evolved during irradiation, several free radical mechanisms of composite degradation have been identified. All the composite materials evaluated have shown high electron radiation stability and relatively low ultraviolet stability as indicated by low G values and high quantum yields for gas formation. Mechanical property measurements of irradiated samples did not reveal significant changes, with the possible exception of UV exposed polysulfone laminates. Hydrogen and methane have been identified as the main byproducts of irradiation, along with unexpectedly high levels of CO and CO 2 . Initial G values for methane relative to hydrogen formation are higher in the presence of isopropylidene linkages, which occur in bisphenol-A resins

  5. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111)

    Energy Technology Data Exchange (ETDEWEB)

    Tsipas, P.; Kassavetis, S.; Tsoutsou, D.; Xenogiannopoulou, E.; Golias, E.; Giamini, S. A.; Dimoulas, A. [National Center for Scientific Research “Demokritos,” 15310 Athens (Greece); Grazianetti, C.; Fanciulli, M. [Laboratorio MDM, IMM-CNR, I-20864, Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, I-20126, Milano (Italy); Chiappe, D.; Molle, A. [Laboratorio MDM, IMM-CNR, I-20864, Agrate Brianza (MB) (Italy)

    2013-12-16

    Ultrathin (sub-monolayer to 12 monolayers) AlN nanosheets are grown epitaxially by plasma assisted molecular beam epitaxy on Ag(111) single crystals. Electron diffraction and scanning tunneling microscopy provide evidence that AlN on Ag adopts a graphite-like hexagonal structure with a larger lattice constant compared to bulk-like wurtzite AlN. This claim is further supported by ultraviolet photoelectron spectroscopy indicating a reduced energy bandgap as expected for hexagonal AlN.

  6. Radiation damage in the alkali halide crystals

    International Nuclear Information System (INIS)

    Diller, K.M.

    1975-10-01

    A general review is given of the experimental data on radiation damage in the alkali halide crystals. A report is presented of an experimental investigation of irradiation produced interstitial dislocation loops in NaCl. These loops are found to exhibit the usual growth and coarsening behaviour during thermal annealing which operates by a glide and self-climb mechanism. It is shown that the recombination of defects in these crystals is a two stage process, and that the loss of interstitials stabilized at the loops is caused by extrinsic vacancies. The theoretical techniques used in simulating point defects in ionic crystals are described. Shell model potentials are derived for all the alkali halide crystals by fitting to bulk crystal data. The fitting is supplemented by calculations of the repulsive second neighbour interactions using methods based on the simple electron gas model. The properties of intrinsic and substitutional impurity defects are calculated. The HADES computer program is used in all the defect calculations. Finally the report returns to the problems of irradiation produced interstitial defects. The properties of H centres are discussed; their structure, formation energies, trapping at impurities and dimerization. The structure, formation energies and mobility of the intermediate and final molecular defects are then discussed. The thermodynamics of interstitial loop formation is considered for all the alklai halide crystals. The nucleation of interstitial loops in NaCl and NaBr is discussed, and the recombination of interstitial and vacancy defects. The models are found to account for all the main features of the experimental data. (author)

  7. Effect of High Energy Radiation on Mechanical Properties of Graphite Fiber Reinforced Composites. M.S. Thesis

    Science.gov (United States)

    Naranong, N.

    1980-01-01

    The flexural strength and average modulus of graphite fiber reinforced composites were tested before and after exposure to 0.5 Mev electron radiation and 1.33 Mev gamma radiation by using a three point bending test (ASTM D-790). The irradiation was conducted on vacuum treated samples. Graphite fiber/epoxy (T300/5208), graphite fiber/polyimide (C6000/PMR 15) and graphite fiber/polysulfone (C6000/P1700) composites after being irradiated with 0.5 Mev electron radiation in vacuum up to 5000 Mrad, show increases in stress and modulus of approximately 12% compared with the controls. Graphite fiber/epoxy (T300/5208 and AS/3501-6), after being irradiated with 1.33 Mev gamma radiation up to 360 Mrads, show increases in stress and modulus of approximately 6% at 167 Mrad compared with the controls. Results suggest that the graphite fiber composites studied should withstand the high energy radiation in a space environment for a considerable time, e.g., over 30 years.

  8. Radiation at planar channeling of relativistic electrons in thick crystals

    International Nuclear Information System (INIS)

    Baier, V.N.; Katkov, V.M.; Strakhovenko, V.M.

    1983-01-01

    The distribution kinetics with respect to the transverse energy at electron channeling is discussed. The asymptotic expressions for the radiation intensity into a given collimator at electron channeling in thick crystals are derived. An optimal thickness at which the radiation output is maximal is found. The spectral distribution of the radiation intensity is analysed for the case of a single diamond crystal. (author)

  9. Radiation thermometry for semiconductor crystal growing furnaces

    International Nuclear Information System (INIS)

    Helgeland, W.

    1985-01-01

    Single crystals of silicon produced by the Czochralski process are used widely in the production of integrated circuits and other electronic devices. Recent advances in automation of industrial equipment for this process have led to the application of a dual wave band radiation thermometer. The instrument system automatically performs certain critical temperature measurements. In nonautomated equipment, these measurements require the judgement of a trained human operator. The difficulties of measuring and controlling the temperature at the critical location are discussed, especially with regard to detecting the meltdown end point and to initially establishing the correct temperature for seeding. A description is given of the customized temperature measurement system, which is based upon an existing ratio radiation thermometer. Thermometer output characteristics are described

  10. Radiative recombination in doped indium phosphide crystals

    International Nuclear Information System (INIS)

    Negreskul, V.V.; Russu, E.V.; Radautsan, S.I.; Cheban, A.G.; AN Moldavskoj SSR, Kishinev. Inst. Prikladnoj Fiziki)

    1975-01-01

    Photoluminiscence spectra of nondoped n-InP and their change upon doping with silicon, cadmium, zinc and copper impurities were studied. The shortest wave band at 1.41 eV is connected with radiative electron transition from a shallow donor level (probably silicon) to valent zone, while the band with maximum at 1.37 - 1.39 eV is due to radiative electron transition to an acceptor level whose energy depends upon the nature and concentration of impurity implanted. The luminescence of Light-doped p-InP crystals enables to estimate the ionization energies of acceptor levels in cadmium (Esub(a)=0.043 eV) and zinc (Esub(a)=0.027 eV). Energies of acceptor levels (0.22 and 0.40 eV) due to copper impurity are determined. Intensity of edge emission in the specimens light-doped with silicon is higher than in the nondoped n-InP crystals

  11. Local structure of the silicon implanted in a graphite single crystal

    International Nuclear Information System (INIS)

    Baba, Yuji; Shimoyama, Iwao; Sekiguchi, Tetsuhiro

    2002-01-01

    Solid carbon forms two kinds of local structures, i.e., diamond-like and two-dimensional graphite structures. In contrast, silicon carbide tends to prefer only diamond structure that is composed of sp 3 bonds. In order to clarify weather or not two-dimensional graphitic Si x C layer exists, we investigate the local structures of Si x C layer produced by Si + -ion implantation into highly oriented pyrolytic graphite (HOPG) by means of near-edge X-ray absorption fine structure (NEXAFS). The energy of the resonance peak in the Si K-edge NEXAFS spectra for Si + -implanted HOPG is lower than those for any other Si-containing materials. The intensity of the resonance peak showed a strong polarization dependence. These results suggests that the final state orbitals around Si atoms have π*-like character and the direction of this orbital is perpendicular to the graphite plane. It is elucidated that the Si-C bonds produced by the Si + -ion implantation are nearly parallel to the graphite plane, and Si x C phase forms a two-dimensionally spread graphite-like layer with sp 2 bonds. (author)

  12. Creation of radiation defects in KCl crystals

    International Nuclear Information System (INIS)

    Lushchik, A.Ch.; Pung, L.A.; Khaldre, Yu.Yu.; Kolk, Yu.V.

    1981-01-01

    Optical and EPR methods were used to study the creation of anion and cation Frenkel defects in KCl crystals irradiated by X-ray and VUV-radiation. The decay of excitons with the creation of charged Frenkel defects (α and I centres) was detected and investigated at 4.2 K. The decay of excitons as well as the recombination of electrons with self-trapped holes leads to the creation of neutral Frenkel defects (F and H centres). The creation of Cl 3 - and Vsub(F) centres (cation vacancy is a component of these centres) by X-irradiation at 80 K proves the possibility of cation defects creation in KCl [ru

  13. Design and optical characterization of high-Q guided-resonance modes in the slot-graphite photonic crystal lattice.

    Science.gov (United States)

    Martínez, Luis Javier; Huang, Ningfeng; Ma, Jing; Lin, Chenxi; Jaquay, Eric; Povinelli, Michelle L

    2013-12-16

    A new photonic crystal structure is generated by using a regular graphite lattice as the base and adding a slot in the center of each unit cell to enhance field confinement. The theoretical Q factor in an ideal structure is over 4 × 10(5). The structure was fabricated on a silicon-on-insulator wafer and optically characterized by transmission spectroscopy. The resonance wavelength and quality factor were measured as a function of slot height. The measured trends show good agreement with simulation.

  14. On electromagnetic radiation of ultrarelativistic electrons in crystals

    International Nuclear Information System (INIS)

    Podgoretskij, M.I.

    1977-01-01

    Electromagnetic radiation is considered caused by ultrarelativistic channeling electrons moving inside cylindrical regions formed with nuclear heat oscillations of a crystal lattice. An energy asymmetry is predicted for electrons and positrons, generated by γ-quanta falling to a crystal along the crystallographic axes. A possible connection of the above mentioned radiation with the anomalous multiphoton Schein showers is discussed

  15. Effect of γ-radiation on crystallization of polycaprolactone

    International Nuclear Information System (INIS)

    Zhu Guangming; Xu, Qianyong; Qin Ruifeng; Yan Hongxia; Liang Guozheng

    2005-01-01

    The crystallization behavior of radiation cross-linked poly(ε-caprolactone) (PCL) was studied by DSC at different cooling rates. The crystallization process was analyzed by the Ozawa equation and the Mo-Zhishen method that is developed from combining the Avrami equation and the Ozawa equation. It was concluded that the crystallization of radiation crosslinked PCL is governed by heterogeneous nucleation and single-dimension growth; the crystal fraction and rates of crystallization are related to the radiation dose and degree of cross-linking; the relationship between relative crystallinity and time follows the Ozawa equation: The higher the degree of crosslinking, the less the crystal velocity constant. The activation energy of crystallization for irradiated PCL is between 65 and 54kJ/mol

  16. The Effect of Radiation "Memory" in Alkali-Halide Crystals

    Science.gov (United States)

    Korovkin, M. V.; Sal'nikov, V. N.

    2017-01-01

    The exposure of the alkali-halide crystals to ionizing radiation leads to the destruction of their structure, the emergence of radiation defects, and the formation of the electron and hole color centers. Destruction of the color centers upon heating is accompanied by the crystal bleaching, luminescence, and radio-frequency electromagnetic emission (REME). After complete thermal bleaching of the crystal, radiation defects are not completely annealed, as the electrons and holes released from the color centers by heating leave charged and locally uncompensated defects. Clusters of these "pre centers" lead to electric microheterogeneity of the crystal, the formation of a quasi-electret state, and the emergence of micro-discharges accompanied by radio emission. The generation of REME associated with residual defectiveness, is a manifestation of the effect of radiation "memory" in dielectrics.

  17. Brazing graphite to graphite

    International Nuclear Information System (INIS)

    Peterson, G.R.

    1976-01-01

    Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of graphite

  18. Some results of simulation on radiation effects in crystals

    International Nuclear Information System (INIS)

    Baier, T.; AN SSSR, Novosibirsk

    1993-05-01

    Simulations concerning radiation in oriented silicon and tungsten crystals of different thicknesses are developed. Conditions are those of experiments done at Kharkov (Ukraine) and Tomsk (Russia) with electron beams in the 1 GeV range. Systematic comparisons between experimental and simulated spectra associated to real spectrum, radiation energy and angular distribution of the photons are developed. The ability of the simulation program to describe crystal effects in the considered energy range is analysed. (author) 11 refs.; 8 figs

  19. Low-energy electron observation of graphite and molybdenite crystals. Application to the study of graphite oxidation; Observation au moyen d'electrons de faible energie de cristaux de graphite et de molybdenite. Application a l'etude de l'oxydation du graphite

    Energy Technology Data Exchange (ETDEWEB)

    David, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The LEED study of cleaved (0001) faces of crystals having a layered structure allowed to investigate flakes free of steps on graphite and molybdenite, to show twinning on natural graphite. By intensity measurements and computation in the case of a kinematical approximation it has been possible to determine an inner potential of 19 eV for graphite and to identify the direction of the Mo-S bond of the surface layer of molybdenite. The oxidation of graphite has been studied by observing changes, in symmetry of the diffraction patterns and by mass spectrometry of the gases evolved during the oxidation. No surface compounds have been detected and the carbon layers appeared to be peeled off one after the other. The oxidation took place at temperatures higher than 520 C under an oxygen pressure of 10{sup -5} torr. (author) [French] L'etude par diffraction des electrons lents des faces (0001) de cristaux ayant une structure en feuillet a permis de mettre en evidence des plages sans gradins sur des clivages de graphite et de molybdenite caracterisees par la symetrie ternaire des diagrammes, de montrer l'existence de macles sur des cristaux de graphite naturel. Un calcul utilisant une approximation cinematique a ete applique aux intensites mesurees des taches de diffraction; il a ete ainsi possible de determiner un potentiel interne de 19 eV pour le graphite et de preciser la direction de la liaison Mo-S du feuillet superficiel de la molybdenite. L'oxydation du graphite a ete etudiee en mettant en relation des changements de symetrie des diagrammes de diffraction avec l'analyse des gaz provenant de la reaction carbone-oxygene. Il a ete montre qu'il n'y avait pas formation de composes de surface et que les couches de carbone etaient enlevees les unes apres les autres. L'oxydation a ete observee sous une pression d'oxygene de 10{sup -5} torr au-dessus de 520 C. (auteur)

  20. Radiation damage and life-time evaluation of RBMK graphite stack

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, P A; Chugunov, O K; Manevsky, V N; Karpukhin, V I [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation). Reactor Material Div.

    1996-08-01

    At the present time there are 11 NPP units with RBMK reactors in operation in Russia, with the oldest now in operation 22 years. Design life-time of the RBMK-1000 reactor is 30 years. This paper addresses the evaluation of RBMK graphite stack life-time. It is the practice in Russia to evaluate the reliability of the channel reactor graphite stack using at least three criteria: degradation of physical-mechanical properties of graphite, preservation of the graphite brick integrity, and degradation of the graphite stack as a structure. Stack life-time evaluation by different criteria indicates that the most realistic approach may be realized on the basis of the criteria of brick cracking and degradation of the graphite stack as a structure. The RBMK reactor graphite stack life-time depends on its temperature and for different units it may be different. (author). 2 refs, 10 figs.

  1. Computer simulations of radiation damage in protein crystals

    International Nuclear Information System (INIS)

    Zehnder, M.

    2007-03-01

    The achievable resolution and the quality of the dataset of an intensity data collection for structure analysis of protein crystals with X-rays is limited among other factors by radiation damage. The aim of this work is to obtain a better quantitative understanding of the radiation damage process in proteins. Since radiation damage is unavoidable it was intended to look for the optimum ratio between elastically scattered intensity and radiation damage. Using a Monte Carlo algorithm physical processes after an inelastic photon interaction are studied. The main radiation damage consists of ionizations of the atoms through the electron cascade following any inelastic photon interaction. Results of the method introduced in this investigation and results of an earlier theoretical studies of the influence of Auger-electron transport in diamond are in a good agreement. The dependence of the radiation damage as a function of the energy of the incident photon was studied by computer-aided simulations. The optimum energy range for diffraction experiments on the protein myoglobin is 10-40 keV. Studies of radiation damage as a function of crystal volume and shape revealed that very small plate or rod shaped crystals suffer less damage than crystals formed like a cube with the same volume. Furthermore the influence of a few heavy atoms in the protein molecule on radiation damage was examined. Already two iron atoms in the unit cell of myoglobin increase radiation damage significantly. (orig.)

  2. Orientation acoustic radiation of electrons in silicon thick crystal

    International Nuclear Information System (INIS)

    Alejnik, A.N.; Afanas'ev, S.G.; Vorob'ev, S.A.; Zabaev, V.N.; Il'in, S.I.; Kalinin, B.N.; Potylitsyn, A.P.

    1989-01-01

    Results of measuring orientation acoustic radiation of 900 and 500 MeV electrons during their movement along crystallographic axis in thick silicon crystal (h=20 mm thickness) are presented for the first time. Analysis of obtained results shows that dynamic mechanism describes rather completely the main regularities of orientation dependence of the amplitude of acoustic signal occuring under electron motion near crystallographic axis of the crystal. Phenomena of orientation acoustic radiation can be also used for investigation of solid bodies. Orientation both of thin and rather thick monocrystals can be conducted on the basis of dynamic mechanism of elastic wave excitation in crystals

  3. Special graphites; Graphites speciaux

    Energy Technology Data Exchange (ETDEWEB)

    Leveque, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    A large fraction of the work undertaken jointly by the Commissariat a l'Energie Atomique (CEA) and the Pechiney Company has been the improvement of the properties of nuclear pile graphite and the opening up of new fields of graphite application. New processes for the manufacture of carbons and special graphites have been developed: forged graphite, pyro-carbons, high density graphite agglomeration of graphite powders by cracking of natural gas, impervious graphites. The physical properties of these products and their reaction with various oxidising gases are described. The first irradiation results are also given. (authors) [French] Ameliorer les proprietes du graphite nucleaire pour empilements et ouvrir de nouveaux domaines d'application au graphite constituent une part importante de l'effort entrepris en commun par le Commissariat a l'Energie Atomique (CEA) et la compagnie PECHINEY. Des procedes nouveaux de fabrication de carbones et graphites speciaux ont ete mis au point: graphite forge, pyrocarbone, graphite de haute densite, agglomeration de poudres de graphite par craquage de gaz naturel, graphites impermeables. Les proprietes physiques de ces produits ainsi que leur reaction avec differents gaz oxydants sont decrites. Les premiers resultats d'irradiation sont aussi donnes. (auteurs)

  4. Testing the radiation hardness of lead tungstate scintillating crystals

    CERN Document Server

    Shao, M; Li Chuan; Chen, H; Xu, Z Z; Wang, Z M

    2000-01-01

    Large Hadron Collider operation will produce a high radiation background. PbWO/sub 4/ crystals are selected as scintillators for the CMS electromagnetic calorimeter. To reach the precise requirement for energy measurements, a strict requirement for the radiation hardness is needed. In this paper, we present a method for evaluating the radiation hardness and its measurement. Results for several full size (23 cm length) lead tungstate crystals under Co/sup 60/ gamma - ray irradiation are given, investigating the light yield loss and its longitudinal uniformity. (8 refs).

  5. Radiation damage in BaF2 crystals

    International Nuclear Information System (INIS)

    Woody, C.L.; Kierstead, J.A.; Levy, P.W.; Stoll, S.

    1991-01-01

    The effects of radiation damage and recovery have been studied in BaF 2 crystals exposed to 60 Co radiation. The change in optical transmission and scintillation light output have been measured as a function of dose up to 4.7 x 10 6 rad. Although some crystals exhibit a small change in transmission, a greater change in scintillation light output is observed. Several 25 cm long crystals whichhave been irradiated show large changes in both transmission and light output. Recovery from radiation damage has been studied as a function of time and exposure to UV light. A long lived radiation induced phosphorescence has been observed in all irradiated samples which is distinct from the standard fast and slow scintillation emissions. The emission spectrum of the phosphorescence has been measured and shown a peakat ∼330 nm, near the region of the slow scintillation component. Results are given on the dependence of the decay time of the phosphorescence with dose

  6. Soft component of channeled electron radiation in silicon crystals

    International Nuclear Information System (INIS)

    Vnukov, I.E.; Kalinin, B.N.; Kiryakov, A.A.; Naumenko, G.A.; Padalko, D.V.; Potylitsyn, A.P.

    2001-01-01

    Radiation spectrum and orientation dependences of photon yield with the energy much lower than characteristic radiation energy during channeling were measured using a crystal-diffraction spectrometer. For electron drop along axis radiation intensity in the spectral range 30 ≤ ω ≤ 360 keV exceeds by nearly an order the intensity of Bremsstrahlung. The shape of radiation spectrum does not coincide with Bremsstrahlung spectrum. Radiation intensity increases gradually with photons energy growth. Bremsstrahlung spectrum from a disoriented crystalline target is described in a satisfactory manner by the currently used theory with phenomenological account of the medium polarization [ru

  7. Effect of additional nickel on crystallization degree evolution of expanded graphite during ball-milling and annealing

    International Nuclear Information System (INIS)

    Wang Liqin; Yue Xueqing; Zhang Fucheng; Zhang Ruijun

    2010-01-01

    Expanded graphite (EG) and a mixture of EG and nickel (EG-Ni system) were ball-milled and subsequently annealed, respectively. The products were characterized by X-ray diffraction (XRD), Raman spectra and transmission electron microscopy (TEM). After 100 h milling, the average crystallite thickness (L c ) of EG and EG-Ni system deceases from 14.5 to 8.0 and 9.6 nm, respectively, while the interlayer spacing (d 002 ) increases from 0.3341 to 0.3371 and 0.3348 nm, respectively. It can be concluded that ball-milling decreases the crystallization degree of EG, while the additional nickel restrains this process. For the samples ball-milled for 80 h, the disorder parameter I D /(I D + I G ) ratio of EG and EG-Ni system is in the range of 20.7-55.8% and 31.7-45.8%, respectively, implying that the presence of nickel is beneficial to more homogeneous ball-milling of EG. When the samples after ball-milling for 80 h were annealed for 4 h, the average crystallite thickness of EG and EG-Ni system increases from 8.5 to 9.0 nm and from 11.8 to 15.5 nm, respectively. It is deduced that annealing improves the crystallization degree of ball-milled EG, and the additional nickel is helpful for this process.

  8. Crystallization of calcium carbonate on radiation-grafted polyethylene films

    International Nuclear Information System (INIS)

    Hou Zhengchi; Zhang Fengying; Deng Bo; Yang Haijun; Chen Shuang; Sheng Kanglong

    2006-01-01

    In biomineralization processes, nucleation and growth of inorganic crystals can be regulated by organic template molecules. This has inspired great interest in studying mimic biomineralization. In our study, growing CaCO 3 crystals on PE films functionalized through radiation-induced grafting was attempted. PE films grafted with different functional groups of different distributions and densities were used as substrates for CaCO 3 nucleation and crystal growth from Ca(HCO 3 ) 2 supersaturated solution under different environmental conditions (e.g. additives and temperature) to study the effects and mechanisms. The grafted PE films were analyzed by ATR-FTIR and AFM, and the evolution of CaCO 3 crystal formation on the grafted PE film was characterized by SEM, FTIR, and XRD. The results indicated that heterogeneous nucleation of CaCO 3 crystals was significantly facilitated by the functional groups grafted on the surface of PE films, that the morphology of CaCO 3 crystals could be controlled by distribution and density of the grafted functional groups, and that polymorphism of CaCO 3 crystal could be regulated by selection of grafting functional groups. We believe that studying the effects of chemical structures on inorganic crystallization is of great importance since radiation-induced grafting is an effective method to graft desirable functional groups onto different polymers by selected monomers, in the endeavor of developing advanced organic/inorganic composites with high performance, with a wide availability of polymers, monomers and inorganic solutions. (authors)

  9. Influence of crystal shapes on radiative fluxes in visible wavelength: ice crystals randomly oriented in space

    Directory of Open Access Journals (Sweden)

    P. Chervet

    1996-08-01

    Full Text Available Radiative properties of cirrus clouds are one of the major unsolved problems in climate studies and global radiation budget. These clouds are generally composed of various ice-crystal shapes, so we tried to evaluate effects of the ice-crystal shape on radiative fluxes. We calculated radiative fluxes of cirrus clouds with a constant geometrical depth, composed of ice crystals with different shapes (hexagonal columns, bullets, bullet-rosettes, sizes and various concentrations. We considered ice particles randomly oriented in space (3D case and their scattering phase functions were calculated by a ray-tracing method. We calculated radiative fluxes for cirrus layers for different microphysical characteristics by using a discrete-ordinate radiative code. Results showed that the foremost effect of the ice-crystal shape on radiative properties of cirrus clouds was that on the optical thickness, while the variation of the scattering phase function with the ice shape remained less than 3% for our computations. The ice-water content may be a better choice to parameterize the optical properties of cirrus, but the shape effect must be included.

  10. On the validity of empirical potentials for simulating radiation damage in graphite: a benchmark

    International Nuclear Information System (INIS)

    Latham, C D; McKenna, A J; Trevethan, T P; Heggie, M I; Rayson, M J; Briddon, P R

    2015-01-01

    In this work, the ability of methods based on empirical potentials to simulate the effects of radiation damage in graphite is examined by comparing results for point defects, found using ab initio calculations based on density functional theory (DFT), with those given by two state of the art potentials: the Environment-Dependent Interatomic Potential (EDIP) and the Adaptive Intermolecular Reactive Empirical Bond Order potential (AIREBO). Formation energies for the interstitial, the vacancy and the Stone–Wales (5775) defect are all reasonably close to DFT values. Both EDIP and AIREBO can thus be suitable for the prompt defects in a cascade, for example. Both potentials suffer from arefacts. One is the pinch defect, where two α-atoms adopt a fourfold-coordinated sp 3 configuration, that forms a cross-link between neighbouring graphene sheets. Another, for AIREBO only, is that its ground state vacancy structure is close to the transition state found by DFT for migration. The EDIP fails to reproduce the ground state self-interstitial structure given by DFT, but has nearly the same formation energy. Also, for both potentials, the energy barriers that control diffusion and the evolution of a damage cascade, are not well reproduced. In particular the EDIP gives a barrier to removal of the Stone–Wales defect as 0.9 eV against DFT's 4.5 eV. The suite of defect structures used is provided as supplementary information as a benchmark set for future potentials. (paper)

  11. Theoretical study of the generation of terahertz radiation by the interaction of two laser beams with graphite nanoparticles

    Science.gov (United States)

    Sepehri Javan, N.; Rouhi Erdi, F.

    2017-12-01

    In this theoretical study, we investigate the generation of terahertz radiation by considering the beating of two similar Gaussian laser beams with different frequencies of ω1 and ω2 in a spatially modulated medium of graphite nanoparticles. The medium is assumed to contain spherical graphite nanoparticles of two different configurations: in the first configuration, the electric fields of the laser beams are parallel to the normal vector of the basal plane of the graphite structure, whereas in the second configuration, the electric fields are perpendicular to the normal vector of the basal plane. The interaction of the electric fields of lasers with the electronic clouds of the nanoparticles generates a ponderomotive force that in turn leads to the creation of a macroscopic electron current in the direction of laser polarizations and at the beat frequency ω1-ω2 , which can generate terahertz radiation. We show that, when the beat frequency lies near the effective plasmon frequency of the nanoparticles and the electric fields are parallel to the basal-plane normal, a resonant interaction of the laser beams causes intense terahertz radiation.

  12. On propagation of radiation in crystals

    International Nuclear Information System (INIS)

    Buzek, V.; Grigorijev, V.I.

    1984-11-01

    The description of the propagation of the photons in the crystal is given in the framework of a quantum field-theoretical model that can be solved exactly. Besides this, the quantum version of the Ewald-Oseen extinction theorem is proved. (author)

  13. Nuclear graphite ageing and turnaround

    International Nuclear Information System (INIS)

    Marsden, B.J.; Hall, G.N.; Smart, J.

    2001-01-01

    Graphite moderated reactors are being operated in many countries including, the UK, Russia, Lithuania, Ukraine and Japan. Many of these reactors will operate well into the next century. New designs of High Temperature Graphite Moderated Reactors (HTRS) are being built in China and Japan. The design life of these graphite-moderated reactors is governed by the ageing of the graphite core due to fast neutron damage, and also, in the case of carbon dioxide cooled reactors by the rate of oxidation of the graphite. Nuclear graphites are polycrystalline in nature and it is the irradiation-induced damage to the individual graphite crystals that determines the material property changes with age. The life of a graphite component in a nuclear reactor can be related to the graphite irradiation induced dimensional changes. Graphites typically shrink with age, until a point is reached where the shrinkage stops and the graphite starts to swell. This change from shrinkage to swelling is known as ''turnaround''. It is well known that pre-oxidising graphite specimens caused ''turnaround'' to be delayed, thus extending the life of the graphite, and hence the life of the reactor. However, there was no satisfactory explanation of this behaviour. This paper presents a numerical crystal based model of dimensional change in graphite, which explains the delay in ''turnaround'' in the pre-oxidised specimens irradiated in a fast neutron flux, in terms of crystal accommodation and orientation and change in compliance due to radiolytic oxidation. (author)

  14. Thermodynamic Studies of Decane on Boron Nitride and Graphite Substrates Using Synchrotron Radiation and Molecular Dynamics Simulations

    Science.gov (United States)

    Strange, Nicholas; Arnold, Thomas; Forster, Matthew; Parker, Julia; Larese, J. Z.; Diamond Light Source Collaboration; University of Tennessee Team

    2014-03-01

    Hexagonal boron nitride (hBN) has a lattice structure similar to that of graphite with a slightly larger lattice parameter in the basal plane. This, among other properties, makes it an excellent substrate in place of graphite, eliciting some important differences. This work is part of a larger effort to examine the interaction of alkanes with magnesium oxide, graphite, and boron nitride surfaces. In our current presentation, we will discuss the interaction of decane with these surfaces. Decane exhibits a fully commensurate structure on graphite and hBN at monolayer coverages. In this particular experiment, we have examined the monolayer structure of decane adsorbed on the basal plane of hBN using synchrotron x-ray radiation at Diamond Light Source. Additionally, we have examined the system experimentally with volumetric isotherms as well as computationally using molecular dynamics simulations. The volumetric isotherms allow us to calculate properties which provide important information about the adsorbate's interaction with not only neighboring molecules, but also the interaction with the adsorbent boron nitride.

  15. Synchrotron radiation gives insight in smaller and smaller crystals

    International Nuclear Information System (INIS)

    Hintsches, E.

    1983-01-01

    Scientists from the ''Max-Planck-Institut fuer Festkoerperforschung'' in Stuttgart have extended the method of X-ray analysis to study the structure of very small crystals. For the first time a crystal with 6 μm linear dimension has been successfully analysed using the synchrotron radiation from the DESY electron synchrotron at Hamburg. Thus this important method of analysis has been demonstrated to be usefull for structural studies of crystals, which are smaller by a factor of 20 than hitherto. (orig.) [de

  16. Theoretical study of Cherenkov radiation emission in anisotropic uniaxial crystals

    Energy Technology Data Exchange (ETDEWEB)

    Delbart, A; Derre, J

    1996-04-01

    A theoretical review of the Cherenkov radiation emission in uniaxial crystals is presented. The formalism of C. Muzicar in terms of energetic properties of the emitted waves are corrected. This formalism is used to simulate the Cherenkov radiation emission in a strongly birefringent sodium nitrate crystal (NaNO{sub 3}) and to investigate the consequences of the slight anisotropy of sapphire (Al{sub 2}O{sub 3}) on the design of the Optical Trigger. (author). 12 refs. Submitted to Physical Review, D (US).

  17. Channeling and radiation in periodically bent crystals

    Energy Technology Data Exchange (ETDEWEB)

    Korol, Andrey V.; Solov' yov, Andrey V.; Greiner, Walter [Frankfurt Univ. (Germany). Frankfurt Institute for Advanced Studies (FIAS)

    2013-08-01

    Authored by leading experts in the field. Self-contained introduction to the subject matter. Suitable as graduate text on the topic. The development of coherent radiation sources for sub-angstrom wavelengths - i.e. in the hard X-ray and gamma-ray range - is a challenging goal of modern physics. The availability of such sources will have many applications in basic science, technology and medicine, and, in particular, they may have a revolutionary impact on nuclear and solid state physics, as well as on the life sciences. The present state-of-the-art lasers are capable of emitting electromagnetic radiation from the infrared to the ultraviolet, while free electron lasers (X-FELs) are now entering the soft X-ray region. Moving further, i.e. into the hard X and/or gamma ray band, however, is not possible without new approaches and technologies. In this book we introduce and discuss one such novel approach: the focus is on the radiation formed in a Crystalline Undulator, where electromagnetic radiation is generated by a bunch of ultra-relativistic particles channeling through a periodically bent crystalline structure. It is shown that under certain conditions, such a device emits intensive spontaneous monochromatic radiation and may even reach the coherence of laser light sources. Readers will be presented with the underlying fundamental physics and be familiarized with the theoretical, experimental and technological advances made during the last one and a half decades in exploring the various features of investigations into crystalline undulators. This research draws upon knowledge from many research fields - such as materials science, beam physics, the physics of radiation, solid state physics and acoustics, to name but a few. Accordingly, much care has been taken by the authors to make the book as self-contained as possible in this respect, so as to also provide a useful introduction to this emerging field to a broad readership of researchers and scientist with

  18. Generation of ionizing radiation from lithium niobate crystals

    Science.gov (United States)

    Orlikov, L. N.; Orlikov, N. L.; Arestov, S. I.; Mambetova, K. M.; Shandarov, S. M.

    2017-01-01

    The work done experimentally explores generation of electron and x-ray radiation in the process of heating and cooling monolithic and iron-doped crystals of lithium niobate. Iron doping to the concentrations in the range of 1023 m3 was carried out by adding ferric oxide into the melt during the process of crystal growth. The research into radiation generation was performed at 1-10 Pa. The speed of heating from -10 to 1070 C was 10-20 degrees a minute. Current pulses appeared at 17, 38, 56, 94, 98, 100, 105, 106, 1070 C with the interval of 1-3 minutes. The obtained electron current increased in direct proportion to the crystal surface area. The maximum current was 3mA at the design voltage 11 kV on the crystal with 14,5x10,5x10 mm3 surface area. The article describes the possibility to control the start of generation by introducing priming pulse. The results achieved are explained by the domain repolarization while heating the crystal and the appearance of electric field local strength. Bias and overcharge currents contribute to the appearance of electric strength, which stimulates breakdown and plasma formation. X-ray radiation appears both at the stage of discharge formation and during electron deceleration on gas and target material.

  19. Channeling and radiation in periodically bent crystals

    CERN Document Server

    Korol, Andrey V; Greiner, Walter

    2014-01-01

    The development of coherent radiation sources for sub-angstrom wavelengths - i.e. in the hard X-ray and gamma-ray range -  is a challenging goal of modern physics. The availability of such sources will have many applications in basic science, technology and medicine, and, in particular, they may have a revolutionary impact on nuclear and solid state physics, as well as on the life sciences. The present state-of-the-art lasers are capable of emitting electromagnetic radiation from the infrared to the ultraviolet, while free electron lasers (X-FELs) are now entering the soft X-ray region. Moving further, i.e. into the hard X and/or gamma ray band, however, is not possible without new approaches and technologies.   In this book we introduce and discuss one such novel approach -the radiation formed in a Crystalline Undulator - whereby electromagnetic radiation is generated by a bunch of ultra-relativistic particles channeling through a periodically bent crystalline structure. Under certain conditions, such a d...

  20. Coherent polarization radiation of relativistic electrons in crystals

    International Nuclear Information System (INIS)

    Morokhovskii, V.L.

    2014-01-01

    A brief narration about the history of those heated arguments and discussions around the nature of so-called parametric X-radiation, which were concluded by the recognition of the discovery the phenomenon of coherent polarization bremsstrahlung of relativistic charged particles in crystals. Some important information and comments, which stay over of notice of specialists till now are reported.

  1. Lithium niobate bulk crystallization promoted by CO2 laser radiation

    Science.gov (United States)

    Ferreira, N. M.; Costa, F. M.; Nogueira, R. N.; Graça, M. P. F.

    2012-09-01

    The crystallization induced by laser radiation is a very promising technique to promote glass/ceramic transformation, being already used to produce crystalline patterns on glass surfaces. In this work, a SiO2-Li2O-Nb2O5 glass, prepared by the sol-gel route, was submitted to CO2 laser radiation and conventional heat-treatments in order to induce the LiNbO3 crystallization. The structure and morphology of the samples prepared by both routes was analyzed as a function of exposure time, radiation power and heat-treatment temperatures by XRD, Raman spectroscopy and SEM. The results reveal a correlation between the crystallization degree of LiNbO3 particles and glass matrix with the heat treatment type and experimental parameters. An heat-treatment at 650 °C/4 h was necessary to induce crystallization in heat treatments samples while 4 W/500 s was enough for laser radiation ones, corresponding a reduction time processing of ˜14 000 s.

  2. Variability of the contrail radiative forcing due to crystal shape

    Science.gov (United States)

    Markowicz, K. M.; Witek, M. L.

    2011-12-01

    The aim of this study is to examine the influence of particles' shape and particles' optical properties on the contrail radiative forcing. Contrail optical properties in the shortwave and longwave range are derived using a ray-tracing geometric method and the discrete dipole approximation method, respectively. Both methods present good correspondence of the single scattering albedo and the asymmetry parameter in a transition range (3-7μm). We compare optical properties defined following simple 10 crystals habits randomly oriented: hexagonal plates, hexagonal columns with different aspect ratio, and spherical. There are substantial differences in single scattering properties between ten crystal models investigated here (e.g. hexagonal columns and plates with different aspect ratios, spherical particles). The single scattering albedo and the asymmetry parameter both vary up to 0.1 between various crystal shapes. Radiative forcing calculations were performed using a model which includes an interface between the state-of-the-art radiative transfer model Fu-Liou and databases containing optical properties of the atmosphere and surface reflectance and emissivity. This interface allows to determine radiative fluxes in the atmosphere and to estimate the contrail radiative forcing for clear- and all-sky (including natural clouds) conditions for various crystal shapes. The Fu-Liou code is fast and therefore it is suitable for computing radiative forcing on a global scale. At the same time it has sufficiently good accuracy for such global applications. A noticeable weakness of the Fu-Liou code is that it does not take into account the 3D radiative effects, e.g. cloud shading and horizontal. Radiative transfer model calculations were performed at horizontal resolution of 5x5 degree and time resolution of 20 min during day and 3 h during night. In order to calculate a geographic distribution of the global and annual mean contrail radiative forcing, the contrail cover must be

  3. An adaptive crystal bender for high power synchrotron radiation beams

    International Nuclear Information System (INIS)

    Berman, L.E.; Hastings, J.B.

    1992-01-01

    Perfect crystal monochromators cannot diffract x-rays efficiently, nor transmit the high source brightness available at synchrotron radiation facilities, unless surface strains within the beam footprint are maintained within a few arcseconds. Insertion devices at existing synchrotron sources already produce x-ray power density levels that can induce surface slope errors of several arcseconds on silicon monochromator crystals at room temperature, no matter how well the crystal is cooled. The power density levels that will be produced by insertion devices at the third-generation sources will be as much as a factor of 100 higher still. One method of restoring ideal x-ray diffraction behavior, while coping with high power levels, involves adaptive compensation of the induced thermal strain field. The design and performance, using the X25 hybrid wiggler beam line at the National Synchrotron Light Source (NSLS), of a silicon crystal bender constructed for this purpose are described

  4. Radiation silver paramagnetic centers in a beta-alumina crystal

    International Nuclear Information System (INIS)

    Badalyan, A.G.; Zhitnikov, R.A.

    1985-01-01

    Silver paramagnetic centers in a β-alumina crystal, formed after X-ray radiation at 77 K, are investigated by the EPR method. Silver enters the β-alumina crystal, substituting sodium and potassium ions in a mirror plane. Crystals with substitution from 0.1 to 100% of alkali metal ions by Ag + ions are investigated. Silver atomic centers (Ag 0 -centers), formed by electron capture with the Ag + ion, are firstly detected and investigated in the β-alumina. Hole Ag 2+ -centers are investigated and detected in crystals with high concentration of Ag + . By studying the orientation dependence of a g-factor it is established that hole capture by the Ag + ion is accompanied by Ag 2+ ion displacement from the position, Ag + being primarity taken up (Beavers-Roth or anti- Beavers-Roth) to the position between two oxygen ions in the mirror plane

  5. Effect of Ionizing Radiation on the Mechanical and Structural Properties of Graphite Fiber Reinforced Composites. Ph.D. Thesis

    Science.gov (United States)

    Wolf, Kay Woodroof

    1982-01-01

    Graphite/epoxy (T300/5208) and graphite/polyimide composites (C6000/PMR 15) were exposed to various levels of 0.5 MeV electron radiation with the maximum dose being 10,000 Mrad. A three point bending test was used to evaluate the ultimate stress and modulus of the composites. In all composites except transverse samples of C6000/PMR 15 ultimate stress values remained approximately constant or increased slightly. The modulus values remained approximately constant for all composite types regardless of the radiation level. Interfacial aspects of composites were studied. Interlaminar shear tests were performed on T300/5208 and C6000/PMR 15 composites irradiated to 10,000 Mrad. There was an initial increase in interlaminar shear strength (up to 1,000 Mrad) followed by a sharp decrease with further radiation exposure. Using scanning electron microscopy no visual differences in the mode of fracture could be detected between ruptured control samples and those exposed to various levels of radiation. Electron spectroscopy for chemical analysis (ESCA) revealed little change in the surface elements present in control and highly irradiated T300/5208 composite samples.

  6. Experimental studies on radiation damages of CsI(Tl) crystals

    International Nuclear Information System (INIS)

    He Jingtang; Mao Yufang; Dong Xiaoli; Chen Duanbao; Li Zuhao

    1997-01-01

    The results of experimental studies on radiation damage of CsI(Tl) crystal were reported. There are radiation damage effects on CsI(Tl) crystal. Experimental studies on recovery of damaged CsI(Tl) crystals were made. It seems that after heating at 200 degree C for 4 hours, the damaged crystals could be recovered completely

  7. Radiation chemistry of plastic crystals. Final report

    International Nuclear Information System (INIS)

    Klingen, T.J.

    1979-01-01

    The primary purpose of this report is to summarize the research done under this contract over the past twelve years. Since it is manifestly impossible to provide all the details involved in this work in this report only the primary results of these studies are discussed. The detailed radiolytic mechanisms and kinetics, as well as other detailed information on the systems studied have previously been reported in the annual reports, ORO-3781-1 through 14 and in the journal articles listed in the Contract Publications section of this report. The initial purpose of this work was to study the gamma-ray induced polymerization of organo-substituted carboranes in the solid state. With time this purpose changed to understanding in detail the effects plastic crystallinity had on the overall radiolysis of materials in this type of mesomorphic state. This work included the effects of phase, charge transfer, organic substituent and the ability of the carboranes to act as electron scavengers. For clarity of presentation, the work in the various areas which was performed under this contract is reported in four separate sections: plastic crystallinity, radiation chemistry, electrooptical properties, and thermal oligomerization

  8. Direct growth of self-crystallized graphene and graphite nanoballs with Ni vapor-assisted growth: From controllable growth to material characterization

    Science.gov (United States)

    Yen, Wen-Chun; Chen, Yu-Ze; Yeh, Chao-Hui; He, Jr-Hau; Chiu, Po-Wen; Chueh, Yu-Lun

    2014-01-01

    A directly self-crystallized graphene layer with transfer-free process on arbitrary insulator by Ni vapor-assisted growth at growth temperatures between 950 to 1100°C via conventional chemical vapor deposition (CVD) system was developed and demonstrated. Domain sizes of graphene were confirmed by Raman spectra from ~12 nm at growth temperature of 1000°C to ~32 nm at growth temperature of 1100°C, respectively. Furthermore, the thickness of the graphene is controllable, depending on deposition time and growth temperature. By increasing growth pressure, the growth of graphite nano-balls was preferred rather than graphene growth. The detailed formation mechanisms of graphene and graphite nanoballs were proposed and investigated in detail. Optical and electrical properties of graphene layer were measured. The direct growth of the carbon-based materials with free of the transfer process provides a promising application at nanoelectronics. PMID:24810224

  9. Direct growth of self-crystallized graphene and graphite nanoballs with Ni vapor-assisted growth: from controllable growth to material characterization.

    Science.gov (United States)

    Yen, Wen-Chun; Chen, Yu-Ze; Yeh, Chao-Hui; He, Jr-Hau; Chiu, Po-Wen; Chueh, Yu-Lun

    2014-05-09

    A directly self-crystallized graphene layer with transfer-free process on arbitrary insulator by Ni vapor-assisted growth at growth temperatures between 950 to 1100 °C via conventional chemical vapor deposition (CVD) system was developed and demonstrated. Domain sizes of graphene were confirmed by Raman spectra from ~12 nm at growth temperature of 1000 °C to ~32 nm at growth temperature of 1100 °C, respectively. Furthermore, the thickness of the graphene is controllable, depending on deposition time and growth temperature. By increasing growth pressure, the growth of graphite nano-balls was preferred rather than graphene growth. The detailed formation mechanisms of graphene and graphite nanoballs were proposed and investigated in detail. Optical and electrical properties of graphene layer were measured. The direct growth of the carbon-based materials with free of the transfer process provides a promising application at nanoelectronics.

  10. Radiation Induced Color Centers in a La Doped PWO Crystal

    CERN Document Server

    Deng, Qun

    1998-01-01

    This report presents result of a study on radiation induced color center densities in a La doped lead tungstate ( PWO) crystal. The creation and annihilation constants of radiation induced color centers were determined by using transmittance data measured for a PWO sample before and during Co-60 gamma ray irradiation at a dose rate of 15 rad/hr. Following a model of color center kinetics, these constants were used to calculate color center densities under irradiations at 100 rad/hr. The result was found to be in a good agreement with experimental data, indicating that this model of color center kinetics can be used to predict behavior of PWO crystals under irradiation.

  11. Fabrication of radiation detector using PbI2 crystals

    International Nuclear Information System (INIS)

    Shoji, T.; Ohba, K.; Suehiro, T.; Hiratate, Y.

    1995-01-01

    Radiation detectors have been fabricated from lead iodide (PbI 2 ) crystals grown by two methods: zone melting and Bridgman methods. In response characteristics of the detector fabricated from crystals grown by the zone melting method, a photopeak for γ-rays from an 241 Am source (59.5 KeV) has been clearly observed with applied detector bias of 500 V at room temperature. The hole drift mobility is estimated to be about 5.5 cm 2 /Vs from measurement of pulse rise time for 5.48 MeV α-rays from 241 Am. By comparing the detector bias versus saturated peak position of the PbI 2 detector with that of CdTe detector, the average energy for producing electron-hole pairs is estimated to be about 8.4 eV for the PbI 2 crystal. A radiation detector fabricated from PbI 2 crystals grown by the Bridgman method, however, exhibited no response for γ-rays

  12. Advanced crystal growth techniques for thallium bromide semiconductor radiation detectors

    Science.gov (United States)

    Datta, Amlan; Becla, Piotr; Guguschev, Christo; Motakef, Shariar

    2018-02-01

    Thallium Bromide (TlBr) is a promising room-temperature radiation detector candidate with excellent charge transport properties. Currently, Travelling Molten Zone (TMZ) technique is widely used for growth of semiconductor-grade TlBr crystals. However, there are several challenges associated with this type of crystal growth process including lower yield, high thermal stress, and low crystal uniformity. To overcome these shortcomings of the current technique, several different crystal growth techniques have been implemented in this study. These include: Vertical Bridgman (VB), Physical Vapor Transport (PVT), Edge-defined Film-fed Growth (EFG), and Czochralski Growth (Cz). Techniques based on melt pulling (EFG and Cz) were demonstrated for the first time for semiconductor grade TlBr material. The viability of each process along with the associated challenges for TlBr growth has been discussed. The purity of the TlBr crystals along with its crystalline and electronic properties were analyzed and correlated with the growth techniques. Uncorrected 662 keV energy resolutions around 2% were obtained from 5 mm x 5 mm x 10 mm TlBr devices with virtual Frisch-grid configuration.

  13. Imperfection and radiation damage in protein crystals studied with coherent radiation

    International Nuclear Information System (INIS)

    Nave, Colin; Sutton, Geoff; Evans, Gwyndaf; Owen, Robin; Rau, Christoph; Robinson, Ian; Stuart, David Ian

    2016-01-01

    Coherent diffraction observations from polyhedra crystals at cryotemperature are reported. Information is obtained about the lattice strain and the changes with radiation damage. Fringes and speckles occur within diffraction spots when a crystal is illuminated with coherent radiation during X-ray diffraction. The additional information in these features provides insight into the imperfections in the crystal at the sub-micrometre scale. In addition, these features can provide more accurate intensity measurements (e.g. by model-based profile fitting), detwinning (by distinguishing the various components), phasing (by exploiting sampling of the molecular transform) and refinement (by distinguishing regions with different unit-cell parameters). In order to exploit these potential benefits, the features due to coherent diffraction have to be recorded and any change due to radiation damage properly modelled. Initial results from recording coherent diffraction at cryotemperatures from polyhedrin crystals of approximately 2 µm in size are described. These measurements allowed information about the type of crystal imperfections to be obtained at the sub-micrometre level, together with the changes due to radiation damage

  14. Imperfection and radiation damage in protein crystals studied with coherent radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nave, Colin, E-mail: colin.nave@diamond.ac.uk [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Sutton, Geoff [Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Evans, Gwyndaf; Owen, Robin; Rau, Christoph [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Robinson, Ian [University College London, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Stuart, David Ian [Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2016-01-01

    Coherent diffraction observations from polyhedra crystals at cryotemperature are reported. Information is obtained about the lattice strain and the changes with radiation damage. Fringes and speckles occur within diffraction spots when a crystal is illuminated with coherent radiation during X-ray diffraction. The additional information in these features provides insight into the imperfections in the crystal at the sub-micrometre scale. In addition, these features can provide more accurate intensity measurements (e.g. by model-based profile fitting), detwinning (by distinguishing the various components), phasing (by exploiting sampling of the molecular transform) and refinement (by distinguishing regions with different unit-cell parameters). In order to exploit these potential benefits, the features due to coherent diffraction have to be recorded and any change due to radiation damage properly modelled. Initial results from recording coherent diffraction at cryotemperatures from polyhedrin crystals of approximately 2 µm in size are described. These measurements allowed information about the type of crystal imperfections to be obtained at the sub-micrometre level, together with the changes due to radiation damage.

  15. Investigation of classical radiation reaction with aligned crystals

    Energy Technology Data Exchange (ETDEWEB)

    Di Piazza, A., E-mail: dipiazza@mpi-hd.mpg.de [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 (Germany); Wistisen, Tobias N.; Uggerhøj, Ulrik I. [Department of Physics and Astronomy, Aarhus University, 8000 Aarhus (Denmark)

    2017-02-10

    Classical radiation reaction is the effect of the electromagnetic field emitted by an accelerated electric charge on the motion of the charge itself. The self-consistent underlying classical equation of motion including radiation–reaction effects, the Landau–Lifshitz equation, has never been tested experimentally, in spite of the first theoretical treatments of radiation reaction having been developed more than a century ago. Here we show that classical radiation reaction effects, in particular those due to the near electromagnetic field, as predicted by the Landau–Lifshitz equation, can be measured in principle using presently available facilities, in the energy emission spectrum of 30-GeV electrons crossing a 0.55-mm thick diamond crystal in the axial channeling regime. Our theoretical results indicate the feasibility of the suggested setup, e.g., at the CERN Secondary Beam Areas (SBA) beamlines.

  16. Scintillation and radiation damage of doped BaF2 crystals

    International Nuclear Information System (INIS)

    Gong Zufang; Xu Zizong; Chang Jin

    1992-01-01

    The emission spectra and the radiation damage of BaF 2 crystals doped Ce and Dy have been studied. The results indicate that the doped BaF 2 crystals have the intrinsic spectra of impurity besides the intrinsic spectra of BaF 2 crystals. The crystals colored and the transmissions decrease with the concentration of impurity in BaF 2 crystals after radiation by γ-ray of 60 Co. The doped Ce BaF 2 irradiated by ultraviolet has faster recover of transmissions but for doped Dy the effect is not obvious. The radiation resistance is not good as pure BaF 2 crystals

  17. A hybrid model of primary radiation damage in crystals

    International Nuclear Information System (INIS)

    Samarin, S.I.; Dremov, V.V.

    2009-01-01

    The paper offers a hybrid model which combines molecular dynamics and Monte Carlo (MD+MC) methods to describe primary radiation damage in crystals, caused by particles whose energies are no higher than several tens of keV. The particles are tracked in accord with equations of motion with account for pair interaction. The model also considers particle interaction with the mean-field potential (MFP) of the crystal. Only particles involved in cascading are tracked. Equations of motion for these particles include dissipative forces which describe energy exchange between cascade particles and electrons. New particles - the atoms of the crystal in the cascade region - have stochastic parameters (phase coordinates); they are sampled by the Monte Carlo method from the distribution that describes the classic canonical ensemble of non-interacting particles subjected to the external MFP. The introduction of particle interaction with the MFP helps avoid difficulties related to crystal stability and the choice of an adequate interparticle interaction potential in the traditional MD methods. Our technique is many times as fast as the traditional MD methods because we consider only particles which are involved in cascading and apply special methods to speedup the calculation of forces by accounting for the short-range pair potential used

  18. Radiation-electromagnetic effect in germanium single crystals

    International Nuclear Information System (INIS)

    Kikoin, I.K.; Kikoin, L.I.; Lazarev, S.D.

    1980-01-01

    An experimental study was made of the radiation-electromagnetic effect in germanium single crystals when excess carriers were generated by bombardment with α particles, protons, or x rays in magnetic fields up to 8 kOe. The source of α particles and protons was a cyclotron and x rays were provided by a tube with a copper anode. The radiation-electromagnetic emf increased linearly on increase in the magnetic field and was directly proportional to the flux of charged particles at low values of the flux, reaching saturation at high values of the flux (approx.5 x 10 11 particles .cm -2 .sec -1 ). In the energy range 4--40 MeV the emf was practically independent of the α-particle energy. The sign of the emf was reversed when samples with a ground front surface were irradiated. Measurements of the photoelectromagnetic and Hall effects in the α-particle-irradiated samples showed that a p-n junction was produced by these particles and its presence should be allowed for in investigations of the radiation-electromagnetic effect. The measured even radiation-electromagnetic emf increased quadratically on increase in the magnetic field. An investigation was made of the barrier radiation-voltaic effect (when the emf was measured between the irradiated and unirradiated surfaces). Special masks were used to produce a set of consecutive p-n junctions in germanium crystals irradiated with α particles. A study of the photovoltaic and photoelectromagnetic effects in such samples showed that the method could be used to increase the efficiency of devices utilizing the photoelectromagnetic effect

  19. Special graphites

    International Nuclear Information System (INIS)

    Leveque, P.

    1964-01-01

    A large fraction of the work undertaken jointly by the Commissariat a l'Energie Atomique (CEA) and the Pechiney Company has been the improvement of the properties of nuclear pile graphite and the opening up of new fields of graphite application. New processes for the manufacture of carbons and special graphites have been developed: forged graphite, pyro-carbons, high density graphite agglomeration of graphite powders by cracking of natural gas, impervious graphites. The physical properties of these products and their reaction with various oxidising gases are described. The first irradiation results are also given. (authors) [fr

  20. Radiation effects and defects in lithium borate crystals

    Science.gov (United States)

    Ogorodnikov, Igor N.; Poryvay, Nikita E.; Pustovarov, Vladimir A.

    2010-11-01

    The paper presents the results of a study of the formation and decay of lattice defects in wide band-gap optical crystals of LiB3O5 (LBO), Li2B4O7 (LTB) and Li6Gd(BO3)3 (LGBO) with a sublattice of mobile lithium cations. By means of thermoluminescence techniques, and luminescent and absorption optical spectroscopy with a nanosecond time resolution under excitation with an electron beam, it was revealed that the optical absorption in these crystals in the visible and ultraviolet spectral ranges is produced by optical hole-transitions from the local defect level to the valence band states. The valence band density of the states determines mainly the optical absorption spectral profile, and the relaxation kinetics is rated by the interdefect non-radiative tunnel recombination between the trapped-hole center and the Li0 trapped-electron centers. At 290 K, the Li0 centers are subject to thermally stimulated migration. Based on experimental results, the overall picture of thermally stimulated recombination processes with the participation of shallow traps was established for these crystals.

  1. Radiation effects and defects in lithium borate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ogorodnikov, Igor N; Poryvay, Nikita E; Pustovarov, Vladimir A, E-mail: igor.ogorodnikov@bk.ru [Ural Federal University, Mira Street, 19, Ekaterinburg 620002 (Russian Federation)

    2010-11-15

    The paper presents the results of a study of the formation and decay of lattice defects in wide band-gap optical crystals of LiB{sub 3}O{sub 5} (LBO), Li{sub 2}B{sub 4}O{sub 7} (LTB) and Li{sub 6}Gd(BO{sub 3}){sub 3} (LGBO) with a sublattice of mobile lithium cations. By means of thermoluminescence techniques, and luminescent and absorption optical spectroscopy with a nanosecond time resolution under excitation with an electron beam, it was revealed that the optical absorption in these crystals in the visible and ultraviolet spectral ranges is produced by optical hole-transitions from the local defect level to the valence band states. The valence band density of the states determines mainly the optical absorption spectral profile, and the relaxation kinetics is rated by the interdefect non-radiative tunnel recombination between the trapped-hole center and the Li{sup 0} trapped-electron centers. At 290 K, the Li{sup 0} centers are subject to thermally stimulated migration. Based on experimental results, the overall picture of thermally stimulated recombination processes with the participation of shallow traps was established for these crystals.

