WorldWideScience

Sample records for radiation grafting technique

  1. Preparation of Dimethylaminoethylmethacrylate Grafted Polymeric Adsorbent by Using Radiation-Induced Grafting Technique for Removal of Anions

    International Nuclear Information System (INIS)

    Kavakli, P. A.

    2006-01-01

    The development of efficient separation and purification techniques is very important from industrial, environmental and economic points of view. Polymeric materials having polyfunctional groups such as carboxylic, amide, nitrile, iminodiacetic acid, amidoxime, and ammonium groups, etc., not only possess good hydrophilic properties, but also have good ion exchange properties which make them suitable for metal recovery from aqueous solutions. Radiation induced grafting is a powerful technique capable of controlling the introduction of various functional groups to the polymeric materials, keeping the original properties and especially the mechanical strength of the base material, and thus, allowing the synthesis of more stable polymeric adsorbents. The main objective of this study was to develop special polymeric adsorbents to remove NOx and PO 4 anions from aqueous systems. For this purpose, a novel nonwoven fabric was prepared by radiation-induced graft polymerization of imethylaminoethylmethacrylate (DMAEMA) onto polypropylene coated polyethylene nonwoven fabric. The trunk polymer was irradiated by electron beam at a voltage of 2 MeV and a current of 3 mA in a nitrogen atmosphere at dry-ice temperature at different doses. The degree of grafting was determined as a function of the total dose, monomer concentration, temperature, and reaction time. It was found that the degree of grafting of grafted polymer was greatly affected by reaction conditions. Grafting conditions were optimized, and about 150 % degree of grafting samples was used for further experiments. DMAEMA grafted polymer was later protonated by using acid solution to prepare adsorbent for the removal of anions. Adsorption experiments were performed in column mode for removal of phosphate. Approximately 2000 bed volumes of phosphate-free water can be produced from 10 ppb phosphate solution at high space velocity

  2. Radiation-grafted hydrogels for biomaterial applications as studied by the ESCA technique

    International Nuclear Information System (INIS)

    Ratner, B.D.; Weathersby, P.K.; Hoffman, A.S.; Kelly, M.A.; Schrapen, L.H.

    1978-01-01

    Electron spectroscopy for chemical analysis (ESCA) was used to study the surface composition of several radiation-grafted polymers in both the dry and hydrated (frozen at 160 0 K) states. Poly(2-hydroxyethyl methacrylate) (HEMA) and polyacrylamide, both hydrophilic polymers, were readily detected in the hydrated or dehydrated states when grafted to polethylene substrates. For silicone rubber substrates, both grafts were observed on the hydrated surface but were significantly decreased in surface concentration upon dehydration. For grafts on a polyester-urethane, acrylamide was not a major constituent of either the dry or hydrated surface, while HEMA appeared to increase in abundance upon drying. The amount of the hydrophobic poly(ethyl methacrylate) found on the graft surface depended upon the substrate polymer used, but the surface abundance of poly(ethyl methacrylate) was not affected by drying. These results were considered in terms of polar group orientation, polymer chain mobility, substrate permeability, and the limitations of the ESCA technique. The implications of these results with respect to the use of radiation-grafted hydrophilic polymers for biomedical applications are also discussed

  3. Application of radiation grafting techniques to prepare the high molecular weight water-soluble polymer

    International Nuclear Information System (INIS)

    Le Hai; Nguyen Quoc Hien; Nguyen Tan Man; Truong Thi Hanh; Le Huu Tu; Tran Thi Tam; Pham Thi Sam; Pham Anh Tuan; Le Dinh Lang

    2003-01-01

    The results of the study on the preparation of the high molecular weight water-soluble polymers by radiation grafting and their properties is presented as follows: 1/ by radiation grafting, the molecular weight of PVA was increased 20 times and PAM was increased only 3 times; 2/ the thermal and medium stability of poly(vinyl alcohol) grafted with acrylamide was obviously improved. (LH)

  4. Acid effects in the styrene comonomer technique for radiation grafting to wool

    International Nuclear Information System (INIS)

    Garnett, J.L.; Kenyon, R.S.

    1977-01-01

    Two processes are thought to contribute to the grafting of monomers to wool in the presence of acid under the influence of ionizing radiation. At temperatures of 45 0 C, acid alone will catalyze grafting to wool over a period of 18 hr and at much slower rates at room temperature. However, cellulose and polyolefins do not readily graft at these temperatures by acid-catalyzed process alone, radiation is also necessary. It is thought that in grafting to wool the radiation chemistry mechanisms and the mechanical swelling of acid both contribute appreciably to the radiation copolymerization; but with cellulose and the polyolefins, where acid-catalyzed grafting is approximately zero, the radiation process predominates

  5. Study by the positron annihilation technique of Graft copolimerization of methyl methacrylate in polyethylene induced by gamma radiation

    International Nuclear Information System (INIS)

    Zaldivar Gonzalez, M.E.

    1992-01-01

    Radiation initiated grafting is a very broad field which has attracted considerable interest over the last two decades. Graft copolymers may combine suitable properties of two polymeric components. Radiation methods are particulary appropiate for the production of a large variety of graft copolymers having interesting properties. Ionizing radiation has provided a convenient and clean method to activate a sustrate polymer and undoubtedly, it has added impetus to this field of research. In the present work, graft polymerization of methyl methacrylate (MMA) onto low density polyethylene (LDPE) was carried out. The effect of gamma ray irradiation dose on the grafting degree was investigated for two different methods: direct and preirradiation. The best method to prepare the copolymer for the LDPE film thickness studied: 0.05 and 0.2 mm., was direct method. In both polyethylene thickness, the grafting degree increased as a function of the reaction time. However, grafting for LDPE 0.2 mm. it is better, because the copolymer with that thickness conserve the main physical-chemistry properties of the LDPE along the different grafting degrees obtained, which it is important for practical purposes. Infrared spectroscopy was used to probe the changes ocurred in the LDPE structure with the graft of MMA, first spectrum showed typical bands for LDPE structure, while in the second spectrum new bands appeared which corresponded to PMMA structure grafted onto LDPE. Positron annihilation lifetime technique was applied to study the copolymer microstructure according to increase of grafting degree. O-PS lifetime and intensity tend to decrease. This behavior could be due to the diminution of free volume in the original LDPE matrix as grafting proceeds. Copolymer morphology was observed using optical microscopy (Author)

  6. Study on grafting of monomer onto natural rubber latex by radiation technique

    International Nuclear Information System (INIS)

    Nguyen Tan Man; Le Hai; Tran Thi Tam; Le Huu Tu, Pham Thi Sam; Dao Minh Phuong; Ha Thuc Huy

    2004-01-01

    Radiation vulcanization of natural rubber latex has been extensively developed through programmers assisted by the IAEA and UNDP under RCA in Asia and Pacific Region. R-D has been done in most of the Member States with technical assistance from Japan's Takasaki Radiation Chemistry Establishment. Radiation vulcanized natural rubber latex (RVNRL) has many advantages over the conventional sulfur vulcanized latex, such as absence of nitrosamine and low cytotoxicity. Radiation crosslinking is a room temperature process, itself an important cost advantage, it is easily controlled and desired extend of crosslinking is easily achieved by controlling the dose (irradiation time). Disadvantages of RVNRL to be improved are poor physical properties of film such as low tensile strength and tear strength. The research groups of Japan, Thailand and Indonesia concentrated on the improvement of physical properties of RVNRL using radiation grafted PMMA as additive [2]. F. Sundardi and W. Sofiarti have reported that tensile strength and hardness increased by radiation grafting of styrene onto NR [5]. Ono et al have reported the grafting of MMA onto NR by gamma irradiation at a dose of 5 kGy for producing thermoplastic elastomers [4]. The objective of this project is to report the results of studies of radiation graft-copolymerization of methyl methacrylate (MMA) or styrene (St) onto natural rubber latex in order to improve their physico-mechanical properties and evaluation of grafted material using Small-Angle Neutron Scattering through FNCA Project. The grafting degree of MMA and St onto NR increased with the increase of irradiation dose and monomer concentration. The alteration of grafted products structure was determined by IR method. Tensile strength, Shore A hardness, 100% modulus of grafted products increased with the increase of monomer concentration and irradiation dose while elongation at break decreased. The grafted products were characterized by Transmission Electron

  7. Advances in radiation grafting

    International Nuclear Information System (INIS)

    Hegazy, El-Sayed A.; AbdEl-Rehim, H.A.; Kamal, H.; Kandeel, K.A.

    2001-01-01

    Graft copolymerization is an attractive means for modifying base polymers because grafting frequently results in the superposition of properties relating to the backbone and pendent chains. Among the various methods for initiating the grafting reaction, ionizing radiation is the cleanest and most versatile method of grafting available. Ion-exchange membranes play an important role in modern technology, especially in separation and purification of materials. The search for improved membrane composition has considered almost every available polymeric material because of its great practical importance. Grafting of polymers with a mixture of monomers is important since different types of chains containing different functional groups are included. A great deal is focused on the waste treatment of heavy and toxic metals from wastewater because of the severe problems of environmental pollution. Functionalized polymers suitable for metal adsorption with their reactive functional groups such as carboxylic and pyridine groups suitable for waste treatment were prepared by radiation grafting method. More reactive chelating groups were further introduced to the grafted copolymer through its functional groups by chemical treatments with suitable reagents. The advances of radiation grafting and possible uses are briefly discussed

  8. Development of Styrene-Grafted Polyurethane by Radiation-Based Techniques

    Directory of Open Access Journals (Sweden)

    Jin-Oh Jeong

    2016-06-01

    Full Text Available Polyurethane (PU is the fifth most common polymer in the general consumer market, following Polypropylene (PP, Polyethylene (PE, Polyvinyl chloride (PVC, and Polystyrene (PS, and the most common polymer for thermosetting resins. In particular, polyurethane has excellent hardness and heat resistance, is a widely used material for electronic products and automotive parts, and can be used to create products of various physical properties, including rigid and flexible foams, films, and fibers. However, the use of polar polymer polyurethane as an impact modifier of non-polar polymers is limited due to poor combustion resistance and impact resistance. In this study, we used gamma irradiation at 25 and 50 kGy to introduce the styrene of hydrophobic monomer on the polyurethane as an impact modifier of the non-polar polymer. To verify grafted styrene, we confirmed the phenyl group of styrene at 690 cm−1 by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR and at 6.4–6.8 ppm by 1H-Nuclear Magnetic Resonance (1H-NMR. Scanning Electron Microscope (SEM, X-ray Photoelectron Spectroscopy (XPS, Thermogravimetric Analysis (TGA and contact angle analysis were also used to confirm styrene introduction. This study has confirmed the possibility of applying high-functional composite through radiation-based techniques.

  9. Electrolytic membrane formation of fluoroalkyl polymer using a UV-radiation-based grafting technique and sulfonation

    Energy Technology Data Exchange (ETDEWEB)

    Shironita, Sayoko; Mizoguchi, Satoko; Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Niigata (Japan)

    2011-03-15

    A sulfonated fluoroalkyl graft polymer (FGP) membrane was prepared as a polymer electrolyte. First, the FGP membrane was grafted with styrene under UV irradiation. The grafted FGP was then sulfonated to functionalize it for proton conductivity. The grafting degree of the membrane increased with increasing grafting time during UV irradiation. The proton conductivity of the membrane increased with increasing grafting degree. The swelling ratio was independent of the grafting time, however, the water uptake increased with increasing grafting degree. Based on these results, it was found that the UV-initiated styrene grafting occurred along the membrane thickness direction. Moreover, the membrane was embedded within the glass fibers of the composite. This composite electrolytic membrane had 1.15 times the proton conductivity of a Nafion 117 membrane.

  10. Homogeneous cation exchange membrane by radiation grafting

    International Nuclear Information System (INIS)

    Kolhe, Shailesh M.; G, Agathian; Ashok Kumar

    2001-01-01

    Preparation of a strong cation exchange membrane by radiation grafting of styrene on to polyethylene (LDPE) film by mutual irradiation technique in the presence of air followed by sulfonation is described. The grafting has been carried out in the presence of air and without any additive. Low dose rate has been seen to facilitate the grafting. Further higher the grafting percentage more is the exchange capacity. The addition of a swelling agent during the sulfonation helped in achieving the high exchange capacity. The TGA-MASS analysis confirmed the grafting and the sulfonation. (author)

  11. Studies on radiation-induced graft polymerization

    International Nuclear Information System (INIS)

    Omichi, Hideki

    1978-09-01

    Radiation-induced graft polymerization is used extensively to improve physical properties of polymers, but few processes are now commercialized. The reason for this is partly inadequate basic research on the reaction and partly the difficulty in developing the grafting process with large radiation source. Firstly, new techniques are proposed of studying kinetics of the graft polymerization in heterogeneous system. Based on the grafting yield, the molecular weight of graft chains, and the amount of radicals given by ESR and activation analysis, kinetic parameters are obtained and the reaction mechanism of grafting process is discussed. Secondly, the development of grafting process of poly (vinyl chloride)-butadiene is described. By study of the reaction, process design, construction and operation of the pilot plant, and economic analysis of the process, this process with 60 Co gamma ray sources is shown to be industrially promising. (author)

  12. Production and installation of equipments for radiation-induced graft polymerization in liquid phase and dipping techniques

    International Nuclear Information System (INIS)

    Seko, Noriaki; Kasai, Noboru; Tamada, Masao; Hasegawa, Shin; Katakai, Akio; Sugo, Takanobu

    2005-01-01

    Fibrous adsorbent which is synthesized by radiation induced graft polymerization on the trunk polymers such as polymer nonwoven fabrics and woven cloths exhibits an excellent selective adsorption against heavy metal ions and toxic gases at extremely low concentrations. Two equipments were installed to synthesize the metal-ion and gas adsorbents by means of the radiation-induced graft polymerization in the liquid phase and the dipping, respectively. In the reation chamber of the liquid phase reactor, the oxygen decreased to 100 ppm. The inside temperature was elevated at 80C. These characteristics satisfied the specification. The fabric transport can regulate the rate in the range from 1 to 10 m/min. The reactor for the dip grafting could reduce the inside oxygen to 100ppm and inside temperature could reach to 80C, also. The transport system is stable during the dip grafting reaction. The grafting of glycidyl methacrylate was carried out as a characteristic test. The degree of grafting was controlled in the range of 40-70%. The both equipments can graft the trunk polymer, 2000mm in maximum width and 1m in maximum diameter. This size is enough for confirmation practical scale synthesis. (author)

  13. Environmental application of radiation grafting

    International Nuclear Information System (INIS)

    Tamada, Masao

    2007-01-01

    Adsorbent having high selectivity against a certain metal ion was synthesized by means of radiation-induced graft polymerization for the purpose of environmental application. The resulting adsorbents were utilized for the removal of toxic metal from scallop waste and the collection of uranium from seawater. As a novel application of grafting, the biodegradability of poly-hydroxybutylate was controlled by grafting. The biodegradability could be depressed by the graft chain and then recovered by external stimuli such as thermal and chemical treatments. (author)

  14. Grafting

    Energy Technology Data Exchange (ETDEWEB)

    Garnett, J L [New South Wales Univ., Kensington (Australia). School of Chemistry

    1979-01-01

    The unique value of ionizing radiation for the initiation of grafting to backbone polymers is discussed. The principles of the technique are briefly reviewed. The conditions under which free radicals and ions participate in these reactions are examined. Examples of representative grafting processes are considered to illustrate where the technique can be of potential commercial value to a wide range of industries. The general principles of these grafting reactions are shown to be applicable to radiation induced rapid cure technology such as is provided by electron beam processing facilities. Grafting reactions initiated by UV are also treated and shown to be of importance because of the many similarities in properties of the ionizing radiation and UV systems, also the rapid industrial exploitation of EB and sensitized UV processing technology. Possible future trends in radiation grafting are outlined.

  15. Insolubilisation of biologically active materials with novel radiation graft copolymers

    International Nuclear Information System (INIS)

    Garnett, J.L.; Jankiewicz, S.V.; Levot, R.; Sangster, D.F.

    1984-01-01

    The use of radiation grafting to immobilise a typical enzyme, trypsin, is reported. The technique involves radiation grafting to a backbone polymer a monomer containing an appropriate functional group to which the enzyme is bonded. In the present work, p-nitrostyrene has been grafted to representative trunk polymers, polypropylene and PVC, the nitro group in the resulting copolymer converted to the isothiocyanato derivative to which trypsin is attached. Of importance to this insolubilisation process, especially for radiation sensitive backbone polymers, is the inclusion of additives which enhance grafting. A new class of additives which increase the grafting yields is reported using as representative backbone polymers, naturally occurring cellulose and synthetic low density polyethylene. The new additives are specific metal salts such as LiClO 4 . The reactivity of these salts in grafting enhancement has been compared with that of mineral acid which has previously been used as an additive to increase grafting yields in both preirradiation and simultaneous techniques. A new model for grafting enhancement in the presence of the metal salts as well as acids is proposed whereby increased grafting yields are attributed to increased partitioning of monomer into the graft region in the presence of ionic solutes. The value of these additives in preparing copolymers suitable for general reagent insolubilisation reactions is discussed

  16. SOME TECHNIQUES IN CORNEAL GRAFTING

    African Journals Online (AJOL)

    1971-04-10

    Apr 10, 1971 ... current herpes corneae. The visual acuity was less than. 6/60. The left eye had had a central nebula since child- hood and was deemed amblyopic. Six weeks after a 7 x 0·3 mm lamellar graft in the right eye was placed, ulceration occurred in the graft junction. A total thin conjunctival flap was sutured over.

  17. Radiation-induced grafting of TMPM onto polypropylene

    International Nuclear Information System (INIS)

    Wang Huiliang; Li Hong; Chen Wenxiu

    1995-01-01

    The gamma radiation-induced graft copolymerization of 2,2,6,6-tetramethyl-4-piperidinyl-methacrylate (TMPM), a very effective hindered amine light stabilizer (HALS), onto polypropylene was investigated by simultaneous- irradiation technique. The various synthesis conditions on the graft content was studied. It was found that benzene, CCl 4 and petroleum ether are more effective than other solvents, the percent grafting reached 7.1% for benzene. The percent grafting is higher when graft copolymerization is carried out in argon atmosphere than those in air. For all the grafting copolymerization carried out in benzene and CCl 4 , percent grafting increase linearly from 1 to 5 Mrad and beyond 5 Mrad, a tendency to level off appeared. At a constant dose, the percent grafting was found to be higher at high dose rate until 228 rad/s. Percent grafting also increased continuously with increasing monomer concentration up to 2.85 mol/L, but significant increase in grafting was observed only up to 1.14 mol/L

  18. Radiation-induced grafting of acrylamide onto guar gum in aqueous medium: Synthesis and characterization of grafted polymer guar-g-acrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Biswal, Jayashree [Radiation Technology Development Section, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085 (India); Kumar, Virendra [Radiation Technology Development Section, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085 (India); Bhardwaj, Y.K. [Radiation Technology Development Section, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085 (India)]. E-mail: ykbhard@magnum.barc.ernet.in; Goel, N.K. [Radiation Technology Development Section, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085 (India); Dubey, K.A. [Radiation Technology Development Section, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085 (India); Chaudhari, C.V. [Radiation Technology Development Section, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085 (India); Sabharwal, S. [Radiation Technology Development Section, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085 (India)

    2007-10-15

    Mutual radiation grafting technique has been applied to carry out grafting of acrylamide (AAm) onto guar gum (GG) using high-energy Co{sup 60} {gamma} radiation to enhance its flocculating properties for industrial effluents. The grafted product was characterized using analytical probes like elemental analysis, thermal analysis, Fourier transformed infrared (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The grafting extent was observed to decrease with the dose rate and increase with the concentration of AAm. Thermo gravimetric analysis (TGA) of grafted and ungrafted samples indicated better stability of grafted product. {gamma} and microwave radiation effect on grafted and virgin GG has also been reported.

  19. Radiation grafting on natural films

    Science.gov (United States)

    Lacroix, M.; Khan, R.; Senna, M.; Sharmin, N.; Salmieri, S.; Safrany, A.

    2014-01-01

    Different methods of polymer grafting using gamma irradiation are reported in the present study for the preparation of newly functionalized biodegradable films, and some important properties related to their mechanical and barrier properties are described. Biodegradable films composed of zein and poly(vinyl alcohol) (PVA) were gamma-irradiated in presence of different ratios of acrylic acid (AAc) monomer for compatibilization purpose. Resulting grafted films (zein/PVA-g-AAc) had their puncture strength (PS=37-40 N mm-1) and puncture deformation (PD=6.5-9.8 mm) improved for 30% and 50% PVA in blend, with 5% AAc under 20 kGy. Methylcellulose (MC)-based films were irradiated in the presence of 2-hydroxyethyl methacrylate (HEMA) or silane, in order to determine the effect of monomer grafting on the mechanical properties of films. It was found that grafted films (MC-g-HEMA and MC-g-silane) using 35% monomer performed higher mechanical properties with PS values of 282-296 N mm-1 and PD of 5.0-5.5 mm under 10 kGy. Compatibilized polycaprolactone (PCL)/chitosan composites were developed via grafting silane in chitosan films. Resulting trilayer grafted composite film (PCL/chitosan-g-silane/PCL) presented superior tensile strength (TS=22 MPa) via possible improvement of interfacial adhesion (PCL/chitosan) when using 25% silane under 10 kGy. Finally, MC-based films containing crystalline nanocellulose (CNC) as a filling agent were prepared and irradiated in presence of trimethylolpropane trimethacrylate (TMPTMA) as a grafted plasticizer. Grafted films (MC-g-TMPTMA) presented superior mechanical properties with a TS of 47.9 MPa and a tensile modulus (TM) of 1792 MPa, possibly due to high yield formation of radicals to promote TMPTMA grafting during irradiation. The addition of CNC led to an additional improvement of the barrier properties, with a significant 25% reduction of water vapor permeability (WVP) of grafted films.

  20. Radiation chemical grafting of vinyl acetate and styrene on nitrocellulose

    International Nuclear Information System (INIS)

    Chapiro, A.; Foex, M.; Jendrychowska-Bonamour, A.M.

    1977-01-01

    Vinyl acetate and styrene were grafted onto nitrocellulose using the direct radiation grafting technique with 500 and 3000 Ci 60 Co γ sources. For vinyl acetate, the reaction proceeds homogeneously. The kinetics are dominated by degradative chain transfer to the nitrocellulose. The polymerization of vinyl acetate was examined in the presence of isoamyl nitrate, a model for nitrocellulose; the transfer constant was determined and the results are treated semi-quantitatively. For styrene, grafting occurs in a swollen film irradiated in the presence of excess monomer. The diffusion of styrene into nitrocellulose is extremely slow; methanol was added to the reaction mixture to favour diffusion which was found to obey Fick's law. The diffusion constant and activation energy of diffusion are evaluated. The grafting kinetics are controlled by monomer diffusion, accounting for the increase of dose-rate exponent with temperature. A spontaneous grafting process occurs in the absence of irradiation. It is initiated by macroradicals arising from thermal decomposition of nitrocellulose. (author)

  1. Additive effects in radiation grafting and curing

    International Nuclear Information System (INIS)

    Viengkhou, V.; Ng, L.

    1996-01-01

    Full text: Detailed studies on the accelerative effect of novel additives in radiation grafting and curing using acrylated monomer/oligomer systems have been performed in the presence of ionising radiation and UV as sources. Methyl methacrylate (MMA) is used as typical monomer for these grafting studies in the presence of the additives with model backbone polymers, cellulose and propropylene. Additives which have been found to accelerate these grafting processes are: mineral acid, occlusion compounds like urea, thermal initiators and photoinitiators as well as multifunctional monomers such as multifunctional acrylates. The results from irradiation with gamma rays have also been compared with irradiation from a 90W UV lamp. The role of the above additives in accelerating the analogous process of radiation curing has been investigated. Acrylated urethanes, epoxies and polyesters are used as oligomers together with acrylated monomers in this work with uv lamps of 300 watts/inch as radiation source. In the UV curing process bonding between film and substrate is usually due to physical forces. In the present work the presence of additives are shown to influence the occurrence of concurrent grafting during cure thus affecting the nature of the bonding of the cured film. The conditions under which concurrent grafting with UV can occur will be examined. A mechanism for accelerative effect of these additives in both grafting and curing processes has been proposed involving radiation effects and partitioning phenomena

  2. Radiation grafting on natural films

    International Nuclear Information System (INIS)

    Lacroix, M.; Khan, R.; Senna, M.; Sharmin, N.; Salmieri, S.; Safrany, A.

    2014-01-01

    Different methods of polymer grafting using gamma irradiation are reported in the present study for the preparation of newly functionalized biodegradable films, and some important properties related to their mechanical and barrier properties are described. Biodegradable films composed of zein and poly(vinyl alcohol) (PVA) were gamma-irradiated in presence of different ratios of acrylic acid (AAc) monomer for compatibilization purpose. Resulting grafted films (zein/PVA-g-AAc) had their puncture strength (PS=37–40 N mm −1 ) and puncture deformation (PD=6.5–9.8 mm) improved for 30% and 50% PVA in blend, with 5% AAc under 20 kGy. Methylcellulose (MC)-based films were irradiated in the presence of 2-hydroxyethyl methacrylate (HEMA) or silane, in order to determine the effect of monomer grafting on the mechanical properties of films. It was found that grafted films (MC-g-HEMA and MC-g-silane) using 35% monomer performed higher mechanical properties with PS values of 282–296 N mm −1 and PD of 5.0–5.5 mm under 10 kGy. Compatibilized polycaprolactone (PCL)/chitosan composites were developed via grafting silane in chitosan films. Resulting trilayer grafted composite film (PCL/chitosan-g-silane/PCL) presented superior tensile strength (TS=22 MPa) via possible improvement of interfacial adhesion (PCL/chitosan) when using 25% silane under 10 kGy. Finally, MC-based films containing crystalline nanocellulose (CNC) as a filling agent were prepared and irradiated in presence of trimethylolpropane trimethacrylate (TMPTMA) as a grafted plasticizer. Grafted films (MC-g-TMPTMA) presented superior mechanical properties with a TS of 47.9 MPa and a tensile modulus (TM) of 1792 MPa, possibly due to high yield formation of radicals to promote TMPTMA grafting during irradiation. The addition of CNC led to an additional improvement of the barrier properties, with a significant 25% reduction of water vapor permeability (WVP) of grafted films. - Highlights: • Irradiation of zein

  3. Synthesis of Radiation Grafted Polymer Matrices for Separation and Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Y K; Virendra, K; Goel, N K; Sarma, K S.S.; Sabharwal, S [Radiation Technology Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085 (India)

    2012-09-15

    Grafting of acrylonitrile onto non-woven porous polypropylene fibre sheet using electron beam was carried out by post-irradiation grafting. Grafting extent of {approx}125% was achieved. The grafted nitrile groups were amidoximated and studied for uranium uptake from sea water and heavy metal ions (Co{sup 2+}, Ni{sup 2+}, Mn{sup 2+}, and Cd{sup 2+}) from aqueous solutions. Adsorption and elution of adsorbed ions in suitable eluents was studied. The grafting process was upgraded to pilot scale to obtain 1x1 m{sup 2} sheets. Mutual radiation grafting technique was used for grafting of vinylbenzyltrimethyl ammonium chloride, [2- (methacryloyloxy)ethyl] trimethylammonium chloride and [2-(acryloyloxyethyl)]trimethylammonium chloride onto cotton cellulose substrate. The grafted matrices showed significantly higher water uptake and good water retention properties. The antibacterial efficacy of the grafted products was found to be a function of extent of grafting and the type of bacteria (Escherichia coli, Pseudomonas flourescens, Staphylococcus aureus and Bacillus cereus). PVBT-g-cotton was studied for its protein adsorption behaviour in continuous column process using Bovine serum albumin (BSA) as a model protein. Mutual radiation grafting technique was used to graft acrylic acid on micrometer thick micro-porous polypropylene membrane. Contact angle measurement studies showed that initial grafting as well as radiation treatment of poly(propylene) in aqueous medium and in presence of Mohr's salt enhances its affinity towards the grafting solution. The enhancement in the polar component of surface energy of treated polypropylene membrane is the primary cause of grafting enhancement. The membranes grafted to an extent of {approx}20% were found to perform comparably with the battery separator presently being used by battery industry. Acrylic acid was grafted to Teflon scrap by mutual radiation grafting technique. The grafting extent decreased with increasing dose rate and

  4. Improvement of polymer stability by radiation grafting

    International Nuclear Information System (INIS)

    Ranogajec, F.; Mlinac-Misak, M.

    1999-01-01

    Losses of the stabilizer due to extractability or volatility immediately affect ultimate performance of polymer product. A new approach to increase the persistence of the stabilizer in the final product is to chemically bind it to the polymer backbone. Radiation grafting or crosslinking could be an efficient method for this, when the stabilizer is polymerizable. By a mutual gamma irradiation method, photoprotector 2-hydroxy-4-(3-methacryloxy-2- hydroxy-propoxy) benzophenone (HMB) has been readily grafted to low density polyethylene (LDPE) in benzene, tetrahydrofuran and methanol solution, respectively. Surface grafting occurs in a methanol solution of stabilizer, while in benzene and tetrahydrofuran solutions of stabilizer, grafting proceeds more or less in the inner parts of the polymeric film as well. The grafted LDPE film in methanol and tetrahydrofuran (containing 1 w/w % of grafted HMB), 1 w/w % blended HMB with LDPE and nongrafted LDPE film, were all exposed to accelerated aging and natural weathering and their spectral changes, expressed by the carbonyl index, were then compared. The change of elongation at break and tensile strength were measured in the course of aging. UV stability tests on aged films and change in mechanical properties indicate a pronounced protective effect achieved by grafted stabilizer. Grafting in methanol solution appears to be an efficient photostabilization treatment and the most economical with respect to the consumption of monomer, the grafting yield being less than 0.5%. Surface grafting is an efficient photostabilization method since grafted stabilizer is chemically bound to a polymeric surface and in this way the problem of evaporation of blended stabilizers during the prolonged use of polymeric materials is eliminated. (author)

  5. Grafting heterogeneous catalyst with gamma radiation

    International Nuclear Information System (INIS)

    Garnett, J.L.; Long, M.A.; Levot, R.G.

    1984-01-01

    A process for the production of a heterogeneous catalyst comprises the steps of: irradiating an organic macromolecular substrate or a metal substrate with ionising or ultra violet radiation in the presence of a monomer selected from the group consisting of o-, m-, or p- styryl diphenyl phosphine and o-, m- or p- phenyl acrylyl diphenyl phosphine, to graft the monomer to the substrate; and reacting the graft copolymer with a homogeneous catalyst selected from the group consisting of catalytic metal salts and catalytic organometallic complexes such that the graft copolymer conjugate becomes a ligand of the catalyst

  6. Radiation-induced grafting onto wool

    International Nuclear Information System (INIS)

    Muller-Schulte, D.

    1979-10-01

    Radiation-induced grafting tests were done on single wool fibres. Different vinyl monomers were used for this purpose and they were grafted in twenty different solvents which were selected for their swelling effiency and solvent parameters. The tests were done once with and once without the addition of water. The presence of water causes the polymer uptake to increase considerably. Formic acid/methanol and methanol were found to be the most suitable solvent systems, as they have the highest hydrogen-bond interaction effiency. The moisture uptake of wool depends on the hydrophily and hydrophoby of the grafted polymers. The single-fibre tests serve as a basis for analogous grafting tests on wool fabrics. The permanent- press was improved by graftng with hydrophoric polymers and polymers with a high glass-transition temperature [af

  7. Graft copolymerization of glycidyl methacrylate onto delignified kenaf fibers through pre-irradiation technique

    International Nuclear Information System (INIS)

    Sharif, Jamaliah; Mohamad, Siti Fatahiyah; Fatimah Othman, Nor Azilah; Bakaruddin, Nurul Azra; Osman, Hasnul Nizam; Güven, Olgun

    2013-01-01

    Glycidyl methacrylate grafted kenaf (GMA-g-Kenaf) was prepared by pre-irradiation grafting technique. Kenaf fibers were treated with different concentration of sodium chlorite solution before used as trunk polymer. Treated kenaf fibers were irradiated by electron beam followed by grafting reaction in GMA/water emulsion system. The degree of grafting was determined as a function of absorbed dose, reaction time, reaction temperature and concentration of monomer. The results showed that the lignin content was decreased from 14.3% to as low as 3.3% with the increased of sodium chlorite concentration. This was evidenced by SEM pictures which show the surface of treated kenaf fibers was cleaner and smoother compared to that of untreated one. The degree of grafting increased with the increase of absorbed dose, reaction temperature, reaction time and monomer concentration as well as with decreasing lignin content. Formation of graft copolymer was confirmed with SEM, FTIR analysis. The structural investigation by XRD showed that degree of crystallinity of graft copolymers decreased with the increase in degree of grafting. - Highlights: • We used kenaf fibers for radiation induce graft copolymerization with GMA. • Kenaf fibers was treated to remove lignin in order to increase grafting yield. • Treated kenaf fibers were graft copolymerize through preirradiation technique. • Optimum conditions for graft copolymerization of kenaf fibers were established. • Formation of graft copolymer is also confirmed with SEM, FTIR and XRD

  8. Modification of polyetherurethane for biomedical application by radiation-induced grafting. I. Grafting procedure, determination of mechanical properties, and chemical modification of grafted films

    International Nuclear Information System (INIS)

    Jansen, B.; Ellinghorst, G.

    1985-01-01

    Radiation grafting of monomers onto suitable trunk polymers is a useful tool for tailoring new polymers for special purposes. This technique has been used in the past for the development of biocompatible materials, e.g., by grafting hydrogels onto mechanically stable polymers. In this first part of our work, the radiation grafting of hydrophilic or reactive monomers onto a polyetherurethane film using the pre-swelling technique is described. Following this technique the trunk polymer was swollen in the monomer before irradiation. As monomers 2-hydroxyethyl methacrylate (HEMA), 2,3-epoxypropyl methacrylate (GMA), 2,3-dihydroxypropyl methacrylate (GOMA), and acrylamide (AAm) were used. The kinetics of the grafting reactions were examined, and the distribution of the graft component inside the trunk polymer was investigated by means of infrared (IR) spectroscopy. Surface-grafted as well as bulk- and surface-grafted products could be obtained. The mechanical behavior of the grafted films--especially in the water-swollen state--was examined and compared with that of the pure trunk polymer. In nearly all cases it was found that the tensile strength sigma B and the elongation at break epsilon R decreases as the grafting yield increases. Modification of GMA- and AAm-grafted films via chemical reactions was performed to create new functional groups of biomedical interest. In this manner a diol structure, a carboxylic acid structure, and a sulfonic acid group could be introduced in the grafted polymer. The water uptake of such modified films is increased markedly when compared with that of the unmodified samples

  9. Ion exchange fiber by radiation grafting, 1

    International Nuclear Information System (INIS)

    Fujiwara, Kunio

    1990-01-01

    Radiation grafting is gaining attention as a method for producing high performance materials. This method can be applied to add functions to existing polymer plastics. The author participated in the research program on the production of ion exchange fiber by radiation grafting and its applicability at the Japan Atomic Energy Research Institute, Takasaki Radiation Chemistry Research Establishment. Consequently, it was clarified that it was possible to introduce the cation exchange group, represented by sulfonic and carboxyl groups, and the anion exchange group, represented by the quarternary ammonium group, to polypropylene fiber available on the market. The ion exchange capacity was able to be controlled by the degree of grafting, i.e. approximately up to 3 meq/g in both strong acid and strong base and approximately up to 5 meq/g in weak acid were obtained. The adsorption performance of ammonia, a representative malodorous substance, was also studied using test cation exchange fiber. The adsorption rate of H type strong acid cation exchange fiber was great, due to the H type having neutral reaction, and the adsorption capacity matched the ion exchange capacity. Although the Cu and Ni types features coordinated adsorption and their adsorption rates were from 1/2 to 1/3 of that of the H type, their adsorption capacities showed increase along with the metal adsorbed. (author)

  10. Preparation of membranes by radiation grafting of acrylic acid onto Teflon-FEP film

    International Nuclear Information System (INIS)

    Gupta, B.D.

    1991-01-01

    The grafting of acrylic acid on radiation-peroxidised Teflon-FEP film provides an effective technique to prepare ion-exchange membranes. It was found that the grafted membranes have very high degree of swelling in aqueous KOH. The electric resistance of the film decreases considerably by grafting. An electric resistance of 0.2Ω cm 2 was obtained for a graft level beyond 58%. The hydrophilicity of the film was evaluated in terms of contact angle which shows a decreasing trend with the increasing degree of grafting. (author). 8 refs

  11. Radiation Induced Grafting of Acrylate onto Waste Rubber: The Effect of Monomer Type

    Directory of Open Access Journals (Sweden)

    Shirajuddin Siti Salwa M.

    2017-01-01

    Full Text Available The effect of three different acrylate group monomers, namely n-butyl acrylate, methacrylic acid and tripropylene glycol diacrylate of radiation induced grafting onto waste rubber was studied. The electron beam accelerator operated at voltage of 2MeV was used to irradiate the waste rubber at 10 kGy and 100 kGy absorbed radiation dose, respectively. The formation of grafting was observed from the increase in the grafting yield and confirmed by Transformed Infra-Red Spectroscopy results. According to the result obtained, only tripropylene glycol diacrylate was selected to graft onto waste rubber. The carbonyl bond from acrylate groups was seen at 1726 cm-1 band which confirmed the presence of TPGDA in the polymer matrix. This indicates the successful preparation of the TPGDA-grafted waste rubber via radiation induced grafting techniques.

  12. Control of Polymer Nanostructure and Functionality via Radiation Grafting

    International Nuclear Information System (INIS)

    Palmese, G.R.

    2006-01-01

    Radiation grafting provides a useful means for controlling polymer structure and performance. Particularly, it is appropriate for combining materials with distinct thermodynamic characteristics chemically at interfaces. Therefore polymeric materials that generally will not mix - i.e hydrophilic and hydrophobic polymers - can be combined efficiently using radiation based methods. This is of particular importance when attempting to form polymer-polymer nanocomposites where the thermodynamic penalty associated with high specific interfacial surface area is very large. Generally, the combination at small scales of such distinct materials is appropriate when specific functionality is desired while maintaining structural performance characteristics. In such cases the hydrophilic polymer lends functional characteristics such as ionic conductivity, self-healing, and actuation, while the hydrophobic polymer component provides structural stability. In this communication a summary of our recent work concerning the use of radiation grafting for the synthesis of nanostructured functional materials is given. Examples to be discussed include toughing of polymeric systems, the synthesis polymeric and inorganic nanotubes, and the design of permeation selective membranes. These examples will be used to demonstrate the effectiveness of radiation grafting techniques for controlling polymer properties and small-scale structure

  13. A multilayered polyurethane foam technique for skin graft immobilization.

    Science.gov (United States)

    Nakamura, Motoki; Ito, Erika; Kato, Hiroshi; Watanabe, Shoichi; Morita, Akimichi

    2012-02-01

    Several techniques are applicable for skin graft immobilization. Although the sponge dressing is a popular technique, pressure failure near the center of the graft is a weakness of the technique that can result in engraftment failure. To evaluate the efficacy of a new skin graft immobilization technique using multilayered polyurethane foam in vivo and in vitro. Twenty-six patients underwent a full-thickness skin graft. Multiple layers of a hydrocellular polyurethane foam dressing were used for skin graft immobilization. In addition, we created an in vitro skin graft model that allowed us to estimate immobilization pressure at the center and edges of skin grafts of various sizes. Overall mean graft survival was 88.9%. In the head and neck region (19 patients), mean graft survival was 93.6%. Based on the in vitro outcomes, this technique supplies effective pressure (skin graft. This multilayered polyurethane foam dressing is simple, safe, and effective for skin graft immobilization. © 2011 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  14. Immobilization of urease on grafted starch by radiation method

    International Nuclear Information System (INIS)

    Nguyenanh Dung; Nguyendinh Huyen

    1995-01-01

    The acrylamide was grafted by radiation onto starch which is a kind of polymeric biomaterial. The urease was immobilized on the grafted starch. Some experiments to observe the quantitative relationships between the percent graft and the activity of immobilized enzyme were determined. The enzyme activity was maintained by more than seven batch enzyme reactions. (author)

  15. Development of EPDM based thermoplastic elastomers for oil resistant applications: optimization of radiation grafting parameters

    International Nuclear Information System (INIS)

    Chaudhari, C.V.; Dubey, K.A.; Bhardwaj, Y.K.; Sabharwal, S.

    2008-01-01

    Full text: Ethylene-propylene diene terpolymer (EPDM) is currently among the most industrially useful elastomers because of its certain unique properties like excellent heat resistance, resistance towards ozone deterioration, high impact strength. However EPDM has a serious drawback of weak adhesion properties and tendency to swell in contact with paraffin oil and aromatic hydrocarbons. Blending EPDM with suitable polar elastomers or grafting polar polymer chains onto EPDM is an easy method to overcome this drawback. Radiation grafting of Acrylonitrile (ACN) on EPDM provides an easy and effective method of incorporating ACN uniformly on the EPDM backbone. Grafting of ACN on EPDM is expected to result grafted copolymer with better oil resistance, hardness and better compatibility with polar polymer matrices. In the present study radiation induced grafting of ACN onto EPDM rubber film was investigated by mutual radiation grafting technique. Effect of experimental variables viz. radiation dose, dose rate, types of solvents and monomer content on extent of grafting was studied. The solvent composition of Acetone:CCl 4 (20:80) was found to be the optimum mixture which resulted in highest degree of grafting. It was found that the degree of grafting increases with radiation dose, monomer content and decreases with dose rate

  16. Radiation grafting of dimethylaminopropylacrylamide and dimethylaminopropylmethacrylamide onto polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Burillo, Guillermina; Oseguera, M.A. [UNAM, Inst. de Ciencias Nucleares, Mexico City (Mexico); Vazquez, Carmen; Castillo, L.P. del [UNAM, Inst. de Investigaciones en Materiales, Mexico City (Mexico)

    1997-11-01

    Radiation-induced grafting of dimethylaminopropylacrylamide and dimethylamino-propylmethacrylamide onto polyethylene films, by direct grafting of the vinyl monomers to a polymer by mutual irradiation, has been investigated. The kinetics of the reaction were studied at different irradiation temperatures, monomer concentration and dose rates of gamma rays, and the appropriate reaction conditions for graft polymerization were determined. The thermal and mechanical behavior of the grafted films by means of DMA, TMA, DSC and TGA were also investigated. (author).

  17. Impact of bone graft harvesting techniques on bone formation and graft resorption

    DEFF Research Database (Denmark)

    Saulacic, Nikola; Bosshardt, Dieter D; Jensen, Simon S

    2015-01-01

    BACKGROUND: Harvesting techniques can affect cellular parameters of autogenous bone grafts in vitro. Whether these differences translate to in vivo bone formation, however, remains unknown. OBJECTIVE: The purpose of this study was to assess the impact of different harvesting techniques on bone fo......: Transplantation of autogenous bone particles harvested with four techniques in the present model resulted in moderate differences in terms of bone formation and graft resorption.......BACKGROUND: Harvesting techniques can affect cellular parameters of autogenous bone grafts in vitro. Whether these differences translate to in vivo bone formation, however, remains unknown. OBJECTIVE: The purpose of this study was to assess the impact of different harvesting techniques on bone...... formation and graft resorption in vivo. MATERIAL AND METHODS: Four harvesting techniques were used: (i) corticocancellous blocks particulated by a bone mill; (ii) bone scraper; (iii) piezosurgery; and (iv) bone slurry collected from a filter device upon drilling. The grafts were placed into bone defects...

  18. Radiation Grafted Polymer Membranes for Fuel Cell Applications

    International Nuclear Information System (INIS)

    Scherer, G.G.; Wallasch, F.; Ben Youcef, H.; Gubler, L.

    2012-01-01

    Partially fluorinated proton exchange membranes prepared via radiation induced graft copolymerization ('radiation grafting') offer the prospect of cost-effective and tailor made membrane electrolytes for the polymer electrolyte fuel cell (PEFC). The composition and structure of radiation grafted membranes can be adjusted in a broad range to balance the different requirements of proton transport and mechanical robustness. Based on the earlier work on Styrene grafting, the novel monomer combination α-methyl-styrene/methacrylonitrile (AMS/MAN) is introduced for improved stability in the prevailing fuel cell environment. Successful fuel cell experiments proved the concept. (author)

  19. Radiation Grafted Polymer Membranes for Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, G G; Wallasch, F; Ben Youcef, H; Gubler, L [Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen (Switzerland)

    2012-09-15

    Partially fluorinated proton exchange membranes prepared via radiation induced graft copolymerization ('radiation grafting') offer the prospect of cost-effective and tailor made membrane electrolytes for the polymer electrolyte fuel cell (PEFC). The composition and structure of radiation grafted membranes can be adjusted in a broad range to balance the different requirements of proton transport and mechanical robustness. Based on the earlier work on Styrene grafting, the novel monomer combination {alpha}-methyl-styrene/methacrylonitrile (AMS/MAN) is introduced for improved stability in the prevailing fuel cell environment. Successful fuel cell experiments proved the concept. (author)

  20. Preparation of high water-swelling agricultural starch hydrogels by 60Co γ-radiation grafting

    International Nuclear Information System (INIS)

    Wang Qingjun; Quan Yiwu; Chen Qingmin

    2003-01-01

    The starch grafted acrylic acid was used to synthesize water-swelling hydrogels by 60 Co γ-radiation grafting technique. With radiation dose of about 7 kGy, the crosslinking reagent amount of 0.001%-0.1%, the pH value 5-8 and the starch amount of 10%-30%, we can produce 600 times water-swelling hydrogels which are of high performance, low cost and suitable for agriculture

  1. Radiation induced graft copolymerization of acrylamide onto poly (3-hydroxybutyrate)

    International Nuclear Information System (INIS)

    Gonzalez Torres, Maykel; Rapado Paneque, Manuel; Paredes Zaldivar, Mayte; Altanes Valentin, Sonia; Barrera Gonzalez, Gisela

    2008-01-01

    The graft copolymer poly (3-hydroxybutyrate)-g- polyacrylamide [P (HB-g-AAm)] was synthesized by radiation induced graft copolymerization of acrylamide onto poly (3-hydroxybutyrate). The study was conducted by the simultaneous irradiation method. The structure of [P (HB-g-AAm)] was identified by Fourier Transform Infrared (FTIR) spectroscopy. Thermal behavior of the graft copolymer was also studied by Thermal Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). From the results it was found that FTIR studies showed new signals (stretching -N-H) as strong evidence of grafting. The grafting degree was found to be 10 % and the thermodynamic parameter obtained from the DSC thermogram of plain PHB and the graft copolymer varied showing decrease in the material crystallinity and increase in the glass transition temperature. These results demonstrate that the radiation induced graft copolymerization reaction of acrylamide onto PHB was successively achieved. (Author)

  2. Radiation scattering techniques

    International Nuclear Information System (INIS)

    Edmonds, E.A.

    1986-01-01

    Radiation backscattering techniques are useful when access to an item to be inspected is restricted to one side. These techniques are very sensitive to geometrical effects. Scattering processes and their application to the determination of voids, thickness measuring, well-logging and the use of x-ray fluorescence techniques are discussed. (U.K.)

  3. ESR spectroscopic investigations of the radiation-grafting of fluoropolymers

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, G; Roduner, E [University of Stuttgart (Germany); Brack, H P; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    ESR spectroscopic investigations have clarified the influence of several preparative parameters on the reaction rates and yields obtained in the radiation-grafting method used at PSI to prepare proton-conducting polymer membranes. At a given irradiation dose, a higher concentration of reactive radical sites was detected in ETFE films than in FEP films. This higher concentration explains the higher grafting levels and rates of the ETFE films found in our previous grafting experiments. Taken together, the in-situ ESR experiments and grafting experiments show that the rates of disappearance of radical species and grafting rates and final grafting levels depend strongly on the reaction temperature and the oxygen content of the system. Average grafted chain lengths were calculated to contain about 1,000 monomer units. (author) 2 figs., 4 refs.

  4. Determination of the distribution of graft yields following a radiation-induced graft copolymerization

    International Nuclear Information System (INIS)

    Schipschack, K.; Wagner, H.; Sawtschenko, L.

    1976-01-01

    In the radiation-induced graft copolymerization on solid initial polymers a distribution of graft yields takes place along the cross-sections of samples. Methods for determining this distribution, which are described in the literature, are reviewed. In our own investigations boards made of ethylene-vinyl acetate copolymers and grafted with vinyl chloride were used. Distributions of the grafted component obtained by infrared analysis of microtome cuts parallel to the surface are partly rather inhomogeneous, and are interpreted as dependent on the experimental parameters. (author)

  5. Modification on liquid retention property of cassava starch by radiation grafting with acrylonitrile: Pt. 1

    International Nuclear Information System (INIS)

    Kiatkamjornwong, S.; Nakason, C.; Chvajarempun, J.

    1993-01-01

    Radiation modification on liquid retention properties of native cassava starch, gelatinized at 85 o C, by graft copolymerization with acrylonitrile was carried out by mutual irradiation to gamma-rays. A thin aluminium foil was used to cover the inner wall of the reaction vessel, so that the homopolymer concentration was reduced to be less than 1.0% with a distilled water retention value of 665 g/g of the dry weight of the saponified grafted product. Confirmation of graft copolymerization and saponification reactions was made by the infrared spectrophotometric technique. The combined effect of radiation parameters in terms of an irradiation time and a dose rate to the total dose on the extent of the grafting reaction expressed in terms of grafting parameters which directly influenced liquid retention values was evaluated in conjunction with statistical analysis. (author)

  6. Radiation-induced grafting of acrylic acid onto polyethylene filaments

    International Nuclear Information System (INIS)

    Kaji, K.; Sakurada, I.; Okada, T.

    1981-01-01

    Radiation-induced grafting of acrylic acid onto high density polyethylene (PE) filaments was carried out in order to raise softening temperature and impart flame retardance and hydrophilic properties. Mutual γ-irradiation method was employed for the grafting in a mixture of acrylic acid (AA), ethylene dichloride and water containing a small amount of ferrous ammonium sulfate. The rate of grafting was very low at room temperature. On the other hand, large percent grafts were obtained when the grafting was performed at an elevated temperature. Activation energy for the initial rate of grafting was found to be 17 kcal/mol between 20 and 60 0 C and 10 kcal/ mol between 60 and 80 0 C. Original PE filament begins to shrink at 70 0 C, shows maximum shrinkage of 50% at 130 0 C and then breaks off at 136 0 C. When a 34% AA graft is converted to metallic salt the graft filament retains its filament form even above 300 0 C and gives maximum shrinkage of 15%. Burning tests by a wire-netting basket method indicate that graft filaments and their metallic salts do not form melting drops upon burning and are self-extinguishing. Original PE filament shows no moisture absorption; however, that of AA-grafted PE increases with increasing graft percent. (author)

  7. Functionalization of poly (4-vinylpyrrolidone) through γ - radiation induced grafting

    International Nuclear Information System (INIS)

    Pande, C.S.; Ambasta, A.K.; Kumari, Mamta; Sharma, Ajay

    2002-01-01

    Cross-linked poly(N-vinylpyrrolidone) and N-vinylimidazole were mutually irradiated in water under nitrogen with γ-radiations. A detailed study of grafting was made under various reaction parameters. The results have been compared with the grafting done in air. (author)

  8. Techniques of radiation dosimetry

    International Nuclear Information System (INIS)

    Mahesk, K.

    1985-01-01

    A text and reference with an interdisciplinary approach to physics, atomic energy, radiochemistry, and radiobiology. Chapters examine basic principles, experimental techniques, the methodology of dose experiments, and applications. Treats 14 different dosimetric techniques, including ionization chamber, thermoluminescence, and lyoluminescence. Considers the conceptual aspects and characteristic features of radiation

  9. Development of Highly Efficient Grafting Technique and Synthesis of Natural Polymer-Based Graft Adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Y; Seko, N; Tamada, M [Japan Atomic Energy Agency, Quantum Beam Science Directorate, Takasaki (Japan)

    2012-09-15

    In the framework of the CRP, Japan has focused on the development of fibrous adsorbents for removal of toxic metal ions and recovery of significant metal ions from industrial wastewater and streaming water. Graft polymerization was carried out by using gamma irradiation facility and electron beam accelerator. Emulsion grafting is a novel topic for synthesis of metal ion adsorbents which are prepared from fibrous trunk polymers such as polyethylene fibre and biodegradable nonwoven fabrics. The emulsion grafting, where monomer micelles are dispersed in water in the presence of surfactant, is a highly efficient and economic grafting technique as compared to general organic solvent system. The resultant cotton-based adsorbent has high adsorption efficiency and high adsorption capacity for Hg, besides, it is biodegradable. Polylactic acid can also be used as a trunk material for the grafting. (author)

  10. Characterisation of Microbial Cellulose Modified by Graft Copolymerization Technique

    International Nuclear Information System (INIS)

    Tita Puspitasari; Cynthia Linaya Radiman

    2008-01-01

    Chemical and phisycal modifications of polymer can be carried out by radiation induced graft copolymerization. This research was carried out to study the morphology and crystallinity of microbial cellulose copolymer grafted by acrylic acid (MC-g-AAC). The SEM microstructural analysis proved that the acrylic acid could diffuse into the microbial celullose and resulted a dense structure. Crystallinity measurement showded that the crystalinity of microbial cellulose increase from 50 % to 53 % after modification. (author)

  11. Crystallization of calcium carbonate on radiation-grafted polyethylene films

    International Nuclear Information System (INIS)

    Hou Zhengchi; Zhang Fengying; Deng Bo; Yang Haijun; Chen Shuang; Sheng Kanglong

    2006-01-01

    In biomineralization processes, nucleation and growth of inorganic crystals can be regulated by organic template molecules. This has inspired great interest in studying mimic biomineralization. In our study, growing CaCO 3 crystals on PE films functionalized through radiation-induced grafting was attempted. PE films grafted with different functional groups of different distributions and densities were used as substrates for CaCO 3 nucleation and crystal growth from Ca(HCO 3 ) 2 supersaturated solution under different environmental conditions (e.g. additives and temperature) to study the effects and mechanisms. The grafted PE films were analyzed by ATR-FTIR and AFM, and the evolution of CaCO 3 crystal formation on the grafted PE film was characterized by SEM, FTIR, and XRD. The results indicated that heterogeneous nucleation of CaCO 3 crystals was significantly facilitated by the functional groups grafted on the surface of PE films, that the morphology of CaCO 3 crystals could be controlled by distribution and density of the grafted functional groups, and that polymorphism of CaCO 3 crystal could be regulated by selection of grafting functional groups. We believe that studying the effects of chemical structures on inorganic crystallization is of great importance since radiation-induced grafting is an effective method to graft desirable functional groups onto different polymers by selected monomers, in the endeavor of developing advanced organic/inorganic composites with high performance, with a wide availability of polymers, monomers and inorganic solutions. (authors)

  12. Study on radiation grafting reaction of MMA onto hydroxyapatite

    International Nuclear Information System (INIS)

    Jiang Bo

    1996-01-01

    The grafting reaction of MMA onto hydroxyapatite has been studied with the pre-irradiation method in air. The effects of radiation dose, monomer concentration, reaction temperature and inorganic acid on the system are observed. The grafting copolymerization is found to be controlled by the kinetics. If proper kinetic conditions are selected, a better grafting yield can be obtained. Employing weight method, burning method as well as SeM and IR analysis, it has been proved that MMA is definitely grafted onto hydroxyapatite by chemical bonds, which shows that it is possible to improve the interface of inorganic-organic composite materials and to make bioactive ceramics by using radiation induced-grafting copolymerization

  13. Radiation techniques for acromegaly

    Directory of Open Access Journals (Sweden)

    Minniti Giuseppe

    2011-12-01

    Full Text Available Abstract Radiotherapy (RT remains an effective treatment in patients with acromegaly refractory to medical and/or surgical interventions, with durable tumor control and biochemical remission; however, there are still concerns about delayed biochemical effect and potential late toxicity of radiation treatment, especially high rates of hypopituitarism. Stereotactic radiotherapy has been developed as a more accurate technique of irradiation with more precise tumour localization and consequently a reduction in the volume of normal tissue, particularly the brain, irradiated to high radiation doses. Radiation can be delivered in a single fraction by stereotactic radiosurgery (SRS or as fractionated stereotactic radiotherapy (FSRT in which smaller doses are delivered over 5-6 weeks in 25-30 treatments. A review of the recent literature suggests that pituitary irradiation is an effective treatment for acromegaly. Stereotactic techniques for GH-secreting pituitary tumors are discussed with the aim to define the efficacy and potential adverse effects of each of these techniques.

  14. Radiation techniques for acromegaly

    International Nuclear Information System (INIS)

    Minniti, Giuseppe; Scaringi, Claudia; Enrici, Riccardo Maurizi

    2011-01-01

    Radiotherapy (RT) remains an effective treatment in patients with acromegaly refractory to medical and/or surgical interventions, with durable tumor control and biochemical remission; however, there are still concerns about delayed biochemical effect and potential late toxicity of radiation treatment, especially high rates of hypopituitarism. Stereotactic radiotherapy has been developed as a more accurate technique of irradiation with more precise tumour localization and consequently a reduction in the volume of normal tissue, particularly the brain, irradiated to high radiation doses. Radiation can be delivered in a single fraction by stereotactic radiosurgery (SRS) or as fractionated stereotactic radiotherapy (FSRT) in which smaller doses are delivered over 5-6 weeks in 25-30 treatments. A review of the recent literature suggests that pituitary irradiation is an effective treatment for acromegaly. Stereotactic techniques for GH-secreting pituitary tumors are discussed with the aim to define the efficacy and potential adverse effects of each of these techniques

  15. Radiation degradation of methyl methacrylate grafted natural rubber

    International Nuclear Information System (INIS)

    Perera, M.C.S.

    1998-01-01

    M G rubber is a mixture consisting of the graft copolymer and two home polymers. Natural rubber is known to undergo crosslinking during exposure to high energy radiation where as poly methyl methacrylate is a polymer where high energy radiation causes chain scission. It is interesting to determine how this partially miscible blend of scission and crosslinking polymers will behave under high energy radiation. Dynamic Mechanical Analysis (DMA) was used to study the variations in the glass transition regions during high energy treatment of the polymers. Another techniques that is available to obtain motional information and miscibility of blends is Nuclear Magnetic Resonance Spectroscopy (NMR).The present study is aimed at understanding the changes in the molecular structure of rubber when exposed to high energy radiation. The changes in the dynamic mechanical properties in the glass transition region and solid state NMR were made used of for this investigation. The data obtained from the DMA results were analysed to calculate the radiation chemical yields. The local dynamics were investigated with measurement of carbon relaxation times and molecular structure was studied with focus on the level of intermolecular mixing by proton relaxation times

  16. Radiation effect on polystyrene deposited and grafted on silica gel

    International Nuclear Information System (INIS)

    Kusama, Y.; Udagawa, A.; Takehisa, M.

    1978-01-01

    The effect of radiation on polystyrene was studied in the presence and absence of silica gel by molecular weight measurement with gel permeation chromatography (GPC). Polystyrene crosslinked under vacuum in the absence of silica gel, but it either crosslinked or degraded by radiation, depending on the molecular weight of the polymer in the presence of silica gel. part of the deposited polymer bonded to silica gel by radiation; the G value for graft-chain formation is in the range of 0.01 to 0.1. Irradiation of polystyrene grafted on silica gel resulted in degradation of the graft chain because of the transfer of energy from silica gel. The G value for main chain scission was about 2 when graft polymer was irradiated in the absence of homopolymer. The degradation of graft polymer was suppressed when the polymer was irradiated in the presence of homopolymer, and the amount of unextractable polymer from silica gel increased with increasing irradiation. This adds evidence to the estimation that an increase in grafting percent coupled with a slight decrease in molecular weight at a later stage of radiation-induced polymerization of styrene adsorbed on slica gel is due to a secondary effect of radiation on the polymer

  17. Additives in UV and ionising radiation grafting and curing processes

    International Nuclear Information System (INIS)

    Garnett, J.L.; Ng, L.T.; Viengkhou, V.

    1998-01-01

    Full text: Curing of polymers induced by both UV and ionising radiation are now established technologies. Currently both systems are predominantly based on acrylate chemistry. UV processes use photoinitiators to achieve fast polymerisation. In the proposed paper the significance of the occurrence of concurrent grafting with cure will be examined. particularly with respect to the recycling of finished product. Basic studies on grafting initiated by UV and ionising radiation will be discussed. Polar methyl methacrylate (MMA) and non-polar styrene will be used as representative monomers with cellulose and propylene typifying the backbone polymers. The additives chosen for examination in this study are predominantly components used in radiation curing formulations since grafting and curing are known to be mechanically related. The additives used were mineral acid, photoinitiators, vinyl ethers, oligomers, polyfunctional monomers including multifunctional acrylates (MFAs) and methacrylates (MFMAs). For the first time the use of charge transfer complexes in the Mulliken sense as additives in radiation grafting will be discussed. The CT complexes themselves, being monomers, have also been grafted to the above polymers. Recent developments with excimer laser sources for initiating these processes will be discussed, especially the use of non-acrylate chemistry. Excimer laser sources are shown to complement conventional UV and ionising radiation and are photoinitiator free. Mechanisms for the above grafting and curing processes will be outlined

  18. Radiation induced graft copolymerization of jute fibre

    International Nuclear Information System (INIS)

    Al-Siddique, F.R.; Khan, A.U.; Sheikh, R.A.

    1983-01-01

    Graft copolymerized jute fibres (GCJF) were prepared by γ-ray induced graft copolymerization of various monomers onto bleached and de-waxed jute samples. The effect of γ-ray dose on the tendency of various monomers to form graft co-polymer was studied. It was found that the tendency decreases as follows: methylmethacrylate (MMA)>acrylonitrile (AN)>styrene (STY)>vinylacetate (VA). When the effect of monomer concentration on the formation of graft co-polymer was studied, it was found that a mixture of AN and STY gave a higher amount of grafting than what was observed for STY or AN alone, when used at a comparable concentration. A study on the effect of concentration of methyl alcohol (a swelling agent for jute) on the tendency of the monomers to form graft co-polymer showed that although there is no effect when only AN is used, an appreciable effect is observed if AN is mixed with STY. In the later case the tendency of graft co-polymerization increases with the increase of CH 3 OH concentration. It was further observed that the increase of CH 3 OH also has a positive influence on MMA to form graft co-polymer in the range of 40-90% CH 3 OH. The affinity of GCJF towards moisture has been found to decrease with the increase of polymer loading onto jute. The presence of swelling agents during graft copolymer formation was also found to decrease the affinity of GCJF towards moisture. (author)

  19. Development of Novel Absorbents and Membranes by Radiation-Induced Grafting for Selective Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Hegazy, E A; Abdel-Rehim, H; Hegazy, D; Ali, A A; Kamal, H; Sayed, A [National Center for Radiation Research and Technology, Atomic Energy Egypt, P.O.Box 29, Nasr City, Cairo (Egypt)

    2012-09-15

    The direct radiation grafting technique was used to graft glycidyl methacrylate (GMA) monomer containing epoxy ring, onto polypropylene fibres. The ring opening of the epoxy ring in GMA by different amino groups was studied to introduce various chelating agents. Some properties of grafted fibres were studied and the possibility of its practical use for water treatment from iron and manganese metals was investigated. The radiation initiated grafting of acrylic acid (AAc) or acrylamide (AAm) monomers onto poly(vinyl alcohol) (PVA), a 2-acrylamide-2-methyl propane sulfonic acid (AMPS) polymer was studied. Cationic/anionic membranes were also prepared by radiation-induced grafting of styrene/methacrylic acid (Sty/MAA) binary monomers onto LDPE films. To impart reactive cationic/anionic characters in the grafted membranes, sulfonation and alkaline treatments for styrene and carboxylic acid groups, respectively, were carried out. The possibility of their applications in the selective removal of some heavy metals was studied. The prepared grafted materials had a great ability to recover the metal ions such as: Ni{sup 2+}, Co{sup 2+}, Cu{sup 2+}, Cd{sup 2+}, Mg{sup 2+}, Zn{sup 2+}, Mn{sup 2+} and Cr{sup 3+} from their solutions. It was found that AMPS content in the grafted copolymers is the main parameter for the selectivity of the copolymer towards metal ions. The higher the AMPS content the higher the selectivity towards Co and Ni ions. In case of LDPE-g-P(STY/MAA), the sulfonation and alkaline treatments are the most effective methods to influence metal absorption and swelling behaviour of the prepared membranes. Graft composition, dose and pH have also a great influence on the membrane characteristics and applicability in wastewater treatments from heavy and toxic metals. Results revealed that the prepared grafted materials with different functionalized groups are promising as ion selective membranes and could be used for wastewater treatment. (author)

  20. Grafting: a technique to modify ion accumulation in horticultural crops

    Directory of Open Access Journals (Sweden)

    Muhammad Azher Nawaz

    2016-10-01

    Full Text Available Grafting is a centuries-old technique used in plants to obtain economic benefits. Grafting increases nutrient uptake and utilization efficiency in a number of plant species, including fruits, vegetables, and ornamentals. Selected rootstocks of the same species or close relatives are utilized in grafting. Rootstocks absorb more water and ions than self-rooted plants and transport these water and ions to the aboveground scion. Ion uptake is regulated by a complex communication mechanism between the scion and rootstock. Sugars, hormones, and miRNAs function as long-distance signaling molecules and regulate ion uptake and ion homeostasis by affecting the activity of ion transporters. This review summarizes available information on the effect of rootstock on nutrient uptake and utilization and the mechanisms involved. Information on specific nutrient-efficient rootstocks for different crops of commercial importance is also provided. Several other important approaches, such as interstocking (during double grafting, inarching, use of plant-growth-promoting rhizobacteria, use of arbuscular mycorrhizal fungi, use of plant growth substances (e.g., auxin and melatonin, and use of genetically engineered rootstocks and scions (transgrafting, are highlighted; these approaches can be combined with grafting to enhance nutrient uptake and utilization in commercially important plant species. Whether the rootstock and scion affect each other’s soil microbiota and their effect on the nutrient absorption of rootstocks remain largely unknown. Similarly, the physiological and molecular bases of grafting, crease formation, and incompatibility are not fully identified and require investigation. Grafting in horticultural crops can help reveal the basic biology of grafting, the reasons for incompatibility, sensing, and signaling of nutrients, ion uptake and transport, and the mechanism of heavy metal accumulation and restriction in rootstocks. Ion transporter and mi

  1. Radiation grafting of styrene and maleic anhydride onto PTFE membranes and sequent sulfonation for applications of vanadium redox battery

    International Nuclear Information System (INIS)

    Qiu Jingyi; Ni Jiangfeng; Zhai Maolin; Peng Jing; Zhou Henghui; Li Jiuqiang; Wei Genshuan

    2007-01-01

    Using γ-radiation technique, poly(tetrafluoroethylene) (PTFE) membrane was grafted with styrene (St) (PTFE-graft-PS) or binary monomers of St and maleic anhydride (MAn) (PTFE-graft-PS-co-PMAn), respectively. Then grafted membranes were further sulfonated with chlorosulfonic acid into ion-exchange membranes (denoted as PTFE-graft-PSSA and PTFE-graft-PSSA-co-PMAc, respectively) for application of vanadium redox battery (VRB). Micro-FTIR analysis indicated that PTFE was successfully grafted and sulfonated at the above two different conditions. However, a higher degree of grafting (DOG) was obtained in St/MAn binary system at the same dose due to a synergistic effect. Comparing with PTFE-graft-PSSA, PTFE-graft-PSSA-co-PMAc membrane showed higher water uptake and ion-exchange capacity (IEC) and lower area resistance (AR) at the same DOG. In addition, PTFE-graft-PSSA-co-PMAc with 6% DOG also showed a higher IEC and higher conductivity compared to Nafion membrane. Radiation grafting of PTFE in St/MAn binary system and sequent sulfonation is an appropriate method for preparing ion-exchange membrane of VRB

  2. Improvement of blood compatibility of polyurethane elastomer by radiation graft copolymerization of 2-hydroxyethyl methacrylate in polymer matrix

    International Nuclear Information System (INIS)

    Li Ximing; Chen Wenming; Yuan Zhijian; Li Song; Lu Mei

    1988-01-01

    The γ-radiation induced grafting of 2-hydroxyethyl methacrylate (HEMA) onto polyurethane-elastomers (PUE) tube by preswelling technique to prepare biomedical materials with blood compatibility is studied. The graft yield can be controlled by regulating the preswelling time and temperature, or by change the irradiation dose and dose rate. After antithrombogenic test in vitro it has been confirmed that the blood compatibility of original polyurethane tube has been considerably improved by grafting

  3. Prospective electrocardiogram-gated axial 64-detector computed tomographic angiography vs retrospective gated helical technique to assess coronary artery bypass graft anastomosis. Comparison of image quality and patient radiation dose

    International Nuclear Information System (INIS)

    Machida, Haruhiko; Masukawa, Ai; Tanaka, Isao; Fukui, Rika; Suzuki, Kazufumi; Ueno, Eiko; Kodera, Kojiro; Nakano, Kiyoharu; Shen, Y.