  2. Development of the mercury iodide semiconductor crystal for application as a radiation detector

    International Nuclear Information System (INIS)

    Martins, Joao Francisco Trencher

    2011-01-01

    In this work, the establishment of a technique for HgI growth and preparation of crystals, for use as room temperature radiation semiconductor detectors is described. Three methods of crystal growth were studied while developing this work: physical vapor transport (PVT); saturated solution of HgI 2 , using two different solvents; (a) dimethyl sulfoxide (DMSO) and (b) acetone, and the Bridgman method. In order to evaluate the obtained crystals by the three methods, systematic measurements were carried out for determining the stoichiometry, structure, orientation, surface morphology and impurity of the crystal. The influence of these physical chemical properties on the crystals development was studied, evaluating their performance as radiation detectors. The X-ray diffractograms indicated that the crystals were, preferentially, oriented in the (001) e (101) directions with tetragonal structure for all crystals. Nevertheless, morphology with a smaller deformation level was observed for the crystal obtained by the PVT technique, comparing to other methods. Uniformity on the surface layer of the PVT crystal was detected, while clear incrustations of elements distinct from the crystal could be viewed on the DMSO crystal surface. The best results as to radiation response were found for the crystal grown by physical vapor transport. Significant improvement in the HgI z2 radiation detector performance was achieved for purer crystals, growing the crystal twice by PVT technique. (author)

  3. Large single-crystal diamond substrates for ionizing radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Girolami, Marco; Bellucci, Alessandro; Calvani, Paolo; Trucchi, Daniele M. [Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Sede Secondaria di Montelibretti, Monterotondo Stazione, Roma (Italy)

    2016-10-15

    The need for large active volume detectors for ionizing radiations and particles, with both large area and thickness, is becoming more and more compelling in a wide range of applications, spanning from X-ray dosimetry to neutron spectroscopy. Recently, 8.0 x 8.0 mm{sup 2} wide and 1.2 mm thick single-crystal diamond plates have been put on the market, representing a first step to the fabrication of large area monolithic diamond detectors with optimized charge transport properties, obtainable up to now only with smaller samples. The more-than-double thickness, if compared to standard plates (typically 500 μm thick), demonstrated to be effective in improving the detector response to highly penetrating ionizing radiations, such as γ-rays. Here we report on the first measurements performed on large active volume single-crystal diamond plates, both in the dark and under irradiation with optical wavelengths (190-1100 nm), X-rays, and radioactive γ-emitting sources ({sup 57}Co and {sup 22}Na). (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. An Electron Microscopy Study of Graphite Growth in Nodular Cast Irons

    Science.gov (United States)

    Laffont, L.; Jday, R.; Lacaze, J.

    2018-04-01

    Growth of graphite during solidification and high-temperature solid-state transformation has been investigated in samples cut out from a thin-wall casting which solidified partly in the stable (iron-graphite) and partly in the metastable (iron-cementite) systems. Transmission electron microscopy has been used to characterize graphite nodules in as-cast state and in samples having been fully graphitized at various temperatures in the austenite field. Nodules in the as-cast material show a twofold structure characterized by an inner zone where graphite is disoriented and an outer zone where it is well crystallized. In heat-treated samples, graphite nodules consist of well-crystallized sectors radiating from the nucleus. These observations suggest that the disoriented zone appears because of mechanical deformation when the liquid contracts during its solidification in the metastable system. During heat-treatment, the graphite in this zone recrystallizes. In turn, it can be concluded that nodular graphite growth mechanism is the same during solidification and solid-state transformation.

  5. Radiation hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter

    CERN Document Server

    Adzic, P.; Andelin, D.; Anicin, I.; Antunovic, Z.; Arcidiacono, R.; Arenton, M.W.; Auffray, E.; Argiro, S.; Askew, A.; Baccaro, S.; Baffioni, S.; Balazs, M.; Bandurin, D.; Barney, D.; Barone, L.M.; Bartoloni, A.; Baty, C.; Beauceron, S.; Bell, K.W.; Bernet, C.; Besancon, M.; Betev, B.; Beuselinck, R.; Biino, C.; Blaha, J.; Bloch, P.; Borisevitch, A.; Bornheim, A.; Bourotte, J.; Brown, R.M.; Buehler, M.; Busson, P.; Camanzi, B.; Camporesi, T.; Cartiglia, N.; Cavallari, F.; Cecilia, A.; Chang, P.; Chang, Y.H.; Charlot, C.; Chen, E.A.; Chen, W.T.; Chen, Z.; Chipaux, R.; Choudhary, B.C.; Choudhury, R.K.; Cockerill, D.J.A.; Conetti, S.; Cooper, S.I.; Cossutti, F.; Cox, B.; Cussans, D.G.; Dafinei, I.; Da Silva Di Calafiori, D.R.; Daskalakis, G.; David, A.; Deiters, K.; Dejardin, M.; De Benedetti, A.; Della Ricca, G.; Del Re, D.; Denegri, D.; Depasse, P.; Descamps, J.; Diemoz, M.; Di Marco, E.; Dissertori, G.; Dittmar, M.; Djambazov, L.; Djordjevic, M.; Dobrzynski, L.; Dolgopolov, A.; Drndarevic, S.; Drobychev, G.; Dutta, D.; Dzelalija, M.; Elliott-Peisert, A.; El Mamouni, H.; Evangelou, I.; Fabbro, B.; Faure, J.L.; Fay, J.; Fedorov, A.; Ferri, F.; Franci, D.; Franzoni, G.; Freudenreich, K.; Funk, W.; Ganjour, S.; Gascon, S.; Gataullin, M.; Gentit, F.X.; Ghezzi, A.; Givernaud, A.; Gninenko, S.; Go, A.; Gobbo, B.; Godinovic, N.; Golubev, N.; Govoni, P.; Grant, N.; Gras, P.; Haguenauer, M.; Hamel de Monchenault, G.; Hansen, M.; Haupt, J.; Heath, H.F.; Heltsley, B.; Cornell U., LNS.; Hintz, W.; Hirosky, R.; Hobson, P.R.; Honma, A.; Hou, G.W.S.; Hsiung, Y.; Huhtinen, M.; Ille, B.; Ingram, Q.; Inyakin, A.; Jarry, P.; Jessop, C.; Jovanovic, D.; Kaadze, K.; Kachanov, V.; Kailas, S.; Kataria, S.K.; Kennedy, B.W.; Kokkas, P.; Kolberg, T.; Korjik, M.; Krasnikov, N.; Krpic, D.; Kubota, Y.; Kuo, C.M.; Kyberd, P.; Kyriakis, A.; Lebeau, M.; Lecomte, P.; Lecoq, P.; Ledovskoy, A.; Lethuillier, M.; Lin, S.W.; Lin, W.; Litvine, V.; Locci, E.; Longo, E.; Loukas, D.; Luckey, P.D.; Lustermann, W.; Ma, Y.; Malberti, M.; Malcles, J.; Maletic, D.; Manthos, N.; Maravin, Y.; Marchica, C.; Marinelli, N.; Markou, A.; Markou, C.; Marone, M.; Matveev, V.; Mavrommatis, C.; Meridiani, P.; Milenovic, P.; Mine, P.; Missevitch, O.; Mohanty, A.K.; Moortgat, F.; Musella, P.; Musienko, Y.; Nardulli, A.; Nash, J.; Nedelec, P.; Negri, P.; Newman, H.B.; Nikitenko, A.; Nessi-Tedaldi, F.; Obertino, M.M.; Organtini, G.; Orimoto, T.; Paganoni, M.; Paganini, P.; Palma, A.; Pant, L.; Papadakis, A.; Papadakis, I.; Papadopoulos, I.; Paramatti, R.; Parracho, P.; Pastrone, N.; Patterson, J.R.; Pauss, F.; Peigneux, J.P.; Petrakou, E.; Phillips, D.G.; Piroue, P.; Ptochos, F.; Puljak, I.; Pullia, A.; Punz, T.; Puzovic, J.; Ragazzi, S.; Rahatlou, S.; Rander, J.; Razis, P.A.; Redaelli, N.; Renker, D.; Reucroft, S.; Ribeiro, P.; Rogan, C.; Ronquest, M.; Rosowsky, A.; Rovelli, C.; Rumerio, P.; Rusack, R.; Rusakov, S.V.; Ryan, M.J.; Sala, L.; Salerno, R.; Schneegans, M.; Seez, C.; Sharp, P.; Shepherd-Themistocleous, C.H.; Shiu, J.G.; Shivpuri, R.K.; Shukla, P.; Siamitros, C.; Sillou, D.; Silva, J.; Silva, P.; Singovsky, A.; Sirois, Y.; Sirunyan, A.; Smith, V.J.; Stockli, F.; Swain, J.; Tabarelli de Fatis, T.; Takahashi, M.; Tancini, V.; Teller, O.; Theofilatos, K.; Thiebaux, C.; Timciuc, V.; Timlin, C.; Titov, Maxim P.; Topkar, A.; Triantis, F.A.; Troshin, S.; Tyurin, N.; Ueno, K.; Uzunian, A.; Varela, J.; Verrecchia, P.; Veverka, J.; Virdee, T.; Wang, M.; Wardrope, D.; Weber, M.; Weng, J.; Williams, J.H.; Yang, Y.; Yaselli, I.; Yohay, R.; Zabi, A.; Zelepoukine, S.; Zhang, J.; Zhang, L.Y.; Zhu, K.; Zhu, R.Y.

    2010-01-01

    Ensuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered.

  6. Moessbauer radiation dynamical diffraction in crystals being subjected to the action of external variable fields

    International Nuclear Information System (INIS)

    Baryshevskii, V.G.; Skadorov, V.V.

    1986-01-01

    A dynamical theory is developed of the Moessbauer radiation diffraction by crystals being subjected to an variable external field action. Equations describing the dynamical diffraction by nonstationary crystals are obtained. It is shown that the resonant interaction between Moessbauer radiation and shift field induced in the crystal by a variable external field giving rise to an effective conversion of the incident wave into a wave with changed frequency. (author)

  7. Dynamic chaos phenomenon and coherent radiation accompanying high energy particle motion through crystals

    International Nuclear Information System (INIS)

    Akhiezer, A.I.; Truten', V.I.; Shul'ga, N.F.

    1991-01-01

    A crystal has a regular structure, therefore every motion in such a structure seems to be regular. However, it is not actually so and even in perfect crystals the particle motion may be either regular or chaotic. Everything depends on the number of integrals of motion determining a particle trajectory. The character of particle motion in a crystal, i.e. its regularity or chaoticity, affects many physical processes accompanying the particle's motion. In this paper we shall consider the effect of dynamic chaos on the coherent radiation of fast particles in a crystal. We also consider the validity conditions of coherent radiation theory results, the role of the second and higher Born approximations in the radiation theory of fast particles in crystals, the continuous string approximation in this theory, the coherent radiation in the model of random strings, and the multiple scattering effect on the coherent radiation. (author)

  8. Erosion of pyrolytic graphite and Ti-doped graphite due to high flux irradiation

    International Nuclear Information System (INIS)

    Ohtsuka, Yusuke; Ohashi, Junpei; Ueda, Yoshio; Isobe, Michiro; Nishikawa, Masahiro

    1997-01-01

    The erosion of pyrolytic graphite and titanium doped graphite RG-Ti above 1,780 K was investigated by 5 keV Ar beam irradiation with the flux from 4x10 19 to 1x10 21 m -2 ·s -1 . The total erosion yields were significantly reduced with the flux. This reduction would be attributed to the reduction of RES (radiation enhanced sublimation) yield, which was observed in the case of isotropic graphite with the flux dependence of RES yield of φ -0.26 (φ: flux) obtained in our previous work. The yield of pyrolytic graphite was roughly 30% higher than that of isotropic graphite below the flux of 10 20 m -2 ·s -1 whereas each yield approached to very close value at the highest flux of 1x10 21 m -2 ·s -1 . This result indicated that the effect of graphite structure on the RES yield, which was apparent in the low flux region, would disappear in the high flux region probably due to the disordering of crystal structure. In the case of irradiation to RG-Ti at 1,780 K, the surface undulations evolved with a mean height of about 3 μm at 1.2x10 20 m -2 ·s -1 , while at higher flux of 8.0x10 20 m -2 ·s -1 they were unrecognizable. These phenomena can be explained by the reduction of RES of graphite parts excluding TiC grains. (author)

  9. On the nature of absorption in the range of CO2-laser radiation and laser-induced destruction of KCl crystals at the first stage of radiation colouring

    International Nuclear Information System (INIS)

    Gektin, A.V.; Charkina, T.A.; Shiran, N.V.

    1985-01-01

    A mechanism explaining both an increase of crystal absorption in CO 2 -laser radiation range and a decrease of the thershold of KCl crystals optical destruction is proposed. The mechanism is based on the presence of a bond between hydroxyl ion content and a change of crystal transparency in the IR range under γ-radiation at the first stage of radiation colouring

  10. Heavy ion induced radiation effects in novel molybdenum-carbide graphite composite materials

    CERN Document Server

    Tomut, M; Bolz, Ph.; Carra, F.; Quaranta, E.; Hermes, P.; Bertareli, A.; Redaelli, S.; Rossi, A.; Bizzaro, S.; Trautmann, C.

    2015-01-01

    diation. Within the EU, FP7, EuCARD-2 project [1], an intense campaign for testing radiation hardness using different particle beams and energies is taking place at GSI Helmholtzzentrum as well as at Brookhaven National Laboratory (USA) and Kurchatov Institute ( Russia).

  11. Influence of Impurities on the Radiation Response of the TlBr Semiconductor Crystal

    Directory of Open Access Journals (Sweden)

    Robinson Alves dos Santos

    2017-01-01

    Full Text Available Two commercially available TlBr salts were used as the raw material for crystal growths to be used as radiation detectors. Previously, TlBr salts were purified once, twice, and three times by the repeated Bridgman method. The purification efficiency was evaluated by inductively coupled plasma mass spectroscopy (ICP-MS, after each purification process. A compartmental model was proposed to fit the impurity concentration as a function of the repetition number of the Bridgman growths, as well as determine the segregation coefficients of impurities in the crystals. The crystalline structure, the stoichiometry, and the surface morphology of the crystals were evaluated, systematically, for the crystals grown with different purification numbers. To evaluate the crystal as a radiation semiconductor detector, measurements of its resistivity and gamma-ray spectroscopy were carried out, using 241Am and 133Ba sources. A significant improvement of the radiation response was observed in function of the crystal purity.

  12. Radiation of fast positrons interacting with periodic microstructure on the surface of a crystal

    Energy Technology Data Exchange (ETDEWEB)

    Epp, V., E-mail: epp@tspu.edu.ru [Tomsk State Pedagogical University, ul. Kievskaya 60, 634061 Tomsk (Russian Federation); Tomsk State University, pr. Lenina 36, 634050 Tomsk (Russian Federation); Janz, J.G., E-mail: Yanc@tpu.ru [Tomsk Polytechnic University, pr. Lenina 34, 634050 Tomsk (Russian Federation); Kaplin, V.V., E-mail: kaplin@tpu.ru [Tomsk Polytechnic University, pr. Lenina 34, 634050 Tomsk (Russian Federation)

    2016-12-01

    Highlights: • New tunable crystalline source of X-ray radiation is described. • Radiation is emitted by the channeling relativistic particles. • A set of crystal plates offers more effective monitoring of the photon energy. • Formulae describing the radiation properties are obtained. - Abstract: Radiation of positrons passing through a set of equidistant crystal plates is calculated. Each plate is of thickness of half of the particle trajectory period at planar channeling in a thick crystal. Positively charged particle entering the first plate at an angle smaller than the critical channeling angle is captured into channeling mode and changes the direction of its transversal velocity to reversed. Between the half-wave plates the particle moves along a straight line. The proposed setup can be realized as a set of equidistant ridges on the surface of a single crystal. Passing through such set of half-wave crystal plates the particle moves on quasi-undulator trajectories. Properties of the particle radiation emitted during their passage through such “multicrystal undulator” are calculated. The radiation spectrum in each particular direction is discrete, and the frequency of the first harmonic and the number of harmonics in the spectrum depend on the distance between the plates, on energy of the particles and on the averaged potential energy of atomic planes of the crystal. The radiation is bound to a narrow cone in the direction of the average particle velocity and polarized essentially in a plane orthogonal to the atomic planes in the crystal.

  13. Radiation Hardness Study of CsI(Tl) Crystals for Belle II Calorimeter

    CERN Document Server

    Matvienko, D V; Sedov, E V; Shwartz, B A

    2017-01-01

    The Belle II calorimeter (at least, its barrel part) consists of CsI(Tl) scintillation crystals which have been used at the Belle experiment. We perform the radiation hardness study of some typical Belle crystals and conclude their light output reductions are acceptable for Belle II experiment where the absorption dose can reach 10 krad during the detector operation. CsI(Tl) crystals have high stablity and low maintenance cost and are considered as possible option for the calorimeter of the future Super-Charm-Tau factory (SCT) in Novosibirsk. Our study demonstrates sufficiently high radiation hardness of CsI(Tl) crystals for SCT conditions.

  14. The features of radiation damages in L-alanine crystals

    International Nuclear Information System (INIS)

    Zaitov, V.R.; Onischuk, V.A.

    1996-01-01

    The method of the ESR alanine dosimetry has appeared the most convenient one for measurement of radiation dose in the range 1-10 6 Gy. Its peculiarities are the wide dose range, the high accuracy, the absence fading at room temperature, the possibility of many times repeated measurements as dosemeter accumulates dose, the simplicity of measurements. Because of this performance ESR alanine dosimetry technique can be applied to continuous monitoring radiation doses absorbed by materials on nuclear power stations as well as of dose fields and restoration doses after an accident situation. In order to determine accurately the absorbed dose in an accident on background of accumulated dose for previous period, it is necessary to the utmost increase the accuracy of dosimetry system. For this reason it is necessary to know how the properties of free radicals which formings in irradiated L-alanine are displayed in signal ESR. With the purpose to detect the structure of the free radicals the ESR spectra the L-alanine and L-alanine-d 3 single crystals were studied. The samples were grown by slow evaporation of the saturated aqueous solution. For obtain the L-alanine-d 3 the three-divisible recrystallization in heavy water had been used. The samples were irradiated with 60 Co at room temperature and in liquid nitrogen. The irradiation doses were 10 kGy and dose rate was 8,3 Gy/s. To increase the resolution of the ESR spectra hyperfine structure the second derivative for the absorption curve was registered. The measurements were conducted in X-range at temperatures 77-430 K. (author)

  15. Characterization of un-irradiated and irradiated reactor graphite; Karakterizacija neozracenog i ozracenog reaktorskog grafita

    Energy Technology Data Exchange (ETDEWEB)

    Marinkovic, S [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    This report contains three parts: characterization of Yugoslav nuclear graphite development of methods and obtained results, characterization of un-irradiated and irradiated domestic nuclear graphite; calculation of electrical conductivity changes due to vacancies in the graphite crystal lattice.

  16. Effect of radiation on the crystals of polyethylene and paraffins

    International Nuclear Information System (INIS)

    Ungar, G.; Grubb, D.T.; Keller, A.

    1980-01-01

    Paraffins were irradiated with electrons in the electron microscope. The electron microscopic image and the electron diffraction patterns were followed as a function of dose. The objectives were: (a) to establish a connection between the 'polyethylene-type' and 'paraffin-like' behaviour and (b) to identify the phase segregation, by visual means. Increasing chain length, increasing dose rate and decreasing temperature individually and in combination, were found to favour the 'polyethylene-type' behaviour (crystal destruction through increasing lattice defects) while the reverse trend of the above three variables favoured the 'paraffin-like' behaviour (phase-segregated damaged and undamaged species). Segregated phases could in some circumstances be identified as non-diffracting 'droplets' within a crystalline matrix, with the lattice hardly affected, in the electron microscopic image. These droplets remain constant in number but increase in size as the irradiation progresses, the number of droplets depending on the chain length of the paraffin, on the irradiation temperature and on the dose rate. This behaviour, together with some further observations, reveals that the radiation-induced active species do not form crosslinks in situ but migrate over distances which can amount to μm. In contrast to the above, in the case of the lowest paraffin investigated, (C 23 H 48 ), the lattice became uniformly distorted as judged from the diffraction pattern, but the damage was observed to 'heal-out' with time. The results are discussed. (author)

  17. Investigation of the Microstructure and Mechanical Properties of Copper-Graphite Composites Reinforced with Single-Crystal α-Al₂O₃ Fibres by Hot Isostatic Pressing.

    Science.gov (United States)

    Zhang, Guihang; Jiang, Xiaosong; Qiao, ChangJun; Shao, Zhenyi; Zhu, Degui; Zhu, Minhao; Valcarcel, Victor

    2018-06-11

    Single-crystal α-Al₂O₃ fibres can be utilized as a novel reinforcement in high-temperature composites owing to their high elastic modulus, chemical and thermal stability. Unlike non-oxide fibres and polycrystalline alumina fibres, high-temperature oxidation and polycrystalline particles boundary growth will not occur for single-crystal α-Al₂O₃ fibres. In this work, single-crystal α-Al₂O₃ whiskers and Al₂O₃ particles synergistic reinforced copper-graphite composites were fabricated by mechanical alloying and hot isostatic pressing techniques. The phase compositions, microstructures, and fracture morphologies of the composites were investigated using X-ray diffraction, a scanning electron microscope equipped with an X-ray energy-dispersive spectrometer (EDS), an electron probe microscopic analysis equipped with wavelength-dispersive spectrometer, and a transmission electron microscope equipped with EDS. The mechanical properties have been measured by a micro-hardness tester and electronic universal testing machine. The results show that the reinforcements were unevenly distributed in the matrix with the increase of their content and there were some micro-cracks located at the interface between the reinforcement and the matrix. With the increase of the Al₂O₃ whisker content, the compressive strength of the composites first increased and then decreased, while the hardness decreased. The fracture and strengthening mechanisms of the composite materials were explored on the basis of the structure and composition of the composites through the formation and function of the interface. The main strengthening mechanism in the composites was fine grain strengthening and solid solution strengthening. The fracture type of the composites was brittle fracture.

  18. Raphide crystal structure in agave tequilana determined by x-ray originating from synchrotron radiation

    International Nuclear Information System (INIS)

    Tadokoro, Makoto; Ozawa, Yoshiki; Mitsumi, Minoru; Toriumi, Kohshiro; Ogura, Tetsuya

    2005-01-01

    The first single crystal structure of small natural raphides in an agave plant is completely determined using an intense X-ray originating from a synchrotron radiation. The SEM image shows that the tip of the crystal is approximately hundreds of nanometer in width sharply grow to stick to the tissue of herbivorous vermin. Furthermore, the crystal develops cracks that propagate at an inclination of approximately 45deg towards the direction of crystal growth such that the crystal easily splits into small pieces in the tissue. (author)

  19. Preparation and characterisation of radiation hard PbWO4 crystal scintillator

    International Nuclear Information System (INIS)

    Sabharwal, S.C.; Desai, D.G.; Sangeeta; Karandikar, S.C.; Chauhan, A.K.; Sangiri, A.K.; Keshwani, K.S.; Ahuja, M.N.

    1996-01-01

    The selective loss of one of the crystal constituents is found to be responsible for the yellowish coloration of PbWO 4 crystals. However, using the already pulled crystals as the starting charge for the subsequent growth, colorless crystals can be grown. The crystals exhibiting excellent transmission characteristics have been grown employing a low temperature gradient, a moderate rotation rate of 15 rpm and a pull speed of 1 mm/h. The colored crystals show some radiation damage on gamma irradiation, while the colorless ones remain unaffected even for irradiation doses as high as 10 Mrad. Both the types of crystals show the presence of weak thermoluminescence (TL) emission when high irradiation doses (similar 10 Mrad) are given. Only one TL glow peak is obtained in both the cases but the peak temperatures are different. The emission centers responsible for the TL emission are found to be the ones which give rise to the scintillation emission in the crystal. (orig.)

  20. Conversion of broadband thermal radiation in lithium niobate crystals of various compositions

    Science.gov (United States)

    Syuy, A. V.; Litvinova, M. N.; Goncharova, P. S.; Sidorov, N. V.; Palatnikov, M. N.; Krishtop, V. V.; Likhtin, V. V.

    2013-05-01

    The conversion of the broadband thermal radiation in stoichiometric ( R = 1) lithium niobate single crystals that are grown from melt with 58.6 mol % of LiO2, congruent ( R = Li/Nb = 0.946) melt with the K2O flux admixture (4.5 and 6.0 wt %), and congruent melt and in congruent single crystals doped with the Zn2+, Gd3+, and Er3+ cations is studied. It is demonstrated that the conversion efficiency of the stoichiometric crystal that is grown from the melt with 58.6 mol % of LiO2 is less than the conversion efficiency of congruent crystal. In addition, the stoichiometric and almost stoichiometric crystals and the doped congruent crystals exhibit the blue shift of the peak conversion intensity in comparison with a nominally pure congruent crystal. For the congruent crystals, the conversion intensities peak at 520 and 495 nm, respectively.

  1. Vanadium-rich tourmaline from graphitic rocks at Bítovánky, Czech republic; compositional variation, crystal structure

    Czech Academy of Sciences Publication Activity Database

    Cempírek, J.; Houzar, S.; Novák, M.; Selway, J.B.; Šrein, Vladimír

    2006-01-01

    Roč. 28, Spec. pap. (2006), s. 39-41 ISSN 1896-2203. [Central European Mineralogical Conference /1./. Vyšná Boca, 11.09.2006-15.09.2006] Institutional research plan: CEZ:AV0Z30460519 Keywords : V-rich tourmaline * compositional variation * crystal structure Subject RIV: DB - Geology ; Mineralogy

  2. Irradiation Creep in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  3. Bactericidal activity of self-assembled palmitic and stearic fatty acid crystals on highly ordered pyrolytic graphite.

    Science.gov (United States)

    Ivanova, Elena P; Nguyen, Song Ha; Guo, Yachong; Baulin, Vladimir A; Webb, Hayden K; Truong, Vi Khanh; Wandiyanto, Jason V; Garvey, Christopher J; Mahon, Peter J; Mainwaring, David E; Crawford, Russell J

    2017-09-01

    The wings of insects such as cicadas and dragonflies have been found to possess nanostructure arrays that are assembled from fatty acids. These arrays can physically interact with the bacterial cell membranes, leading to the death of the cell. Such mechanobactericidal surfaces are of significant interest, as they can kill bacteria without the need for antibacterial chemicals. Here, we report on the bactericidal effect of two of the main lipid components of the insect wing epicuticle, palmitic (C16) and stearic (C18) fatty acids. Films of these fatty acids were re-crystallised on the surface of highly ordered pyrolytic graphite. It appeared that the presence of two additional CH 2 groups in the alkyl chain resulted in the formation of different surface structures. Scanning electron microscopy and atomic force microscopy showed that the palmitic acid microcrystallites were more asymmetric than those of the stearic acid, where the palmitic acid microcrystallites were observed to be an angular abutment in the scanning electron micrographs. The principal differences between the two types of long-chain saturated fatty acid crystallites were the larger density of peaks in the upper contact plane of the palmitic acid crystallites, as well as their greater proportion of asymmetrical shapes, in comparison to that of the stearic acid film. These two parameters might contribute to higher bactericidal activity on surfaces derived from palmitic acid. Both the palmitic and stearic acid crystallite surfaces displayed activity against Gram-negative, rod-shaped Pseudomonas aeruginosa and Gram-positive, spherical Staphylococcus aureus cells. These microcrystallite interfaces might be a useful tool in the fabrication of effective bactericidal nanocoatings. Nanostructured cicada and dragonfly wing surfaces have been discovered to be able physically kill bacterial cells. Here, we report on the successful fabrication of bactericidal three-dimensional structures of two main lipid

  4. Crystallization in metglass: growth mechanism of crystals and radiation effects in Fe Ni P B

    International Nuclear Information System (INIS)

    Limoge, Y.; Barbu, A.

    1981-08-01

    Studying crystallization mechanisms and transport properties in amorphous metallic alloys we propose a model for systems wich are displaying eutectoid decomposition. Bringing together self diffusion, electron microscopy and electron irradiation experiments on a Fe Ni P B alloys we have shown that crystallization controlled by interfacial diffusion at the crystal surface can explain all the observed features of the experimental behaviour

  5. Data reduction and analysis for the graphite crystal X-ray spectrometer and polarimeter experiment flown aboard OSO-8 spacecraft

    Science.gov (United States)

    Novick, R.

    1980-01-01

    The documentation and software programs developed for the reception, initial processing (quickbook), and production analysis of data obtained by solar X-ray spectroscopy, stellar spectroscopy, and X-ray polarimetry experiments on OSO-8 are listed. The effectiveness and sensitivity of the Bragg crystal scattering instruments used are assessed. The polarization data polarimetric data obtained shows that some X-ray sources are polarized and that a larger polarimeter of this type is required to perform the measurements necessary to fully understand the physics of X-ray sources. The scanning Bragg crystal spectrometer was ideally suited for studying rapidly changing solar conditions. Observations of the Crab Nebula and pulsar, Cyg X-1, Cyg X-2, Cyg X-3, Sco X-1, Cen X-3, and Her X-1 are discussed as well as of 4U1656-53 and 4U1820-30. Evidence was obtained for iron line emission from Cyg X-3.

  6. Fabrication of radiation detector using PbI{sub 2} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, T; Sakamoto, K; Ohba, K; Suehiro, T; Hiratate, Y [Tohoku Inst. of Tech., Sendai (Japan)

    1996-07-01

    In this paper, we will discuss the PbI{sub 2} radiation detector fabricated from a crystal grown by the zone melting method and by the vapor phase method, together with characteristics of the crystal obtained by a XPS analyzer. (J.P.N.)

  7. Simulating of spectrum and polarization characteristics of ultrarelativistic - electron coherent radiation in a diamond crystal

    International Nuclear Information System (INIS)

    Truten', V.I.

    2000-01-01

    On the base of the computer simulation method it is shown that new maxima of ultrarelativistic electron radiation spectrum in aligned crystals may appear in a low-frequency region together with the ordinary coherent maxima. The appearance of these maxima is the result of the high-index-crystal-plane effect. These maxima manifest themselves in spectral as well as in polarization features of radiation [ru

  8. Nano-scale orientation mapping of graphite in cast irons

    International Nuclear Information System (INIS)

    Theuwissen, Koenraad; Lacaze, Jacques; Véron, Muriel; Laffont, Lydia

    2014-01-01

    A diametrical section of a graphite spheroid from a ductile iron sample was prepared using the focused ion beam-lift out technique. Characterization of this section was carried out through automated crystal orientation mapping in a transmission electron microscope. This new technique automatically collects electron diffraction patterns and matches them with precalculated templates. The results of this investigation are crystal orientation and phase maps of the specimen, which bring new light to the understanding of growth mechanisms of this peculiar graphite morphology. This article shows that mapping the orientation of carbon-based materials such as graphite, which is difficult to achieve with conventional techniques, can be performed automatically and at high spatial resolution using automated crystal orientation mapping in a transmission electron microscope. - Highlights: • ACOM/TEM can be used to study the crystal orientation of carbon-based materials. • A spheroid is formed by conical sectors radiating from a central nuclei. • Misorientations exist within the conical sectors, defining various orientation domains

  9. Computer simulations of radiation damage in protein crystals; Simulationsrechnungen zu Strahlenschaeden an Proteinkristallen

    Energy Technology Data Exchange (ETDEWEB)

    Zehnder, M

    2007-03-15

    The achievable resolution and the quality of the dataset of an intensity data collection for structure analysis of protein crystals with X-rays is limited among other factors by radiation damage. The aim of this work is to obtain a better quantitative understanding of the radiation damage process in proteins. Since radiation damage is unavoidable it was intended to look for the optimum ratio between elastically scattered intensity and radiation damage. Using a Monte Carlo algorithm physical processes after an inelastic photon interaction are studied. The main radiation damage consists of ionizations of the atoms through the electron cascade following any inelastic photon interaction. Results of the method introduced in this investigation and results of an earlier theoretical studies of the influence of Auger-electron transport in diamond are in a good agreement. The dependence of the radiation damage as a function of the energy of the incident photon was studied by computer-aided simulations. The optimum energy range for diffraction experiments on the protein myoglobin is 10-40 keV. Studies of radiation damage as a function of crystal volume and shape revealed that very small plate or rod shaped crystals suffer less damage than crystals formed like a cube with the same volume. Furthermore the influence of a few heavy atoms in the protein molecule on radiation damage was examined. Already two iron atoms in the unit cell of myoglobin increase radiation damage significantly. (orig.)

  10. Purification and preparation of graphite oxide from natural graphite

    Energy Technology Data Exchange (ETDEWEB)

    Panatarani, C., E-mail: c.panatarani@phys.unpad.ac.id; Muthahhari, N.; Joni, I. Made [Instrumentation Systems and Functional Material Processing Laboratory, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Padjadjaran University, Jl. Raya Bandung-Sumedang KM 21, Jatinangor, 45363, Jawa Barat (Indonesia); Rianto, Anton [Grafindo Nusantara Ltd., Belagio Mall Lantai 2, Unit 0 L3-19, Kawasan Mega Kuningan, Kav. B4 No.3, Jakarta Selatan (Indonesia)

    2016-03-11

    Graphite oxide has attracted much interest as a possible route for preparation of natural graphite in the large-scale production and manipulation of graphene as a material with extraordinary electronic properties. Graphite oxide was prepared by modified Hummers method from purified natural graphite sample from West Kalimantan. We demonstrated that natural graphite is well-purified by acid leaching method. The purified graphite was proceed for intercalating process by modifying Hummers method. The modification is on the reaction time and temperature of the intercalation process. The materials used in the intercalating process are H{sub 2}SO{sub 4} and KMNO{sub 4}. The purified natural graphite is analyzed by carbon content based on Loss on Ignition test. The thermo gravimetricanalysis and the Fouriertransform infrared spectroscopy are performed to investigate the oxidation results of the obtained GO which is indicated by the existence of functional groups. In addition, the X-ray diffraction and energy dispersive X-ray spectroscopy are also applied to characterize respectively for the crystal structure and elemental analysis. The results confirmed that natural graphite samples with 68% carbon content was purified into 97.68 % carbon content. While the intercalation process formed a formation of functional groups in the obtained GO. The results show that the temperature and reaction times have improved the efficiency of the oxidation process. It is concluded that these method could be considered as an important route for large-scale production of graphene.

  11. Radiation defects in oxide crystals doped with rare earth ions

    NARCIS (Netherlands)

    Matkovskii, A; Durygin, A; Suchocki, A; Sugak, D; Wallrafen, F; Vakiv, M

    1999-01-01

    The nature of stable and transient color centers in Y3Al5O12, Gd3Ca5O12, YAlO3 and LiNbO3 crystals is studied. The color centers are created by various types of irradiation. The effect of irradiation on crystal optical properties in visible and ultraviolet range is presented.

  12. Artificial graphites

    International Nuclear Information System (INIS)

    Maire, J.

    1984-01-01

    Artificial graphites are obtained by agglomeration of carbon powders with an organic binder, then by carbonisation at 1000 0 C and graphitization at 2800 0 C. After description of the processes and products, we show how the properties of the various materials lead to the various uses. Using graphite enables us to solve some problems, but it is not sufficient to satisfy all the need of the application. New carbonaceous material open application range. Finally, if some products are becoming obsolete, other ones are being developed in new applications [fr

  13. Radiation Damage Mechanism in PbWO4 Crystal and Radiation Hardness Quality Control of PWO Scintillators for CMS

    CERN Document Server

    Baccaro, Stefania; Borgia, Bruno; Cavallari, Francesca; Cecilia, Angelica; Dafinei, Ioan; Diemoz, Marcella; Lecoq, Paul; Longo, Egidio; Montecchi, Marco; Organtini, Giovanni; Salvatori, S

    1997-01-01

    The optical damage induced by UV light in PbWO4 crystals is found to be similar to that induced by g radiation. Due to the peculiarities of optical absorption in PbWO4, the damage induced by UV light is a bulk process. This fact has important consequences for the approach to be adopted both for the use of the crystal as scintillator and for the qualification methods foreseen in the Regional Centres of the ECAL CMS Collaboration.

  14. Effects of ionizing radiation on struvite crystallization of livestock wastewater

    International Nuclear Information System (INIS)

    Kim, Tak- Hyun; Nam, Yun-Ku; Joo Lim, Seung

    2014-01-01

    Livestock wastewater is generally very difficult to be treated by conventional wastewater treatment techniques because it contains high-strength organics (COD), ammonium (NH 4 + ), phosphate (PO 4 3− ) and suspended solids. Struvite crystallization has been recently studied for the simultaneous removal of NH 4 + and PO 4 3− . In this study, gamma ray irradiation was carried out prior to struvite crystallization of the anaerobically digested livestock wastewater. The effects of gamma ray irradiation on the struvite crystallization of livestock wastewater were investigated. As a result, gamma ray irradiation can decrease the concentration of COD, NH 4 + and PO 4 3− contained in the livestock wastewater. This results in not only an enhancement of the struvite crystallization efficiency but also a decrease in the chemical demands for the struvite crystallization of livestock wastewater. - Highlights: • Gamma ray was applied prior to struvite crystallization of livestock wastewater. • Gamma ray resulted in an enhancement of struvite crystallization efficiency. • This is due to the decrease of COD concentration by gamma ray irradiation

  15. Crystal glass used for X ray and gamma radiation shielding - Part two

    International Nuclear Information System (INIS)

    Antonio Filho, Joao

    2007-01-01

    Crystal glass has been widely used as shielding material in gamma radiation sources as well as x-ray generating equipment to replace the plumbiferous glass, in order to minimize exposure to individuals. However, properties of the radiation attenuation of crystal glass commercially available in Brazil, for the different types of energy are not known. For this reason, this work was carried out aiming to determine the radiation attenuation, transmission curves and Half Value Layer. In this work, ten plates of crystal glass, with dimensions of 20 cm x 20 cm and range of thicknesses from 0.5 to 2.0 cm, were used. The plates were X-ray irradiated with potential constants of 60, 80, 110, 150 kV and gamma radiation of 60 Co. Analysis in the properties of the 60 Co radiation attenuation of barite plaster and barite concrete commercially available in Brazil were also carried out. The curves of attenuation and of transmission were obtained for crystal glass, barite plaster and barite concrete (mGy/mA.min) at 1 meter as a function of thickness. The thickness equivalent of a half value layer and deci value layer of crystal glass for all types of radiation and energies studied was also determined. (author)

  16. Superluminescence of cadmium sulfide crystals under pulse X-ray radiation

    International Nuclear Information System (INIS)

    Pavlovskaya, N.G.; Tarasov, M.D.; Balakin, V.A.; Varava, V.P.; Lobov, S.I.; Surskij, O.K.; Tsukerman, V.A.

    1977-01-01

    Studies were made to elucidate luminescence properties of CdS crystal radiated by short pulses of braking x-ray radiation. Such a radiation causes the appearance of superluminescence. The radiation was carried out at 295 and 170 K, the radiation dose being changed from 3600 to 1600 r/pulse. At the temperature of 295 K light luminescence was registered at the wave length of 528 nm and half-width of 15 nm. While the temperature lowers, the radiation shifts to the range of shorter wave lengths, and a decrease of the spectrum half-width is observed. With the increase of radiation dose the decrease of radiation spectrum half-width is observed. Approximate calculations show that to achieve the spectrum narrowing to 1 nm at room temperature it is necessary to increase radiation dose per pulse 5-6 times

  17. Radiation defects in SrB4O7:Eu2+ crystals

    International Nuclear Information System (INIS)

    Yavetskiy, R.P.; Dolzhenkova, E.F.; Tolmachev, A.V.; Parkhomenko, S.V.; Baumer, V.N.; Prosvirnin, A.L.

    2007-01-01

    Radiation-induced defects in SrB 4 O 7 :Eu 2+ (0.033 at.%) single crystal irradiated with γ and X-ray quanta has been studied. The induced optical absorption in the 400-700 nm region has been ascribed to F + centers. The Eu 2+ ions have been shown to act simultaneously as traps and as radiative recombination centers of charge carriers. Basing on the thermally stimulated luminescence (TSL), optical absorption and photoluminescence studies of SrB 4 O 7 :Eu 2+ crystals, a TSL mechanism has been proposed associated with the decay of F + centers being in non-equivalent crystallographic positions followed by radiative recombination of charge carriers on europium ions. Various positions of localization of the radiation-induced defects in the SrB 4 O 7 crystal structure have been discussed

  18. Preliminary study of a phase transformation in insulin crystals using synchrotron-radiation Laue diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, C D; Stowell, B; Joshi, K K; Harding, M M; Maginn, S J; Dodson, G G

    1988-10-01

    Synchrotron-radiation Laue diffraction photographs have been recorded showing the transformation of single 4Zn insulin crystals (a=80.7 (1), c=37.6 (1) A, space group R3) to 2Zn insulin (a=82.5 (1), c=34.0 (1) A, space group R3). The transformation was brought about by changing the mother liquor in the capillary in which the crystal was mounted. Photographs were taken at 10 min intervals (exposure time 3 s) from 0.5 h after mounting. They showed initially a well ordered 4Zn insulin crystal (d/sub min/ ca 2.3 A), then a poorly ordered, sometimes multiple, crystal, and finally a 2Zn insulin crystal, about as well ordered as the initial crystal.

  19. Development of crystals based in cesium iodide for application as radiation detectors

    International Nuclear Information System (INIS)

    Pereira, Maria da Conceicao Costa

    2006-01-01

    Inorganic scintillators with fast luminescence decay time, high density and high light output have been the object of studies for application in nuclear physics, high energy physics, nuclear tomography and other fields of science and engineering. Scintillation crystals based on cesium iodide (CsI) are matters with relatively low higroscopy, high atomic number, easy handling and low cost, characteristics that favor their use as radiation detectors. In this work, the growth of pure CsI crystals, CsI:Br and CsI:Pb, using the Bridgman technique, is described. The concentration of the bromine doping element (Br) was studied in the range of 1,5x10 -1 M to 10 -2 M and the lead (Pb) in the range of 10 -2 M to 5x10 -4 M. To evaluate the scintillators developed, systematic measurements were carried out for luminescence emission and luminescence decay time for gamma radiation, optical transmittance assays, Vickers micro-hardness assays, determination of the doping elements distribution along the grown crystals and analysis of crystals response to the gamma radiation in the energy range of 350 keV to 1330 keV and alpha particles from a 241 Am source, with energy of 5.54 MeV. It was obtained 13 ns to 19 ns for luminescence decay time for CsI:Br and CsI:Pb crystals. These results were very promising. The results obtained for micro-hardness showed a significant increase in function of the doping elements concentration, when compared to the pure CsI crystal, increasing consequently the mechanical resistance of the grown crystals. The validity of using these crystals as radiation sensors may be seen from the results of their response to gamma radiation and alpha particles. (author)

  20. Characteristics of withstanding radiation damage of InP crystals and devices

    International Nuclear Information System (INIS)

    Yamaguchi, Masafumi; Ando, Koshi

    1988-01-01

    Recently, the authors discovered that the characteristics of with standing radiation damage of InP crystals and devices (solar cells) are superior to those of Si and GaAs crystals and devices. Also the restoration phenomena at room temperature of radiation deterioration and the accelerated anneal phenomena by light irradiation and the injection of other minority, carriers in InP system devices were found. Such excellent characteristics suggested that InP devices are promising for the use in space. In this paper, taking an example of solar cells, the radiation resistance characteristics and their mechanism of InP crystals and devices are reported, based on the results of analysis by deep level transient spectroscopy and others. In InP solar cells, the high efficiency of photoelectric conversion was maintained even in the high dose irradiation of 1 MeV electron beam. As the carrier concentration in InP crystals is higher, they are stronger against radiation. With the increase of carrier concentration, the rate of anneal of radiation deterioration at room temperature increased. The accelerated anneal effect by minority carrier injection was remarkable in n + -p junction cells. The excellent characteristics of InP crystals are due to the formation of Frenkel defects of P and their instability. (K.I.)

  1. Thermal design and validation of radiation detector for the ChubuSat-2 micro-satellite with high-thermal-conductive graphite sheets

    Science.gov (United States)

    Park, Daeil; Miyata, Kikuko; Nagano, Hosei

    2017-07-01

    This paper describes thermal design of the radiation detector (RD) for the ChubuSat-2 with the use of high-thermal-conductive materials. ChubuSat-2 satellite is a 50-kg-class micro-satellite joint development with Nagoya University and aerospace companies. The main mission equipment of ChubuSat-2 is a RD to observe neutrons and gamma rays. However, the thermal design of the RD encounters a serious problem, such as no heater for RD and electric circuit alignment constrain. To solve this issue, the RD needs a new thermal design and thermal control for successful space missions. This paper proposes high-thermal-conductive graphite sheets to be used as a flexible radiator fin for the RD. Before the fabrication of the device, the optimal thickness and surface area for the flexible radiator fin were determined by thermal analysis. Consequently, the surface area of flexible radiator fin was determined to be 8.6×104 mm2. To verify the effects of the flexible radiator fin, we constructed a verification model and analyzed the temperature distributions in the RD. Also, the thermal vacuum test was performed using a thermal vacuum chamber, which was evacuated at a pressure of around 10-4 Pa, and its internal temperature was cooled at -80 °C by using a refrigerant. As a result, it has been demonstrated that the flexible radiator fin is effective. And the thermal vacuum test results are presented good correlation with the analysis results.

  2. Miniaturized radiation detector with custom synthesized diamond crystal as sensor

    International Nuclear Information System (INIS)

    Grobbelaar, J.H.; Burns, R.C.; Nam, T.L.; Keddy, R.J.

    1991-01-01

    A miniaturized detector consisting of three custom built hybrid circuits, a counter and a miniature high voltage power supply was designed to operate with custom synthesized Type Ib diamond crystals as sensors. Thick-film technology was incorporated in the circuit design. With a crystal having a volume of approximately 10 mm 3 and containing approximately 60 ppm paramagnetic nitrogen, the detector was capable of measuring γ-ray dose-rates as low as 7.5 μ Gy h -1 . The response characteristic was linear up to 1 cGy h -1 . (orig.)

  3. Can radiation damage to protein crystals be reduced using small-molecule compounds?

    Energy Technology Data Exchange (ETDEWEB)

    Kmetko, Jan [Kenyon College, Gambier, OH 43022 (United States); Warkentin, Matthew; Englich, Ulrich; Thorne, Robert E., E-mail: ret6@cornell.edu [Cornell University, Ithaca, NY 14853 (United States); Kenyon College, Gambier, OH 43022 (United States)

    2011-10-01

    Free-radical scavengers that are known to be effective protectors of proteins in solution are found to increase global radiation damage to protein crystals. Protective mechanisms may become deleterious in the protein-dense environment of a crystal. Recent studies have defined a data-collection protocol and a metric that provide a robust measure of global radiation damage to protein crystals. Using this protocol and metric, 19 small-molecule compounds (introduced either by cocrystallization or soaking) were evaluated for their ability to protect lysozyme crystals from radiation damage. The compounds were selected based upon their ability to interact with radiolytic products (e.g. hydrated electrons, hydrogen, hydroxyl and perhydroxyl radicals) and/or their efficacy in protecting biological molecules from radiation damage in dilute aqueous solutions. At room temperature, 12 compounds had no effect and six had a sensitizing effect on global damage. Only one compound, sodium nitrate, appeared to extend crystal lifetimes, but not in all proteins and only by a factor of two or less. No compound provided protection at T = 100 K. Scavengers are ineffective in protecting protein crystals from global damage because a large fraction of primary X-ray-induced excitations are generated in and/or directly attack the protein and because the ratio of scavenger molecules to protein molecules is too small to provide appreciable competitive protection. The same reactivity that makes some scavengers effective radioprotectors in protein solutions may explain their sensitizing effect in the protein-dense environment of a crystal. A more productive focus for future efforts may be to identify and eliminate sensitizing compounds from crystallization solutions.

  4. Can radiation damage to protein crystals be reduced using small-molecule compounds?

    International Nuclear Information System (INIS)

    Kmetko, Jan; Warkentin, Matthew; Englich, Ulrich; Thorne, Robert E.

    2011-01-01

    Free-radical scavengers that are known to be effective protectors of proteins in solution are found to increase global radiation damage to protein crystals. Protective mechanisms may become deleterious in the protein-dense environment of a crystal. Recent studies have defined a data-collection protocol and a metric that provide a robust measure of global radiation damage to protein crystals. Using this protocol and metric, 19 small-molecule compounds (introduced either by cocrystallization or soaking) were evaluated for their ability to protect lysozyme crystals from radiation damage. The compounds were selected based upon their ability to interact with radiolytic products (e.g. hydrated electrons, hydrogen, hydroxyl and perhydroxyl radicals) and/or their efficacy in protecting biological molecules from radiation damage in dilute aqueous solutions. At room temperature, 12 compounds had no effect and six had a sensitizing effect on global damage. Only one compound, sodium nitrate, appeared to extend crystal lifetimes, but not in all proteins and only by a factor of two or less. No compound provided protection at T = 100 K. Scavengers are ineffective in protecting protein crystals from global damage because a large fraction of primary X-ray-induced excitations are generated in and/or directly attack the protein and because the ratio of scavenger molecules to protein molecules is too small to provide appreciable competitive protection. The same reactivity that makes some scavengers effective radioprotectors in protein solutions may explain their sensitizing effect in the protein-dense environment of a crystal. A more productive focus for future efforts may be to identify and eliminate sensitizing compounds from crystallization solutions

  5. Custom synthesized diamond crystals as state of the art radiation dosimeters

    International Nuclear Information System (INIS)

    Keddy, R.J.; Nam, T.L.; Fallon, P.J.

    1991-01-01

    The fact that as a radiation detector, diamond is a stable, non-toxic and tissue equivalent (Z = 6) material makes it an ideal candidate for in vivo radiation dosimetry or the dosimetry of general radiation fields in environmental monitoring. Natural diamond crystals, however, have the disadvantage that no two crystals can be guaranteed to have the same response characteristics. This disadvantage can be overcome by synthesizing the crystals under controlled conditions and by using very selective chemistry. Such synthetic diamonds can be used as thermoluminescence dosimeters where they exhibit characteristics comparable to presently available commercial TLD's or they can be used as ionization chambers to produce either ionization currents or pulses where the small physical size of the diamond (1 mm 3 ) and possibilities of digital circuitry makes miniaturization an extremely attractive possibility. It has also been found that they can perform as scintillation detectors. Aspects of the performance characteristics of such diamonds in all three modes are described

  6. Spectrometric properties and radiation damage of BGO crystals

    Science.gov (United States)

    Kim, Gen C.; Gasanov, Eldar M.

    1997-07-01

    Spectrometric properties, such as light output, energy resolution BGO crystals before and after (superscript 60)Co gamma-ray (dose 10(superscript 4) - 10(superscript 6) R) and neutron irradiation (fluence 10(superscript 14) cm(superscript -2)) are investigated. Condition for degradation of spectrometric properties and their recovering after irradiation are studied. The energy spectrum of the photons emitted from BGO crystals irradiated with neutron fluence contains the long living background peak which is caused by self-irradiation with radioactive isotopes produced in the crystals. The defect production was studied in crystals under the high dose gamma-irradiation with (superscript 60)Co isotope. It was found that after doses above 10(superscript 8) R the color center at 365 nm and doses higher than 10(superscript 9) R a wide absorption band in the region of 300 - 350 nm occur. Comparison of these results with those of reactor irradiation has shown that under the high dose gamma-irradiation the structure defect production takes place.

  7. Continuous wave ultraviolet radiation induced frustration of etching in lithium niobate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mailis, S.; Riziotis, C.; Smith, P.G.R.; Scott, J.G.; Eason, R.W

    2003-02-15

    Illumination of the -z face of congruent lithium niobate single crystals with continuous wave (c.w.) ultraviolet (UV) laser radiation modifies the response of the surface to subsequent acid etching. A frequency doubled Ar{sup +} laser ({lambda}=244 nm) was used to illuminate the -z crystal face making it resistive to HF etching and thus transforming the illuminated tracks into ridge structures. This process enables the fabrication of relief patterns in a photolithographic manner. Spatially resolved Raman spectroscopy indicates preservation of the good crystal quality after irradiation.

  8. Gamma radiation effects on photorefractive and photoelectric properties of lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vartanyan, Eh.S.; Ovsepyan, R.K.; Pogosyan, A.R.; Timofeev, A.L.

    1984-08-01

    Investigations into the gamma radiation effect on the photorefractive aned photoelectric properties of lithium niobate crystals have been carried out for the first time. Gamma irradiation has been found to lead to an increase in the photorefractive sensitivity. The effect of optical decoloration has been discovered for the first time along with photorelaxation currents resulting from radiation center decay under the action of light. It has been shown that an increase of photorefractive sensitivity in gamma-irradiated lithium niobate crystals is caused by a new photorefraction mechanism - photorelaxation currents.

  9. Efficient femtosecond mid-infrared pulse generation by dispersivewave radiation in bulk lithium niobate crystal

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Bache, Morten

    2014-01-01

    We experimentally demonstrate efficient mid-infrared pulse generation by dispersive wave radiation in bulk lithium niobate crystal. Femtosecond mid-IR pulses centering from 2.8–2.92 µm are generated using the single pump wavelengths from 1.25–1.45 µm.......We experimentally demonstrate efficient mid-infrared pulse generation by dispersive wave radiation in bulk lithium niobate crystal. Femtosecond mid-IR pulses centering from 2.8–2.92 µm are generated using the single pump wavelengths from 1.25–1.45 µm....

  10. Total yield of channeling radiation from relativistic electrons in thin Si and W crystals

    International Nuclear Information System (INIS)

    Abdrashitov, S.V.; Bogdanov, O.V.; Dabagov, S.B.; Pivovarov, Yu.L.; Tukhfatullin, T.A.

    2013-01-01

    Orientation dependences of channeling radiation total yield from relativistic 155–855 MeV electrons at both 〈1 0 0〉 axial and (1 0 0) planar channeling in thin silicon and tungsten crystals are studied by means of computer simulations. The model as well as computer code developed allows getting the quantitative results for orientation dependence of channeling radiation that can be used for crystal alignment in channeling experiments and/or for diagnostics of initial angular divergence of electron beam

  11. Crystal glass and barite used for x ray and gamma radiation shielding

    International Nuclear Information System (INIS)

    Antonio Filho, Joao

    2008-01-01

    Full text: Crystal glass, barite plaster and barite concrete has been widely used as shielding material in gamma radiation sources as well as x-ray generating equipment to replace the plumbiferous glass and in the wall covering, in order to minimize exposure to individuals. However, properties of the radiation attenuation of crystal glass commercially available in Brazil, for the different types of energy are not known. For this reason, this work was carried out aiming to determine the radiation attenuation, transmission curves and Half Value Layer. In this work, ten plates of crystal glass, with dimensions of 20 cm x 20 cm and range of thicknesses from 0.5 to 2.0 cm, and ten plates of barite plaster and five plates of barite concrete, with dimensions of 20 x 20 cm 2 and range of thicknesses from 1,0 to 5,0 cm, were used. The plates were X-ray irradiated with potential constants of 60, 80, 110, 150 kV and gamma radiation of 60 Co. Analysis in the properties of the 60 Co radiation attenuation of barite plaster and barite concrete commercially available in Brazil were also carried out. The curves of attenuation and of transmission were obtained for crystal glass, barite plaster and barite concrete (mGy/m A.min) at 1 meter as a function of thickness. The thickness equivalent of a half value layer and deci value layer of crystal glass for all types of radiation and energies studied was also determined. Although their use permits the dimensioning of the armor covering for external x-radiation whit precision and safety without elevating the cost of protection. (author)

  12. Radiation defects in electron-irradiated InP crystals

    International Nuclear Information System (INIS)

    Brailovskii, E.Yu.; Karapetyan, F.K.; Megela, I.G.; Tartachnik, V.P.