    2010-01-01

    In the present study the effective dose and image quality at distal anastomoses were retrospectively compared between prospective electrocardiogram (ECG)-gated axial and retrospective ECG-gated helical techniques on 64-detector computed tomographic (CT) angiography following coronary artery bypass graft surgery. Following bypass surgery, 52 patients with a heart rate <65 beats/min underwent CT angiography: 26 patients each with prospective and retrospective ECG gating techniques. The effective dose was compared between the 2 groups using a 4-point scale (4, excellent; 1, poor) to grade the quality of curved multiplanar reformation images at distal anastomoses. Patient characteristics of the 2 groups were well matched, and the same CT scan parameters were used for both, except for the interval between surgery and CT examination, tube current, and image noise index. Image quality scores did not differ significantly (3.26±0.95 vs 3.35±0.87; P=0.63), but the effective dose was significantly lower in the prospective (7.3±1.8 mSv) than in the retrospective gating group (23.6±4.5 mSv) (P<0.0001). Following bypass surgery, 64-detector CT angiography using prospective ECG gating is superior to retrospective gating in limiting the radiation dose and maintaining the image quality of distal anastomoses. (author)

  4. Radiation-induced grafting of styrene on polypropylene pellets

    International Nuclear Information System (INIS)

    Souza, Camila P.; Ferreira, Henrique P.; Parra, Duclerc F.; Lugao, Ademar B.

    2009-01-01

    The changes of radiation-induced in polypropylene (PP) pellets exposed to gamma irradiation in inert atmosphere were investigated in correlation with the applied doses (10 and 50 kGy). Also, results from the grafting of styrene onto PP pellets using simultaneous irradiation at the same doses are presented. The grafting reaction was carried out using toluene as solvent, under nitrogen atmosphere and at room temperature. The properties of the irradiated and grafted PP pellets were studied using Melt Flow Index, thermal analysis (TG and DSC), and ATR-IR. The degree of grafting (DOG) for the grafted pellets was gravimetrically determined. The results showed that radiation-induced graft polymerization on pellets were successfully obtained and the influence of dose irradiated did not change the thermal properties in spite of the increase in the MFI and consequently this increase in the viscosity results an decrease the molecular mass. The MFI for grafted pellets was not achievable because the high degree of viscosity of polymer, even arising the test temperature, the polymer was not flow enough. (author)

  5. The technique on handling radiation

    International Nuclear Information System (INIS)

    1997-11-01

    This book describes measurement of radiation and handling radiation. The first part deals with measurement of radiation. The contents of this part are characteristic on measurement technique of radiation, radiation detector, measurement of energy spectrum, measurement of radioactivity, measurement for a level of radiation and county's statistics on radiation. The second parts explains handling radiation with treating of sealed radioisotope, treating unsealed source and radiation shield.

  6. Phthalate Migration Study from PVC Grafted by Gamma Radiation

    International Nuclear Information System (INIS)

    Manzoli, J.E.; Duarte, C.; Somesari, E.; Silveira, C.; Paes, H.A.; Manzoli, J.E.; Araujo, F.D.C.; Panzarini, L.C.G.A.

    2009-01-01

    PVC is a useful polymer used for many applications, as packaging of food, blood and in contact with body fluids. The most widely-used plasticizer, to make it flexible, is the phthalate DEHP, and its toxicity is a problem. A special radiation grafting of PVC allows an important reduction of thrombogenic properties, and it could cause changes in the DEHP migration too. In this work it is presented the methodology using gas chromatography and numerical simulation for the measurement of DEHP migration from PVC grafted with monomer DMAEMA. The grafting could be an interesting way to reduce DEHP migration

  7. Solvent influence during radiation induced grafting of styrene in PVDF

    International Nuclear Information System (INIS)

    Ferreira, Henrique P.; Parra, Duclerc F.; Lugao, Ademar B.

    2013-01-01

    Radiation-induced grafting was studied to produce styrene grafted poly(vinylidene fluoride) (PVDF) membranes. PVDF films with 0.125 mm thickness were irradiated at doses between 5 and 20 kGy in the presence of styrene/N,N-dimethylformamide (DMF), styrene/acetone or styrene/toluene solutions (1:1, v/v) at dose rate of 5 kGy h -1 by simultaneous method, using gamma rays from a Co-60, under nitrogen atmosphere and at room temperature. The films were characterized before and after modification by grafting yield (GY %), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM and EDS), differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). GY results shows that grafting increases with dose and toluene hinders the grafting, leading to a small GY comparing to DMF and acetone. It was possible to confirm the grafting of styrene by FT-IR due to the new characteristics peaks and by the TG and DSC due to changes in thermal behavior of the grafted material. SEM and EDS show surface and cross-section distribution of the grafting, which takes place on the surface and heterogeneously with toluene as solvent and homogeneously and penetrating into the inner layers of the matrix using DMF and acetone as solvent. (author)

  8. Solvent influence during radiation induced grafting of styrene in PVDF

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Henrique P.; Parra, Duclerc F.; Lugao, Ademar B., E-mail: hp.ferreira@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Radiation-induced grafting was studied to produce styrene grafted poly(vinylidene fluoride) (PVDF) membranes. PVDF films with 0.125 mm thickness were irradiated at doses between 5 and 20 kGy in the presence of styrene/N,N-dimethylformamide (DMF), styrene/acetone or styrene/toluene solutions (1:1, v/v) at dose rate of 5 kGy h{sup -1} by simultaneous method, using gamma rays from a Co-60, under nitrogen atmosphere and at room temperature. The films were characterized before and after modification by grafting yield (GY %), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM and EDS), differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). GY results shows that grafting increases with dose and toluene hinders the grafting, leading to a small GY comparing to DMF and acetone. It was possible to confirm the grafting of styrene by FT-IR due to the new characteristics peaks and by the TG and DSC due to changes in thermal behavior of the grafted material. SEM and EDS show surface and cross-section distribution of the grafting, which takes place on the surface and heterogeneously with toluene as solvent and homogeneously and penetrating into the inner layers of the matrix using DMF and acetone as solvent. (author)

  9. Radiation induced graft copolymerization for preparation of cation exchange membranes: a review

    International Nuclear Information System (INIS)

    Mohamed Mahmoud Nasef; Hamdani Saidi; Hussin Mohd Nor

    1999-01-01

    Cation exchange membranes are regarded as the ideal solid polymer electrolyte materials for the development of various electrochemical energy conversion applications where significant improvements in the current density are required. Such membranes require special polymers and preparation techniques to maintain high chemical , mechanical and thermal stability in addition to high ionic conductivity and low resistance. A lot of different techniques have been proposed in the past to prepare such membranes. Radiation-induced graft copolymerization provides an attractive ft method for modification of chemical and physical properties of polymeric materials and is of particular interest in achieving specially desired cation exchange membranes as well as excellent membrane properties. This is due to the ability to control the membrane compositions as well as properties by proper selection of grafting conditions. Therefore numerous parameters have to be investigated to properly select the right polymeric materials, radiation grafting technique and the grafting conditions to be employed. In this paper a state-of-the-art of radiation-induced graft copolymerization for preparation of cation exchange membranes and their applications are briefly reviewed. (Author)

  10. Ion exchange fiber prepared by radiation grafting, (2)

    International Nuclear Information System (INIS)

    Sekiguchi, Hideaki; Fujiwara, Kunio; Fujii, Toshiaki; Takai, Takeshi; Kobayashi, Atsushi

    1991-01-01

    Ion exchange fiber prepared by radiation grafting has the capabilities for wide application as high performance materials. Extensive studies were made to evaluate the ion exchange fiber prepared by radiation grafting for removing some toxic or malodorous gases, continuing from the previous work (presented in Ebara Engng. Review, No. 146), in which the ability of removing ammonia with cation exchange fiber was investigated. The results of this study can be summarized by the following conclusions: (1) Methods of evaluating the ability of removing ammonia, acetaldehyde, and some lower fatty acids in low concentration were established, (2) Besides being effective for the removal of acidic or basic gases, neutral gas such as acetaldehyde can also be removed by adding some functional compounds to the ion exchange fiber, and (3) Ion exchange fiber prepared by radiation grafting is effective as a deodorizing filter. (author)

  11. Radiation induced ionic polymerisation and grafting of vinyl monomers

    International Nuclear Information System (INIS)

    Stannett, V.T.

    1981-01-01

    Some special aspects of the radiation induced ionic polymerisation and grafting of vinyl monomers will be described. In particular the effects of solvents on the cationic polymerisation of the vinyl ethers will be discussed in detail. The unequivocal free ion nature of the polymerisation makes such information of considerable general interest. Estimates of the propagation rate constants with free cation polymerisation in solvents of different dielectric constants and solvation powers will be presented. Finally, some observations on the radiation induced graft polymerisation of ethyl vinyl ether to poly(vinyl chloride) and to polypropylene will be presented. (author)

  12. Improvement of the polymer stability by radiation grafting

    International Nuclear Information System (INIS)

    Ranogajec, F.; Mlinac-Misak, M.

    2004-01-01

    Losses of the stabilizer due to extractability or volatility immediately affect the ultimate performance of polymer products. A new approach to increase the persistence of the stabilizer in the final product is to chemically bind it to the polymer backbone. Radiation grafting or crosslinking could be an efficient method for this, when the stabilizer is polymerizable. By a mutual gamma irradiation method photoprotector 2-hydroxy-4-(3-methacryloxy-2-hydroxy-propoxy) benzophenone has been readily grafted to low-density polyethylene in benzene, tetrahydrofuran and methanol solution, respectively. Surface grafting occurs in a methanol solution of stabilizer, while in benzene and tetrahydrofuran solutions of the stabilizer, grafting proceeds more or less in the inner parts of the polymeric film as well. UV stability tests and changes in the mechanical properties of artificially and naturally aged films indicate pronounced protective effect achieved by the grafted stabilizer. Surface grafting is an efficient photostabilization method since the grafted stabilizer is chemically bound to a polymeric surface and in this way the problem of evaporation of blended stabilizers during the prolonged use of polymeric materials is eliminated

  13. Graft copolymers of polypropylene films. 1. radiation induced grafting of mixed monomers. Vol. 3

    International Nuclear Information System (INIS)

    El-Salmawi, K.M.; El-Naggar, A.M.; Said, H.M.; Zahran, A.H.

    1996-01-01

    Radiation graft copolymerization of co monomer mixtures of acrylic acid (AAC), and styrene (S) onto polypropylene (PP) film by mutual method has been investigated. The effects of different factors that may affect the grafting yield such as inhibitor concentration (Mohr's salt), solvent composition (MeOH and H 2 O), radiation dose and dose rate were considered. It was found that the role of Mohr's salt is very effective when the ratio of AAC in the co monomer mixtures was at lower values. However, the addition of 1.25 Wt% of Mohr's salt reduced the homo polymer formation and enhances the grafting process. Graft copolymerization in presence of solvent mixture composed of methanol and water was found to afford higher grafting than in pure methanol regardless of the composition of the co monomer mixture used. However, the highest degree of grafting was obtained at a solvent composition of 20% H 2 O:80%MeOH and a co monomer mixture of 20%AAC:80%sty. An attempt was made to determine each PAAC and PS fractions in the total graft yield obtained. Two methods of analysis based on using the reactivity ratios reported in literature, elemental analysis and IR spectroscopy. The determination of poly (acrylic acid) and polystyrene fractions by elemental analysis is believed more accurate than these by reactivity ratio. The precise results obtained by elemental analysis with respect to the chemical structure of known polymer prepared under identical conditions. The results obtained by IR measurements go well with that obtained with the reactivity ratio methods. 5 figs., 3 tabs

  14. Graft copolymers of polypropylene films. 1. radiation induced grafting of mixed monomers. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    El-Salmawi, K M; El-Naggar, A M; Said, H M; Zahran, A H [Radiation Chemistry Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    Radiation graft copolymerization of co monomer mixtures of acrylic acid (AAC), and styrene (S) onto polypropylene (PP) film by mutual method has been investigated. The effects of different factors that may affect the grafting yield such as inhibitor concentration (Mohr`s salt), solvent composition (MeOH and H{sub 2} O), radiation dose and dose rate were considered. It was found that the role of Mohr`s salt is very effective when the ratio of AAC in the co monomer mixtures was at lower values. However, the addition of 1.25 Wt% of Mohr`s salt reduced the homo polymer formation and enhances the grafting process. Graft copolymerization in presence of solvent mixture composed of methanol and water was found to afford higher grafting than in pure methanol regardless of the composition of the co monomer mixture used. However, the highest degree of grafting was obtained at a solvent composition of 20% H{sub 2} O:80%MeOH and a co monomer mixture of 20%AAC:80%sty. An attempt was made to determine each PAAC and PS fractions in the total graft yield obtained. Two methods of analysis based on using the reactivity ratios reported in literature, elemental analysis and IR spectroscopy. The determination of poly (acrylic acid) and polystyrene fractions by elemental analysis is believed more accurate than these by reactivity ratio. The precise results obtained by elemental analysis with respect to the chemical structure of known polymer prepared under identical conditions. The results obtained by IR measurements go well with that obtained with the reactivity ratio methods. 5 figs., 3 tabs.

  15. Radiation-induced graft copolymerization of methyl acrylate and acrylic acid onto rubber wood fiber

    International Nuclear Information System (INIS)

    Saliza Jam; Mansor Ahmad; Wan Md Zin Wan Yunus; Khairul Zaman Mohd Dahlan

    2001-01-01

    Graft copolymerization of methyl acrylate and acrylic acid monomers onto rubber wood fiber (RWF) was carried out by simultaneous radiation-induced technique. The parameters affecting the grafting reaction were investigated and the optimum conditions for both monomers obtained are as follows: impregnation time = 16 hours, total dose = 30 kGy, methanol : water ratio, 3:1, monomers concentration = 40 v/v % and sulphuric acid concentration = 0.1 mol/L. Fourier Transform Infrared (FTIR), thermogravimetry analysis (TGA), and scanning electron microscope (SEM) analyses used to characterize graft copolymers. The structural investigation by x-ray diffraction (XRD) shows the degree of crystallinity of rubber wood fiber decreased with the incorporation of poly(methyl acrylate) and poly(acrylic acid) grafts. (Author)

  16. Radiation induced vapour phase grafting of styrene onto fluorinated substrates

    International Nuclear Information System (INIS)

    Dargaville, T.; Hill, D.; George, G.; Cardona, F.

    2000-01-01

    Full text: Polytetrafluoroethylene (PTFE) is well known for being inert towards heat, solvents and harsh chemicals. However, in contrast, PTFE is extremely sensitive to radiation suffering from a dramatic decrease in mechanical strength even when exposed to low doses. In this study we have used a copolymer of PTFE, poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA). The effect of the ether comonomer is to render the polymer melt processable, lower the crystallinity and increase the radical yield when compared with PTFE. When grafting styrene to PFA using a radiation initiated process, the resulting polymer has the desirable chemical and thermal resistance of the PFA substrate combined with the functionality of the styrene, however, due to the incidental degradative effect of radiation on the PFA substrate it is important to find conditions where the best graft is achieved without exposing the substrate to extraneous levels of radiation. We have successfully grafted styrene to PFA by simultaneously exposing PFA to styrene vapour and gamma radiation. This process was found to be independent of dose rate at low dose rates suggesting a diffusion controlled mechanism. The penetration of the graft into the PFA substrate was measured by mapping a cross-section using micro-probe Raman spectroscopy

  17. 'Like new': plastic wastes regeneration by radiation induced grafting

    International Nuclear Information System (INIS)

    Laizier, J.; Gaussens, G.; Lemaire, F.

    1978-01-01

    The reclaiming and the recycling of plastic wastes is made especially difficult when those wastes are a mixture of various plastics; this is due to the incompatibility of the polymers. The radiation induced grafting allows to overcome this incompatibility. Results are given which shows that, for various mixtures of reclaimed polyethylene, PVC and polystyrene, an improvement of the properties of the processed blends is obtained by grafting the mixtures of wastes by a suitable polymer; the obtained properties of those regenerated plastic blends are enough attractive from the technical point of view to open a market to those products with a reasonable economical value [fr

  18. Radiation grafting of bis[2-(methacryloyloxy)ethyl]phosphate unto kenaf fiber for adsorption of rare earth elements

    International Nuclear Information System (INIS)

    Nor Azillah Fatimah Othman; Selambakkannu, S.; Norliza Ishak; Nor Azwin Shukri; Zulkafli Ghazali

    2016-01-01

    Full text: In this work kenaf bast fibers were used as trunk polymer for grafting with bis[2-(methacryloyloxy)ethyl]phosphate monomer through radiation induced grafting technique. Kenaf fibers were treated with different concentration of sodium chlorite (NaClO_2) solution at 70 degree Celsius for 6 hours. Kenaf fibers were irradiated with electron beam and reacted with bis[2-(methacryloyloxy)ethyl]phosphate/ water emulsion. Formation of grafting was observed from the increase in degree of grafting and confirmed by FTIR and SEM results. Effects of irradiation dose, reaction time, reaction temperature and monomer concentration on the degree of grafting were studied. Performance of the grafted kenaf fibers were then tested for adsorption of rare earth elements, namely Dysprosium, Neodymium and Holmium. (author)

  19. Immobilized enzymes in blood plasma exchangers via radiation grafting

    Science.gov (United States)

    Gombotz, Wayne; Hoffman, Allan; Schmer, Gottfried; Uenoyama, Satoshi

    The enzyme asparaginase was immobilized onto a porous hollow polypropylene (PP) fiber blood plasma exchange device for the treatment of acute lymphocytic leukemia. The devices were first radiation grafted with polymethacrylic acid (poly(MAAc)). This introduces carboxyl groups onto the surface of the fibers. Several variables were studied in the grafting reaction including the effects of solvent type and monomer concentration. The carboxyl groups were activated with N-hydroxy succinimide (NHS) using carbodiimide chemistry. Asparaginase was then covalently immobilized on the activated surfaces. Quantitative relationships were found relating the percent graft to the amount of immobilized enzyme which was active. The enzyme reactor was tested both in vitro and in vivo using a sheep as an animal model.

  20. Radiation-induced grafting from binary mixture of monomers onto cellulose acetate film and the characterization of the graft copolymer

    International Nuclear Information System (INIS)

    Bhattacharyya, S.N.; Maldas, D.

    1984-01-01

    Binary mixtures of styrene and acrylamide in methanol-water were grafted onto cellulose acetate films by taking recourse to preirradiation grafting technique. The extent of total grafting was determined from the measured weight increase. The percent acrylamide residue in the graft copolymer was calculated from the observed nitrogen content but the polystyrene residue in the grafted sample was determined by IR spectral studies. When the specific permeability of water vapour through the grafted films is measured, it is observed that the specific permeability increases with the increase of grafting of acrylamide in all humidities, but in case of styrene which is a nonpolar molecule the permeability is found to show a reversed order. In the case of mixed graft the permeability pattern pertains to that when both styrene and acrylamide have their effective roles to play. (author)

  1. Significance of grafting in radiation curing reactions. Comparison of ionising radiation and UV systems

    International Nuclear Information System (INIS)

    Zilic, E.; Ng, L.; Viengkhou, V.; Garnett, J.L.

    1998-01-01

    Full text: Radiation curing is now an accepted commercial technology where both ionising radiation (electron beam) and ultra violet light (UV) sources are used. Grafting is essentially the copolymerisation of a monomer/oligomer to a backbone polymer whereas curing is the rapid polymerisation of a monomer/oligomer mixture onto the surface of the substrate. There is no time scale theoretically associated with grafting processes which can occur in minutes or hours whereas curing reactions are usually very rapid, occurring within a fraction of a second. An important difference between grafting and curing is the nature of the bonding occurring in each process. In grafting covalent carbon-carbon bonds are formed, whereas in curing, bonding usually involves weaker Van der Waals or London dispersion forces. The bonding properties of the systems are important in determining their use commercially. Thus the possibility that concurrent grafting during curing could occur in a system is important since if present, grafting would not only minimise delamination of the coated product but could also, in some circumstances, render difficulties recycling of the finished product especially if it were cellulosic. Hence the conditions for observing the occurrence of concurrent grafting during radiation curing are important. In the present paper, this problem has been studied by examining the effect that the components used in radiation curing exert on a typical reaction. Instead of electron beam sources, the spent fuel element facility at Lucas Heights is used to simulate such ionising radiation sources. The model system utilised is the grafting of a typical methacrylate to cellulose. This is the generic chemistry used in curing systems. The effect of typical additives from curing systems including polyfunctional monomer and oligomers in the grafting reactions have been studied. The ionising radiation results have been compared with analogous data from UV experiments. The significance

  2. Ionic membranes obtained by radiation - induced graft copolymerization, II-characterization and waste treatment. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A M.I.; Nowier, H G; Aly, H F [National Center for Radiation and Technology, Atomic Energy Authority, Cairo, (Egypt); Abd El-Rehim, H A; Hegazy, E A [Hot Laboratories Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    Ionic membranes were prepared by radiation-induced grafting of acrylic acid onto low density polyethylene films. To elucidate the possibility of practical use, a study was made for the characterization of the grafted and chemically treated mechanisms. The selectivity of such prepared membranes towards the chelation or absorption of different alkali metals was investigated, to find that the higher affinity was observed for K{sup +}, Na{sup +} and Li{sup +} ions compared to other alkali metals used. The metal uptake percent was determined using different techniques; flame photometer, and X-ray fluorescence (XRF). The uptake of metal from its feed solution by the the grafted membrane increased as the degree of grating increased, i.e. it is directly proportional to the functional carboxylic acid groups in the graft copolymer. As a consequence, the electrical conductivity of metal feed solution decreased during such process of metal chelation by membrane. The higher the grafting degree of membrane, the lower the electrical conductivity of metal feed solutions observed. the changes in thermal properties of the membranes prepared were investigated and characterized using differential scanning calorimetry, (DSC), and thermal gravimetric analysis (TGA). The thermal stability of these membranes increased with degree of grafting due to the formation of cross linked network structure via hydrogen bonding. furthermore, such stability is enhanced for the alkali-treated membranes even at high elevated temperatures. The membranes prepared showed a great promise for possible use in some practical applications such as metal waste treatment. 3 figs., 5 tabs.

  3. Ionic membranes obtained by radiation - induced graft copolymerization, II-characterization and waste treatment. Vol. 3

    International Nuclear Information System (INIS)

    Ali, A.M.I.; Nowier, H.G.; Aly, H.F.; Abd El-Rehim, H.A.; Hegazy, E.A.

    1996-01-01

    Ionic membranes were prepared by radiation-induced grafting of acrylic acid onto low density polyethylene films. To elucidate the possibility of practical use, a study was made for the characterization of the grafted and chemically treated mechanisms. The selectivity of such prepared membranes towards the chelation or absorption of different alkali metals was investigated, to find that the higher affinity was observed for K + , Na + and Li + ions compared to other alkali metals used. The metal uptake percent was determined using different techniques; flame photometer, and X-ray fluorescence (XRF). The uptake of metal from its feed solution by the the grafted membrane increased as the degree of grating increased, i.e. it is directly proportional to the functional carboxylic acid groups in the graft copolymer. As a consequence, the electrical conductivity of metal feed solution decreased during such process of metal chelation by membrane. The higher the grafting degree of membrane, the lower the electrical conductivity of metal feed solutions observed. the changes in thermal properties of the membranes prepared were investigated and characterized using differential scanning calorimetry, (DSC), and thermal gravimetric analysis (TGA). The thermal stability of these membranes increased with degree of grafting due to the formation of cross linked network structure via hydrogen bonding. furthermore, such stability is enhanced for the alkali-treated membranes even at high elevated temperatures. The membranes prepared showed a great promise for possible use in some practical applications such as metal waste treatment. 3 figs., 5 tabs

  4. Radiation graft polymerization of 4- vinylpyridine on polyvinylchloride-films. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kudryavtsev, V.N.; Shapiro, A.; Endrikhovska-Bonamur, A.M.

    1984-01-01

    Radiation graft liquid phase polymerization of 4-vinylpyridine on PVC-films by the method of direct radiation is investigated. The samples are irradiated by Co/sup 60/ ..gamma..-source at 20 deg C and the dose rate of 39 Gy/s for 4-vinylpyridine solutions in methonol, as well as at-78 deg C and dose rate of 1.3 kGy/s for monomer solutions in hexane. Modified polyvinylchloride films with grafted poly-4-vinylpyridine chains are prepared. Being introduced in grafted polyvinylpyridine chains of ion-exchange groups, materials are characterized by good swelling in water and are good to prepare anion-exchange membranes.

  5. Radiation-Induced Grafting with One-Step Process of Waste Polyurethane onto High-Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Jong-Seok Park

    2015-12-01

    Full Text Available The recycling of waste polyurethane (PU using radiation-induced grafting was investigated. The grafting of waste PU onto a high-density polyethylene (HDPE matrix was carried out using a radiation technique with maleic anhydride (MAH. HDPE pellets and PU powders were immersed in a MAH-acetone solution. Finally, the prepared mixtures were irradiated with an electron beam accelerator. The grafted composites were characterized by Fourier transformed infrared spectroscopy (FT-IR, surface morphology, and mechanical properties. To make a good composite, the improvement in compatibility between HDPE and PU is an important factor. Radiation-induced grafting increased interfacial adhesion between the PU domain and the HDPE matrix. When the absorbed dose was 75 kGy, the surface morphology of the irradiated PU/HDPE composite was nearly a smooth and single phase, and the elongation at break increased by approximately three times compared with that of non-irradiated PU/HDPE composite.

  6. A study on the morphology of polystyrene-grafted poly(ethylene-alt-tetrafluoroethylene) (ETFE) films prepared using a simultaneous radiation grafting method

    International Nuclear Information System (INIS)

    Song, Ju-Myung; Ko, Beom-Seok; Sohn, Joon-Yong; Nho, Young Chang; Shin, Junhwa

    2014-01-01

    The morphology of polystyrene-grafted poly(ethylene-alt-tetrafluoroethylene) (ETFE) films prepared using a simultaneous radiation grafting method was investigated using DMA, DSC, XRD, and SAXS instruments. The DMA study indicates that the ETFE amorphous phase and PS amorphous phase are mixed well in the PS-grafted ETFE films while the ETFE crystalline phase and the PS amorphous phase are separated, suggesting that the PS chains are grafted mainly on the ETFE amorphous regions. The DSC and XRD data showed that the natural crystalline structures of ETFE in the grafted ETFE films are not affected by the degree of grafting. The SAXS profiles displayed that the inter-crystalline distance of the ETFE films increases with an increasing degree of grafting, which further implies that the PS graft chains formed by the simultaneous irradiation has a significant impact on the amorphous morphology of the resulting grafted ETFE film. Thus, these results indicate that the styrene monomers are mainly grafted on the ETFE amorphous regions during the simultaneous radiation grafting process. - Highlights: • PS-grafted ETFE films were prepared by a simultaneous radiation grafting method was investigated. • The natural crystalline structures of grafted ETFE films are not affect by the degree of grafting. • The inter-crystalline distance of the ETFE films increase with increasing degree of grafting. • The styrene monomers are mainly grafted on the ETFE amorphous regions during a simultaneous radiation grafting using gamma-ray

  7. Interaction of blood with radiation-grafted materials

    International Nuclear Information System (INIS)

    Ikada, Y.; Suzuki, M.; Taniguchi, M.; Iwata, H.; Taki, W.; Miyake, H.; Yonekawa, Y.; Handa, H.

    1981-01-01

    Extensive works on blood compatibility of polymeric materials have revealed that it is strongly governed by their surface structure and properties. Among them are roughness, hydrophobic-hydrophilic balance, ionic species, and water content in the surface layer. In the present work, low and high density polyethylenes as well as heat-treated poly(vinyl) alcohol are grafted with acrylamide (and acrylic acid for comparison) by a pre-irradiation technique to convert the rigid hydrophobic surface into a soft hydrogel with high water contents. The surface modification of materials with grafted polyacrylamide chains will be confirmed from the contact angle measurement which is one of the best methods for assessing the hydrophilicity of surfaces. Blood compatibility of the resulting surfaces will be evaluated from in vivo experiments by anastomosing the surface-grafted tubes of small diameter with the carotid artery of rat. (author)

  8. Preparation of High Density Polyethylene/Waste Polyurethane Blends Compatibilized with Polyethylene-Graft-Maleic Anhydride by Radiation

    Directory of Open Access Journals (Sweden)

    Jong-Seok Park

    2015-04-01

    Full Text Available Polyurethane (PU is a very popular polymer that is used in a variety of applications due to its good mechanical, thermal, and chemical properties. However, PU recycling has received significant attention due to environmental issues. In this study, we developed a recycling method for waste PU that utilizes the radiation grafting technique. Grafting of waste PU was carried out using a radiation technique with polyethylene-graft-maleic anhydride (PE-g-MA. The PE-g-MA-grafted PU/high density polyethylene (HDPE composite was prepared by melt-blending at various concentrations (0–10 phr of PE-g-MA-grafted PU. The composites were characterized using fourier transform infrared spectroscopy (FT-IR, and their surface morphology and thermal/mechanical properties are reported. For 1 phr PU, the PU could be easily introduced to the HDPE during the melt processing in the blender after the radiation-induced grafting of PU with PE-g-MA. PE-g-MA was easily reacted with PU according to the increasing radiation dose and was located at the interface between the PU and the HDPE during the melt processing in the blender, which improved the interfacial interactions and the mechanical properties of the resultant composites. However, the elongation at break for a PU content >2 phr was drastically decreased.

  9. Technique of radiation polymerization in fine art conservation: a potentially new method of restoration and preservation

    International Nuclear Information System (INIS)

    Garnett, J.L.; Major, G.

    1982-01-01

    The technique of using radiation polymerization for the restoration and preservation of art treasures is considered. The processes discussed include both radiation grafting and rapid cure procedures, particularly reactions initiated by uv and eb. Representative examples where the technique has already been used are treated including typical applications with paintings, tapestries, leather and archival repair. The structure of the monomers and oligomers used in both grafting and rapid cure systems is outlined. The experimental conditions where grafting may occur during radiation rapid cure processing are discussed. Possible future developments of the technique are outlined. 1 figure, 8 tables

  10. Gamma radiation grafted polymers for immobilization of Brucella antigen in diagnostic test studies

    Science.gov (United States)

    Docters, E. H.; Smolko, E. E.; Suarez, C. E.

    The radiation grafting process has a wide field of industrial applications, and in the recent years the immobilization of biocomponents in grafted polymeric materials obtained by means of ionizing radiations is a new and important contribution to biotechnology. In the present work, gamma preirradiation grafting method was employed to produce acrylics hydrogels onto polyethylene (PE), polyvinyl chloride (PVC) and polystyrene (PS). Two monomers were used to graft the previously mentioned polymers: methacrylic acid (MAAc) and acrylamide (AAm), and several working conditions were considered as influencing the degree of grafting. All this grafted polymers were used to study the possibility of a subsequent immobilization of Brucella antigen (BAg) in diagnostic test studies (ELISA).

  11. Gamma radiation grafted polymers for immobilization of Brucella antigen in diagnostic test studies

    International Nuclear Information System (INIS)

    Docters, E.H.; Smolko, E.E.

    1990-01-01

    The radiation grafting process has a wide field of industrial applications, and in the recent years the immobilization of biocomponents in grafted polymeric materials obtained by means of ionizing radiations is a new and important contribution to biotechnology. In the present work, gamma preirradiation grafting method was employed to produce acrylics hydrogels onto polyethylene (PE), polyvinyl chloride (PVC) and polystyrene (PS). Two monomers were used to graft the previously mentioned polymers: methacrylic acid (MAAc) and acrylamide (AAm), and several working conditions were considered as influencing the degree of grafting. All these grafted polymers were used to study the possibility of a subsequent immobilization of Brucella antigen (BAg) in diagnostic test studies (ELISA). (author)

  12. Gamma radiation grafted polymers for immobilization of Brucella antigen in diagnostic test studies

    Energy Technology Data Exchange (ETDEWEB)

    Docters, E H; Smolko, E E [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Direccion de Radioisotopos y Radiaciones; Suarez, C E [Instituto Nacional de Tecnologia Agropecuaria, Castelar (Argentina)

    1990-01-01

    The radiation grafting process has a wide field of industrial applications, and in the recent years the immobilization of biocomponents in grafted polymeric materials obtained by means of ionizing radiations is a new and important contribution to biotechnology. In the present work, gamma preirradiation grafting method was employed to produce acrylics hydrogels onto polyethylene (PE), polyvinyl chloride (PVC) and polystyrene (PS). Two monomers were used to graft the previously mentioned polymers: methacrylic acid (MAAc) and acrylamide (AAm), and several working conditions were considered as influencing the degree of grafting. All these grafted polymers were used to study the possibility of a subsequent immobilization of Brucella antigen (BAg) in diagnostic test studies (ELISA). (author).

  13. A new grafting technique for tympanoplasty: tympanoplasty with a boomerang-shaped chondroperichondrial graft (TwBSCPG).

    Science.gov (United States)

    Dündar, Rıza; Soy, Fatih Kemal; Kulduk, Erkan; Muluk, Nuray Bayar; Cingi, Cemal

    2014-10-01

    The aim of this study was to introduce a new grafting technique in tympanoplasty that involves use of a boomerang-shaped chondroperichondrial graft (BSCPG). The anatomical and functional results were evaluated. A new tympanoplasty with boomerang-shaped chondroperichondrial graft (TwBSCPG) technique was used in 99 chronic otitis media patients with central or marginal perforation of the tympanic membrane and a normal middle ear mucosa. All 99 patients received chondroperichondrial cartilage grafts with a boomerang-shaped cartilage island left at the anterior and inferior parts. Postoperative follow-ups were conducted at months 1, 6, and 12. Preoperative and postoperative audiological examinations were performed and air-bone gaps were calculated according to the pure-tone averages (PTAs) of the patients. In the preoperative period, most (83.8%) air-bone gaps were ≥ 16 dB; after operating using the TwBSCPG technique, the air-bone gaps decreased to 0-10 dB in most patients (77.8%). In the TwBSCPG patients, the mean preoperative air-bone gap was 22.02 ± 6.74 dB SPL. Postoperatively, the mean postoperative air-bone gap was 8.70 ± 5.74 dB SPL. The TwBSCPG technique therefore decreased the postoperative air-bone gap compared to that preoperatively (p = 0.000, z = -8.645). At the 1-month follow-up, there were six graft perforations and one graft retraction. At the 6-month follow-up, there were nine graft perforations and three graft retractions. At 12 months, there were seven graft perforations and four graft retractions. During the first year after the boomerang tympanoplasty surgery, graft lateralization was not detected in any patient. Retractions were grade 1 according to the Sade classification and were localized to the postero-superior quadrant of the tympanic membrane. The TwBSCPG technique has benefits with respect to postoperative anatomical and audiological results. It prevents perforation of the tympanic membrane at the anterior quadrant and avoids graft

  14. Radiation techniques in the formulation of synthetic biomaterials

    International Nuclear Information System (INIS)

    Kaetsu, Isao

    1992-01-01

    This chapter reviews the uses of various radiation techniques, such as radiation polymerization, grafting, and crosslinking, for the formulation of synthetic biomaterials. The biomaterials are divided into four categories: Biocompatible polymers, immobilized proteins, immobilized cells, and drug delivery systems. The recent achievements in each category are described, and the contributions of novel radiation techniques to this field are discussed. Work on drug delivery systemsis also reviewed, and the status of the practical applications of drug delivery systems for therapy is summarized. Future trends in the field of radiation-synthesized biomaterials are indicated. (orig.)