    1982-01-01

    The results are presented of formation and annealing of defects in InP crystals at 1 to 50 MeV electron irradiation. The recovery of electrical properties in the range of 77 to 970 K during annealing processes is studied. Five low temperature annealing states in n-InP and the reverse annealing in p-InP are observed at 77 to 300 K. Four annealing stages at temperatures higher than 300 K are present. When the electron energy is increased more complicated thermostable defects are formed, and at 50 MeV electron energy besides of the point defect clusters are formed, which anneal at temperatures of 800 to 970 K. It is shown that the peculiarities of the Hall mobility at irradiation and annealing are caused by the scattering centres E/sub c/ - 0.2 eV. The 'limiting' position of the Fermi level in electron irradiated InP crystals is discussed. (author)

  13. Protein crystal structure analysis using synchrotron radiation at atomic resolution

    International Nuclear Information System (INIS)

    Nonaka, Takamasa

    1999-01-01

    We can now obtain a detailed picture of protein, allowing the identification of individual atoms, by interpreting the diffraction of X-rays from a protein crystal at atomic resolution, 1.2 A or better. As of this writing, about 45 unique protein structures beyond 1.2 A resolution have been deposited in the Protein Data Bank. This review provides a simplified overview of how protein crystallographers use such diffraction data to solve, refine, and validate protein structures. (author)

  14. A graphite foam reinforced by graphite particles

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.J.; Wang, X.Y.; Guo, L.F.; Wang, Y.M.; Wang, Y.P.; Yu, M.F.; Lau, K.T.T. [DongHua University, Shanghai (China). College of Material Science and Engineering

    2007-11-15

    Graphite foam was obtained after carbonization and graphitization of a pitch foam formed by the pyrolysis of coal tar based mesophase pitch mixed with graphite particles in a high pressure and temperature chamber. The graphite foam possessed high mechanical strength and exceptional thermal conductivity after adding the graphite particles. Experimental results showed that the thermal conductivity of modified graphite foam reached 110W/m K, and its compressive strength increased from 3.7 MPa to 12.5 MPa with the addition of 5 wt% graphite particles. Through the microscopic observation, it was also found that fewer micro-cracks were formed in the cell wall of the modified foam as compared with pure graphite foam. The graphitization degree of modified foam reached 84.9% and the ligament of graphite foam exhibited high alignment after carbonization at 1200{sup o}C for 3 h and graphitization at 3000{sup o}C for 10 min.

  15. Channeling and radiation in periodically bent crystals. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Korol, Andrey V.; Solov' yov, Andrey V. [Frankfurt Univ., Frankfurt am Main (Germany). Physics Dept.; Greiner, Walter [Frankfurt Univ., Frankfurt am Main (Germany). Frankfurt Inst. for Advanced Studies

    2014-07-01

    The development of coherent radiation sources for sub-angstrom wavelengths - i.e. in the hard X-ray and gamma-ray range - is a challenging goal of modern physics. The availability of such sources will have many applications in basic science, technology and medicine, and, in particular, they may have a revolutionary impact on nuclear and solid state physics, as well as on the life sciences. The present state-of-the-art lasers are capable of emitting electromagnetic radiation from the infrared to the ultraviolet, while free electron lasers (X-FELs) are now entering the soft X-ray region. Moving further, i.e. into the hard X and/or gamma ray band, however, is not possible without new approaches and technologies. In this book we introduce and discuss one such novel approach -the radiation formed in a Crystalline Undulator - whereby electromagnetic radiation is generated by a bunch of ultra-relativistic particles channeling through a periodically bent crystalline structure. Under certain conditions, such a device can emit intensive spontaneous monochromatic radiation and even reach the coherence of laser light sources. Readers will be presented with the underlying fundamental physics and be familiarized with the theoretical, experimental and technological advances made during the last one and a half decades in exploring the various features of investigations into crystalline undulators. This research draws upon knowledge from many research fields - such as materials science, beam physics, the physics of radiation, solid state physics and acoustics, to name but a few. Accordingly, much care has been taken by the authors to make the book as self-contained as possible in this respect, so as to also provide a useful introduction to this emerging field to a broad readership of researchers and scientist with various backgrounds. This new edition has been revised and extended to take recent developments in the field into account.

  16. Widely tunable femtosecond solitonic radiation in photonic crystal fiber cladding

    DEFF Research Database (Denmark)

    Peng, J. H.; Sokolov, A. V.; Benabid, F.

    2010-01-01

    We report on a means to generate tunable ultrashort optical pulses. We demonstrate that dispersive waves generated by solitons within the small-core features of a photonic crystal fiber cladding can be used to obtain femtosecond pulses tunable over an octave-wide spectral range. The generation...... process is highly efficient and occurs at the relatively low laser powers available from a simple Ti:sapphire laser oscillator. The described phenomenon is general and will play an important role in other systems where solitons are known to exist....

  17. Radiation defects produced by neutron irradiation in germanium single crystals

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Honda, Makoto; Atobe, Kozo; Yamaji, Hiromichi; Ide, Mutsutoshi; Okada, Moritami.

    1992-01-01

    The nature of defects produced in germanium single crystals by neutron irradiation at 25 K was studied by measuring the electrical resistivity. It was found that two levels located at E c -0.06 eV and E c -0.13 eV were introduced in an arsenic-doped sample. Electron traps at E c -0.10eV were observed in an indium-doped sample. The change in electrical resistivity during irradiation was also studied. (author)

  18. Attenuation of thermal neutron through graphite

    International Nuclear Information System (INIS)

    Adib, M.; Ismaail, H.; Fathaallah, M.; Abbas, Y.; Habib, N.; Wahba, M.

    2004-01-01

    Calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of graphite temperature and crystalline from for neutron energies from 1 me V< E<10 eV were carried out. Computer programs have been developed which allow calculation for the graphite hexagonal closed-pack structure in its polycrystalline form and pyrolytic one. I The calculated total cross-section for polycrystalline graphite were compared with the experimental values. An overall agreement is indicated between the calculated values and experimental ones. Agreement was also obtained for neutron cross-section measured for oriented pyrolytic graphite at room and liquid nitrogen temperatures. A feasibility study for use of graphite in powdered form as a cold neutron filter is details. The calculated attenuation of thermal neutrons through large mosaic pyrolytic graphite show that such crystals can be used effectively as second order filter of thermal neutron beams and that cooling improve their effectiveness

  19. arXiv Strong reduction of the effective radiation length in an oriented PWO scintillator crystal

    CERN Document Server

    Bandiera, L.; Romagnoni, M.; Argiolas, N.; Bagli, E.; Ballerini, G.; Berra, A.; Brizzolani, C.; Camattari, R.; De Salvador, D.; Haurylavets, V.; Mascagna, V.; Mazzolari, A.; Prest, M.; Soldani, M.; Sytov, A.; Vallazza, E.

    We measured a considerable increase of the emitted radiation by 120 GeV/c electrons in an axially oriented lead tungstate scintillator crystal, if compared to the case in which the sample was not aligned with the beam direction. This enhancement resulted from the interaction of particles with the strong crystalline electromagnetic field. The data collected at the external lines of CERN SPS were critically compared to Monte Carlo simulations based on the Baier Katkov quasiclassical method, highlighting a reduction of the scintillator radiation length by a factor of five in case of beam alignment with the [001] crystal axes. The observed effect opens the way to the realization of compact electromagnetic calorimeters/detectors based on oriented scintillator crystals in which the amount of material can be strongly reduced with respect to the state of the art. These devices could have relevant applications in fixed-target experiments as well as in satellite-borne gamma-telescopes.

  20. Room-temperature effects of UV radiation in KBr:Eu{sup 2+} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Salas, R; Melendrez, R [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada - IFUNAM, Ensenada, Apartado Postal 2732 Ensenada, BC, 22800 (Mexico); Aceves, R; Rodriguez, R; Barboza-Flores, M [Centro de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088 Hermosillo, Sonora, 83190 (Mexico)

    1996-07-01

    Thermoluminescence and optical absorption measurements have been carried out in KBr:Eu{sup 2+} crystals irradiated with monochromatic UV light (200-300 nm) and x-rays at room temperature. For UV- and x-irradiated crystals strong similarities between the thermoluminescence glow curves have been found, suggesting that the low-energy UV radiation produces the same defects as produced by x-irradiation in this material. The thermoluminescence glow curves are composed of six glow peaks located at 337, 383, 403, 435, 475 and 509 K. Thermal annealing experiments in previously irradiated crystals show clearly a correlation between the glow peak located at 383 K and the F-centre thermal bleaching process. Also, the excitation spectrum for each thermoluminescence glow peak has been investigated, showing that the low-energy radiation induces the formation of F centres. (author)

  1. Radiation defects in electron-irradiated InP crystals

    Energy Technology Data Exchange (ETDEWEB)

    Brailovskii, E.Yu.; Karapetyan, F.K.; Megela, I.G.; Tartachnik, V.P. (AN Ukrainskoj SSR, Kiev. Inst. Yadernykh Issledovanij)

    1982-06-16

    The results are presented of formation and annealing of defects in InP crystals at 1 to 50 MeV electron irradiation. The recovery of electrical properties in the range of 77 to 970 K during annealing processes is studied. Five low temperature annealing states in n-InP and the reverse annealing in p-InP are observed at 77 to 300 K. Four annealing stages at temperatures higher than 300 K are present. When the electron energy is increased more complicated thermostable defects are formed, and at 50 MeV electron energy besides of the point defect clusters are formed, which anneal at temperatures of 800 to 970 K. It is shown that the peculiarities of the Hall mobility at irradiation and annealing are caused by the scattering centres E/sub c/ - 0.2 eV. The 'limiting' position of the Fermi level in electron irradiated InP crystals is discussed.

  2. Optical properties and radiation response of Ce3+-doped GdScO3 crystals

    International Nuclear Information System (INIS)

    Yamaji, Akihiro; Fujimoto, Yutaka; Futami, Yoshisuke; Yokota, Yuui; Kurosawa, Shunsuke; Kochurikhin, Vladimir; Yanagida, Takayuki; Yoshikawa, Akira

    2012-01-01

    10%-Ce doped GdScO 3 perovskite type single crystal was grown by the Czochralski process. The Ce concentration in the crystal was measured. No impurity phases were observed by powder X-ray diffraction analysis. We evaluated the optical and radiation properties of the grown crystal. Ce:GdScO 3 crystal showed photo- and radio-luminescence peaks due to Ce 3+ of 5d-4f transition and colour centre. The photoluminescence decay time was sub-ns order. The relative light yield under 5.5 MeV alpha-ray excitation was calculated to be approximately 9% of BGO. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Graphite materials for nuclear reactors

    International Nuclear Information System (INIS)

    Oku, Tatsuo

    1991-01-01

    Graphite materials have been used in the nuclear fission reactors from the beginning of the reactor development for the speed reduction and reflection of neutron. Graphite materials are used both as a moderator and as a reflector in the core of high temperature gas-cooled reactors, and both as a radiation shielding material and as a reflector in the surrounding of the core for the fast breeder reactor. On the other hand, graphite materials are being positively used as a first wall of plasma as it is known that low Z materials are useful for holding high temperature plasma in the nuclear fusion devices. In this paper the present status of the application of graphite materials to the nuclear fission reactors and fusion devices (reactors) is presented. In addition, a part of results on the related properties to the structural design and safety evaluation and results examined on the subjects that should be done in the future are also described. (author)

  4. Trapped electronic states in YAG crystal excited by femtosecond radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zavedeev, E.V.; Kononenko, V.V.; Konov, V.I. [General Physics Institute of RAS, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2017-07-15

    The excitation of an electronic subsystem of an yttrium aluminum garnet by 800 nm femtosecond radiation was studied theoretically and experimentally. The spatio-temporal dynamics of the refractive index (n) inside the beam waist was explored by means of the pump-probe interferometric technique with a submicron resolution. The observed increase in n indicated the formation of bound electronic states relaxed for ∝ 150 ps. We showed that the experimental data agreed with the computational simulation based on the numerical solution of the nonlinear Schroedinger equation only if these transient states were considered to arise from a direct light-induced process but not from the decay of radiatively generated free-electron-hole pairs. (orig.)

  5. Structure of single-chain single crystals of isotactic polystyrene and their radiation resistance

    International Nuclear Information System (INIS)

    Bu Haishan; Cao Jie; Xu Shengyong; Zhang Ze

    1997-01-01

    The structure of the single-chain single crystals of isotactic polystyrene (i-PS) was investigated by electron diffraction (ED) and high resolution electron microscopy (HREM). The nano-scale single-chain single crystals were found to be very stable to electron irradiation. According to the unit cell of i-PS crystals, the reflection rings in ED pattern and the lattice fringes in HREM images could be indexed, but the lower-index diffractions were not found. It is proposed that the single-chain single crystals are very small, thus secondary electrons may be allowed to escape and radiation damage is highly reduced, and that there are less lower-index lattice planes in the single-chain single crystals to provide sufficient diffraction intensity for recording. HREM images can be achieved at room temperature in the case of single-chain single crystals because of its stability to electron irradiation, therefore, this might be a novel experimental approach to the study of crystal structure of macromolecules

  6. Neutron radiation damage in NbO single crystals

    International Nuclear Information System (INIS)

    Onozuka, T.; Koiwa, M.; Ishikawa, Y.; Yamaguchi, S.; Hirabayashi, M.

    1977-01-01

    The effect of neutron irradiation and subsequent recovery has been studied for Nb0 single crystals of a defective NaCl structure containing 25% vacancies of niobium and oxygen. A very large increase (about 1%) in the lattice constant is observed after irradiation of 1.5 x 10 19 and 1 x 10 20 nvt (> 1 MeV). From the intensity measurements of x-ray and neutron diffraction, it is revealed that the knock-on atoms fill preferentially their respective vacant sites; Nb atoms occupy Nb-vacancies, and 0 atoms occupy 0-vacancies with nearly the same probabilities; 0.53 for 1.5 x 10 19 nvt. The mean threshold energy for displacement is estimated to be about 3 eV. (author)

  7. Radiation damage mechanisms in single crystals of creatine monohydrate

    International Nuclear Information System (INIS)

    Wells, J.W.; Ko, C.

    1978-01-01

    ENDOR spectroscopy is utilized to define the temperature dependent sequence of molecular fragmentation processes occuring in x-irradiated single crystals of creatine monohydrate. Two conformations of the primary reduction product =OOC--C(H 2 ) --N(CH) 3 --C(NH 2 ) 2 + are found to undergo a series of subtle changes before deamination. The resultant radical -OOC--CH 2 then induces hydrogen abstraction to form a final room temperature product - OOC--CH--N(CH 3 ) --C(NH 2 ) + . An unknown initial oxidation species is found to decarboxylate forming the radical H 2 C--N(CH 3 ) --C(NH 2 ) 2 + which, although similar to the deamination product, exists at room temperature. The stability of this species is attributed to a delocalization of spin indicated by calculation and measurement

  8. Radiation hardening at 77 K in Zn and Cu single crystals at low doses

    International Nuclear Information System (INIS)

    Gonzalez, H.C.; Bisogni, E.A.

    1980-01-01

    There is controversy about radiation hardening phenomenon and its additivity with other hardening mechanisms. The purpose of this work is to contribute to the understanding of this subject, through measurements made in Zn and Cu single crystals. Post-irradiation measurements of yield stress of Zn, made on different single crystals, show a direct proportionality to the 0.5 power of the dose. It is determined that for a dose greater than 3.7 x 10 16 neutrons cm -2 s -1 there is always cleavage. The maximum critical resolved shear stress measured is about 8.82 MPa. In order to study additivity it is necessary to lower experimental errors. A micro tensile machine is designed to operate in the CNEA facility RA1 in a bath of liquid N 2 . Experimental measurements of yield stress with dose are carried out in-situ on the same single crystals. Experimental results on Cu and Zn show that radiation induced yield stress increases with a 0.5 power law. It must be taken into account that the definition of radiation induced yield stress stands for radiation created obstacles operating alone. The radiation induced yield stress adds algebraically to the athermal component of the initial yield stress but is not exactly additive to the other thermally activated mechanisms. A gradual transition from one to the other type of obstacles is observed. (author)

  9. Thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  10. Methodology optimization of the thallium bromide crystal preparation for application as a radiation detector

    International Nuclear Information System (INIS)

    Santos, Robinson Alves dos

    2012-01-01

    In this work, TlBr crystals have been purified and grown by the Repeated Bridgman method from commercial TlBr materials and characterized to be used as radiation detectors. To evaluate the purification efficiency, studies on the impurity concentration decrease were performed after each growth, analyzing the trace impurities by inductively coupled plasma mass spectroscopy (ICP-MS). A significant decrease of the concentration of impurities in function of the purification number was observed. The grown crystals presented good crystalline quality according to the results of the x-ray diffraction analysis. To evaluate the crystals to be used as a semiconductor detector, measurements of the resistivity and the pulse height under 241 Am gamma rays were carried out. The radiation response was strongly dependent on the crystal purity. The Repeated Bridgman technique showed to be effective to reduce the concentration of impurities and to improve the TlBr crystal quality to be used as a radiation semiconductor detector. A compartmental model was proposed to fit the concentration/segregation of impurities in function of the Bridgman growth step number. This compartmental model is defined by differential equations and can be used to calculate the rate of migration of impurities. It proved to be a useful tool in predicting the number of Bridgman growth repetitions necessary to achieve the desired impurity concentration. The difference of the impurity migration rates between the crystals grown, using salts from different origins, was significant. Therefore, the choice of the starting salt should be performed experimentally, regardless of the statement nominal purity. (author)

  11. Lithium niobate bulk crystallization promoted by CO{sub 2} laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, N.M., E-mail: nmferreira@ua.pt [i3N - Aveiro, Physics Department, Aveiro University, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Costa, F.M. [i3N - Aveiro, Physics Department, Aveiro University, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Nogueira, R.N. [Instituto de Telecomunicacoes, 3810-193 Aveiro (Portugal); Graca, M.P.F. [i3N - Aveiro, Physics Department, Aveiro University, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Crystallization of LiNbO{sub 3} nanocrystals in a SiO{sub 2} matrix by CO{sub 2} laser irradiation process. Black-Right-Pointing-Pointer Samples heat-treated at 650 Degree-Sign C (4 h) and laser treated (4 W/500 s) show similar morphology. Black-Right-Pointing-Pointer Glass-ceramics produced by laser process requires a very low processing time. - Abstract: The crystallization induced by laser radiation is a very promising technique to promote glass/ceramic transformation, being already used to produce crystalline patterns on glass surfaces. In this work, a SiO{sub 2}-Li{sub 2}O-Nb{sub 2}O{sub 5} glass, prepared by the sol-gel route, was submitted to CO{sub 2} laser radiation and conventional heat-treatments in order to induce the LiNbO{sub 3} crystallization. The structure and morphology of the samples prepared by both routes was analyzed as a function of exposure time, radiation power and heat-treatment temperatures by XRD, Raman spectroscopy and SEM. The results reveal a correlation between the crystallization degree of LiNbO{sub 3} particles and glass matrix with the heat treatment type and experimental parameters. An heat-treatment at 650 Degree-Sign C/4 h was necessary to induce crystallization in heat treatments samples while 4 W/500 s was enough for laser radiation ones, corresponding a reduction time processing of {approx}14 000 s.

  12. Radiation hardness of a single crystal CVD diamond detector for MeV energy protons

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yuki, E-mail: y.sato@riken.jp [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Shimaoka, Takehiro; Kaneko, Junichi H. [Graduate School of Engineering, Hokkaido University, N13, W8, Sapporo 060-8628 (Japan); Murakami, Hiroyuki [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Isobe, Mitsutaka; Osakabe, Masaki [National Institute for Fusion Science, 322-6, Oroshi-cho Toki-city, Gifu 509-5292 (Japan); Tsubota, Masakatsu [Graduate School of Engineering, Hokkaido University, N13, W8, Sapporo 060-8628 (Japan); Ochiai, Kentaro [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shinichi [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2015-06-01

    We have fabricated a particle detector using single crystal diamond grown by chemical vapor deposition. The irradiation dose dependence of the output pulse height from the diamond detector was measured using 3 MeV protons. The pulse height of the output signals from the diamond detector decreases as the amount of irradiation increases at count rates of 1.6–8.9 kcps because of polarization effects inside the diamond crystal. The polarization effect can be cancelled by applying a reverse bias voltage, which restores the pulse heights. Additionally, the radiation hardness performance for MeV energy protons was compared with that of a silicon surface barrier detector.

  13. The fractal character of radiation defects aggregation in crystals

    International Nuclear Information System (INIS)

    Akylbekov, A.; Akimbekov, E.; Baktybekov, K.; Vasil'eva, I.

    2002-01-01

    In processes of self-organization, which characterize open systems, the source of ordering is a non-equilibrium. One of the samples of ordering system is radiation-stimulated aggregation of defects in solids. In real work the analysis of criterions of ordering defects structures in solid, which is continuously irradiate at low temperature is presented. The method of cellular automata used in simulation of irradiation. It allowed us to imitate processes of defects formation and recombination. The simulation realized on the surfaces up to 1000x1000 units with initial concentration of defects C n (the power of dose) 0.1-1 %. The number of iterations N (duration of irradiation) mounted to 10 6 cycles. The single centers, which are the sources of formation aggregates, survive in the result of probabilistic nature of formation and recombination genetic pairs of defects and with strictly fixed radius of recombination (the minimum inter anionic distance). For determination the character of same type defects distribution the potential of their interaction depending of defects type and reciprocal distance is calculated. For more detailed study of processes, proceeding in cells with certain sizes of aggregates, the time dependence of potential interaction is constructed. It is shown, that on primary stage the potential is negative, then it increase and approach the saturation in positive area. The minimum of interaction potential corresponds to state of physical chaos in system. Its increasing occurs with formation of same type defects aggregates. Further transition to saturation and 'undulating' character of curves explains by formation and destruction aggregates. The data indicated that - these processes occur simultaneously in cells with different sizes. It allows us to assume that the radiation defects aggregation have a fractal nature

  14. Effect of the electronic structure of the etched CdTe single crystals on the exciton radiation processes

    International Nuclear Information System (INIS)

    Tkachuk, P.M.; Tkachuk, V.Yi.; Mel'nichuk, S.V.; Kurik, M.V.

    2005-01-01

    Under optical excitation the structure of the radiation beyond fundamental absorption of the orientated CdTe single crystals caused by LO-phonon scattering processes of the electron-hole states is observed. Crystals have been doped with impurity of Cl as a result of the surface preparing by etching in Br-methanol. Electronic structure of the single crystals surface layer is identified on the basis of two-phonon radiation absorption investigation. Taking into account the modes selection rules the one and two phonon scattering mechanisms for two crystals surface orientations are determined

  15. Bridged graphite oxide materials

    Science.gov (United States)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)

    2010-01-01

    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  16. Influence of irradiation on high-strength graphites

    International Nuclear Information System (INIS)

    Virgil'ev, Yu.S.; Grebennik, V.N.; Kalyagina, I.P.

    1989-01-01

    To ensure efficiency of the graphite elements of the construction of the masonry of reactors, the graphite must possess high radiation stability, strength, and heat resistance. In this connection, the physical properties of graphites based on uncalcined petroleum coke with a binder - high-temperature hard coal pitch - the amount of which reaches 40% are considered in this paper

  17. Pyrolytic graphite gauge for measuring heat flux

    Science.gov (United States)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  18. Scientific/Technical Report: Improvement in compensation and crystal growth of cadmium zinc telluride radiation detectors

    International Nuclear Information System (INIS)

    Kelvin G. Lynn; Kelly A. Jones

    2007-01-01

    Comparison of actual accomplishments with goals and objectives: (1) Growth of 12 ingots--Washington State University (WSU) more than met this goal for the project by growing 12 final ingots for the year. Nine of the twelve crystal growth ingots resolved gamma radiation at room temperature. The other three ingots where resistivity of ∼ 3 x 10 8 Ohm*cm for CG32a, CG36, and CG42 lower than expected, however none of these were tried with blocking contacts. All ingots were evaluated from tip to heel. In these three cases, the group III, dopant Aluminum (Al) was not detected to a level to compensate the Cd vacancies in the cadmium zinc telluride (CZT) thus the ingots were lower resistivity. The nine ingots that were successful radiation detectors averaged a bulk resistivity of 1.25 x 10 10 Ohm*cm and with a average μτ product for electrons of ∼ 2 x 10 -4 cm 2 /V with a 1/4 microsecond shaping time with samples ∼2 mm in thickness. (2) Attempt new compensations techniques--WSU also met this goal. Several doping schemes were attempted and investigated with various amounts of excess Tellurium added to the growth. The combination of Al and Erbium (Er) were first attempted for these ingots and subsequently CG34 was grown with Al, Er and Holmium. These compensation techniques produced radiation detectors and are currently under investigation. These growths were made with significant different doping levels to determine the affect of the dopants. CG43 was doped with Indium and Er. Indium was introduced instead of Al to determine if Indium is more soluble than Al for CZT and was less oxidized. This may decrease the amount of low resistivity ingots grown by doping with Indium instead of Al. (3) Grow large single crystals--Several changes in approach occurred in the crystal growth furnace. Steps were taken to maximize the crystal growth interface during growth by modifying liners, quartz, heat sinks, crucibles and various growth steps and temperature profiles. CG39 ingot

  19. Attenuation of Reactor Gamma Radiation and Fast Neutrons Through Large Single-Crystal Materials

    International Nuclear Information System (INIS)

    Adib, M.

    2009-01-01

    A generalized formula is given which, for neutron energies in the range 10-4< E< 10 eV and gamma rays with average energy 2 MeV , permits calculation of the transmission properties of several single crystal materials important for neutron scattering instrumentation. A computer program Filter was developed which permits the calculation of attenuation of gamma radiation, nuclear capture, thermal diffuse and Bragg-scattering cross-sections as a function of materials constants, temperature and neutron energy. The applicability of the deduced formula along with the code checked from the obtained agreement between the calculated and experimental neutron transmission through various single-crystals A feasibility study for use of Si, Ge, Pb, Bi and sapphire is detailed in terms of optimum crystal thickness, mosaic spread and cutting plane for efficient transmission of thermal reactor neutrons and for rejection of the accompanying fast neutrons and gamma rays.

  20. Excitation of different chromium centres by synchrotron radiation in MgO:Cr single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shablonin, E. [Institute of Physics, University of Tartu, Ravila Str. 14c, 50411 Tartu (Estonia); Popov, A.I., E-mail: popov@latnet.lv [Institute of Solid State Physics, University of Latvia, Kengaraga 8, Riga LV-1063 (Latvia); Lushchik, A., E-mail: aleksandr.lushchik@ut.ee [Institute of Physics, University of Tartu, Ravila Str. 14c, 50411 Tartu (Estonia); Kotlov, A. [Photon Science at DESY, Notkestrasse 85, 22607 Hamburg (Germany); Dolgov, S. [Institute of Physics, University of Tartu, Ravila Str. 14c, 50411 Tartu (Estonia)

    2015-11-15

    The excitation spectra for the emissions of chromium-containing centres have been measured at 10 K using synchrotron radiation of 4–32 eV in MgO single crystals with different content of Cr{sup 3+} (5–850 ppm) and Ca{sup 2+} impurity ions. Both virgin crystals and the samples preliminarily irradiated with x-rays at 295 K have been studied. The role of complex chromium centres containing two Cr{sup 3+} and a cation vacancy (sometimes nearby a Ca{sup 2+} ion) on the luminescence processes and the transformation/creation of structural defects has been analysed. Such anharmonic complex centres could serve as the seeds for the creation of 3D defects that facilitate the cracking and brittle destruction of MgO crystals under their irradiation with ∼GeV heavy ions providing extremely high excitation density within cylindrical ion tracks.

  1. Process for purifying graphite

    International Nuclear Information System (INIS)

    Clausius, R.A.

    1985-01-01

    A process for purifying graphite comprising: comminuting graphite containing mineral matter to liberate at least a portion of the graphite particles from the mineral matter; mixing the comminuted graphite particles containing mineral matter with water and hydrocarbon oil to form a fluid slurry; separating a water phase containing mineral matter and a hydrocarbon oil phase containing grahite particles; and separating the graphite particles from the hydrocarbon oil to obtain graphite particles reduced in mineral matter. Depending upon the purity of the graphite desired, steps of the process can be repeated one or more times to provide a progressively purer graphite

  2. Nuclear Radiation Tolerance of Single Crystal Aluminum Nitride Ultrasonic Transducer

    Science.gov (United States)

    Reinhard, Brian; Tittmann, Bernhard R.; Suprock, Andrew

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models, (Rempe et al., 2011; Kazys et al., 2005). These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The irradiation is also supported by a multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET ASI) program. The results from this irradiation, which started in February 2014, offer the potential to enable the development of novel radiation tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. Hence, results from this irradiation offer the potential to bridge the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the

  3. Radiation-induced color centers in La-doped PbWO sub 4 crystals

    CERN Document Server

    Deng, Q; Zhu, R Y

    1999-01-01

    This report presents the result of a study on radiation-induced color center densities in La-doped lead tungstate (PbWO sub 4) crystals. The creation and annihilation constants of radiation-induced color centers were determined by using transmittance data measured for a PbWO sub 4 sample before and during sup 6 sup 0 Co gamma-ray irradiation at a dose rate of 15 rad/h. Following a model of color center kinetics, these constants were used to calculate color center densities under irradiations at 100 rad/h. The result was found to be in good agreement with experimental data, indicating that the behaviour of PbWO sub 4 crystals under irradiation can be predicted according to this model.

  4. Radiation chemistry of plastic crystals. Annual progress report, November 1, 1976--October 31, 1977

    International Nuclear Information System (INIS)

    Klingen, T.J.

    1977-01-01

    The overall purpose of this investigation is the understanding of the role that mesomorphism plays in the radiation chemistry of plastic crystals. In approaching this problem, the first step is to obtain data on the basic radiation chemistry of the most ordered solid state--the crystalline state. Thus, the results reported here are concerned with determination of the radiolysis of three plastic crystals in their highest ordered state. In addition to these studies, investigation of the optical properties and the positron life time properties of these materials in their plastic crystalline state was undertaken. The primary purpose of these studies during the current reporting period was the determination of the feasibility of these techniques to provide useful information to the overall project goal

  5. Effect of reactor neutron radiation and temperature on the structure of InP single crystals

    International Nuclear Information System (INIS)

    Bojko, V.M.; Kolin, N.G.; Merkurisov, D.I.; Bublik, V.T.; Voronova, M.I.; Shcherbachev, K.D.

    2006-01-01

    The structural characteristics of InP single crystals have been investigated depending on the radiation effects produced by fast and full spectrum neutrons and subsequent heat treatment. A lattice period in InP single crystals decreases under neutron irradiation. Fast neutrons make the main contribution into the change of the lattice period. Availability of the thermal neutrons initiates the formation of Sn atoms, but does not make a significant influence on the change of the lattice period. Heat treatment of the irradiated samples up to 600 deg C causes the annealing of radiation defects and recovery of the lattice period. With increasing neutron fluences a lattice period becomes even higher than before irradiation [ru

  6. Angular distributions of relativistic electrons under channeling in half-wavelength crystal and corresponding radiation

    International Nuclear Information System (INIS)

    Takabayashi, Y.; Bagrov, V.G.; Bogdanov, O.V.; Pivovarov, Yu.L.; Tukhfatullin, T.A.

    2015-01-01

    New experiments on channeling of 255 MeV electrons in a half-wavelength crystals (HWC) were performed at SAGA Light Source facilities. The simulations of trajectories for (2 2 0) and (1 1 1) planar channeling in Si were performed using the computer code BCM-1.0. Comparison of experimental and theoretical results shows a good agreement. The results of calculations of spectral distribution of radiation in forward direction (θ = 0°) from 255 MeV electrons at (2 2 0) channeling in HWC silicon are presented. Qualitative comparison with radiation spectrum from an electron moving in an arc is performed

  7. Radiation hardness of LuAG:Ce and LuAG:Pr scintillator crystals

    CERN Document Server

    Derdzyan, M V; Belsky, A; Dujardin, C; Lecoq, P; Lucchini, M; Ovanesyan, K L; Pauwels, K; Pedrini, C; Petrosyan, A G

    2012-01-01

    Single crystals of LuAG:Ce, LuAG:Pr and un-doped LuAG were grown by the vertical Bridgman method and studied for radiation hardness under gamma-rays with doses in the range 10-10(5) Gy (Co-60). A wide absorption band peaking at around 600 nm springs up in all three types of crystals after the irradiations. The second band peaking at around 375 nm appears in both LuAG:Pr and un-doped LuAG. Compositional variations have been done to reveal the spectral behavior of induced color centers in more detail and to understand their origin. Similarities in behavior of Yb2+ centers in as-grown garnets are found, indicating that radiation induced color centers can be associated with residual trace amounts of Yb present in the raw materials. Un-doped LuAG and LuAG:Ce demonstrate moderate radiation hardness (the induced absorption coefficients being equal to 0.05-0.08 cm(-1) for accumulated doses of 10(3)-10(4) Gy), while LuAG:Pr is less radiation hard. The ways to improve the radiation hardness are discussed.

  8. Development of TiBr semiconductor crystal for applications as radiation detector and photodetector

    International Nuclear Information System (INIS)

    Oliveira, Icimone Braga de

    2006-01-01

    In this work, Tlbr crystals were grown by the Bridgman method from zone melted materials. The influence of the purification efficiency and the crystalline surface quality on the crystal were studied, evaluating its performance as a radiation detector. Due to significant improvement in the purification and crystals growth, good results have been obtained for the developed detectors. The spectrometric performance of the Tlbr detector was evaluated by 241 Am (59 keV), 133 Ba (80 e 355 keV), 57 Co (122 keV), 22 Na (511 keV) and 137 Cs (662 keV) at room temperature. The best energy resolution results were obtained from purer detectors. Energy resolutions of 10 keV (16%), 12 keV (15%), 12 keV (10%), 28 keV (8%), 31 keV (6%) and 36 keV (5%) to 59, 80, 122, 355, 511 and 662 keV energies, respectively, were obtained. A study on the detection response at -20 deg C was also carried out, as well as the detector stability in function of the time. No significant difference was observed in the energy resolution between measurements at both temperatures. It was observed that the detector instability causes degradation of the spectroscopic characteristics during measurements at room temperature and the instability varies for each detector. This behavior was also verified by other authors. The viability to use the developed Tlbr crystal as a photodetector coupled to scintillators crystals was also studied in this work. Due to its quantum efficiency in the region from 350 to 500 nm, Tlbr shows to be a promising material to be used as a photodetector. As a possible application of this work, the development of a surgical probe has been initiated using the developed Tlbr crystal as the radiation detector of the probe. (author)

  9. Review: BNL Tokamak graphite blanket design concepts

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    The BNL minimum activity graphite blanket designs are reviewed, and three are discussed in the context of an experimental power reactor (EPR) and commercial power reactor. Basically, the three designs employ a 30 cm or thicker graphite screen. Bremsstrahlung energy is deposited on the graphite surface and re-radiated away as thermal radiation. Fast neutrons are slowed down in the graphite, depositing most of their energy, which is then radiated to a secondary blanket with coolant tubes, as in types A and B, or removed by intermittent direct gas cooling (type C). In types A and B, radiation damage to the coolant tubes in the secondary blanket is reduced by one or two orders of magnitude, while in type C, the blanket is only cooled when the reactor is shut down, so that coolant cannot quench the plasma. (Auth.)

  10. Contribution to knowledge of radiation damage in KCl crystals doped with Sr

    International Nuclear Information System (INIS)

    Sordi, G.-M.A.A.

    1974-11-01

    The radiation damages in KCl crystals doped with Sr ++ using thermo-ionic technique (ITC) and optical absorption measurements were studied. The variation of the entropy for the dipole jump starting from results reported by several authors was calculated. The irradiation effects with three different exposures were analysed: irradiation with gamma rays; irradiation with fast neutrons added to gamma irradiation; and irradiation with thermal neutrons together with fast neutrons and gamma rays. (Author) [pt

  11. Radiation-shielded double crystal X-ray monochromator for JET

    International Nuclear Information System (INIS)

    Barnsley, R.; Morsi, H.W.; Rupprecht, G.; Kaellne, E.

    1989-01-01

    A double crystal X-ray monochromator for absolute wavelength and intensity measurements with very effective shielding of its detector against neutrons and hard X-rays was brought into operation at JET. Fast wavelength scans were taken of impurity line radiation in the wavelength region from about 0.1 nm to 2.3 nm, and monochromatic as well as spectral line scans, for different operational modes of JET. (author) 5 refs., 4 figs

  12. Decay dynamics of radiatively coupled quantum dots in photonic crystal slabs

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Mørk, Jesper; Lodahl, Peter

    2011-01-01

    We theoretically investigate the influence of radiative coupling on light emission in a photonic crystal slab structure. The calculation method is based on a formalism that combines the photon Green's tensor with a self-consistent Dyson equation approach and is applicable to a wide range of probl......’s tensor and show how interference between different light scattering pathways is responsible for this nontrivial detector response...

  13. High temperature soldering of graphite

    International Nuclear Information System (INIS)

    Anikin, L.T.; Kravetskij, G.A.; Dergunova, V.S.

    1977-01-01

    The effect is studied of the brazing temperature on the strength of the brazed joint of graphite materials. In one case, iron and nickel are used as solder, and in another, molybdenum. The contact heating of the iron and nickel with the graphite has been studied in the temperature range of 1400-2400 ged C, and molybdenum, 2200-2600 deg C. The quality of the joints has been judged by the tensile strength at temperatures of 2500-2800 deg C and by the microstructure. An investigation into the kinetics of carbon dissolution in molten iron has shown that the failure of the graphite in contact with the iron melt is due to the incorporation of iron atoms in the interbase planes. The strength of a joint formed with the participation of the vapour-gas phase is 2.5 times higher than that of a joint obtained by graphite recrystallization through the carbon-containing metal melt. The critical temperatures are determined of graphite brazing with nickel, iron, and molybdenum interlayers, which sharply increase the strength of the brazed joint as a result of the formation of a vapour-gas phase and deposition of fine-crystal carbon

  14. Custom synthesized diamond crystals as state of the art radiation detectors

    International Nuclear Information System (INIS)

    Keddy, R.J.; Nam, T.L.; Fallon, P.J.

    1990-01-01

    The fact that as a radiation detector, diamond is a stable, non-toxic and tissue equivalent (Z=6) material, makes it an ideal candidate for in vivo radiation dosimetry or the dosimetry of general radiation fields in environmental monitoring. Natural diamond crystals have the disadvantage, however, that no two crystals can be guaranteed to have the same response characteristics. This disadvantage can be overcome by synthesizing the crystals under controlled conditions and by using very selective chemistry. Such synthetic diamonds can be used as thermoluminescence dosimeters (TLDs) where they exhibit characteristics comparable to presently available commercial TLDs or they can be used as ionization chambers to produce either ionization currents or pulses where the small physical size of the diamond (1 mm 3 ) and possibilities of digital circuitry makes miniaturization an extremely attractive possibility. It has also been found that they can perform as scintillation detectors. This contribution describes aspects of the performance characteristics of such diamonds in all three modes. 24 refs., 14 figs

  15. Photonic crystal and photonic quasicrystal patterned in PDMS surfaces and their effect on LED radiation properties

    Energy Technology Data Exchange (ETDEWEB)

    Suslik, Lubos [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Pudis, Dusan, E-mail: pudis@fyzika.uniza.sk [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Goraus, Matej [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Nolte, Rainer [Fakultät für Maschinenbau FG Lichttechnik Ilmenau University of Technology, Ilmenau (Germany); Kovac, Jaroslav [Inst. of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19, Bratislava (Slovakia); Durisova, Jana; Gaso, Peter [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Hronec, Pavol [Inst. of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19, Bratislava (Slovakia); Schaaf, Peter [Chair Materials for Electronics, Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany)

    2017-02-15

    Graphical abstract: Photonic quasicrystal patterned in the surface of polydimethylsiloxane membrane (left) and radiation pattern of light emitting diode with patterned membrane applied in the surface (right). - Highlights: • We presented fabrication technique of PDMS membranes with patterned surface by photonic crystal (PhC) and photonic quasi-crystal (PQC). • Presented technique is effective for preparation PhC and PQC PDMS membranes easily implementing in the LED chip. • From the goniophotometer measurements, the membranes document effective angular emission due to the diffraction on patterned surfaces. • 12 fold symmetry PQC structure shows homogeneous radiation pattern, while the 2 fold symmetry of square PhC shows evident diffraction lobes. - Abstract: We present results of fabrication and implementation of thin polydimethylsiloxane (PDMS) membranes with patterned surface for the light emitting diode (LED). PDMS membranes were patterned by using the interference lithography in combination with embossing technique. Two-dimensional photonic crystal and photonic quasicrystal structures with different period were patterned in the surface of thin PDMS membranes with depth up to 550 nm. Patterned PDMS membranes placed on the LED chip effectively diffracted light and increased angular emission of LED radiation pattern. We presented effective technique for fabrication of patterned PDMS membranes, which could modify the emission properties of optoelectronic devices and can be applied directly on surface LEDs and small optical devices.

  16. Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Warkentin, Matthew, E-mail: maw64@cornell.edu; Thorne, Robert E. [Physics Department, Cornell University, Ithaca, New York (United States)

    2010-10-01

    Radiation damage to protein crystals exhibits two regimes of temperature-activated behavior between T = 300 and 100 K, with a crossover at the protein glass transition near 200 K. These results have implications for mechanistic studies of proteins and for structure determination when cooling to T = 100 K creates excessive disorder. The temperature-dependence of radiation damage to thaumatin crystals between T = 300 and 100 K is reported. The amount of damage for a given dose decreases sharply as the temperature decreases from 300 to 220 K and then decreases more gradually on further cooling below the protein-solvent glass transition. Two regimes of temperature-activated behavior were observed. At temperatures above ∼200 K the activation energy of 18.0 kJ mol{sup −1} indicates that radiation damage is dominated by diffusive motions in the protein and solvent. At temperatures below ∼200 K the activation energy is only 1.00 kJ mol{sup −1}, which is of the order of the thermal energy. Similar activation energies describe the temperature-dependence of radiation damage to a variety of solvent-free small-molecule organic crystals over the temperature range T = 300–80 K. It is suggested that radiation damage in this regime is vibrationally assisted and that the freezing-out of amino-acid scale vibrations contributes to the very weak temperature-dependence of radiation damage below ∼80 K. Analysis using the radiation-damage model of Blake and Phillips [Blake & Phillips (1962 ▶), Biological Effects of Ionizing Radiation at the Molecular Level, pp. 183–191] indicates that large-scale conformational and molecular motions are frozen out below T = 200 K but become increasingly prevalent and make an increasing contribution to damage at higher temperatures. Possible alternative mechanisms for radiation damage involving the formation of hydrogen-gas bubbles are discussed and discounted. These results have implications for mechanistic studies of proteins and for

  17. Influence of the reactor irradiation on the radiation-optical features of the PbWO4:La scintillation crystals

    International Nuclear Information System (INIS)

    Ashurov, M.Kh.; Ismoilov, Sh.Kh.; Khatamov, K.; Gasanov, Eh.M.; Rustamov, I.R.

    2001-01-01

    Within an International LHC project the lead tungstates (PbWO 4 ) scintillation crystals radiation stability activated by La ions was carried out. In the 400-700 nm length range the transmission spectra were measured on the different parts of the standard PbWO 4 :La crystals. The spectra were measured before and after irradiation by both fast neutrons and γ-radiation. On the base of obtained data the contribution of γ-quanta and neutrons in the radiation-induced losses value of optical radiation in the active media of the electromagnetic colorimeter was estimated

  18. Observation of multiphase magnetic state of hematite crystal during Morin transition by the method of section topography of synchrotron radiation

    International Nuclear Information System (INIS)

    Shchetinkin, S.A.; Kvardakov, V.V.; Viler, Eh.; Barushel', Zh.; Shlenker, M.

    2005-01-01

    The boundaries between weak ferromagnetic and antiferromagnetic phases in hematite crystals during Morin transition are detected by the section topography method by synchrotron radiation. It is shown that these boundaries are parallel to (111) surface hence magnetic phases during Morin transition separate the crystal by layers. Change of layer depth in dependence on temperature and magnetic field, and interaction interphase boundaries with crystal defects are observed [ru

  19. Radiation emission phenomena in bent silicon crystals: Theoretical and experimental studies with 120 GeV/c positrons

    International Nuclear Information System (INIS)

    Lietti, D.; Bagli, E.; Baricordi, S.; Berra, A.; Bolognini, D.; Chirkov, P.N.; Dalpiaz, P.; Della Mea, G.; De Salvador, D.; Hasan, S.; Guidi, V.; Maisheev, V.A.

    2012-01-01

    The radiation emission phenomena in bent silicon crystals have been thoroughly investigated at the CERN SPS-H4 beamline. The incoming and outgoing trajectories of charged particles impinging on a silicon strip crystal have been reconstructed by high precision silicon microstrip detectors. A spectrometer method has been exploited to measure the radiation emission spectra both in volume reflection and in channeling. The theoretical method used to evaluate the photon spectra is presented and compared with the experimental results.

  20. Mechanism of spark generation from Japanese toy firework (senko-hanabi). ; Structural-Oxidizing reaction of micro graphite crystals in molten K sub 2 Sn. Senko hanabi no jikkenteki kosatsu. ; Yoyu K sub 2 Sn chu no sekiboku bikessho no kozo teki sanka hanno

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H. (The University, of Tokyo, Tokyo (Japan))

    1991-12-20

    Considerations were given on the spark generating mechanism of graphite particles in molten salt polysulfide through experiments on Japanese sparklers. The firework composition mixed consisted of two kinds: KNO{sub 3}, S, amorphous carbons, charcoal and lamp black, and K{sub 2}CO{sub 3}, S, charcoal and lamp black. The main constituent in fire balls is molten salt polysulfide. The O{sub 2} generated from combustion oxidizes C and S, whereas the generated K{sub 2}CO{sub 3} reacts with S to produce K{sub 2}Sn. In the KNO{sub 3} system, the calorific power reaches the maximum with lamp black contained at 10-15%. This is thought because the K{sup +} expands the space between the graphite crystal layers making the oxidation to take place more easily into their inner sides. On the one hand, the calorific power reduced with the lamp black at more than 16% would be because the lamp black clogging the crystalline spaces restricting the oxidation. It is thought that condensation and decomposition of micro graphite crystals occur simultaneously in the fire balls. It is also believed that the micro graphite crystals jumped out as a result of gas pressure from inside the crystals generated with the progress of oxidation break off at once because of the resistance of air together with the effect of the K{sup +} in the salt polysulfide (mutual separation of each layer). 9 refs., 6 figs., 1 tab.

  1. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody

    Science.gov (United States)

    Zhu, Linxiao; Raman, Aaswath P.; Fan, Shanhui

    2015-01-01

    A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. Here we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. When placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities. PMID:26392542

  2. Positron annihilation study of graphite, glassy carbon and C60/C70 fullerene

    International Nuclear Information System (INIS)

    Hasegawa, Masayuki; Kajino, Masahiro; Yamaguchi, Sadae; Iwata, Tadao; Kuramoto, Eiichi; Takenaka, Minoru.

    1992-01-01

    ACAR (Angular Correlation of Annihilation Radiation) and positron lifetime measurements have been made on, HOPG (Highly Oriented Pyrolytic Graphite), isotropic fine-grained graphite, glassy carbons and C 60 /C 70 powder. HOPG showed marked bimodality along the c-axis and anisotropy in ACAR momentum distribution, which stem from characteristic annihilation between 'interlayer' positrons and π-electrons in graphite. ACAR curves of the isotropic graphite and glassy carbons are even narrower than that of HOPG perpendicular to the c-axis. Positron lifetime of 420 and 390 - 480 psec, much longer than that of 221 psec in HOPG, were observed for the isotropic graphite and glassy carbons respectively, which are due to positron trapping in structural voids in them. Positron lifetime and ACAR width (FWHM) can be well correlated to void sizes (1.7 to 5.0 nm) of glassy carbons which have been determined by small angle neutron (SAN) scattering measurements. ACAR curves and positron lifetime of C 60 /C 70 powder agree well with those of glassy carbons. This shows that positron wave functions extend, as in the voids of glassy carbons, much wider than open spaces of the octahedral interstices of the face-centered cubic (FCC) structure of C 60 crystal and strongly suggests positron trapping in the 'soccer ball' vacancy. Possible positron states in the carbon materials are discussed with a simple model of void volume-trapping. Preliminary results on neutron irradiation damage in HOPG are also presented. (author)

  3. Conversion of broadband IR radiation and structural disorder in lithium niobate single crystals with low photorefractive effect

    Science.gov (United States)

    Litvinova, Man Nen; Syuy, Alexander V.; Krishtop, Victor V.; Pogodina, Veronika A.; Ponomarchuk, Yulia V.; Sidorov, Nikolay V.; Gabain, Aleksei A.; Palatnikov, Mikhail N.; Litvinov, Vladimir A.

    2016-11-01

    The conversion of broadband IR radiation when the noncritical phase matching condition is fulfilled in lithium niobate (LiNbO3) single crystals with stoichiometric (R = Li/Nb = 1) and congruent (R = 0.946) compositions, as well as in congruent single crystals doped with zinc has been investigated. It is shown that the spectrum parameters of converted radiation, such as the conversion efficiency, spectral width and position of maximum, depend on the ordering degree of structural units of the cation sublattice along the polar axis of crystal.

  4. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  5. Characterization of barite and crystal glass as attenuators in X-ray and gamma radiation shieldings

    International Nuclear Information System (INIS)

    Almeida Junior, Airton Tavares de

    2005-03-01

    Aiming to determine the barium sulphate (BaSO 4 ) ore and crystal glass attenuation features, both utilized as shieldings against ionizing X and gamma radiations in radiographic installations, a study of attenuation using barite plaster and barite concrete was carried out, which are used, respectively, on wall coverings and in block buildings. The crystal glass is utilized in screens and in windows. To do so, ten plates of barite plaster and three of barite concrete with 900 cm 2 and with an average thickness ranging from 1 to 5 cm, and three plates of crystal glass with 323 cm 2 and with thicknesses of 1, 2 and 4 cm were analyzed. The samples were irradiated with X-rays with potentials of 60, 80, 110 and 150 kilovolts, and also with 60 Co gamma rays. Curves of attenuation were obtained for barite plaster and barite concrete (mGy/mA.min) and (mGy/h), both at 1 meter, as a function of thickness and curve of transmission through barite plaster and barite concrete as a function of the thickness. The equivalent thicknesses of half and tenth value layers for barite plaster, barite concrete and crystal glass for all X-Ray energies were also determined. (author)

  6. Scintillation properties of semiconducting {sup 6}LiInSe{sub 2} crystals to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Brenden [Y-12 National Security Complex, Oak Ridge, TN (United States); Vanderbilt University, Nashville, TN (United States); Groza, Michael; Tupitsyn, Eugene [Fisk University, Nashville, TN (United States); Lukosi, Eric [University of Tennessee, Knoxville, TN (United States); Stassun, Keivan; Burger, Arnold [Vanderbilt University, Nashville, TN (United States); Fisk University, Nashville, TN (United States); Stowe, Ashley [Y-12 National Security Complex, Oak Ridge, TN (United States); Vanderbilt University, Nashville, TN (United States); University of Tennessee, Knoxville, TN (United States)

    2015-11-21

    {sup 6}LiInSe{sub 2} has gained attention recently as a semiconducting thermal neutron detector. As presented herein, the chalcogenide compound semiconductor also detects incident neutrons via scintillation, making {sup 6}LiInSe{sub 2} the only lithium containing semiconductor to respond to neutrons via both detection mechanisms. Both yellow and red crystals, which appear in the literature, were investigated. Only the yellow crystal responded favorably to ionizing radiation, similar to the semiconducting operation utilizing electrodes. The obtained light yield for yellow crystals is 4400 photons/MeV, referenced to Bi{sub 4}Ge{sub 3}O{sub 12} (BGO).The estimated thermal neutron light yield was 21,000 photons/thermal neutron. The two measured decay time components were found to be 31±1 ns (49%) and 143±9 ns (51%).This crystal provides efficient, robust detection of neutrons via scintillation with respectable light yield and rapid response, enabling its use for a broad array of neutron detection applications.

  7. X-ray-excited optical luminescence of protein crystals: a new tool for studying radiation damage during diffraction data collection.

    Science.gov (United States)

    Owen, Robin L; Yorke, Briony A; Pearson, Arwen R

    2012-05-01

    During X-ray irradiation protein crystals radiate energy in the form of small amounts of visible light. This is known as X-ray-excited optical luminescence (XEOL). The XEOL of several proteins and their constituent amino acids has been characterized using the microspectrophotometers at the Swiss Light Source and Diamond Light Source. XEOL arises primarily from aromatic amino acids, but the effects of local environment and quenching within a crystal mean that the XEOL spectrum of a crystal is not the simple sum of the spectra of its constituent parts. Upon repeated exposure to X-rays XEOL spectra decay non-uniformly, suggesting that XEOL is sensitive to site-specific radiation damage. However, rates of XEOL decay were found not to correlate to decays in diffracting power, making XEOL of limited use as a metric for radiation damage to protein crystals. © 2012 International Union of Crystallography

  8. New channeling effects in the radiative emission of 150 GeV electrons in a thin germanium crystal

    International Nuclear Information System (INIS)

    Belkacem, A.; Chevallier, M.; Gaillard, M.J.; Genre, R.; Kirsch, R.; Poizat, J.C.; Remillieux, J.; Bologna, G.; Peigneux, J.P.; Sillou, D.; Spighel, M.; Cue, N.; Kimball, J.C.; Marsh, B.; Sun, C.R.

    1986-01-01

    The orientation dependence of the radiative emission of 150 GeV electrons and positrons incident at small angles with respect to the axial direction of a thin (0.185 mm) Ge crystal has been observed. The processes are well understood, except for channeled electrons, which radiate unexpected high energy photons. (orig.)

  9. Radiation damage in solid 5-halouracils. Electron spin resonance of single crystals of 5-bromouracil

    International Nuclear Information System (INIS)

    Oloff, H.; Huettermann, J.; Symons, M.C.R.

    1978-01-01

    Knowledge gained about halogen hyperfine interaction in radiation-induced free radicals formed at 300 K in a variety of 5-halouracil bases, together with the availability of crystal structure of 5-bromouracil aids in determination of the dominant radical structure. Details of its spectral parameters are presented, ESR spectra of single crystals of 5-bromouracil irradiated at 300K induce the presence of free radicals which indicate the loss of hydrogen from N 1 , confirming structure I as the dominant radical. The powder spectrum of 5-bromouracil measured after irradiation at 300K shows x features of radical I, but they appear superimposed by lines of another radical also involving bromine hyperfine interaction. These lines most probably belong to the hydrogen-addition radical II

  10. Temperature dependence of radiation colloidal centers production and annealing in alkali halide crystals

    International Nuclear Information System (INIS)

    Kristapson, J.Z.; Ozerskii, V.J.

    1981-01-01

    The investigation results on temperature dependences of production and annealing of radiation colloidal color centers have been reviewed. In order to produce such centers in NaCl, KCl and KBr crystals the doses of 10 2 -10 4 Mrad as well as irradiation temperatures of 300-600 K and post-irradiation heating of up to 800 K were applied. It has been demonstrated that to produce X-centers, it is necessary to have optimal temperature and initial critical dose during both irradiation and post-irradiation heating of crystals. It has been also found that during annealing hole centers produced are different with regard to thermal stability. The possible recombination mechanisms of hole and electron products of radiolysis during post-irradiation heating has been analyzed [ru

  11. Investigation of singularities of integral intensity of the relativistic particle bremsstrahlung radiation in a diamond crystal

    International Nuclear Information System (INIS)

    Avakyan, R.O.; Armaganyan, A.A.; Arutyunyan, L.G.; Iskandaryan, A.G.; Taroyan, S.P.

    1981-01-01

    The results are given of the theoretical processing of experimental data on the investigation of orientational dependences of integral intensity of coherent bremsstrahlung radiation (CBR) of superfast electrons in a diamond crystal. It is shown that in the case of ''point effect'' right up to the electrons incident angle, which is 0.1 mrad with respect to the crystallographic plane, the CBR theory gives a good description of experimental data. In the case of ''row effect'', in order to account for the divergence between the theory and experiment at small incident angles of electrons with respect to the crystallographic axis, it is assumed that the multiple scattering angle has an orientational dependence. By fitting the theoretical curve to experimental points the dependences are obtained of the multiple scattering angle change on the crystal orientation with respect to the electron beam

  12. On beam shaping of the field radiated by a line source coupled to finite or infinite photonic crystals.

    Science.gov (United States)

    Ceccuzzi, Silvio; Jandieri, Vakhtang; Baccarelli, Paolo; Ponti, Cristina; Schettini, Giuseppe

    2016-04-01

    Comparison of the beam-shaping effect of a field radiated by a line source, when an ideal infinite structure constituted by two photonic crystals and an actual finite one are considered, has been carried out by means of two different methods. The lattice sums technique combined with the generalized reflection matrix method is used to rigorously investigate the radiation from the infinite photonic crystals, whereas radiation from crystals composed of a finite number of rods along the layers is analyzed using the cylindrical-wave approach. A directive radiation is observed with the line source embedded in the structure. With an increased separation distance between the crystals, a significant edge diffraction appears that provides the main radiation mechanism in the finite layout. Suitable absorbers are implemented to reduce the above-mentioned diffraction and the reflections at the boundaries, thus obtaining good agreement between radiation patterns of a localized line source coupled to finite and infinite photonic crystals, when the number of periods of the finite structure is properly chosen.