  15. Dendrimer functionalized radiation grafted hydrogels for tissue engineering applications

    International Nuclear Information System (INIS)

    Higa, Olga Z.; Sakuno, Lilian M.; Queiroz, Alvaro A.A. de

    2009-01-01

    Low density polyethylene (LDPE) films were modified by γ-ray radiation grafting of 2- hydroxyethylmethacrylate (HEMA). The covalent immobilization of polyglycerol dendrimer (PGLD) on LDPEG- HEMA surface was performed by using dicyclohexyl carbodiimide (DCC)/N,N-dimethylaminopyridine (DMAP) method. The occurrence of grafting polymerization of HEMA and further immobilization of PGLD was quantitatively confirmed by photoelectron spectroscopy (XPS) and fluorescence, respectively. The LDPEG- HEMA surface topography after PGLD coupling was studied by atomic force microscopy (AFM). The hydrophilicity of the LDPE-G-HEMA film was remarkably improved compared to that of the ungrafted LDPE. The core level XPS ESCA spectrum of HEMA-grafted LDPE showed two strong peaks at ∼286.6 eV (from hydroxyl groups and ester groups) and ∼289.1 eV (from ester groups) due to HEMA brushes grafted onto LDPE surfaces. The results from the cell adhesion studies shows that MCT3-E1 cells tended to spread more slowly on LDPE-G-HEMA than on LDPE-G-HEMA-i-PGLD. (author)

  16. Radiation induced graft copolymerization of cellulosic fabric waste and its application in the removal of cyanide and dichromate from aqueous solution

    International Nuclear Information System (INIS)

    El-Kelesh, N.A.; Hashem, A.; Sokker, H.H.; Abd Elaal, S.E.

    2005-01-01

    Graft polymerization and crosslinking in radiation processing are attractive techniques for modification of the chemical and physical properties of the conventional polymers. The graft polymerization and subsequent chemical treatment can introduce a chelate agent function into a conventional polymer such as cellulosic fabric. Cellulosic graft copolymers were prepared by the reaction of the fiber with acrylonitrile (AN) and 2-acrylamido-2-methyl propane sulfonic acid (AMPS) in DMF initiated by gamma-radiation 60 Co. The grafted fabric was chemically treated with hydroxyl amine to obtain amidoxime form. Factors affecting on the grafting such as radiation dose, monomer concentration and solvent concentration as well as monomer composition was investigated. The chemically modified graft fabric was applied for recovery of cyanide and dichromate from aqueous solution. The CN show removal percent 89%, whereas dichromate has 65% removal percent

  17. The fate of allogenic radiation sterilized bone grafts controlled by the electron spin resonance spectrometry

    International Nuclear Information System (INIS)

    Ostrowski, K.; Dziedzic-Goclawska, A.

    1981-01-01

    The normal fate of bone grafts is their resorption and substitution by the own host's bone tissue. This phenomenon described as creeping substitution process was controlled using biopsies from the grafted region in allogenic experimental system. Electron spin resonance (ESR) spectrometry was used for independent evaluation of resorption and substitution processes. The measurements were based on the process of induction in the hydroxyapatite (HA) crystals of bone mineral of stable paramagnetic centers which can be detected by ESR spectrometry. The loss of total amount of spins connected with the paramagnetic centers expressed in percent describes the kinetics of resorption. The changes in the concentration of spins due to the ''dilution'' of spins implanted with the graft by the nonirradiated ingrowing host's own bone describe the kinetics of the substitution process. Allogenic bone of calvaria was grafted orthotopically into rabbits after lyophilization and radiation sterilization with a dose of 3.5 Mrads. The process of graft's rebuilding was evaluated using the described ESR method. The application of the described technique in the human clinic is possible. (author)

  18. Radiation induced, raft mediated grafting of styrene onto poly(ethylene-alt-tetrafluoroethylene) (ETFE)

    International Nuclear Information System (INIS)

    Celik, G.; Barsbay, M.; Gueven, O.

    2011-01-01

    Complete text of publication follows. The development of cost-effective proton exchange membranes to replace the state-of-the-art and expensive perfluorinated membranes such as Nafion, Flemion, and Aciplex is one of the main challenges for commercialization of polymer electrolyte fuel cell technology. Recently, partially fluorinated poly(ethlyene-alt-tetrafluoroethylene) (ETFE) has been identified as a promising alternative base polymer film to prepare low-cost polymer electrolyte membranes because of its advantageous characters like superior mechanical properties and high resistance to radiation-induced damage. The radiation-induced grafting technique, based on the utilization of a polymer material such as ETFE in combination with further chemical modification steps (sulfonation) allows the functionalization of the base material and the introduction of the desired property (proton conductivity) for preparing a fuel cell membrane. However this simple conventional method suffers from one simple flaw: The molecular weight and the polydispersity of the grafted chains cannot be controlled. Predetermined molecular weights and low dispersities as well as homogeneous composition and desired architecture can be achieved by grafting of monomer onto base polymer under living/controlled free radical polymerization (CRP) conditions. Among the CRP methods, Reversible Addition Fragmentation-Chain Transfer (RAFT) is of particular interest as a very wide range of functional monomers can be polymerized in a controlled manner under non-demanding reaction conditions (e.g., tolerance to oxygen and low temperatures). The present study deals with the RAFT mediated radiation-induced (0.032 kGyh -1 , 60 Co) grafting of styrene on ETFE films followed by the sulfonation of the polystyrene grafts. The effect of monomer concentration, absorbed dose and RAFT agent concentration on the grafting were investigated. The synthesized films were characterized by ATR-FTIR, XPS, DSC and TGA methods

  19. Dyed grafted films for large-dose radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Rehim, F; El-Sawy, N M; Abdel-Fattah, A A [National Centre for Radiation Research and Technology, Cairo (Egypt)

    1993-07-01

    By radiation-induced polymerization of acrylic acid onto poly(ethylene-tetrafluoroethylene) (ET) copolymer film and reacting the resulted grafted film with both Rhodamine B (RB) and Malachite Green (MG), new dosimeter films have been developed for high-dose gamma radiation applications in the range of absorbed doses from 10 to 180 kGy. The radiation-induced color bleaching has been analysed with visible spectrophotometry, either at the maximum of the absorption band peaking at 559 nm (for ETRB) or that peaking at 627 nm (for ETMG). The effects of different conditions of absorbed dose rate, temperature and relative humidity during irradiation and post-irradiation storage on dosimeter performance are discussed. (author).

  20. Radiation-induced grafting of acrylic acid onto polypropylene film and its biodegradability

    Science.gov (United States)

    Mandal, Dev K.; Bhunia, Haripada; Bajpai, Pramod K.; Chaudhari, C. V.; Dubey, K. A.; Varshney, L.

    2016-06-01

    Polypropylene based commodity polyolefins are widely used in packaging, manufacturing, electrical, pharmaceutical and other applications. The aim of the present work is to study the effect of grafting of acrylic acid on the biodegradability of acrylic acid grafted polypropylene. The effect of different conditions showed that grafting percentage increased with increase in monomer concentration, radiation dose and inhibitor concentration but decreased with increase in radiation dose rate. The maximum grafting of 159.4% could be achieved at optimum conditions. The structure of grafted polypropylene films at different degree of grafting was characterized by EDS, FTIR, TGA, DSC, SEM and XRD. EDS studies showed that the increase in acrylic acid grafting percentage increased the hydrophilicity of the grafted films. FTIR studies indicated the presence of acrylic acid on the surface of polypropylene film. TGA studies revealed that thermal stability decreased with increase in grafting percentage. DSC studies showed that melting temperature and crystallinity of the grafted polypropylene films lower than polypropylene film. SEM studies indicated that increase in acrylic acid grafting percentage increased the wrinkles in the grafted films. The maximum biodegradability could be achieved to 6.85% for 90.5% grafting. This suggested that microorganisms present in the compost could biodegrade acrylic acid grafted polypropylene.

  1. Study on immobilization enzyme using radiation grafting and condensation covalent

    International Nuclear Information System (INIS)

    Cao Jin; Su Zongxian; Gao Jianfeng

    1989-01-01

    The immobilization of gluecose oxidase (GOD) on polyethylene and F 46 is described by radiation grafting and condensation covalent. The GOD on polyethylene film is characterized with IR-spectrum. The results show that the enzyme activity on F 46 film is high when dose rate and covalent yield are low. When covalent yield is 4.3% the enzyme relative activity achieves the greatest value for F 46 film. The experiment also demonstrates that acrylic acid affects the relative activity of enzyme and the method of IR-pectrum character is convenient and efficient for GOD on polyethylene film

  2. Radiation induced grafting of monomers onto natural rubber : processes and applications

    International Nuclear Information System (INIS)

    Sunny Sebastian, M.

    2001-01-01

    Full text: Certain inherent mechanical properties of natural rubber (NR) can be modified by grafting vinyl monomers onto the polymer backbone. This paper described the gamma radiation induced graft copolymerization of methyl methacrylate (MMA), styrene and acrylonitrile (AN) onto NR. The graft copolymers can be crosslinked by sulphur and organic accelerators. The crosslinked graft copolymers show improved modulus and hardness in their films compared to NR. However the tensile strength of the films is reduced by grafting. The methods for preparing the graft copolymers, their properties and applications are briefly described

  3. Radiation Induced Grafting of Styrene onto ETFE: Influence of Crosslinker

    International Nuclear Information System (INIS)

    Gursel, S. A.

    2006-01-01

    Polymer electrolyte fuel cells are promising types of electrochemical devices for future power production with low operation temperature. In order to make this technology attractive, further cost reduction and improved reliability are required. These can be achieved in part by means of radiation induced grafting for the preparation of low cost proton-conducting polymer membranes. Indeed, the method can be performed with low-cost starting materials (fluorinated and partially fluorinated polymers). In our laboratory at Paul Scherrer Institut, most of the work has been performed using styrene and DVB as the monomers and poly (tetrafluoroethylene-co-hexafluoropropylene) as the base material. Performance comparable to Nafion 112 membranes and durability of several thousands hours at steady-state conditions have been achieved for this type of membranes under fuel cell operation conditions. Previously, poly(ethylene-alt-tetrafluoroethylene) (ETFE) based membranes have been prepared in the presence of divinylbenzene (DVB) as the crosslinking agent and found to exhibit encouraging fuel cell performance. However, the synthesis parameters were not optimized in detail to further improve the membrane properties. Recently, we have investigated the parameters of ETFE based grafting without crosslinking agent. In this study, proton-exchange membranes were prepared by pre-irradiation grafting of styrene onto ETFE and subsequent sulfonation in the presence of DVB containing different isomers (m- and p-isomer of DVB and m- and p-ethylvinylbenzene) as the crosslinker. The grafted films and membranes with varying DVB concentrations and similar degree of grafting (25%) were characterized by Fourier transform infrared spectroscopy (FTIR-ATR) and differential scanning calorimetry (DSC). In addition, dimensional changes and fuel cell relevant properties were examined. FTIR-ATR measurements revealed that the p- isomers are more reactive than m-isomers, and the grafted films are more highly

  4. Anterior cruciate ligament graft tensioning. Is the maximal sustained one-handed pull technique reproducible?

    Directory of Open Access Journals (Sweden)

    Hirpara Kieran M

    2011-07-01

    Full Text Available Abstract Background Tensioning of anterior cruciate ligament (ACL reconstruction grafts affects the clinical outcome of the procedure. As yet, no consensus has been reached regarding the optimum initial tension in an ACL graft. Most surgeons rely on the maximal sustained one-handed pull technique for graft tension. We aim to determine if this technique is reproducible from patient to patient. Findings We created a device to simulate ACL reconstruction surgery using Ilizarov components and porcine flexor tendons. Six experienced ACL reconstruction surgeons volunteered to tension porcine grafts using the device to see if they could produce a consistent tension. None of the surgeons involved were able to accurately reproduce graft tension over a series of repeat trials. Conclusions We conclude that the maximal sustained one-handed pull technique of ACL graft tensioning is not reproducible from trial to trial. We also conclude that the initial tension placed on an ACL graft varies from surgeon to surgeon.

  5. Anterior cruciate ligament graft tensioning. Is the maximal sustained one-handed pull technique reproducible?

    LENUS (Irish Health Repository)

    O'Neill, Barry J

    2011-07-20

    Abstract Background Tensioning of anterior cruciate ligament (ACL) reconstruction grafts affects the clinical outcome of the procedure. As yet, no consensus has been reached regarding the optimum initial tension in an ACL graft. Most surgeons rely on the maximal sustained one-handed pull technique for graft tension. We aim to determine if this technique is reproducible from patient to patient. Findings We created a device to simulate ACL reconstruction surgery using Ilizarov components and porcine flexor tendons. Six experienced ACL reconstruction surgeons volunteered to tension porcine grafts using the device to see if they could produce a consistent tension. None of the surgeons involved were able to accurately reproduce graft tension over a series of repeat trials. Conclusions We conclude that the maximal sustained one-handed pull technique of ACL graft tensioning is not reproducible from trial to trial. We also conclude that the initial tension placed on an ACL graft varies from surgeon to surgeon.

  6. The tolerance of skin grafts to postoperative radiation therapy in patients with soft-tissue sarcoma

    International Nuclear Information System (INIS)

    Lawrence, W.T.; Zabell, A.; McDonald, H.D.

    1986-01-01

    During the last ten years at the National Cancer Institute, 11 patients have received 12 courses of postoperative adjuvant radiation therapy to skin grafts used for wound closure after the resection of soft-tissue sarcomas. The intervals between grafting and the initiation of radiation ranged between 3 and 20 weeks, and 4 patients received chemotherapy at the same time as their radiation. Ten of the 12 irradiated grafts remained intact after the completion of therapy. One graft had several small persistently ulcerated areas that required no further surgical treatment, and one graft required a musculocutaneous flap for reconstruction of a persistent large ulcer. Acute radiation effects on the grafted skin sometimes developed at slightly lower doses than usually seen with normal skin, but these acute effects necessitated a break in therapy on only five occasions. Concurrent chemotherapy and a relatively short interval between grafting and the initiation of radiation seemed to contribute to more severe radiation reactions. This experience indicates that postoperative adjuvant radiation therapy can be delivered to skin grafted areas without undue fear of complications, especially if the graft is allowed to heal adequately prior to initiating therapy and if chemotherapy is not given in conjunction with radiation

  7. Reconstruction of mandibular defects after radiation, using a free, living bone, graft transferred by microvascular anastomoses. An experimental study

    International Nuclear Information System (INIS)

    Ostrup, L.T.; Fredrickson, J.M.

    1975-01-01

    The replacement of a mandibular defect by a free, composite rib graft, transferred by microvascular anastomoses of the posterior intercostal vessels to donor vessels in the neck was described previously. We now present data which demonstrate that successful results can be achieved even after radical mandibular radiation. This technique, done in dogs, has obvious implications in the management of oral cancer in man

  8. Food physics and radiation techniques

    International Nuclear Information System (INIS)

    Szabo, A. S.

    1999-01-01

    In the lecture information is given about food physics, which is a rather new, interdisciplinary field of science, connecting food science and applied physics. The topics of radioactivity of foodstuffs and radiation techniques in the food industry are important parts of food physics detailed information will be given about the main fields (e.g. radio stimulation, food preservation) of radiation techniques in the agro-food sector. Finally some special questions of radioactive contamination of foodstuffs in hungary and applicability of radioanalytical techniques (e.g. Inaa) for food investigation will be analyzed and discussed

  9. Radiation-Induced Graft Polymerization: Gamma Radiation and Electron Beam Technology for Materials Development

    International Nuclear Information System (INIS)

    Madrid, Jordan F.; Cabalar, Patrick Jay; Lopez, Girlie Eunice; Abad, Lucille V.

    2015-01-01

    The formation of functional hybrid materials by attaching polymer chains with advantageous tailored properties to the surface of a base polymer with desirable bulk character is an attractive application of graft copolymerization. Radiation-induced graft polymerization (RIGP) has been a popular approach for surface modification of polymers because of its merits over conventional chemical processes. RIGP, which proceeds primarily via free radical polymerization process, has the advantages such as simplicity, low cost, control over process and adjustment of the materials composition and structure. RIGP can be performed using either electron beam or gamma radiation and it can be applied to both synthetic and natural polymers. These merits make RIGP a popular research topic worldwide. Moreover, the materials synthesized and produced via RIGP has found applications, and were proposed to produce continuous impact, in the fields of medicine, agriculture, pollution remediation, rare earth and valuable metals recovery, fuel cell membrane synthesis and catalysis to name a few. From 2012 our group has performed electron beam and gamma radiation-induced graft polymerization of various monomers onto polymers of natural and synthetic origins (e.g. monomers - glycidyl methacrylate, styrene, acrylonitrile, N,N-dimethylaminoethyl methacrylate; base polymers – polyethylene/polypropylene nonwoven fabric, polypropylene nonwoven fabric pineapple fibers, cellulose nonwoven fabric microcrystalline cellulose). We tested these grafted materials for heavy metals (Pb, Ni, Cu) and organic molecule removal from aqueous solutions and E. coli activity (using reversible addition fragmentation chain transfer RAFT mediated grafting). The results clearly showed the success of materials modified via FIGP in these applications. Currently, we are studying the applications of grafted materials on treatment of waste waters from tanning industry, value addition to abaca nonwoven fabrics cell sheet

  10. Enhancement of the grafting performance and of the water absorption of cassava starch graft copolymer by gamma radiation

    International Nuclear Information System (INIS)

    Kiatkamjornwong, Suda; Meechai, Nispa

    1997-01-01

    Enhancement of the gamma radiation grafting of acrylonitrile onto gelatinized cassava starch was investigated. Infrared spectrometry was used to follow the chemical changes in the grafting reaction and from saponification. The saponified starch-g-PAN (HSPAN) was then characterized in terms of grafting parameters to provide a guide for the optimum total dose (kGy) and the appropriate ratio of starch/acrylonitrile for a fixed dose rate of 2.5 x 10 -1 kGy/min. Other dose rates were also carried out to obtain the appropriate result of grafting copolymerization and of water absorption. A thin aluminium foil, covering the inner wall of the reaction vessel, was found to be far more effective than any other metal films in the enhancement of the grafting reaction and the water absorption as well. Nitric acid in the medium increases the grafting yield and the water absorption. Methyl ether hydroquinone inhibitor was evaluated for its ability to increase homopolymerization and decrease graft reaction. When styrene was used as a comonomer, it hampered the grafting of acrylonitrile onto starch backbone. The water absorption capacity was improved by freeze-drying the HSPAN. The treatment of the HSPAN with aluminium trichloride hexahydrate was found to enhance the degree of wicking, but to decrease the water absorbency. (author)

  11. Radiation-induced grafting of sweet sorghum stalk for copper(II) removal from aqueous solution

    International Nuclear Information System (INIS)

    Dong, Jing; Hu, Jun; Wang, Jianlong

    2013-01-01

    Highlights: • Radiation-induced grafting was used to modify the stalk. • Cellulose, hemicellulose and lignin participated in grafting reaction. • Both the structure and composition of stalk had influence on grafting. • The sorption capacity of the grafted stalk increased about five times. -- Abstract: The influence of main components (cellulose, hemicellulose and lignin) of the sweet sorghum stalk on radiation-induced grafting reaction and adsorption of copper from aqueous solution was investigated. Sweet sorghum stalk was grafted with acrylic acid induced by γ-irradiation. The results showed that the grafted stalk contained 1.6 mmol/g carboxyl groups, and its maximal adsorption capacity was 13.32 mg/g. The cellulose, hemicellulose and lignin of the raw materials were confirmed to involve in grafting reaction through comparing the grafting yield and the structure of the grafted materials. Both the structure and the composition of the sweet sorghum stalk had influence on the grafting reaction and adsorption capacity. The adsorption capacity of the grafted sweet sorghum stalk increased about five times, and the adsorption isotherm of the grafted materials conformed to the Langmuir model. The main mechanism for copper adsorption involved in ion exchange

  12. Development of deodorizing materials by radiation graft polymerization

    International Nuclear Information System (INIS)

    Sugo, Takanobu; Okamoto, Jiro; Fujiwara, Kunio; Sekiguchi, Hideo.

    1989-01-01

    With the development of society, the countermeasures for service water and sewerage in large cities and the environment preservation in industrial districts become difficult as their scale becomes larger. There are many unsolved problems, for example photochemical smog due to harmful gases, exhaust gas from automobiles, and smell of toilets and home waste water. The deodorizing materials used so far are mainly inorganic substances, and their ability of adsorbing harmful gases is very low. Besides, those are mostly granular, and limited in the formability. Therefore, it is expected to develop the fibrous adsorbent which has large adsorbing surface area and is easy to make filters. The chemical structures of the compounds having smell are shown. Eight legal bad smell substances which exert large influence to environment even in very small amount are designated. In this paper, the method of introducing functional radicals into existing fiber materials by the application of radiation graft polymerization process and the test of removing smelling compositions by using the obtained resin are reported. The experimental method, and the results of radiation graft polymerization, the adsorption of basic gases and acid gases, and gas flow test are described. (K.I.)

  13. A short review of radiation-induced raft-mediated graft copolymerization: A powerful combination for modifying the surface properties of polymers in a controlled manner

    Science.gov (United States)

    Barsbay, Murat; Güven, Olgun

    2009-12-01

    Surface grafting of polymeric materials is attracting increasing attention as it enables the preparation of new materials from known and commercially available polymers having desirable bulk properties such as thermal stability, elasticity, permeability, etc., in conjunction with advantageous newly tailored surface properties such as biocompatibility, biomimicry, adhesion, etc. Ionizing radiation, particularly γ radiation is one of the most powerful tools for preparing graft copolymers as it generates radicals on most substrates. With the advent of living free-radical polymerization techniques, application of γ radiation has been extended to a new era of grafting; grafting in a controlled manner to achieve surfaces with tailored and well-defined properties. This report presents the current use of γ radiation in living free-radical polymerization and highlights the use of both techniques together as a combination to present an advance in the ability to prepare surfaces with desired, tunable and well-defined properties.

  14. A short review of radiation-induced raft-mediated graft copolymerization: A powerful combination for modifying the surface properties of polymers in a controlled manner

    International Nuclear Information System (INIS)

    Barsbay, Murat; Gueven, Olgun

    2009-01-01

    Surface grafting of polymeric materials is attracting increasing attention as it enables the preparation of new materials from known and commercially available polymers having desirable bulk properties such as thermal stability, elasticity, permeability, etc., in conjunction with advantageous newly tailored surface properties such as biocompatibility, biomimicry, adhesion, etc. Ionizing radiation, particularly γ radiation is one of the most powerful tools for preparing graft copolymers as it generates radicals on most substrates. With the advent of living free-radical polymerization techniques, application of γ radiation has been extended to a new era of grafting; grafting in a controlled manner to achieve surfaces with tailored and well-defined properties. This report presents the current use of γ radiation in living free-radical polymerization and highlights the use of both techniques together as a combination to present an advance in the ability to prepare surfaces with desired, tunable and well-defined properties.

  15. A short review of radiation-induced raft-mediated graft copolymerization: A powerful combination for modifying the surface properties of polymers in a controlled manner

    Energy Technology Data Exchange (ETDEWEB)

    Barsbay, Murat [Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara (Turkey)], E-mail: mbarsbay@hacettepe.edu.tr; Gueven, Olgun [Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara (Turkey)], E-mail: guven@hacettepe.edu.tr

    2009-12-15

    Surface grafting of polymeric materials is attracting increasing attention as it enables the preparation of new materials from known and commercially available polymers having desirable bulk properties such as thermal stability, elasticity, permeability, etc., in conjunction with advantageous newly tailored surface properties such as biocompatibility, biomimicry, adhesion, etc. Ionizing radiation, particularly {gamma} radiation is one of the most powerful tools for preparing graft copolymers as it generates radicals on most substrates. With the advent of living free-radical polymerization techniques, application of {gamma} radiation has been extended to a new era of grafting; grafting in a controlled manner to achieve surfaces with tailored and well-defined properties. This report presents the current use of {gamma} radiation in living free-radical polymerization and highlights the use of both techniques together as a combination to present an advance in the ability to prepare surfaces with desired, tunable and well-defined properties.

  16. Radiation grafting of hydrophilic monomers on to plasticized poly(vinyl chloride) sheets: Pt. 1

    International Nuclear Information System (INIS)

    Kalliyana Krishnan, V.; Jayakrishnan, A.; Francis, J.D.

    1990-01-01

    Medical-grade plasticized polyvinyl chloride (PVC) sheets were surface modified using gamma-radiation grafting of a combination of hydrophilic monomers based on 2-hydroxyethyl methacrylate (HEMA) and N-vinyl pyrrolidone (NVP). The properties of the modified surfaces were evaluated using contact angle measurements, phase-contrast photomicroscopy and scanning electron microscopy. Surface energy calculations indicated that the surfaces became highly hydrophilic when grafted with even a 1% (v/v) solution of HEMA-NVP combination in the presence of 0.005 M CuSO 4 . Migration of the plasticizer di(2-ethylhexyl phthalate) from the grafted sheets was examined in hydrocarbon solvents such as n-hexane, n-heptane and n-octane and in extractant media such as cotton seed oil and polyethylene glycol-400 (PEG-400). The migration was found to be 0 C over a period of 5 h. Accelerated leaching studies in cotton seed oil and PEG-400 demonstrated that virtually no plasticizer migrated out in the former over a period of 96 h whereas the rate of migration in the latter medium showed only a mild reduction. The migration behaviour was Fickian in nature for grafted sheets. The method described may be useful as a simple, versatile technique for preventing plasticizer migration from plasticized PVC for medical applications. (author)

  17. Radiation-initiated graft polymerization of methyl acrylate onto chrome-tanned sheepskin

    International Nuclear Information System (INIS)

    Kaldirimci, C.; Bas, N.

    1982-01-01

    Radiation grafting method was applied to obtain leather-polymer composite. Grafting of methyl acrylate onto chrome-tanned, bluestock sheepskin was investigated under the initiatory effect of 60 Co radiation of 0.20 11.50 Mrad. The percent of grafting was determined and water adsorption and shrinkage temperature measurements were carried out. It was shown that 2-4 Mrad is convenient to produce leather-polymer composite. (author)

  18. Synthesis of ion-exchange membranes by radiation-induced multiple grafting of methyl α,β,β-trifluoroacrylate

    International Nuclear Information System (INIS)

    Omichi, H.; Okamoto, J.

    1982-01-01

    Methyl α,β,β-trifluoroacrylate (MTFA) was grafted onto polymer films with the multiple grafting technique initiated by γ-rays: the yields were similar to those of the single-step grafting procedure with any irradiation dose. Grafted polymer obtained in the single-step experiments were distributed mainly near the film surface, whereas graft polymer from the multiple grafting experiments were distributed uniformly in the film at graft yields greater than 20%. The electric resistance of the hydrolyzed multiple graft polymer film in a 2N NaOH solution was much lower than that of one-step graft film at the same graft yield

  19. Effect of blood transfusion and skin grafting on rats with combined radiation-burn injury

    International Nuclear Information System (INIS)

    Yan Yongtang; Ran Xinze; Wei Shuqing

    1990-01-01

    The therapeutic effect of escharectomy and skin grafting at different times on rats with combined radiation-burn injuries (5 Gy total body irradiation plus flash radiation from a 5 kW bromotungstenic lamp to induce a 15% TBSA full thickness burn on back) treated with blood transfusion (BT) were studied. The treatment with BT and escharectomy plus skin grafting at 24, 48, and 72 h after injury showed significant therapeutic effects. In these treated groups, early recovery of WBC counts, the granulocytes and total lymphocytes, T, B-cells, bone marrow cells or CFU-F counts were evident within 30 days after injury. The 30-day survival rates of the skin grafts in the group treated with BT and skin grafting at 24 h after injury was 80%, in the group with skin grafting alone was 50%, while all the skin grafts sloughted within 30 days when the grafting was performed 48 and 72 h after injury. The 30-day survival rate of the recipients treated with skin grafting plus BT was higher than that of the animals with skin grafting alone. The results showed that satisfactory results were achieved with BT plus escharectomy and skin grafting within 24 h after injury, while skin grafting performed at 48 or 72 h after injury was ineffective for the survival of skin grafts

  20. Radiation grafting from binary monomer mixtures. II. Vinyl ether of monoethanolamine and N-vinylpyrrolidone

    International Nuclear Information System (INIS)

    Nurkeeva, Zauresh S.; Abdel Aal, A.-S.; Kupchishin, Anatoliy I.; Khutoryanskiy, Vitaliy V.; Mun, Grigoriy A.; Beksyrgaeva, Aida G.

    2003-01-01

    Radiation grafting from binary monomer mixtures of vinyl ether of monoethanolamine and N-vinylpyrrolidone onto polyethylene films has been studied. The structure of the grafted films was characterized by FTIR spectroscopy. Water uptake and contact angle measurements confirmed that the grafting leads to a considerable hydrophilization of the films surface. The presence of the more active N-vinylpyrrolidone enhances the grafting of the less active vinyl ether of monoethanolamine. Sorption properties of grafted films with respect to copper (II) ions have been studied

  1. Radiation grafting of methyl methacrylate onto polyethylene separators for lithium secondary batteries

    Science.gov (United States)

    Gwon, Sung-Jin; Choi, Jae-Hak; Sohn, Joon-Yong; An, Sung-Jun; Ihm, Young-Eon; Nho, Young-Chang

    2008-08-01

    Micro-porous polyethylene separator was modified by radiation grafting of methyl methacrylate in order to improve its affinity with a liquid electrolyte. The degree of grafting (DOG) increased with the monomer concentration and grafting time. The morphological change of the modified separator was investigated by scanning electron microscopy. The degree of crystallinity upon grafting was reduced due to the formation of an amorphous PMMA layer. The electrolyte uptake and the ionic conductivity of the separator increased with an increase in the DOG. The ionic conductivity reached 2.0 mS/cm for the grafted polyethylene separator with 127 wt% DOG.

  2. Radiation grafting of methyl methacrylate onto polyethylene separators for lithium secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gwon, Sung-Jin [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Department of Materials Engineering, Chnugnam National University, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Choi, Jae-Hak; Sohn, Joon-Yong; An, Sung-Jun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Ihm, Young-Eon [Department of Materials Engineering, Chnugnam National University, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Nho, Young-Chang [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)], E-mail: ycnho@kaeri.re.kr

    2008-08-15

    Micro-porous polyethylene separator was modified by radiation grafting of methyl methacrylate in order to improve its affinity with a liquid electrolyte. The degree of grafting (DOG) increased with the monomer concentration and grafting time. The morphological change of the modified separator was investigated by scanning electron microscopy. The degree of crystallinity upon grafting was reduced due to the formation of an amorphous PMMA layer. The electrolyte uptake and the ionic conductivity of the separator increased with an increase in the DOG. The ionic conductivity reached 2.0 mS/cm for the grafted polyethylene separator with 127 wt% DOG.

  3. Radiation Graft Copolymerization of Butyl methacrylate and Acrylamide onto Low density polyethylene and polypropylene films and its application in wastewater treatment

    International Nuclear Information System (INIS)

    Abdel Ghaffar, A.M.; El-Arnaouty, M.B.; Aboulfotouh, M.E.; Taher, N.H.

    2012-01-01

    Butyl methacrylate and Acrylamide (BMA/AAm) comonomer were grafted onto Low density polyethylene and polypropylene films using direct gamma radiation by grafting technique. The influences of grafting conditions such as solvent, monomer concentration, monomer composition, and irradiation dose on the grafting yield were determined. It was found that, using DMF as a solvent enhanced the copolymerization process. The grafting yield increases with comonomer concentration up to 60 %. . Also it was found that, the degree of grafting of (BMA/AAm) onto LDPE and PP films increases as the AAm content increases till optimum value at (50:50) %. The grafting yield of the comonomer found to be increased with increasing radiation dose. It was observed that the degree of grafting of polyethylene films is higher than that for polypropylene films. Some selected properties of the graft copolymers, such as water uptake and thermal properties determined by using thermogravimetric analysis (TGA) has been carried out. The morphology and structure of grafted films was investigated by using SEM, IR and X-ray diffraction. The improvement in such properties of the prepared copolymers was observed which makes possible uses in some practical applications such as in the removal of some heavy metals from wastewater. It was found that the maximum metal uptake by the copolymer is ordered in the sequence of Cu 2+ > CO 2+ > Ni 2+ ions.

  4. Endovascular Aortic Aneurysm Repair with Chimney and Snorkel Grafts: Indications, Techniques and Results

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Rakesh P., E-mail: rpatel9@nhs.net [Northwick Park Hospital, Department of Vascular Radiology (United Kingdom); Katsargyris, Athanasios, E-mail: kthanassos@yahoo.com; Verhoeven, Eric L. G., E-mail: Eric.Verhoeven@klinikum-nuernberg.de [Klinikum Nuernberg, Department of Vascular and Endovascular Surgery (Germany); Adam, Donald J., E-mail: donald.adam@tiscali.co.uk [Heartlands Hospital, Department of Vascular Surgery (United Kingdom); Hardman, John A., E-mail: johnhardman@doctors.org.uk [Royal United Hospital Bath, Department of Vascular Radiology (United Kingdom)

    2013-12-15

    The chimney technique in endovascular aortic aneurysm repair (Ch-EVAR) involves placement of a stent or stent-graft parallel to the main aortic stent-graft to extend the proximal or distal sealing zone while maintaining side branch patency. Ch-EVAR can facilitate endovascular repair of juxtarenal and aortic arch pathology using available standard aortic stent-grafts, therefore, eliminating the manufacturing delays required for customised fenestrated and branched stent-grafts. Several case series have demonstrated the feasibility of Ch-EVAR both in acute and elective cases with good early results. This review discusses indications, technique, and the current available clinical data on Ch-EVAR.

  5. The radiation grafting of vinyl monomers to cotton fabrics

    International Nuclear Information System (INIS)

    Shiraishi, N.; Williams, J.L.; Stannett, V.

    1982-01-01

    Cobalt 60 γ and electron beam radiation were used to graft diethylphosphatoethyl methacrylate, pure and in 90:10 methanol solution, to cotton cloth. This monomer, with an 11.64% phosphorus content, was especially developed by the Scott Paper Co. to develop fire retardancy. A simple pad and squeeze application followed by direct irradiation under a nitrogen atmosphere was used. Although excess monomer could be removed by washing with water, no solvent for the polymer was found so only the total 'add-ons' could be measured. With 60 Co irradiation, total polymerization was obtained with more than 1 Mrad but with electron beam irradiation only about 50% conversion was obtained even with 10 Mrad. No acceleration in the rates could be achieved with the viscous pure monomer as opposed to in solution. Yields adequate to impart reasonable fire retardancy could, however, be obtained with about 3 Mrad with electrons. No noticeable degradation of the polymer occurred at the doses used. (author)

  6. Radiation grafting of methacrylate onto carbon nanofiber surface

    International Nuclear Information System (INIS)

    Evora, M.C.; Klosterman, D.; Lafdi, K.; Li, L.