  13. RADCHARM++: A C++ routine to compute the electromagnetic radiation generated by relativistic charged particles in crystals and complex structures

    Energy Technology Data Exchange (ETDEWEB)

    Bandiera, Laura; Bagli, Enrico; Guidi, Vincenzo [INFN Sezione di Ferrara and Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, 44121 Ferrara (Italy); Tikhomirov, Victor V. [Research Institute for Nuclear Problems, Belarusian State University, Minsk (Belarus)

    2015-07-15

    The analytical theories of coherent bremsstrahlung and channeling radiation well describe the process of radiation generation in crystals under some special cases. However, the treatment of complex situations requires the usage of a more general approach. In this report we present a C++ routine, named RADCHARM++, to compute the electromagnetic radiation emitted by electrons and positrons in crystals and complex structures. In the RADCHARM++ routine, the model for the computation of e.m. radiation generation is based on the direct integration of the quasiclassical formula of Baier and Katkov. This approach allows one taking into account real trajectories, and thereby the contribution of incoherent scattering. Such contribution can be very important in many cases, for instance for electron channeling. The generality of the Baier–Katkov operator method permits one to simulate the electromagnetic radiation emitted by electrons/positrons in very different cases, e.g., in straight, bent and periodically bent crystals, and for different beam energy ranges, from sub-GeV to TeV and above. The RADCHARM++ routine has been implemented in the Monte Carlo code DYNECHARM++, which solves the classical equation of motion of charged particles traveling through a crystal under the continuum potential approximation. The code has proved to reproduce the results of experiments performed at the MAinzer MIkrotron (MAMI) with 855 MeV electrons and has been used to predict the radiation spectrum generated by the same electron beam in a bent crystal.

  14. GRAPHITIZATION OF METASEDIMENTARY ROCKS IN THE WESTERN KONYA

    Directory of Open Access Journals (Sweden)

    Hüseyin KURT

    2000-01-01

    Full Text Available The Paleozoic-Mesozoic metasedimentary rocks in the study area are metacarbonate, metachert, metapelite, metasandstone and metaconglomerate. Graphite layers are 1cm to 2m thick, extend laterally for tens of meters and are intercalated with metasedimentary rocks. Generally, the graphite is black in color, with a well developed cleavage which is concordant with the cleavage of the host rocks. In addition, the crystal and flake graphites formed in metasedimentary rocks are mostly aligned parallel to the cleavage planes. These metamorphic rocks are subjected to shearing and granulation providing structural control for the development of graphite. It was probably this phenomenon that first led to emphasize the relationship between graphite and metasedimentary rocks. Graphite mineralization has been controlled by bedding, microfractures and granulations. Briefly, the metamorphism has converted carbonaceous matter into graphite .

  15. Huge magnetoresistance effect of highly oriented pyrolytic graphite

    International Nuclear Information System (INIS)

    Du Youwei; Wang Zhiming; Ni Gang; Xing Dingyu; Xu Qingyu

    2004-01-01

    Graphite is a quasi-two-dimensional semimetal. However, for usual graphite the magnetoresistance is not so high due to its small crystal size and no preferred orientation. Huge positive magnetoresistance up to 85300% at 4.2 K and 4950% at 300 K under 8.15 T magnetic field was found in highly oriented pyrolytic graphite. The mechanism of huge positive magnetoresistance is not only due to ordinary magnetoresistance but also due to magnetic-field-driven semimetal-insulator transition

  16. Response of CsI:Pb Scintillator Crystal to Neutron Radiation

    Science.gov (United States)

    Costa Pereira, Maria da Conceição; Filho, Tufic Madi; Berretta, José Roberto; Náhuel Cárdenas, José Patrício; Iglesias Rodrigues, Antonio Carlos

    2018-01-01

    The helium-3 world crisis requires a development of new methods of neutron detection to replace commonly used 3He proportional counters. In the past decades, great effort was made to developed efficient and fast scintillators to detect radiation. The inorganic scintillator may be an alternative. Inorganic scintillators with much higher density should be selected for optimal neutron detection efficiency taking into consideration the relevant reactions leading to light emission. These detectors should, then, be carefully characterized both experimentally and by means of advanced simulation code. Ideally, the detector should have the capability to separate neutron and gamma induced events either by amplitude or through pulse shape differences. As neutron sources also generate gamma radiation, which can interfere with the measurement, it is necessary that the detector be able to discriminate the presence of such radiation. Considerable progress has been achieved to develop new inorganic scintillators, in particular increasing the light output and decreasing the decay time by optimized doping. Crystals may be found to suit neutron detection. In this report, we will present the results of the study of lead doped cesium iodide crystals (CsI:Pb) grown in our laboratory, using the vertical Bridgman technique. The concentration of the lead doping element (Pb) was studied in the range 5x10-4 M to 10-2 M . The crystals grown were subjected to annealing (heat treatment). In this procedure, vacuum of 10-6 mbar and continuous temperature of 350°C, for 24 hours, were employed. In response to neutron radiation, an AmBe source with energy range of 1 MeV to 12 MeV was used. The activity of the AmBe source was 1Ci Am. The fluency was 2.6 x 106 neutrons/second. The operating voltage of the photomultiplier tube was 1700 V; the accumulation time in the counting process was 600 s and 1800 s. The scintillator crystals used were cut with dimensions of 20 mm diameter and 10 mm height.

  17. Radiation effect on conductivity of oxygen-containing crystals of lithium fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Shchepina, L.I.; Alekseeva, L.I.; Lobanov, B.D.; Kostyukov, V.M. (Irkutskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Prikladnoj Fiziki)

    1984-07-01

    The data are presented on an anomalous behaviour of the conductivity, sigma of oxygen-enriched LiF crystals irradiated by approximately 10/sup 5/ J/kg doses. The ultraviolet absorption spectra were used to measure the oxygen content. The samples were exposed to ..gamma..-radiation of a /sup 60/Co source. The anomalous behaviour of tau is manifested by deviation of the sigma temperature dependence from the exponential law and occurrence of the minimum on the curve. The anomalous behaviour covers the range of 580-660 K and terminates by the tau recovery up to the values of an intact samples.

  18. Tight-binding calculation of radiation loss in photonic crystal CROW.

    Science.gov (United States)

    Ma, Jing; Martínez, Luis Javier; Fan, Shanhui; Povinelli, Michelle L

    2013-01-28

    The tight binding approximation (TBA) is used to relate the intrinsic, radiation loss of a coupled resonator optical waveguide (CROW) to that of a single constituent resonator within a light cone picture. We verify the validity of the TBA via direct, full-field simulation of CROWs based on the L2 photonic crystal cavity. The TBA predicts that the quality factor of the CROW increases with that of the isolated cavity. Moreover, our results provide a method to design CROWs with low intrinsic loss across the entire waveguide band.

  19. Low index contrast heterostructure photonic crystal cavities with high quality factors and vertical radiation coupling

    Science.gov (United States)

    Ge, Xiaochen; Minkov, Momchil; Fan, Shanhui; Li, Xiuling; Zhou, Weidong

    2018-04-01

    We report here design and experimental demonstration of heterostructure photonic crystal cavities resonating near the Γ point with simultaneous strong lateral confinement and highly directional vertical radiation patterns. The lateral confinement is provided by a mode gap originating from a gradual modulation of the hole radii. High quality factor resonance is realized with a low index contrast between silicon nitride and quartz. The near surface-normal directional emission is preserved when the size of the core region is scaled down. The influence of the cavity size parameters on the resonant modes is also investigated theoretically and experimentally.

  20. Simulating the spectrum and the polarization characteristics of coherent radiation from ultrarelativistic electrons in a diamond crystal

    International Nuclear Information System (INIS)

    Truten', V.I.

    2000-01-01

    On the basis of a computer simulation, it is shown that, in the spectrum of radiation from ultrarelativistic electrons in oriented crystals, new maxima can appear in the low-frequency region in addition to ordinary coherent maxima. This effect is due to the influence of high-index planes on the radiation in question. The aforementioned new maxima manifest themselves not only in the spectrum but also in the polarization characteristics of the radiation

  1. Radiation physics of non-metallic crystals. Volume III, No. 3. Radiatsionnaya fizika nemetallicheskikh kristallov. Tom III, Chast 3

    Energy Technology Data Exchange (ETDEWEB)

    Konozenko, I D [ed.

    1971-01-01

    Separate articles are presented on studies concerned with radiation phenomena in ionic crystals and dielectrics. Topics include energy losses and electron escape in monocrystals, non-stationary acoustic absorption in monocrystals, charge behavior in radioactive dielectrics, the effects of electron radiation on the electroconductivity of organic dielectrics, adsorption of polyatomic gases in adsorbents, catalysis and inhibition of solid inorganic salt radiolysis, and the formation of additive paramagnetic centers in gamma radiated salts of alkaline earth metals. 253 references.

  2. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  3. Superconductivity in graphite intercalation compounds

    International Nuclear Information System (INIS)

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P.M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-01-01

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC 6 and YbC 6 in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition

  4. Radiation-induced defect production in MgF2-Co crystals

    International Nuclear Information System (INIS)

    Nuritdinov, I.; Turdanov, K.; Mirinoyatova, N.M.; Rejterov, V.M.

    1996-01-01

    Impact of Co-admixture on structural radiation defects formation in the MgF 2 crystals is studied. It is found that the Co admixture facilitates the probability of generating the F- and m-type centers of radiation defects as well as creation of the F- and M-centers, perturbed by admixtures. The availability of structural defects leads in its turn to the admixture ions perturbation. It is reflected in the removal of prohibition on spin-prohibited transitions of the Co 2 + ions. It is assumed that creation of the M-centers is the main cause for removal of the prohibition on the spin-prohibited transitions. 8 refs., 4 figs

  5. Investigation of radiation-enhanced diffusions of non valency impurities in ionic crystals

    International Nuclear Information System (INIS)

    Surzhikov, A.P.; Pritulov, A.M.; Gyngazov, S.A.; Chernyavskij, A.V.

    1999-01-01

    Investigations of hetero valency ions Al +3 and Mg +2 diffusion in potassium bromide crystals, under the intensive electron radiation, were conducted. The electron accelerator ELV-6 generating a continuous electron beam of 1.4 MeV in power was used for the investigations. To discover the radiation effects, there was a comparison of outcomes of the heating under the same temperature and annealing duration values. The mass-spectrometer MS-7021M was used to measure the diffusion profiles. The experimental outcomes analysis was carried out by approximation of the experimental concentration profiles, using a relevant solution of Fick's equation. The numerical values of the diffusion factors for the set annealing temperatures were determined according to the approximation outcomes. The investigations were financed by the Russian Fundamental Research Fund

  6. Parametric X-rays and diffracted transition radiation in perfect and mosaic crystals

    International Nuclear Information System (INIS)

    Artru, X.; Rullhusen, P.

    1998-01-01

    The amplitude of X-ray emission by relativistic electrons in a single crystal, calculated in the kinematical approach, is decomposed unambiguously in Diffracted Transition Radiation (DTR) and Parametric X-rays (PXR). DTR becomes significant for γ > or similar to ω P ,γ being the Lorentz factor and ω P the plasma frequency. It is more collimated than PXR and, above threshold, its flux increases logarithmically with γ. However, it saturates with thickness at the Bragg primary extinction length l e . This saturation is accounted for only in the dynamical approach, the formulas of which are compared to the kinematical ones. The respective contributions of DTR and PXR are calculated for a simple model of mosaic crystal, taking into account saturation of DTR with thickness. The PXR flux is basically the same as in a perfect crystal. If the size of the domains is larger than l e , the DTR flux is multiplied by the number of domains crossed by the electron. For domains smaller than l e and γ > or similar to ω P , the DTR and PXR fluxes are of the same order of magnitude, up to logarithmic factors. In any case, mosaicity increases the total yield of X-ray photons. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. Probing polymer crystallization at processing-relevant cooling rates with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cavallo, Dario, E-mail: Dario.cavallo@unige.it [University of Genoa, Dept. of Chemistry and Industrial Chemistry, Via Dodecaneso 31, 16146 Genoa (Italy); Portale, Giuseppe [ESRF, Dubble CRG, Netherlands Organization of Scientific Research (NWO), 38043 Grenoble (France); Androsch, René [Martin-Luther-University Halle-Wittenberg, Center of Engineering Sciences, D-06099 Halle/S. (Germany)

    2015-12-17

    Processing of polymeric materials to produce any kind of goods, from films to complex objects, involves application of flow fields on the polymer melt, accompanied or followed by its rapid cooling. Typically, polymers solidify at cooling rates which span over a wide range, from a few to hundreds of °C/s. A novel method to probe polymer crystallization at processing-relevant cooling rates is proposed. Using a custom-built quenching device, thin polymer films are ballistically cooled from the melt at rates between approximately 10 and 200 °C/s. Thanks to highly brilliant synchrotron radiation and to state-of-the-art X-ray detectors, the crystallization process is followed in real-time, recording about 20 wide angle X-ray diffraction patterns per second while monitoring the instantaneous sample temperature. The method is applied to a series of industrially relevant polymers, such as isotactic polypropylene, its copolymers and virgin and nucleated polyamide-6. Their crystallization behaviour during rapid cooling is discussed, with particular attention to the occurrence of polymorphism, which deeply impact material’s properties.

  8. Non-stoichiometry defects and radiation hardness of lead tungstate crystals PbWO sub 4

    CERN Document Server

    Devitsin, E G; Potashov, S Yu; Terkulov, A R; Nefedov, V A; Polyansky, E V; Zadneprovski, B I; Kjellberg, P; Korbel, V

    2002-01-01

    It has been stated many times that the formation of radiation infringements in PbWO sub 4 is to a big extent stipulated by the non-stoichiometry defects of the crystals, arising in the process of their growth and annealing. To refine the idea of characteristics of the non-stoichiometry defects and their effect on the radiation hardness of PbWO sub 4 , the current study is aimed at the melt composition infringements during its evaporation and at optical transmission of crystals obtained in these conditions after their irradiation ( sup 1 sup 3 sup 7 Cs source). In the optical transmission measurements along with traditional techniques a method 'in situ' was used, which provided the measurements in fixed points of the spectrum (380, 470 and 535 nm) directly in the process of the irradiation. X-ray phase and fluorescence analysis of condensation products of vapours over PbWO sub 4 melt has found PbWO sub 4 phase in their content as well as compounds rich in lead PbO, Pb sub 2 WO sub 5 with overall ratio Pb/W (3....

  9. Non-stoichiometry Defects and Radiation Hardness of Lead Tungstate Crystals PbWO4

    CERN Document Server

    Devitsin, E G; Kozlov, V A; Nefedov, L; Polyansky, E V; Potashov, S Yu; Terkulov, A R; Zadneprovski, B I

    2001-01-01

    It has been stated many times that the formation of radiation infringements in PbWO4 is to big extent stipulated by non-stoichiometry defects of the crystals, arising in the process of their growth and annealing. To refine the idea of characteristics of non-stoichiometry defects and their effect on the radiation hardness of PbWO4 the current study is aimed at the melt composition infringements during its evaporation and at optical transmission of crystals obtained in these conditions after their irradiation (137Cs source). In the optical transmission measurements along with traditional techniques a method "in situ" was used, which provided the measurements in fixed points of the spectrum (380, 470 and 535 nm) directly in the process of the irradiation. X-ray phase and fluorescence analysis of condensation products of vapours over PbWO4 melt has found PbWO4 phase in their content as well as compounds rich in lead, PbO, Pb2WO5, with overall ratio Pb/W = 3.2. Correspondingly the lack of lead and variations in th...

  10. Kinetics of non-equilibrium processes in non-linear crystals of lithium borates excited with synchrotron radiation

    CERN Document Server

    Ogorodnikov, I N; Isaenko, L I; Zinin, E I; Kruzhalov, A V

    2000-01-01

    The paper presents the results of a study of the LiB sub 3 O sub 5 and Li sub 2 B sub 4 O sub 7 crystals by the use of the luminescent spectroscopy with the sub-nanosecond time resolution under excitation of the high-power synchrotron radiation. The commonness in the origin of the non-equilibrium processes in these crystals as well as the observed differences in the luminescence manifestations is discussed.

  11. Kinetics of non-equilibrium processes in non-linear crystals of lithium borates excited with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ogorodnikov, I.N. E-mail: ogo@dpt.ustu.ru; Pustovarov, V.A.; Isaenko, L.I.; Zinin, E.I.; Kruzhalov, A.V

    2000-06-21

    The paper presents the results of a study of the LiB{sub 3}O{sub 5} and Li{sub 2}B{sub 4}O{sub 7} crystals by the use of the luminescent spectroscopy with the sub-nanosecond time resolution under excitation of the high-power synchrotron radiation. The commonness in the origin of the non-equilibrium processes in these crystals as well as the observed differences in the luminescence manifestations is discussed.

  12. radiation and electric field induced effects on the order-disorder phase in lithium sodium sulphate crystals

    Science.gov (United States)

    Hamed, A. E.; Kassem, M. E.; El-Wahidy, E. F.; El-Abshehy, M. A.

    1995-03-01

    The temperature dependence of specific heat at constant pressure, Cp(T), has been measured for lithium sodium sulphate, LiNaSo4 crystals, at different ?-radiation doses and external bias electric field (Eb), in the temperature range 300-900 K. A nonlinear dependence of transition temperature, T1 and a remarkable change in the thermodynamic parameters, were obtained as the effect of both electric field and ?-radiation. The effect of ?-radiation doses on the phase transition in LiNaSO4 crystals was explained as due to an internal bias field, Eb, originating from the interaction of polar defects with the order parameter of the host lattice. The internal bias field effect on the behaviour of Cp(T) in LiNaSO4 crystals was similar to that of the external electric field (E).

  13. Phonon scattering in graphite

    International Nuclear Information System (INIS)

    Wagner, P.

    1976-04-01

    Effects on graphite thermal conductivities due to controlled alterations of the graphite structure by impurity addition, porosity, and neutron irradiation are shown to be consistent with the phonon-scattering formulation 1/l = Σ/sub i equals 1/sup/n/ 1/l/sub i/. Observed temperature effects on these doped and irradiated graphites are also explained by this mechanism

  14. New methods of highly efficient controlled generation of radiation by liquid crystal nanostructures in a wide spectral range

    International Nuclear Information System (INIS)

    Bagayev, S N; Klementyev, V M; Nyushkov, B N; Pivtsov, V S; Trashkeev, S I

    2012-01-01

    We report the recent results of research focused on a new kind of soft matter-the liquid-crystal nanocomposites with controllable mechanical and nonlinear optical properties. These are promising media for implementation of ultra-compact photonic devices and efficient sources of coherent radiation in a wide spectral range. We overview the technology of preparation of nematic-liquid-crystal media saturated with disclination defects. The defects were formed in different ways: by embedding nanoparticles and molecular objects, by exposure to alpha-particle flux. The defect locations were controlled by applying an electric field. We also present and discuss the recently discovered features of nematic-liquid-crystal media: a thermal orientation effect leading to the fifth-order optical nonlinearity, enormous second-order susceptibility revealed by measurements, and structural changes upon exposure to laser radiation. We report on efficient generation of harmonics, sum and difference optical frequencies in nematic-liquid-crystal media. In addition, transformation of laser radiation spectra to spectral supercontinua, and filamentation of laser beams were also observed in nematic-liquid-crystal media. We conclude that most nonlinear optical effects result from changes of the orientational order in the examined nematic liquid crystals. These changes lead to the symmetry breaking and disclination appearances.

  15. Improvement of optical properties and radiation hardness of NaBi(WO sub 4) sub 2 Cherenkov crystals

    CERN Document Server

    Zadneprovski, B I; Polyansky, E V; Devitsin, E G; Kozlov, V A; Potashov, S Yu; Terkulov, A R

    2002-01-01

    On the basis of the data on melt evaporation while growing NaBi(WO sub 4) sub 2 Cherenkov crystals, the formation of nonstoichiometry and most probable types of dot defects of the crystals have been considered. The influence of melt nonstoichiometry and doping with Sc on optical transmission and radiation hardness of the crystals has been experimentally investigated. The surplus of WO sub 3 has been established to increase optical transmission and radiation hardness and lack of Bi sub 2 O sub 3 in the melt to reduce radiation hardness. Sc doping is shifting the absorption edge to UV region by 30-35 nm and is increasing radiation hardness of the crystals about three-fold. Analytical estimations give the increase of the number of Cherenkov photons by a factor of 1.3, which leads to an improvement of the energy resolution of a calorimeter based on NaBi(WO sub 4) sub 2 :Sc crystals compared with undoped NaBi(WO sub 4) sub 2 of approximately 15%.

  16. Radiation-stimulated yield of an impurity into interstitial sites in crystals KBr-Li and KCl-Li

    International Nuclear Information System (INIS)

    Bekeshev, A.Z.; Shunkeev, K.Sh.; Vasil'chenko, E.A.; Dauletbekova, A.K.; Ehlango, A.A.

    1996-01-01

    KCl and KBr crystals are taken as examples to show that the presence of Li impurity at X-radiation at temperatures above 200 K stimulates the creation of both impurity Hal 3 - (Li)-centers (V 4A -centers) and Hal 3 - centers (V 2 -centers). Increase of impurity concentration and X-radiation temperature (up to 300 K) results to increase of impurity stimulated creation of inherent Hal 3 - centers by more, than one order, as compared to pure crystals. Initial temperature of interstitial ion mobility was evaluated (about 140 K). 16 refs., 5 figs

  17. Spontaneous and stimulated undulator radiation by an ultra-relativistic positron channeling in a periodically bent crystal

    International Nuclear Information System (INIS)

    Krause, W.; Korol, A.V.; Solov'yov, A.V.; Greiner, W.

    2001-01-01

    We discuss the radiation generated by positrons channeling in a crystalline undulator. The undulator is produced by periodically bending a single crystal with an amplitude much larger than the interplanar spacing. Different approaches for bending the crystal are described and the restrictions on the parameters of the bending are discussed. We also present numeric calculations of the spontaneous emitted radiation and estimate the conditions for stimulated emission. Our investigations show that the proposed mechanism could be an interesting source for high energy photons and is worth to be studied experimentally

  18. Stabilization of primary mobile radiation defects in MgF{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lisitsyn, V.M. [National Research Tomsk Polytechnic University, pr. Lenina 30, Tomsk 634050 (Russian Federation); Lisitsyna, L.A. [State University of Architecture and Building, pl. Solyanaya 2, Tomsk 634003 (Russian Federation); Popov, A.I., E-mail: popov@ill.fr [Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga (Latvia); Kotomin, E.A. [Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga (Latvia); Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Abuova, F.U.; Akilbekov, A. [L.N. Gumilyov Eurasian National University, 3 Munaitpasova Str., Astana (Kazakhstan); Maier, J. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany)

    2016-05-01

    Non-radiative decay of the electronic excitations (excitons) into point defects (F–H pairs of Frenkel defects) is main radiation damage mechanism in many ionic (halide) solids. Typical time scale of the relaxation of the electronic excitation into a primary, short-lived defect pair is about 1–50 ps with the quantum yield up to 0.2–0.8. However, only a small fraction of these primary defects are spatially separated and survive after transformation into stable, long-lived defects. The survival probability (or stable defect accumulation efficiency) can differ by orders of magnitude, dependent on the material type; e.g. ∼10% in alkali halides with f.c.c. or b.c.c. structure, 0.1% in rutile MgF{sub 2} and <0.001% in fluorides MeF{sub 2} (Me: Ca, Sr, Ba). The key factor determining accumulation of stable radiation defects is stabilization of primary defects, first of all, highly mobile hole H centers, through their transformation into more complex immobile defects. In this talk, we present the results of theoretical calculations of the migration energies of the F and H centers in poorely studied MgF{sub 2} crystals with a focus on the H center stabilization in the form of the interstitial F{sub 2} molecules which is supported by presented experimental data.

  19. Computer Package for Graphite Total Cross-Section Calculations

    International Nuclear Information System (INIS)

    Adib, M.; Fathalla, M.

    2008-01-01

    An additive formula is given which allows calculating the contribution of the total neut.>neutron transmission through crystalline graphite. The formula takes into account the graphite form of poly or pyrolytic crystals and its parameters. Computer package Graphite has been designed in order to provide the required calculations in the neutron energy range from 0.1 MeV to 10 eV. The package includes three codes: PCG (Polycrystalline Graphite), PG (Pyrolytic Graphite) and HOPG (Highly Oriented Pyrolytic Graphite) for calculating neutron transmission through fine graphite powder (polycrystalline), neutron transmission and removal coefficient of PG crystal in terms of its mosaic spread for neutrons incident along its c-axis and the transmission of neutrons incident on HOPG crystal at different angles, respectively. For comparison of the experimental neutron transmission data with the calculated values, the program takes into consideration the effect of both wavelength and neutron beam divergence in either 2 constant wavelength spread mode (δλ=constant) or constant wavelength resolution mode (δλ/λ=constant). In order to check the validity for application of computer package Graphite in cross-section calculations, a comparison between calculated values with the available experimental data were carried out. An overall agreement is indicated with an accuracy sufficient for determine the neutron transmission characteristics

  20. Tunable photonic crystal for THz radiation in layered superconductors: Strong magnetic-field dependence of the transmission coefficient

    International Nuclear Information System (INIS)

    Savel'ev, Sergey; Rakhmanov, A.L.; Nori, Franco

    2006-01-01

    Josephson plasma waves are scattered by the Josephson vortex lattice. This scattering results in a strong dependence, on the in-plane magnetic-field H ab , of the reflection and transmission of THz radiation propagating in layered superconductors. In particular, a tunable band-gap structure (THz photonic crystal) occurs in such a medium. These effects can be used, by varying H ab , for the selective frequency-filtering of THz radiation

  1. Photon multiplicity in the hard radiation of 150 GeV electrons in an aligned germanium crystal

    International Nuclear Information System (INIS)

    Belkacem, A.; Chevallier, M.; Gaillard, M.J.; Genre, R.; Kirsch, R.; Poizat, J.C.; Remillieux, J.; Bologna, G.; Peigneux, J.P.; Sillou, D.; Spighel, M.; Cue, N.; Kimball, J.C.; Marsh, B.B.; Sun, C.R.

    1988-01-01

    Mean values m of photon multiplicity in the radiation of 150 GeV electrons directed at and near the axis of a 0.185 mm thick Ge crystal cooled to 100 K have been deduced from the measurements of pair conversion probabilities. Depending on the distribution of multiplicity assumed, values of m ranging from 3.8 to 4.3 are obtained for the previously reported anomalous radiation peak. (orig.)

  2. Splitting of the spectral radiation density maximum for relativistic positrons moving through a single crystal near the crystallographic axis

    International Nuclear Information System (INIS)

    Adejshvili, D.I.; Anufriev, O.V.; Bochek, G.L.; Vit'ko, V.I.; Kovalenko, G.D.; Nikolajchuk, L.I.; Khizhnyak, N.A.; Shramenko, B.I.

    1986-01-01

    The fast particle radiation is studied on the basis of the periodic potential model which takes into account the discrete structure of atomic strings or planes along the channel direction. Results of the experiments on the linear accelerator on radiation of relativistic 1035 and 1050 MeV positrons in the diamond (axis 110) and silicon (axis 111) single crystals, respectively, are in good agreement with calculated data

  3. Change in properties of graphite on stake of Obninsk NPP

    International Nuclear Information System (INIS)

    Virgul'ev, Yu.S.; Gundorov, V.V.; Kalyagina, I.P.; Belinskaya, N.T.; Dolgov, V.V.; Komissarov, O.V.; Stuzhnev, Yu.A.

    1997-01-01

    The results of testing the graphite from the AM-1 reactor masonry at the Obninsk NPP for its operation period are discussed. It is shown that the masonry graphite state after 42 years of the reactor operation remains satisfactory in the most cells inspected. Separate cells requiring a repair resulted from oxidation are characterized by strength decreased by several times. The laws of radiation changes in graphite properties are analyzed. The conclusion on possibility of the further masonry operation is drawn

  4. Enhanced generation of hydroxyl radicals on well-crystallized molybdenum trioxide/nano-graphite anode with sesame cake-like structure for degradation of bio-refractory antibiotic.

    Science.gov (United States)

    Tang, Bo; Du, Jiannan; Feng, Qingmao; Zhang, Jiaqi; Wu, Dan; Jiang, Xiankai; Dai, Ying; Zou, Jinlong

    2018-05-01

    Anodic electro-catalysis oxidation is a highly effective way to solve the pollution problem of antibiotics in wastewater and receiving water bodies. In this study, for the first time, molybdenum trioxide/Nano-graphite (MoO 3 /Nano-G) composites are synthesized as anodic catalysts by a surfactant-assisted solvothermal method followed by low-temperature calcination. The effects of the proportion of MoO 3 to Nano-G (10, 30 and 50%) on the properties of composites are investigated through structural characterizations and electrochemical measurements. Results indicate that MoO 3 (30)/Nano-G electrode displays the electro-catalysis degradation efficiency of 99.9% towards ceftazidime, which is much higher than those of Nano-G (46.7%) and dimensionally stable anode (69.2%). The degradation mechanism for ceftazidime is studied by investigating the yields and kinds of active species. Results show that all of the OH, O 2- and H 2 O 2 are responsible for the electro-catalytic degradation process, and the produced OH radicals are the major active species for ceftazidime degradation. The synergistic effects between MoO 3 and Nano-G greatly contribute to the activation of H 2 O molecules to produce OH, meanwhile the special sesame cake-like structure facilitates to the exposure of contaminants to OH on active sites to enhance the degradation efficiency. These results suggest that MoO 3 /Nano-G electrodes can be considered as the promising catalysts for treating bio-refractory organic wastewater. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Analysis of laser-generated plasma ionizing radiation by synthetic single crystal diamond detectors

    Czech Academy of Sciences Publication Activity Database

    Marinelli, M.; Milani, E.; Prestopino, G.; Verona, C.; Verona-Rinati, G.; Cutroneo, M.; Torrisi, L.; Margarone, Daniele; Velyhan, Andriy; Krása, Josef; Krouský, Eduard

    2013-01-01

    Roč. 272, May (2013), s. 104-108 ISSN 0169-4332 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279; GA MŠk EE.2.3.20.0087; GA MŠk(CZ) 7E09092; GA MŠk(CZ) LC528 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; OPVK 3 Laser Zdroj(XE) CZ.1.07/2.3.00/20.0279; OP VK 2 LaserGen(XE) CZ.1.07/2.3.00/20.0087; 7FP LASERLAB-EUROPE(XE) 228334 Program:EE; FP7 Institutional support: RVO:68378271 Keywords : single crystal diamond * diamond detector * laser-generated plasma * ionizing radiation * time-of-fight spectrometer Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.538, year: 2013

  6. Radial Photonic Crystal for detection of frequency and position of radiation sources.

    Science.gov (United States)

    Carbonell, J; Díaz-Rubio, A; Torrent, D; Cervera, F; Kirleis, M A; Piqué, A; Sánchez-Dehesa, J

    2012-01-01

    Based on the concepts of artificially microstructured materials, i.e. metamaterials, we present here the first practical realization of a radial wave crystal. This type of device was introduced as a theoretical proposal in the field of acoustics, and can be briefly defined as a structured medium with radial symmetry, where the constitutive parameters are invariant under radial geometrical translations. Our practical demonstration is realized in the electromagnetic microwave spectrum, because of the equivalence between the wave problems in both fields. A device has been designed, fabricated and experimentally characterized. It is able to perform beam shaping of punctual wave sources, and also to sense position and frequency of external radiators. Owing to the flexibility offered by the design concept, other possible applications are discussed.

  7. Spectrally and Spatially Resolved Smith-Purcell Radiation in Plasmonic Crystals with Short-Range Disorder

    Directory of Open Access Journals (Sweden)

    I. Kaminer

    2017-01-01

    Full Text Available Electrons interacting with plasmonic structures can give rise to resonant excitations in localized plasmonic cavities and to collective excitations in periodic structures. We investigate the presence of resonant features and disorder in the conventional Smith-Purcell effect (electrons interacting with periodic structures and observe the simultaneous excitation of both the plasmonic resonances and the collective excitations. For this purpose, we introduce a new scanning-electron-microscope-based setup that allows us to probe and directly image new features of electron-photon interactions in nanophotonic structures like plasmonic crystals with strong disorder. Our work creates new possibilities for probing nanostructures with free electrons, with potential applications that include tunable sources of short-wavelength radiation and plasmonic-based particle accelerators.

  8. Thermal radiative properties of a photonic crystal structure sandwiched by SiC gratings

    International Nuclear Information System (INIS)

    Wang, Weijie; Fu, Ceji; Tan, Wenchang

    2014-01-01

    Spectral and directional control of thermal emission holds substantial importance in applications where heat transfer is predominantly by thermal radiation. In this work, we investigate the spectral and directional properties of thermal emission from a novel structure, which is constituted with a photonic crystal (PC) sandwiched by SiC gratings. Numerical results based on the RCWA algorithm reveal that greatly enhanced emissivity can be achieved in a broad frequency band and in a wide range of angle of emission. This promising emission feature is found to be caused by excitation of surface phonon polaritons (SPhPs), PC mode, magnetic polaritons (MPs) and Fabry–Pérot resonance from high order diffracted waves, as well as the coupling between different resonant modes. We show that the broad enhanced emissivity band can be manipulated by adjusting the dimensional parameters of the structure properly. -- Highlights: ► We propose a novel structure made of a photonic crystal sandwiched by SiC gratings. ► High emissivity can be achieved in a broad spectral band and angle range. ► We explain the result by excitation of multiple excited modes and their coupling

  9. Radiation damage in urania crystals implanted with low-energy ions

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tien Hien, E-mail: tien-hien.nguyen@u-psud.fr [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM – UMR 8609), CNRS-IN2P3-Université Paris-Sud, Bâtiments 104-108, 91405 Orsay Campus (France); Garrido, Frédérico; Debelle, Aurélien; Mylonas, Stamatis [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM – UMR 8609), CNRS-IN2P3-Université Paris-Sud, Bâtiments 104-108, 91405 Orsay Campus (France); Nowicki, Lech [The Andrzej Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland); Thomé, Lionel; Bourçois, Jérôme; Moeyaert, Jérémy [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM – UMR 8609), CNRS-IN2P3-Université Paris-Sud, Bâtiments 104-108, 91405 Orsay Campus (France)

    2014-05-01

    Implantations with low-energy ions (470-keV Xe and 500-keV La with corresponding ion range Rp ∼ 85 nm and range straggling ΔRp ∼ 40 nm) have been performed to investigate both radiation and chemical effects due to the incorporation of different species in UO{sub 2} (urania) crystals. The presence of defects was monitored in situ after each implantation fluence step by the RBS/C technique. Channelling data were analysed afterwards by Monte-Carlo simulations with a model of defects involving (i) randomly displaced atoms (RDA) and (ii) distorted rows, i.e. bent channels (BC). While increasing the ion fluence, the accumulation of RDA leads to a steep increase of the defect fraction in the range from 4 to 7 dpa regardless of the nature of bombarding ions followed by a saturation plateau over a large dpa range. A clear difference of 6% in the yield of saturation plateaus between irradiation with Xe and La ions was observed. Conversely, the evolutions of the fraction of BC showed a similar regular increase with increasing ion fluence for both ions. Moreover, this increase is shifted to a larger fluence in comparison to the sharp increase step of RDA. This phenomenon indicates a continuous structural modification of UO{sub 2} crystals under irradiation unseen by the measurement of RDA.

  10. Organic Crystal Growth Facility (OCGF) and Radiation Monitoring Container Device (RMCD) Groups in

    Science.gov (United States)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured are activities of the Organic Crystal Growth Facility (OCGF) and Radiation Monitoring Container Device (RMCD) groups in the SL POCC during the IML-1 mission.

  11. Studies of synthetic single crystal diamonds as reliable dosimeters for electromagnetic ionizing radiation fields

    International Nuclear Information System (INIS)

    Pillon, Mario; Angelone, Maurizio; Almaviva, Salvatore; Marinelli, Marco; Milani, Enrico; Prestopino, Giuseppe; Tucciarone, Aldo; Verona, Claudio; Verona-Rinati, Gianluca; Baccaro, Stefania

    2008-01-01

    Full text: Spatial high resolution dosimetry is very important in all areas of radiation therapy and, in particular, whenever narrow photon beams are required for Stereotactic Radiotherapy (SRT) and small field segments are used for Intensity Modulated Radiotherapy (IMRT). The available detectors are often too large with respect to the beam size considered, which is characterized by high dose gradients and lack of charged particle equilibrium. An ideal solution is represented by single crystal diamond detectors, which are small solid state devices, radiation hard, tissue equivalent and capable of real time response. In the present work, synthetic CVD single crystal diamond dosimeters (SCD), fabricated at Rome 'Tor Vergata' University Laboratories, have been characterized. The devices consist of a p-type/intrinsic/metal layered structure. They have been analyzed in terms of reproducibility, linearity, depth dose distributions, energy, dose rate and field size dependence by using 6 and 10 MV Bremsstrahlung x-ray beams, produced by a CLINAC DHX Varian accelerator and the gamma irradiation facility CALLIOPE. The gamma Calliope plant is a pool-type irradiation facility equipped with the 60 Co γ-source in a high-volume (7 x 6 x 3.9m 3 ). Maximum dose rate is 9400 Gy/h. The measurements have been compared with a calibrated ionization chamber and a Fricke dosimeter. The SCD's response is shown to be linearly correlated with the ionization chamber output over the whole dose range explored. Reproducibility, energy and dose rate dependency lower than 1% were observed. A depth dose distribution and irradiation field dependence in agreement with those obtained by reference dosimeters within 2% of accuracy were demonstrated as well. The results of this study are very encouraging about the suitability of SCD for clinical dosimetry with photon beams. (author)

  12. Analysis of picosecond pulsed laser melted graphite

    International Nuclear Information System (INIS)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.

    1986-01-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm -1 and the disorder-induced mode at 1360 cm -1 , the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence

  13. Radiation emission at channeling of electrons in a strained layer Si1-xGex undulator crystal

    DEFF Research Database (Denmark)

    Backe, H.; Krambrich, D.; Lauth, W.

    2013-01-01

    ML source. Spectra taken at the beam energy of 270 MeV at channeling in the undulating (110) planes exhibit a broad excess yield around the theoretically expected photon energies of 0.069 MeV, as compared with a flat silicon reference crystal. Model calculations on the basis of synchrotron-like radiation...

  14. Using a helium--neon laser to convert infrared radiation to visible emission on lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Aurtyunyan, E.A.; Kostanyan, R.B.; Mkrtchyan, V.S.; Mkrtchyan, M.A.

    1975-01-01

    The conversion of infrared emission to the visible region was investigated by mixing with helium-neon laser emission in lithium niobate crystals. The infrared source was a Globar, and the laser was the LG-75. Emission of the sum frequencies was filtered out. The spectral composition of the converted radiation was analyzed by the ISP-51 spectrograph with an FEU-79 photomultiplier at the output. The amplified photomultiplier signal was recorded by the ChZ-33 frequency meter. By varying the angle between the optical axis of the crystal and the incident emission, infrared radiation in the 1.75 to 3.3 ..mu..m wavelength band could be converted to visible emission. It is suggested that measurement of the wavelength of converted emission might be used to study the distribution of concentration nonhomogeneities in crystals.

  15. Thermal stability of radiation-induced free radicals in γ-irradiated l-alanine single crystals

    International Nuclear Information System (INIS)

    Maltar-Strmecki, N.; Rakvin, B.

    2005-01-01

    Decay of the radiation-induced stable free radicals in l-alanine single crystals and powders at the temperatures from 379 to 476K was examined by electron paramagnetic resonance. For single crystals, the calculated activation energy of the radical decay is 104.3±1.7kJ/mol (i.e. 12 538+/-202K) and the frequency factor lnν 0 is 24.1±0.4min -1 . The lifetime of the radical in single crystals at 296K is 162 years. The results confirm the long-term stability of the radicals, but the decay was found to be faster in large crystals than in powders

  16. Optical properties and radiation response of Ce{sup 3+}-doped GdScO{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Akihiro; Fujimoto, Yutaka; Futami, Yoshisuke; Yokota, Yuui; Kurosawa, Shunsuke [Institute of Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Kochurikhin, Vladimir [General Physics Institute, 38 Vavilov Str., 119991 Moscow (Russian Federation); Yanagida, Takayuki [New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yoshikawa, Akira [Institute of Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2012-12-15

    10%-Ce doped GdScO{sub 3} perovskite type single crystal was grown by the Czochralski process. The Ce concentration in the crystal was measured. No impurity phases were observed by powder X-ray diffraction analysis. We evaluated the optical and radiation properties of the grown crystal. Ce:GdScO{sub 3} crystal showed photo- and radio-luminescence peaks due to Ce{sup 3+} of 5d-4f transition and colour centre. The photoluminescence decay time was sub-ns order. The relative light yield under 5.5 MeV alpha-ray excitation was calculated to be approximately 9% of BGO. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Meshed doped silicon photonic crystals for manipulating near-field thermal radiation

    Science.gov (United States)

    Elzouka, Mahmoud; Ndao, Sidy

    2018-01-01

    The ability to control and manipulate heat flow is of great interest to thermal management and thermal logic and memory devices. Particularly, near-field thermal radiation presents a unique opportunity to enhance heat transfer while being able to tailor its characteristics (e.g., spectral selectivity). However, achieving nanometric gaps, necessary for near-field, has been and remains a formidable challenge. Here, we demonstrate significant enhancement of the near-field heat transfer through meshed photonic crystals with separation gaps above 0.5 μm. Using a first-principle method, we investigate the meshed photonic structures numerically via finite-difference time-domain technique (FDTD) along with the Langevin approach. Results for doped-silicon meshed structures show significant enhancement in heat transfer; 26 times over the non-meshed corrugated structures. This is especially important for thermal management and thermal rectification applications. The results also support the premise that thermal radiation at micro scale is a bulk (rather than a surface) phenomenon; the increase in heat transfer between two meshed-corrugated surfaces compared to the flat surface (8.2) wasn't proportional to the increase in the surface area due to the corrugations (9). Results were further validated through good agreements between the resonant modes predicted from the dispersion relation (calculated using a finite-element method), and transmission factors (calculated from FDTD).

  18. The accumulation of femtosecond laser radiation energy in crystals of lithium fluoride

    Science.gov (United States)

    Dresvyanskiy, V. P.; Glazunov, D. S.; Alekseev, S. V.; Losev, V. F.; Chadraa, B.; Bukhtsooj, O.; Baasankhuu, N.; Zandan, B.; Martynovich, E. F.

    2015-12-01

    We present the results of studies of energy accumulation during the non-destructive interaction of extremely intense near infrared laser radiation with model wide band gap dielectric crystals of lithium fluoride, when the intensity of pulses is sufficient for effective highly nonlinear absorption of light and for the excitation of the electron subsystem of matter and the energy of pulses is still not sufficient for significant heating, evaporation, laser breakdown or other destruction to occur. We studied the emission of energy in the form of light sum of thermally stimulated luminescence accumulated under conditions of self-focusing and multiple filamentation of femtosecond laser radiation. It was established that it's the F2 and F3+ color centers and supplementary to them centers of interstitial type which accumulate energy under the action of a single femtosecond laser pulses. When irradiated by series of pulses the F3, F3- and F4 centers additionally appear. F2 centers are the main centers of emission in the process of thermally stimulated luminescence of accumulated energy. The interstitial fluoride ions (I-centers) are the kinetic particles. They split off from the X3- centers in the result of thermal decomposition of latter on the I-centers and molecules X20. I-centers recombine with F3+ centers and form F2 centers in excited state. The latter produce the characteristic emission spectrum emitted in the form of thermally stimulated luminescence.

  19. Ultralong Radiative States in Hybrid Perovskite Crystals: Compositions for Submillimeter Diffusion Lengths

    KAUST Repository

    Alarousu, Erkki

    2017-08-29

    Organic-inorganic hybrid perovskite materials have recently evolved into the leading candidate solution-processed semiconductor for solar cells due to their combination of desirable optical and charge transport properties. Chief among these properties is the long carrier diffusion length, which is essential to optimizing the device architecture and performance. Herein, we used time-resolved photoluminescence (at low excitation fluence, 10.59 μJ·cm upon two-photon excitation), which is the most accurate and direct approach to measure the radiative charge carrier lifetime and diffusion lengths. Lifetimes of about 72 and 4.3 μs for FAPbBr and FAPbI perovskite single crystals have been recorded, presenting the longest radiative carrier lifetimes reported to date for perovskite materials. Subsequently, carrier diffusion lengths of 107.2 and 19.7 μm are obtained. In addition, we demonstrate the key role of the organic cation units in modulating the carrier lifetime and its diffusion lengths, in which the defect formation energies for FA cations are much higher than those with the MA ones.

  20. Radiation damage studies on synthetic NaCl crystals and natural rock salt for waste disposal applications

    International Nuclear Information System (INIS)

    Klaffky, R.W.; Swyler, K.J.; Levy, P.W.

    1979-01-01

    Radiation damage studies are being made on synthetic NaCl and natural rock salt crystals from various localities, including potential repository sites. Measurements are being made with equipment for recording the radiation induced F-center and colloid particle absorption bands during irradiation with 1.5 MeV electrons at various temperatures. A technique has been developed to resolve the overlapping F-center and colloid bands. The resulting spectra and curves of absorption vs. dose provide information on colloid particle size and concentration, activation energies for processes occurring during colloid formation, and additional data suggesting that both strain and radiation induced dislocations contribute to the colloid formation process

  1. Comparison of the luminescent properties of Lu3Al5O12:Pr crystals and films under synchrotron radiation excitation

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Gorbenko, V.; Zorenko, T.; Voznyak, T.; Nizankovskiy, S.

    2016-01-01

    The work is dedicated to comparative investigation of the luminescent properties of Lu 3 Al 5 O 12 :Pr(LuAG:Pr) single crystals and single crystalline films using excitation by synchrotron radiation with an energy of 3.7–25 eV in the exciton range of LuAG host. We have found that the differences in the excitation spectra and luminescence decay kinetics of LuAG:Pr crystals and films are caused by involving the LuAl antisite defects and oxygen vacancies in the crystals and Pb 2+ flux related dopants in the films in the excitation processes of the Pr 3+ luminescence. Taking into account these differences, we have determined the energy structure of the Pr 3+ ions in LuAG host and estimated the differences in the energies of creation of excitons bound with the isolated Pr 3+ ions in LuAG:Pr films and the dipole Pr–LuAl antisite defect centers in the crystal counterpart. - Highlights: • Comparison of the luminescent properties of LuAG:Pr single crystals and films. • Superposition of the Pr 3+ and defect centers luminescence of LuAG:Pr crystal. • Different creation energies of an excitons bound with the Pr 3+ in LuAG:Pr crystals and films. • More faster decay kinetics of the Pr 3+ luminescence in LuAG:Pr films. • Low content of slow emission component in LuAG:Pr films.

  2. Radiation heredity: unusual structural-phase states and metallic crystals properties

    International Nuclear Information System (INIS)

    Melikhov, V.D.; Skakov, M.K.

    1998-01-01

    Some experimental results allowing to judge about possibilities of unusual structural phase states formation during use irradiation and high temperature treatment of metallic crystals are considered. During study of pure (99.99 %) and especially pure (99.999 %) aluminium it was established, that after heating of preliminary irradiated samples in reactor, and non-irradiated ones up to temperatures above melting point (660 deg C), but not higher than 820 deg C, and cooling an microstructure and substructure of both irradiated and non-irradiated metals have been essentially distinguished with each other. If first of them had typically polycrystal construction, that second one was monocrystal with good developed initial substructure. Radiation effects have been preserved even in liquid metal if it was not overheated higher critical point, which is determined by phase transition from quasi-liquid state to true liquid one. During study of irradiation and postradiation treatment of structure and properties of intermetallides Fe 3 Al it was revealed, that in initially irradiated regulated alloys the radiation effect is preserving at heating of above 0.85 T melt (that essentially exceed order-disorder transition temperature) (550 deg C) in non-irradiated alloys of prolonged exposure and hardening. At that, irradiated-hardened alloy distinguishing from not hardened one by lattice parameter (on 0.1 %), by configuration of nearest surrounding of iron atoms in elementary cell, by regulating extent of different kind of atoms in lattice knocks. It was revealed, that at fluence (5·10 24 n·m 2 ) an appearance of new phases, distinguishing from matrix by component content. It was shown, that irradiation and post-radiation treatment are methods for creation unusual structural-phase states and attach to metals and alloys new properties

  3. A graphite nanoeraser

    DEFF Research Database (Denmark)

    Liu, Ze; Bøggild, Peter; Yang, Jia-rui

    2011-01-01

    We present here a method for cleaning intermediate-size (up to 50 nm) contamination from highly oriented pyrolytic graphite and graphene. Electron-beam-induced deposition of carbonaceous material on graphene and graphite surfaces inside a scanning electron microscope, which is difficult to remove...... by conventional techniques, can be removed by direct mechanical wiping using a graphite nanoeraser, thus drastically reducing the amount of contamination. We discuss potential applications of this cleaning procedure....

  4. Oxidation Resistant Graphite Studies

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  5. Method for producing dustless graphite spheres from waste graphite fines

    Science.gov (United States)

    Pappano, Peter J [Oak Ridge, TN; Rogers, Michael R [Clinton, TN

    2012-05-08

    A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.

  6. Graphite targets at LAMPF

    International Nuclear Information System (INIS)

    Brown, R.D.; Grisham, D.L.

    1983-01-01

    Rotating polycrystalline and stationary pyrolytic graphite target designs for the LAMPF experimental area are described. Examples of finite element calculations of temperatures and stresses are presented. Some results of a metallographic investigation of irradiated pyrolytic graphite target plates are included, together with a brief description of high temperature bearings for the rotating targets

  7. Crystal growth and characterization of europium doped lithium strontium iodide scintillator as an ionizing radiation detector

    Science.gov (United States)

    Uba, Samuel

    High performance detectors used in the detection of ionizing radiation is critical to nuclear nonproliferation applications and other radiation detectors applications. In this research we grew and tested Europium doped Lithium Strontium Iodide compound. A mixture of lithium iodide, strontium iodide and europium iodide was used as the starting materials for this research. Congruent melting and freezing temperature of the synthesized compound was determined by differential scanning calorimetry (DSC) using a Setaram Labsys Evo DSC-DTA instrument. The melting temperatures were recorded at 390.35°C, 407.59°C and freezing temperature was recorded at 322.84°C from a graph of heat flow plotted against temperature. The synthesized material was used as the charge for the vertical Bridgeman growth, and a 6.5 cm and 7.7cm length boule were grown in a multi-zone transparent Mullen furnace. A scintillating detector of thickness 2.53mm was fabricated by mechanical lapping in mineral oil, and scintillating response and timing were obtained to a cesium source using CS-137 isotope. An energy resolution (FWHM over peak position) of 12.1% was observed for the 662keV full absorption peak. Optical absorption in the UV-Vis wavelength range was recorded for the grown crystal using a U-2900 UV/VIS Spectrophotometer. Absorption peaks were recorded at 194nm, 273nm, and 344nm from the absorbance spectrum, various optical parameters such as absorption coefficient, extinction coefficient, refractive index, and optical loss were derived. The optical band gap energy was calculated using Tauc relation expression at 1.79eV.

  8. A mechanistic model for radiation-induced crystallization and amorphization in U3Si

    International Nuclear Information System (INIS)

    Rest, J.

    1994-06-01

    Radiation-induced amorphization is assessed. A rate-theory model is formulated wherein amorphous clusters are formed by the damage event These clusters are considered centers of expansion (CE), or excess-free-volume zones. Simultaneously, centers of compression (CC) are created in the material. The CCs are local regions of increased density that travel through the material as an elastic (e.g., acoustic) shock wave. The CEs can be annihilated upon contact with CCs (annihilation probability depends on height of the energy barrier), forming either a crystallized region indistinguishable from the host material, or a region with a slight disorientation (recrystallized grain). Recrystallized grains grow by the accumulation of additional CCs. Full amorphization is calculated on the basis of achieving a fuel volume fraction consistent with the close packing of spherical entities. Amorphization of a recrystallized grain is hindered by the grain boundary. Preirradiation of U 3 Si above the critical temperature for amorphization results in of nanometer-size grains. Subsequent reirradiation below the critical temperature shows that the material has developed a resistance to radiation-induced amorphization higher dose needed to amorphize the preirradiated samples than now preirradiated samples. In the model, it is assumed that grain boundaries act as effective defect sinks, and that enhanced defect annihilation is responsible for retarding amorphization at low temperature. The calculations have been validated against data from ion-irradiation experiments with U 3 Si. To obtain additional validation, the model has also been applied to the ion-induced motion of the interface between crystalline and amorphous phases of U 3 Si. Results of this analysis are compared to data and results of calculations for ion bombardment of Si

  9. Crystal Growth of New Radiation Detector Materials in Microgravity, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — RMD proposes to conduct a series of crystal growth experiments on the International Space Station in the SUBSA furnace inside the MSG glovebox to grow crystals of...

  10. Electrochemical treatment of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Podlovilin, V.I.; Egorov, I.M.; Zhernovoj, A.I.

    1983-01-01

    In the course of investigating various modes of electrochemical treatment (ECT) it has been found that graphite anode treatment begins under the ''glow mode''. A behaviour of some marks of graphite with the purpose of ECT technique development in different electrolytes has been tested. Electrolytes have been chosen of three types: highly alkaline (pH 13-14), neutral (pH-Z) and highly acidic (pH 1-2). For the first time parallel to mechanical electroerosion treatment, ECT of graphite and carbon graphite materials previously considered chemically neutral is proposed. ECT of carbon graphite materials has a number of advantages as compared with electroerrosion and mechanical ones with respect to the treatment rate and purity (ronghness) of the surface. A small quantity of sludge (6-8%) under ECT is in highly alkali electrolytes.

  11. Electrochemical treatment of graphite

    International Nuclear Information System (INIS)

    Podlovilin, V.I.; Egorov, I.M.; Zhernovoj, A.I.

    1983-01-01

    In the course of investigating various modes of electroche-- mical treatment (ECT) it has been found that graphite anode treatment begins under the ''glow mode''. A behaviour of some marks of graphite with the purpose of ECT technique development in different electrolytes has been tested. Electrolytes have been chosen of three types: highly alkaline (pH 13-14), neutral (pH-Z) and highly acidic (pH 1-2). For the first time parallel to mechanical electroerosion treatment ECT graphite and carbon graphite materials previously considered chemically neutral is proposed. ECT of carbon graphite materials has a number of advantages as compared with electroerrosion and mechanical ones this is treatment rate and purity (ronghness) of the surface. A sMall quantity of sludge (6-8%) under ECT is in highly alkali electrolytes

  12. Development of radiation detectors based on KMgF3:Tb nano crystals synthesized by microwave

    International Nuclear Information System (INIS)

    Herrero C, R.; Villicana M, M.; Garcia S, L.; Custodio C, M. A.; Gonzalez M, P. R.; Mendoza A, D.

    2015-10-01

    The development of new thermoluminescent (Tl) materials of the size of KMgF 3 :Tb nano crystals by microwave technique is a new alternative for obtaining new radiation detectors (dosimeters) for environmental dosimetry, personal, clinical, research and industry. This technique requires the preparation of the precursors of magnesium trifluoro acetates Mg(CF 3 COO) 2 and potassium K(CF 3 COO), finally the synthesis of KMgF 3 :Tb is realized via microwave. The synthesis was carried out in a microwave reactor mono wave 300 Anton-Paar. Trifluoro acetates are introduced into the reactor at a ratio of 1:1 mmol under inert atmosphere. The product was collected for centrifugation, washed several times with ethanol and dried at 60 degrees C for 10 h. The KMgF 3 obtained without doping and doped with Tb +3 ions were subjected to heat treatment at high temperatures for different lengths of time for their sensitization, the samples treated at 700 degrees C were those showing better Tl signal to be irradiated with gammas of 60 Co. The characterization of the obtained materials was carried out by X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. (Author)

  13. Gamma radiation effect on n-InP crystals with impurity clusters

    International Nuclear Information System (INIS)

    Vitovskij, N.A.; Dakhno, A.N.; Emel'yanenko, O.V.; Lagunova, T.S.; Mashovets, T.V.

    1982-01-01

    Parameters of acceptor-impurity atom clusters have been investigated for the cases of nonirradiated and gamma-irradiated n-InP crystals. Temperature dependences of electric conductivity, the Hall coefficient and the longitudinal magnetoresistance have been measured both in darkness and in lighting, the kinetics of the photoconductivity drop has also been studied. It is shown that in nonirradiated n-InP:Cu and n-InP-Zn the number of atoms in the cluster may be about 25-30. The concentration of the clusters may reach 10 11 cm -3 . Gamma-radiation increases the number of atoms in the cluster up to approximately equal to 40 with the insignificant change of the radius. In the nonirradiated material, the potential barrier heights created by the cluster are 0.15 eV and 0.4 eV at 78 and 300 K, respectively. The irradiation increases the barrier and the fraction of the volume occupied by the space-charge regions which overlap if the dose is sufficiently high

  14. Structuring of material parameters in lithium niobate crystals with low-mass, high-energy ion radiation

    Science.gov (United States)

    Peithmann, K.; Eversheim, P.-D.; Goetze, J.; Haaks, M.; Hattermann, H.; Haubrich, S.; Hinterberger, F.; Jentjens, L.; Mader, W.; Raeth, N. L.; Schmid, H.; Zamani-Meymian, M.-R.; Maier, K.