    2011-01-01

    Radiation can be used to modify and improve the properties of materials. Electron beam irradiation has potential application in modifying the structure of carbon fibers in order to produce useful defects in the graphite structure and create reactive sites. In this study, vapor grown carbon nano fibers (VGCF) were irradiated with a high energy (3 MeV) electron beam in air to dose of 1000 kGy to create active sites and added to methyl methacrylate (MMA) dissolved in water/methanol (50% V). The irradiated samples were analyzed by X-Ray Photoelectron Spectroscopy (XPS) and Raman spectroscopy to assess the impact on surface and bulk properties. Oxygen was readily incorporated enhancing the dispersion of VGCF. Raman spectroscopy analyses indicated that the sample irradiated and preirradiated grafted sample with MMA had the intensity ratio increased. (author)

  7. Excellent Aesthetic and Functional Outcome After Fractionated Carbon Dioxide Laser Skin Graft Revision Surgery: Case Report and Review of Laser Skin Graft Revision Techniques.

    Science.gov (United States)

    Ho, Derek; Jagdeo, Jared

    2015-11-01

    Skin grafts are utilized in dermatology to reconstruct a defect secondary to surgery or trauma of the skin. Common indications for skin grafts include surgical removal of cutaneous malignancies, replacement of tissue after burns or lacerations, and hair transplantation in alopecia. Skin grafts may be cosmetically displeasing, functionally limiting, and significantly impact patient's quality-of-life. There is limited published data regarding skin graft revision to enhance aesthetics and function. Here, we present a case demonstrating excellent aesthetic and functional outcome after fractionated carbon dioxide (CO2) laser skin graft revision surgery and review of the medical literature on laser skin graft revision techniques.

  8. Study of radiation grafted and sulfonated poly(tetrafluoroethylene-co-hexafluoropropylene), FEP, membranes

    International Nuclear Information System (INIS)

    Mohamed Mahmoud Nasef; Hamdani Saidi; Hussin Mohd Nor

    1999-01-01

    Radiation grafted and sulfonated FEP membranes were prepared by radiation-induced grafting of styrene onto poly(tetrafluoroethylene-co-hexafluoropropylene) films at room temperature and subsequently sulfonated. The membrane composition was controlled via variation of the grafting conditions such as type of diluent, irradiation dose, dose rate and monomer concentration. The membrane properties such as water uptake, ion exchange capacity and ionic conductivity were found to be strongly dependent upon the degree of grafting. The membranes were shown to have a good combination of physico-chemical properties, which made them promising for development of low cost proton exchange membranes

  9. Modification of nylon-6 fibres by radiation-induced graft polymerisation of vinylbenzyl chloride

    International Nuclear Information System (INIS)

    Ting, T.M.; Nasef, Mohamed Mahmoud; Hashim, Kamaruddin

    2015-01-01

    Modification of nylon-6 fibres by radiation-induced graft copolymerisation (RIGP) of vinylbenzyl chloride (VBC) using the preirradiation method was investigated. A number of grafting parameters such as type of solvent, total dose, monomer concentrations, reaction temperature and reaction time were studied to obtain desired degree of grafting (DG). The DG was found to be a function of reaction parameters and achieved a maximum value of 130 wt% at 20 vol% VBC concentration in methanol, 300 kGy dose, 30 °C temperature and 3 h reaction time. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to evaluate the chemical, morphological and structural changes that occurred in the grafted fibres, respectively. Thermogravimetric analysis (TGA) was also applied to determine the thermal stability, whereas differential scanning calorimeter (DSC) and universal mechanical tester were used to analyse respective thermal and mechanical properties of the grafted fibres. The results of these analyses provide strong evidence for successful grafting of VBC onto nylon-6, and the variation in the properties of the grafted fibres depends on DG. - Highlights: • Modification of nylon-6 fibres by radiation induced grafting of VBC in methanol. • Establishment of relations between DG and reaction parameters. • Evidence of VBC grafting was provided by FTIR, SEM, XRD, DSC and TGA. • The properties of VBC-grafted nylon-6 fibres depend on DG. • Amendable VBC-grafted nylon-6 fibres retain favourable properties

  10. Graft polymerization using radiation-induced peroxides and application to textile dyeing

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Ichiro, E-mail: enomoto.ichiro@iri-tokyo.j [Tokyo Metropolitan Industrial Technology Research Institute, KFC Bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan); School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Katsumura, Yosuke [School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Kudo, Hisaaki [School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Soeda, Shin [Tokyo Metropolitan Industrial Technology Research Institute, KFC Bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan)

    2011-02-15

    To improve the dyeing affinity of ultra high molecular weight polyethylene (UHMWPE) fiber, surface treatment by radiation-induced graft polymerization was performed. Methyl methacrylate (MMA), acrylic acid (AA) and styrene (St) were used as the monomers. The grafting yields as a function of storage time after irradiation were examined. Although the grafting yield of St after the sulfonation processing was quite low compared with those of MMA and AA, it was successfully dyed to a dark color with a cationic dye. Some acid dyes can dye the grafted fiber with AA. The acid dye is distributed to the amorphous domains of the AA grafted fiber. The dyeing concentration depended on the grafting yield, and the higher the grafting yield the darker the dye color.

  11. Radiation-induced grafting of vinylbenzyl chloride onto a poly(ether ether ketone) film

    International Nuclear Information System (INIS)

    Hwang, Mi-Lim; Song, Ju-Myung; Ko, Beom-Seok; Sohn, Joon-Yong; Nho, Young-Chang; Shin, Junhwa

    2012-01-01

    In this study, the effects of various irradiation conditions including solvent, monomer concentration, total dose, and dose rate on the radiation grafting of a VBC monomer onto a PEEK aromatic hydrocarbon film for the preparation of a PVBC-grafted PEEK (PEEK-g-PVBC) film were investigated. The results show that the desired PVBC-grafted PEEK film can be prepared using a simultaneous irradiation grafting method, and that the degree of grafting (DOG) of the film is largely influenced by the irradiation conditions. Among the applied solvents, halogenated solvents, dichloromethane and chloroform, were found to be suitable for grafting. The successful preparation of the grafted film was confirmed using analytical instruments such as FT-IR, TGA, and SEM-EDX.

  12. Study on poly-electrolyte membrane of crosslinked PTFE by radiation-grafting

    International Nuclear Information System (INIS)

    Sato, Kohei; Ikeda, Shigetoshi; Iida, Minoru; Oshima, Akihiro; Tabata, Yoneho; Washio, Masakazu

    2003-01-01

    Polymer electrolyte fuel cell membrane based on crosslinked polytetrafluoroethylene (PTFE) [RX-PTFE] has been processed by radiation-grafting with reactive styrene monomers by γ-rays under atmospheric circumstances, and the characteristic properties of the obtained membranes have been studied. The grafting yields of styrene monomer onto RX-PTFE, which have various crosslinking densities, were in the range of 5-100%. At the reaction period of 24 h, the grafting yields for RX-PTFE with low crosslinking density, which was reacted at 60 deg. C, achieved 94%. As a tendency, the lower grafting temperature gives higher grafting ratio of styrene onto RX-PTFE. Moreover, the yields of subsequent sulfonation for all samples were close to 100%. Mechanical properties were decreased with increasing grafting yields; especially the membrane with higher grafting yields was brittle. Ion exchange capacity of sulfonated RX-PTFE reached 1.1 meq/g while maintaining the mechanical properties

  13. Radiation-grafting of acrylamide onto silicone rubber films for diclofenac delivery

    Science.gov (United States)

    Magaña, Hector; Palomino, Kenia; Cornejo-Bravo, Jose M.; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Bucio, Emilio

    2015-02-01

    This work focuses on the pre-irradiation grafting of acrylamide (AAm) onto silicone rubber films (SR) and evaluates the effect of gamma-ray radiation conditions on the grafting yield, which in turn may influence the performance of the grafted materials as components of drug-eluting devices. Pristine and modified SR were characterized using FTIR-ATR, DSC, TGA, swelling, and water contact angle analysis in order to elucidate the effects of AAm grafting onto SR. Grafted films with content in AAm ranging from 0.81% to 22.20% showed excellent cytocompatibility against fibroblasts, and capability to uptake the anti-inflammatory drug diclofenac. Amount of drug loaded directly correlated with the grafting degree of the films. Drug release studies were performed at pH 7.4 and 37 °C (physiological conditions). Most grafted films released the drug in a sustained way for at least three hours.

  14. Graft polymerization using radiation-induced peroxides and application to textile dyeing

    International Nuclear Information System (INIS)

    Enomoto, Ichiro; Katsumura, Yosuke; Kudo, Hisaaki; Soeda, Shin

    2011-01-01

    To improve the dyeing affinity of ultra high molecular weight polyethylene (UHMWPE) fiber, surface treatment by radiation-induced graft polymerization was performed. Methyl methacrylate (MMA), acrylic acid (AA) and styrene (St) were used as the monomers. The grafting yields as a function of storage time after irradiation were examined. Although the grafting yield of St after the sulfonation processing was quite low compared with those of MMA and AA, it was successfully dyed to a dark color with a cationic dye. Some acid dyes can dye the grafted fiber with AA. The acid dye is distributed to the amorphous domains of the AA grafted fiber. The dyeing concentration depended on the grafting yield, and the higher the grafting yield the darker the dye color.

  15. Study on non-ionic membrane prepared by radiation-induced graft polymerization

    International Nuclear Information System (INIS)

    Hegazy, E.-S.A.; Mokhtar, S.M.; Osman, M.B.S.; Mostafa, A.E.-K.B.

    1990-01-01

    The preparation of good hydrogel supported on polymeric material was carried out by means of direct radiation-induced graft polymerization of N-vinyl-2-pyrrolidone (NVP) onto low density polyethylene films (LDPE). The optimum conditions were determined, at which the grafting process occurred and suitable degrees of grafting were obtained with a homogeneous distribution of the graft chains throughout the polymer. The effect of different inhibitors, addition of ZnCl 2 and monomer concentration on the grafting yield was also studied. Some investigations and characterization on the prepared graft copolymer were investigated and the possibility of its practical use was discussed. Mechanical properties, thermal and chemical stability and hydrophilic properties of such prepared grafted films showed a great promise in some practical applications. (author)

  16. Modification of natural leather by grafting emulsion copolymerization technique

    International Nuclear Information System (INIS)

    Badran, A.S.; Nasr, H.E.; El-Halawany, N.R.; Mohamed, W.S.

    2005-01-01

    Grafting emulsion copolymerization of methyl methacrylate (MMA) with butyl acrylate of different molar ratios onto natural leather with different molar ratios was carried out using developed redox initiation system of potassium persulphate (PPS) as an oxidizing agent and some sodium bisulphite adducts as reducing agent, as well as sodium dodecyl sulphate (SDS) was used as an anionic emulsifier. The grafted leather was characterized via FTIR, SEM and thermal gravimetric analysis. Moreover, the grafted leather was evaluated through water absorption, tensile strength, dyeing performance and hardness measurements. The obtained results revealed that the physical and mechanical properties of the modified leather were enhanced

  17. Technique of radiation polymerization in fine art conservation: a potentially new method of restoration and preservation. [Uv and electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Garnett, J.L. (Univ. of New South Wales, Kensington, Australia); Major, G.

    1982-01-01

    The technique of using radiation polymerization for the restoration and preservation of art treasures is considered. The processes discussed include both radiation grafting and rapid cure procedures, particularly reactions initiated by uv and eb. Representative examples where the technique has already been used are treated including typical applications with paintings, tapestries, leather and archival repair. The structure of the monomers and oligomers used in both grafting and rapid cure systems is outlined. The experimental conditions where grafting may occur during radiation rapid cure processing are discussed. Possible future developments of the technique are outlined. 1 figure, 8 tables.

  18. Radiation induced graft copolymerization of methyl methacrylate onto chrome-tanned pig skins

    International Nuclear Information System (INIS)

    Pietrucha, K.; Pekala, W.; Kroh, J.

    1981-01-01

    Graft copolymerization of methyl methacrylate (MMA) onto chrome-tanned pig skins was carried out by irradiation with 60 Co γ-rays. The grafted polymethyl methacrylate (PMMA) chains were isolated by acid hydrolysis of the collagen backbone in order to characterize the graft copolymers. Proof of grafting was obtained through the detection of amino acid endgroups in the isolated grafts by reaction with ninhydrin. The grafting yield of MMA in aqueous emulsion was found to be higher than that for pure MMA and MMA in acetone. The degree of grafting increases with increasing monomer concentration in emulsion and reaches maximum at radiation dose ca 15 kGy. The yield of grafting is very high. The present paper reports the physical properties of chrome-tanned pig skins after graft polymerization with MMA in emulsion. Modified leathers are more resistant against water absorption and abrasion in comparison with unmodified ones. They have more uniform structure over the whole surface, greater thickness and stiffness. The mechanism of some of the processes occurring during radiation grafting of MMA in water emulsion on tanned leathers has been also suggested and discussed. (author)

  19. Radiation induced graft copolymerization of methyl methacrylate onto chrome-tanned pig skins

    Energy Technology Data Exchange (ETDEWEB)

    Pietrucha, K.; Pekala, W.; Kroh, J. (Lodz Univ. (Poland))

    1981-01-01

    Graft copolymerization of methyl methacrylate (MMA) onto chrome-tanned pig skins was carried out by irradiation with /sup 60/Co ..gamma..-rays. The grafted polymethyl methacrylate (PMMA) chains were isolated by acid hydrolysis of the collagen backbone in order to characterize the graft copolymers. Proof of grafting was obtained through the detection of amino acid endgroups in the isolated grafts by reaction with ninhydrin. The grafting yield of MMA in aqueous emulsion was found to be higher than that for pure MMA and MMA in acetone. The degree of grafting increases with increasing monomer concentration in emulsion and reaches maximum at radiation dose ca 15 kGy. The yield of grafting is very high. The present paper reports the physical properties of chrome-tanned pig skins after graft polymerization with MMA in emulsion. Modified leathers are more resistant against water absorption and abrasion in comparison with unmodified ones. They have more uniform structure over the whole surface, greater thickness and stiffness. The mechanism of some of the processes occurring during radiation grafting of MMA in water emulsion on tanned leathers has been also suggested and discussed.

  20. Research work of radiation induced graft polymerization for synthesis and modification of polymer materials in CRICI

    Energy Technology Data Exchange (ETDEWEB)

    Hu Fumin; Ma Xueming [Chenguan Research Institute of Chemical Industry, Chengdu (China)

    2000-03-01

    The direct and post radiation induced graft polymerization had been studied in CRICI (Chenguan Research Institute of Chemical Industry). The method consists of irradiation of various polymer substrates in the presence (or absence) of monomers in a liquid, saturated vapour or gaseous and non-saturated vapour. 1. Grafting of functional monomers. --- It is possible to divide the grafting into two main approaches for synthesis of functional polymer materials. The first is grafting of monomers attached required functional group such as unsaturated carboxylic acid (acrylic and methacrylic acid), unsaturated nitrogen containing (alkali) base (vinylpyridine), monomers with hydrophilic unionized and polar groups (acrylamide, N-vinylpyrrolidone glycidylmethacrylate) and so on. The second is grafting of monomers capable of continuing chemical modification after graft polymerization. This approach essentially expands synthetic possibility of RGP for preparing functional polymers. 2. The effect of some salts on aqueous solution graft polymerization. The grafting of AA or AAm onto PE by direct or post radiation method in the presence of Mohr's salt or cupric nitrate was studied in detail. 3. Radiation induced graft polymerization by gaseous phase of monomers. This method consists of irradiation or preirradiation of various polymer substrates in the presence (or absence for preirradiation) of monomer in a gaseous of nonsaturated vapour state. (J.P.N.)

  1. Radiation synthesis of chitosan beads grafted with acrylic acid for metal ions sorption

    International Nuclear Information System (INIS)

    Benamer, S.; Mahlous, M.; Tahtat, D.; Nacer-Khodja, A.; Arabi, M.; Lounici, H.; Mameri, N.

    2011-01-01

    Radiation-induced grafting of acrylic acid onto chitosan beads was performed in solution at a dose rate of 20.6 Gy/min of cobalt-60 gamma rays. The effect of absorbed dose on grafting yield was investigated. The characterization of the grafted material was performed by FTIR spectroscopy and the swelling measurements at different pHs. The grafting yield increased with the increase in dose, it reached 80% at 40 kGy irradiation dose. The removal of Pb and Cd ions from aqueous solutions was investigated with both ungrafted and grafted chitosan beads. The sorption behavior of the sorbents was examined through pH, kinetics and equilibrium measurements. Grafted chitosan beads presented higher sorption capacity for both metal ions than unmodified chitosan beads. - Highlights: → Pb and Cd ions are removed from aqueous solution by adsorption on chitosan beads. → Crosslinking process improves chemical stability of chitosan beads. → Radiation grafting of acrylic acid onto chitosan improves its metal adsorption capacity. → Increase in grafting degree enhances the adsorption capacity of the material. → Gamma radiation is a powerful tool for an accurate control of the grafting yield.

  2. Research work of radiation induced graft polymerization for synthesis and modification of polymer materials in CRICI

    International Nuclear Information System (INIS)

    Hu Fumin; Ma Xueming

    2000-01-01

    The direct and post radiation induced graft polymerization had been studied in CRICI (Chenguan Research Institute of Chemical Industry). The method consists of irradiation of various polymer substrates in the presence (or absence) of monomers in a liquid, saturated vapour or gaseous and non-saturated vapour. 1. Grafting of functional monomers. --- It is possible to divide the grafting into two main approaches for synthesis of functional polymer materials. The first is grafting of monomers attached required functional group such as unsaturated carboxylic acid (acrylic and methacrylic acid), unsaturated nitrogen containing (alkali) base (vinylpyridine), monomers with hydrophilic unionized and polar groups (acrylamide, N-vinylpyrrolidone glycidylmethacrylate) and so on. The second is grafting of monomers capable of continuing chemical modification after graft polymerization. This approach essentially expands synthetic possibility of RGP for preparing functional polymers. 2. The effect of some salts on aqueous solution graft polymerization. The grafting of AA or AAm onto PE by direct or post radiation method in the presence of Mohr's salt or cupric nitrate was studied in detail. 3. Radiation induced graft polymerization by gaseous phase of monomers. This method consists of irradiation or preirradiation of various polymer substrates in the presence (or absence for preirradiation) of monomer in a gaseous of nonsaturated vapour state. (J.P.N.)

  3. Super water absorbent by radiation graft polymerization of acrylic monomers onto cassava starch

    International Nuclear Information System (INIS)

    Doan Binh

    2008-01-01

    Water superabsorbent gel has been applying in personal care, agriculture, medical supplies and water purification. In agricultural application, the gel will help to control soil erosion, limit loss of nutrients and slit for plants, decrease irrigation frequency, improve infiltration, and increase water retention in prolonged arid soil and droughts. The gel absorbs many times its weight in available water. The gel from poly(acrylamide) was developed in the 60's to grow plants in the deserts. The other gel from poly(acrylic acid) was used to absorb rapidly in baby diapers, sanitary napkins. These polymers are commonly produced from natural gas, which have recently been introduced as a soil conditioner with great success. Prior to these polymers, peat moss, agro-waste (sugar-cane waste, coffee-shell, etc.), activated kaolin were the alternative soil additives to hold water (20 times its weight), but poly(acrylamide) absorbs 400 times its weight and polyacrylate is capable of absorbing greater amounts of liquid than poly(acrylamide). In addition, starch and cellulose are biodegradable naturally occurring polymers, which are not capable of holding a great amount of water, but their modification by graft polymerization or crosslinking through radiation or chemical initiation techniques, they become the potential superabsorbent polymers. Radiation initiation of chemical reactions has been widely known for making novel materials because the degree of polymerization, grafting and crosslinking process can easily be controlled. Recently, it was shown that the starch and cellulose derivatives such as carboxymethyl starch, carboxymethyl starch can be synthesized by radiation-induced crosslinking at high concentrations. Their utilization in agriculture seems to be appropriately evaluated. In this article, the graft polymerization and crosslinking of acrylic acid onto cassava starch and field trial of its product (GAM-Sorb S) are reported. (author)

  4. Immobilization of enzymes and antibodies to radiation grafted polymers for therapeutic and diagnostic applications

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, A.S.; Gombotz, W.R.; Uenoyama, S.; Dong, L.C.; Schmer, G.

    1986-01-01

    Pre-irradiation and mutual radiation grafting were employed to produce poly(methacrylic acid) (MAAc) hydrogels on polypropylene/polyethylene (PP/PE) copolymer films, and porous PP fibers of a plasma filter. A diphenyl picryl hydrazyl (DPPH) assay was developed to measure the surface peroxide concentration of the pre-irradiated PP/PE films prior to grafting. Mutually grafted porous PP fibers were used for subsequent immobilization of L-asparaginase while the mutually grafted PP/PE films were used to immobilize a schistosoma monoclonal antibody.

  5. In-situ radiation grafting of polymer films and degradation studies of monomers for applications in fuel cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Mitov, S.

    2007-02-15

    The present work consists of three parts which deal with the optimization of the properties of polymers finding application as proton exchange membranes in PEMFCs. The focus is the oxidative and photochemical stability of non-fluorinated polymer membranes, as well as the radiation-induced grafting of commercially available fluoropolymer films. The use of the ESR technique is common for the first two parts of the dissertation. ESR spectroscopy is the major method of study, because of its sensitivity and specificity for the detection of radical intermediates. It is a suitable spectroscopic technique to identify the nature of radiation generated radicals in organic polymers, and to monitor their concentration in-situ during the grafting process. The third part comprises the results and discussions of DFT calculations for non-fluorinated and fluorinated fragments.

  6. Development of a water purifier for radioactive cesium removal from contaminated natural water by radiation-induced graft polymerization

    Science.gov (United States)

    Seko, Noriaki; Hoshina, Hiroyuki; Kasai, Noboru; Shibata, Takuya; Saiki, Seiichi; Ueki, Yuji

    2018-02-01

    Six years after the Fukushima-nuclear accident, the dissolved radioactive cesium (Cs) is now hardly detected in environmental natural waters. These natural waters are directly used as source of drinking and domestic waters in disaster-stricken areas in Fukushima. However, the possibility that some radioactive Cs adsorbed on soil or leaves will contaminate these natural waters during heavy rains or typhoon is always present. In order for the returning residents to live with peace of mind, it is important to demonstrate the safety of the domestic waters that they will use for their daily life. For this purpose, we have synthesized a material for selective removal of radioactive Cs by introducing ammonium 12-molybdophosphate (AMP) onto polyethylene nonwoven fabric through radiation-induced emulsion graft polymerization technique. Water purifiers filled with the grafted Cs adsorbent were installed in selected houses in Fukushima. The capability of the grafted adsorbent to remove Cs from domestic waters was evaluated for a whole year. The results showed that the tap water filtered through the developed water purifier contained no radioactive Cs, signifying the very effective adsorption performance of the developed grafted adsorbent. From several demonstrations, we have commercialized the water purifier named "KranCsair®". Furthermore, we have also developed a method for the mass production of the grafted nonwoven fabric. Using a 30 L grafting reactor, it was possible to produce the grafted nonwoven fabric with a suitable range of degree of grafting. When an irradiated roll of nonwoven trunk fabric with a length of 10 m and a width of 30 cm was set in the reactor filled with glycidyl methacrylate (GMA), AMP, Tween 80 monomer emulsion solution at 40 °C for 1 h, the difference of Dgs in the length and the width on roll of fabrics was negligible.

  7. Modification of polyetherurethane for biomedical application by radiation induced grafting. II. Water sorption, surface properties, and protein adsorption of grafted films

    International Nuclear Information System (INIS)

    Jansen, B.; Ellinghorst, G.

    1984-01-01

    A series of polyetherurethane films grafted by means of gamma radiation with hydrophilic or reactive monomers (2-hydroxyethyl methacrylate, 2,3-epoxypropyl methacrylate, 2,3-dihydroxypropyl methacrylate, and acrylamide) and partially chemically modified were subjected to various physico-chemical investigation methods involving water sorption, contact angle, and protein adsorption measurements. From contact angle data the interfacial free energy gamma sw between grafted films and water was calculated. It was found that the water uptake of grafted films increases with grafting yield or, in the case of grafted and afterwards chemically modified films, with reaction yield; the diffusion coefficient of water in the modified films also increases with grafting yield. Contact angle studies revealed all grafted films to have surfaces more hydrophilic than the ungrafted trunk polymer. The degree of hydrophilicity--especially of HEMA-grafted films--strongly depends on grafting conditions. For some grafted samples with high surface hydrophilicity very low interfacial free energies approaching zero were measured. The study of the competitive adsorption of bovine serum albumin, gamma-globulin, and fibrinogen from a synthetic protein solution onto modified films showed that the adsorption of albumin increases markedly with increasing grafting yields, whereas the fibrinogen and gamma-globulin adsorption only slightly increases. A correlation between interfacial free energy and protein adsorption in the sense of the minimum interfacial free energy hypothesis was found only for samples with grafting yields below 5%. At higher grafting yields the increased surface area complicates the analysis

  8. Chemical structure of chromium(III) crosslinked collagen-poly(methyl methacrylate) copolymers in radiation grafting

    International Nuclear Information System (INIS)

    Pietrucha, K.

    1991-01-01

    Upon γ-irradiation of aqueous emulsions of methyl methacrylate embedded into chrome tanned skin, the formation of graft copolymers is observed. The number-average molecular weight of the grafted poly(methyl methacrylate) side chains was in the range of 430000 (for a dose of 10 kGy) and practically independent of grafting degree. However, the number of branches per graft copolymer molecule increases from 0.3 to 0.8 when the degree of grafting increases from 32% to 88%. Similarly, the radiation yield, i.e. the number of branches formed per 100 eV of energy absorbed in the substrate polymer increases from 0.75 to 1.94. The value and meaning of molecular weight of graft copolymer is discussed along with the mechanism of polymer chain termination. (author) 14 refs.; 3 figs.; 4 tabs

  9. Radiation graft post-polymerization of sodium styrene sulfonate onto polyethylene

    International Nuclear Information System (INIS)

    Kitaeva, N.K.; Duflot, V.R.; Ilicheva, N.S.

    2013-01-01

    Post-irradiation grafting of sodium styrene sulfonate (SSS) in the presence of acrylic acid (AA) has been investigated on polyethylene (PE) pre-exposed to gamma radiation at room temperature in the air. Special attention was paid to the effect of low molecular weight salt additives on the kinetics of graft copolymerization of SSS and AA. The presence of SSS links in the grafted PE copolymers was detected by the methods of UV and FTIR spectroscopy. Based on the FTIR spectroscopy and element analysis data, a mechanism was proposed for graft copolymerization of SSS and AA onto PE. The mechanical properties of the graft copolymers were studied. It was established that PE copolymers grafted with sulfonic acid and carboxyl groups have higher strength characteristics (16.3 MPa) compared to the samples containing only carboxyl groups (11 MPa). (author)

  10. Post radiation grafting of vinyl acetate onto low density polyethylene films: preparation and properties of membrane

    International Nuclear Information System (INIS)

    Dessouki, A.M.

    1987-01-01

    Reverse osmosis membranes were prepared by the post radiation grafting of vinyl acetate onto low density polyethylene films. The factors affecting the grafting process such as radiation dose, monomer concentration and temperature on the grafting yield were studied. It was found that the dependence of the grafting rate on radiation intensity and monomer concentration was found to be of 0.64 and 1.4 order, respectively. The activation energy for this grafting system was calculated and found to be 4.45 kcal/mol above 30 0 C. Some properties of the grafted films such as specific electric resistance, water uptake, mechanical properties and thermal and chemical stability were investigated. An improvement in these properties was observed which makes possible the use of these membranes in some practical applications. The use of such membranes for reverse osmosis desalination of saline water was tested. The effect of operating time, degree of grafting and applied pressure on the water flux and salt rejection were determined. The results showed salt rejection percent over 90% and a reasonable water flux. A suitable degree of grafting of the membrane was determined as well as the optimum applied pressure. (author)

  11. A study on radiation-induced graft copolymerization of monomer onto natural silk fabric

    International Nuclear Information System (INIS)

    Xiang Zhengyu; Wan Dairong; He Qian

    1995-02-01

    In order to improve the properties of natural silk fabric, the mechanism and method of the radiation induced graft copolymerization of monomers onto natural silk fabric were studied. Three monomers, acrylamide, methylacrylamide and hydroxymethyl acrylamide, were selected for grafting test according to requirements of graft processing. The processing conditions of monomer infusion were studied. The properties of grafted samples were measured. The results are as follows: the rate of weight increasing is 10%∼29%; the rate of thickness increasing is 5%∼20%; the abrupt elasticity rose by 30%; the retarded elasticity rose by 12%; wet elasticity rose by 40%; and the brightness of colour and lustre were improved. It is concluded that while the radiation grafted silk kept its natural characteristics, other properties were improved. It became even chubby and thicker. (4 refs., 3 figs., 3 tabs.)

  12. Materials of 4. Spring School of Radiation Sterilization of Medical Materials, Grafts, Pharmaceutics and Cosmetics

    International Nuclear Information System (INIS)

    1997-01-01

    The state of art in well developed in Poland radiation technologies has been done. The legal and economical aspects have been discussed for radiation sterilization of health care products, drugs, biomaterials and grafts. Industrial plants and radiation procedures have been described. The perspectives for further development and other industrial applications have been also discussed

  13. Functionalization of Polymer Surfaces by Radiation-Induced Grafting for Separation of Heavy Metal Ions

    Energy Technology Data Exchange (ETDEWEB)

    Przybytniak, G; Kornacka, E M; Fuks, L; Walo, M; Lyczko, K; Mirkowski, K [Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw (Poland)

    2012-09-15

    The reported investigations were focused on the elucidation of the most important factors influencing radiation-induced grafting; particularly (1) the effect of radical population generated in polymeric matrix on degree of grafting, (2) parameters determined grafting and its procedure, (3) correlation between layer structure formed via copolymerization and content of monomers in the initial solution. Sorption capacity of the adsorbants was evaluated using {sup 152}Eu{sup 3+} as a marker monitoring depletion of the radioisotope from the initial solution by gamma radiometer. Electron spin resonance spectroscopy (EPR) and gas chromatography (GC) studies confirmed that yield of radiation-induced radicals increases in the following order polystyrene (PS) < polypropylene (PP) < polyethylene (PE). The same relationship was found for efficiency of radiation grafting. It was concluded that under comparable conditions the content of radicals in polymeric matrices determines grafting degree. It was found that application of the simultaneous method of grafting introduces to the grafted layers crosslinking or/and branching as well as degradation of functional groups. All these phenomena reduce access of Eu{sup 3+} to the studied sorbent therefore sorption capacity of the polyamide functionalized via pre-irradiation (indirect) method is higher than that determined for the sorbent prepared by simultaneous method of grafting. When two monomers, acrylic acid (AAc) and acrylamide (AAm) , contributed in the formation of grafted layer, their input into copolymerization was not proportional to the concentrations in the feed solution. It was confirmed that grafting of the monomers shows synergetic effect as the yield of copolymerization exceeds degree of grafting achieved for individual components. (author)

  14. Radiation-assisted grafting of vinylidene chloride onto high-density polyethylene

    Science.gov (United States)

    Nagesh, N.; Dokhale, P. A.; Bhoraskar, V. N.

    1999-06-01

    6 MeV electrons and Co-60 icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/>-rays were used for grafting vinylidene chloride (VDC) onto high-density polyethylene (HDPE) samples. The HDPE samples were immersed in vinylidene chloride and irradiated either with Co-60 icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/>-rays or with 6 MeV electrons. In both cases, the radiation dose was varied in the range 1.25-7.5 kGy. The grafted samples were characterized by IR spectroscopy to obtain information about the chemical bonds and with the 14 MeV neutron activation analysis technique for estimating the number of chlorine atoms. The formation of stable bonds between the VDC molecules and the polymer chains could be achieved either with 6 MeV electrons or with Co-60 icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/>-rays. Both the number of chlorine atoms and the sample-surface conductivity increased with the radiation dose but the increases achieved with 6 MeV electrons were greater than those achieved with Co-60 icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/>-rays.

  15. An Engineering Scale Study on Radiation Grafting of Polymeric Adsorbents for Recovery of Heavy Metal Ions from Seawater

    International Nuclear Information System (INIS)

    Prasad, Tl; Saxena, Ak; Tewari, Pk; Sathiyamoorthy, D

    2009-01-01

    The ocean contains around eighty elements of the periodic table and uranium is also one among them, with a uniform concentration of 3.3 ppb and a relative abundance factor of 23. With a large coastline, India has a large stake in exploiting the 4 billion tonnes of uranium locked in seawater. The development of radiation grafting techniques, which are useful in incorporating the required functional groups, has led to more efficient adsorbent preparations in various geometrical configurations. Separation based on a polymeric adsorbent is becoming an increasingly popular technique for the extraction of trace heavy metals from seawater. Radiation grafting has provided definite advantages over chemical grafting. Studies related to thermally bonded non woven porous polypropylene fiber sheet substrate characterization and parameters to incorporate specific groups such as acrylonitrile (AN) into polymer back bones have been investigated. The grafted polyacrylonitrile chains were chemically modified to convert acrylonitrile group into an amidoxime group, a chelating group responsible for heavy metal uptake from seawater/brine. The present work has been undertaken to concentrate heavy metal ions from lean solutions from constant potential sources only. A scheme was designed and developed for investigation of the recovery of heavy metal ions such as uranium and vanadium from seawater

  16. Dose Rate Effect on Grafting by Gamma Radiation of DMAEMA onto Flexible PVC

    International Nuclear Information System (INIS)

    Panzarini, L.C.G.A.; Araujo, F.D.C.; Martinello, V.C.; Somesari, E.; Manzoli, J.E.; Silveira, C.; Paes, H.A.; Moura, E.

    2009-01-01

    Intravenous tubing, blood bags and catheters stays in contact with blood and body fluids. They are normally made by flexible PVC. The contact of PVC with this fluid is not possible for long periods and there is the necessity of addition of non-thrombogenic substances into blood. This work shows the radiation grafting process to produce copolymer PVC-g-DMAEMA, a new material that allows a future grafting of Heparin on it, and will have the perspective of avoiding undesirable substances additions to blood or body fluid contact. In this preliminary work, only radiation dose rate effect on grafting was studied

  17. Production of sorption-active polypropylene fibers by radiation-induced grafting of glycidyl methacrylate as a precursor monomer

    International Nuclear Information System (INIS)

    Bondar, Yu.V.; Kim, H.J.; Lim, Y.J.