    2011-10-01

    Ferroelectric lithium niobate crystals offer a great potential for applications in modern optics. To provide powerful optical components, tailoring of key material parameters, especially of the refractive index n and the ferroelectric domain landscape, is required. Irradiation of lithium niobate crystals with accelerated ions causes strong structured modifications in the material. The effects induced by low-mass, high-energy ions (such as 3He with 41 MeV, which are not implanted, but transmit through the entire crystal volume) are reviewed. Irradiation yields large changes of the refractive index Δn, improved domain engineering capability within the material along the ion track, and waveguiding structures. The periodic modification of Δn as well as the formation of periodically poled lithium niobate (PPLN) (supported by radiation damage) is described. Two-step knock-on displacement processes, 3He→Nb and 3He→O causing thermal spikes, are identified as origin for the material modifications.

  15. Electronic relaxations of radiative defects of the anion sublattice in cesium bromide crystals and exoemission of electrons

    CERN Document Server

    Galyij, P V

    2002-01-01

    The paper presents the results of investigations of thermostimulated exoelectron emission (TSEE) from CsBr crystal, excited by moderate doses (D <= 10 sup 4 Gy) of ultraviolet (h nu <= 7 eV) that selectively creates anion excitons and radiative defects in the anion sublattice. Having used the previously established connection between thermoactivated processes such as thermostimulated exoemission, electroconductivity, and luminescence in the irradiated crystal lattice, the concentrations of exoemission-active centers (EAC) and kinetics parameters of TSEE are calculated. The EAC concentration calculated on a base of the bulk, thermoactivated-recombinational, and band-gap Auger-like exoemission mechanisms, are in satisfactory agreement with the concentration of electron color centers in the irradiated crystals.

  16. Effect of microwave (24 GHz) radiation treatment on impurity photoluminescence of CdTe:Cl single crystals

    International Nuclear Information System (INIS)

    Red'ko, R.A.; Budzulyak, S.I.; Vakhnyak, N.D.; Demchina, L.A.; Korbutyak, D.V.; Konakova, R.V.; Lotsko, A.P.; Okhrimenko, O.B.; Berezovskaya, N.I.; Bykov, Yu.V.; Egorov, S.V.; Eremeev, A.G.

    2016-01-01

    Effect of microwave radiation (24 GHz) on transformation of impurity-defect complexes in CdTe:Cl single crystals within the spectral range 1.3–1.5 eV was studied using the low-temperature (T=2 K) photoluminescence (PL) technique. The shapes of donor–acceptor pairs (DAP) and Y PL bands were studied in detail. The Huang–Rhys factor was calculated for the DAP luminescence depending on microwave radiation treatment. The increase of the distance between the DAP components responsible for emission at 1.455 eV and the quenching of Y-band due to microwave irradiation were observed. The method to decrease the amount of extended defects in near-surface layers of CdTe:Cl single crystals has been proposed.

  17. Focusing of white synchrotron radiation using large-acceptance cylindrical refractive lenses made of single – crystal diamond

    Energy Technology Data Exchange (ETDEWEB)

    Polikarpov, M., E-mail: polikarpov.maxim@mail.ru [Immanuel Kant Baltic Federal University, Nevskogo 14a, 23600 Kaliningrad (Russian Federation); Snigireva, I. [European Synchrotron Radiation Facility, 71 avenue des Martyrs, Grenoble 38043 (France); Snigirev, A. [Immanuel Kant Baltic Federal University, Nevskogo 14a, 23600 Kaliningrad (Russian Federation); European Synchrotron Radiation Facility, 71 avenue des Martyrs, Grenoble 38043 (France)

    2016-07-27

    Large-aperture cylindrical refractive lenses were manufactured by laser cutting of single-crystal diamond. Five linear single lenses with apertures of 1 mm and the depth of the structure of 1.2 mm were fabricated and tested at the ESRF ID06 beamline performing the focusing of white-beam synchrotron radiation. Uniform linear focus was stable during hours of exposure, representing such lenses as pre-focusing and collimating devices suitable for the front-end sections of today synchrotron radiation sources.

  18. Focusing of white synchrotron radiation using large-acceptance cylindrical refractive lenses made of single – crystal diamond

    International Nuclear Information System (INIS)

    Polikarpov, M.; Snigireva, I.; Snigirev, A.

    2016-01-01

    Large-aperture cylindrical refractive lenses were manufactured by laser cutting of single-crystal diamond. Five linear single lenses with apertures of 1 mm and the depth of the structure of 1.2 mm were fabricated and tested at the ESRF ID06 beamline performing the focusing of white-beam synchrotron radiation. Uniform linear focus was stable during hours of exposure, representing such lenses as pre-focusing and collimating devices suitable for the front-end sections of today synchrotron radiation sources.

  19. Asymptomatic Intracorneal Graphite Deposits following Graphite Pencil Injury

    OpenAIRE

    Philip, Swetha Sara; John, Deepa; John, Sheeja Susan

    2012-01-01

    Reports of graphite pencil lead injuries to the eye are rare. Although graphite is considered to remain inert in the eye, it has been known to cause severe inflammation and damage to ocular structures. We report a case of a 12-year-old girl with intracorneal graphite foreign bodies following a graphite pencil injury.

  20. Low-temperature radiation-induced polymerization of vinyl monomers in the crystal matrix of polydimethyl siloxane

    International Nuclear Information System (INIS)

    Mujdinov, M.R.; Kiryukhin, D.P.; Barkalov, I.M.; Gol'danskij, V.I.

    1979-01-01

    It is shown that in the process of the slow cooling of vinyl monomer solution in dimethyl siloxane rubber (SKT mark) crystallization of SKT takes place, at that, considerable part of vinyl monomers (up to 70 wt. % of rubber) is sorbed in the pores of crystal matrix and it does not form its proper crystal phase. Slight anomalies in heat capacity in the 120-140 K range, the melting of non-sorbed part of MA and the melting of SKT + MA ''complex'' have been observed on the calorimetric curve at the SKT - methylacrylate (MA) system heating. In the process of heating such samples, irradiated at 77 K by γ-rays of 60 Co, heat evolution connected with sorbed monomer polarization, has been observed starting from 125-130 K. In the 140-200 K range already before MA and SKT melting intense polymerization takes place, which results in practically full monomer consumption and formation of graft copolymer. Radiation-chemical yield of monomer reduction reaches G(-M) approximately equal to 2x10 5 molecules for 100 eV, radiation yield of postpolymerization of crystal MA does not exceed G(-M) approximately equal to 50 molecules for 100 eV

  1. Quasicharacteristic radiation of relativistic electrons at orientation motion in lithium halides crystals along charged planes and axes

    Science.gov (United States)

    Maksyuta, N. V.; Vysotskii, V. I.; Efimenko, S. V.

    2016-07-01

    The paper deals with the investigation of the orientation motion of relativistic electrons in charged (111) planes and charged [110] axes of lithium halides ionic crystals of LiF, LiCl, LiBr and LiI. On the basis of these investigations the spectra of quasicharacteristic radiation for the electron beams with various Lorentz-factors both in planar and axial cases have been calculated numerically.

  2. Analysis of electrochemical disintegration process of graphite matrix

    International Nuclear Information System (INIS)

    Tian Lifang; Wen Mingfen; Chen Jing

    2010-01-01

    The electrochemical method with ammonium nitrate as electrolyte was studied to disintegrate the graphite matrix from the simulative fuel elements for high temperature gas-cooled reactor. The influences of process parameters, including salt concentration, system temperature and current density, on the disintegration rate of graphite fragments were investigated in the present work. The experimental results showed that the disintegration rate depended slightly on the temperature and salt concentration. The current density strongly affected the disintegration rate of graphite fragments. Furthermore, the content of introduced oxygen in final graphite fragments was independent of the current density and the concentration of electrolyte. Moreover, the structural evolution of graphite was analyzed based on the microstructural parameters determined by X-ray diffraction profile fitting analysis using MAUD (material analysis using diffraction) before and after the disintegration process. It may safely be concluded that the graphite disintegration can be ascribed to the influences of the intercalation of foreign molecules in between crystal planes and the partial oxidation involved. The disintegration process was described deeply composed of intercalate part and further oxidation part of carbon which effected together to lead to the collapse of graphite crystals.

  3. First studies of 500-nm Cherenkov radiation from 255-MeV electrons in a diamond crystal

    Energy Technology Data Exchange (ETDEWEB)

    Takabayashi, Y., E-mail: takabayashi@saga-ls.jp [SAGA Light Source, 8-7 Yayoigaoka, Tosu, Saga 841-0005 (Japan); Fiks, E.I. [National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Pivovarov, Yu.L. [National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); National Research Tomsk State University, 634050 Tomsk (Russian Federation)

    2015-06-12

    The first experiment on Cherenkov light from 255-MeV electrons passing through a 50-μm-thick diamond crystal in a special geometry allowing extraction of 500-nm Cherenkov light at a right angle with respect to the electron beam direction has been performed at the injector linac of SAGA Light Source accelerator facility. The dependence of 500-nm Cherenkov light intensity (separated by a band-pass filter) on the crystal rotation angle was measured by a CCD detector. The experimentally obtained rocking curve with an intense maximum is theoretically explained as the projector effect of Cherenkov light deflected by the exit surface of the crystal. The width of the rocking curve is explained by the convolution of the standard Tamm–Frank angular distribution of Cherenkov radiation with chromatic aberration, the multiple scattering of electrons in a crystal, and initial electron beam angular divergence. In addition, it is found that the Cherenkov light intensity did not change under the (220) planar channeling condition, which is consistent with a recent theory. - Highlights: • Cherenkov light from 255-MeV electrons in a diamond crystal has been investigated. • The Cherenkov light from channeled electrons has been observed for the first time. • The experimental results are in good agreement with theory.

  4. Recent developments in graphite

    International Nuclear Information System (INIS)

    Cunningham, J.E.

    1983-01-01

    Overall, the HTGR graphite situation is in excellent shape. In both of the critical requirements, fuel blocks and support structures, adequate graphites are at hand and improved grades are sufficiently far along in truncation. In the aerospace field, GraphNOL N3M permits vehicle performance with confidence in trajectories unobtainable with any other existing material. For fusion energy applications, no other graphite can simultaneously withstand both extreme thermal shock and neutron damage. Hence, the material promises to create new markets as well as to offer a better candidate material for existing applications

  5. Graphite for fusion energy applications

    International Nuclear Information System (INIS)

    Eatherly, W.P.; Clausing, R.E.; Strehlow, R.A.; Kennedy, C.R.; Mioduszewski, P.K.

    1987-03-01

    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source

  6. Evolution of energy deposition processes in anthracene single crystal from photochemistry to radiation chemistry under excitation with synchrotron radiation from 3 to 700 eV

    International Nuclear Information System (INIS)

    Nakagawa, Kazumichi; Jin, Zhaohui; Shimoyama, Iwao; Miyake, Yasuyuki; Ueno, Madoka; Kishigami, Yoichi; Horiuchi, Hiroki; Tanaka, Masahito; Kaneko, Fusae; Nishimagi, Hironobu; Kobayashi, Hiroyuki; Kotani, Masahiro

    2008-01-01

    Absolute values of quantum yield Φ(hν) of singlet exciton formation in anthracene single crystals were measured as a function of photon energy hν, with the usage of synchrotron radiation (SR) in 3-700 eV region. Values of Φ(hν) were found to increase linearly for hν≥75 eV. For hν≤40 eV, values of Φ(hν) gave a wealth of structures and are not linear to hν. Because number of secondary electrons produced by radiation is thought to increase in proportional to the incident photon energy, it is natural to conclude that the radiation chemistry effect becomes dominant above 75 eV. On the other hand, values of Φ(hν) showed response due to resonance rather than linear dependence with hν, which implies that the photochemical effect is dominant below 40 eV

  7. A study of the impact of radiation exposure on the uniformity of large CsI(Tl) crystals for the BaBar detector

    International Nuclear Information System (INIS)

    Hryn'ova, Tetiana; Kim, Peter; Kocian, Martin; Perl, Martin; Rogers, Howard; Schindler, Rafe H.; Wisniewski, William J.

    2004-01-01

    We describe an apparatus that allows simultaneous exposure of large CsI(Tl) crystals to ionizing radiation and precise measurement of the longitudinal changes in light yield of the crystals. We present herein the results from this device for exposures up to 10krad

  8. Nondestructive evaluation of nuclear-grade graphite

    Science.gov (United States)

    Kunerth, D. C.; McJunkin, T. R.

    2012-05-01

    The material of choice for the core of the high-temperature gas-cooled reactors being developed by the U.S. Department of Energy's Next Generation Nuclear Plant Program is graphite. Graphite is a composite material whose properties are highly dependent on the base material and manufacturing methods. In addition to the material variations intrinsic to the manufacturing process, graphite will also undergo changes in material properties resulting from radiation damage and possible oxidation within the reactor. Idaho National Laboratory is presently evaluating the viability of conventional nondestructive evaluation techniques to characterize the material variations inherent to manufacturing and in-service degradation. Approaches of interest include x-ray radiography, eddy currents, and ultrasonics.

  9. Influence of variable tungsten valency on optical transmittance and radiation hardness of lead tungstate (PWO) scintillation crystals

    CERN Document Server

    Burachas, S; Makov, I; Saveliev, Yu; Ippolitov, M S; Man'ko, V; Nikulin, S P; Nyanin, A; Vasilev, A; Apanasenko, A; Tamulaitis, G

    2003-01-01

    A new approach to interpret the radiation hardness of PbWO//4 (PWO) scintillators is developed by revealing importance of the inclusions of tungsten oxides WO//3//-//x with variable valency. It is demonstrated that the influence of the ionizing radiation on PWO is, in many aspects, similar to the effect of the high-temperature annealing in oxygenless ambient. In both cases, a valency change of the tungsten oxides is initiated and results in induced absorption and, consequently, in crystal coloration. In the PWO crystals doped with L//2O//3 (L = Y, La, Gd), the radiation hardness and the optical properties are mainly affected by inclusions of W//1//-//yL//yO//3//- //x (0 less than x less than 0.3) instead of inclusions of WO//3//- //x prevailing in the undoped samples. It is demonstrated that the radiation-induced bleaching and the photochromic effect of PWO are caused by phase transitions in the inclusions of tungsten oxide. Thermodynamic conditions for the phase transitions are discussed and the optimal oxid...

  10. Optical spectroscopy and microscopy of radiation-induced light-emitting point defects in lithium fluoride crystals and films

    Science.gov (United States)

    Montereali, R. M.; Bonfigli, F.; Menchini, F.; Vincenti, M. A.

    2012-08-01

    Broad-band light-emitting radiation-induced F2 and F3+ electronic point defects, which are stable and laser-active at room temperature in lithium fluoride crystals and films, are used in dosimeters, tuneable color-center lasers, broad-band miniaturized light sources and novel radiation imaging detectors. A brief review of their photoemission properties is presented, and their behavior at liquid nitrogen temperatures is discussed. Some experimental data from optical spectroscopy and fluorescence microscopy of these radiation-induced point defects in LiF crystals and thin films are used to obtain information about the coloration curves, the efficiency of point defect formation, the effects of photo-bleaching processes, etc. Control of the local formation, stabilization, and transformation of radiation-induced light-emitting defect centers is crucial for the development of optically active micro-components and nanostructures. Some of the advantages of low temperature measurements for novel confocal laser scanning fluorescence microscopy techniques, widely used for spatial mapping of these point defects through the optical reading of their visible photoluminescence, are highlighted.

  11. Carbon-14 Graphitization Chemistry

    Science.gov (United States)

    Miller, James; Collon, Philippe; Laverne, Jay

    2014-09-01

    Accelerator Mass Spectrometry (AMS) is a process that allows for the analysis of mass of certain materials. It is a powerful process because it results in the ability to separate rare isotopes with very low abundances from a large background, which was previously impossible. Another advantage of AMS is that it only requires very small amounts of material for measurements. An important application of this process is radiocarbon dating because the rare 14C isotopes can be separated from the stable 14N background that is 10 to 13 orders of magnitude larger, and only small amounts of the old and fragile organic samples are necessary for measurement. Our group focuses on this radiocarbon dating through AMS. When performing AMS, the sample needs to be loaded into a cathode at the back of an ion source in order to produce a beam from the material to be analyzed. For carbon samples, the material must first be converted into graphite in order to be loaded into the cathode. My role in the group is to convert the organic substances into graphite. In order to graphitize the samples, a sample is first combusted to form carbon dioxide gas and then purified and reduced into the graphite form. After a couple weeks of research and with the help of various Physics professors, I developed a plan and began to construct the setup necessary to perform the graphitization. Once the apparatus is fully completed, the carbon samples will be graphitized and loaded into the AMS machine for analysis.

  12. Melting temperature of graphite

    International Nuclear Information System (INIS)

    Korobenko, V.N.; Savvatimskiy, A.I.

    2001-01-01

    Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

  13. Radiation Characterization Summary: ACRR Polyethylene-Lead-Graphite (PLG) Bucket Located in the Central Cavity on the 32-Inch Pedestal at the Core Centerline (ACRR-PLG-CC-32-cl).

    Energy Technology Data Exchange (ETDEWEB)

    Parma, Edward J.,; Vehar, David W.; Lippert, Lance L.; Griffin, Patrick J.; Naranjo, Gerald E.; Luker, Spencer M.

    2015-06-01

    This document presents the facility-recommended characterization of the neutron, prompt gamma-ray, and delayed gamma-ray radiation fields in the Annular Core Research Reactor (ACRR) for the polyethylene-lead-graphite (PLG) bucket in the central cavity on the 32-inch pedestal at the core centerline. The designation for this environment is ACRR-PLG-CC-32-cl. The neutron, prompt gamma-ray, and delayed gamma-ray energy spectra, uncertainties, and covariance matrices are presented as well as radial and axial neutron and gamma-ray fluence profiles within the experiment area of the bucket. Recommended constants are given to facilitate the conversion of various dosimetry readings into radiation metrics desired by experimenters. Representative pulse operations are presented with conversion examples. Acknowledgements The authors wish to thank the Annular Core Research Reactor staff and the Radiation Metrology Laboratory staff for their support of this work. Also thanks to David Ames for his assistance in running MCNP on the Sandia parallel machines.

  14. Investigations of the energy and angular dependence of ultra-short radiation lengths in Si, Ge and W single crystals

    CERN Multimedia

    Very recently, experiments NA33 and WA81 have shown that pair production by energetic photons incident along crystalline directions is strongly enhanced as compared to the Bethe-Heitler value for amorphous targets. The enhanced pair production sets in at around 40 GeV in Ge crystals and rises almost linearly with photon energy up to a calculated maximum enhancement of around thirty. In Si, this maximum is expected to be nearly two orders of magnitude above the Bethe-Heitler value.\\\\ For GeV electrons/positrons incident along crystal axes, the radiation energy loss also shows a very large enhancement of approximately two orders of magnitude. In a 0.4 mm W crystal, a 100 GeV electron is expected to emit on average 70% of its total energy.\\\\ The combination of these two dramatic enhancements means that the electromagnetic shower develops much faster around crystalline directions, corresponding to ultrashort radiation lengths.\\\\ The aim of this experiment is to investigate the shower development in ...

  15. Variation of the properties of siliconized graphite during neutron irradiation

    International Nuclear Information System (INIS)

    Virgil'ev, Y.S.; Chugunova, T.K.; Pikulik, R.G.

    1986-01-01

    The authors evaluate the radiation-induced property changes in siliconized graphite of the industrial grades SG-P and SG-M. The authors simultaneously tested the reference (control) specimens of graphite that are used as the base for obtaining the SG-M siliconized graphite by impregnating with silicon. The suggested scheme (model) atributes the dimensional changes of the siliconized graphite specimens to the effect of the quantitative ratio of the carbide phase and carbon under different conditions of irradiation. If silicon is insufficient for the formation of a dense skeleton, graphite plays a devisive role, and it may be assumed that at an irradiation temperature greater than 600 K, the material shrinks. The presence of isolated carbide inclusions also affects the physicomechanical properties (including the anitfriction properties)

  16. The influence of sol on the behavior of melting and nonisothermal crystallization kinetic of radiation cross-linking HDPE

    International Nuclear Information System (INIS)

    Deng Pengyang; Xie Hongfeng; Deng Mingxiao; Zhong Xiaoguang

    2000-01-01

    By using DSC, the behavior of second melting and nonisothermal crystallization of pure gel pure sol and sol-gel blend of radiation crosslinking HDPE was studied. The authors found that, because of the existence of sol, there is notable difference between pure gel and pure sol or sol-gel blend. Under the same dose, the melting point and crystallization temperature of pure sol and sol-gel blend are higher than that of pure gel. At the same time, the authors also found that the Avrami exponent of original PE, pure sol and sol-gel blend is the similar to each other and different to that of pure gel, which means that the procedure of nucleation and growth of these samples is the same and also different to that of pure gel

  17. Development of a neutron irradiation device with a cooled crystal filter: Radiation physical properties and applications in in vivo irradiations

    International Nuclear Information System (INIS)

    Braetter, P.; Galinke, E.; Gatschke, W.; Gawlik, D.; Roesick, U.

    1979-01-01

    The radiation-physical and geometrical properties of a neutron-beam, collimated with a Bi-crystal filter were investigated at the reactor BER II. The influence of the crystal temperature as well as the actions of a reflector and a collimator on neutron flux-density and neutron field of the thermal neutrons were investigated. The dose contributions of the thermal, epithermal and fast neutrons as well as γ-radiation was determined by activation of the sample respective with TLD-measurements. The influence of irradiation and measurement geometry on the sensitivity and detection probability was investigated by means of phantom irradiations. The method prooved to be suitable, to detect changes of the Ca-content in a rat hind leg by about 10%. In investigations on animal groups of about 10 animals a threshold of detectability for changes of the ca-content is to be expected by about 4%. In a further group experiment it was found, that even in the case of multiple radiation the procedure of irradiation and measurement was not followed by a significant change in the Ca-content of the hind legs of the testing animals. (orig.) [de

  18. Fabrication of radiation detectors with HgI2 crystals grown from a solution

    International Nuclear Information System (INIS)

    Friant, Alain; Mellet, Jean; Saliou, Charles; Mohammed Brahim, Tayeb.

    1979-01-01

    Mercuric Iodide crystals grown from a solution of molecular complexes with dimethylsulfoxide have been evaluated as γ-ray and X-ray room temperature detectors. Compared with materials grown from the vapor phase these crystals are characterized by a larger size, a lower level of native defects, but a higher impurity level. Detector technology, X-ray and γ-ray (up to 662 keV) detection properties and characterization measurements (T.S.C., photoconductivity, photovoltaic effect) are described. The effect of light on crystal properties is briefly discussed [fr

  19. Anomalous effect of high-frequency ultrasound on radiation diffraction in deformed single crystals

    International Nuclear Information System (INIS)

    Iolin, E.M.; Rajtman, Eh.A.; Kuvaldin, B.V.; Zolotoyabko, Eh.V.

    1988-01-01

    Results are presented of a theoretical and experimental study of neutron and X-ray diffraction in defromed single crystals on high-frequency ultrasonic excitation. It is demonstrated theoretically that at a frequency exceeding a certain threshold value the ultrasound violates the adiabatic conditions for the excitation point motion on the dispersion surface branches. This leads to an anomalous (compared to diffraction for a perfect crystal) dependence of the diffraction intensity on the ultrasonic wave amplitude. The experimental data for Si crystals are in good agreement with the theoretical predictions

  20. Technical development of graphite waste treatment in NUPEC

    International Nuclear Information System (INIS)

    Saishu, S.; Inoue, T.

    2001-01-01

    In Japan, Tokai Power Station, which is a Gas Cooled Reactor and uses graphite as moderator, ceased operation at the end of March in 1998 and it is planned to transfer to decommissioning stage. In this decommissioning stage it is very important to be able to treat and dispose the graphite waste in order to carry out the decommissioning safely and economically. NUPEC has been developing the graphite treatment and disposal technology since 1997 and we introduce the outline of the technical development. For the technology on high density packing into disposal container, the high density packing method and the assessment method on nuclide leaching characteristics were developed, and the cementing test for graphite powder by using Tokai spare graphite was performed and the hydrophobic characteristics between graphite and cement was grasped and the accelerator candidature for affinity was selected. From the view point of economical treatment, the incinerating technology was selected as candidature, and the methods for incinerating graphite and treating off gas are developed. The method of collecting C-14 in off gas was selected for reducing the off gas radiation level. The applicability of actual graphite treatment technology was considered from the view point of safety, economics and preparation of technical standard; the technical theme appeared, the developing planning items were established, and the detailed and actual scale tests will be carried out according to the planning. (author)

  1. Recompressed exfoliated graphite articles

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2013-08-06

    This invention provides an electrically conductive, less anisotropic, recompressed exfoliated graphite article comprising a mixture of (a) expanded or exfoliated graphite flakes; and (b) particles of non-expandable graphite or carbon, wherein the non-expandable graphite or carbon particles are in the amount of between about 3% and about 70% by weight based on the total weight of the particles and the expanded graphite flakes combined; wherein the mixture is compressed to form the article having an apparent bulk density of from about 0.1 g/cm.sup.3 to about 2.0 g/cm.sup.3. The article exhibits a thickness-direction conductivity typically greater than 50 S/cm, more typically greater than 100 S/cm, and most typically greater than 200 S/cm. The article, when used in a thin foil or sheet form, can be a useful component in a sheet molding compound plate used as a fuel cell separator or flow field plate. The article may also be used as a current collector for a battery, supercapacitor, or any other electrochemical cell.

  2. The characteristics of CaF2:Tm crystals (TLD-300) irradiated by electromagnetic radiation

    International Nuclear Information System (INIS)

    Ben-Shachar, B.; Yona, S.; Laichter, Y.; German, U.; Weiser, G.

    1985-09-01

    The main characteristics of the CaF 2 :Tm crystals (TLD-300), as a dosimeter, were measured: the glow curve, sensitivity, linearity, fading and energy dependence for photons, and compared to those of LiF (TLD-100) and CaF 2 :Dy (TLD-200). It was found that CaF 2 :Tm can be used for environmental dosimetry by reading the crystals after four days. (Author)

  3. Solid state radiation chemistry of co-crystallized DNA base pairs studied with EPR and ENDOR

    International Nuclear Information System (INIS)

    Nelson, W.H.; Nimmala, S.; Hole, E.O.; Sagstuen, E.; Close, D.M.

    1995-01-01

    For a number of years, the authors' group has focused on identification of radicals formed from x-irradiation of DNA components by application of EPR and ENDOR spectroscopic techniques to samples in the form of single crystals. With single crystals as samples, it is possible to use the detailed packing and structural information available from x-ray or neutron diffraction reports. This report summarizes results from two crystal systems in which DNA bases are paired by hydrogen bonding. Extensive results are available from one of these, 1-methyl-thymine:9-methyladenine (MTMA), in which the base pairing is the Hoogsteen configuration. Although this configuration is different from that found by Watson-Crick in DNA, nonetheless the hydrogen bond between T(O4) and A(NH 2 ) is present. Although MTMA crystals have been studied previously, the objective was to apply the high-resolution technique of ENDOR to crystals irradiated and studied at temperatures of 10 K or lower in the effort to obtain direct evidence for specific proton transfers. The second system, from which the results are only preliminary, is 9-ethylguanine:1-methyl-5-fluorocytosine (GFC) in which the G:C bases pair is in the Watson Crick configuration. Both crystal systems are anhydrous, so the results include no possible effects from water interactions

  4. Microdefects in an as-grown Czochralski silicon crystal studied by synchrotron radiation section topography with aid of computer simulation

    International Nuclear Information System (INIS)

    Iida, Satoshi; Aoki, Yoshirou; Okitsu, Kouhei; Sugita, Yoshimitsu; Kawata, Hiroshi; Abe, Takao

    1998-01-01

    Grown-in microdefects of a Czochralski (CZ) silicon crystal grown at a slow growth rate were studied by section topography using high energy synchrotron radiation. Images of the microdefects in the section topographs were analyzed quantitatively using computer simulation based on the Takagi-Taupin type dynamical diffraction theory of X-rays, and reproduced successfully by the simulation when the microdefects were assumed to be spherical strain centers. Sizes and positions of the microdefects were able to be determined by detailed comparison between the experiments and the computer simulations. The validity of the computer simulation in an analysis of the section topographs is discussed. (author)

  5. The studies of radiation distorations in CdS single crystals by using a proton back-scattering method

    International Nuclear Information System (INIS)

    Grigor'ev, A.N.; Dikij, N.P.; Matyash, P.P.; Nikolajchuk, L.I.; Pivovar, L.I.

    1974-01-01

    The radiation defects in semiconducting CdS single crystals induced during doping with 140 keV Na ions (10 15 -2.10 16 ion/cm 2 ) were studied by the orientation dependence of 700 keV proton backscattering. The absence of discrete peaks in the scattered proton eneryg spectra indicates a small contribution of direct scattering at large angles. The defects formed during doping increase the fractionof dechanneled particles, which are then scattered at large anlges. No amorphization of CdS was observed at high Na ion dose 2x10 16 ion/cm 2

  6. Bromine intercalated graphite for lightweight composite conductors

    KAUST Repository

    Amassian, Aram; Patole, Archana

    2017-01-01

    A method of fabricating a bromine-graphite/metal composite includes intercalating bromine within layers of graphite via liquid-phase bromination to create brominated-graphite and consolidating the brominated-graphite with a metal nanopowder via a

  7. Cesium diffusion in graphite

    International Nuclear Information System (INIS)

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of 137 Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of 137 Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000 0 C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ΔE of the equation D/epsilon = (D/epsilon) 0 exp [-ΔE/RT] are about 4 x 10 -2 cm 2 /s and 30 kcal/mole, respectively

  8. Application of a mechanistic model for radiation-induced amorphization and crystallization of uranium silicide to recrystallization of UO2

    International Nuclear Information System (INIS)

    Rest, J.

    1996-07-01

    An alternative mechanism for the evolution of recrystallization nuclei is described for a model of irradiation-induced recrystallization of UO 2 wherein the stored energy in the material is concentrated in a network of sinklike nuclei that diminish with dose due to interaction with radiation-produced defects. The sinklike nuclei are identified as cellular dislocation structures that evolve relatively early in the irradiation period. A generalized theory of radiation-induced amorphization and crystallization, developed for intermetallic nuclear materials, is applied to UO 2 . The complicated kinetics involved in the formation of a cellular dislocation network are approximated by the formation and growth of subgrains due to the interaction of shock waves produced by fission- induced damage to the material

  9. Development of crystals based in cesium iodide for application as radiation detectors; Desenvolvimento de cristais baseados em iodeto de cesio para aplicacao como detectores de radiacao

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Maria da Conceicao Costa

    2006-07-01

    Inorganic scintillators with fast luminescence decay time, high density and high light output have been the object of studies for application in nuclear physics, high energy physics, nuclear tomography and other fields of science and engineering. Scintillation crystals based on cesium iodide (CsI) are matters with relatively low higroscopy, high atomic number, easy handling and low cost, characteristics that favor their use as radiation detectors. In this work, the growth of pure CsI crystals, CsI:Br and CsI:Pb, using the Bridgman technique, is described. The concentration of the bromine doping element (Br) was studied in the range of 1,5x10{sup -1} M to 10{sup -2} M and the lead (Pb) in the range of 10{sup -2} M to 5x10{sup -4} M. To evaluate the scintillators developed, systematic measurements were carried out for luminescence emission and luminescence decay time for gamma radiation, optical transmittance assays, Vickers micro-hardness assays, determination of the doping elements distribution along the grown crystals and analysis of crystals response to the gamma radiation in the energy range of 350 keV to 1330 keV and alpha particles from a {sup 241}Am source, with energy of 5.54 MeV. It was obtained 13 ns to 19 ns for luminescence decay time for CsI:Br and CsI:Pb crystals. These results were very promising. The results obtained for micro-hardness showed a significant increase in function of the doping elements concentration, when compared to the pure CsI crystal, increasing consequently the mechanical resistance of the grown crystals. The validity of using these crystals as radiation sensors may be seen from the results of their response to gamma radiation and alpha particles. (author)

  10. Dry Sliding Wear Behavior of Spark Plasma Sintered Fe-Based Bulk Metallic Glass/Graphite Composites

    Directory of Open Access Journals (Sweden)

    Xiulin Ji

    2016-09-01

    Full Text Available Bulk metallic glass (BMG and BMG-graphite composites were fabricated using spark plasma sintering at the sintering temperature of 575 °C and holding time of 15 min. The sintered composites exhibited partial crystallization and the presence of distributed porosity and graphite particles. The effect of graphite reinforcement on the tribological properties of the BMG/graphite composites was investigated using dry ball-on-disc sliding wear tests. The reinforcement of graphite resulted in a reduction in both the wear rate and the coefficient of friction as compared to monolithic BMG samples. The wear surfaces of BMG/graphite composites showed regions of localized wear loss due to microcracking and fracture, as was also the case with the regions covered with graphite-rich protective film due to smearing of pulled off graphite particles.

  11. Intercomparison of graphite irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Hering, H; Perio, P; Seguin, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    While fast neutrons only are effective in damaging graphite, results of irradiations are more or less universally expressed in terms of thermal neutron fluxes. This paper attempts to correlate irradiations made in different reactors, i.e., in fluxes of different spectral compositions. Those attempts are based on comparison of 1) bulk length change and volume expansion, and 2) crystalline properties (e.g., lattice parameter C, magnetic susceptibility, stored energy, etc.). The methods used by various authors for determining the lattice constants of irradiated graphite are discussed. (author)

  12. Graphite as negative electrode in Li-ion batteries; Le graphite comme electrode negative dans les accumulateurs Li-ion

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, F.; Monnier, A. [Timcal SA (France)

    1996-12-31

    The last developments in lithium batteries design have demonstrated the advantages of graphite: competitive cost, flat output curve, high capacity thanks to the obtention of a final compound close to LiC{sub 6}, good behaviour during cycling and a high mass energy. However, these advantages are slightly tarnished by parasite secondary reactions during the evolution of the element. Two different cases are encountered: the formation of a passivation layer (loss of Li ions and formation of irreversible bounds) and the formation of a passivation layer with a reaction between graphite and the solvent (partial destruction of the graphite crystal lattice). In the first case, the theoretical graphite insertion capacity remains at 372 mAh/g while in the second case the insertion capacity is greatly reduced. Abstract only. (J.S.)

  13. Graphite as negative electrode in Li-ion batteries; Le graphite comme electrode negative dans les accumulateurs Li-ion

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, F; Monnier, A [Timcal SA (France)

    1997-12-31

    The last developments in lithium batteries design have demonstrated the advantages of graphite: competitive cost, flat output curve, high capacity thanks to the obtention of a final compound close to LiC{sub 6}, good behaviour during cycling and a high mass energy. However, these advantages are slightly tarnished by parasite secondary reactions during the evolution of the element. Two different cases are encountered: the formation of a passivation layer (loss of Li ions and formation of irreversible bounds) and the formation of a passivation layer with a reaction between graphite and the solvent (partial destruction of the graphite crystal lattice). In the first case, the theoretical graphite insertion capacity remains at 372 mAh/g while in the second case the insertion capacity is greatly reduced. Abstract only. (J.S.)

  14. Graphite-based photovoltaic cells

    Science.gov (United States)

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  15. Crystal growth and thermoluminescence response of NaZr2(PO4)3 at high gamma radiation doses

    International Nuclear Information System (INIS)

    Ordóñez-Regil, E.; Contreras-Ramírez, A.; Fernández-Valverde, S.M.; González-Martínez, P.R.; Carrasco-Ábrego, H.

    2013-01-01

    Graphical abstract: -- Highlights: •NaZr 2 (PO 4 ) 3 exposed to gamma doses of 10, 30 and 50 MGy. •Gamma radiation produced growth of the crystal size of the NZP. •Morphology changes were reversible by heating. •Linear relationship between the thermoluminescence and the applied gamma dose. •This property could be useful for high-level gamma dosimetry. -- Abstract: This work describes the synthesis and characterization of NaZr 2 (PO 4 ) 3 . The stability of this material under high doses of gamma radiation was investigated in the range of 10–50 MGy. Samples of unaltered and gamma irradiated NaZr 2 (PO 4 ) 3 were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and thermoluminescence. The results showed that while functional groups were not affected by the gamma irradiation, morphology changes were observed with increasing doses of gamma irradiation. The morphology of the non-irradiated compound is agglomerated flakes; however, irradiation at 10 MGy splits the flakes inducing the formation of well-defined cubes. Gamma irradiation induced the crystal size of the NaZr 2 (PO 4 ) 3 to grow. The heat treatment (973 K) of samples irradiated at 50 MGy resulted in the recovery of the original morphology. Furthermore, the thermoluminescence analysis of the irradiated compound is reported

  16. Influence of gamma radiation and impurity atoms on the photoconductivity of GeS single crystals

    International Nuclear Information System (INIS)

    Madatov, R.S.; Alekperov, A.S.

    2013-01-01

    Wide opportunities for using of layered semiconductors, particularly in optoelectronics have generated considerable interest to them. Recently it was created the unique device from GeS for the storage of solar energy. The investigated GeS 1 -xNd x S single crystals were grown by the Bridgman method. The samples were irradiated by gamma-quanta and was conducted to install 60Co at room temperature. Irradiation of p-GeS 1 -xNd x S single crystals by small doses of gamma rays increases the photoconductivity on 40%

  17. Crystal structure of core streptavidin determined from multi-wavelength anomalous diffraction of synchrotron radiation

    International Nuclear Information System (INIS)

    Hendrickson, W.A.; Paehler, A.; Smith, J.L.; Satow, Y.; Merritt, E.A.; Phizackerley, R.P.

    1989-01-01

    A three-dimensional crystal structure of the biotin-binding core of streptavidin has been determined at 3.1-angstrom resolution. The structure was analyzed from diffraction data measured at three wavelengths from a single crystal of the selenobiotinyl complex with streptavidin. Streptavidin is a tetramer with subunits arrayed in D 2 symmetry. Each protomer is an 8-stranded β-barrel with simple up-down topology. Biotin molecules are bound at one end of each barrel. This study demonstrates the effectiveness of multi-wavelength anomalous diffraction (MAD) procedures for macromolecular crystallography and provides a basis for detailed study of biotin-avidin interactions

  18. Development of fracture toughness test method for nuclear grade graphite

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C. H.; Lee, J. S.; Cho, H. C.; Kim, D. J.; Lee, D. J. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2006-02-15

    Because of its high strength and stability at very high temperature, as well as very low thermal neutron absorption cross-section, graphite has been widely used as a structural material in Gas Cooled Reactors (GCR). Recently, many countries are developing the Very High Temperature gas cooled Reactor (VHTR) because of the potentials of hydrogen production, as well as its safety and viable economics. In VHTR, helium gas serves as the primary coolant. Graphite will be used as a reflector, moderator and core structural materials. The life time of graphite is determined from dimensional changes due to neutron irradiation, which closely relates to the changes of crystal structure. The changes of both lattice parameter and crystallite size can be easily measured by X-ray diffraction method. However, due to high cost and long time of neutron irradiation test, ion irradiation test is being performed instead in KAERI. Therefore, it is essential to develop the technique for measurement of ion irradiation damage of nuclear graphite. Fracture toughness of nuclear grade graphite is one of the key properties in the design and development of VHTR. It is important not only to evaluate the various properties of candidate graphite but also to assess the integrity of nuclear grade graphite during operation. Although fracture toughness tests on graphite have been performed in many laboratories, there have been wide variations in values of the calculated fracture toughness, due to the differences in the geometry of specimens and test conditions. Hence, standard test method for nuclear graphite is required to obtain the reliable fracture toughness values. Crack growth behavior of nuclear grade graphite shows rising R-curve which means the increase in crack growth resistance as the crack length increases. Crack bridging and microcracking have been proposed to be the dominant mechanisms of rising R-curve behavior. In this paper, the technique to measure the changes of crystallite size and

  19. Investigation of thermoluminescent response of K2YF5:Dy3+ crystals for gamma and X radiation fields

    International Nuclear Information System (INIS)

    Silva, E.C.; Nogueira, M.S.; Faria, L.O.; Khaidukov, N.M.

    2005-01-01

    K 2 YF 5 crystals doped with rare earths have been synthesized with 0 to 100% of Dy 3+ ions optically active ions and an investigation was conducted to test its thermoluminescent (TL) response due to function of Dy 3+ concentration and their response in energy. After being irradiated with gamma and X-rays, it was observed that crystals doped with 1.0% of Dy 3+ feature the best response TL. The main dosimetric peak can be decomposed into three secondary TL peaks, centered in 96.4, 104.9 and 130.7 deg C, respectively, showing a good linearity and reproducibility of the dose measurements. The sensitization process seems to improve response TL and TL peak sensitivity increase to 130, 7 deg C at the expense of TL peak to 104, 9 deg C. The linear coefficient sign TL for K 2 Y 0.09 Dy 0.01 F5 is comparable to that of the dosemeter CaSO 4 : Mn, irradiated with gamma radiation source ( 137 Cs) under the same conditions. Energy dependence measurements show that the answer for X-rays with energy of 41.1 keV is more than 30 times the response to Cs-137, when exposed to the same dose. Due to the main peak in low temperature and the TL high reply to low energy fields, the results reported indicate that the K 2 YF 5 crystals doped with Dy 3+ present great potential for radiation dosimetry in X-rays therapy, clinical dosimetry and also for applications in digital thermoluminescent images

  20. Radiation defect production in quartz crystals with various structure perfectness degree; Radiatsionnoe defektoobrazovanie v kristallakh kvartsa s razlichnoj stepen`yu sovershenstva struktury

    Energy Technology Data Exchange (ETDEWEB)

    Khushvakov, O B

    1992-01-01

    Radiation defects production processes in pure and doped quartz crystals with various structure defectness, caused by preliminary irradiation with neutrons, protons, deuterons and {alpha}-particles, during various electron excitation densities were investigated. The distribution of colour centres along the thickness of irradiated quartz crystals was measured. It was supposed that colour centres are produced on account of inelastic energy losses as the result of collective decay of two or more interacting excitons. It was shown that in quartz crystals under the actions of protons with overthreshold energy 18 MeV and electrons with subthreshold energy 100 keV the same structure defects are formed. It was established that radiation defect production process has two stages. The first stage reveals radiation defects produced by preliminary irradiation. The second one reveals additional intrinsic defects formed under the action of gamma-rays and electrons. The probability dependence of defect production on neutron fluence and masses of incident particles was studied. It was supposed that the creation of additional defects in preliminary irradiated crystals is due to non-radiative decay of electron excitations near radiation-induced defects. It was shown that increase of impurity concentration leads to rate growth of accumulation of radiation induced defects. (A.A.D.) 15 refs. 4 figs.

  1. Radiation hardness test of un-doped CsI crystals and Silicon Photomultipliers for the Mu2e calorimeter

    Science.gov (United States)

    Baccaro, S.; Cemmi, A.; Cordelli, M.; Diociaiuti, E.; Donghia, R.; Giovannella, S.; Loreti, S.; Miscetti, S.; Pillon, M.; Sarra, I.

    2017-11-01

    The Mu2e calorimeter is composed by 1400 un-doped CsI crystals coupled to large area UV extended Silicon Photomultipliers arranged in two annular disks. This calorimeter has to provide precise information on energy, timing and position. It should also be fast enough to handle the high rate background and it must operate and survive in a high radiation environment. Simulation studies estimated that, in the hottest regions, each crystal will absorb a dose of 300 Gy and will be exposed to a neutron fluency of 6 × 1011 n/cm2 in 3 years of running. Test of un-doped CsI crystals irradiated up to 900 Gy and to a neutron fluency up to 9 × 1011 n/cm2 have been performed at CALLIOPE and FNG ENEA facilities in Italy. We present our study on the variation of light yield (LY) and longitudinal response uniformity (LRU) of these crystals after irradiation. The ionization dose does not modify LRU while a 20% reduction in LY is observed at 900 Gy. Similarly, the neutron flux causes an acceptable LY deterioration (≤ 15%). A neutron irradiation test on different types of SIPMs (two different array models from Hamamatsu and one from FBK) have also been carried out by measuring the variation of the leakage current and the charge response to an ultraviolet led. We concluded that, in the experiment, we will need to cool down the SIPMs to 0 °C reduce the leakage current to an acceptable level.

  2. Electronic properties of graphite

    International Nuclear Information System (INIS)

    Schneider, J.

    2010-10-01

    In this thesis, low-temperature magneto-transport (T ∼ 10 mK) and the de Haas-van Alphen effect of both natural graphite and highly oriented pyrolytic graphite (HOPG) are examined. In the first part, low field magneto-transport up to B = 11 T is discussed. A Fourier analysis of the background removed signal shows that the electric transport in graphite is governed by two types of charge carriers, electrons and holes. Their phase and frequency values are in agreement with the predictions of the SWM-model. The SWM-model is confirmed by detailed band structure calculations using the magnetic field Hamiltonian of graphite. The movement of the Fermi at B > 2 T is calculated self-consistently assuming that the sum of the electron and hole concentrations is constant. The second part of the thesis deals with high field magneto-transport of natural graphite in the magnetic field range 0 ≤ B ≤ 28 T. Both spin splitting of magneto-transport features in tilted field configuration and the onset of the charge density wave (CDW) phase for different temperatures with the magnetic field applied normal to the sample plane are discussed. Concerning the Zeeman effect, the SWM calculations including the Fermi energy movement require a g-factor of g* equal to 2.5 ± 0.1 to reproduce the spin spilt features. The measurements of the charge density wave state confirm that its onset magnetic field can be described by a Bardeen-Cooper-Schrieffer (BCS)-type formula. The measurements of the de Haas-van Alphen effect are in agreement with the results of the magneto-transport measurements at low field. (author)

  3. Crystal structure of hemoglobin from the maned wolf (Chrysocyon brachyurus) using synchrotron radiation.

    Science.gov (United States)

    Fadel, Valmir; Canduri, Fernanda; Olivieri, Johnny R; Smarra, André L S; Colombo, Marcio F; Bonilla-Rodriguez, Gustavo O; de Azevedo, Walter F

    2003-12-01

    Crystal structure of hemoglobin isolated from the Brazilian maned wolf (Chrysocyon brachyurus) was determined using standard molecular replacement technique and refined using maximum-likelihood and simulated annealing protocols to 1.87A resolution. Structural and functional comparisons between hemoglobins from the Chrysocyon brachyurus and Homo sapiens are discussed, in order to provide further insights in the comparative biochemistry of vertebrate hemoglobins.

  4. Recent R&D trends in inorganic single crystal scintillator materials for radiation detection

    Czech Academy of Sciences Publication Activity Database

    Nikl, Martin; Yoshikawa, A.

    2015-01-01

    Roč. 3, č. 4 (2015), s. 463-481 ISSN 2195-1071 R&D Projects: GA MŠk(CZ) LH14266; GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : scintillator * single crystal * luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.359, year: 2015

  5. Production and recombination of radiation defects in argon and krypton crystals

    International Nuclear Information System (INIS)

    Giersberg, E.J.

    1981-01-01

    Relative changes in the lattice constants of argon and krypton crystals have been measured by X-ray diffraction. As a result X-ray irradiation is found to produce stable defects. The recombination behaviour of these defects can be determined by isochronous and isothermal annealing. The creation of primary defects can be explained by exciton excitation and double-ionisation. (orig.) [de

  6. CW frequency doubling of 1029 nm radiation using single pass bulk and waveguide PPLN crystals

    Czech Academy of Sciences Publication Activity Database

    Chiodo, N.; Du Burck, F.; Hrabina, Jan; Candela, Y.; Wallerand, J. P.; Acef, O.

    2013-01-01

    Roč. 311, 15 January (2013), s. 239-244 ISSN 0030-4018 R&D Projects: GA ČR GPP102/11/P820 Institutional support: RVO:68081731 Keywords : IR laser * second harmonic generation * waveguide and bulk crystals * periodically poled lithium niobate * 1029 nm wavelength Subject RIV: BH - Optics , Masers, Lasers Impact factor: 1.542, year: 2013

  7. Pyrolytic Graphite as a Selective Neutron Filter

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; Fathalla, M.

    2006-01-01

    The transmission of neutrons through pyrolytic graphite (PG) crystals, set at different angles with respect to incident beam, were calculated using an additive formula. A computer program HOPG was developed to provide the required calculation. An overall agreement between the calculated neutron transmissions through a slab of 1,85 mm thick PG crystal with an angular spread of c-axes of 0,4 degree, set at different angles to the incident beam, and the available experimental ones in the wavelength range from (0,02 to 1,4) nm were obtained. A feasibility study for use of PG crystal as an efficient second-order neutron filter is detailed in terms of crystal thickness, angular spread of c-axes and its operation with respect to the neutron beam. It was shown that a PG crystal with an angular spread of c-axes and its orientation with respect to the neutron beam. It was shown that a PG crystal with an angular spread of 0,8 degree is sufficient for optimum scattering of second-order neutrons in the wavelength band (0,384-0,183) nm, by adjusting the filter in an appropriate orientation

  8. New insights into canted spiro carbon interstitial in graphite

    Science.gov (United States)

    EL-Barbary, A. A.

    2017-12-01

    The self-interstitial carbon is the key to radiation damage in graphite moderator nuclear reactor, so an understanding of its behavior is essential for plant safety and maximized reactor lifetime. The density functional theory is applied on four different graphite unit cells, starting from of 64 carbon atoms up to 256 carbon atoms, using AIMPRO code to obtain the energetic, athermal and mechanical properties of carbon interstitial in graphite. This study presents first principles calculations of the energy of formation that prove its high barrier to athermal diffusion (1.1 eV) and the consequent large critical shear stress (39 eV-50 eV) necessary to shear graphite planes in its presence. Also, for the first time, the gamma surface of graphite in two dimensions is calculated and found to yield the critical shear stress for perfect graphite. Finally, in contrast to the extensive literature describing the interstitial of carbon in graphite as spiro interstitial, in this work the ground state of interstitial carbon is found to be canted spiro interstitial.

  9. A methodology to investigate the contribution of conduction and radiation heat transfer to the effective thermal conductivity of packed graphite pebble beds, including the wall effect

    Energy Technology Data Exchange (ETDEWEB)

    De Beer, M., E-mail: maritz.db@gmail.com [School of Mechanical and Nuclear Engineering, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Du Toit, C.G., E-mail: Jat.DuToit@nwu.ac.za [School of Mechanical and Nuclear Engineering, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Rousseau, P.G., E-mail: pieter.rousseau@uct.ac.za [Department of Mechanical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa)

    2017-04-01

    Highlights: • The radiation and conduction components of the effective thermal conductivity are separated. • Near-wall effects have a notable influence on the effective thermal conductivity. • Effective thermal conductivity is a function of the macro temperature gradient. • The effective thermal conductivity profile shows a characteristic trend. • The trend is a result of the interplay between conduction and radiation. - Abstract: The effective thermal conductivity represents the overall heat transfer characteristics of a packed bed of spheres and must be considered in the analysis and design of pebble bed gas-cooled reactors. During depressurized loss of forced cooling conditions the dominant heat transfer mechanisms for the passive removal of decay heat are radiation and conduction. Predicting the value of the effective thermal conductivity is complex since it inter alia depends on the temperature level and temperature gradient through the bed, as well as the pebble packing structure. The effect of the altered packing structure in the wall region must therefore also be considered. Being able to separate the contributions of radiation and conduction allows a better understanding of the underlying phenomena and the characteristics of the resultant effective thermal conductivity. This paper introduces a purpose-designed test facility and accompanying methodology that combines physical measurements with Computational Fluid Dynamics (CFD) simulations to separate the contributions of radiation and conduction heat transfer, including the wall effects. Preliminary results obtained with the methodology offer important insights into the trends observed in the experimental results and provide a better understanding of the interplay between the underlying heat transfer phenomena.

  10. Understanding Creep Mechanisms in Graphite with Experiments, Multiscale Simulations, and Modeling

    International Nuclear Information System (INIS)

    2014-01-01

    Disordering mechanisms in graphite have a long history with conflicting viewpoints. Using Raman and x-ray photon spectroscopy, electron microscopy, x-ray diffraction experiments and atomistic modeling and simulations, the current project has developed a fundamental understanding of early-to-late state radiation damage mechanisms in nuclear reactor grade graphite (NBG-18 and PCEA). We show that the topological defects in graphite play an important role under neutron and ion irradiation.

  11. Understanding Creep Mechanisms in Graphite with Experiments, Multiscale Simulations, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Eapen, Jacob [North Carolina State Univ., Raleigh, NC (United States); Murty, Korukonda [North Carolina State Univ., Raleigh, NC (United States); Burchell, Timothy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-06-02

    Disordering mechanisms in graphite have a long history with conflicting viewpoints. Using Raman and x-ray photon spectroscopy, electron microscopy, x-ray diffraction experiments and atomistic modeling and simulations, the current project has developed a fundamental understanding of early-to-late state radiation damage mechanisms in nuclear reactor grade graphite (NBG-18 and PCEA). We show that the topological defects in graphite play an important role under neutron and ion irradiation.

  12. Toward a unified theory of the radiation by relativistic particles in crystals

    International Nuclear Information System (INIS)

    Beloshitskii, V.V.; Kalinichenko, V.F.

    1989-01-01

    A quantum theory of the electromagnetic emission by relativistic particles incorporating channeling and the thermal vibrations of the crystal nuclei is derived. A general expression for the emission probability is found after an average over the initial polarizations of the particles and a summation over the final polarizations of the particles and over the polarizations of the photons. An average is carried out over the crystal states of the nuclei in the cases with and without excitation of phonons. The total emission is made up of channeling emission and bremsstrahlung, which are related to each other. During scattering by thermal vibrations, incoherent bremsstrahlung is produced. Some particular cases which determine the properties of the emission in the case of channeling are derived from the general expression and analyzed

  13. Solar radiation control using nematic curvilinear aligned phase (NCAP) liquid crystal technology

    Science.gov (United States)

    vanKonynenburg, Peter; Marsland, Stephen; McCoy, James

    1987-11-01

    A new, advanced liquid crystal technology has made economical, large area, electrically-controlled windows a commercial reality. The new technology, Nematic Curvilinear Aligned Phase (NCAP), is based on a polymeric material containing small droplets of nematic liquid crystal which is coated and laminated between transparent electrodes and fabricated into large area field effect devices. NCAP windows feature variable solar transmission and reflection through a voltage-controlled scattering mechanism. Laminated window constructions provide the excellent transmission and visibility of glass in the powered condition. In the unpowered condition, the windows are highly translucent, and provide 1) blocked vision for privacy, security, and obscuration of information, and 2) glare control and solar shading. The stability is excellent during accelerated aging tests. Degradation mechanisms which can limit performance and lifetime are discussed. Maximum long term stability is achieved by product designs that incorporate the appropriate window materials to provide environmental protection.

  14. Growth and characterization of single-crystal CVD diamond for radiation detection applications

    International Nuclear Information System (INIS)

    Tranchant, N.

    2008-01-01

    This work aimed at the study of the synthesis of single crystal diamond using the Microwave enhanced Chemical Vapour Deposition technique (MPCVD). The work enabled the development and optimisation of the growth conditions, from the study of the crystalline quality, of the material purity, and of its electronic properties. The assessment of the transport properties was the most determinant: the use of the time of flight (TOF) technique has enabled the measurement of the carrier mobilities and of their kinetic properties as a function of the temperature. When coupled with collected charge efficiency measurements, the work led to remarkable carrier mobility values obtained in the synthesised crystals (3000 cm 2 .V-1.s -1 ). Prepared samples were mounted as detection devices and used successfully in real conditions for the monitoring of ultra-fast pulses, as well as for neutron fluency monitoring, and for medical dosimeters for radiotherapy applications. (author)

  15. ZnGeP sub 2 crystals for infrared laser radiation frequency conversion

    CERN Document Server

    Andreev, Y M; Gribenyukov, A I; Korotkova, V V

    1998-01-01

    In this parer, we present some recent results on integrated studies concerned with different aspects of ZnGeP sub 2 crystal technology: synthesis, growth, and post-growth treatment. High-yield two-temperature synthesis and subsequent growth of ZnGeP sub 2 crystals are considered. By X-Ray phase analysis it has been found that two-temperature synthesis of ZnGeP sub 2 is realized through binary zinc and germanium phosphides formed at the Zn-Ge mixture temperature of about 900 .deg. C and the P pressure of 7 approx 10 atm. Using the heat-balance equation, a ratio of the thermal conductivity in the solid to that in the liquid ZnGeP sub 2 near the melting point has been determined. The value of the determined ratio is K sub l /K sub s approx =2.3. Analysis of the most favored crystallographic directions for ZnGeP sub 2 growth has been performed. These directions are [116], [132] and [102]. Data for optical absorption of the as-grown and the annealed ZnGeP sub 2 crystals are also presented.