    2006-01-01

    The design and development of sorption-active natural and synthetic polymer fibers and textile materials is of great scientific and practical interest. The advantages of that type of polymeric adsorbents, as their highly developed specific surface, excellent ion-exchange and adsorption parameters and ease of their use especially under continuous conditions, allow them to find a great application in the chemical, biomedical, ecological and industrial fields. To obtain functional polymer materials with the desired performance, the non-active polymer surface have to be modified. Among different innovative techniques used for the introduction of graft chains, the radiation-chemical method of initiation has some economical and ecological preferences over others. It allows to introduce into inert polymeric matrix chains of a monomer already containing a desirable functional group, or to graft chains of a precursor-monomer and subsequently its chemical modification to form required functional groups. At present an epoxy-group containing monomer, glycidyl methacrylate (GMA), is successfully used as a precursor-monomer for production of polymeric adsorbents of variety applications on the base of membranes, films, fibers and fabrics. Two types of sorption-active polypropylene fiber carrying strong-acid sulfonate groups and amino groups have been synthesized by radiation-induced graft polymerization of GMA, with subsequent chemical modification of the epoxy groups of poly-GMA graft chains. The effect of various polymerization parameters on the GMA grafting degree was investigated in detail. The epoxy ring-opening of poly-GMA graft chains with introduction of strong-acid sulfonate groups was carried out with sodium hydrogen sulfite in water-dimethylformamide solution at 70 deg C. The main peculiarities of the sulfonation reaction in depending on the reaction time and GMA grafting degree have been investigated. Amine groups were incorporated by treatment of the GMA-grafted

  18. An alternative graft fixation technique for scaphoid nonunions treated with vascular bone grafting.

    Science.gov (United States)

    Korompilias, Anastasios V; Lykissas, Marios G; Kostas-Agnantis, Ioannis P; Gkiatas, Ioannis; Beris, Alexandros E

    2014-07-01

    To present our experience with vascularized bone grafting based on the 1,2-intercompartmental supraretinacular artery for the management of established scaphoid nonunion and to investigate the efficacy of graft immobilization with a combination of Kirschner wires and transarticular external fixation. A retrospective chart and radiographic review was conducted for patients with the diagnosis of scaphoid nonunion of the proximal pole or the waist treated with the 1,2-intercompartmental supraretinacular artery-based vascularized graft and fixed with a combination of Kirschner wires and transarticular external fixation between 2007 and 2011. We observed 23 consecutive patients for a mean of 34 ± 4 months. All patients were males with mean age of 25 ± 5 years. All patients had scaphoid nonunion and associated humpback deformity. The mean duration of nonunion was 7 ± 1 months. All scaphoid nonunions united after the index procedure at a mean of 10 ± 1 weeks. Two patients had avascular necrosis of the proximal pole based on the preoperative magnetic resonance imaging findings. After surgery, deformity correction was achieved in all patients, as recorded by the decrease in the lateral intrascaphoid angle and the increase in the dorsal scaphoid angle. At the last follow-up, no patients reported wrist pain. The mean Disabilities of the Arm, Shoulder, and Hand score improved significantly from 32 ± 12 before the operation to 5 ± 3 at the last postoperative visit. All patients showed statistically significant improvement in the range of motion and the grip strength of the involved wrist. The results of this study support the combined use of Kirschner wires and transarticular external fixation for fixation of a 1,2-intercompartmental supraretinacular artery-based vascular bone graft in the treatment of scaphoid nonunions. Therapeutic IV. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  19. Use of a Barbed Suture Tie-Over Technique for Skin Graft Dressings: A Case Series

    Directory of Open Access Journals (Sweden)

    Kenneth M Joyce

    2015-05-01

    Full Text Available BackgroundA tie-over dressing is the accepted method to secure skin grafts in order to prevent haematoma or seroma formation. We describe the novel application of a barbed suture tie-over for skin graft dressing. The barbs act as anchors in the skin so constant tensioning of the suture is not required.MethodsFrom January 2014 to August 2014 we used the technique in 30 patients with skin defects requiring split-thickness or full-thickness grafts. Patient demographics, clinicopathological details and graft outcome were collected prospectively.ResultsThe majority of cases were carried out for split-thickness skin grafts (n=19 used on the lower limb (n=20. The results of this novel technique were excellent with complete (100% graft take in all patients.ConclusionsOur results demonstrate the clinical application of a barbed device for securing skin grafts with excellent results. We find the technique quick to perform and the barbed device easy to handle, which can be applied without the need for an assistant.

  20. Modeling and optimization aspects of radiation induced grafting of 4-vinylpyridene onto partially fluorinated films

    International Nuclear Information System (INIS)

    Nasef, Mohamed Mahmoud; Ahmad Ali, Amgad; Saidi, Hamdani; Ahmad, Arshad

    2014-01-01

    Modeling and optimization aspects of radiation induced grafting (RIG) of 4-vinylpyridine (4-VP) onto partially fluorinated polymers such as poly(ethylene-co-tetrafluoroethene) (ETFE) and poly(vinylidene fluoride) (PVDF) films were comparatively investigated using response surface method (RSM). The effects of independent parameters: absorbed dose, monomer concentration, grafting time and reaction temperature on the response, grafting yield (GY) were correlated through two quadratic models. The results of this work confirm that RSM is a reliable tool not only for optimization of the reaction parameters and prediction of GY in RIG processes, but also for the reduction of the number of the experiments, monomer consumption and absorbed dose leading to an improvement of the overall reaction cost. - Highlights: • Comparative study of radiation induced grafting of 4-VP onto PVDF and ETFE films. • Optimization of reaction parameters for both grafting systems was made using RSM. • Single factor design for both grafting systems was used as a reference. • Two quadratic regression models were developed for prediction of grafting yield. • RSM is an effective tool for handling grafting reactions under different conditions

  1. Desalination by electrodialysis with the ion-exchange membrane prepared by radiation-induced graft polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seong-Ho; Han Jeong, Young; Jeong Ryoo, Jae; Lee, Kwang-Pill E-mail: kplee@kyungpook.ac.kr

    2001-07-01

    Ion-exchange membranes modified with the triethylamine [-N(CH{sub 2}CH{sub 3}){sub 3}] and phosphoric acid (-PO{sub 3} H) groups were prepared by radiation-induced grafting of glycidyl methacrylate (GMA) onto the polyolefin nonwavon fabric (PNF) and subsequent chemical modification of poly(GMA) graft chains. The physical and chemical properties of the GMA-grafted PNF and the PNF modified with ion-exchange groups were investigated by SEM, XPS, TGA, and DSC. Furthermore, electrochemical properties such as specific electric resistance, transport number of K{sup +}, and desalination were examined. The grafting yield increased with increasing reaction time and reaction temperature. The maximum grafting yield was obtained with 40% (vol.%) monomer concentration in dioxane at 60 deg. C. The content of the cation- and anion-exchange group increased with increasing grafting yield. Electrical resistance of the PNF modified with TEA and -PO{sub 3} H group decreased, while the water uptake (%) increased with increasing ion-exchange group capacities. Transport number of the PNF modified with ion-exchange group were the range of ca. 0.82-0.92. The graft-type ion-exchange membranes prepared by radiation-induced graft copolymerization were successfully applied as separators for electrodialysis. (author)

  2. Modification of flax fibres by radiation induced emulsion graft copolymerization of glycidyl methacrylate

    International Nuclear Information System (INIS)

    Moawia, Rihab Musaad; Nasef, Mohamed Mahmoud; Mohamed, Nor Hasimah; Ripin, Adnan

    2016-01-01

    Flax fibres were modified by radiation induced graft copolymerization of glycidyl methacrylate (GMA) by pre-irradiation method in an emulsion medium. The effect of reaction parameters on the degree of grafting (DOG) such as concentration of bleaching agent, absorbed dose, monomer concentration, temperature and reaction time were investigated. The DOG was found to be dependent on the investigated parameters. The incorporation of poly(GMA) grafts in the bleached flax fibres was confirmed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The structural and mechanical changes were evaluated by X-ray diffraction (XRD) and mechanical tester, respectively. The results revealed that reacting bleached flax fibres irradiated with 20 kGy with 5% GMA emulsion containing 0.5% polyoxyethylene-sorbitan monolaurate (Tween 20) surfactant at 40 °C for 1 h led to a maximum DOG of 148%. The grafted fibres showed sufficient mechanical strength and hydrophobicity which make them promising precursors for development of adsorbents after appropriate chemical treatments. - Highlights: • Flax fibers were modified by radiation induced emulsion grafting of GMA. • Bleaching with 0.7 wt% Na-chlorite was essential for achieving high DOGs. • Effect of reaction parameters on the degree of grafting were established. • The incorporation of poly-GMA grafts was proved by SEM, FTIR and XRD. • The obtained poly-GMA grafted flax fibers have potential for adsorbent making.

  3. Thermosensitive membranes by radiation-induced graft polymerization of N-isopropyl acrylamide/acrylic acid on polypropylene nonwoven fabric

    International Nuclear Information System (INIS)

    Ikram, Saiqa; Kumari, Mamta; Gupta, Bhuvanesh

    2011-01-01

    Radiation-induced graft copolymerization of N-isopropylacrylamide (NIPAAm) and acrylic acid (AA) mixture was investigated on polypropylene nonwoven fabric to develop a thermosensitive material. The grafting was carried out using methanol, acetone and butanone as homopolymerization inhibitor in the reaction medium. Butanone was observed to give the maximum grafting. It was observed that the grafting is significantly influenced by the reaction conditions, such as radiation dose, monomer concentration, monomer ratio, solvent composition and reaction temperature. The degree of grafting increased as the AA and NIPAAm concentration in the reaction medium increased. The degree of grafting increased as the AA fraction in the NIPAAm/AA mixture increased. The temperature dependence of the grafting process is very much governed by the thermosensitive nature of the grafted chains right from the stage when initial grafting has taken place.

  4. Thermosensitive membranes by radiation-induced graft polymerization of N-isopropyl acrylamide/acrylic acid on polypropylene nonwoven fabric

    Energy Technology Data Exchange (ETDEWEB)

    Ikram, Saiqa; Kumari, Mamta [Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi-110025 (India); Gupta, Bhuvanesh, E-mail: bgupta@textile.iitd.ernet.i [Department of Textile Technology, Indian Institute of Technology, New Delhi-110016 (India)

    2011-01-15

    Radiation-induced graft copolymerization of N-isopropylacrylamide (NIPAAm) and acrylic acid (AA) mixture was investigated on polypropylene nonwoven fabric to develop a thermosensitive material. The grafting was carried out using methanol, acetone and butanone as homopolymerization inhibitor in the reaction medium. Butanone was observed to give the maximum grafting. It was observed that the grafting is significantly influenced by the reaction conditions, such as radiation dose, monomer concentration, monomer ratio, solvent composition and reaction temperature. The degree of grafting increased as the AA and NIPAAm concentration in the reaction medium increased. The degree of grafting increased as the AA fraction in the NIPAAm/AA mixture increased. The temperature dependence of the grafting process is very much governed by the thermosensitive nature of the grafted chains right from the stage when initial grafting has taken place.

  5. Radiation grafting from binary mixtures of vinyl ether of mono ethanol amine with N-vinylpyrrolidone and vinyl ether of ethylene glycol onto polyolefins films and metallization of obtained films

    International Nuclear Information System (INIS)

    Al'-Saed Abdel' Aal'; Nurkeeva, Z.; Khutoryanskij, V.; Mun, G.; Sangajlo, M.

    2003-01-01

    Radiation grafting from binary mixtures of vinyl ether of mono ethanol amine with N-vinylpyrrolidone and vinyl ether of ethylene glycol onto polyolefins films using γ-radiation and accelerated electrons has been studied. IR-spectroscopy is used to confirm the structure of grafted films. A combination of and metallization of obtained films. A combination of gravimetric and potentiometric techniques is applied to determine the fraction of each monomer in graft copolymer. Water uptake and contact angle measurements confirmed that the grafting process improve the hydrophilic properties of obtained films. The obtained materials are metallized by electroless copper plating. The metallized films have good electro conductive properties. (author)

  6. Radiation-grafting of flame retardants on flax fabrics - A comparison between different flame retardant structures

    Science.gov (United States)

    Teixeira, Marie; Sonnier, Rodolphe; Otazaghine, Belkacem; Ferry, Laurent; Aubert, Mélanie; Tirri, Teija; Wilén, Carl-Eric; Rouif, Sophie

    2018-04-01

    Three unsaturated compounds bearing respectively phosphate, aryl bromide and sulfenamide moieties were used as flame retardants (FR) for flax fabrics. Due to the presence of carbon-carbon double bonds, radiation-grafting was considered to covalently bond these FR onto fiber structure. Grafting efficiency and location of FR molecules were investigated by weight measurements and SEM-EDX observations. Flammability and especially self-extinguishment were assessed by thermogravimetric analysis, pyrolysis-combustion flow calorimetry and a non-standardized fire test already used in previous studies. All FRs were able to diffuse into elementary fiber bulk. Nevertheless only the phosphonated monomer (noted FR-P) was significantly grafted onto flax. Self-extinguishment was obtained for fabrics containing at least around 0.5 wt% of phosphorus. On the contrary the FR content of flax fibers after radiation-grafting procedure and washing was negligible for FR-S and FR-Br, evidencing that these molecules have not been grafted upon irradiation. Moreover, the combination of these molecules prevents the radiation-grafting of other molecules which showed good grafting rate when used alone.

  7. Proceedings of 3. autumn school of radiation sterilization of medical utensils and grafts; 3. jesiennea szkola sterylizacji radiacyjnej sprzetu medycznego i przeszczepow

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Polish experience and review of worldwide development of radiation techniques and technologies have been presented and discussed in the field of radiation sterilization of medical supplies and grafts as well as for food processing. These problems have found now in Poland industrial or pilot plant solutions. Also some technologies connected with medical utensils production from with polymeric material resistant for radiation have been developed in Poland.

  8. Proceedings of 3. autumn school of radiation sterilization of medical utensils and grafts; 3. jesiennea szkola sterylizacji radiacyjnej sprzetu medycznego i przeszczepow

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Polish experience and review of worldwide development of radiation techniques and technologies have been presented and discussed in the field of radiation sterilization of medical supplies and grafts as well as for food processing. These problems have found now in Poland industrial or pilot plant solutions. Also some technologies connected with medical utensils production from with polymeric material resistant for radiation have been developed in Poland.

  9. Synthesis and characterization of radiation grafted films for removal of arsenic and some heavy metals from contaminated water

    International Nuclear Information System (INIS)

    Chowdhury, M.N.K.; Khan, M.W.; Mina, M.F.; Beg, M.D.H.; Khan, Maksudur R.; Alam, A.K.M.M.

    2012-01-01

    Grafting of styrene/maleic anhydride and methyl methacrylate/maleic anhydride binary monomers onto the low density polyethylene film was performed using the γ-ray irradiation technique. Then, the synthesized grafted films were treated with different ammonia derivatives for developing chelating functionalization. These chelating products were characterized by the gravimetric method as well as by the Fourier transformed infrared spectroscopic method, and were used for removal of arsenic and some heavy metals from aqueous solutions. The optimum absorbed dose of 30 kGy reveals the graft yielding of about 325% in the films. Uptake of arsenic and some heavy-metal ions (Cr(III), Mn(II), Fe(III), Ni(II), Cu(II) and Pb(II)) from contaminated water by the chelating functionalized films (CFF) was examined by an atomic absorption spectrophotometer. The maximum arsenic removal capacity of 5062 mg/kg has been observed for the film treated with hydroxylamine hydrochloride. The CFF prepared by semicarbazide and thiol analogs show affinity toward the metal ions with an order: Cu(II)>Fe(III)>Mn(II) etc. The results obtained from this study indicate that the functionalized films show good chelating and ion-exchange property for metal ions. - Highlights: ► Optimization of radiation dose for grafting reaction of polyethylene with binary monomers. ► Chelating functionalization of grafted film with various amine compounds. ► Characterization of both grafted and chelating functionalized films. ► Proposed mechanism for both grafting and chelating functionalization reaction. ► Application of the synthesized films for the removal of arsenic and some heavy metals from contaminated water.

  10. Pedicle omental graft created by laparoscopic surgery for filling a radiation-induced ulcer in a woman with breast cancer

    International Nuclear Information System (INIS)

    Ida, Katsuya

    2002-01-01

    In patients with advanced or recurrent breast cancer, it is difficult to reconstruct chest wall ulcers due to postoperative irradiation, which is often infected. We present a laparoscopic technique for creating and mobilizing an omental flap. A 63-year-old woman diagnosed with parasternal lymph node metastases from left breast cancer 11 months after standard radical mastectomy underwent lymph node resection with radiation therapy. She developed ulceration of the irradiated chest wall 3 years and 10 months later. An omental flap obtained by laparoscopy was used to fill the space after the radiation-induced ulcer was resected and covered with a free skin graft. The skin graft adapted to the omentum. This laparoscopic procedure is more cosmetrically acceptable and less invasive than laparotomy in obtaining the omentum while yielding equivalent results in chest wall reconstruction. (author)

  11. Pedicle omental graft created by laparoscopic surgery for filling a radiation-induced ulcer in a woman with breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ida, Katsuya [Kosai General Hospital, Shizuoka (Japan)

    2002-06-01

    In patients with advanced or recurrent breast cancer, it is difficult to reconstruct chest wall ulcers due to postoperative irradiation, which is often infected. We present a laparoscopic technique for creating and mobilizing an omental flap. A 63-year-old woman diagnosed with parasternal lymph node metastases from left breast cancer 11 months after standard radical mastectomy underwent lymph node resection with radiation therapy. She developed ulceration of the irradiated chest wall 3 years and 10 months later. An omental flap obtained by laparoscopy was used to fill the space after the radiation-induced ulcer was resected and covered with a free skin graft. The skin graft adapted to the omentum. This laparoscopic procedure is more cosmetrically acceptable and less invasive than laparotomy in obtaining the omentum while yielding equivalent results in chest wall reconstruction. (author)

  12. Ion-containing reverse osmosis membranes obtained by radiation grafting method

    International Nuclear Information System (INIS)

    Hegazy, E.-S.A.; El-Assy, N.B.; Dessouki, A.M.; Shaker, M.M.

    1989-01-01

    Cationic membranes obtained by radiation grafting of aqueous acrylic acid onto low density polyethylene films followed by alkaline treatment to confer ionic character in the graft chains, were tested for reverse osmosis desalination of saline water. Selected physical properties of such membranes were investigated. The grafted membranes possess good mechanical and electrical properties. Water uptake for the alkali-treated membrane was much higher than that of the alkali-untreated one. The effect of operation time, degree of grafting, applied pressure and feed concentration on the water flux and salt rejection for the grafted membranes was investigated. Such cationic membranes showed good durability, thermal and chemical stability, acceptable water flux and salt rejection which may make them acceptable for practical use in reverse osmosis desalination of sea water. (author)

  13. Some investigations on the post radiation grafting of acrylamide onto polyethylene films

    International Nuclear Information System (INIS)

    Hegazy, E-S.A.; El-Dessouky, M.M.; El-Sharabasy, S.A.

    1986-01-01

    A study has been made on the post radiation grafting of aqueous acrylamide onto low density polyethylene film. It was found that the addition of 0.05 wt % Mohr's salt reduced effectively the homopolymerization of acrylamide and the grafting process was successfully achieved. The dependence of the grafting rate on the preirradiation dose and monomer concentration was found to be of 1.43 and 1.4 order, respectively. The overall activation energy for the graft polymerization was found to be 13.5 and 1.95 Kcal/mol below and above 45 0 C, respectively. Some properties of the graft co-polymer such as swelling behaviour, electrical conductivity, and reverse osmosis desalination of saline water (water flux and salt rejection), were also investigated and the possibility of its uses in the practical applications was discussed. (author)

  14. Radiation graft copolymerization of n-butyl acrylate on natural rubber latex

    International Nuclear Information System (INIS)

    Sundardi, F.; Kadariah, S.

    1986-01-01

    A method of radiation graft copolymerization of n-butyl acrylate (NBA) on natural rubber (NR) latex has been studied. The rate of conversion increases with the increase of NBA in latex. An irradiation dose of about 12 kGy is needed to obtain 90% conversion with 40 phr of NBA in latex. Tensile strength, tear strength, and elongation at break of grafted NR are found to decrease with increasing degree of grafting. The physical strength of a vulcanizate prepared from a mixture of NR and ply-NBA was found to be better than that of NBA-NR graft copolymer vulcanizate. The graft copolymerization reaction takes place in the outer layer of NR particles, and because the secondary bonds between poly-NBA molecules may be weaker than those between NR molecules, the existence of a poly-NBA layer in NR particles will decrease its physical strength

  15. A Newly‑devised Technique for the Fixation of Mesh Skin Graft

    African Journals Online (AJOL)

    went skin graft using this technique. The ages ranged from. 9 months to 86 years (mean = 62.3 years). The skin defects included two burn ulcers, two decubitus, and 10 chronic leg ulcers. The size of the defects ranged from 20 cm2 to. 210 cm2. All grafts were accepted without complications. A 72-year-old man with a chronic ...

  16. Preparation of poly(ether ether ketone)-based polymer electrolytes for fuel cell membranes using grafting technique

    International Nuclear Information System (INIS)

    Hasegawa, Shin; Suzuki, Yasuyuki; Maekawa, Yasunari

    2008-01-01

    Poly(ether ether ketone) (PEEK)-based polymer electrolyte membranes (PEMs) was successfully prepared by radiation grafting of a styrene monomer into PEEK films and the consequent selective sulfonation of the grafting chains in the film state. Using milder sulfonation, the sulfonation reactions proceeded at the grafted chains in preference to the phenylene rings of PEEK main chains; as a result, the grafted films could successfully transform to a PEM with conductivity of more than 0.1 S/cm. The ion exchange capacity (IEC) and conductivity of the grafted PEEK electrolyte membranes were controlled to the ranges of 1.2-2.9 mmol/g and 0.03-0.18 S/cm by changing the grafting degree. It should be noted that this is the first example of directly transforming super-engineering plastic films into a PEM using radiation grafting

  17. Effect of crosslinking on the physico-chemical properties of radiation grafted PEM fuel cell membranes

    International Nuclear Information System (INIS)

    Mohamed Mahmoud Nasef; Hamdani Saidi

    2006-01-01

    The effect of crosslinking on the physico-chemical properties of radiation grafted proton conducting membranes (PFA-g-PSSA) was investigated. The membranes were prepared by radiation induced grafting of styrene/divinylbenzene (DVB) mixtures onto poly (tetrafluoroethylene-co-perfluorovinyl either) (PFA) films followed by sulfonation reactions. The variation of DVB content in the grafting mixture was in the range of 1-4 vol %. The equivalent weight, swelling, behavior and the proton conductivity of crosslinked membranes having equal degrees of grafting prepared found to be dependent predominantly on the level of crosslinking. The obtained membranes were found to posses a good combination of physico-chemical properties that is matching the commercial Nation 117 membranes

  18. Investigation and Characterization of Radiation Grafted Copolymers for Possible Practical Use in Waste Treatment

    International Nuclear Information System (INIS)

    El-Sayed Hegazy, A.; Abd El-Rahim, H.A.; Shawky, H.A.; Aly, H.F.

    1999-01-01

    Selective removal and recovery of metals from industrial effluent is an environmental problem and economic concern. There are a number of heavy metals that are candidates for removal prior to having waste solutions coming in contact with the environment. Therefore, a study has been made on the preparation of hydrophilic membranes having both anionic and cationic exchangers. To achieve such properties in the required membranes, a trial has been made on the radiation graft copolymerization of binary monomers possessing anionic and cationic exchangers such as acrylic acid /2- and 4- vinyl pyridine (AAc/2-VP) (AAc/4-VP) onto available commercial polymeric substrate such as low density polyethylene (LDPE). The preparation conditions at which the grafting process proceeds homogeneously are determined. Characterization and some selected properties of the prepared grafted membranes were studied and accordingly the possibility of its practicable use in waste water treatment from heavy and toxic metals such as Pb, Zn, Cd, Fe, ...etc, was investigated. The metal uptake by such prepared membranes was determined by using atomic absorption technique. The membrane efficiency and durability was investigated. The maximum uptake for a given metal was higher for the LDPE-g-P(AAc/2 VP) membranes than that for the LDPE-g-P(AAc/4 VP). The chelated metal ions were easily desorbed by treating the membrane with 0.1 N H CI for 2 h at room temperature. A mixture of two or three metals in the same feed solution was used to determine the selectivity of the membrane towards different metals. The results obtained for the prepared membranes showed a great promise for their applicability in the removal of heavy metals from wastewater

  19. Tumescent Anethesia : A Useful Technique For Harvesting Split- Thickness Skin Graft

    Directory of Open Access Journals (Sweden)

    Saraf Sanjay

    2004-01-01

    Full Text Available Tumescent anesthesia is a now an established technique for regional anesthesia of the skin and the subcutaneous fatty tissue. The unsurpassed simplicity and safely of this procedure have opened up the gates for newer indications. We have employed this technique for harvesting split-thickness grafts in various conditions. We have found that this technique is extremely simple in which large areas can be anesthetized for harvesting split-thickness skin grafts safely. The good passive resistance achieved facilitates easy harvesting of split-thickness grafts along with minimal bleeding and long lasting pain relief. We found this to be an inexpensive, safe and simple technique with elimination of risks and expenses of general anesthesia.

  20. Ionic membranes obtained by radiation-induced graft copolymerization, I-preparation. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Rehim, H A; Hegazy, E A [National Center for Radiation and Technology, Atomic Energy Authority, Cairo, (Egypt); Ali, A M.I.; Nowier, H G; Aly, H F [Hot Laboratories Center, atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    A study has been made on the preparation of ionic membranes by radiation-induced graft copolymerization of acrylic acid (AAC) onto low density polyethylene (LDPE) films. The Suitable conditions at which the grafting proceeds homogeneously were determined. To minimize the homo polymerization of AAC during irradiation process different types of inhibitors were investigated to find that the addition of Fe Cl{sub 3} (1.5 Wt%) effectively reduced such process when compared with other inhibitors used. The suitable diluent for this grafting system is found to be distilled water, methanol and methanol water mixture. The effect of diluent mixture composition, irradiation time, addition of mineral or organic acid and metal chlorides on the grafting yield and its homogeneity in the graft copolymer was determined. It was observed that the grafting yield increased as the content of water increased in MeOH/H{sub 2} O mixture. The addition of oxalic acid to the reaction medium enhanced the grafting process, however, the addition of HCl or H{sub 2} S O{sub 4} resulted in a more homogeneous grafting. The same effect was also observed when metal salts; namely N H{sub 4} Cl, NaCl and Cu Cl{sub 2} were added and resulted in homogeneous grafted membranes. The swelling and permeability of the grafted films prepared were also investigated. Results obtained in this study showed a great promise for the possible practical use of such prepared graft copolymers as a good hydrophilic membrane. The possibility of its use as an ion-exchange membrane for metal waste will be considered.4 figs., 5 tabs.

  1. Preparation of polymer electrolyte membranes for lithium batteries by radiation-induced graft copolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Nasef, Mohamed Mahmoud [Business and Advanced Technology Centre, Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia); Suppiah, Raja Rajeswary [Chemical Engineering Program, Universiti Teknologi Petronas, Bandar Seri Iskandar, 37150 Tronoh, Perak (Malaysia); Dahlan, Khairul Zaman Mohd [Malaysian Institute for Nuclear Technology Research, Bangi, 43000 Kajang (Malaysia)

    2004-07-30

    Polymer electrolyte membranes with different degrees of grafting were prepared by radiation-induced graft copolymerization of styrene monomer onto poly(vinylidene fluoride) (PVDF) films and subsequent chemical activation with liquid electrolyte consisting of lithium hexafluorophosphate (LiPF{sub 6}) in a mixture of ethylene carbonate/diethylene carbonate (EC/DEC). The chemical changes in the PVDF films after styrene grafting and subsequent chemical activation were monitored by FTIR spectroscopic analysis and the crystallinity was evaluated using differential scanning calorimetric (DSC) analysis. The swelling in electrolyte solution (electrolyte uptake) and the ionic conductivity of the membranes were determined at various degrees of grafting. The conductivity of the membranes was found to increase with the increase in the degree of grafting and reached a magnitude of 10{sup -3} S/cm at a degree of grafting of 50%. The results of this work suggest that radiation-induced graft polymerization provides an alternative method to substitute blending in preparation of polymer electrolyte membranes for application in lithium batteries.

  2. Biodiesel fuel production from waste cooking oil using radiation-grafted fibrous catalysts

    Science.gov (United States)

    Ueki, Yuji; Saiki, Seiichi; Hoshina, Hiroyuki; Seko, Noriaki

    2018-02-01

    Waste cooking oil, which can be used as a raw material for biodiesel fuel (BDF), contains two kinds of oil components: triglycerides (TGs) and free fatty acids (FFAs). Therefore, both alkaline-type and acid-type catalysts are needed to produce BDF from waste cooking oil. In this study, an alkaline-type grafted fibrous catalyst bearing OH- ions was synthesized by radiation-induced emulsion grafting of 4-chloromethylstyrene onto a polyethylene-coated polypropylene (PE/PP) nonwoven fabric, amination with trimethylamine, and further treatment with NaOH. Furthermore, an acid-type catalyst bearing H+ ions was synthesized by radiation-induced emulsion grafting of ethyl p-styrenesulfonate onto a PE/PP nonwoven fabric, saponification with NaOH, and protonation with HNO3. The OH- and H+ densities of the grafted fibrous catalysts were controlled by the grafting yield. The maximum OH- and H+ densities of the catalysts were 3.6 mmol-OH-/g-catalyst and 3.4 mmol-H+/g-catalyst, respectively. The performances of the catalysts were evaluated in the batchwise transesterification of TGs and ethanol, and the batchwise esterification of FFAs and ethanol. In both cases, TGs and FFAs were gradually converted into BDF. The mixed oil and four actual waste cooking oils, which contained both TGs and FFAs, were completely converted into BDF by sequential catalytic reactions with the acid-type grafted fibrous catalyst and then the alkaline-type grafted fibrous catalyst.

  3. Tissue banking and clinical research on radiation and ethylene oxide sterilization of tissue grafts

    International Nuclear Information System (INIS)

    Pe Khin

    1987-06-01

    The research works carried out in Rangoon, Burma under the Agency supported project RC4420/RB have dealt with an elucidation of the radiation interaction(s) with the species of biomolecules such as proteins, lipids, collagens, connective tissues present in the cleaned and freeze-dried non-viable tissue grafts. Radiation as a cool process furthermore effectively helps to destroy the microbial bioburden as the undesirable contaminants which may associate the tissue grafts. Radiation also concomitantly helps to suppress the tissue-specific immunogenicity. All these attributes of radiation induced effects have proved successful towards the development of a sterilization process. A series of non-viable tissue grafts, such as bone, nerve, fascia, dura, cartilage, chorion-amnion (as dressings in burn wounds) and tympanic membrane have been successfully attempted in Burma and many more possibilities seem to still remain unexplored. Radiation sterilization modality has proved as a blessing for the promotion of clinical surgical applications of tissue allografts in the corrective/reconstructive surgery on the disability cases due to diseases which accompany tissue losses. The investigator in Burma has reported on the case histories where freeze dried radiation sterilized tissue allografts have been successfully used in the osteogenic inductions (bone grafts); midear tympanoplasty; partial recovery of nerve sensation throught nerve allografts; rapid healing of high degree burn wounds through the use of amnion dressings. Besides, there have been a widespread surgical use of radiation sterilized dura and fascia as allografts. A national tissue banking facility has been established in Burma surrounding the processing and clinical utilization of tissue allografts which has involved over ten hospital centres throughout the country. Radiation induced effects on the biomolecules of clinical significance in the tissue grafts have been researched to help gain insight into a better

  4. Bone grafting in surgery about the foot and ankle: indications and techniques.

    Science.gov (United States)

    Fitzgibbons, Timothy C; Hawks, Michael A; McMullen, Scott T; Inda, David J

    2011-02-01

    Bone grafting is a common procedure in foot and ankle surgery. Historically, autogenous bone graft has most often been harvested from the ipsilateral iliac crest. However, other sites offer similar volumes of cancellous bone and are associated with fewer complications. The ipsilateral proximal tibia, distal tibia, and calcaneus provide adequate amounts of bone graft material for most arthrodesis procedures about the foot and ankle. Emerging techniques have enabled the development of a seemingly unlimited supply of alternative bone graft materials with osteoconductive properties. The osteoprogenitor cells in bone marrow aspirates can be concentrated by use of selective retention systems. These aspirate-matrix composites may be combined with allograft preparations, resulting in a product that promotes osteoconduction, osteoinduction, and osteogenesis with limited morbidity.

  5. Radiation induced graft copolymerization of acrylonitrile on natural rubber

    International Nuclear Information System (INIS)

    Claramma, N.M.; Mathew, N.M.; Thomas, E.V.

    1989-01-01

    Acrylonitrile graft natural rubber was prepared by initiating the polymerization of acrylonitrile in natural rubber field latex using γ-rays. The reaction was carried out at different rubber-monomer concentrations and the properties of the modified rubbers were compared with those of natural rubber and nitrile rubber. (author)

  6. Mechanical properties of human bone-tendon-bone grafts preserved by different methods and radiation sterilised

    International Nuclear Information System (INIS)

    Kaminski, A.; Gut, G.

    2008-01-01

    Full text: Patellar tendon auto and allografts are commonly used in orthopaedic surgery for reconstruction of the anterior crucial ligaments (ACL). Autografts are mainly used for primary reconstruction, while allografts are useful for revision surgery. To avoid the risk of infection diseases transmission allografts should be radiation-sterilised. As radiation-sterilisation is supposed to decrease the mechanical strength of tendon tissue, it is important to establish methods of allografts preservation and sterilisation resulting in their best quality and safety. Therefore, the purpose of the study was to compare the tensile strength of the central one third of human patellar tendon (as used for ACL reconstruction), preserved by different methods (deep fresh freezing, lyophilisation) and subsequently radiation-sterilised with doses of 0 (control), 25, 50 or 100 kGy. Bone-tendon-bone grafts were prepared from cadaveric human patella tendon with both patellar and tibial attachments. BTB grafts were preserved by deep freezing, glicerolisation or lyophilisation and radiation-sterilised with doses of 0 (control), 25, 50 or 100 kGy. To estimate mechanical properties all samples were subjected to tensile tests to failure using Instron system. Before these tests all lyophilised grafts were rehydrated. We found decrease of tensile strength of irradiated grafts compared to non-irradiated controls. Obtained results of the mechanical testing of studied grafts indicate their potential usefulness for clinical applications.(Author)

  7. A novel technique for distal fingertip replantation: Polypropylene suture guided interpositional vein graft.

    Science.gov (United States)

    Dadaci, Mehmet; Ince, Bilsev; Altuntas, Zeynep; Bitik, Ozan; Uzun, Hakan; Bilgen, Fatma

    2015-05-04

    Despite current advances in microsurgery, fingertip replantation is still controversial, mainly due to its difficulty and cost. The purpose of this study is to describe a new technique of interposition vein graft guided by polypropylene suture in distal fingertip replantation. A total of eight consecutive Tamai zone 1 fingertip replantations performed by the same author were included. All replantations were performed using interposition vein graft guided by polypropylene suture. This technique involved a vein graft of ∼ 2 cm, with appropriate calibration, obtained from the volar part of the forearm and a 2-0 polyprolene suture passed through the interposition vein graft. Then, a polypropylene suture guide carrying the vein graft was inserted into the artery. The anastomosis was easily performed with the aid of 10-0 or 11-0 nylon in a bloodless medium and without encountering the posterior wall problem. Average surgery time was 2.5 hours (range = 2-3 hours). Among eight Tamai zone 1 replantations, six were successful (75%). There were two replantations lost because of arterial failure. This technique may ease fingertip replantations and increase the success rate for Tamai zone 1 injuries.

  8. Radiation-grafting of acrylamide onto silicone rubber films for diclofenac delivery

    International Nuclear Information System (INIS)

    Magaña, Hector; Palomino, Kenia; Cornejo-Bravo, Jose M.; Alvarez- Lorenzo, Carmen; Concheiro, Angel; Bucio, Emilio

    2015-01-01

    This work focuses on the pre-irradiation grafting of acrylamide (AAm) onto silicone rubber films (SR) and evaluates the effect of gamma-ray radiation conditions on the grafting yield, which in turn may influence the performance of the grafted materials as components of drug-eluting devices. Pristine and modified SR were characterized using FTIR-ATR, DSC, TGA, swelling, and water contact angle analysis in order to elucidate the effects of AAm grafting onto SR. Grafted films with content in AAm ranging from 0.81% to 22.20% showed excellent cytocompatibility against fibroblasts, and capability to uptake the anti-inflammatory drug diclofenac. Amount of drug loaded directly correlated with the grafting degree of the films. Drug release studies were performed at pH 7.4 and 37 °C (physiological conditions). Most grafted films released the drug in a sustained way for at least three hours. - Highlights: • SR–g-AAm depends on dose, monomer concentration, and reaction time and temperature. • Diclofenac sodium salt is loaded and released in a sustained way from SR–g-AAm films. • SR–g-AAm films are cytocompatible and have potential as components of drug–device

  9. Radiation-induced grafting polymerization of MMA onto polybutadiene rubber latex

    International Nuclear Information System (INIS)

    Peng Jing; Wang Maolin; Qiao Jinliang; Wei Genshuan

    2005-01-01

    The grafting of methyl methacrylate (MMA) onto polybutadiene rubber latex by the direct radiation method was carried out. The effects of monomer concentration, absorbed dose and dose rate of gamma rays on the grafting yield were investigated. The graft copolymers were characterized by transmission electron microscopy (TEM), FTIR spectroscopy, and differential scanning calorimetry. TEM photographs revealed that the core-shell structures of latex particles are formed at low MMA content, and with the increasing of MMA content, the semi-IPN-like structure with core-shell could be developed due to the high gel fraction of polybutadiene (PBD) seed particles. In addition, infrared analysis confirmed that MMA could be grafted onto PBD molecular chains effectively under appropriate irradiation conditions. The interfacial adhesion between PBD rubber (core) and PMMA (shell) phases could be enhanced with the increase of MMA concentration

  10. Radiation-induced graft polymerization of acrylic acid onto fluorinated polymers: Pt. 2

    International Nuclear Information System (INIS)

    Abdel-Ghaffar, M.; Hegazy, E.A.; Dessouki, A.M.; El-Sawy, N.M.; El-Assy, N.B.

    1991-01-01

    Radiation induced grafting of acrylic acid onto poly (tetrafluoroethylene-perfluorovinyl ether) (PFA) films was investigated. The grafted films rapidly absorbed Fe 3+ , Co 2+ , Ni 2+ , and Cu 2+ ions in high efficiency. The polyacrylic acid grafted onto PFA acted as a chelating site for the previously selected transition metal ions. Such prepared copolymer-metal complexes were confirmed spectrophotometrically via IR, UV-spectrometry, X-ray fluorescence, X-ray diffraction, and colour index measurements. Electrical conductivity and mechanical properties of PFA grafted copolymer-metal complexes were investigated. The applications of such prepared copolymer-metal complexes in the field of semiconductors besides its performance as a cation-exchange membrane may be of great interest. (author)

  11. Electron beam instrumentation techniques using coherent radiation

    International Nuclear Information System (INIS)

    Wang, D.X.

    1997-01-01

    Much progress has been made on coherent radiation research since coherent synchrotron radiation was first observed in 1989. The use of coherent radiation as a bunch length diagnostic tool has been studied by several groups. In this paper, brief introductions to coherent radiation and far-infrared measurement are given, the progress and status of their beam diagnostic application are reviewed, different techniques are described, and their advantages and limitations are discussed

  12. Improvement of antithrombogenicity of a fluoro polymer by radiation-induced grafting of hydrophilic monomer

    International Nuclear Information System (INIS)

    Otsuhata, Kazushige; Razzak, M.T.; Tabata, Yoneho; Ohashi, Fumito; Takeuchi, Atsushi.

    1985-01-01

    Fluoro polymers have been used as biomaterials in medical field since they have good compatibility with both tissue and blood, and their biomaterial application are of variety. Blood compatibility of fluoro polymers, however, are not always enough for every applications. Especially, there is a large difficulty in the application for artificial vessel with small radius below than 4 mm. In the present study, grafting of a hydrophilic monomer onto a fluoro polymer has been carried out to improve blood compatibility of the fluoro polymer. The technique of grafting employed here was simultaneous irradiation method of gamma rays from a 60 Co source. The fluoro polymer and the hydrophilic monomer used in the experiment were alternative copolymer of ethylene and tetrafluoethylene(AFLON) and N,N-dimethylacry lamide(DMAA), respectively. After grafting, it was found by in vitro tests that antithrombogenicity of AFLON was improved by grafting of DMAA. It was, however, also found that degree of the improvement is affected by grafting conditions. When ethyl acetate was used as a solvent for the graft copolymerization, the improvement was affected by dose rate. Blood compatibility of DMAA-g-AFLON obtained at a higher dose rate of 1 x 10 5 rad/h was not improved, while it was improved in the sample of DMAA-g-AFLON obtained at a lower dose rate of 1 x 10 4 rad/h. On the other hand, when acetone was used as a solvent for the grafting, the degree of grafting gave a significant effect on the improvement. Blood compatibility of all samples with grafting percent more than 20 % was improved by grafting of DMAA. (author)

  13. Radiation grafting processes and properties of leathers modified with butyl acrylate

    International Nuclear Information System (INIS)

    Pietrucha, K.

    1982-01-01

    Conditions for radiation induced grafting with butyl acrylate dispersed in water emulsion onto chrome-tanned pig skins have been worked out for γ-rays and electron beam irradiations. The highest yield of grafting was observed at monomer concentration approximately 25% (w/w), dose equal to 25 kGy and dose rate not exceeding 10 MGy/h. At these conditions the yield of grafting attained a value approximately 25% and content of homopolymer in the leather amounted to 6%. The efficiency of monomer to polymer conversion decreases when the concentration of monomer in emulsion and dose rate increases. Yield of homopolymer is independent of the dose rate. An explanation of the observed relations has been proposed. The physical and used properties of grafted leathers were tested. Radiation processed leathers were found superior to samples finished by traditional methods. One has to point to better tolerance against chemical cleaning and reduced water take-up without loss of high permeability of water vapour, responsible for good hygienic properties of leather products. Recommendations for industrial scale radiation grafting are given. (author)

  14. Study on radiation grafting of NASI on sephadex and conjugation of the copolymer with BSA

    International Nuclear Information System (INIS)

    Yi Min; Li Jun; Wei Jinshan; Ha Hongfei

    1997-01-01

    N-acryloxysuccinimide (NASI) with a function ester group is grafted on Sephadex G75 and Sephadex G50 separately by radiation technology. The radiation grafting conditions including absorbed dose, dose rate, monomer concentration in solvent are investigated. The conjugation reactions between the grafted copolymers Sephadex G75-NASI, and bovine serum albumin (BSA) or Sephadex G50-NASI and bovine serum albumin (BSA) are followed. The experiment results show that the conjugate of Sephadex G75-NASI with larger holes and BSA (M r = 6.6 x 10 4 ) is obtained successfully, however, the Sephadex G50 with small holes can be only conjugated with neutral red (M r = 2.58 x 10 2 )

  15. The Use of Membranes Prepared by Radiation - Induced Grafting in Waste Water Treatment

    International Nuclear Information System (INIS)

    El-Arnaouty, M.B.; Abdel Aal, S.E.; Dessouki, A.M.

    2000-01-01

    Membranes were prepared by the radiation-induced grafting of N-vinylpyrrolidone onto low density polyethylene and the possibility for their practical use in the removal of two dyes: Acid red 116(Erionyl red 2B) and blue reactive (Brilliant bright blue) was studied. The effect of the degree of grafting on the adsorption of these pollutants was investigated and showed maximum adsorption occurred at 394 % grafting. Radiation degradation of the dyes with a dose of ∼ 5 KGy was followed by adsorption of the residual concentration of the dyes by the membranes, which resulted in the complete removal of these pollutants as well as the radiolysis products present in the irradiated solutions. Also, characterization of the membranes before and after adsorption was carried out using thermogravimetric analysis and scanning electron microscopy

  16. Synthesis and Characterization of PVP-Grafted-Starch Hydrogels Using Gamma Radiation

    International Nuclear Information System (INIS)

    Suwanmala, Phiriyatorn; Hemvichian, Kasinee; Sonsuk, Manit

    2004-10-01

    A Series of hydrogels were prepared from gelatinized cassava starch and vinylpyrrolidone by radiation-induced graft copolymerization. Gel fraction, swelling ratio and gel strength of the obtained hydrogels were characterized. The experimental results show that the swelling ratio is inversely dependent on the radiation dose. The results from PVP-grafted-starch were subsequently compared with those of PVP hydrogels and PVP-blended-starch hydrogels. It was found that the PVP-grafted-starch hydrogels, with gel fraction higher than 80% can be prepared at the dose of 10 kGy, while PVP and PVP-blended-starch hydrogels require at least 30 kGy to obtain gels with more than 80% gel fraction

  17. Radiation grafting of acrylamide and maleic acid on chitosan and effective application for removal of Co(II) from aqueous solutions

    Science.gov (United States)

    Saleh, Alaaeldine Sh.; Ibrahim, Ahmed G.; Elsharma, Emad M.; Metwally, Essam; Siyam, Tharwat

    2018-03-01

    The graft copolymerization has been proven as a superior polymerization technique because it combines the functional advantages of the grafted and base polymers. In this work, the radiation-induced grafting of acrylamide (AAm) and maleic acid (MA) onto chitosan (CTS) was developed and optimized by determining the grafting percentage and efficiency as a function of grafting conditions such as AAm, MA, and CTS concentrations, and absorbed dose. Fourier transform infrared spectroscopic analysis (FTIR) confirmed the graft copolymerization. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) further characterized the grafted copolymers and showed their high thermal stability. Using batch sorption experiments and 60Co as a radiotracer, poly(CTS-AAm) and poly(CTS-MA) were evaluated for Co(II) removal from aqueous solutions. The Co(II) removal increases with increasing time, pH, polymer, and Co(II) concentrations. Experimentally, P(CTS-AAm) and P(CTS-MA) show high sorption capacities of Co(II), i.e. 150 mg g-1 and 421 mg g-1, respectively, which makes them potential sorbents of Co(II) for water and wastewater treatment. Finally, the Co(II) sorption was examined using sorption isotherm and kinetic models. The sorption was best fitted to Langmuir model which suggests the sorption is of chemisorption type. On the other hand, the sorption kinetics was best represented by Elovich model which also indicates the chemical nature of Co(II) sorption on P(CTS-AAm) and P(CTS-MA).

  18. Study of the simultaneous grafting and heparinisation of poly(vinyl chloride), by gamma radiation

    International Nuclear Information System (INIS)

    Panzarini, Luz Consuelo Gonzalez Alonso

    2003-01-01

    This work had the objective of obtaining the PVC-co-DMAEMA-co-Heparin graft copolymer through process of simultaneous irradiation by γ-radiation coming from a 60 Co source with dose rate ranging between 0,5 and 0,8 kGy h -1 . Grafting parameters were evaluated in function of PVC film swelling time before irradiation, concentration of hydrophilic N,N-dimethylaminoethyl methacrylate (DMAEMA) monomer, radiation doses ranging between zero and 7,0 kGy, concentration of isopropyl alcohol and CUSO 4 as homopolymerization inhibitors varying from 0,02 mol L -1 to 1,0 mol L -1 . Preliminary studies allowed us to establish the concentration of DMAEMA at 30 and 45%. At these two studied concentrations, were observed the highest grafting levels when was utilized 0,02 mol L -1 concentrations of homopolymerization inhibitor. A study of grafting as a function of the dose showed an interdependence between the dose and DMAEMA concentration, where was achieved the highest grafting level at doses of 2,5 kGy and 5,0 kGy for the systems containing 45% and 30% of DMAEMA, respectively. Graft copolymer characterization, accomplished by Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) evidenced the largest grafting levels for the irradiated samples with 45% of DMAEMA, however heparin presence was only evident on irradiated samples with 30% of DMAEMA. Surface morphological analysis, carried out by scanning electronic microscopy, permitted us to notice that addition of heparin to the reaction medium (0.25% w/v) led to obtaining surfaces less rough than those ones observed in heparin absence, suggesting then a more homogeneous distribution of the graft chains. Evaluation of antithrombogenic properties of the graft copolymers, accomplished 'in vitro' through platelets adhesion test, showed that the increase of surface roughness affects the blood platelet activation mechanisms, leading consequently to a more thrombogenic surface. Analysis by means of electron paramagnetic

  19. The use of radiation-induced graft polymerization for modification of polymer track membranes

    International Nuclear Information System (INIS)

    Shtanko, N.I.; Kabanov, V.Ya.; Apel, P.Yu.; Yoshida, M.

    1999-01-01

    Track membranes (TM) made of poly(ethylene terephtalate) (PET) and polypropylene (PP) films have a number of peculiarities as compared with other ones. They have high mechanical strength at a low thickness, narrow pore size distribution, low content of extractables. However, TM have some disadvantages such as low chemical resistance in alkaline media (PET TM), the low water flow rate due to the hydrophobic nature of their surface. The use of radiation-induced graft polymerization makes it possible to improve the basic characteristics of TM. In this communication our results on the modification of PET and PP TM are presented. The modified membranes were prepared by radiation-induced graft polymerization from the liquid phase. Three methods of grafting were used: (a) the direct method in argon atmosphere; (b) the pre-irradiation of TM in air followed by grafting in argon atmosphere; (c) pre-irradiation in vacuum followed by grafting in vacuum without contacting oxygen. The aim of the work was to investigate some properties of TM modified by grafted poly(methylvinyl pyridine) (PMVP) and poly(N-isopropylacrylamide) (PNIPAAM). It was shown that the modification of TM with hydrophilic polymer results in the growth of the water flow rate. In the past few years many works have been devoted to the synthesis of new polymers - the so-called 'intelligent' materials - such as PNIPAAM. However, it is very difficult to make thin membranes of this polymer. Recently, it has been proposed to manufacture composite membranes by grafting stimulus-responsive polymers onto TM. Following this principle, we prepared thermosensitive membranes by the radiation-induced graft polymerization of N-isopropylacrylamide (NIPAAM) onto PET TM. PET TM with the pore size of about 1 μm and pore density of 10 6 cm -2 were first inserted into a solution of NIPAAM containing inhibitor of homopolymerization (CuCl 2 ) and then exposed to the γ-rays from a 60 Co source. The transport properties of the

  20. The use of radiation-induced graft polymerization for modification of polymer track membranes

    Science.gov (United States)

    Shtanko, N. I.; Kabanov, V. Ya.; Apel, P. Yu.; Yoshida, M.

    1999-05-01

    Track membranes (TM) made of poly(ethylene terephtalate) (PET) and polypropylene (PP) films have a number of peculiarities as compared with other ones. They have high mechanical strength at a low thickness, narrow pore size distribution, low content of extractables. However, TM have some disadvantages such as low chemical resistance in alkaline media (PET TM), the low water flow rate due to the hydrophobic nature of their surface. The use of radiation-induced graft polymerization makes it possible to improve the basic characteristics of TM. In this communication our results on the modification of PET and PP TM are presented. The modified membranes were prepared by radiation-induced graft polymerization from the liquid phase. Three methods of grafting were used: (a) the direct method in argon atmosphere; (b) the pre-irradiation of TM in air followed by grafting in argon atmosphere; (c) pre-irradiation in vacuum followed by grafting in vacuum without contacting oxygen. The aim of the work was to investigate some properties of TM modified by grafted poly(methylvinyl pyridine) (PMVP) and poly(N-isopropylacrylamide) (PNIPAAM). It was shown that the modification of TM with hydrophilic polymer results in the growth of the water flow rate. In the past few years many works have been devoted to the synthesis of new polymers - the so-called "intelligent" materials - such as PNIPAAM. However, it is very difficult to make thin membranes of this polymer. Recently, it has been proposed to manufacture composite membranes by grafting stimulus-responsive polymers onto TM. Following this principle, we prepared thermosensitive membranes by the radiation-induced graft polymerization of N-isopropylacrylamide (NIPAAM) onto PET TM. PET TM with the pore size of about 1 μm and pore density of 10 6 cm -2 were first inserted into a solution of NIPAAM containing inhibitor of homopolymerization (CuCl 2) and then exposed to the γ-rays from a 60Co source. The transport properties of the grafted

  1. Subacute radiation dermatitis: a histologic imitator of acute cutaneous graft-versus-host disease

    International Nuclear Information System (INIS)

    LeBoit, P.E.

    1989-01-01

    The histopathologic changes of radiation dermatitis have been classified either as early effects (necrotic keratinocytes, fibrin thrombi, and hemorrhage) or as late effects (vacuolar changes at the dermal-epidermal junction, atypical radiation fibroblasts, and fibrosis). Two patients, one exposed to radiation therapeutically and one accidentally, are described. Skin biopsy specimens showed an interface dermatitis characterized by numerous dyskeratotic epidermal cells with lymphocytes in close apposition (satellite cell necrosis); that is, the epidermal changes were similar to those in acute graft-versus-host disease. Because recipients of bone marrow transplants frequently receive total body irradiation as part of their preparatory regimen, the ability of radiation to cause persistent epidermal changes similar to those in acute graft-versus-host disease could complicate the interpretation of posttransplant skin biopsy specimens

  2. Correlation between morphology, water uptake, and proton conductivity in radiation-grafted proton-exchange membranes

    DEFF Research Database (Denmark)

    Balog, Sandor; Gasser, Urs; Mortensen, Kell

    2010-01-01

    An SANS investigation of hydrated proton exchange membranes is presented. Our membranes were synthesized by radiation-induced grafting of ETFE with styrene in the presence of a crosslinker, followed by sulfonation of the styrene. The contrast variation method was used to understand the relationship...

  3. Preparation of functionalized carbon nanotubes using radiation technique

    International Nuclear Information System (INIS)

    Chen Shimou; Wu Guozhong; Huang Shirong; Zhu Guanglai

    2006-01-01

    Carbon nanotubes (CNTs) have attracted great interest because of their unique structural, electronic, mechanical, and optical properties. However, the studies and applications of CNTs are hindered by processing and manipulation difficulties owing to their insolubility or poor dispersion in common solvents and polymeric matrixes. To facilitate their applications, many approaches were employed to functionalize CNTs with functional groups, either noncovalently or covalently. In our study, radiation technique was utilized to produce functionalized CNTs. In a typical experiment, multiwalled carbon nanotubes (MWNTs) were irradiated in potassium persulfate aqueous solution. Persulfnic group can react with hydrated electrons to produce sulfuric acid radicals, which can attack the c=c on the surface of tubes to form sulfonated MWNTs. On the other hand, grafting polymer (instead of low-molecular-weight compound) onto CNTs by an appropriate method is a possible strategy for preparing the nanotubes with little damage in structure and high solubility in solvent. A facile strategy to prepare water soluble MWNTs in large scale by two steps of gamma irradiation has been developed at SINAP. The first step is to irradiate MWNTs in ethanol. The radiolysis of ethanol produced many active species such as . CH 2 CH 2 OH, CH 3 . CHCH 2 OH, which react with C=C of MWNTs and attach onto the surface of MWNTs. Then, poly(acrylic acid) was covalently grafted to the surface of MWNTs by irradiating the samples in the presence of acrylic acid. The PAA-grafted MWNTs have good solubility in water and other polar solvents. This two-step grafting approach may also be of help for introducing other functional polymer chains onto MWNTs. (authors)

  4. Radiation induced grafting of tetrafluoroethylene on Nafion Films for ion exchange membrane application

    Energy Technology Data Exchange (ETDEWEB)

    Geraldes, Adriana Napoleao; Silva, Dionisio Furtunato da; Ferreto, Helio Fernando Rodrigues; Souza, Camila Pinheiro; Parra, Duclerc Fernandes; Lugao, Ademar Benevolo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Grafting of TFE nanocomposites onto Nafion was studied for synthesis of ion exchange membranes. Radiation-induced grafting of TFE gas onto Nafion films was investigated after simultaneous irradiation using a {sup 60}Co source. The thermal degradation of polytetrafluoroethylene (PTFE) waste has been used for production of TFE. Nafion films were irradiated at 15 kGy dose at room temperature and chemical changes were monitored after contact with TFE gas for grafting. The modified films were evaluated by differential scanning calorimetry analysis (DSC), thermogravimetric analysis (TG), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Characterization by XRD suggests crystallinity changes after TFE grafting. The ion exchange capacity (IEC) of membranes was determined by acid-base titration and the values for modified films were achieved similar to Nafion pristine films. DSC measurements revealed a displacement in the endothermic peaks and it was probably associated with the TFE graft. The graft forces the Nafion polymer chains to re-organize themselves and form a more cross-linked structure within the clusters. (author)

  5. Location of radiation-induced grafted chains in polymers studied by solid-state NMR

    International Nuclear Information System (INIS)

    Whittacker, A.; Liu, H.

    1998-01-01

    In this study styrene and N-phenyl maleimide monomers were grafted onto poly(ethylene) (PE) chains using gamma radiation. Of main interest is the distribution of grafted chains within the polymer matrix, as this will determine the efficacy of mixing with the glassy polymers. It is expected that grafting will occur within the amorphous regions, and especially near the interface of the crystalline and amorphous regions. A suitable method for characterising the location of the grafted chains is solid-state 13 C NMR spectroscopy. The 13 C CPMAS spectrum of the blend of PE and N-phenyl maleimide mixed in the melt at 150 deg C , prior to reaction, is shown above. The spectrum shows the typical peaks for poly(ethylene) due to the amorphous and crystalline phase at 30.5 and 32.5 ppm, respectively. Peaks are also seen in the aromatic and carbonyl region due to the maleimide (not plotted). Experiments will be described where the NMR magnetisation is prepared in either the crystalline and amorphous regions of the poly(ethylene) prior to spin diffusion to the maleimide and styrene fractions. The location of the grafted monomers can then be determined by monitoring the changes in signal of polymer and graft with time

  6. Radiation induced grafting of tetrafluoroethylene on Nafion Films for ion exchange membrane application

    International Nuclear Information System (INIS)

    Geraldes, Adriana Napoleao; Silva, Dionisio Furtunato da; Ferreto, Helio Fernando Rodrigues; Souza, Camila Pinheiro; Parra, Duclerc Fernandes; Lugao, Ademar Benevolo

    2011-01-01

    Grafting of TFE nanocomposites onto Nafion was studied for synthesis of ion exchange membranes. Radiation-induced grafting of TFE gas onto Nafion films was investigated after simultaneous irradiation using a 60 Co source. The thermal degradation of polytetrafluoroethylene (PTFE) waste has been used for production of TFE. Nafion films were irradiated at 15 kGy dose at room temperature and chemical changes were monitored after contact with TFE gas for grafting. The modified films were evaluated by differential scanning calorimetry analysis (DSC), thermogravimetric analysis (TG), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Characterization by XRD suggests crystallinity changes after TFE grafting. The ion exchange capacity (IEC) of membranes was determined by acid-base titration and the values for modified films were achieved similar to Nafion pristine films. DSC measurements revealed a displacement in the endothermic peaks and it was probably associated with the TFE graft. The graft forces the Nafion polymer chains to re-organize themselves and form a more cross-linked structure within the clusters. (author)

  7. Application of radiation-induced graft polymerization to preparation of functional materials

    International Nuclear Information System (INIS)

    Sugo, Takanobu

    2010-01-01

    Radiation-induced graft polymerization is a powerful method for appending various functionalities onto existing fabrics, nonwoven fabrics, fibers, membranes, and beads while maintaining the shape and mechanical strength. By using this method, the author has developed and commercialized functional polymeric materials over 45 years. The materials produced by the fruits of radiation chemistry contributed to the improvement of our lives and environments and the collection of rare metal resources. (author)

  8. Study of radiation induced grafting of [(methacryloylamino)-propyl] trimethyl ammonium chlorite (MPTAC) on to cotton fabrics and its application

    International Nuclear Information System (INIS)

    Selambakkannu, S.

    2014-01-01

    Quaternary ammonium salt, [(methacryloylamino)-propyl] trimethyl ammonium chlorite (MPTAC) had been used as monomer in mutual radiation grafting process on cotton fabrics with the aid of high energy gamma radiation source. The polymer chains of MPTAC were successfully grafted covalently onto cotton fabrics. Effect of selected experimental variables such as irradiation dose, monomer concentration, and ambient conditions and effect of inhibitors on extent of grafting had been analyzed. Grafting yield increases steadily with monomer concentration. The highest grafting yield obtained at 2 kGy and reduces thereafter then become almost constant at higher dose range. The grafted samples characterized for its surface morphology. Finally the grafted cotton subjected to its dye uptake capacity and antibacterial efficacy. The grafted cotton fiber was used in absorption studies of aqueous basic dye solution, namely AB74. The grafted cotton posses very good dye uptake capacity. The maximum dye uptake capacity of the grafted cotton sample was 150 mg/g. Antibacterial efficacy has been tested by qualitative and quantitative methods against model bacteria S. aureus and E. coli from gram positive and gram negative respectively. 20 % grafted cotton was found to be responsible of 2 log cycle reductions for the E.coli and S.aureus colonies. (author)

  9. Radiation-induced grafting of styrene on to LDPE films for preparation of cation exchange membranes, i. effect of grafting conditions

    International Nuclear Information System (INIS)

    Mohamed Mahmoud Nasef; Hamdani Saidi; Hussin Mohd Nor; Khairul Zaman Mohd Dahlan; Kamaruddin Hashim

    1999-01-01

    PE-g-polystyrene copolymers were prepared by simultaneous radiation-induced graft copolymerization of styrene onto low density polyethylene (LDPE) films. The effects of irradiation conditions such as monomer concentration, Mohr's salt and sulfuric acid addition, irradiation dose and dose rate were investigated. It was found that the degree of grafting increases with the monomer concentration and reaches its maximum value at styrene concentration of 80 vol %. The addition of Mohr's salt as well as sulfuric acid caused a considerable increase in the degree of grafting with various styrene concentrations. The degree of grafting also increased with the increased in irradiation dose, however it remarkably decreased with the increase in dose rate. The formation of graft copolymers was confirmed by FTIR analysis. The structural investigation of the graft copolymer was carried out by x-ray diffraction (XRD). The degree of crystallinity content was found to be decreased with the increase in the degree of grafting and influenced the mechanical properties of the graft copolymer to some extent. (Author)

  10. Radiation initiated grafting of hydrophilic and reactive monomers on polyetherurethane for biomedical application

    International Nuclear Information System (INIS)

    Jansen, B.; Ellinghorst, G.

    1981-01-01

    Hydrogels such poly(hydroxyethylmethacrylate), poly (acrylamide) and poly(2,3-dihydroxypropylmethacrylate) are a class of well-known materials with good to excellent biomedical properties. Unfortunately the mechanical behaviour of the water-swollen gels is poor, and thus their application in pure state is limited. Much work has been done, especially by the grafting technique, on supporting the hydrogels by several techniques in order to improve their mechanical properties. In this work grafting of hydrogel forming or reactive monomers (which can be made hydrophilic by a following chemical process) onto a polyetherurethane was performed by a technique in which the trunk polymer is swollen in the graft monomer before irradiation. (author)

  11. Effect of mineral acid on polymer produced during radiation-induced grafting of styrene monomer

    International Nuclear Information System (INIS)

    Garnett, J.L.; Jankiewicz, S.V.; Sangster, D.F.

    1982-01-01

    The inclusion of mineral acid in a solution of styrene in methanol subjected to 60 Co γ irradiation markedly enhances the yield of monomer grafted to cellulose and other radiation grafting systems. Results were reported from a preliminary investigation into the mechanism of this acid effect through a study of the action of acid during the solution polymerization process. It was found that the presence of acid in a monomer solution such as styrene in 1, 4-dioxan led to an enhancement in the homopolymer yield of styrene; and it was showed that the acid also effected the number-average molecular weight of this homopolymer. 1 figure, 4 tables

  12. Management of Chronic Recurrent Dislocation of Temporomandibular Joint Using 'U' Shaped Graft: A New Restrictive Technique.

    Science.gov (United States)

    Gadre, Kiran; Singh, Divya; Gadre, Pushkar; Halli, Rajshekhar

    2017-06-01

    Numerous procedures have been described for the treatment of chronic recurrent dislocation of the temporo-mandibular joint (TMJ), either in the form of enhancement or restriction of the condylar movement, with their obvious merits and demerits. We present a new technique of using U shaped iliac bone graft to restrict the condylar movement and its advantages over the conventional techniques.We have used this technique successfully in 8 cases where Dautrey's procedure had failed with follow up period of 2 years. No patient complained of recurrent dislocation postoperatively. This a very simple and effective technique where other procedures have failed.

  13. [Evaluation of Radiation Dose during Stent-graft Treatment Using a Hybrid Operating Room System].

    Science.gov (United States)

    Haga, Yoshihiro; Chida, Kouichi; Kaga, Yuji; Saitou, Kazuhisa; Arai, Takeshi; Suzuki, Shinichi; Iwaya, Yoshimi; Kumasaka, Eriko; Kataoka, Nozomi; Satou, Naoto; Abe, Mitsuya

    2015-12-01

    In recent years, aortic aneurysm treatment with stent graft grafting in the X-ray fluoroscopy is increasing. This is an endovascular therapy, because it is a treatment which includes the risk of radiation damage, having to deal with radiation damage, to know in advance is important. In this study, in order to grasp the trend of exposure stent graft implantation in a hybrid operating room (OR) system, focusing on clinical data (entrance skin dose and fluoroscopy time), was to count the total. In TEVAR and EVAR, fluoroscopy time became 13.40 ± 7.27 minutes, 23.67 ± 11.76 minutes, ESD became 0.87 ± 0.41 mGy, 1.11 ± 0.57 mGy. (fluoroscopy time of EVAR was 2.0 times than TEVAR. DAP of EVAR was 1.2 times than TEVAR.) When using the device, adapted lesions and usage are different. This means that care changes in exposure-related factors. In this study, exposure trends of the stent graft implantation was able to grasp. It can be a helpful way to reduce/optimize the radiation dose in a hybrid OR system.

  14. Evaluation of radiation dose during sent-graft treatment using a hybrid operating room system

    International Nuclear Information System (INIS)

    Haga, Yoshihiro; Kaga, Yuji; Chida, Koichi

    2015-01-01

    In recent years, aortic aneurysm treatment with stent graft grafting in the X-ray fluoroscopy is increasing. This is an endovascular therapy, because it is a treatment which includes the risk of radiation damage, having to deal with radiation damage, to know in advance is important. In this study, in order to grasp the trend of exposure stent graft implantation in a hybrid operating room (OR) system, focusing on clinical data (entrance skin dose and fluoroscopy time), was to count the total. In TEVAR and EVAR, fluoroscopy time became 13.40 ± 7.27 minutes, 23.67 ± 11.76 minutes, ESD became 0.87 ± 0.41 mGy, 1.11 ± 0.57 mGy. (fluoroscopy time of EVAR was 2.0 times than TEVAR. DAP of EVAR was 1.2 times than TEVAR). When using the device, adapted lesions and usage are different. This means that care changes in exposure-related factors. In this study, exposure trends of the stent graft implantation was able to grasp. It can be a helpful way to reduce/optimize the radiation dose in a hybrid OR system. (author)

  15. Radiation graft copolymerization of styrene with m/e and styrene with acrylic acid at highthyl methacryl dose rate

    International Nuclear Information System (INIS)

    Aliev, R.Eh.; Kabanov, B.Ya.

    1984-01-01

    Comparative investigation of radiation graft copolymerization of styrene with methyl methacrylate (MMA) and styrene with acrylic acid (AA) is carried out at considerably differing radiation dose rates. The monomer mixture was grafted to PE low density films at dose rates of 0.16, 0.25 Gy/s (1 MeV electron acceleration). The value of graft was 3-6 and 5-10%, respectively, for the styrene-MMA and styrene-AA systems. An essential difference in the dependences of the formed copolymer composition on initial monomer mixture composition is noticed. Difference in composition of graft polymers prepared at different dose rates is less for the systems with AA, than for systems with MMA. It is shown that at high dose rates in difference with low ones not only radical graft copolymerization of the styrene mixture with AA takes place, but a contribution of the graft styrene polymerization according to cation mechanism as well

  16. EUV lithographic radiation grafting of thermo-responsive hydrogel nanostructures

    International Nuclear Information System (INIS)

    Farquet, Patrick; Padeste, Celestino; Solak, Harun H.; Guersel, Selmiye Alkan; Scherer, Guenther G.; Wokaun, Alexander

    2007-01-01

    Nanostructures of the thermoresponsive poly(N-isopropyl acrylamide) (PNIPAAm) and of PNIPAAm-block-poly(acrylic acid) copolymers were produced on poly(tetrafluoroethylene-co-ethyelene) (ETFE) films using extreme ultraviolet (EUV) lithographic exposure with subsequent graft-polymerization. The phase transition of PNIPAAm nanostructures at the low critical solution temperature (LCST) at 32 deg. C was imaged by atomic force microscopy (AFM) phase contrast measurements in pure water. Results show a higher phase contrast for samples measured below the LCST temperature than for samples above the LCST, proving that the soft PNIPAAm hydrogel transforms into a much more compact conformation above the LCST. EUV lithographic exposures were combined with the reversible addition-fragment chain transfer (RAFT)-mediated polymerization using cyanoisopropyl dithiobenzoate (CPDB) as chain transfer agent to synthesize PNIPAAm block-copolymer nanostructures

  17. Directional tip control technique for optimal stent graft alignment in angulated proximal aortic landing zones

    Directory of Open Access Journals (Sweden)

    Toshio Takayama, MD, PhD

    2017-06-01

    Full Text Available Angulated anatomy in the aorta, such as tortuous infrarenal aortic necks or steep aortic arches, is a significant challenge for endovascular aortic repair because it often causes inadequate sealing and fixation, which may lead to treatment failure. We have developed a technique using off-the-shelf equipment to precisely control the deployment of stent grafts in challenging landing zones. The key of this technique is to create a through-and-through wire between two access sites and to use a guiding device over the wire. This technique is best used with stent grafts without nose cones. We present an endovascular aneurysm repair case and a thoracic endovascular aortic repair case with challenging proximal landing zones treated by this technique. In both cases, technical success was attained, and follow-up imaging demonstrated well-aligned stent grafts. Our directional tip control technique is easy and effective. It can be a good technical solution for endovascular aortic treatment in angulated anatomy.