  16. Structural performance of a graphite blanket in fusion reactors

    International Nuclear Information System (INIS)

    Wolfer, W.G.; Watson, R.D.

    1978-01-01

    Irradiation of graphite in a fusion reactor causes dimensional changes, enhanced creep, and changes in elastic properties and fracture strength. Temperature and flux gradients through the graphite blanket structure produce differential distortions and stress gradients. An inelastic stress analysis procedure is described which treats these variations of the graphite properties in a consistent manner as dictated by physical models for the radiation effects. Furthermore, the procedure follows the evolution of the stress and fracture strength distributions during the reactor operation as well as for possible shutdowns at any time. The lifetime of the graphite structure can be determined based on the failure criterion that the stress at any location exceeds one-half of the fracture strength. This procedure is applied to the most critical component of the blanket module in the SOLASE design

  17. Crystal identification for a dual-layer-offset LYSO based PET system via Lu-176 background radiation and mean shift algorithm

    Science.gov (United States)

    Wei, Qingyang; Ma, Tianyu; Xu, Tianpeng; Zeng, Ming; Gu, Yu; Dai, Tiantian; Liu, Yaqiang

    2018-01-01

    Modern positron emission tomography (PET) detectors are made from pixelated scintillation crystal arrays and readout by Anger logic. The interaction position of the gamma-ray should be assigned to a crystal using a crystal position map or look-up table. Crystal identification is a critical procedure for pixelated PET systems. In this paper, we propose a novel crystal identification method for a dual-layer-offset LYSO based animal PET system via Lu-176 background radiation and mean shift algorithm. Single photon event data of the Lu-176 background radiation are acquired in list-mode for 3 h to generate a single photon flood map (SPFM). Coincidence events are obtained from the same data using time information to generate a coincidence flood map (CFM). The CFM is used to identify the peaks of the inner layer using the mean shift algorithm. The response of the inner layer is deducted from the SPFM by subtracting CFM. Then, the peaks of the outer layer are also identified using the mean shift algorithm. The automatically identified peaks are manually inspected by a graphical user interface program. Finally, a crystal position map is generated using a distance criterion based on these peaks. The proposed method is verified on the animal PET system with 48 detector blocks on a laptop with an Intel i7-5500U processor. The total runtime for whole system peak identification is 67.9 s. Results show that the automatic crystal identification has 99.98% and 99.09% accuracy for the peaks of the inner and outer layers of the whole system respectively. In conclusion, the proposed method is suitable for the dual-layer-offset lutetium based PET system to perform crystal identification instead of external radiation sources.

  18. Harwell Graphite Calorimeter

    International Nuclear Information System (INIS)

    Linacre, J.K.

    1970-01-01

    The calorimeter is of the steady state temperature difference type. It contains a graphite sample supported axially in a graphite outer jacket, the assembly being contained in a thin stainless steel outer can. The temperature of the jacket and the temperature difference between sample and jacket are measured by chromel-alumel thermocouples. The instrument is calibrated by means of an electric heater of low mass positioned on the axis of the sample. The resistance of the heater is known and both current through the heater and the potential across it may be measured. The instrument is filled with nitrogen at a pressure of one half atmosphere at room temperature. The calorimeter has been designed for prolonged operation at temperatures up to 600°C, and dose rates up to 1 Wg -1 , and instruments have been in use for periods in excess of one year

  19. Increasing the radiation resistance of single-crystal silicon epitaxial layers

    Directory of Open Access Journals (Sweden)

    Kurmashev Sh. D.

    2014-12-01

    Full Text Available The authors investigate the possibility of increasing the radiation resistance of silicon epitaxial layers by creating radiation defects sinks in the form of dislocation networks of the density of 109—1012 m–2. Such networks are created before the epitaxial layer is applied on the front surface of the silicon substrate by its preliminary oxidation and subsequent etching of the oxide layer. The substrates were silicon wafers KEF-4.5 and KDB-10 with a diameter of about 40 mm, grown by the Czochralski method. Irradiation of the samples was carried out using electron linear accelerator "Electronics" (ЭЛУ-4. Energy of the particles was 2,3—3,0 MeV, radiation dose 1015—1020 m–2, electron beam current 2 mA/m2. It is shown that in structures containing dislocation networks, irradiation results in reduction of the reverse currents by 5—8 times and of the density of defects by 5—10 times, while the mobility of the charge carriers is increased by 1,2 times. Wafer yield for operation under radiation exposure, when the semiconductor structures are formed in the optimal mode, is increased by 7—10% compared to the structures without dislocation networks. The results obtained can be used in manufacturing technology for radiation-resistant integrated circuits (bipolar, CMOS, BiCMOS, etc..

  20. Simulation of channeling and radiation of 855 MeV electrons and positrons in a small-amplitude short-period bent crystal

    Energy Technology Data Exchange (ETDEWEB)

    Korol, Andrei V., E-mail: korol@mbnexplorer.com [MBN Research Center, Altenhöferallee 3, 60438 Frankfurt am Main (Germany); Bezchastnov, Victor G. [A.F. Ioffe Physical-Technical Institute, Politechnicheskaya Str. 26, 194021 St. Petersburg (Russian Federation); Peter the Great St. Petersburg Polytechnic University, Politechnicheskaya 29, 195251 St. Petersburg (Russian Federation); Sushko, Gennady B.; Solov’yov, Andrey V. [MBN Research Center, Altenhöferallee 3, 60438 Frankfurt am Main (Germany)

    2016-11-15

    Channeling and radiation are studied for the relativistic electrons and positrons passing through a Si crystal periodically bent with a small amplitude and a short period. Comprehensive analysis of the channeling process for various bending amplitudes is presented on the grounds of numerical simulations. The features of the channeling are highlighted and elucidated within an analytically developed continuous potential approximation. The radiation spectra are computed and discussed.

  1. Management of radioactive waste in nuclear power: handling of irradiated graphite from water-cooled graphite reactors

    International Nuclear Information System (INIS)

    Anfimov, S.S.

    2000-01-01

    As a result of decommissioning of water-cooled graphite-moderated reactors, a large amount of rad-waste in the form of graphite stack fragments is generated (on average 1500-2000 tons per reactor). That is why it is essentially important, although complex from the technical point of view, to develop advanced technologies based on up-to-date remotely-controlled systems for unmanned dismantling of the graphite stack containing highly-active long-lived radionuclides and for conditioning of irradiated graphite (IG) for the purposes of transportation and subsequent long term and ecologically safe storage either on NPP sites or in special-purpose geological repositories. The main characteristics critical for radiation and nuclear hazards of the graphite stack are as follows: the graphite stack is contaminated with nuclear fuel that has gotten there as a result of the accidents; the graphite mass is 992 tons, total activity -6?104 Ci (at the time of unit shutdown); the fuel mass in the reactor stack amounts to 100-140 kg, as estimated by IPPE and RDIPE, respectively; γ-radiation dose rate in the stack cells varies from 4 to 4300 R/h, with the prevailing values being in the range from 50 to 100 R/h. In this paper the traditional methods of rad-waste handling as bituminization technology, cementing technology are discussed. In terms of IG handling technology two lines were identified: long-term storage of conditioned IG and IG disposal by means of incineration. The specific cost of graphite immobilization in a radiation-resistant polymeric matrix amounts to -2600 USD per 1 t of graphite, whereas the specific cost of immobilization in slag-stone containers with an inorganic binder (cement) is -1400 USD per 1 t of graphite. On the other hand, volume of conditioned IG rad-waste subject for disposal, if obtained by means of the first technology, is 2-2.5 times less than the volume of rad-waste generated by means of the second technology. It can be concluded from the above that

  2. A standard graphite block

    Energy Technology Data Exchange (ETDEWEB)

    Ivkovic, M; Zdravkovic, Z; Sotic, O [Department of Reactor Physics and Dynamics, Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1966-04-15

    A graphite block was calibrated for the thermal neutron flux of the Ra-Be source using indium foils as detectors. Experimental values of the thermal neutron flux along the central vertical axis of the system were corrected for the self-shielding effect and depression of flux in the detector. The experimental values obtained were compared with the values calculated on the basis of solving the conservation neutron equation by the continuous slowing-down theory. In this theoretical calculation of the flux the Ra-Be source was divided into three resonance energy regions. The measurement of the thermal neutron diffusion length in the standard graphite block is described. The measurements were performed in the thermal neutron region of the system. The experimental results were interpreted by the diffusion theory for point thermal neutron source in the finite system. The thermal neutron diffusion length was calculated to be L= 50.9 {+-}3.1 cm for the following graphite characteristics: density = 1.7 g/cm{sup 3}; boron content = 0.1 ppm; absorption cross section = 3.7 mb.

  3. A standard graphite block

    International Nuclear Information System (INIS)

    Ivkovic, M.; Zdravkovic, Z.; Sotic, O.

    1966-04-01

    A graphite block was calibrated for the thermal neutron flux of the Ra-Be source using indium foils as detectors. Experimental values of the thermal neutron flux along the central vertical axis of the system were corrected for the self-shielding effect and depression of flux in the detector. The experimental values obtained were compared with the values calculated on the basis of solving the conservation neutron equation by the continuous slowing-down theory. In this theoretical calculation of the flux the Ra-Be source was divided into three resonance energy regions. The measurement of the thermal neutron diffusion length in the standard graphite block is described. The measurements were performed in the thermal neutron region of the system. The experimental results were interpreted by the diffusion theory for point thermal neutron source in the finite system. The thermal neutron diffusion length was calculated to be L= 50.9 ±3.1 cm for the following graphite characteristics: density = 1.7 g/cm 3 ; boron content = 0.1 ppm; absorption cross section = 3.7 mb

  4. Superconductivity and transport properties in LaRu4Sb12 single crystals probed by radiation-induced disordering

    International Nuclear Information System (INIS)

    Goshchitskii, B.; Naumov, S.; Kostromitina, N.; Karkin, A.

    2007-01-01

    Resistivity ρ(T) and Hall coefficient R H (T) in magnetic fields H up to 14 T were studied in superconducting (T c = 3.3 K) LaRu 4 Sb 12 single crystals disordered by fast neutron irradiation. Atomic disordering leads to increase in residual resistivity ρ 0 , decrease of Hall number and suppression of superconductivity. The upper critical field slope -dH c2 /dT increases approximately linear with ρ 0 . The irradiation effects are almost recovered after annealing at 500 deg. C. The observed radiation-induced effects in LaRu 4 Sb 12 are compared with those in PrOs 4 Sb 12 in terms of unconventional mechanisms of superconductivity

  5. Systematic study of radiation hardness of single crystal CVD diamond material investigated with an Au beam and IBIC method

    Energy Technology Data Exchange (ETDEWEB)

    Pietraszko, Jerzy; Koenig, Wolfgang; Traeger, Michael [GSI, Darmstadt (Germany); Draveny, Antoine; Galatyuk, Tetyana [TU, Darmstadt (Germany); Grilj, Veljko [RBI, Zagreb (Croatia); Collaboration: HADES-Collaboration

    2016-07-01

    For the future high rate CBM experiment at FAIR a radiation hard and fast beam detector is required. The detector has to perform precise T0 measurement (σ<50 ps) and should also offer decent beam monitoring capability. These tasks can be performed by utilizing single-crystal Chemical Vapor Deposition (ScCVD) diamond based detector. A prototype, segmented, detector have been constructed and the properties of this detector have been studied with a high current density beam (about 3.10{sup 6}/s/mm{sup 2}) of 1.23 A GeV Au ions in HADES. The irradiated detector properties have been studied at RBI in Zagreb by means of IBIC method. Details of the design, the intrinsic properties of the detectors and their performance after irradiation with such beam are reported.

  6. IR femtochemistry on the surface of wide-gap ionic crystals

    Science.gov (United States)

    Laptev, V. B.; Chekalin, S. V.; Dorofeyev, I. A.; Kompanets, V. O.; Pigulsky, S. V.; Ryabov, E. A.

    2018-02-01

    We have found and studied a phenomenon of the growth of films resulting from decomposition of some organic and silicon-containing molecules adsorbed on the surface of ionic crystals under the action of IR (1.4-5.4 µm) femtosecond radiation of a moderate intensity, ~1011 W cm-2. In the gas phase, these molecules do not decompose. Microstructured films consisting of amorphous carbon, graphite oxide, and silicon dioxide have been obtained. The formation of carbon films was accompanied by the appearance of different hydrocarbons in the gas phase. The extensive films of graphite oxide have been obtained. The decomposition of molecules on the surface is apparently caused by non-resonant ionization and subsequent deep fragmentation. The mechanisms of ionization at relatively low intensities of the femtosecond IR radiation have been discussed.

  7. Simulation of planar channeling-radiation spectra of relativistic electrons and positrons channeled in a diamond-structure or tungsten single crystal (classical approach)

    International Nuclear Information System (INIS)

    Azadegan, B.; Wagner, W.

    2015-01-01

    We present a Mathematica package for simulation of spectral-angular distributions and energy spectra of planar channeling radiation of relativistic electrons and positrons channeled along major crystallographic planes of a diamond-structure or tungsten single crystal. The program is based on the classical theory of channeling radiation which has been successfully applied to study planar channeling of light charged particles at energies higher than 100 MeV. Continuous potentials for different planes of diamond, Si, Ge and W single crystals are calculated using the Doyle–Turner approximation to the atomic scattering factor and taking thermal vibrations of the crystal atoms into account. Numerical methods are applied to solve the classical one-dimensional equation of motion. The code is designed to calculate the trajectories, velocities and accelerations of electrons (positrons) channeled by the planar continuous potential. In the framework of classical electrodynamics, these data allow realistic simulations of spectral-angular distributions and energy spectra of planar channeling radiation. Since the generated output is quantitative, the results of calculation may be useful, e.g., for setup configuration and crystal alignment in channeling experiments, for the study of the dependence of channeling radiation on the input parameters of particle beams with respect to the crystal orientation, but also for the simulation of positron production by means of pair creation what is mandatory for the design of efficient positron sources necessary in high-energy and collider physics. Although the classical theory of channeling is well established for long time, there is no adequate library program for simulation of channeling radiation up to now, which is commonly available, sufficiently simple and effective to employ and, therefore, of benefit as for special investigations as for a quick overview of basic features of this type of radiation

  8. Crystal structure refinement of α-Si3N4 using synchrotron radiation powder diffraction data: unbiased refinement strategy

    International Nuclear Information System (INIS)

    Toraya, H.

    2000-01-01

    The crystal structure of α-silicon nitride (Si 3 N 4 ) was refined by the Rietveld method using synchrotron radiation powder diffraction data (wavelength = 1.2 A) collected at station BL-4B2 in the photon factory. A refinement procedure that adopted a new weight function, w = 1/Y o e (Y o is the observed profile intensity and e ≅ 2), for the least-squares fitting [Toraya (1998). J. Appl. Cryst. 31, 333-343] was studied. The most reasonable structural parameters were obtained with e = 1.7. Crystal data of α-Si 3 N 4 : trigonal, P31c, a = 7.75193 (3), c = 5.61949 (4) A, V = 292.447 (3) A 3 , Z = 4; R p = 5.08, R wp = 6.50, R B = 3.36, R F = 2.26%. The following five factors are considered equally important for deriving accurate structural parameters from powder diffraction data: (i) sufficiently large sin θ/λ range of >0.8 A -1 ; (ii) adequate counting statistics; (iii) correct profile model; (iv) proper weighting on observations to give a uniform distribution of the mean weighted squared residuals; (v) high-angular-resolution powder diffraction data. (orig.)

  9. Microbiological method for radiation sterilization (II). Identification procedure of gram positive bacteria by using BBL CRYSTAL GP identification kit

    International Nuclear Information System (INIS)

    Koshikawa, Tomihiko

    2004-01-01

    The part II in this title series describes details of the commercially available BBL CRYSTAL GP Identification Kit with the software (Becton, Dickinson and Co., Ltd.), by which identification of Gram positive bacteria as well as their number becoming easier in the radiation sterilization of medical devices. Isolation of a bacterium has to be confirmed by microscopy and its Gram positive property, by the Gram staining. The exponentially growing bacteria are to be inoculated in the Kit and cultured for 18-24 hr at 37 deg C with the lid attached by substrates for identification. Reactions to substrates are to be judged by CRYSTAL auto-reader, which is further to be searched by the computer software (code-book) for final identification. For possible misidentification, re-isolation of the bacterium, prolonged culture, concentrated inoculation and re-consideration for ranking of identification the software provides are necessary as well as other identification approaches. Representative bacteria as the bioburden are spp. of Bacilli, Corynebacteria, Staphylococci and Micrococci. (N.I.)

  10. Structural disorder of graphite and implications for graphite thermometry

    Science.gov (United States)

    Kirilova, Martina; Toy, Virginia; Rooney, Jeremy S.; Giorgetti, Carolina; Gordon, Keith C.; Collettini, Cristiano; Takeshita, Toru

    2018-02-01

    Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25 megapascal (MPa) and aseismic velocities of 1, 10 and 100 µm s-1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  11. Structural disorder of graphite and implications for graphite thermometry

    Directory of Open Access Journals (Sweden)

    M. Kirilova

    2018-02-01

    Full Text Available Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25  megapascal (MPa and aseismic velocities of 1, 10 and 100 µm s−1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  12. Properties of transition metal-doped zinc chalcogenide crystals for tunable IR laser radiation

    International Nuclear Information System (INIS)

    DeLoach, L.D.; Page, R.H.; Wilke, G.D.

    1995-01-01

    The spectroscopic properties of Cr 2+ , Co 2+ , and Ni 2+ -doped single crystals of ZnS, ZnSe, and ZnTe have been investigated to understand their potential application as mid-IR tunable solid-state laser media. The spectroscopy indicated divalent Cr was the most favorable candidate for efficient room temperature lasing, and accordingly, a laser-pumped laser demonstration of Cr:ZnS and Cr:ZnSe has been performed. The lasers' output were peaked at ∼ 2.35 μm and the highest measured slope efficiencies were ∼ 20% in both cases

  13. Gamma-radiation and isotopic effect on the critical behavior in triglycine selenate crystals

    Science.gov (United States)

    Kassem, M. E.; Hamed, A. E.; Abulnasr, L.; Abboudy, S.

    1994-11-01

    Isotopic effects in pure and γ-irradiated triglycine selenate crystals were investigated using the specific heat ( Cp) technique. The obtained results showed an interesting dependence of the critical behavior of Cp on the deuterium content. With increasing content of deuterium, the character of the phase transition changed from a second order (γ-type) to a first order transition. After γ-irradiation, the behavior of Cp around the phase transition region was essentially affected. The transition temperature, Tc, decreased and Δ Cp depressed, and the transition became broad. It was noted that the effect of γ-irradiation is opposite to the isotopic effect.

  14. Gamma-radiation and isotopic effect on the critical behavior in triglycine selenate crystals

    International Nuclear Information System (INIS)

    Kassem, M.E.; Hamed, A.E.; Abulnasr, L.; Abboudy, S.

    1994-01-01

    Isotopic effects in pure and γ-irradiated triglycine selenate crystals were investigated using the specific heat (C p ) technique. The obtained results showed an interesting dependence of the critical behavior of C p on the deuterium content. With increasing content of deuterium, the character of the phase transition changed from a second order (λ-type) to a first order transition. After γ-irradiation, the behavior of C p around the phase transition region was essentially affected. The transition temperature, T c , decreased and ΔC p depressed, and the transition became broad. It was noted that the effect of γ-irradiation is opposite to the isotopic effect. (author)

  15. Bromine intercalated graphite for lightweight composite conductors

    KAUST Repository

    Amassian, Aram

    2017-07-20

    A method of fabricating a bromine-graphite/metal composite includes intercalating bromine within layers of graphite via liquid-phase bromination to create brominated-graphite and consolidating the brominated-graphite with a metal nanopowder via a mechanical pressing operation to generate a bromine-graphite/metal composite material.

  16. Investigation of single defects created in crystals by laser emission and hard radiation

    International Nuclear Information System (INIS)

    Martynovich, E F; Dresvyanskiy, V P; Boychenko, S V; Rakevich, A L; Zilov, S A; Bagayev, S N

    2017-01-01

    The possibility of identifying radiation-created quantum systems via the characteristics of quantum trajectories of luminescence intensity measured on individual centers by confocal scanning fluorescence microscopy with the time-correlated single photon counting has been studied. Calculations of the quantum trajectories have been carried out by the density matrix method. Experimental studies have been carried out using a confocal microscope. (paper)

  17. Chemical stabilization of graphite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bistrika, Alexander A.; Lerner, Michael M.

    2018-04-03

    Embodiments of a device, or a component of a device, including a stabilized graphite surface, methods of stabilizing graphite surfaces, and uses for the devices or components are disclosed. The device or component includes a surface comprising graphite, and a plurality of haloaryl ions and/or haloalkyl ions bound to at least a portion of the graphite. The ions may be perhaloaryl ions and/or perhaloalkyl ions. In certain embodiments, the ions are perfluorobenzenesulfonate anions. Embodiments of the device or component including stabilized graphite surfaces may maintain a steady-state oxidation or reduction surface current density after being exposed to continuous oxidation conditions for a period of at least 1-100 hours. The device or component is prepared by exposing a graphite-containing surface to an acidic aqueous solution of the ions under oxidizing conditions. The device or component can be exposed in situ to the solution.

  18. Electron oxidation of graphite by fluorospecies

    International Nuclear Information System (INIS)

    Rosenthal, G.L.

    1984-09-01

    The fluoride-ion affinity (A/sub F - /) of phosphorus pentafluoride was determined to be 100 kcal/mole from the heats of reaction of the Lewis bases SF 4 and ClO 2 F with PF 5 near room temperature. The fluoride-ion affinity of boron trifluoride was determined to be 92 kcal/mole from the heat of reaction of ClO 2 F with BF 3 . The crystal structure of ClO 2 BF 4 was determined and a precise lattice energy was calculated from this structure and used to determined A/sub F - /. Both PF 5 and BF 3 were found to react with graphite in the presence of fluorine gas to yield a variety of non-stoichiometric compounds. The fluoride-ion affinity of silicon tetrafluoride is not known, but it does not react with graphite and F 2 except at high pressures. These and previous results suggested a threshold in oxidizing power of intercalating species below which the oxidative intercalation reaction would not occur. The reduction of C/sub x/PF 6 by PF 3 proved that the reaction is thermodynamically controlled to some extent. The displacement of PF 5 in C/sub x/PF 6 by BF 3 (with a smaller A/sub F - /) suggested that two BF 3 molecules may have a larger fluoride-ion affinity than one PF 5 and that B 2 F 7 - may be a stable anion in graphite. Conductivity studies of PF/sub x/ and BF/sub y/ salts showed that a large drop in conductivity when the reaction reaches first stage is due in the most part to direct fluorination of carbon in graphite

  19. Effect of UV on the post irradiated Li Cs S O{sub 4} crystal by X and gamma radiation. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, M E [On Leave, Alexandria University, Faculty of Science, PHysics Department. Alexandria (Egypt); EL-Kolaly, M A [On Leave, Radiation Protection Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt); Al-Houty, L I [University of Qatar, Faculty of Science, Department of Physics, P.O. Box 2713, Doha (Qatar)

    1996-03-01

    Thermoluminescence characteristics of Li Cs S O{sub 4} crystal have been studied after exposure to different doses of X and Gamma-Radiations. The glow curves showed TL response of Three peaks at 75,125 and 250 degree C. The structure of the glow peaks due to X-rays is quite different from that due to gamma-rays. UV exposure yields regeneration of the TL peaks for the post irradiated samples with X or Gamma-radiation with some changes in the peaks`s structure especially the third peak. For the post X-ray irradiated crystals, the area under the third glow peak (PK III) increased with integrated time of UV exposure till about 30 min after which no changes were observed; while, for the post gamma-irradiated crystals, two linear regions were observed. The models of the TL response for the post irradiated samples as a result to UV are discussed. 5 figs.

  20. Thermoluminescence of LaAlO3 crystals doped with Eu and Ce - Dy ions exposed to ultraviolet and gamma radiation

    International Nuclear Information System (INIS)

    Oliveira, Vitor H.; Faria, Luiz O.; Silva, Edna S.

    2011-01-01

    Due to environmental problems such as degradation of the ozone layer and control of radiation levels in units of radiation, new dosimetric materials with high sensitivity for ultraviolet (UV) and gamma radiation are of great interest for applications in environmental dosimetry. In this context, this paper presents the results of a systematic investigation of the thermoluminescent (TL) response of LaAlO 3 crystals doped with different concentrations of trivalent optically active ions exposed to UV and gamma radiation doses. The work has been performed under a direct cooperation between the Institute of Inorganic Chemistry in Moscow (IGIC), responsible for crystal growth, and the Center for Development of Nuclear Technology (CDTN), responsible for the study of its luminescent properties. In this context, samples doped with 1% of Eu 3+ , 1% Ce 3+ , 5% of Ce 3+ and also co-doped with 5% Ce 3+ and 1% Dy 3+ were grown under hydrothermal conditions. The investigation was divided into two fronts, one for gamma radiation and the other for UV radiation. In the investigation with gamma radiation the best TL response has been obtained from LaAlO 3 :Eu. This crystal has shown good sensitivity and excellent linearity between TL output and the delivered gamma doses ranging from 0.1 to 10.0 mGy. In addition, its TL curve is quite similar to the Al 2 O 3 :C, a commercial TL phosphor with high sensitivity to gamma radiation. In the investigation with UV radiation the best response has been achieved for co-doped LaAlO 3 :Ce,Dy. They have excellent sensitivity and good linearity for spectral irradiances ranging from 0.042 to 1.2 mJ.cm -2 . (author)

  1. Thermoluminescence of LaAlO{sub 3} crystals doped with Eu and Ce - Dy ions exposed to ultraviolet and gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Vitor H.; Faria, Luiz O., E-mail: farialo@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Silva, Edna S. [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Dept. de Energia Nuclear; Khaidukov, Nicholas M. [Kurnakov Institute of General and Inorganic Chemistry, IGIC, Moscow (Russian Federation)

    2011-07-01

    Due to environmental problems such as degradation of the ozone layer and control of radiation levels in units of radiation, new dosimetric materials with high sensitivity for ultraviolet (UV) and gamma radiation are of great interest for applications in environmental dosimetry. In this context, this paper presents the results of a systematic investigation of the thermoluminescent (TL) response of LaAlO{sub 3} crystals doped with different concentrations of trivalent optically active ions exposed to UV and gamma radiation doses. The work has been performed under a direct cooperation between the Institute of Inorganic Chemistry in Moscow (IGIC), responsible for crystal growth, and the Center for Development of Nuclear Technology (CDTN), responsible for the study of its luminescent properties. In this context, samples doped with 1% of Eu{sup 3+}, 1% Ce{sup 3+}, 5% of Ce{sup 3+} and also co-doped with 5% Ce{sup 3+} and 1% Dy{sup 3+} were grown under hydrothermal conditions. The investigation was divided into two fronts, one for gamma radiation and the other for UV radiation. In the investigation with gamma radiation the best TL response has been obtained from LaAlO{sub 3}:Eu. This crystal has shown good sensitivity and excellent linearity between TL output and the delivered gamma doses ranging from 0.1 to 10.0 mGy. In addition, its TL curve is quite similar to the Al{sub 2}O{sub 3}:C, a commercial TL phosphor with high sensitivity to gamma radiation. In the investigation with UV radiation the best response has been achieved for co-doped LaAlO{sub 3}:Ce,Dy. They have excellent sensitivity and good linearity for spectral irradiances ranging from 0.042 to 1.2 mJ.cm{sup -2}. (author)

  2. Heat exchanger using graphite foam

    Science.gov (United States)

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  3. Spectroscopic and radiation-resistant properties of Er,Pr:GYSGG laser crystal operated at 2.79 μm

    International Nuclear Information System (INIS)

    Zhao Xu-Yao; Sun Dun-Lu; Luo Jian-Qiao; Zhang Hui-Li; Fang Zhong-Qing; Quan Cong; Li Xiu-Li; Cheng Mao-Jie; Zhang Qing-Li; Yin Shao-Tang

    2017-01-01

    We demonstrate the spectroscopic and laser performance before and after 100 Mrad gamma-ray irradiation on an Er,Pr:GYSGG crystal grown by the Czochralski method. The additional absorption of Er,Pr:GYSGG crystal is close to zero in the 968 nm pumping and 2.7–3 μm laser wavelength regions. The lifetimes of the upper and lower levels show faint decreases after gamma-ray irradiation. The maximum output powers of 542 and 526 mW with the slope efficiencies of 17.7% and 17.0% are obtained, respectively, on the GYSGG/Er,Pr:GYSGG composite crystal before and after the gamma-ray irradiation. These results suggest that Er,Pr:GYSGG crystal as a laser gain medium possesses a distinguished anti-radiation ability for application in space and radiant environments. (paper)

  4. Transmission electron-microscopic studies of structural changes in polycrystalline graphite after high temperature irradiation

    International Nuclear Information System (INIS)

    Platonov, P.A.; Gurovich, B.A.; Shtrombakh, Ya.I.; Karpukhin, V.I.

    1985-01-01

    Transmission electron-microscopic investigation of polycrystalline graphite before and after irradiation is carried out. The direct use of graphite samples after ion thinning, as an inquiry subject is the basic peculiarity of the work. Main structural components of MPG-6 graphite before and after irradiation are revealed, the structural mechanism of the reactor graphite destruction under irradiation is demonstrated. The mean values of L αm and L cm crystallite dimensions are determined. Radiation defects, occuring in some crystallites after irradiation are revealed by the dark-field electron microscopy method

  5. Refractive-index changes in lithium niobate crystals by radiation damages

    International Nuclear Information System (INIS)

    Zamani Meymian, Mohammad Reza

    2007-01-01

    For the study in this thesis 3 He 2+ ions with the energy of about 40 MeV were applied. The results of these studies show a timely very stable anisotrope refractive-index change in the range of some 10 -3 . The radiation damages caused by ions cause a decreasement of the ordinary refractive index n o and an increasement of the extra-ordinary refractive index n e . While the absolute values for Δn o and Δn e are nearly equal the birefringence of the material (n e -n o ) smaller. The generated refractive-index change is dose dependent and the curve Δn has at increasing dose a strongly nonlinear slope with a characteristic stage at the radiation dose of about 2 x 10 20 ions/m 2

  6. Measurement of Gamma-ray Energy Spectrum According to Temperature Variation Using a Fiber-Optic Radiation Sensor Based on YSO:Ce Crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, H.; Yoo, W. J.; Shin, S. H.; Jang, J. S.; Kim, J. S.; Kwon, G.; Lee, D. E.; Jang, K. W.; Lee, B. [BK21 Plus Research Institute of Biomedical Engineering, Konkuk University, Chungju (Korea, Republic of)

    2015-05-15

    As an alternative to conventional radiation detectors, various fiber-optic radiation sensors (FORSs) have been investigated for gamma-ray monitoring because of their various desirable advantages, such as their small sensing volume, substantial flexibility, remote operation, ability to make real-time measurement, and immunity to high electromagnetic interference. In general, the basic principle of a radiation detection using scintillators is to measure the scintillating light signals generated from the interactions between the scintillators and the radiations. To measure gamma-ray, the inorganic scintillators used in the FORS should have some properties, such as high atomic material, high light yields, fast decay time, high density, and high stopping power. For these reasons, a cerium-doped lutetium yttrium orthosilicate (LYSO:Ce) crystal has been introduced as a promising scintillator in various radiation sensor applications. According to the recent studies, however, LYSO:Ce crystal is impossible to be applied in high-temperature conditions because it serves the fluctuations of its light yields with the temperature variation (i.e., thermosluminescence). In this study, to obtain gamma-ray energy spectra by measuring scintillating light signals emitted from the scintillators in high-temperature conditions, we first fabricated an FORS system using various inorganic scintillator crystals and then evaluated the light yields of each inorganic scintillator. As a promising scintillator for use in high-temperature conditions, a cerium-doped yttrium orthosilicate (YSO:Ce) crystal was selected and evaluated its thermal property according to the elevated temperature up to 300 .deg. C. We fabricated an FORS using inorganic scintillator and an optical fiber bundle. To select an adequate scintillator to apply in high-temperature conditions, the gamma-ray energy spectra were obtained by using four kinds of inorganic scintillators. From the experimental results, we selected YSO

  7. Sum-frequency nonlinear Cherenkov radiation generated on the boundary of bulk medium crystal.

    Science.gov (United States)

    Wang, Xiaojing; Cao, Jianjun; Zhao, Xiaohui; Zheng, Yuanlin; Ren, Huaijin; Deng, Xuewei; Chen, Xianfeng

    2015-12-14

    We demonstrated experimentally a method to generate the sum-frequency Nonlinear Cherenkov radiation (NCR) on the boundary of bulk medium by using two synchronized laser beam with wavelength of 1300 nm and 800 nm. It is also an evidence that the polarization wave is always confined to the boundary. Critical conditions of surface sum-frequency NCR under normal and anomalous dispersion condition is discussed.

  8. Analogy between temperature dependent radiation effects in alkali halide crystals and crystalline ammonia

    International Nuclear Information System (INIS)

    Blum, A.

    1977-01-01

    Pikaev, Ershov, and Makarov recently reported the characteristic shape of Arrhenius-type dependence for F-centers slow part (millisecond) decay in alkali halide crystals irradiated at different temperatures. The decay rate is constant when the temperature is below the limiting value (T/sub lim/) and exhibits constant activation energy (E/sub A/) at temperatures above T/sub lim/ up to the melting point. A similar dependence has been observed for crystalline ammonia radiolysis yields (H 2 and N 2 ) in the temperature range from 77 to 195 0 K (ammonia melting point) with a limiting value of 105 0 K for N 2 and 119 0 K for H 2 . The coincidence between the alkali halide and ammonia data does not seem to be formal and there are indications showing a closer analogy between these two cases

  9. Gamma-radiation and isotopic effect on the critical behavior in triglycine selenate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, M.E.; Hamed, A.E.; Abulnasr, L.; Abboudy, S. [Alexandria Univ. (Egypt). Dept. of Physics

    1994-11-01

    Isotopic effects in pure and {gamma}-irradiated triglycine selenate crystals were investigated using the specific heat (C{sub p}) technique. The obtained results showed an interesting dependence of the critical behavior of C{sub p} on the deuterium content. With increasing content of deuterium, the character of the phase transition changed from a second order ({lambda}-type) to a first order transition. After {gamma}-irradiation, the behavior of C{sub p} around the phase transition region was essentially affected. The transition temperature, T{sub c}, decreased and {Delta}C{sub p} depressed, and the transition became broad. It was noted that the effect of {gamma}-irradiation is opposite to the isotopic effect. (author).

  10. Management of UKAEA graphite liabilities

    International Nuclear Information System (INIS)

    Wise, M.

    2001-01-01

    The UK Atomic Energy Authority (UKAEA) is responsible for managing its liabilities for redundant research reactors and other active facilities concerned with the development of the UK nuclear technology programme since 1947. These liabilities include irradiated graphite from a variety of different sources including low irradiation temperature reactor graphite (the Windscale Piles 1 and 2, British Energy Pile O and Graphite Low Energy Experimental Pile at Harwell and the Material Testing Reactors at Harwell and Dounreay), advanced gas-cooled reactor graphite (from the Windscale Advanced Gas-cooled Reactor) and graphite from fast reactor systems (neutron shield graphite from the Dounreay Prototype Fast Reactor and Dounreay Fast Reactor). The decommissioning and dismantling of these facilities will give rise to over 6,000 tonnes of graphite requiring disposal. The first graphite will be retrieved from the dismantling of Windscale Pile 1 and the Windscale Advanced Gas-cooled Reactor during the next five years. UKAEA has undertaken extensive studies to consider the best practicable options for disposing of these graphite liabilities in a manner that is safe whilst minimising the associated costs and technical risks. These options include (but are not limited to), disposal as Low Level Waste, incineration, or encapsulation and disposal as Intermediate Level Waste. There are a number of technical issues associated with each of these proposed disposal options; these include Wigner energy, radionuclide inventory determination, encapsulation of graphite dust, galvanic coupling interactions enhancing the corrosion of mild steel and public acceptability. UKAEA is currently developing packaging concepts and designing packaging plants for processing these graphite wastes in consultation with other holders of graphite wastes throughout Europe. 'Letters of Comfort' have been sought from both the Low Level Waste and the Intermediate Level Waste disposal organisations to support the

  11. Fabrication of graphene device from graphite intercalation compound

    Science.gov (United States)

    Yagi, Ryuta; Kobara, Hiroaki; Shimomura, Midori; Tahara, Fumiya; Fukada, Seiya

    2012-02-01

    The mechanical exfoliation of graphite is possibly the simplest and practical method in laboratories to obtain graphene flakes for scientific research. However efficiency for obtaining graphene, with desired layer-number and size, depends largely on crystal specific characters, eg., dislocations. To improve the issue, we have adopted graphite intercalation compound (GIC) instead of graphite for a starting material. Generally, GIC is chemically active. We used SbCl5- GIC, which is stable in the atmosphere. Stage structure of SbCl5-GIC could be tuned by temperature of intercalation. We found that considerable number of undoped graphene flakes coexisted with thin SbCl5-GIC flakes, on a substrate where flakes were transferred.?Statistical inspection of number of graphene layer indicated that it is significantly dependent on the stage number of GIC.

  12. Graphite in Science and Nuclear Technique

    OpenAIRE

    Zhmurikov, E. I.; Bubnenkov, I. A.; Dremov, V. V.; Samarin, S. I.; Pokrovsky, A. S.; Harkov, D. V.

    2013-01-01

    The monograph is devoted to the application of graphite and graphite composites in science and technology. The structure and electrical properties, the technological aspects of production of high-strength synthetic graphites, the dynamics of the graphite destruction, traditionally used in the nuclear industry are discussed. It is focuses on the characteristics of graphitization and properties of graphite composites based on carbon isotope 13C. The book is based, generally, on the original res...

  13. Calculation of radiation and pair production probabilities at arbitrary incidence angles to crystal planes

    International Nuclear Information System (INIS)

    Tikhonirov, V.V.

    1993-01-01

    The results of calculations of the intensity and polarization of radiation from channeled and unchanneled e +- are presented. The Fourier transformation (FT) is used to calculate numerous matrix elements. The calculations for channeled e + showed fast approach of spectral intensity to its value calculated in the approximation of self-consistent field (ASCF) with growing photon energy. In the case of 150 GeV unchanneled e - in Ge at T=293 K the ASCF gives a significantly higher value as compared to the FT. 4 refs., 3 figs

  14. Modification of structural graphite machining

    International Nuclear Information System (INIS)

    Lavrenev, M.M.

    1979-01-01

    Studied are machining procedures for structural graphites (GMZ, MG, MG-1, PPG) most widely used in industry, of the article mass being about 50 kg. Presented are dependences necessary for the calculation of cross sections of chip suction tappers and duster pipelines in machine shops for structural graphite machining

  15. Investigation of the thermoluminescent response of K2GdF5:Dy3+ crystals to photon radiation and neutron fields

    International Nuclear Information System (INIS)

    Silva, Edna C.; Faria, Luiz O.; Santos, Joelan A.L.; Vilela, Eudice C.

    2009-01-01

    The thermoluminescent (TL) properties of undoped and Dy 3+ doped K 2 GdF 5 crystals were investigated from the point of view of gamma and neutron dosimetry. Crystalline K 2 GdF 5 platelets with thickness of about 1 mm and doped with 0.0, 0.2, 1.0, 5.0 and 10.0 at.% Dy 3+ ions, synthesized under hydrothermal conditions, were irradiated in order to study TL sensitivity, as well as dose and energy response, reproducibility and fading. As it has been turned out, crystals doped with 5.0 at% Dy 3+ show the most efficient TL response and demonstrate a linear response to doses for all the radiation fields. TL glow curves from Dy 3+ doped K 2 GdF 5 crystals can be deconvoluted into four individual TL peaks centered at 153, 185, 216 and 234 deg C. Concerning the photon fields studied, the maximum TL response has been found for the 52.5 keV photons. The intensity is 15 times more than that of the response for the 662 keV photons from a Cs-137 source. On the other hand, the K 2 GdF 5 crystals doped with 5.0 at % Dy 3+ have also been found to have the better TL response for fast neutron radiation, among all dopants studied. For fast neutron radiation produced by a 241 Am-Be source, the TL responses for doses were also linear and comparable to that of commercial TLD-600, irradiated at same conditions. It has been established that the gamma sensitivity of the crystals is about 0.07% of the neutron sensitivity and the fast neutron sensitivity is about 4.5 % of the thermal neutron sensitivity. These results points out that K 2 Gd 0.95 Dy 0.05 F 5 crystals are good candidates for use in neutron dosimetry applications. (author)

  16. Effects of ice crystal surface roughness and air bubble inclusions on cirrus cloud radiative properties from remote sensing perspective

    International Nuclear Information System (INIS)

    Tang, Guanglin; Panetta, R. Lee; Yang, Ping; Kattawar, George W.; Zhai, Peng-Wang

    2017-01-01

    We study the combined effects of surface roughness and inhomogeneity on the optical scattering properties of ice crystals and explore the consequent implications to remote sensing of cirrus cloud properties. Specifically, surface roughness and inhomogeneity are added to the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 (MC6) cirrus cloud particle habit model. Light scattering properties of the new habit model are simulated using a modified version of the Improved Geometric Optics Method (IGOM). Both inhomogeneity and surface roughness affect the single scattering properties significantly. In visible bands, inhomogeneity and surface roughness both tend to smooth the phase function and eliminate halos and the backscattering peak. The asymmetry parameter varies with the degree of surface roughness following a U shape - decreases and then increases - with a minimum at around 0.15, whereas it decreases monotonically with the air bubble volume fraction. Air bubble inclusions significantly increase phase matrix element -P_1_2 for scattering angles between 20°–120°, whereas surface roughness has a much weaker effect, increasing -P_1_2 slightly from 60°–120°. Radiative transfer simulations and cirrus cloud property retrievals are conducted by including both the factors. In terms of surface roughness and air bubble volume fraction, retrievals of cirrus cloud optical thickness or the asymmetry parameter using solar bands show similar patterns of variation. Polarimetric simulations using the MC6 cirrus cloud particle habit model are shown to be more consistent with observations when both surface roughness and inhomogeneity are simultaneously considered. - Highlights: • Surface roughness and air bubble inclusions affect optical properties of ice crystals significantly. • Including both factors improves simulations of ice cloud.• Cirrus cloud particle habit model of the MODIS collection 6 achieves better self-consistency and consistency with

  17. Synchrotron radiation topography studies of the phase transition in LaGaO3 crystals

    International Nuclear Information System (INIS)

    Yao, G.D.; Dudley, M.; Wang, Y.; Liu, X.; Liebermann, R.C.

    1991-01-01

    An investigation of the orthorhombic to rhombohedral phase transformation occurring at 145degC in lanthanum gallate has been conducted using white beam synchrotron X-ray topography (WBSXRT). The existence of the first order transition was confirmed by differential thermal analysis and X-ray diffractometer powder analysis. Subsequent to this, synchrotron white beam Laue patterns were recorded in situ as a function of temperature, during the transition. Before the transition point was reached, (112) orth type reflection twinning was found to be dominant although a small amount of (110) orth type twinning was also observed in the same crystal. Beyond the transition point, not only did the structural change become evident but also reflection twinning on the (110) rhom planes was observed. The scale of this twinning became finer as the temperature was increased beyond the transition temperature. The twinning observed in both the low and high temperature phases gives rise to deformation of the (011) rhom surface plane which creates problems for the potential use of this material as a substrate for growing high Tc superconducting epitaxial layers. (orig.)

  18. Synchrotron radiation topography studies of the phase transition in LaGaO sub 3 crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yao, G.D.; Dudley, M. (Dept. of Materials Science and Engineering, SUNY at Stony Brook, NY (USA)); Wang, Y.; Liu, X.; Liebermann, R.C. (Dept. of Earth and Space Sciences, SUNY at Stony Brook, NY (USA))

    1991-05-01

    An investigation of the orthorhombic to rhombohedral phase transformation occurring at 145degC in lanthanum gallate has been conducted using white beam synchrotron X-ray topography (WBSXRT). The existence of the first order transition was confirmed by differential thermal analysis and X-ray diffractometer powder analysis. Subsequent to this, synchrotron white beam Laue patterns were recorded in situ as a function of temperature, during the transition. Before the transition point was reached, (112){sub orth} type reflection twinning was found to be dominant although a small amount of (110){sub orth} type twinning was also observed in the same crystal. Beyond the transition point, not only did the structural change become evident but also reflection twinning on the (110){sub rhom} planes was observed. The scale of this twinning became finer as the temperature was increased beyond the transition temperature. The twinning observed in both the low and high temperature phases gives rise to deformation of the (011){sub rhom} surface plane which creates problems for the potential use of this material as a substrate for growing high Tc superconducting epitaxial layers. (orig.).

  19. Synchrotron radiation topography studies of the phase transition in LaGaO 3 crystals

    Science.gov (United States)

    Yao, G.-D.; Dudley, M.; Wang, Y.; Liu, X.; Liebermann, R. C.

    1991-05-01

    An investigation of the orthorhombic to rhombohedral phase transformation occurring at 145°C in lanthanum gallate has been conducted using white beam synchrotron X-ray topography (WBSXRT). The existence of the first order transition was confirmed by differential thermal analysis and X-ray diffractometer powder analysis. Subsequent to this, synchrotron white beam Laue patterns were recorded in situ as a function of temperature, during the transition. Before the transition point was reached, (112) orth type reflection twinning was found to be dominant although a small amount of (110) orth type twinning was also observed in the same crystal. Beyond the transition point, not only did the structural change become evident but also reflection twinning on the (110) rhom planes was observed. The scale of this twinning became finer as the temperature was increased beyond the transition temperature. The twinning observed in both the low and high temperature phases gives rise to deformation of the (011) rhom surface plane which creates problems for the potential use of this material as a substrate for growing high Tc superconducting epitaxial layers.

  20. Effect of crystal orientation on grain boundary migration and radiation-induced segregation

    International Nuclear Information System (INIS)

    Hashimoto, N.; Eda, Y.; Takahashi, H.

    1996-01-01

    Fe-Cr-Ni, Ni-Al and Ni-Si alloys were electron-irradiated using a high voltage electron microscope (1 MeV), and in situ observations of the structural evolution and micro-chemical analysis were carried out. During the irradiation, the grain boundaries in the irradiated region migrated, while no grain boundary migration occurred in the unirradiated area. The occurrence of boundary migration depended on the orientation relationship of the boundary interfaces. Grain boundary migration took place in Fe-Cr-Ni and Ni-Si alloys with large crystal orientation difference between the two grains across a grain boundary. In Ni-Al, however, the grain boundary migration did not occur. The solute segregation was caused at grain boundary under irradiation and this segregation behavior was closely related to solute size, namely the concentrations of undersized Ni and oversized Cr elements in Fe-Cr-Ni alloy increased and reduced at grain boundary, respectively. The same dependence of segregation on the solute size was derived in Ni-Si and Ni-Al alloys, in which Si and Al solutes are undersized and oversized elements, respectively. Therefore, Si solute enriched and Al solute depleted at grain boundary. From the present segregation behavior, it is suggested that the flow of point defects into the boundary is the cause of grain boundary migration. (orig.)

  1. Glass-Graphite Composite Materials

    International Nuclear Information System (INIS)

    Mayzan, M.Z.H.; Lloyd, J.W.; Heath, P.G.; Stennett, M.C.; Hyatt, N.C.; Hand, R.J.

    2016-01-01

    A summary is presented of investigations into the potential of producing glass-composite materials for the immobilisation of graphite or other carbonaceous materials arising from nuclear power generation. The methods are primarily based on the production of base glasses which are subsequently sintered with powdered graphite or simulant TRISO particles. Consideration is also given to the direct preparation of glass-graphite composite materials using microwave technology. Production of dense composite wasteforms with TRISO particles was more successful than with powdered graphite, as wasteforms containing larger amounts of graphite were resistant to densification and the glasses tried did not penetrate the pores under the pressureless conditions used. Based on the results obtained it is concluded that the production of dense glassgraphite composite wasteforms will require the application of pressure. (author)

  2. Interaction of boron with graphite: A van der Waals density functional study

    International Nuclear Information System (INIS)

    Liu, Juan; Wang, Chen; Liang, Tongxiang; Lai, Wensheng

    2016-01-01

    Highlights: • A van der Waals density-functional approach is applied to study the interaction of boron with graphite. • VdW-DF functionals give fair agreement of crystal parameters with experiments. • The π electron approaches boron while adsorbing on graphite surface. • The hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. • PBE cannot describe the interstitial boron in graphite because of the ignoring binding of graphite sheets. - Abstract: Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less

  3. Interaction of boron with graphite: A van der Waals density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan; Wang, Chen [Beijing Key Lab of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Lai, Wensheng [Advanced Material Laboratory, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084 (China)

    2016-08-30

    Highlights: • A van der Waals density-functional approach is applied to study the interaction of boron with graphite. • VdW-DF functionals give fair agreement of crystal parameters with experiments. • The π electron approaches boron while adsorbing on graphite surface. • The hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. • PBE cannot describe the interstitial boron in graphite because of the ignoring binding of graphite sheets. - Abstract: Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less

  4. Study of optical absorption in the ultraviolet region of mixed crystals ADA/ADP aiming to investigate defects and centers formed by ionizing radiation

    International Nuclear Information System (INIS)

    Schneider, S.

    1978-01-01

    The development of a crystal model to explain the ionizing radiation effect on the color centers is presented. The methods of crystal growth used in the sample preparation and the requirements necessary for an efficient optical study, such as area, thickness purity, etc, are described. The processes of color center production are analysed and the techniques used in the study of color centers, such as optical absorption, spectrometry and spin resonance, are described. The computer programs used in curve adjustment and the approximated calculation of centers per cm 3 are also presented. (M.C.K.) [pt

  5. Thermoluminescent monitoring of the solar ultraviolet radiation with KCl: Eu2+ crystals

    International Nuclear Information System (INIS)

    Chernov, V.; Melendrez, R.; Barboza F, M.

    2000-01-01

    In this work it has been investigating the Tl properties of KCl: Eu 2+ subjected to solar direct radiation. Also it was realized irradiation with the Deuterium and Xenon lamps. It was used a set of filters and a Katos monochromator 0.25 M to determine the spectral response to Tl peaks and a study of them with respect to the duration of the Sun irradiation. After of the Sun irradiation the Tl curves show several peaks between the ambient temperature and 673 K. The relation between peaks depends strongly of the irradiation time and the different solar light wavelength. It is possible to divide the Tl peaks in two groups. The first one (T 473 K) is not too sensitive but is more stable under optical whitening. Here the obtained results are discussed with respect to UV dosemeters development for environment which facilitate to obtain direct measurements of the UV index. (Author)

  6. Helium generation and diffusion in graphite and some carbides

    International Nuclear Information System (INIS)

    Holt, J.B.; Guinan, M.W.; Hosmer, D.W.; Condit, R.H.; Borg, R.J.

    1976-01-01

    The cross section for the generation of helium in neutron irradiated carbon was found to be 654 mb at 14.4 MeV and 744 mb at 14.9 MeV. Extrapolating to 14.1 MeV (the fusion reactor spectrum) gives 615 mb. The diffusion of helium in dense polycrystalline graphite and in pyrographite was measured and found to be D = 7.2 x 10 -7 m 2 s -1 exp (-80 kJ/RT). It is assumed that diffusion is primarily in the basal plane direction in crystals of the graphite. In polycrystalline graphite the path length is a factor of √2 longer than the measured distance due to the random orientation mismatch between successive grains. Isochronal anneals (measured helium release as the specimen is steadily heated) were run and maximum release rates were found at 200 0 C in polycrystalline graphite, 1000 0 C in pyrographite, 1350 0 C in boron carbide, and 1350 0 and 2400 0 C (two peaks) in silicon carbide. It is concluded that in these candidates for curtain materials in fusion reactors the helium releases can probably occur without bubble formation in graphites, may occur in boron carbide, but will probably cause bubble formation in silicon carbide. 7 figures

  7. Experimental and theoretical study of directional effects on radiation and pair creation in crystal at energies near 100 GeV

    International Nuclear Information System (INIS)

    Belkacem, A.

    1986-07-01

    We investigated the electron-positron pair production from incident photons on a thin crystal. When the photon energy is higher than about 30 GeV, the pair production rate from a photon beam aligned along a crystal direction is higher than the rate measured with an amorphous target (Bethe-Heitler value). In contrast with what was observed for a random orientation (or with an amorphous target) the pair production rate increases sharply with the photon energy. We also investigated the radiation emitted by high energy electrons and positrons (70-200 GeV) along a crystal direction. The intensity of the radiation was found to be extremely high. The increase of the intensity of these two electromagnetic processes (radiation and pair creation) was still observed for incident angles much larger than the channeling critical angle. Thus, a theory based on the channeling phenomenon is not able to explain such observations. In order to understand these new phenomena we developed a new theoretical approach based on the electromagnetic interaction in strong fields. The predictions of this theory on the pair production are in very good agreement with the measurements. The calculations of the radiation are in quantitative agreement with measurements for incident angles larger than the channeling critical angle. This agreement is only qualitative for incident angles smaller than the critical angle [fr

  8. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite.

    Science.gov (United States)

    Kraus, D; Ravasio, A; Gauthier, M; Gericke, D O; Vorberger, J; Frydrych, S; Helfrich, J; Fletcher, L B; Schaumann, G; Nagler, B; Barbrel, B; Bachmann, B; Gamboa, E J; Göde, S; Granados, E; Gregori, G; Lee, H J; Neumayer, P; Schumaker, W; Döppner, T; Falcone, R W; Glenzer, S H; Roth, M

    2016-03-14

    The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. Our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.

  9. Correlated analysis of 2 MeV proton-induced radiation damage in CdZnTe crystals using photoluminescence and thermally stimulated current techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yaxu [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Key Laboratory of Radiation Detection Materials and Devices of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710072 (China); Jie, Wanqi, E-mail: jwq@nwpu.edu.cn [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Key Laboratory of Radiation Detection Materials and Devices of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710072 (China); Rong, Caicai [Institute of Modern Physics, Applied Ion Beam Physics Laboratory, Fudan University, Shanghai 200433 (China); Wang, Yuhan; Xu, Lingyan; Xu, Yadong [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Key Laboratory of Radiation Detection Materials and Devices of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710072 (China); Lv, Haoyan; Shen, Hao [Institute of Modern Physics, Applied Ion Beam Physics Laboratory, Fudan University, Shanghai 200433 (China); Du, Guanghua [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Fu, Xu [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Key Laboratory of Radiation Detection Materials and Devices of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710072 (China); and others

    2016-11-01

    Highlights: • 2 MeV proton-induced radiation damage in CdZnTe crystals is investigated by PL and TSC techniques. • The influence of radiation damage on the luminescent and electrical properties of CdZnTe crystals is studied. • Intensity of PL spectrum is found to decrease significantly in irradiated regions, suggesting the increase of non-radiative recombination centers. • A correlated analysis of PL and TSC spectra suggests that the density of dislocations and A-centers increase after proton irradiation. - Abstract: Radiation damage induced by 2 MeV protons in CdZnTe crystals has been studied by means of photoluminescence (PL) and thermally stimulated current (TSC) techniques. A notable quenching of PL intensity is observed in the regions irradiated with a fluence of 6 × 10{sup 13} p/cm{sup 2}, suggesting the increase of non-radiative recombination centers. Moreover, the intensity of emission peak D{sub complex} centered at 1.48 eV dominates in the PL spectrum obtained from irradiated regions, ascribed to the increase of interstitial dislocation loops and A centers. The intensity of TSC spectra in irradiated regions decreases compared to the virgin regions, resulting from the charge collection inefficiency caused by proton-induced recombination centers. By comparing the intensity of identified traps obtained from numerical fitting using simultaneous multiple peak analysis (SIMPA) method, it suggests that proton irradiation under such dose can introduce high density of dislocation and A-centers in CdZnTe crystals, consistent with PL results.

  10. Crystallization of nodular cast iron with carbides

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-12-01

    Full Text Available In this paper a crystallization process of nodular cast iron with carbides having a different chemical composition have been presented. It have been found, that an increase of molybdenum above 0,30% causes the ledeburutic carbides crystallization after (γ+ graphite eutectic phase crystallization. When Mo content is lower, these carbides crystallize as a pre-eutectic phase. In this article causes of this effect have been given.

  11. The graphite deposit at Borrowdale (UK): A catastrophic mineralizing event associated with Ordovician magmatism

    Science.gov (United States)

    Ortega, L.; Millward, D.; Luque, F. J.; Barrenechea, J. F.; Beyssac, O.; Huizenga, J.-M.; Rodas, M.; Clarke, S. M.

    2010-04-01

    The volcanic-hosted graphite deposit at Borrowdale in Cumbria, UK, was formed through precipitation from C-O-H fluids. The δ 13C data indicate that carbon was incorporated into the mineralizing fluids by assimilation of carbonaceous metapelites of the Skiddaw Group by andesite magmas of the Borrowdale Volcanic Group. The graphite mineralization occurred as the fluids migrated upwards through normal conjugate fractures forming the main subvertical pipe-like bodies. The mineralizing fluids evolved from CO 2-CH 4-H 2O mixtures (XCO 2 = 0.6-0.8) to CH 4-H 2O mixtures. Coevally with graphite deposition, the andesite and dioritic wall rocks adjacent to the veins were intensely hydrothermally altered to a propylitic assemblage. The initial graphite precipitation was probably triggered by the earliest hydration reactions in the volcanic host rocks. During the main mineralization stage, graphite precipitated along the pipe-like bodies due to CO 2 → C + O 2. This agrees with the isotopic data which indicate that the first graphite morphologies crystallizing from the fluid (cryptocrystalline aggregates) are isotopically lighter than those crystallizing later (flakes). Late chlorite-graphite veins were formed from CH 4-enriched fluids following the reaction CH 4 + O 2 → C + 2H 2O, producing the successive precipitation of isotopically lighter graphite morphologies. Thus, as mineralization proceeded, water-generating reactions were involved in graphite precipitation, further favouring the propylitic alteration. The structural features of the pipe-like mineralized bodies as well as the isotopic homogeneity of graphite suggest that the mineralization occurred in a very short period of time.

  12. Hypervelocity impacts into graphite

    Science.gov (United States)

    Latunde-Dada, S.; Cheesman, C.; Day, D.; Harrison, W.; Price, S.

    2011-03-01

    Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms-1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.

  13. Hypervelocity impacts into graphite

    International Nuclear Information System (INIS)

    Latunde-Dada, S; Cheesman, C; Day, D; Harrison, W; Price, S

    2011-01-01

    Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms -1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.

  14. Measurement of the energy distribution of parametric X-ray radiation from a double-crystal system

    International Nuclear Information System (INIS)

    Mori, Akira; Hayakawa, Yasushi; Kidokoro, Akio; Sato, Isamu; Tanaka, Toshinari; Hayakawa, Ken; Kobayashi, Kouji; Ohshima, Hisashi

    2006-01-01

    A parametric X-ray radiation (PXR) generator system was developed at the Laboratory for Electron Beam Research and Applications (LEBRA) at Nihon University; this PXR generator system is a tunable wavelength and quasi-monochromatic X-ray source constructed as one of the advanced applications of the LEBRA 125-MeV electron linear accelerator. The PXR beam which has characteristic of energy distribution. The theoretical values of energy distribution obtained at the output port were calculated to be approximately 300 eV and 2 keV at the central X-ray energies of 7 keV and 20 keV, respectively. In order to investigate the energy distribution, several measurements of the X-ray energy were carried out. The X-ray absorption of known materials and that of thin aluminum has been evaluated based on analyses of images taken using an imaging plate. The X-ray energy was deduced base on the identification of the absorption edges, and the energy distribution was estimated based on measurements using aluminum step method. In addition, an X-ray diffraction method using a perfect silicon crystal was employed, and spectra were measured using a solid state detector (SSD). The results of these experiments agreed with the calculated results. In particular, the well-defined absorption edges in the X-ray images and the typical rocking curves obtained by the measurement of the X-ray diffraction indicated that the distribution has a high-energy resolution

  15. A device for the application of uniaxial strain to single crystal samples for use in synchrotron radiation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gannon, L. [Clarendon Laboratory, University of Oxford Physics Department, Parks Road, Oxford OX1 3PU (United Kingdom); Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE (United Kingdom); Bosak, A. [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Burkovsky, R. G. [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Peter the Great Saint-Petersburg Polytechnic University, 29 Politekhnicheskaya, 195251, St.-Petersburg (Russian Federation); Nisbet, G.; Hoesch, M., E-mail: Moritz.Hoesch@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE (United Kingdom); Petrović, A. P. [DPMC-MaNEP, Université de Genève, Quai Ernest-Ansermet 24, 1211 Genève 4 (Switzerland)

    2015-10-15

    We present the design, construction, and testing of a straining device compatible with many different synchrotron radiation techniques, in a wide range of experimental environments (including low temperature, high field and ultra-high vacuum). The device has been tested by X-ray diffraction on single crystal samples of quasi-one-dimensional Cs{sub 2}Mo{sub 6}Se{sub 6} and K{sub 2}Mo{sub 6}Se{sub 6}, in which microscopic strains up to a Δc/c = 0.12% ± 0.01% change in the c lattice parameters have been achieved. We have also used the device in an inelastic X-ray scattering experiment, to probe the strain-dependent speed of sound ν along the c axis. A reduction Δν/ν of up to −3.8% was obtained at a strain of Δc/c = 0.25% in K{sub 2}Mo{sub 6}Se{sub 6}.

  16. Acoustic emission from polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, I.; Yoda, S.; Oku, T.; Miyamoto, Y.

    1987-01-01

    Acoustic emission was monitored from polycrystalline graphites with different microstructure (pore size and pore volume) subjected to compressive loading. The graphites used in this study comprised five brands, that is, PGX, ISEM-1, IG-11, IG-15, and ISO-88. A root mean square (RMS) voltage and event counts of acoustic emission for graphites were measured during compressive loading. The acoustic emission was measured using a computed-based data acquisition and analysis system. The graphites were first deformed up to 80 % of the average fracture stress, then unloaded and reloaded again until the fracture occured. During the first loading, the change in RMS voltage for acoustic emission was detected from the initial stage. During the unloading, the RMS voltage became zero level as soon as the applied stress was released and then gradually rose to a peak and declined. The behavior indicated that the reversed plastic deformation occured in graphites. During the second loading, the RMS voltage gently increased until the applied stress exceeded the maximum stress of the first loading; there is no Kaiser effect in the graphites. A bicrystal model could give a reasonable explanation of this results. The empirical equation between the ratio of σ AE to σ f and σ f was obtained. It is considered that the detection of microfracture by the acoustic emission technique is effective in macrofracture prediction of polycrystalline graphites. (author)

  17. Radiolytic graphite oxidation revisited

    International Nuclear Information System (INIS)

    Minshall, P.C.; Sadler, I.A.; Wickham, A.J.

    1996-01-01

    The importance of radiolytic oxidation in graphite-moderated CO 2 -cooled reactors has long been recognised, especially in the Advanced Gas-Cooled Reactors where potential rates are higher because of the higher gas pressure and ratings than the earlier Magnox designs. In all such reactors, the rate of oxidation is partly inhibited by the CO produced in the reaction and, in the AGR, further reduced by the deliberate addition of CH 4 . Significant roles are also played by H 2 and H 2 O. This paper reviews briefly the mechanisms of these processes and the data on which they are based. However, operational experience has demonstrated that these basic principles are unsatisfactory in a number of respects. Gilsocarbon graphites produced by different manufacturers have demonstrated a significant difference in oxidation rate despite a similar specification and apparent equivalence in their pore size and distribution, considered to be the dominant influence on oxidation rate for a given coolant-gas composition. Separately, the inhibiting influence of CH 4 , which for many years had been considered to arise from the formation of a sacrificial deposit on the pore walls, cannot adequately be explained by the actual quantities of such deposits found in monitoring samples which frequently contain far less deposited carbon than do samples from Magnox reactors where the only source of such deposits is the CO. The paper also describes the current status of moderator weight-loss predictions for Magnox and AGR Moderators and the validation of the POGO and DIFFUSE6 codes respectively. 2 refs, 5 figs

  18. Effect of iron and chromium on the graphitization behaviour of sulfur-containing carbon

    International Nuclear Information System (INIS)

    Tyumentsev, V.A.; Belenkov, E.A.; Saunina, S.I.; Podkopaev, S.A.; Shvejkin, G.P.

    1998-01-01

    Process of transition of carbonaceous material, containing structurally incorporated sulfur, into graphite and impact of iron and chromium additions are studied. It is established that carbonaceous material, containing more than 1.5 mass % S and also 1.5 mass % Cr 2 O 3 is heterogeneous after thermal treatment at 1300-1600 deg C. It consists of large and sufficiency complete areas of coherent scattering having graphite structure and ultra-dispersed matrix. The number of graphite crystals formed in the presence of dispersed iron within this temperature range, decreases by two times [ru

  19. In situ beam analysis of radiation damage kinetics in MgTiO3 single crystals at 170-470 K

    International Nuclear Information System (INIS)

    Yu, Ning; Mitchell, J.N.; Sickafus, K.E.; Nastasi, M.

    1995-01-01

    Radiation damage kinetics in synthetic MgTiO 3 (geikielite) single crystals have been studied using the in situ ion beam facility at Los Alamos National Laboratory. The geikielite samples were irradiated at temperatures of 170, 300, and 470 K with 400 keV xenon ions and the radiation damage was sequentially measured with Rutherford backscattering using a 2 MeV He ion beam along a channeling direction. Threshold doses of I and 5x l0 15 Xe/cm 2 were determined for the crystalline-to-amorphous transformation induced by Xe ion irradiation at 170 and 300 K, respectively. However, geikielite retained its crystallinity up to a dose of 2.5xl0 16 Xe/cm 2 at the irradiation temperature of 470 K. This study has shown that MgTiO 3 , which has a corundum derivative structure, is another radiation resistant material that has the potential for use in radiation environments

  20. Changing of optical absorption and scattering coefficients in nonlinear-optical crystal lithium triborate before and after interaction with UV-radiation

    Science.gov (United States)

    Demkin, Artem S.; Nikitin, Dmitriy G.; Ryabushkin, Oleg A.

    2016-04-01

    In current work optical properties of LiB3O5 (LBO) crystal with ultraviolet (UV) (λ= 266 nm) induced volume macroscopic defect (track) are investigated using novel piezoelectric resonance laser calorimetry technique. Pulsed laser radiation of 10 W average power at 532 nm wavelength, is consecutively focused into spatial regions with and without optical defect. For these cases exponential fitting of crystal temperature kinetics measured during its irradiation gives different optical absorption coefficients α1 = 8.1 • 10-4 cm-1 (region with defect) and α =3.9ṡ10-4 cm-1 (non-defected region). Optical scattering coefficient is determined as the difference between optical absorption coefficients measured for opaque and transparent lateral facets of the crystal respectively. Measurements reveal that scattering coefficient of LBO in the region with defect is three times higher than the optical absorption coefficient.

  1. SURFACE MODIFICATION OF SEMICONDUCTOR THIN FILM OF TiO2 ON GRAPHITE SUBSTRATE BY Cu-ELECTRODEPOSITION

    Directory of Open Access Journals (Sweden)

    Fitria Rahmawati

    2010-06-01

    Full Text Available Surface modification of graphite/TiO2 has been done by mean of Cu electrodeposition. This research aims to study the effect of Cu electrodeposition on photocatalytic enhancing of TiO2. Electrodeposition has been done using CuSO4 0,4 M as the electrolyte at controlled current. The XRD pattern of modified TiO2 thin film on graphite substrate exhibited new peaks at 2θ= 43-44o and 2θ= 50-51o that have been identified as Cu with crystal cubic system, face-centered crystal lattice and crystallite size of 26-30 nm. CTABr still remains in the material as impurities. Meanwhile, based on morphological analysis, Cu particles are dissipated in the pore of thin film. Graphite/TiO2/Cu has higher photoconversion efficiency than graphite/TiO2.   Keywords: semiconductor, graphite/TiO2, Cu electrodeposition

  2. Crystal River 3 Cable Materials for Thermal and Gamma Radiation Aging

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Correa, Miguel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zwoster, Andy [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-07

    The Expanded Materials Degradation Assessment Volume 5: Aging of Cables and Cable Systems (EMDA) summarizes the state of knowledge of materials, constructions, operating environments, and aging behavior of low voltage and medium cables in nuclear power plants (NPPs) and identifies potential knowledge gaps with regard to cable operation beyond 60 years. The greatest area of uncertainty relates to how well the accelerated aging used in the original equipment qualification (EQ) processes predicts the performance of cable materials in extended operation. General opinion and utility experience have indicated that actual operating environments of in-plant cables are not as severe, however, as the operating and design basis environments used in the qualification process. Better understanding of the long term aging behavior of cable insulation materials in service conditions and the analysis of actual cable operating environments are the objectives of ongoing research to support subsequent license renewal activities in particular and long term cable aging management in general. A key component of the effort to better understand cable material aging behavior is the availability of representative samples of cables that have been installed in operating light water reactors and have experienced long term service. Unique access to long term service cables, including relatively rich information on cable identity and history, occurred in 2016 through the assistance of the Electric Power Research Institute (EPRI). EPRI facilitated DOE receipt of harvested cables from the decommissioned Crystal River Unit 3 (CR3) pressurized water reactor representing six of the nine most common low voltage cable manufacturers (EPRI 103841R1): Rockbestos, Anaconda Wire and Cable Company (Anaconda), Boston Insulated Wire (BIW), Brand-Rex, Kerite and Okonite. Cable samples received had been installed in the operating plant for durations ranging from 10 years to 36 years. These cables provide the

  3. Chemisputtering of interstellar graphite grains

    International Nuclear Information System (INIS)

    Draine, B.T.

    1979-01-01

    The rate of erosion of interstellar graphite grains as a result of chemical reaction with H, N, and O is estimated using the available experiment evidence. It is argued that ''chemical sputtering'' yields for interstellar graphite grains will be much less than unity, contrary to earlier estimates by Barlow and Silk. Chemical sputtering of graphite grains in evolving H II regions is found to be unimportant, except in extremely compact (n/sub H/> or approx. =10 5 cm -3 ) H II regions. Alternative explanations are considered for the apparent weakness of the lambda=2175 A extinction ''bump'' in the direction of several early type stars

  4. Obtention of nuclear grade graphite

    International Nuclear Information System (INIS)

    Ferreira, M.L.

    1984-01-01

    The impurity level of natural graphite found in some of the most important mines of the State of Minas Gerais - Brasil is determined. It is also concerned with the development and use of natural graphite in nuclear reactors. Standard methods for chemical and instrumentsal analysis such as Spectrografic Determination by Emission, Spectrografic Determination by X-Rays, Spectrografic Determination by Atomic Asorption, Photometric Determination, and also chemical and physical methods for separation of impurities as well standard method for Estimating the Thermal Neutron Absorption Cross Section of graphite were employed. Some aditionals methods of purification to the ordinary treatment such as the use of metanol and halogens are also described. (Author) [pt

  5. Electroluminescence from a diamond device with ion-beam-micromachined buried graphitic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Forneris, J., E-mail: jacopo.forneris@unito.it [Physics Department and NIS Interdepartmental Centre, University of Torino, Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sez. Torino, Torino (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Sez. Torino, Torino (Italy); Battiato, A.; Gatto Monticone, D. [Physics Department and NIS Interdepartmental Centre, University of Torino, Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sez. Torino, Torino (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Sez. Torino, Torino (Italy); Picollo, F. [Istituto Nazionale di Fisica Nucleare (INFN), Sez. Torino, Torino (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Sez. Torino, Torino (Italy); Physics Department and NIS Interdepartmental Centre, University of Torino, Torino (Italy); Amato, G.; Boarino, L.; Brida, G.; Degiovanni, I.P.; Enrico, E.; Genovese, M.; Moreva, E.; Traina, P. [Istituto Nazionale di Ricerca Metrologica (INRiM), Torino (Italy); Verona, C.; Verona Rinati, G. [Department of Industrial Engineering, University of Roma “Tor Vergata”, Roma (Italy); Olivero, P. [Physics Department and NIS Interdepartmental Centre, University of Torino, Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sez. Torino, Torino (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Sez. Torino, Torino (Italy)

    2015-04-01

    Focused MeV ion microbeams are suitable tools for the direct writing of conductive graphitic channels buried in an insulating diamond bulk, as demonstrated in previous works with the fabrication of multi-electrode ionizing radiation detectors and cellular biosensors. In this work we investigate the suitability of the fabrication method for the electrical excitation of color centers in diamond. Differently from photoluminescence, electroluminescence requires an electrical current flowing through the diamond sub-gap states for the excitation of the color centers. With this purpose, buried graphitic electrodes with a spacing of 10 μm were fabricated in the bulk of a detector-grade CVD single-crystal diamond sample using a scanning 1.8 MeV He{sup +} micro-beam. The current flowing in the gap region between the electrodes upon the application of a 450 V bias voltage was exploited as the excitation pump for the electroluminescence of different types of color centers localized in the above-mentioned gap. The bright light emission was spatially mapped using a confocal optical microscopy setup. The spectral analysis of electroluminescence revealed the emission from neutrally-charged nitrogen-vacancy centers (NV{sup 0}, λ{sub ZPL} = 575 nm), as well as from cluster crystal dislocations (A-band, λ = 400–500 nm). Moreover, an electroluminescence signal with appealing spectral features (sharp emission at room temperature, low phonon sidebands) from He-related defects was detected (λ{sub ZPL} = 536.3 nm, λ{sub ZPL} = 560.5 nm); a low and broad peak around λ = 740 nm was also observed and tentatively ascribed to Si-V or GR1 centers. These results pose interesting future perspectives for the fabrication of electrically-stimulated single-photon emitters in diamond for applications in quantum optics and quantum cryptography.

  6. The irradiation induced creep of graphite under accelerated damage produced by boron doping

    International Nuclear Information System (INIS)

    Brocklehurst, J.E.

    1975-01-01

    The presence of boron enhances fast neutron irradiation damage in graphite by providing nucleation sites for interstitial loop formation. Doping with 11 B casues an increase in the irradiation induced macroscopic dimensional changes, which have been shown to result from an acceleration in the differential crystal growth rate for a given carbon atom displacement rate. Models of irradiation induced creep in graphite have centred around those in which creep is induced by internal stresses due to the anisotopic crystal growth, and those in which creep is activated by atomic displacements. A creep test on boron doped graphite has been performed in an attempt to establish which of these mechanisms is the determining factor. An isotropic nuclear graphite was doped to a 11 B concentration of 0.27 wt.%. The irradiation induced volume shrinkage rate at 750 0 C increased by a factor of 3 over that of the virgin graphite, in agreement with predictions from the earlier work, but the total creep strains were comparable in both doped and virgin samples. This observation supports the view that irradiation induced creep is dependent only on the carbon atom displacement rate and not on the internal stress level determined by the differential crystal growth rate. The implications of this result on the irradiation behaviour of graphite containing significant concentrations of boron are briefly discussed. (author)

  7. The reaction of unirradiated and irradiated nuclear graphites with water vapor in helium

    International Nuclear Information System (INIS)

    Imai, Hisashi; Nomura, Shinzo; Kurosawa, Takeshi; Fujii, Kimio; Sasaki, Yasuichi

    1980-10-01

    Nuclear graphites more than 10 brands were oxidized with water vapor in helium and then some selected graphites were irradiated with fast neutron in the Japan Materials Testing Reactor to clarify the effect of radiation damage of graphite on their reaction behaviors. The reaction was carried out under a well defined condition in the temperature range 800 -- 1000 0 C at concentrations of water vapor 0.38 -- 1.30 volume percent in helium flow of total pressure of 1 atm. The chemical reactivity of graphite irradiated at 1000 +- 50 0 C increased linearly with neutron fluence until irradiation of 3.2 x 10 21 n/cm 2 . The activation energy for the reaction was found to decrease with neutron fluence for almost all the graphites, except for a few ones. The order of reaction increased from 0.5 for the unirradiated graphite to 1.0 for the graphite irradiated up to 6.0 x 10 20 n/cm 2 . Experiment was also performed to study a superposed effect between the influence of radiation damage of graphite and the catalytic action of barium on the reaction rate, as well as the effect of catalyser of barium. It was shown that these effects were not superposed upon each other, although barium had a strong catalytic action on the reaction. (author)

  8. Radiation

    International Nuclear Information System (INIS)

    2013-01-01

    The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter

  9. Contribution to the study of the responsable mechanisms by the radiative formation of color centers in doped KBr crystals with alkaline earth impurities

    International Nuclear Information System (INIS)

    Muccillo, R.

    1977-01-01

    Experiments utilizing the tecniques Optical Absorption in the visible and ultraviolet spectral regions, thermally Stimulated Depolarization Currents (TSDC) in the 120K - 300K temperature range, and Thermoluminescence in the 290K - 620K temperature range - are perform to study radiative production, and thermal and optical destruction of color centers in Sr-droped KBr crystals. Some of the main results are also obtoned from experiments with Ca-deped KBr crystais [pt

  10. Characterization of Ignalina NPP RBMK Reactors Graphite

    International Nuclear Information System (INIS)

    Hacker, P.J.; Neighbour, G.B.; Levinskas, R.; Milcius, D.

    2001-01-01

    The paper concentrates on the investigations of the initial physical properties of graphite used in production of graphite bricks of Ignalina NPP. These graphite bricks are used as nuclear moderator and major core structural components. Graphite bulk density is calculated by mensuration, pore volumes are measured by investigation of helium gas penetration in graphite pore network, the Young's modulus is determined using an ultrasonic time of flight method, the coefficient of thermal expansion is determined using a Netzsch dilatometer 402C, the fractured and machined graphite surfaces are studied using SEM, impurities are investigated qualitatively by EDAX, the degree of graphitization of the material is tested using X-ray diffraction. (author)

  11. Determination of the correction factor for attenuation, dispersion and production of electrons (Kwall) in the wall of graphite of a ionization chamber Pattern National Type CC01 in fields of gamma radiation of 60Co

    International Nuclear Information System (INIS)

    Alvarez R, J.T.; Morales P, J.; Cruz E, P.

    2001-12-01

    It was determined the Kwall correction factor for the wall of graphite of the chamber of the pattern national type CC01 series 133 for a radiation field Gamma of 60 Co. With this end to measured the currents of ionization l(x) as function of the thickness of the wall of the chamber: X=4,8,12,16 and 20 mm.The mensurations for each thickness consisting of three groups, of sizes n = 30 or 60 data for each group; obtaining 8 complete groups of mensurations independent in eight different dates.The determinate the factor carried out using three regression models: lineal, logarithmic and quadratic, models that were tried to validate with the tests of : i) Shapiro-Wilk and χ 2 for the normality of the entrance data ii) Tests of Bartlett for variances homogeneity among groups for each thickness iii) The tests of Duncan for the stockings among groups of each thickness, and iv) The tests of adjustment lack (LOF) for the models used. Nevertheless, alone the models of the group of corresponding mensurations at 01-03-2000 17-08-2001 they can be validated by LOF, but not for tests of normality and homogeneity of variances. Among other assignable causes of variation we have: i) The values captured by the system of mensuration of the variables of it influences: pressure, temperature and relative humidity don t belong together with the existent ones to the moment to capture the l(x). ii) The mensuration room presents flows of air, for what was suited o diminish their volume and to eliminate the flows of air. iii) A protocol settled down of taking of measures that it consisted in: - Pre-irradiation 5 minutes the chamber after the change of polarity and hood change, with a period of stabilization of 5 minutes after the pre-irradiation. - Pre-irradiation for 5 minutes before the taking of the readings, with the object of eliminating variation sources assigned to currents of escapes or due variations to transitory. iv) To realize corrections for relative humidity of agreement with the

  12. Graphite in Science and Nuclear Technology

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This review is devoted to the application of graphite and graphite composites in the science and technology. Structure and electrical properties, technological aspects of producing of high-strength artificial graphite and dynamics of its destruction are considered. These type of graphite are traditionally used in the nuclear industry, so author concentrates on actual problems of application and testing of graphite materials in modern science and technology. Translated from chapters 1 of monog...

  13. Mesostructure of graphite composite and its lifetime

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This review is devoted to the application of graphite and graphite composites in science and technology. Structure and electrical properties, as so technological aspects of producing of high strength artificial graphite and dynamics of its destruction are considered. These type of graphite are traditionally used in the nuclear industry. Generally, the review relies, on the original results and concentrates on actual problems of application and testing of graphite materials in modern nuclear p...

  14. Reflectivity and filtering characteristics of pyrolytic graphite

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.; Ashry, A.; Abbas, Y.; Wahba, W.

    1988-01-01

    The neutron transmission measurements through oriented pyrolytic graphite (P.G. crystal) were carried out in the wavelength band from 0.15 nm to 6.5 nm at different orientations of the (002) plane of the crystal w.r.t. the neutron beam direction. It was found that the P.G. crystal may be tuned for optimum scattering of second-order neutrons in the wavelength ranging between 0.112 nm and 0.425 nm, by adjusting the filter in an appropriate orientation. The reflectivity of (002), (004) and (006) planes of P.G. were measured and the following results are obtained: the reflectivity of (002) plane was found to be 99% by (transmission method). The ratio of the integrated intensity of the reflected neutrons from (004) and (006) is 3.14+-0.25 and is found to be in agreement with the calculated ratio. The measurements were performed using the fixed scattering angle spectrometer installed in front of the ET-RR-1 reactor horizontal channel

  15. Graphite surveillance in N Reactor

    International Nuclear Information System (INIS)

    Woodruff, E.M.

    1991-09-01

    Graphite dimensional changes in N Reactor during its 24 yr operating history are reviewed. Test irradiation results, block measurements, stack profiles, top of reflector motion monitors, and visual observations of distortion are described. 18 refs., 14 figs., 1 tab

  16. Graphite oxidation in HTGR atmosphere

    International Nuclear Information System (INIS)

    Growcock, F.B.; Barry, J.J.; Finfrock, C.C.; Rivera, E.; Heiser, J.H. III

    1982-01-01

    On-going and recently completed studies of the effect of thermal oxidation on the structural integrity of HTGR candidate graphites are described, and some results are presented and discussed. This work includes the study of graphite properties which may play decisive roles in the graphites' resistance to oxidation and fracture: pore size distribution, specific surface area and impurity distribution. Studies of strength loss mechanisms in addition to normal oxidation are described. Emphasis is placed on investigations of the gas permeability of HTGR graphites and the surface burnoff phenomenon observed during recent density profile measurements. The recently completed studies of catalytic pitting and the effects of prestress and stress on reactivity and ultimate strength are also discussed

  17. Intercalation of lanthanide trichlorides in graphite

    International Nuclear Information System (INIS)

    Stumpp, E.; Nietfeld, G.

    1979-01-01

    The reactions of the whole series of lanthanide trichlorides with graphite have been investigated. Intercalation compounds have been prepared with the chlorides of Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y whereas LaCl 3 , CeCl 3 , PrCl 3 and NdCl 3 do not intercalate. The compounds were characterized by chemical and X-ray analysis. The amount of c-axis increase is consistent with the assumption that the chlorides are intercalated in form of a chloride layer sandwich resmbling the sheets in YCl 3 . The chlorides which do not intercalate crystallize in the UCl 3 structure having 3 D arrangements of ions. Obviously, these chlorides cannot form sheets between the carbon layers. The ability of AlCl 3 to volatilize lanthanide chlorides through complex formation in the gas phase can be used to increase the intercalation rate strikingly. (author)

  18. Graphite selection for the PBMR reflector

    International Nuclear Information System (INIS)

    Marsden, B.J.; Preston, S.D.

    2000-01-01

    A high temperature, direct cycle gas turbine, graphite moderated, helium cooled, pebble-bed reactor (PBMR) is being designed and constructed in South Africa. One of the major components in the PBMR is the graphite reflector, which must be designed to last thirty-five full power years. Fast neutron irradiation changes the dimensions and material properties of reactor graphite, thus for design purposes a suitable graphite database is required. Data on the effect of irradiation on nuclear graphites has been gathered for many years, at considerable financial cost, but unfortunately these graphites are no longer available due to rationalization of the graphite industry and loss of key graphite coke supplies. However, it is possible, using un-irradiated graphite materials properties and knowledge of the particular graphite microstructure, to determine the probable irradiation behaviour. Three types of nuclear graphites are currently being considered for the PBMR reflector: an isostatically moulded, fine grained, high strength graphite and two extruded medium grained graphites of moderately high strength. Although there is some irradiation data available for these graphites, the data does not cover the temperature and dose range required for the PBMR. The available graphites have been examined to determine their microstructure and some of the key material properties are presented. (authors)

  19. Crystal structure of PrRh4.8B2

    International Nuclear Information System (INIS)

    Higashi, Iwami; Shishido, Toetsu; Takei, Humihiko; Kobayashi, Takaaki

    1988-01-01

    The crystal structure of a new rare earth ternary boride PrRh 4.8 B 2 was investigated, by single-crystal X-ray diffractometry. PrRh 4.8 B 2 crystallizes in the orthorhombic space group Immm with a = 9.697(4), b = 5.577(2), c = 25.64(3) A, Z=12. The intensity data were collected on a four-circle diffractometer with graphite-monochromatized Mo Kα radiation. The structure was solved by the Patterson method and refined with a full-matrix least-squares program to an R value (equal to Σvertical strokeΔFvertical stroke/Σvertical strokeF 0 vertical stroke) of 0.055 for 1176 reflections. (orig.)

  20. Effect of Co-60 gamma radiation on optical, dielectric and mechanical properties of strontium L-ascorbate hexahydrate NLO crystal

    Science.gov (United States)

    Dileep, M. S.; Suresh Kumar, H. M.

    2018-04-01

    A potentially useful nonlinear optical semi-organic single crystal of strontium L-ascorbate hexahydrate (SLAH) was grown by solution growth slow evaporation technique at room temperature. The grown crystal is semi transparent, yellowish in color with monoclinic crystal system having space group P21 and is stable up to 198 °C. Further, SLAH crystals were irradiated with gamma rays produced by 60Co with different doses of 10 KGy, 30 KGy and 50 KGy at room temperature and then studied the effect of gamma-rays on dielectric properties, optical absorption, microhardness and SHG efficiency. The absorption study reveals that the absorbance of the grown crystal is appeared to be low throughout the visible region with a lower cutoff wavelength of 277 nm and these parameters are not affected upon gamma irradiation. The luminescence intensity of the crystal is also not affected by the irradiation. There is noticeable changes were observed in dielectric properties and hardness of the materials for different doses of gamma irradiation. The second harmonic generation (SHG) efficiency of the grown crystal is 0.54 times that of the KDP crystal and is decreased moderately by increasing the dosage of gamma irradiation.

  1. Nonlinear effects at volume charge polarization and calculation of the structure radiation changes in the crystals with hydrogen bonds

    International Nuclear Information System (INIS)

    Tonkonogov, M.P.; Medvedev, V.Ya.

    2003-01-01

    The formulas for volume charge distribution, complex permittivity, static dielectric constant for the crystals with hydrogen bonds are proposed. With help of the formulas the structure defect concentration, relaxation energy of relaxators were calculated for important electronic and optoelectronic materials as mica, KDP and DKDP crystals, gypsum, talk

  2. Spatially resolved nanostructural transformation in graphite under femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Marcu, A., E-mail: aurelian.marcu@inflpr.ro [National Institute for Laser, Plasma and Radiation Physics, 077125 Bucharest (Romania); Avotina, L. [Institute of Chemical Physics, University of Latvia, Kronvalda 4, LV 1010 Riga (Latvia); Porosnicu, C. [National Institute for Laser, Plasma and Radiation Physics, 077125 Bucharest (Romania); Marin, A. [Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei 060021, Bucharest (Romania); Grigorescu, C.E.A. [National Institute R& D for Optoelectronics INOE 2000, 077125 Bucharest (Romania); Ursescu, D. [National Institute for Laser, Plasma and Radiation Physics, 077125 Bucharest (Romania); Lungu, M. [National Institute of Materials Physics Atomistilor Str., 105 bis, 077125, Magurele (Romania); Demitri, N. [Hard X-ray Beamline and Structural Biology, Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza TS Italy (Italy); Lungu, C.P. [National Institute for Laser, Plasma and Radiation Physics, 077125 Bucharest (Romania)

    2015-11-15

    Graphical abstract: - Highlights: • Polycrystalline graphite was irradiated with a high power fs (IR) laser. • Presence of a diamond peak was detected by synchrotron XRD. • XPS and Raman showed in-depth sp{sup 3}% increase at tens of nm below the surface. • sp{sup 3}% is increasing with laser power density but it is independent of photon absorption rate. • Graphite crystallite size locally increase at tens of nanometers below the irradiated spots. - Abstract: A polycrystalline graphite target was irradiated using infrared (800 nm) femtosecond (120 fs) laser pulses of different energies. Increase of sp{sup 3} bonds percentage and possible diamond crystal formation were investigated ‘in-depth’ and on the irradiated surfaces. Synchrotron X-ray diffraction pattern have shown the presence of a diamond peak in one of the irradiated zones while X-ray photoelectron spectroscopy investigations have shown an increasing tendency of the sp{sup 3} percent in the low power irradiated areas and similarly ‘in the depth’ of the higher power irradiated zones. Multiple wavelength Micro-Raman investigations have confirmed this trend along with an ‘in-depth’ (but not on the surface) increase of the crystallite size. Based on the wavelength dependent photon absorption into graphite, the observed effects are correlated with high density photon per atom and attributed to the melting and recrystallization processes taking place tens of nanometers below the target surface.

  3. Spatially resolved nanostructural transformation in graphite under femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Marcu, A.; Avotina, L.; Porosnicu, C.; Marin, A.; Grigorescu, C.E.A.; Ursescu, D.; Lungu, M.; Demitri, N.; Lungu, C.P.

    2015-01-01

    Graphical abstract: - Highlights: • Polycrystalline graphite was irradiated with a high power fs (IR) laser. • Presence of a diamond peak was detected by synchrotron XRD. • XPS and Raman showed in-depth sp 3 % increase at tens of nm below the surface. • sp 3 % is increasing with laser power density but it is independent of photon absorption rate. • Graphite crystallite size locally increase at tens of nanometers below the irradiated spots. - Abstract: A polycrystalline graphite target was irradiated using infrared (800 nm) femtosecond (120 fs) laser pulses of different energies. Increase of sp 3 bonds percentage and possible diamond crystal formation were investigated ‘in-depth’ and on the irradiated surfaces. Synchrotron X-ray diffraction pattern have shown the presence of a diamond peak in one of the irradiated zones while X-ray photoelectron spectroscopy investigations have shown an increasing tendency of the sp 3 percent in the low power irradiated areas and similarly ‘in the depth’ of the higher power irradiated zones. Multiple wavelength Micro-Raman investigations have confirmed this trend along with an ‘in-depth’ (but not on the surface) increase of the crystallite size. Based on the wavelength dependent photon absorption into graphite, the observed effects are correlated with high density photon per atom and attributed to the melting and recrystallization processes taking place tens of nanometers below the target surface.

  4. Some aspects of nuclear graphite production in France; Etude generale sur les graphites nucleaires produits en France

    Energy Technology Data Exchange (ETDEWEB)

    Gueron, J; Hering, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Legendre, A [Pechiney, 75 - Paris (France)

    1958-07-01

    1) Manufacturing: A summary and results on the CEA-Pechiney purification process are given. Variations in the preparation of green pastes and their effects on graphitized material are described. 2) Physical and mechanical properties: Results are given on: - Statistics of dimensional variatior products having square cross-section. - Statistical variation of thermal expansion coefficients and of electrical conductivity. - Density of normals to carbon layer planes and their connexion with thermal expansion. - Stress-strain cycles and conclusions drawn therefrom. - Mechanical resistance and gas permeability of items for supporting fuel elements. 3) Behaviour under radiation: Alteration under radiation of French graphites irradiated either in G1 pile or in experimental piles, and thermal annealing of those alterations, are given. (author)Fren. [French] 1) Fabrication: On resume le procede d'epuration CEA-PECHINEY, ainsi que diverses modalites de preparation des pates et on expose les resultats obtenus. 2) Proprietes physiques et mecaniques: On indique le resultat d'etudes sur: - la statistique des dimensions de produits a section carree. - celle des variations des coefficients de dilatation thermique et de la conductibilite electrique. - la densite des normales aux plans graphitiques et leur connexion avec la dilatation thermique. - la compression mecanique du graphite. - la solidite mecanique et la permeabilite aux gaz de pieces destinees a supporter des cartouches de combustible. 3) Tenue sous rayonnement: Modification sous rayonnement des graphites fran is irradies soit dans la pile G1, soit dans des piles experimentales, et guerison thermique de ces modifications. (auteur)

  5. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, R. [Dalton Cumbrian Facility, Dalton Nuclear Institute, The University of Manchester, Westlakes Science & Technology Park, Moor Row, Whitehaven, Cumbria, CA24 3HA (United Kingdom); Jones, A.N., E-mail: Abbie.Jones@manchester.ac.uk [Nuclear Graphite Research Group, School of MACE, The University of Manchester, Manchester, M13 9PL (United Kingdom); McDermott, L.; Marsden, B.J. [Nuclear Graphite Research Group, School of MACE, The University of Manchester, Manchester, M13 9PL (United Kingdom)

    2015-12-15

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated ‘D’peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of ‘G’ and ‘D’ in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure. - Highlights: • Irradiated graphite

  6. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    International Nuclear Information System (INIS)

    Krishna, R.; Jones, A.N.; McDermott, L.; Marsden, B.J.

    2015-01-01

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated ‘D’peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of ‘G’ and ‘D’ in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure. - Highlights: • Irradiated graphite exhibits

  7. Development of a Scanning Microscale Fast Neutron Irradiation Platform for Examining the Correlation Between Local Neutron Damage and Graphite Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Pinhero, Patrick [Univ. of Missouri, Columbia, MO (United States); Windes, William [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-10

    The fast particle radiation damage effect of graphite, a main material in current and future nuclear reactors, has significant influence on the utilization of this material in fission and fusion plants. Atoms on graphite crystals can be easily replaced or dislocated by fast protons and result in interstitials and vacancies. The currently accepted model indicates that after most of the interstitials recombine with vacancies, surviving interstitials form clusters and furthermore gather to create loops with each other between layers. Meanwhile, surviving vacancies and interstitials form dislocation loops on the layers. The growth of these inserted layers cause the dimensional increase, i.e. swelling, of graphite. Interstitial and vacancy dislocation loops have been reported and they can easily been observed by electron microscope. However, observation of the intermediate atom clusters becomes is paramount in helping prove this model. We utilize fast protons generated from the University of Missouri Research Reactor (MURR) cyclotron to irradiate highly- oriented pyrolytic graphite (HOPG) as target for this research. Post-irradiation examination (PIE) of dosed targets with high-resolution transmission electron microscopy (HRTEM) has permit observation and analysis of clusters and dislocation loops to support the proposed theory. Another part of the research is to validate M.I. Heggie’s Ruck and Tuck model, which introduced graphite layers may fold under fast particle irradiation. Again, we employed microscopy to image irradiated specimens to determine how the extent of Ruck and Tuck by calculating the number of folds as a function of dose. Our most significant accomplishment is the invention of a novel class of high-intensity pure beta-emitters for long-term lightweight batteries. We have filed four invention disclosure records based on the research conducted in this project. These batteries are lightweight because they consist of carbon and tritium and can be

  8. Beam tests of proton-irradiated PbWO$_4$ crystals and evaluation of double-sided read-out technique for mitigation of radiation damage effects

    CERN Document Server

    Lucchini, Marco Toliman

    2016-01-01

    The harsh radiation environment in which detectors will have to operate during the High Luminosity phase of the LHC (HL-LHC) represents a crucial challenge for many calorimeter technologies. In the CMS forward calorimeters, ionizing doses and hadron fluences will reach up to 300 kGy (at a dose rate of 30 Gy/h) and $2\\times10^{14}$ cm$^{-2}$, respectively, at the pseudorapidity region of $\\lvert \\eta\\rvert=2.6$. To evaluate the evolution of the CMS ECAL performance in such conditions, a set of PbWO$_4$ crystals, exposed to 24 GeV protons up to integrated fluences between $2.1\\times10^{13}$ cm$^{-2}$ and $1.3\\times10^{14}$ cm$^{-2}$, has been studied in beam tests. A degradation of the energy resolution and a non-linear response to electron showers are observed in damaged crystals. Direct measurements of the light output from the crystals show the amplitude decreasing and pulse becoming faster as the fluence increases. The evolution of the performance of the PbWO$_4$ crystals has been well understood and parame...

  9. Experience with graphite in JET

    International Nuclear Information System (INIS)

    Pick, M.A.; Celentano, G.; Deksnis, E.; Dietz, K.J.; Shaw, R.; Sonnenberg, K.; Walravens, M.

    1987-01-01

    During the current operational period of JET more than 50% of the internal area of the machine is covered in graphite tiles. This includes the 15 m 2 of carbon tiles installed in the new toroidal limiter, the 40 poloidal belts of graphite tiles covering the U-joints and bellows as well as a two metre high ring (-- 20 m 2 ) or carbon tiles on the inner wall of the Torus. A ring of tiles in the equatorial plane (3 tiles high) consists of carbon-carbon fibre tiles. Test bed results indicated that the fine grained graphite tiles cracked at ∼ 1 kW/cm 2 for 2s of irradiation whereas the carbon-carbon fibre tiles were able to sustain a flux, limited by the irradiation facility, of 3.5 kW for 3s without any damage. The authors report on the generally positive experience they have had had with the installed graphite during the present and previous in-vessel configurations. This includes the physical integrity of the tiles under severe conditions such as high energy run-away electron beams, plasma disruptions and high heat fluxes. They report on the importance of the precise positioning of the inner wall and x-point tiles at the very high power fluxes of JET and the effect of deviations on both graphite and carbon-fibre tiles

  10. Porous (Swiss-Cheese Graphite

    Directory of Open Access Journals (Sweden)

    Joseph P. Abrahamson

    2018-05-01

    Full Text Available Porous graphite was prepared without the use of template by rapidly heating the carbonization products from mixtures of anthracene, fluorene, and pyrene with a CO2 laser. Rapid CO2 laser heating at a rate of 1.8 × 106 °C/s vaporizes out the fluorene-pyrene derived pitch while annealing the anthracene coke. The resulting structure is that of graphite with 100 nm spherical pores. The graphitizablity of the porous material is the same as pure anthracene coke. Transmission electron microscopy revealed that the interfaces between graphitic layers and the pore walls are unimpeded. Traditional furnace annealing does not result in the porous structure as the heating rates are too slow to vaporize out the pitch, thereby illustrating the advantage of fast thermal processing. The resultant porous graphite was prelithiated and used as an anode in lithium ion capacitors. The porous graphite when lithiated had a specific capacity of 200 mAh/g at 100 mA/g. The assembled lithium ion capacitor demonstrated an energy density as high as 75 Wh/kg when cycled between 2.2 V and 4.2 V.

  11. Graphite analyser upgrade for the IRIS spectrometer at ISIS

    International Nuclear Information System (INIS)

    Campbell, S.I.; Telling, M.T.F.; Carlile, C.J.

    1999-01-01

    Complete text of publication follows. The pyrolytic graphite (PG) analyser bank on the IRIS high resolution inelastic spectrometer [1] at ISIS is to be upgraded. At present the analyser consists of 1350 graphite pieces (6 rows by 225 columns) cooled to 25K [2]. The new analyser array, however, will provide a three-fold increase in area and employ 4212 crystal pieces (18 rows by 234 columns). In addition, the graphite crystals will be cooled close to liquid helium temperature to further reduce thermal diffuse scattering (TDS) and improve the sensitivity of the spectrometer [2]. For an instrument such as IRIS, with its analyser in near back-scattering geometry, optical aberration and variation in the time-of-flight of the analysed neutrons is introduced as one moves out from the horizontal scattering plane. To minimise such effects, the profile of the analyser array has been redesigned. The concept behind the design of the new analyser bank and factors that effect the overall resolution of the instrument are discussed. Results of Monte Carlo simulations of the expected resolution and intensity of the complete instrument are presented and compared to the current instrument performance. (author) [1] C.J. Carlile et al, Physica B 182 (1992) 431-440.; [2] C.J. Carlile et al, Nuclear Instruments and Methods In Physics Research A 338 (1994) 78-82

  12. Research on preparation and performance of graphite cement-based materials used for fast neutron shielding

    International Nuclear Information System (INIS)

    Xu Jun; Kang Qing; Shen Zhiqiang; Wang Zhenggang; Wang Zhiqiang

    2014-01-01

    Measurements have been carried out to investigate the 14.8 MeV neutron attenuation properties for 3 kinds of cement-graphite composites. In comparison with the void group, the 14.8 MeV neutron attenuation properties of cement-graphite composites raised not clearly in 8 mm thickness, and drop not remarkably in 40 mm thickness; with the increase of graphite content and the thickness, the 14.8 MeV neutron attenuation properties were enhanced clearly. The data may be useful to the radiation shielding design of neutron. (authors)

  13. INTERACTION OF LASER RADIATION WITH MATTER: Influence of Ca and Pb impurities on the bulk optical strength of ultrapure NaCl and KCl crystals

    Science.gov (United States)

    Vinogradov, An V.; Voszka, R.; Kovalev, Valerii I.; Faĭzullov, F. S.; Janszky, J.

    1987-06-01

    A significant increase (by a factor of about 3) of the bulk damage threshold in the case of interaction of CO2 laser radiation pulses with ultrapure NaCl and KCl crystals grown in a reactive atmosphere was observed on introduction of divalent metal ions Ca and Pb in concentrations of 10-5-10-6 mol/mol. Impurities were introduced in concentrations of 10-8-10-3 and 2×10-7-10-4 mol/mol into the melts of KCl and NaCl, respectively. The concentration of other impurities (including OH) did not exceed ~10-6 mol/mol. A physical model was developed to account for the observed dependence on the basis of an analogy between a system of colloidal particles and F centers in a crystal and a liquid-vapor system.

  14. A Mathematica package for calculation of planar channeling radiation spectra of relativistic electrons channeled in a diamond-structure single crystal (quantum approach)

    Science.gov (United States)

    Azadegan, B.

    2013-03-01

    The presented Mathematica code is an efficient tool for simulation of planar channeling radiation spectra of relativistic electrons channeled along major crystallographic planes of a diamond-structure single crystal. The program is based on the quantum theory of channeling radiation which has been successfully applied to study planar channeling at electron energies between 10 and 100 MeV. Continuum potentials for different planes of diamond, silicon and germanium single crystals are calculated using the Doyle-Turner approximation to the atomic scattering factor and taking thermal vibrations of the crystal atoms into account. Numerical methods are applied to solve the one-dimensional Schrödinger equation. The code is designed to calculate the electron wave functions, transverse electron states in the planar continuum potential, transition energies, line widths of channeling radiation and depth dependencies of the population of quantum states. Finally the spectral distribution of spontaneously emitted channeling radiation is obtained. The simulation of radiation spectra considerably facilitates the interpretation of experimental data. Catalog identifier: AEOH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 446 No. of bytes in distributed program, including test data, etc.: 209805 Distribution format: tar.gz Programming language: Mathematica. Computer: Platforms on which Mathematica is available. Operating system: Operating systems on which Mathematica is available. RAM: 1 MB Classification: 7.10. Nature of problem: Planar channeling radiation is emitted by relativistic charged particles during traversing a single crystal in direction parallel to a crystallographic plane. Channeling is modeled as the motion

  15. High-resolution digital dosimetric system for spatial characterization of radiation fields using a thermoluminescent CaF2:Dy crystal

    International Nuclear Information System (INIS)

    Atari, N.A.; Svensson, G.K.

    1986-01-01

    A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF2:Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +/- 2 microns (1 sigma) corresponding to 16 +/- 1 line pairs/mm measured at the 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +/- 4 microns (1 sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields

  16. High-resolution digital dosimetric system for spatial characterization of radiation fields using a thermoluminescent CaF2:Dy crystal

    International Nuclear Information System (INIS)

    Atari, N.A.; Svensson, G.K.

    1986-01-01

    A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF 2 :Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +- 2 μm (1sigma) corresponding to 16 +- 1 line pair/mm measured at the 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +- 4 μm (1sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields

  17. Radiation-induced effects in MgO single crystal by 200 keV and 1 MeV Ni ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryohei; Nakai, Yoshihiro; Hamaguchi, Dai [Kyoto Inst. of Tech. (Japan); and others

    1997-03-01

    MgO(100) single crystals were implanted with 1.0 MeV and 200 keV Ni ions between 10{sup 15} and 10{sup 17} ions/cm{sup 2} at room temperature. Before and after thermal annealing the radiation damage and the lattice location of implanted Ni ions were analyzed by using Rutherford backscattering spectrometry with channeling and optical absorption measurements. For 1.0 MeV Ni ions, the disorder of Mg atoms increased slowly with ion dose near surface region, while it increased sharply and saturated with ion dose from 2x10{sup 16} ions/cm{sup 2} near ion range. The radiation damage was recovered and implanted Ni ions diffused to the whole of crystal and occupied substitutional positions after 1400degC annealing. For 200 keV Ni ions, the disorder of Mg atoms increased with dose near ion range and had a maximum at about 5x10{sup 16} ions/cm{sup 2}. This tendency agrees with the behavior of color centers obtained from optical measurements. For thermal annealing the radiation damage did not change during 500degC annealing, but the aggregate centers appeared after 300degC annealing. (author)

  18. Graphitized biogas-derived carbon nanofibers as anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Cuesta, Nuria; Cameán, Ignacio; Ramos, Alberto; García, Ana B.

    2016-01-01

    The electrochemical performance as potential anodes for lithium-ion batteries of graphitized biogas-derived carbon nanofibers (BCNFs) is investigated by galvanostatic cycling versus Li/Li + at different electrical current densities. These graphitic nanomaterials have been prepared by high temperature treatment of carbon nanofibers produced in the catalytic decomposition of biogas. At low current density, they deliver specific capacities comparable to that of oil-derived micrometric graphite, the capacity retention values being mostly in the range 70-80% and cycling efficiency ∼ 100%. A clear tendency of the anode capacity to increase alongside the BCNFs crystal thickness was observed. Besides the degree of graphitic tri-dimensional structural order, the presence of loops between the adjacent edges planes on the graphene layers, the mesopore volume and the active surface area of the graphitized BCNFs were found to influence on battery reversible capacity, capacity retention along cycling and irreversible capacity. Furthermore, provided that the development of the crystalline structure is comparable, the graphitized BCNFs studied show better electrochemical rate performance than micrometric graphite. Therefore, this result can be associated with the nanometric particle size as well as the larger surface area of the BCNFs which, respectively, reduces the diffusion time of the lithium ions for the intercalation/de-intercalation processes, i.e. faster charge-discharge rate, and increases the contact area at the anode active material/electrolyte interface which may improve the Li + ions access, i.e. charge transfer reaction.

  19. Thermal Pyrolytic Graphite Enhanced Components

    Science.gov (United States)

    Hardesty, Robert E. (Inventor)

    2015-01-01

    A thermally conductive composite material, a thermal transfer device made of the material, and a method for making the material are disclosed. Apertures or depressions are formed in aluminum or aluminum alloy. Plugs are formed of thermal pyrolytic graphite. An amount of silicon sufficient for liquid interface diffusion bonding is applied, for example by vapor deposition or use of aluminum silicon alloy foil. The plugs are inserted in the apertures or depressions. Bonding energy is applied, for example by applying pressure and heat using a hot isostatic press. The thermal pyrolytic graphite, aluminum or aluminum alloy and silicon form a eutectic alloy. As a result, the plugs are bonded into the apertures or depressions. The composite material can be machined to produce finished devices such as the thermal transfer device. Thermally conductive planes of the thermal pyrolytic graphite plugs may be aligned in parallel to present a thermal conduction path.

  20. The behavior of interstitials in irradiated graphite

    International Nuclear Information System (INIS)

    Pedraza, D.F.

    1991-01-01

    A computer model is developed to simulate the behavior of self-interstitials with particular attention to clustering. Owing to the layer structure of graphite, atomistic simulations can be performed using a large parallelepipedic supercell containing a few layers. In particular, interstitial clustering is studied here using a supercell that contains two basal planes only. Frenkel pairs are randomly produced. Interstitials are placed at sites between the crystal planes while vacancies are distributed in the two crystal planes. The size of the computational cell is 20000 atoms and periodic boundary conditions are used in two dimensions. Vacancies are assumed immobile whereas interstitials are given a certain mobility. Two point defect sinks are considered, direct recombination of Frenkel pairs and interstitial clusters. The clusters are assumed to be mobile up to a certain size where they are presumed to become loop nuclei. Clusters can shrink by emission of singly bonded interstitials or by recombination of a peripheral interstitial with a neighboring vacancy. The conditions under which interstitial clustering occurs are reported. It is shown that when clustering occurs the cluster size population gradually shifts towards the largest size cluster. The implications of the present results for irradiation growth and irradiation-induced amorphization are discussed

  1. Investigation of planar channeling radiation on diamond and quartz crystals at electron energies between 14 and 34 MeV and probing the influence of ultrasonic waves on channeling radiation

    International Nuclear Information System (INIS)

    Azadegan, B.

    2007-01-01

    Measurements of planar channeling radiation (CR) have been performed at the electron beam of ELBE within an energy range between 14 and 34 MeV and for thicknesses of the diamond crystals between 42.5 and 500 μm. Absolute CR photon yields have for the first time been obtained for the above given ranges of electron energy and crystal thickness. The square-root dependence of the planar CR photon yield on the thickness of diamond crystals has been confirmed. A systematic quantitative investigation of the influence of the crystal thickness on the CR line shape has for the first time been performed. The mean-squared multiple-scattering angle effective for planar CR observed in forward direction has been found to be weaker as assumed from scattering in amorphous targets. Scaling laws deduced from the measured CR data are of advantage for the operation of a CR source. The second part of this thesis deals with the possibility of stimulation of CR emission by means of ultrasonic vibrations excited in a piezoelectric single crystal. Since the knowledge of the CR spectra generated on undisturbed quartz crystals is a necessary precondition for some investigation of the influence of US, planar CR has for the first time been measured at medium electron energies for a variety of planes in quartz. As a consequence of the hexagonal structure of this crystal, relative intense CR could be registered even out of planes with indices larger than one. On the base of the non-linear optics method, occupation functions and spectral distributions of planar CR have been calculated for channeling of 20 MeV electrons in the (01 anti 15) plane of a 20 μm thick quartz crystal at resonant influence of ultrasound (US). The resonance frequencies have been deduced from the measurements of CR spectra performed on quartz. First experimental investigations of the influence of US on CR started at ELBE aimed at the study of the effect of non-resonant ultrasonic vibrations excited in a 500 μm thick

  2. Investigation of planar channeling radiation on diamond and quartz crystals at electron energies between 14 and 34 MeV and probing the influence of ultrasonic waves on channeling radiation

    Energy Technology Data Exchange (ETDEWEB)

    Azadegan, B.

    2007-11-15

    Measurements of planar channeling radiation (CR) have been performed at the electron beam of ELBE within an energy range between 14 and 34 MeV and for thicknesses of the diamond crystals between 42.5 and 500 {mu}m. Absolute CR photon yields have for the first time been obtained for the above given ranges of electron energy and crystal thickness. The square-root dependence of the planar CR photon yield on the thickness of diamond crystals has been confirmed. A systematic quantitative investigation of the influence of the crystal thickness on the CR line shape has for the first time been performed. The mean-squared multiple-scattering angle effective for planar CR observed in forward direction has been found to be weaker as assumed from scattering in amorphous targets. Scaling laws deduced from the measured CR data are of advantage for the operation of a CR source. The second part of this thesis deals with the possibility of stimulation of CR emission by means of ultrasonic vibrations excited in a piezoelectric single crystal. Since the knowledge of the CR spectra generated on undisturbed quartz crystals is a necessary precondition for some investigation of the influence of US, planar CR has for the first time been measured at medium electron energies for a variety of planes in quartz. As a consequence of the hexagonal structure of this crystal, relative intense CR could be registered even out of planes with indices larger than one. On the base of the non-linear optics method, occupation functions and spectral distributions of planar CR have been calculated for channeling of 20 MeV electrons in the (01 anti 15) plane of a 20 {mu}m thick quartz crystal at resonant influence of ultrasound (US). The resonance frequencies have been deduced from the measurements of CR spectra performed on quartz. First experimental investigations of the influence of US on CR started at ELBE aimed at the study of the effect of non-resonant ultrasonic vibrations excited in a 500 {mu}m thick

  3. Deformation of a laser beam in the fabrication of graphite microstructures inside a volume of diamond

    Energy Technology Data Exchange (ETDEWEB)

    Kononenko, T V; Zavedeev, E V [Natural Science Center, A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2016-03-31

    We report a theoretical and experimental study of the energy profile deformation along the laser beam axis during the fabrication of graphite microstructures inside a diamond crystal. The numerical simulation shows that the use of a focusing lens with a numerical aperture NA < 0.1 at a focusing depth of up to 2 mm makes it possible to avoid a noticeable change in the energy profile of the beam due to the spherical aberration that occurs in the case of refraction of the focused laser beam at the air – diamond interface. The calculation results are confirmed by experimental data on the distribution of the laser intensity along the beam axis in front of its focal plane, derived from observations of graphitisation wave propagation in diamond. The effect of radiation self-focusing on laser-induced graphitisation of diamond is analysed. It is shown that if the wavefront distortion due to self-focusing can be neglected at a minimum pulse energy required for the optical breakdown of diamond, then an increase in the beam distortion with increasing pulse energy has no effect on the graphitisation process. (interaction of laser radiation with matter)

  4. Influence of graphite contamination on the optical properties of transparent spinel obtained by spark plasma sintering

    International Nuclear Information System (INIS)

    Bernard-Granger, G.; Benameur, N.; Guizard, C.; Nygren, M.

    2009-01-01

    The optical properties of transparent spinel sintered by spark plasma sintering have been investigated for incident electromagnetic radiations with wavelengths in the range 0.2-2 μm. It is shown that residual porosities and second-phase graphite particles have a strong influence on the in-line transmittance. Because of the graphite particles, the in-line transmittance measured does not approach that of monocrystalline spinel for wavelengths above 1 μm

  5. Friction anisotropy in boronated graphite

    International Nuclear Information System (INIS)

    Kumar, N.; Radhika, R.; Kozakov, A.T.; Pandian, R.; Chakravarty, S.; Ravindran, T.R.; Dash, S.; Tyagi, A.K.

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient

  6. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  7. Student Augmentation for Crystal Growth Research

    National Research Council Canada - National Science Library

    Prasad, V

    1999-01-01

    ... intelligent modeling, design and control of crystal growth processes. One doctoral student worked on integrating the radiation heat transfer model into MASTRAPP, the crystal growth model developed by the Consortium for Crystal Growth Research...

  8. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Self-pumped passive ring mirror in crystals with strong fanning

    Science.gov (United States)

    Bogodaev, N. V.; Zozulya, A. A.; Ivleva, Lyudmila I.; Korshunov, A. S.; Mamaev, A. V.; Polozkov, N. M.

    1992-05-01

    Most photorefractive crystals suitable for four-wave systems of phase self-conjugation and mutual conjugation have a fairly high level of light-induced scattering (fanning). This may imply that the nonlinearity of a crystal is too strong for optimal operation and a reduction in this nonlinearity would improve the characteristics. This statement is illustrated theoretically and experimentally using the geometry of a loop parametric oscillator as an example.

  9. High-resolution optical microscopy of carbon and graphite

    International Nuclear Information System (INIS)

    Cook, W.H.; Allen, M.D.; Leslie, B.C.; Gray, R.J.

    1975-01-01

    The ceramographic preparation of carbonaceous materials varying in crystalline quality, amorphous carbon to well crystallized graphite, is described. In a two-step process, using alumina and diamond polishing compounds, one can prepare more samples, obtain a substantial saving in man hours, avoid rounding material around pores, and obtain flatter surfaces than were obtainable with earlier, conventional methods. Improved resolution of microstructural details is achieved without impregnation with epoxy resins or other materials to support the porous structures. Use of rotatable, half-wave retardation (sensitive tint) enhances the microstructural definition in both color and black and white. These innovations were extensively used as part of the examination of nuclear grades of graphite before and after exposure to fast neutrons at temperatures from 650 to 1100 0 C; typical examples are discussed. (auth)

  10. FT-IR reflection spectra of single crystals: resolving phonons of different symmetry without using polarised radiation

    Directory of Open Access Journals (Sweden)

    METODIJA NAJDOSKI

    2000-07-01

    Full Text Available Fourier-transform infrared (FT-IR reflection spectra, asquired at nearnormal incidence, were recorded from single crystals belonging to six crystal systems: CsCr(SO42.12H2O (alum, cubic, K2CuCl2·2H2O (Mitscherlichite, tetragonal, CaCO3 (calcite, hexagonal, KHSO4 (mercallite, orthorhombic, CaSO4·2H2O (gypsum, monoclinic and CuSO4·5H2O (chalcantite, triclinic. The acquired IR reflection spectra were further transformed into absorption spectra, employing the Kramers-Kronig transformation. Except for the cubic alums, the spectra strongly depend on the crystal face from which they were recorded; this is a consequence of anisotropy. Phonons of a given symmetry (E-species, in tetragonal/hexagonal and B-species, in monoclinic crystals may be resolved without using a polariser. The spectrum may be simplified in the case of an orthorhombic crystal, as well. The longitudinal-optical (LO and transversal-optical (TO mode frequencies were calculated in the case of optically isotropic and the simplified spectra of optically uniaxial crystals.

  11. Raman characterization of bulk ferromagnetic nanostructured graphite

    International Nuclear Information System (INIS)

    Pardo, Helena; Divine Khan, Ngwashi; Faccio, Ricardo; Araújo-Moreira, F.M.; Fernández-Werner, Luciana

    2012-01-01

    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm -1 showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  12. Fabrication of Graphene by Cleaving Graphite Chemically

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shu-hua; ZHAO Xiao-ting; FAN Hou-gang; YANG Li-li; ZHANG Yong-jun; YANG Jing-hai

    2011-01-01

    Graphite was chemically cleaved to graphene by Billups Reaction,and the morphologies and microstructures of graphene were characterized by SEM,Raman and AFM.The results show that the graphite was first functionalized by l-iodododecane,which led to the cleavage of the graphene layer in the graphite.The second decoration cleaved the graphite further and graphene was obtained.The heights of the graphene layer were larger than 1 nm due to the organic decoration.

  13. Method of Joining Graphite Fibers to a Substrate

    Science.gov (United States)

    Beringer, Durwood M. (Inventor); Caron, Mark E. (Inventor); Taddey, Edmund P. (Inventor); Gleason, Brian P. (Inventor)

    2014-01-01

    A method of assembling a metallic-graphite structure includes forming a wetted graphite subassembly by arranging one or more layers of graphite fiber material including a plurality of graphite fibers and applying a layer of metallization material to ends of the plurality of graphite fibers. At least one metallic substrate is secured to the wetted graphite subassembly via the layer of metallization material.

  14. Photoemission study of K on graphite

    NARCIS (Netherlands)

    Bennich, P.; Puglia, C.; Brühwiler, P.A.; Nilsson, A.; Sandell, A.; Mårtensson, N.; Rudolf, P.

    1999-01-01

    The physical and electronic structure of the dispersed and (2×2) phases of K/graphite have been characterized by valence and core-level photoemission. Charge transfer from K to graphite is found to occur at all coverages, and includes transfer of charge to the second graphite layer. A rigid band

  15. Separation medium containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Herrera-Alonso, Margarita (Inventor)

    2012-01-01

    A separation medium, such as a chromatography filling or packing, containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g, wherein the thermally exfoliated graphite oxide has a surface that has been at least partially functionalized.

  16. NMR studies on graphite-methanol system

    International Nuclear Information System (INIS)

    El-Akkad, T.M.

    1977-01-01

    The nuclear magnetic relaxation times for protons of methanol on graphite have been studied. The perpendicular and the transversal magnetization as a function of temperature were measured. The results show that the presence of graphite slowed down the methanol movement compared with that in the pure alcohol, and that the methanol molecules are attached to the graphite surface via methyl groups. (author)

  17. Numerical simulations of contrail-to-cirrus transition – Part 2: Impact of initial ice crystal number, radiation, stratification, secondary nucleation and layer depth

    Directory of Open Access Journals (Sweden)

    S. Unterstrasser

    2010-02-01

    Full Text Available Simulations of contrail-to-cirrus transition were performed with an LES model. In Part 1 the impact of relative humidity, temperature and vertical wind shear was explored in a detailed parametric study. Here, we study atmospheric parameters like stratification and depth of the supersaturated layer and processes which may affect the contrail evolution. We consider contrails in various radiation scenarios herein defined by the season, time of day and the presence of lower-level cloudiness which controls the radiance incident on the contrail layer. Under suitable conditions, controlled by the radiation scenario and stratification, radiative heating lifts the contrail-cirrus and prolongs its lifetime. The potential of contrail-driven secondary nucleation is investigated. We consider homogeneous nucleation and heterogeneous nucleation of preactivated soot cores released from sublimated contrail ice crystals. In our model the contrail dynamics triggered by radiative heating does not suffice to force homogeneous freezing of ambient liquid aerosol particles. Furthermore, our model results suggest that heterogeneous nucleation of preactivated soot cores is unimportant. Contrail evolution is not controlled by the depth of the supersaturated layer as long as it exceeds roughly 500 m. Deep fallstreaks however need thicker layers. A variation of the initial ice crystal number is effective during the whole evolution of a contrail. A cut of the soot particle emission by two orders of magnitude can reduce the contrail timescale by one hour and the optical thickness by a factor of 5. Hence future engines with lower soot particle emissions could potentially lead to a reduction of the climate impact of aviation.

  18. Graphite oral tattoo: case report.

    Science.gov (United States)

    Moraes, Renata Mendonça; Gouvêa Lima, Gabriela de Morais; Guilhermino, Marinaldo; Vieira, Mayana Soares; Carvalho, Yasmin Rodarte; Anbinder, Ana Lia

    2015-10-16

    Pigmented oral lesions compose a large number of pathological entities, including exogenous pigmentat oral tattoos, such as amalgam and graphite tattoos. We report a rare case of a graphite tattoo on the palate of a 62-year-old patient with a history of pencil injury, compare it with amalgam tattoos, and determine the prevalence of oral tattoos in our Oral Pathology Service. We also compare the clinical and histological findings of grafite and amalgam tattoos. Oral tattoos affect women more frequently in the region of the alveolar ridge. Graphite tattoos occur in younger patients when compared with the amalgam type. Histologically, amalgam lesions represent impregnation of the reticular fibers of vessels and nerves with silver, whereas in cases of graphite tattoos, this impregnation is not observed, but it is common to observe a granulomatous inflammatory response, less evident in cases of amalgam tattoos. Both types of lesions require no treatment, but in some cases a biopsy may be done to rule out melanocytic lesions.

  19. 'In situ' expanded graphite extinguishant

    International Nuclear Information System (INIS)

    Cao Qixin; Shou Yuemei; He Bangrong

    1987-01-01

    This report is concerning the development of the extinguishant for sodium fire and the investigation of its extinguishing property. The experiment result shows that 'in situ' expanded graphite developed by the authors is a kind of extinguishant which extinguishes sodium fire quickly and effectively and has no environment pollution during use and the amount of usage is little

  20. Graphite nanoreinforcements in polymer nanocomposites

    Science.gov (United States)

    Fukushima, Hiroyuki

    Nanocomposites composed of polymer matrices with clay reinforcements of less than 100 nm in size, are being considered for applications such as interior and exterior accessories for automobiles, structural components for portable electronic devices, and films for food packaging. While most nanocomposite research has focused on exfoliated clay platelets, the same nanoreinforcement concept can be applied to another layered material, graphite, to produce nanoplatelets and nanocomposites. Graphite is the stiffest material found in nature (Young's Modulus = 1060 GPa), having a modulus several times that of clay, but also with excellent electrical and thermal conductivity. The key to utilizing graphite as a platelet nanoreinforcement is in the ability to exfoliate this material. Also, if the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with not only excellent mechanical properties but electrical properties as well, opening up many new structural applications as well as non-structural ones where electromagnetic shielding and high thermal conductivity are requirements. In this research, a new process to fabricate exfoliated nano-scale graphite platelets was established (Patent pending). The size of the resulted graphite platelets was less than 1 um in diameter and 10 nm in thickness, and the surface area of the material was around 100 m2/g. The reduction of size showed positive effect on mechanical properties of composites because of the increased edge area and more functional groups attached with it. Also various surface treatment techniques were applied to the graphite nanoplatelets to improve the surface condition. As a result, acrylamide grafting treatment was found to enhance the dispersion and adhesion of graphite flakes in epoxy matrices. The resulted composites showed better mechanical properties than those with commercially available carbon fibers, vapor grown carbon fibers

  1. Graphite suspension in carbon dioxide

    International Nuclear Information System (INIS)

    Roche, R.

    1965-01-01

    Since 1963 the Atomic Division of SNECMA has been conducting, under a contract with the CEA, an experimental work with a two-component fluid comprised of carbon dioxide and small graphite particles. The primary purpose was the determination of basic engineering information pertaining to the stability and the flowability of the suspension. The final form of the experimental loop consists mainly of the following items: a light-phase compressor, a heavy-phase pump, an electrical-resistance type heater section, a cooling heat exchanger, a hairpin loop, a transparent test section and a separator. During the course of the testing, it was observed that the fluid could be circulated quite easily in a broad range of variation of the suspension density and velocity - density from 30 to 170 kg/m 3 and velocity from 2 to 24 m/s. The system could be restarted and circulation maintained without any difficulty, even with the heavy-phase pump alone. The graphite did not have a tendency to pack or agglomerate during operation. No graphite deposition was observed on the wall of the tubing. A long period run (250 hours) has shown the evolution of the particle dimensions. Starting with graphite of surface area around 20 m 2 /g (graphite particles about 1 μ), the powder surface area reaches an asymptotic value of 300 m 2 /g (all the particles less than 0.3 μ). Moisture effect on flow stability, flow distribution between two parallel channels, pressure drop in straight tubes, recompression ratio in diffusers were also investigated. (author) [fr

  2. Characterisation of Chlorine Behavior in French Graphite

    International Nuclear Information System (INIS)

    Blondel, A.; Moncoffre, N.; Toulhoat, N.; Bererd, N.; Petit, L.; Laurent, G.; Lamouroux, C.

    2016-01-01

    Chlorine 36 is one of the main radionuclides of concern for French graphite waste disposal. In order to help the understanding of its leaching behaviour under disposal conditions, the respective impact of temperature, irradiation and gas radiolysis on chlorine release in reactor has been studied. Chlorine 36 has been simulated through chlorine 37 ion implantation in virgin nuclear graphite samples. Results show that part of chlorine is highly mobile in graphite in the range of French reactors operating temperatures in relation with graphite structural recovering. Ballistic damage generated by irradiation also promotes chlorine release whereas no clear impact of the coolant gas radiolysis was observed in the absence of graphite radiolytic corrosion. (author)

  3. A study of the effect of natural radiation damage in a zircon crystal using thermoluminescence, fission track etching and X-ray diffraction

    International Nuclear Information System (INIS)

    Amin, Y.M.

    1989-01-01

    The natural radiation damage in zircon caused by the decay of uranium and thorium, present as impurities, is studied. The radiation damage is first gauged by etching the fission tracks. It is found that thermoluminescence (TL) sensitivity (defined as light output per unit test-dose) decreases as the radiation damage increases, suggesting a destruction of TL centers. The spacing d of the (112)-plane is also measured. It is also found that the d-value increases with radiation damage, suggesting the displacement of atoms from their normal lattice sites. However, as the track density increases beyond ≅ 3x10 6 tracks/cm 2 , the d-value remains at ≅ 2.52 A. By annealing the crystal, the displaced atoms are found to return to the original lattice sites, and this is followed by a reduction in d-value as well as the recovery of TL sensitivity. The fission track density also decreases and all the tracks disappear at the annealing temperature of ≅ 800 0 C. (orig.)

  4. Crystal growth and thermoluminescence response of NaZr{sub 2}(PO{sub 4}){sub 3} at high gamma radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Ordóñez-Regil, E., E-mail: eduardo.ordonez@inin.gob.mx [Depto. de Química, Gerencia de Ciencias Básicas, Instituto Nacional de Investigaciones Nucleares, AP 18-1027, CP 11801 México D.F. (Mexico); Contreras-Ramírez, A., E-mail: aida.contreras@inin.gob.mx [Depto. de Química, Gerencia de Ciencias Básicas, Instituto Nacional de Investigaciones Nucleares, AP 18-1027, CP 11801 México D.F. (Mexico); Depto. de Tecnología de Materiales, Gerencia de Ciencias Aplicadas, Instituto Nacional de Investigaciones Nucleares, AP 18-1027, CP 11801 México D.F. (Mexico); Facultad de Ciencias, Universidad Autónoma del Estado de México, Unidad Académica el Cerrillo, Piedras Blancas, AP 2-139, CP 50000 Toluca Estado de México (Mexico); Fernández-Valverde, S.M., E-mail: suilma.fernandez@inin.gob.mx [Depto. de Química, Gerencia de Ciencias Básicas, Instituto Nacional de Investigaciones Nucleares, AP 18-1027, CP 11801 México D.F. (Mexico); González-Martínez, P.R., E-mail: pedro.gonzalez@inin.gob.mx [Depto. de Física, Gerencia de Ciencias Básicas, Instituto Nacional de Investigaciones Nucleares, AP 18-1027, CP 11801 México D.F. (Mexico); Carrasco-Ábrego, H., E-mail: hector.carrasco@inin.gob.mx [Depto. Aceleradores, Gerencia de Ciencias Ambientales, Instituto Nacional de Investigaciones Nucleares, AP 18-1027, CP 11801 México D.F. (Mexico)

    2013-11-15

    Graphical abstract: -- Highlights: •NaZr{sub 2}(PO{sub 4}){sub 3} exposed to gamma doses of 10, 30 and 50 MGy. •Gamma radiation produced growth of the crystal size of the NZP. •Morphology changes were reversible by heating. •Linear relationship between the thermoluminescence and the applied gamma dose. •This property could be useful for high-level gamma dosimetry. -- Abstract: This work describes the synthesis and characterization of NaZr{sub 2}(PO{sub 4}){sub 3}. The stability of this material under high doses of gamma radiation was investigated in the range of 10–50 MGy. Samples of unaltered and gamma irradiated NaZr{sub 2}(PO{sub 4}){sub 3} were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and thermoluminescence. The results showed that while functional groups were not affected by the gamma irradiation, morphology changes were observed with increasing doses of gamma irradiation. The morphology of the non-irradiated compound is agglomerated flakes; however, irradiation at 10 MGy splits the flakes inducing the formation of well-defined cubes. Gamma irradiation induced the crystal size of the NaZr{sub 2}(PO{sub 4}){sub 3} to grow. The heat treatment (973 K) of samples irradiated at 50 MGy resulted in the recovery of the original morphology. Furthermore, the thermoluminescence analysis of the irradiated compound is reported.

  5. Effect of Mg$^{2+}$ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd$_{3}$Al$_{2}$Ga$_{3}$O$_{12}$ crystals

    CERN Document Server

    Lucchini, M.T.; Bohacek, P.; Gundacker, S.; Kamada, K.; Nikl, M.; Petrosyan, A.; Yoshikawa, A.; Auffray, E.

    2016-01-01

    Inorganic scintillators with high density and high light yield are of major interest for applications in medical imaging and high energy physics detectors. In this work, the optical and scintillation properties of Mg co-doped Ce:Gd3Al2Ga3O12 crystals, grown using Czochralski technique, have been investigated and compared with Ce:Gd3Al2Ga3O12 ones prepared with identical technology. Improvements in the timing performance of the Mg co-doped samples with respect to Ce:Gd3Al2Ga3O12 ones have been measured, namely a substantial shortening of the rise time and scintillation decay components and lower afterglow were achieved. In particular, a significantly better coincidence time resolution of 233 ps FWHM, being a fundamental parameter for TOF-PET devices, has been observed in Mg co-doped crystals. The samples have also shown a good radiation tolerance under high doses of γ-rays, making them suitable candidates for applications in harsh radiation environments, such as detectors at future collider experiments.

  6. Effect of Mg"2"+ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd_3Al_2Ga_3O_1_2 crystals

    International Nuclear Information System (INIS)

    Lucchini, M.T.; Babin, V.; Bohacek, P.; Gundacker, S.; Kamada, K.; Nikl, M.; Petrosyan, A.; Yoshikawa, A.; Auffray, E.

    2016-01-01

    Inorganic scintillators with high density and high light yield are of major interest for applications in medical imaging and high energy physics detectors. In this work, the optical and scintillation properties of Mg co-doped Ce:Gd_3Al_2Ga_3O_1_2 crystals, grown using Czochralski technique, have been investigated and compared with Ce:Gd_3Al_2Ga_3O_1_2 ones prepared with identical technology. Improvements in the timing performance of the Mg co-doped samples with respect to Ce:Gd_3Al_2Ga_3O_1_2 ones have been measured, namely a substantial shortening of the rise time and scintillation decay components and lower afterglow were achieved. In particular, a significantly better coincidence time resolution of 233 ps FWHM, being a fundamental parameter for TOF-PET devices, has been observed in Mg co-doped crystals. The samples have also shown a good radiation tolerance under high doses of γ-rays, making them suitable candidates for applications in harsh radiation environments, such as detectors at future collider experiments.

  7. Pyrolytic Graphite as a Tunable Second order Neutron Filter

    International Nuclear Information System (INIS)

    Adib, M.

    2009-01-01

    A study has been carried out on the neutron transmission through pyrolytic graphite (PG) crystals in order to check its applicability as an efficient tunable second order neutron filter. The neutron transmission have been calculated as a function of neutron wavelengths in the range from 0.01 nm up to 0.7 nm at various PG mosaic spread, thickness and orientation of its c-axis with respect to the beam direction The Computer package Graphite has been used to provide the required calculation. It was shown that highly aligned (10 FWHM on mosaic spread) PG crystal ∼2 cm thick, may be tuned for optimum scattering of 2 second order neutrons within some favorable wavelength intervals in the range between 0.112 and 0.425 nm by adjusting the crystal in an appropriate orientation. .However, a less quality and thinner PG was found to almost eliminate 2 second order neutrons at only tuned values of wavelength corresponding to the poison of the triple intersection points of the curves (hkl) ± and (00l)

  8. Thermally and optically stimulated radiative processes in Eu and Y co-doped LiCaAlF6 crystal

    International Nuclear Information System (INIS)

    Fukuda, Kentaro; Yanagida, Takayuki; Fujimoto, Yutaka

    2015-01-01

    Yttrium co-doping was attempted to enhance dosimeter performance of Eu doped LiCaAlF 6 crystal. Eu doped and Eu, Y co-doped LiCaAlF 6 were prepared by the micro-pulling-down technique, and their dosimeter characteristics such as optically stimulated luminescence (OSL) and thermally stimulated luminescence (TSL) were investigated. By yttrium co-doping, emission intensities of OSL and TSL were enhanced by some orders of magnitude. In contrast, scintillation characteristics of yttrium co-doped crystal such as intensity of prompt luminescence induced by X-ray and light yield under neutron irradiation were degraded

  9. AGC-2 Graphite Preirradiation Data Package

    Energy Technology Data Exchange (ETDEWEB)

    David Swank; Joseph Lord; David Rohrbaugh; William Windes

    2012-10-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterized prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.

  10. Channeling and Radiation of Electrons in Silicon Single Crystals and Si1−xGex Crystalline Undulators

    DEFF Research Database (Denmark)

    Backe, H.; Krambrich, D.; Lauth, W.

    2013-01-01

    The phenomenon of channeling and the basic features of channeling radiation emission are introduced in a pedestrian way. Both, radiation spectra as well as dechanneling length measurements at electron beam energies between 195 and 855 MeV feature quantum state phenomena for the (110) planar...

  11. Universal crystal cooling device for precession cameras, rotation cameras and diffractometers

    International Nuclear Information System (INIS)

    Hajdu, J.; McLaughlin, P.J.; Helliwell, J.R.; Sheldon, J.; Thompson, A.W.

    1985-01-01

    A versatile crystal cooling device is described for macromolecular crystallographic applications in the 290 to 80 K temperature range. It utilizes a fluctuation-free cold-nitrogen-gas supply, an insulated Mylar crystal cooling chamber and a universal ball joint, which connects the cooling chamber to the goniometer head and the crystal. The ball joint is a novel feature over all previous designs. As a result, the device can be used on various rotation cameras, precession cameras and diffractometers. The lubrication of the interconnecting parts with graphite allows the cooling chamber to remain stationary while the crystal and goniometer rotate. The construction allows for 360 0 rotation of the crystal around the goniometer axis and permits any settings on the arcs and slides of the goniometer head (even if working at 80 K). There are no blind regions associated with the frame holding the chamber. Alternatively, the interconnecting ball joint can be tightened and fixed. This results in a set up similar to the construction described by Bartunik and Schubert where the cooling chamber rotates with the crystal. The flexibility of the systems allows for the use of the device on most cameras or diffractometers. THis device has been installed at the protein crystallographic stations of the Synchrotron Radiation Source at Daresbury Laboratory and in the Laboratory of Molecular Biophysics, Oxford. Several data sets have been collected with processing statistics typical of data collected without a cooling chamber. Tests using the full white beam of the synchrotron also look promising. (orig./BHO)

  12. Progress in radioactive graphite waste management

    International Nuclear Information System (INIS)

    2010-07-01

    Radioactive graphite constitutes a major waste stream which arises during the decommissioning of certain types of nuclear installations. Worldwide, a total of around 250 000 tonnes of radioactive graphite, comprising graphite moderators and reflectors, will require management solutions in the coming years. 14 C is the radionuclide of greatest concern in nuclear graphite; it arises principally through the interaction of reactor neutrons with nitrogen, which is present in graphite as an impurity or in the reactor coolant or cover gas. 3 H is created by the reactions of neutrons with 6 Li impurities in graphite as well as in fission of the fuel. 36 Cl is generated in the neutron activation of chlorine impurities in graphite. Problems in the radioactive waste management of graphite arise mainly because of the large volumes requiring disposal, the long half-lives of the main radionuclides involved and the specific properties of graphite - such as stored Wigner energy, graphite dust explosibility and the potential for radioactive gases to be released. Various options for the management of radioactive graphite have been studied but a generally accepted approach for its conditioning and disposal does not yet exist. Different solutions may be appropriate in different cases. In most of the countries with radioactive graphite to manage, little progress has been made to date in respect of the disposal of this material. Only in France has there been specific thinking about a dedicated graphite waste-disposal facility (within ANDRA): other major producers of graphite waste (UK and the countries of the former Soviet Union) are either thinking in terms of repository disposal or have no developed plans. A conference entitled 'Solutions for Graphite Waste: a Contribution to the Accelerated Decommissioning of Graphite Moderated Nuclear Reactors' was held at the University of Manchester 21-23 March 2007 in order to stimulate progress in radioactive graphite waste management

  13. Voronoi-Tessellated Graphite Produced by Low-Temperature Catalytic Graphitization from Renewable Resources.

    Science.gov (United States)

    Zhao, Leyi; Zhao, Xiuyun; Burke, Luke T; Bennett, J Craig; Dunlap, Richard A; Obrovac, Mark N

    2017-09-11

    A highly crystalline graphite powder was prepared from the low temperature (800-1000 °C) graphitization of renewable hard carbon precursors using a magnesium catalyst. The resulting graphite particles are composed of Voronoi-tessellated regions comprising irregular sheets; each Voronoi-tessellated region having a small "seed" particle located near their centroid on the surface. This suggests nucleated outward growth of graphitic carbon, which has not been previously observed. Each seed particle consists of a spheroidal graphite shell on the inside of which hexagonal graphite platelets are perpendicularly affixed. This results in a unique high surface area graphite with a high degree of graphitization that is made with renewable feedstocks at temperatures far below that conventionally used for artificial graphites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Graphite structure and magnetic parameters of flake graphite cast iron

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, Ivan; Kage, H.

    2017-01-01

    Roč. 442, Nov (2017), s. 397-402 ISSN 0304-8853 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:68378271 Keywords : magnetic NDE * magnetic adaptive testing * cast iron * graphite structure * pearlite content Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.630, year: 2016

  15. ESR-ENDOR study of x-irradiated single crystals of α.D.glucopyranose and α-methyl.D.glucopyranoside; environmental effects upon radiation and free radical chemistry in carbohydrate model systems

    International Nuclear Information System (INIS)

    Madden, K.P.

    1980-01-01

    Single crystals of x-irradiated α-D-glucopyranose (αGlu) and α-methyl-D-glucopyranoside (αMeGlu) were studied using electron spin resonance and electron nuclear double resonance spectroscopy, to determine products and reaction mechanisms in carbohydrate radiation and free-radical chemistry. Four free-radical products were identified in αMeGlu single crystals irradiated and studied at 77K. Irradiation and observation at 12K produced yet another species. Four free radicals were identified in αGlu single crystals irradiated and observed at 12K and 77K. Free radical reaction in αGlu and αMeGlu were induced by slowly warming crystals irradiated at 77K until conversion occurred. Environmental influences upon these free-radical reaction mechanisms are discussed. The results from previous work on irradiated aqueous glasses of αGlu is briefly reviewed, and compared to those obtained from the single crystal system

  16. Microwave absorbing property of a hybrid absorbent with carbonyl irons coating on the graphite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yonggang, E-mail: xuyonggang221@163.com [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai, 200438 (China); Yan, Zhenqiang; Zhang, Deyuan [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2015-11-30

    Graphical abstract: The absorbing property could be enhanced as the CIPs coated on the graphite. - Highlights: • Absorbers filled with CIPs coating on the graphite was fabricated. • The permittivity and permeability increased as CIPs coated. • The CIP materials enhanced the electromagnetic property. • The graphite coated CIPs were effective in 2–18 GHz. - Abstract: The hybrid absorbent filled with carbonyl iron particles (CIPs) coating on the graphite was prepared using a chemical vapor decomposition (CVD) process. X-ray diffraction (XRD) patterns were done to analyze the particle crystal grain structure. The complex permittivity and permeability were measured using a vector network analyzer in the frequency range of 2–18 GHz. The results showed that α-Fe appeared in the super-lattice diffraction peaks in XRD graph. The composites added CIPs coating on the graphite had a higher permittivity and imaginary permeability due to the superior microwave dielectric loss and magnetic loss of the CIPs. The reflection loss (RL) result showed that composites filled with 5 vol% Fe-graphite had an excellent absorbing property in the 2–18 GHz, the minimum RL was −25.14 dB at 6 mm and −26.52 dB at 8 mm, respectively.

  17. Electrochemical reactivity at graphitic micro-domains on polycrystalline boron doped diamond thin-films electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mahe, E. [LI2C CNRS/UMR 7612, Laboratoire d' Electrochimie, Universite Pierre-et-Marie Curie - case courrier 51, 4, Place Jussieu, 75252 Paris Cedex 05 (France); Devilliers, D. [LI2C CNRS/UMR 7612, Laboratoire d' Electrochimie, Universite Pierre-et-Marie Curie - case courrier 51, 4, Place Jussieu, 75252 Paris Cedex 05 (France); Comninellis, Ch. [Unite de Genie Electrochimique, Institut de sciences des procedes chimiques et biologiques, Ecole Polytechnique Federale de Lausanne, 1015, Lausanne (Switzerland)

    2005-04-01

    This paper deals with the electrochemical reactivity of boron doped diamond (BDD) electrodes. A comparative study has been carried out to show the influence of the presence of graphitic micro-domains upon the surface of these films. Those graphitic domains are sometimes present on as-grown boron doped diamond electrodes. The effect of doping a pure Csp{sup 3} diamond electrode is established by highly oriented pyrolytic graphite (HOPG) abrasion onto the diamond surface. In order to establish the effect of doping on a pure Csp{sup 3} diamond electrode, the amount of graphitic domains was increased by means of HOPG crystals grafted onto the BDD surface. Indeed that method allows the enrichment of the Csp{sup 2} contribution of the electrode. The presence of graphitic domains can be correlatively associated with the presence of kinetically active redox sites. The electrochemical reactivity of boron doped diamond electrodes shows a distribution of kinetic constants on the whole surface of the electrode corresponding to different active sites. In this paper, we have studied by cyclic voltammetry and electrochemical impedance spectroscopy the kinetics parameters of the ferri/ferrocyanide redox couple in KCl electrolyte. A method is proposed to diagnose the presence of graphitic domains on diamond electrodes, and an electrochemical 'pulse cleaning' procedure is proposed to remove them.

  18. Electrochemical reactivity at graphitic micro-domains on polycrystalline boron doped diamond thin-films electrodes

    International Nuclear Information System (INIS)

    Mahe, E.; Devilliers, D.; Comninellis, Ch.

    2005-01-01

    This paper deals with the electrochemical reactivity of boron doped diamond (BDD) electrodes. A comparative study has been carried out to show the influence of the presence of graphitic micro-domains upon the surface of these films. Those graphitic domains are sometimes present on as-grown boron doped diamond electrodes. The effect of doping a pure Csp 3 diamond electrode is established by highly oriented pyrolytic graphite (HOPG) abrasion onto the diamond surface. In order to establish the effect of doping on a pure Csp 3 diamond electrode, the amount of graphitic domains was increased by means of HOPG crystals grafted onto the BDD surface. Indeed that method allows the enrichment of the Csp 2 contribution of the electrode. The presence of graphitic domains can be correlatively associated with the presence of kinetically active redox sites. The electrochemical reactivity of boron doped diamond electrodes shows a distribution of kinetic constants on the whole surface of the electrode corresponding to different active sites. In this paper, we have studied by cyclic voltammetry and electrochemical impedance spectroscopy the kinetics parameters of the ferri/ferrocyanide redox couple in KCl electrolyte. A method is proposed to diagnose the presence of graphitic domains on diamond electrodes, and an electrochemical 'pulse cleaning' procedure is proposed to remove them

  19. Graphite moderated 252Cf source

    International Nuclear Information System (INIS)

    Sajo B, L.; Barros, H.; Greaves, E. D.; Vega C, H. R.

    2014-08-01

    The thorium molten salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid fuel reactor. The neutron source to run this subcritical reactor is a 252 Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the 252 Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. (Author)

  20. Fission Product Sorptivity in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Tompson, Jr., Robert V. [Univ. of Missouri, Columbia, MO (United States); Loyalka, Sudarshan [Univ. of Missouri, Columbia, MO (United States); Ghosh, Tushar [Univ. of Missouri, Columbia, MO (United States); Viswanath, Dabir [Univ. of Missouri, Columbia, MO (United States); Walton, Kyle [Univ. of Missouri, Columbia, MO (United States); Haffner, Robert [Univ. of Missouri, Columbia, MO (United States)

    2015-04-01

    Both adsorption and absorption (sorption) of fission product (FP) gases on/into graphite are issues of interest in very high temperature reactors (VHTRs). In the original proposal, we proposed to use packed beds of graphite particles to measure sorption at a variety of temperatures and to use an electrodynamic balance (EDB) to measure sorption onto single graphite particles (a few μm in diameter) at room temperature. The use of packed beds at elevated temperature is not an issue. However, the TPOC requested revision of this initial proposal to included single particle measurements at elevated temperatures up to 1100 °C. To accommodate the desire of NEUP to extend the single particle EDB measurements to elevated temperatures it was necessary to significantly revise the plan and the budget. These revisions were approved. In the EDB method, we levitate a single graphite particle (the size, surface characteristics, morphology, purity, and composition of the particle can be varied) or agglomerate in the balance and measure the sorption of species by observing the changes in mass. This process involves the use of an electron stepping technique to measure the total charge on a particle which, in conjunction with the measured suspension voltages for the particle, allows for determinations of mass and, hence, of mass changes which then correspond to measurements of sorption. Accommodating elevated temperatures with this type of system required a significant system redesign and required additional time that ultimately was not available. These constraints also meant that the grant had to focus on fewer species as a result. Overall, the extension of the original proposed single particle work to elevated temperatures added greatly to the complexity of the proposed project and added greatly to the time that would eventually be required as well. This means that the bulk of the experimental progress was made using the packed bed sorption systems. Only being able to recruit one

  1. Graphite for high-temperature reactors

    International Nuclear Information System (INIS)

    Hammer, W.; Leushacke, D.F.; Nickel, H.; Theymann, W.

    1976-01-01

    The different graphites necessary for HTRs are being developed, produced and tested within the Federal German ''Development Programme Nuclear Graphite''. Up to now, batches of the following graphite grades have been manufactured and fully characterized by the SIGRI Company to demonstrate reproducibility: pitch coke graphite AS2-500 for the hexagonal fuel elements and exchangeable reflector blocks; special pitch coke graphite ASI2-500 for reflector blocks of the pebble-bed reactor and as back-up material for the hexagonal fuel elements; graphite for core support columns. The material data obtained fulfill most of the requirements under present specifications. Production of large-size blocks for the permanent side reflector and the core support blocks is under way. The test programme covers all areas important for characterizing and judging HTR-graphites. In-pile testing comprises evaluation of the material for irradiation-induced changes of dimensions, mechanical and thermal properties - including behaviour under temperature cycling and creep behaviour - as well as irradiating fuel element segments and blocks. Testing out-of-pile includes: evaluation of corrosion rates and influence of corrosion on strength; strength measurements; including failure criteria. The test programme has been carried out extensively on the AS2-graphite, and the results obtained show that this graphite is suitable as HTGR fuel element graphite. (author)

  2. Investigation on the formation of lonsdaleite from graphite

    Energy Technology Data Exchange (ETDEWEB)

    Greshnyakov, V. A.; Belenkov, E. A., E-mail: belenkov@csu.ru [Chelyabinsk State University (Russian Federation)

    2017-02-15

    Structural stability and the possible pathways to experimental formation of lonsdaleite—a hexagonal 2H polytype of diamond—have been studied in the framework of the density functional theory (DFT). It is established that the structural transformation of orthorhombic Cmmm graphite to 2H polytype of diamond must take place at a pressure of 61 GPa, while the formation of lonsdaleite from hexagonal P6/mmm graphite must take place at 56 GPa. The minimum potential barrier height separating the 2H polytype state from graphite is only 0.003 eV/atom smaller than that for the cubic diamond. The high potential barrier is indicative of the possibility of stable existence of the hexagonal diamond under normal conditions. In this work, we have also analyzed the X-ray diffraction and electron-microscopic data available for nanodiamonds found in meteorite impact craters in search for the presence of hexagonal diamond. Results of this analysis showed that pure 3C and 2H polytypes are not contained in the carbon materials of impact origin, the structure of nanocrystals found representing diamonds with randomly packed layers. The term “lonsdaleite,” used to denote carbon materials found in meteorite impact craters and diamond crystals with 2H polytype structure, is rather ambiguous, since no pure hexagonal diamond has been identified in carbon phases found at meteorite fall sites.

  3. AGC-3 Graphite Preirradiation Data Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    William Windes; David Swank; David Rohrbaugh; Joseph Lord

    2013-09-01

    This report describes the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the third Advanced Graphite Capsule (AGC-3) irradiation capsule. The AGC-3 capsule is third in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. The general design of AGC-3 test capsule is similar to the AGC-2 test capsule, material property tests were conducted on graphite specimens prior to loading into the AGC-3 irradiation assembly. However the 6 major nuclear graphite grades in AGC-2 were modified; two previous graphite grades (IG-430 and H-451) were eliminated and one was added (Mersen’s 2114 was added). Specimen testing from three graphite grades (PCEA, 2114, and NBG-17) was conducted at Idaho National Laboratory (INL) and specimen testing for two grades (IG-110 and NBG-18) were conducted at Oak Ridge National Laboratory (ORNL) from May 2011 to July 2013. This report also details the specimen loading methodology for the graphite specimens inside the AGC-3 irradiation capsule. The AGC-3 capsule design requires "matched pair" creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-3 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce "matched pairs" of graphite samples above and below the AGC-3 capsule elevation mid-point to

  4. Sagittal focusing of synchrotron radiation on the walls of a longitudinal hole drilled into a single-crystal monochromator

    Czech Academy of Sciences Publication Activity Database

    Artemiev, Nikolai; Hrdý, Jaromír; Peredkov, S.; Artemev, A.; Freud, A.; Tucoulou, R.

    2001-01-01

    Roč. 8, - (2001), s. 1207-1213 ISSN 0909-0495. [Syncrotron Radiation Instrumentation. Madison, 22.08.2001-24.08.2001] R&D Projects: GA AV ČR IAA1010104; GA MPO PZ-CH/22; GA MŠk OK 305 Institutional research plan: CEZ:AV0Z1010914 Keywords : focusing of synchrotron radiation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.519, year: 2001

  5. Report on the study of erosion and H-recycle/inventory of carbon/graphite

    International Nuclear Information System (INIS)

    Haasz, A.A.; Davis, J.W.

    1990-04-01

    This study investigated the erosion and hydrogen retention capacity of graphite under plasma exposure by performing controlled plasma simulation experiments using a low-energy high-flux mass analyzed ion accelerator. The authors studied radiation-enhanced sublimation (RES) of graphite, the effect of ion angle of incidence on physical sputtering, the effect of oxygen on hydrocarbon formation during O 2 /H 2 impact, chemical erosion of boron carbide, and the effect of thermal atoms on self-sputtering of graphite. The flux dependence of RES is nearly linear (power of .91) for the extended flux range of 10 13 - 10 17 H + /cm 2 s. Physical sputtering yields were enhanced for off-normal angles of incidence, especially for highly-oriented polished surfaces. Oxygen did not appear to have an effect on the hydrocarbon formation rate; however, some erosion through CO formation was observed. Although large transients were observed in hydrocarbon production in B 4 C, steady-state levels were typically about two orders of magnitude below the erosion rate of graphite. To investigate carbon self-sputtering, thermal H 0 atoms were added to impacting C + ions, simulating a condition existing in the tokamak plasma edge. This led to a synergistic enhancement of the chemical erosion process. For C + /H+0 flux ratios of less than about 10 -1 the chemical erosion yield exceeds unity. Work on hydrogen retention concentrated on the study of H + trapping in different types of graphites as a function of flux and fluence of incident H + . The amount of H trapped in the near-surface region of graphite reaches a saturation level, a function of graphite temperature and impacting H + energy. The amount of H trapped in graphite beyond the ion range was found to increase with increasing fluence and varied for different graphites tested. It seems that hydrogen diffuses through grain boundaries and open porosity in the material until trapped by available carbon bonds

  6. Experimental modelling of plasma-graphite surface interaction in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Martynenko, Yu.V.; Guseva, M.I.; Gureev, V.M.; Danelyan, L.S.; Neumoin, V.E.; Petrov, V.B.; Khripunov, B.I.; Sokolov, Yu.A.; Stativkina, O.V.; Stolyarova, V.G. [Rossijskij Nauchnyj Tsentr ``Kurchatovskij Inst.``, Moscow (Russian Federation); Vasiliev, V.I.; Strunnikov, V.M. [TRINITI, Troizk (Russian Federation)

    1998-10-01

    The investigation of graphite erosion under normal operation ITER regime and disruption was performed by means of exposure of RGT graphite samples in a stationary deuterium plasma to a dose of 10{sup 22} cm{sup -2} and subsequent irradiation by power (250 MW/cm{sup 2}) pulse deuterium plasma flow imitating disruption. The stationary plasma exposure was carried out in the installation LENTA with the energy of deuterium ions being 200 eV at target temperatures of 770 C and 1150 C. The preliminary exposure in stationary plasma at temperature of physical sputtering does not essentially change the erosion due to a disruption, whereas exposure at the temperature of radiation enhanced sublimation dramatically increases the erosion due to disruption. In the latter case, the depth of erosion due to a disruption is determined by the depth of a layer with decreased strength. (orig.) 9 refs.

  7. Microbiological method for radiation sterilization (III). Development of identification software of spore-forming bacteria by using BBL CRYSTAL GP identification kit

    International Nuclear Information System (INIS)

    Hironiwa, Takayuki; Yamamoto, Yoko; Koshikawa, Tomihiko

    2004-01-01

    The part III in this title series describes the development of software for identification of spore-forming bacteria using the commercially available BBL CRYSTAL GP Identification Kit (Becton, Dickinson and Co., Ltd.), which is essentially for identification of Gram positive bacteria and is not always suitable for the spore-former in the radiation sterilization of medical devices. Isolation and identification of a spore-forming bacterium have to be confirmed by phase-contrast microscopy. The bacteria cultured overnight are to be inoculated in the Kit and cultured for 18-24 hr at 35-37 deg C with the lid attached by substrates for identification. Here, 30 substrates and probability of positive reactions to the substrates have been tested for spore-formers to make the computer software for final identification. The system is possible to identify 13 spp. of Bacillus, 4 of Paenibacillus, 2 of Brevibaccilus and 1 of Virgibacillus, which are the usual bioburden. For possible misidentification, re-isolation of the bacterium, prolonged culture, concentrated inoculation and re-consideration for ranking of identification the software provides are necessary as well as other identification approaches. Thus, as described in this series, the radio-resistance of, and radiation dose for, the bioburden can be evaluated more easily than hitherto, with use of the kits in radiation sterilization. (N.I.)

  8. Ab initio and Molecular Dynamic models of displacement damage in crystalline and turbostratic graphite

    Science.gov (United States)

    McKenna, Alice

    One of the functions of graphite is as a moderator in several nuclear reactor designs, including the Advanced Gas-cooled Reactor (AGR). In the reactor graphite is used to thermalise the neutrons produced in the fission reaction thus allowing a self-sustained reaction to occur. The graphite blocks, acting as the moderator, are constantly irradiated and consequently suffer damage. This thesis examines the types of damage caused using molecular dynamic (MD) simulations and ab intio calculations. Neutron damage starts with a primary knock-on atom (PKA), which is travelling so fast that it creates damage through electronic and thermal excitation (this is addressed with thermal spike simulations). When the PKA has lost energy the subsequent cascade is based on ballistic atomic displacement. These two types of simulations were performed on single crystal graphite and other carbon structures such as diamond and amorphous carbon as a comparison. The thermal spike in single crystal graphite produced results which varied from no defects to a small number of permanent defects in the structure. It is only at the high energy range that more damage is seen but these energies are less likely to occur in the nuclear reactor. The thermal spike does not create damage but it is possible that it can heal damaged sections of the graphite, which can be demonstrated with the motion of the defects when a thermal spike is applied. The cascade simulations create more damage than the thermal spike even though less energy is applied to the system. A new damage function is found with a threshold region that varies with the square root of energy in excess of the energy threshold. This is further broken down in to contributions from primary and subsequent knock-on atoms. The threshold displacement energy (TDE) is found to be Ed=25eV at 300K. In both these types of simulation graphite acts very differently to the other carbon structures. There are two types of polycrystalline graphite structures

  9. Design of Double PG Crystal Neutron Diffractometer

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; El-Mesiry, M.S.; Fathallah, M.

    2011-01-01

    The design of a diffractometer containing two pyrolytic graphite (PG) crystals to select monochromatic neutrons in the range of wavelengths longer than 0.26 nm is given. The first crystal is high oriented pyrolytic graphite (HOPG) set at glancing angle to reflect monochromatic neutrons with a selected wavelength. The second is a low quality PG crystal filter, set at take-off-angle such that, it transmits the selected monochromatic neutrons and rejects the higher order contaminations accompanying the first order reflection. It was shown that, 2 mm thick of PG crystal having 0.30 FWHM on mosaic spread are the optimum parameters of monochromator PG crystal. While the optimum thickness and mosaic spread of the PG crystal filter were selected to have low contamination factor of higher order reflections. The optimum parameters of the PG filter crystal were calculated using the computer package Graphite recently developed in our laboratory. Calculation shows that, 3 cm thick PG filter (20 on mosaic spread) is sufficient to almost eliminate the higher order contaminations accompanying the main monochromatic neutrons with

  10. Thermoluminescence and F centers of manganese doped NaCl and NaCl-CKl crystals exposed to gamma radiation

    International Nuclear Information System (INIS)

    Somera, L.; Cruz Z, E.; Roman L, J.; Hernandez A, J. M.; Murrieta S, H.

    2015-10-01

    Alkali halides crystals doped with rare earths or transition metals have been widely studied due to the luminescence properties. In particular, NaCl and KCl single crystals present thermally stimulated luminescence (Tl) after gamma irradiation. The NaCl and the NaCl KCl mixed crystal doped with manganese (MnCl 2 ) impurity were grown by using the Czochralski method. The emission characteristic of Mn 2+ was observed at 543 nm. The crystals were exposed between 0.02 and 10 kGy gamma dose from 60 Co irradiator. Optical absorption at room temperature shows the peaked band at 452 nm corresponding to the manganese impurity. The F bands, was ascribed to the electron trapped in the anion vacancy in the lattice, were obtained at 452 nm and 455 nm belonging to NaCl:Mn and NaCl KCl:Mn, respectively. The F band increases as the doses increase and it was bleaching by the UV light at 470 nm. The glow curves of the samples show the first glow peak between 92-103 degrees C, while the second main peak was observed at 183 degrees C for the undoped NaCl and at 148 and 165 degrees C for the NaCl:Mn and NaCl-KCl:Mn, respectively. The main peak was slowly bleaching when the irradiated sample was illuminated with F (470 nm) light. Optical bleaching confirms that the F center has an important participation in the thermoluminescent response. The glow curves structure from the thermal bleaching suggests the participation of different kind of traps. Also, the kinetics parameters such as activation energy (E), frequency factor (s) and the kinetic order (b) were investigated. (Author)

  11. Thermoluminescence and F centers of manganese doped NaCl and NaCl-CKl crystals exposed to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Somera, L.; Cruz Z, E.; Roman L, J. [UNAM, Instituto de Ciencias Nucleares, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Hernandez A, J. M.; Murrieta S, H., E-mail: ecruz@nucleares.unam.mx [UNAM, Instituto de Fisica, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2015-10-15

    Alkali halides crystals doped with rare earths or transition metals have been widely studied due to the luminescence properties. In particular, NaCl and KCl single crystals present thermally stimulated luminescence (Tl) after gamma irradiation. The NaCl and the NaCl KCl mixed crystal doped with manganese (MnCl{sub 2}) impurity were grown by using the Czochralski method. The emission characteristic of Mn{sup 2+} was observed at 543 nm. The crystals were exposed between 0.02 and 10 kGy gamma dose from {sup 60}Co irradiator. Optical absorption at room temperature shows the peaked band at 452 nm corresponding to the manganese impurity. The F bands, was ascribed to the electron trapped in the anion vacancy in the lattice, were obtained at 452 nm and 455 nm belonging to NaCl:Mn and NaCl KCl:Mn, respectively. The F band increases as the doses increase and it was bleaching by the UV light at 470 nm. The glow curves of the samples show the first glow peak between 92-103 degrees C, while the second main peak was observed at 183 degrees C for the undoped NaCl and at 148 and 165 degrees C for the NaCl:Mn and NaCl-KCl:Mn, respectively. The main peak was slowly bleaching when the irradiated sample was illuminated with F (470 nm) light. Optical bleaching confirms that the F center has an important participation in the thermoluminescent response. The glow curves structure from the thermal bleaching suggests the participation of different kind of traps. Also, the kinetics parameters such as activation energy (E), frequency factor (s) and the kinetic order (b) were investigated. (Author)

  12. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Science.gov (United States)

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  13. Energy-momentum density of graphite by electron-momentum spectroscopy

    International Nuclear Information System (INIS)

    Vos, M.; Fang, Z.; Canney, S.; Kheifets, A.; McCarthy, I.E.; Weigold, E.

    1996-11-01

    The energy-resolved electron momentum density of graphite has been measured along a series of well-defined directions using electron momentum spectroscopy (EMS). This is the first measurement of this kind performed on a single-crystal target with a thoroughly controlled orientation which clearly demonstrates the different nature of the σ and π bands in graphite. Good agreement between the calculated density and the measured one is found, further establishing that fact that EMS yields more direct and complete information on the valence electronic structure that any other method. 12 refs., 2 figs

  14. Electrochemical Ultracapacitors Using Graphitic Nanostacks

    Science.gov (United States)

    Marotta, Christopher

    2012-01-01

    Electrochemical ultracapacitors (ECs) have been developed using graphitic nanostacks as the electrode material. The advantages of this technology will be the reduction of device size due to superior power densities and relative powers compared to traditional activated carbon electrodes. External testing showed that these materials display reduced discharge response times compared to state-of-the-art materials. Such applications are advantageous for pulsed power applications such as burst communications (satellites, cell phones), electromechanical actuators, and battery load leveling in electric vehicles. These carbon nanostructures are highly conductive and offer an ordered mesopore network. These attributes will provide more complete electrolyte wetting, and faster release of stored charge compared to activated carbon. Electrochemical capacitor (EC) electrode materials were developed using commercially available nanomaterials and modifying them to exploit their energy storage properties. These materials would be an improvement over current ECs that employ activated carbon as the electrode material. Commercially available graphite nanofibers (GNFs) are used as precursor materials for the synthesis of graphitic nanostacks (GNSs). These materials offer much greater surface area than graphite flakes. Additionally, these materials offer a superior electrical conductivity and a greater average pore size compared to activated carbon electrodes. The state of the art in EC development uses activated carbon (AC) as the electrode material. AC has a high surface area, but its small average pore size inhibits electrolyte ingress/egress. Additionally, AC has a higher resistivity, which generates parasitic heating in high-power applications. This work focuses on fabricating EC from carbon that has a very different structure by increasing the surface area of the GNF by intercalation or exfoliation of the graphitic basal planes. Additionally, various functionalities to the GNS

  15. Uranium Oxide Aerosol Transport in Porous Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

    2012-01-23

    The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

  16. Characteristics of Pyrolytic Graphite as a Neutron Monochromator

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; El-Mesiry, M.S.; Fathallah, M.

    2011-01-01

    Pyrolytic graphite (PG) has become nearly indispensable in neutron spectroscopy. Since the integrated reflectivity of the monochromatic neutrons from PG crystals cut along its c-axis is high within a wavelength band from 0.1 nm up to .65 nm. The monochromatic features of PG crystal is detailed in terms of the optimum mosaic spread, crystal thickness and reactor moderating temperature for efficient integrated neutron reflectivity within the wavelength band. A computer code Mono-PG has been developed to carry out the required calculations for the PG hexagonal close-packed structure. Calculation shows that, 2 mm thick of PG crystal having 0.30 FWHM on mosaic spread are the optimum parameters of PG crystal as a monochromator at selected neutron wavelength shorter than 2 nm. However, the integrated neutron intensity of 2nd and 3rd orders from thermal reactor flux is even higher than that of the 1st order one at neutron wavelengths longer than 2 nm. While, from cold reactor flux, integrated neutron intensity of the 1st order within the wavelength band from 0.25 up to 0.5 nm is higher than the 2nd and 3rd ones

  17. Influence of Particle Size on Properties of Expanded Graphite

    Directory of Open Access Journals (Sweden)

    Kurajica, S

    2010-02-01

    Full Text Available Expanded graphite has been applied widely in thermal insulation, adsorption, vibration damping, gasketing, electromagnetic interference shielding etc. It is made by intercalation of natural flake graphite followed by thermal expansion. Intercalation is a process whereby an intercalant material is inserted between the graphene layers of a graphite crystal. Exfoliation, a huge unidirectional expansion of the starting intercalated flakes, occurs when the graphene layers are forced apart by the sudden decomposition and vaporization of the intercalated species by thermal shock. Along with production methodologies, such as the intercalation process and heat treatment, the raw material characteristics, especially particle size, strongly influence the properties of the final product.This report evaluates the influence of the particle size of the raw material on the intercalation and expansion processes and consequently the properties of the exfoliated graphite. Natural crystalline flake graphite with wide particle diameter distribution (between dp = 80 and 425 µm was divided into four size-range portions by sieving. Graphite was intercalated via perchloric acid, glacial acetic acid and potassium dichromate oxidation and intercalation procedure. 5.0 g of graphite, 7.0 g of perchloric acid, 4.0 g of glacial acetic acid and 2.0 g of potassium dichromate were placed in glass reactor. The mixture was stirred with n = 200 min–1 at temperature of 45 °C during 60 min. Then it was filtered and washed with distilled water until pH~6 and dried at 60 °C during 24 h. Expansion was accomplished by thermal shock at 1000 °C for 1 min. The prepared samples were characterized by means of exfoliation volume measurements, simultaneous differential thermal analysis and thermo-gravimetry (DTA/TGA, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, BET measurements and scanning electron microscopy (SEM.X-ray diffraction indicated a change of distance

  18. Dynamics of graphite flake on a liquid

    Science.gov (United States)

    Miura, K.; Tsuda, D.; Kaneta, Y.; Harada, R.; Ishikawa, M.; Sasaki, N.

    2006-11-01

    One-directional motion, where graphite flakes are driven by a nanotip on an octamethylcyclotetrasiloxane (OMCTS) liquid surface, is presented. A transition from quasiperiodic to chaotic motions occurs in the dynamics of a graphite flake when its velocity is increased. The dynamics of graphite flakes pulled by the nanotip on an OMCTS liquid surface can be treated as that of a nanobody on a liquid.

  19. Sealing nuclear graphite with pyrolytic carbon

    International Nuclear Information System (INIS)

    Feng, Shanglei; Xu, Li; Li, Li; Bai, Shuo; Yang, Xinmei; Zhou, Xingtai

    2013-01-01

    Pyrolytic carbon (PyC) coatings were deposited on IG-110 nuclear graphite by thermal decomposition of methane at ∼1830 °C. The PyC coatings are anisotropic and airtight enough to protect IG-110 nuclear graphite against the permeation of molten fluoride salts and the diffusion of gases. The investigations indicate that the sealing nuclear graphite with PyC coating is a promising method for its application in Molten Salt Reactor (MSR)

  20. Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials.

    Science.gov (United States)

    Rodriguez, Alejandro W; Ilic, Ognjen; Bermel, Peter; Celanovic, Ivan; Joannopoulos, John D; Soljačić, Marin; Johnson, Steven G

    2011-09-09

    We demonstrate the possibility of achieving enhanced frequency-selective near-field radiative heat transfer between patterned (photonic-crystal) slabs at designable frequencies and separations, exploiting a general numerical approach for computing heat transfer in arbitrary geometries and materials based on the finite-difference time-domain method. Our simulations reveal a tradeoff between selectivity and near-field enhancement as the slab-slab separation decreases, with the patterned heat transfer eventually reducing to the unpatterned result multiplied by a fill factor (described by a standard proximity approximation). We also find that heat transfer can be further enhanced at selective frequencies when the slabs are brought into a glide-symmetric configuration, a consequence of the degeneracies associated with the nonsymmorphic symmetry group.