  18. Full-thickness skin mesh graft vaginoplasty: a skin sparing technique

    Directory of Open Access Journals (Sweden)

    Guilherme Lang Motta

    Full Text Available ABSTRACT Introduction: The ideal vaginoplasty method should promote good cosmetic and functional results with low morbidity. We describe a new technique for congenital vaginal agenesis using a full-thickness perforated skin graft. Materials and Methods: We report an 18 year old patient with vaginal agenesis (Morris syndrome that undergone a modified version of McIndoe vaginoplasty. Patient is set in a low lithotomy position and lateral traction sutures are placed in labia and a 16Fr urethral catheter inserted. An inverted “V”-shaped incision is made in the mucosal plaque below the urethra. Blunt dissection in a cephalic posterior direction forms a space between the rectum and urethra. Special care is taken to avoid rectal tear during this maneuver. A full-thickness skin graft is removed from the lower abdomen measuring 12.0×6.0cm as an aesthetic abdominoplasty. The fat tissue is removed, remaining epidermis and dermis and the graft is perforated, allowing a great surface increase. After suturing over a mold, the graft is fixed in the created space. The donor site is closed with intradermal transversal suture. Results: From January 2009 to August 2015, seven patients diagnosed with vaginal agenesis underwent this technique. There were no major complications or need for blood transfusions. At the six-month follow-up, all patients reported satisfactory sexual intercourse. There were no significant complications at donor site or neovagina that needed surgical intervention. Conclusion: Vaginal reconstruction using the perforated graft is viable with excellent functional results. Applying this modification, we yielded the good results of a classic McIndoe technique with lower donor site morbidity.

  19. Techniques for controlling radiation exposure

    International Nuclear Information System (INIS)

    Ocken, H.; Wood, C.J.

    1993-01-01

    The US nuclear power industry has been remarkably successful in reducing worker radiation exposure over the past 10 years. There has been more than a fourfold reduction in person-rem per MW-year of electric power generated: from 1.8 person-rems in 1980 to only 0.4 person-rems in 1991. Despite this substantial improvement, challenges for the industry remain. Individual exposure limits have been tightened in the 1990 Recommendations of the International Commission on Radiological Protection, ICRP Publication 60, and there will be more requirements for special maintenance work as plants age, suggesting that vigorous efforts will be required to meet the 1995 industry goals for unit median collective exposure. No one method will suffice, but implementing suitable combinations from this compendium will help utilities to achieve their exposure goals. Radiation reduction is generally cost-effective: Outages are shorter, staffing requirements are reduced, and work quality is improved. Despite up-front costs, the benefits over the following one to three years typically outweigh the expenses

  20. Superabsorbent Prepared by Radiation Induced Graft Copolymerization of Acrylic Acid onto Cassava Starch. Chapter 18

    Energy Technology Data Exchange (ETDEWEB)

    Suwanmala, P.; Tangthong, T.; Hemvichian, K. [Thailand Institute of Nuclear Technology (Thailand)

    2014-07-15

    Superabsorbent was synthesized by radiation induced graft polymerization of acrylic acid onto cassava starch. Parameters such as the absorbed dose and the amount of monomer were investigated in order to determine the optimum conditions for the grafting polymerization. Water retention, germination percentage, and germination energy were also determined in order to evaluate the possibility of superabsorbent in agricultural applications, especially in arid regions. The graft copolymer was characterized by the Fourier transform infrared spectroscopy (FTIR). Results indicated that the sand mixed with 0.1% wt superabsorbent could absorb more water than the sand without superabsorbent. The germination energy of corn seeds mixed with 0.5% superabsorbent was obviously higher than those without superabsorbent. These experimental results showed that the superabsorbent has considerable effects on seed germination and the growth of young plants. (author)

  1. Adsorption of Heavy Metals From Industrial Wastes Using Membranes Prepared by Radiation Grafting

    International Nuclear Information System (INIS)

    Hegazy, E. A.; Kamal, H.; Maziad, N.; Dessouki, A.M.; Aly, H.F.

    1999-01-01

    Preparation of synthetic membranes using simultaneous radiation grafting of acrylic acid (AAc) and styrene (Sty) individually and in a binary monomers mixture onto polypropylene (PP) has been carried out. The effect of preparation conditions such as irradiation dose, monomer and inhibitor concentration, comonomer composition on the grafting yield was investigated. The thermal stability and mechanical properties were also investigated as a function of degree of grafting. Accordingly the possibility of its practical use in industrial waste treatment is determined. The prepared cation-exchange membranes possess good mechanical properties, high thermal stability and good characteristics for separation processes. These membranes have also good affinity toward the adsorption or chelation with Fe 3+ , Pb 2+ , and Cd 2+ ions either in a mixture or exists alone in the solution

  2. Development of Less Water-Dependent Radiation Grafted Proton Exchange Membranes for Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Nasef, M M; Ahmad, A; Saidi, H; Dahlan, K Z.M. [Institute of Hydrogen Economy, Energy Research Alliance (ERA), International Campus, Univeristi Teknologi Malaysia, Jalan Semarak, Kuala Lumpur (Malaysia); Radiation Processing Division, Malaysian Nuclear Agency, Bangi, Kajang (Malaysia)

    2012-09-15

    The aim of these studies was the development of proton exchange membranes for polymer electrolyte membrane (PEM) fuel cell operated above 100{sup o}C, in order to obtain less water dependent, high quality and cheap electrolyte membrane. Sulfonic acid membranes were prepared by radiation induced grafting (RIG) of sodium styrene sulfonate (SSS) onto electron beam (EB) irradiated poly(vinylidene fluoride) (PVDF) films in a single step reaction for the first time using synergetic effect of acid addition to grafting mixture under various grafting conditions. The fuel cell related properties of the membranes were evaluated and the in situ performance was tested in a single H{sub 2}/O{sub 2} fuel cell under dynamic conditions and compared with a similar sulfonated polystyrene PVDF membrane obtained by two-step conventional RIG method i.e. grafting of styrene and subsequent sulfonation. The newly obtained membrane (degree of grafting, G% = 53) showed an improved performance and higher stability together with a cost reduction mainly as a result of elimination of sulfonation reaction. Acid-base composite membranes were also studied. EB pre-irradiated poly(ethylene-co-tetrafluoroethylene) (ETFE) films were grafted with N-vinyl pyridine (NVP). The effects of monomer concentration, dose, reaction time, film thickness, temperature and film storage time on G% were investigated. The membranes were subsequently doped with phosphoric acid under controlled condition. The proton conductivity of these membranes was investigated under low water conditions in correlation with the variation in G% and temperature (30-130{sup o}C). The performance of 34 and 49% grafted and doped membranes was tested in a single fuel cell at 130{sup o}C under dynamic conditions with 146 and 127 mW/cm{sup 2} power densities. The polarization, power density characteristics and the initial stability of the membrane showed a promising electrolyte candidate for fuel cell operation above 100 deg. C. (author)

  3. Arthroscopic Latarjet Techniques: Graft and Fixation Positioning Assessed With 2-Dimensional Computed Tomography Is Not Equivalent With Standard Open Technique.

    Science.gov (United States)

    Neyton, Lionel; Barth, Johannes; Nourissat, Geoffroy; Métais, Pierre; Boileau, Pascal; Walch, Gilles; Lafosse, Laurent

    2018-05-19

    To analyze graft and fixation (screw and EndoButton) positioning after the arthroscopic Latarjet technique with 2-dimensional computed tomography (CT) and to compare it with the open technique. We performed a retrospective multicenter study (March 2013 to June 2014). The inclusion criteria included patients with recurrent anterior instability treated with the Latarjet procedure. The exclusion criterion was the absence of a postoperative CT scan. The positions of the hardware, the positions of the grafts in the axial and sagittal planes, and the dispersion of values (variability) were compared. The study included 208 patients (79 treated with open technique, 87 treated with arthroscopic Latarjet technique with screw fixation [arthro-screw], and 42 treated with arthroscopic Latarjet technique with EndoButton fixation [arthro-EndoButton]). The angulation of the screws was different in the open group versus the arthro-screw group (superior, 10.3° ± 0.7° vs 16.9° ± 1.0° [P open inferior screws (P = .003). In the axial plane (level of equator), the arthroscopic techniques resulted in lateral positions (arthro-screw, 1.5 ± 0.3 mm lateral [P open technique (0.9 ± 0.2 mm medial). At the level of 25% of the glenoid height, the arthroscopic techniques resulted in lateral positions (arthro-screw, 0.3 ± 0.3 mm lateral [P open technique (1.0 ± 0.2 mm medial). Higher variability was observed in the arthro-screw group. In the sagittal plane, the arthro-screw technique resulted in higher positions (55% ± 3% of graft below equator) and the arthro-EndoButton technique resulted in lower positions (82% ± 3%, P open technique (71% ± 2%). Variability was not different. This study shows that the position of the fixation devices and position of the bone graft with the arthroscopic techniques are statistically significantly different from those with the open technique with 2-dimensional CT assessment. In the sagittal plane, the arthro-screw technique provides the highest

  4. Novel features of radiation-induced bystander signaling in Arabidopsis thaliana demonstrated using root micro-grafting

    Science.gov (United States)

    Wang, Ting; Li, Fanghua; Xu, Wei; Bian, Po; Wu, Yuejin; Wu, Lijun

    2012-01-01

    Radiation-induced bystander effects (RIBE) have been well demonstrated in whole organisms, as well as in single-cell culture models in vitro and multi-cellular tissues models in vitro, however, the underlying mechanisms remain unclear, including the temporal and spatial course of bystander signaling. The RIBE in vivo has been shown to exist in the model plant Arabidopsis thaliana (A. thaliana). Importantly, the unique plant grafting provides a delicate approach for studying the temporal and spatial course of bystander signaling in the context of whole plants. In our previous study, the time course of bystander signaling in plants has been well demonstrated using the root micro-grafting technique. In this study, we further investigated the temporal cooperation pattern of multiple bystander signals, the directionality of bystander signaling, and the effect of bystander tissues on the bystander signaling. The results showed that the bystander response could also be induced efficiently when the asynchronously generated bystander signals reached the bystander tissues in the same period, but not when they entered into the bystander tissues in an inversed sequence. The absence of bystander response in root-inversed grafting indicated that the bystander signaling along roots might be of directionality. The bystander signaling was shown to be independent of the bystander tissues. PMID:23072991

  5. Preparation of metal ion exchange resin by radiation-induced graft copolymerization

    International Nuclear Information System (INIS)

    Nakase, Yoshiaki; Akasaka, Nobuhiro.

    1982-06-01

    Radiation-induced graft copolymerization of 2-acrylamide-2-methyl propane sulfonic acid (AMPS) onto polyvinylchloride (PVC) and polyvinylidene chloride resin (PVD) was investigated in the water-acetone system and their adsorptive activities to metal ion were also examined. In the case of PVC, the degree of grafting increased with the increase of acetone content, but the adsorptive activity to metal ions (mainly lithic ion) became maximum in the system with water/acetone of 2/3. Grafted PVC prepared at about 35 0 C and at a higher concentration of AMPS showed higher adsorption activity than the other cases. In the case of PVD, a similar result was obtained with the case of PVC except the temperature dependence and effect of swelling agent. Polymerizations at temperatures of 35 and 50 0 C showed no effect on the degree of grafting, and the usage of a swelling agent was quite effective to the adsorptive activity. Glass transition temperature of the grafted copolymer was the same as that of original polymer, and their thermal stability was confirmed up to the temperature at which homopolymer of AMPS decomposed, about 180 0 C. (author)

  6. Desalination by electrodialysis with ion-exchange membrane prepared by radiation-induced graft polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seong-Ho; Jeong, Young Han; Ryoo, Jae Jeong; Lee, Kwang-Pill [Department of Chemistry Graduate School, Kyungpook National University, Taegu (Korea)

    2000-07-01

    Ion-exchange membranes modified with triethylamine [-N(CH{sub 2}CH{sub 3}){sub 3}] and phosphoric acid (-PO{sub 3}H) groups were prepared by radiation-induced grafting of glycidyl methacrylate (GMA) onto polyolefin nonwavon fabric (PNF) and subsequent chemical modification of poly (GMA) graft chains. The physical and chemical properties of the GMA-grafted PNF and the PNF modified with ion-exchange groups were investigated by SEM and XPS. The ion-exchange capacities of the cation- and anion-exchange membrane were 0.20 and 1.24mmol/g, respectively. The content of cation- and anion exchange group increased with increasing grafting yield (d.g.=100%). Electrical resistance of PNF modified with TEA and -PO{sub 3}H group decreased with increasing ion-exchange group capacities. Application of the graft-type ion-exchange membranes as separators for electrodialysis enabled use to reduce the time required to achieve 85.5% desalination of the 0.5M NaCl solution. (author)

  7. Obtention of graft copolymers by ionizing radiation, characterization and study of hemo-compatible properties

    International Nuclear Information System (INIS)

    Queiroz, A.A.A. de.

    1993-01-01

    The present work had as objectives the obtention and characterization of grafting copolymers by radiation induced polymerization and the study of its hemo compatible properties. The relationship between grafting conditions and anti-trombogenicity was examined for the purpose of clearing the necessity of controlling grafting conditions to enhance the copolymers blood compatibility. Two methods were chosen to accomplish the irradiation: mutual and pre-irradiation (peroxidation) of the films in 6O Co source and electron beam accelerator. Primarily grafting parameters were studied in the systems of the monomers N, N-dimethyl acrylamide (DMAA) and acrylic acid (AA) with the polymeric films: poly (tetrafluoroethylene) (PTFE), poly (ethylene-co-tetrafluoroethylene) (PETFE), low density polyethylene (LDPE) and poly (vinyl chloride) (PVC). The simultaneous irradiation was effective in the polymerization of all the substrates above mentioned, although the peroxidation method has given better results for PETFE-DMAA, LDPE-g-DMAA, LDPE-g-AA and PVC-g-AA. In the system AA/LDPE and AA/PVC the homo polymerization was controlled by the addition of the comonomer N, N-dimethyl acrylic acid (DMA). As for the grafting parameters, low dose rate and low irradiation dose, showed to be very effective for the graftability of DMAA and AA on the substrates. (author). 129 refs, 51 figs, 7 tabs

  8. Percutaneous endovascular stent-graft treatment of aortic aneurysms and dissections: new techniques and initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Do Yun; Choi, Dong Hoon; Kang, Sung Gwon; Lee, Kwang Hoon; Won, Jong Yun [Yonsei University College of Medicine, Seoul (Korea, Republic of); Kang, Sung Gwon [Chosun University College of Medicine, Gwangju (Korea, Republic of); Won, Je Whan [Aju University College of Medicine, Suwon (Korea, Republic of); Song, Ho Young [Ulsan University College of Medicine, Seoul (Korea, Republic of)

    2003-01-01

    To evaluate the feasibility, safety and effectiveness of a newly designed percutaneously implanted separate stent-graft (SSG) for the treatment of aortic aneurysms and dissections. Using a percutaneous technique, SSG placement (in the descending thoracic aorta in 26 cases and infrarenal abdominal aorta in 24) was attempted in 50 patients with aortic aneurysms (n=27) or dissection (n=23). All SSGs were individually constructed using self-expandable nitinol stents and a Dacron graft, and were introduced through a 12 F sheath and expanded to a diameter of 20-34 mm. In all cases, vascular access was through the femoral artery. The clinical status of each patient was monitored, and postoperative CT was performed within one week of the procedure and at 3-6 month intervals afterwards. Endovascular stent-graft deployment was technically successful in 49 of 50 patients (98%). The one failure was due to torsion of the unsupported graft during deployment. Successful exclusion of aneurysms and the primary entry tears of dissections was achieved in all but three patients with aortic dissection. All patients in whom technical success was achieved showed complete thrombosis of the thoracic false lumen or aneurysmal sac, and the overall technique success rate was 92%. In addition, sixteen patients demonstrated complete resolution of the dissected thoracic false lumen (n=9) or aneurysmal sac (n=7). Immediate post-operative complications occurred at the femoral puncture site in one patient with an arteriovenous fistula, and in two, a new saccular aneurysm developed at the distal margin of the stent. No patients died, and there was no instance of paraplegia, stroke, side-branch occlusion or infection during the subsequent mean follow-up period of 9.4 (range, 2 to 26) months. In patients with aortic aneurysm and dissection, treatment with a separate percutaneously inserted stent-graft is technically feasible, safe, and effective.

  9. Development of radiation techniques in the 80's

    International Nuclear Information System (INIS)

    Wiesner, L.

    1990-01-01

    The application of radiation for the purpose of sterilisation in the medical field and for the enhancement of material properties, particularly for polymer products, has been in operation for decades. Electron accelerators and gamma radiation devices are the radiation sources. The technology is clearly concentrated in Asia, especially Japan, (surface coatings and crosslinking for cable insulators). In industry, the process is commonly used in curing, drying, crosslinking, grafting and vulcanisation. Radiation technology is an increasingly important factor in the low-cost production of top quality advanced products for sophisticated areas of manufacturing. It has already been introduced in high-tech applications in the manufacture of megabit chips, which are undoubtedly one of the main reasons for Japan's leading position in that field. The Japanese industry has already set out along the road towards the manufacture of ultra-highly integrated circuits, which open up completely new opportunities in the field of data and information processing. This has been made possible by Japanese mastery of the technique of building and operating electron accelerators to provide synchrotron beams. (orig./DG) [de

  10. Single stage circumferential lingual mucosal graft urethroplasty in near obliterative bulbar urethra stricture: A novel technique.

    Science.gov (United States)

    Sharma, Umesh; Yadav, Sher Singh; Tomar, Vinay; Garg, Amit

    2016-01-01

    This is a prospective study of the use and efficacy of a novel technique of circumferential tubularised lingual mucosal graft (LMG) in obliterative and near obliterative bulbar urethral stricture of >2 cm where excisional and augmented anastomotic urethroplasty are not feasible. The stenotic urethral segment was opened dorsally in midline and fibrosed urethra was excised taking care to preserve the healthy spongiosum tissue. LMG (av. Length 3 cm) was placed from one end of corporal body towards spongy tissue in a circumferential manner. Another LMG was placed in similar manner to deal with longer stricture. The urethra was tubularised over 14 Fr silicone catheter. A total of 12 men, of mean age 47 years underwent this procedure. The mean follow up period was 11 months starting from July 2014 till manuscript submission. Follow up included voiding cystourethrogram at 3 weeks, cystoscopy at 3 months (one patient didn't turned up) and subsequent follow up. Mean stricture length was 4.66 cm (range, 3-8.5 cm) and mean operative time was 195 min. (range, 160 to 200 min.). The technique was successful (normal voiding with no need for any post-operative procedure) in 11(91.6%) patients. One patient developed early recurrence at 4 month of surgery and had anastomotic stricture which was successfully managed by direct visual internal urethrotomy. Single stage circumferential tubularised graft urethroplasty is an excellent technique for strictures that include segments of obliterative and near obliterative diseased urethra. It provide a wider neourethra than patch graft urethroplasty.

  11. [Bone graft reconstruction for posterior mandibular segment using the formwork technique].

    Science.gov (United States)

    Pascual, D; Roig, R; Chossegros, C

    2014-04-01

    Pre-implant bone graft in posterior mandibular segments is difficult because of masticatory and lingual mechanical constraints, because of the limited bone vascularization, and because of the difficulty to cover it with the mucosa. The formwork technique is especially well adapted to this topography. The recipient site is abraded with a drill. Grooves are created to receive and stabilize the grafts. The bone grafts were harvested from the ramus. The thinned cortices are assembled in a formwork and synthesized by mini-plates. The gaps are filled by bone powder collected during bone harvesting. The bone volume reconstructed with the formwork technique allows anchoring implants more than 8mm long. The proximity of the inferior alveolar nerve does not contra indicate this technique. The formwork size and its positioning on the alveolar crest can be adapted to prosthetic requirements by using osteosynthesis plates. The lateral implant walls are supported by the formwork cortices; the implant apex is anchored on the native alveolar crest. The primary stability of implants is high, and the torque is important. The ramus harvesting decreases operative risks. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Asymmetric polivinylidenfluoride (PVDF) radiation grafted membranes: Preparation and performance in reverse osmosis application

    International Nuclear Information System (INIS)

    Vigo, F.; Capannelli, G.; Uliana, C.; Munari, S.

    1981-01-01

    A new type of reverse osmosis membrane has been synthesized. Membranes were prepared starting from asymmetric PVDF films, obtained by the casting and gelation technique and modified by radiochemical grafting and sulphonation. These membranes were tested in an RO laboratory plant and their performances were determined as a function of preparative parameters. The influences of evaporation time and temperature grafting and solvents were investigated. These membranes exhibit permeabilities as high as 2000 1/m 2 d and sodium chloride rejections up to 70%. (orig.)

  13. Monte Carlo techniques in radiation therapy

    CERN Document Server

    Verhaegen, Frank

    2013-01-01

    Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. Monte Carlo Techniques in Radiation Therapy explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams. The book-the first of its kind-addresses applications of the Monte Carlo particle transport simulation technique in radiation therapy, mainly focusing on external beam radiotherapy and brachytherapy. It presents the mathematical and technical aspects of the methods in particle transport simulations. The book also discusses the modeling of medical linacs and other irradiation devices; issues specific...

  14. Outcome after the modified Bentall technique with a long interposed graft to the left coronary artery.

    Science.gov (United States)

    Nakahira, Atsushi; Shibata, Toshihiko; Sasaki, Yasuyuki; Hirai, Hidekazu; Hattori, Koji; Hosono, Mitsuharu; Ehara, Shoichi; Suehiro, Shigefumi

    2009-01-01

    The modified Bentall technique, which was reported by Svensson in 1992, is an aortic root composite valve graft replacement involving reimplantation of the left coronary ostium with a long interposed graft wrapping behind the composite graft. The technique is technically advantageous, particularly for complicated or redo aortic roots. To justify the technique, the midterm outcome needs to be evaluated. Since 1992, 40 patients (4 with Marfan syndrome) underwent the modified Bentall technique (Svensson's modification). The mean age was 54.7 +/- 13.6 years, and 32 patients (80.0%) were male. All hospital survivors have been consecutively followed with annual echocardiographic evaluations. Furthermore, in 2007, multislice computed tomography was performed at 4.7 +/- 3.5 years (maximum, 14.9 years) postoperatively in 30 patients who had preserved renal function. No patients have experienced any complications regarding the technique at the follow-up of 5.7 +/- 4.0 years (maximum, 14.9 years), although there were 2 hospital deaths of emergency cases and 5 late deaths owing to noncardiac causes. In 35 patients (92.1% of hospital survivors), no structural complications were detected by multislice computed tomographies of the 30 patients or coronary angiograms of the remaining 5 patients. The consecutive echocardiographic follow-ups showed well-preserved left ventricular function with the most recent ejection fraction being 0.581 +/- 0.078. This Svensson's modification technique was associated with favorable midterm outcomes by multislice computed tomography and consecutive echocardiographic evaluations, indicating long-lasting advantages as well as technical benefits. Thus, the technique can be considered as a helpful and justifiable alternative method.

  15. Characteristics of the chrome-tanned sheep leather treated by radiation-induced graft of BA

    International Nuclear Information System (INIS)

    Zhou Dezhong; Deng Yongzhen; Li Ying

    1986-01-01

    The characteristics of the chrome-tanned sheep leather treated by radiation-induced graft of BA is presented. Using the method of radiation-induced graft of BA instead of the chrome-retanning, the leather has been obviously improved not only in the surface, such as the brightness, fullness, uniformity of the thickness but also in the physical characteristics such as retaining of tensile strength, decreasing of water absorption after being immersed in water for 2h, and 24h, enhancement of tearing strength and stitch tear strength. Although the air permeability and water vapor permeability are a bit worse than the control, however is still in the range of the standard issued by Light Industry Ministry of China

  16. Knee stabiligy after ACL reconstruction through graft fixation in femoral tunnel: transfemoral pinning versus endobutton techniques

    Directory of Open Access Journals (Sweden)

    Tahmasebi MN

    2011-05-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 st1":*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: One of the most common orthopedic complaints is direct or indirect trauma to the knee with torn anterior cruciate ligament (ACL. Reconstruction of the torn ACL is emphatically offered in active individuals as by this operation, we prevent osteoarthritis, knee instability and injury to the meniscus. There are numerous methods for graft fixation in the femoral tunnel in ACL reconstruction. If the graft proves to be stable after the operation, patients would not complain of giving way knee joints. In this clinical trial, we compared transfemoral pinning with endobutton fixation of hamstring graft in arthroscopic ACL reconstruction by examining knee stability and use of other relevant functional tests. "n"nMethods : Fourteen Patients who had undergone arthroscopic ACL reconstruction in Shariati Hospital during the years 2008-2009 and were being followed up were evaluated at least 15 months post-operatively by physical examination and the use of an arthrometer made by the Faculty of Mechanics of Sharif Technical University."n"nResults : The results showed that two out of seven patients in which their ACL had been reconstructed by hamstring graft fixation by endobutton technique, and

  17. Poly-electrolyte fuel cell membrane based on crosslinked polytetrafluoroethylene by radiation-grafting

    International Nuclear Information System (INIS)

    Ichizuri, Shogo; Asano, Saneto; Li, Jingye

    2004-01-01

    Poly-electrolyte fuel cell (PEFC) membranes based on crosslinked Polytetrafluoroethylene (RX-PTFE) have been fabricated by radiation-grafting with reactive styrene monomers using γ-ray irradiation in air at room temperature / electron beam irradiation under N 2 gas atmosphere at room temperature. The characteristic properties of obtained materials have been measured by DSC, TGA and FT-IR spectroscopy, and so on. Ion exchange capacity of sulfonated crosslinked PTFE has been achieved 2.8meq/g. (author)

  18. Effect of 60Co radiation-induced grafting of methyl methacrylate on mechanical properties of bamboo

    International Nuclear Information System (INIS)

    Zhang Hao; Zhou Liang; Liu Shengquan; Qian Liangcun; Fei Benhua; Jiang Zehui

    2011-01-01

    In order to investigate the effect of radiation grafting on mechanical properties of bamboo, the original and carbonized bamboo soaked with monomer MMA were radiation grafted by 60 Co γ rays with the doses of 60-220 kGy. The results showed that compared with original blanks, treated with MMA and irradiated with the dose of 180 kGy the specific gravity, bending strength modulus of elasticity of original bamboo increased by 6.7%, 4.4%, and 28%, meanwhile its oven-dried radial, tangential and volumetric shrinkage decreased by 38.9%, 47.4%, and 32.9%, respectively. What is more, treated with MMA and irradiated with the doses of 140 kGy the specific gravity and modulus of elasticity of carbonized bamboo increased by 6.8% and 20%, while its oven-dried radial, tangential, volumetric shrinkage decreased by 11%, 4.6% and 12%, respectively. The study reveals that mechanical properties of original and carbonized bamboo can be enhanced by radiation grafting copolymerization with suitable absorbed doses, which may be valuable for the further research of developing new bamboo plastic composites. (authors)

  19. Highly hydrophilic ultra-high molecular weight polyethylene powder and film prepared by radiation grafting of acrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Honglong [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Lu; Li, Rong [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Pang, Lijuan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hu, Jiangtao; Wang, Mouhua [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Wu, Guozhong, E-mail: wuguozhong@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-09-30

    Highlights: • Hydrophilic UHMWPE powder and film were obtained by γ-ray pre-irradiation grafting of AA. • A low concentration of AA solution was used for surface modification of UHMWPE. • A small grafting yield of AA sufficiently improved hydrophilicity of UHMWPE powder and film. - Abstract: The surface properties of ultra-high molecular weight polyethylene (UHMWPE) are very important for its use in engineering or composites. In this work, hydrophilic UHMWPE powder and film were prepared by γ-ray pre-irradiation grafting of acrylic acid (AA) and further neutralization with sodium hydroxide solution. Variations in the chemical structure, grafting yield and hydrophilicity were investigated and compared. FT-IR and XPS analysis results showed that AA was successfully grafted onto UHMWPE powder and film; the powder was more suitable for the grafting reaction in 1 wt% AA solution than the film. Given a dose of 300 kGy, the grafting yield of AA was ∼5.7% for the powder but ∼0.8% for the film under identical conditions. Radiation grafting of a small amount of AA significantly improved the hydrophilicity of UHMWPE. The water contact angle of the UHMWPE-g-PAA powder with a grafting yield of AA at ∼5.7% decreased from 110.2° to 68.2°. Moreover, the grafting powder (UHMWPE-g-PAA) exhibited good dispersion ability in water.

  20. Osteotome-Mediated Sinus Lift without Grafting Material: A Review of Literature and a Technique Proposal

    Science.gov (United States)

    Taschieri, Silvio; Corbella, Stefano; Saita, Massimo; Tsesis, Igor; Del Fabbro, Massimo

    2012-01-01

    Implant rehabilitation of the edentulous posterior maxilla may be a challenging procedure in the presence of insufficient bone volume for implant placement. Maxillary sinus augmentation with or without using grafting materials aims to provide adequate bone volume. The aim of the present study was to systematically review the existing literature on transalveolar maxillary sinus augmentation without grafting materials and to propose and describe an osteotome-mediated approach in postextraction sites in combination with platelet derivative. The systematic review showed that high implant survival rate (more than 96% after 5 years) can be achieved even without grafting the site, with a low rate of complications. Available alveolar bone height before surgery was not correlated to survival rate. In the described case report, three implants were placed in posterior maxilla after extraction of two teeth. An osteotome-mediated sinus lifting technique was performed with the use of platelet derivative (PRGF); a synthetic bone substitute was used to fill the gaps between implant and socket walls. No complications occurred, and implants were successfully in site after 1 year from prosthetic loading. The presented technique might represent a viable alternative for the treatment of edentulous posterior maxilla with atrophy of the alveolar bone though it needs to be validated by studies with a large sample size. PMID:22792108

  1. Osteotome-Mediated Sinus Lift without Grafting Material: A Review of Literature and a Technique Proposal

    Directory of Open Access Journals (Sweden)

    Silvio Taschieri

    2012-01-01

    Full Text Available Implant rehabilitation of the edentulous posterior maxilla may be a challenging procedure in the presence of insufficient bone volume for implant placement. Maxillary sinus augmentation with or without using grafting materials aims to provide adequate bone volume. The aim of the present study was to systematically review the existing literature on transalveolar maxillary sinus augmentation without grafting materials and to propose and describe an osteotome-mediated approach in postextraction sites in combination with platelet derivative. The systematic review showed that high implant survival rate (more than 96% after 5 years can be achieved even without grafting the site, with a low rate of complications. Available alveolar bone height before surgery was not correlated to survival rate. In the described case report, three implants were placed in posterior maxilla after extraction of two teeth. An osteotome-mediated sinus lifting technique was performed with the use of platelet derivative (PRGF; a synthetic bone substitute was used to fill the gaps between implant and socket walls. No complications occurred, and implants were successfully in site after 1 year from prosthetic loading. The presented technique might represent a viable alternative for the treatment of edentulous posterior maxilla with atrophy of the alveolar bone though it needs to be validated by studies with a large sample size.

  2. Evaluating different closed loop graft preparation technique for tibial suspensory fixation in ACL reconstruction using TightRope™

    Directory of Open Access Journals (Sweden)

    Takahisa Sasho

    2018-04-01

    Full Text Available In most anterior cruciate ligament (ACL reconstructions, grafts are fixed to the femoral side first followed by the tibial side. Various techniques have been reported to achieve optimal tension on the grafts, but once the grafts are fixed it is difficult to adjust graft tension further. To enable post fixation tension control we have invented a new graft configuration using an adjustable loop-device (TightRopeTM, Arthrex, FL, USA on the tibial side. In this paper, biomechanical properties of this configuration using soft tissue were examined in terms of graft diameter and various suture techniques (referred to as base suture to make a closed circle to support TightRopeTM.Two experiments were conducted under different conditions. In each experiment, cyclic load, followed by a pull-to-failure load, was applied to the grafts and elongation and failure mode were recorded. (1 To evaluate the effects of diameter, 5.0 or 6.0 mm grafts were prepared by a single locking loop stitch as the base suture (SLL5, SLL6. (2 To evaluate different base sutures, 5.0 mm tendons were used, and grafts were prepared using five kinds of base sutures (SLL, ZLL: zigzag locking loop, DZLL: double zigzag locking loop, DK: double Krackow, DK w/o TR: double Krackow without TightRopeTM. In the first experiment, tearing was observed in 2 of 6 cases in the SLL5 test group, whereas no tearing was observed with SLL6. In the second experiment, no tearing was observed with DZLL or DK. Elongation was smaller in these two groups compared to the other groups. Mechanical strength decreases with a smaller graft diameter. Biomechanical properties differed with different base sutures and, among them, the double-zigzag-suture stitch and double Krackow provided less elongation and higher ultimate load in this graft configuration.

  3. Keratinocyte-Melanocyte graft technique followed by PUVA therapy for stable vitiligo

    Directory of Open Access Journals (Sweden)

    Kachhawa Dilip

    2008-01-01

    Full Text Available Background: Various surgical procedures for correcting stable vitiligo exist but these have their own limitations. Autologous, non-cultured, non-trypsinized, melanocyte plus keratinocyte grafting is a new and simple method of vitiligo surgery. Objective: The study aimed to evaluate efficacy of a new grafting technique in vitiligo patches. Methods: Eighteen vitiligo patches underwent this procedure. The upper layer of epidermis was removed by superficial dermabrasion using a dermabrader micromotor until the epidermis appeared wet and shiny. Then, antibiotic ointment was applied and dermabrasion was continued up to the whitish area of the upper dermis. The paste-like material (ointment with entangled epidermal particles was collected and spread over the dermabraded recipient site. Results: Pigmentation usually started at 4-6 weeks. Complete uniform pigmentation took 16-20 weeks. Conclusion: For smaller vitiligo patches this method gives cosmetically acceptable results. It is easy to perform and does not require specific laboratory setup.

  4. RECONSTRUCTION OF ATROPHIC MAXILLA BY ANTERIOR ILIAC CREST BONE GRAFTING VIA NEUROAXIAL BLOCKADE TECHNIQUE: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Erol CANSIZ

    2017-01-01

    Full Text Available Anterior iliac crest bone grafting is a well-established modality in the treatment of alveolar bone deficiencies. However, this procedure may also have considerable postoperative morbidity which is mostly related to general anesthesia. Postoperative pain-related complications can be managed by neuroaxial blockade techniques which provide adequate surgical analgesia and reduce postoperative pain. This clinical report describes the reconstruction of a severely atrophic maxilla with anterior iliac crest bone grafting using combined spinal epidural anesthesia. Neuroaxial blockade techniques may be a useful alternative to eliminate general anesthesia related challenges of anterior iliac crest bone grafting procedures.

  5. Synthesis of ion exchange membrane by radiation grafting of acrylic acid onto polyethylene

    International Nuclear Information System (INIS)

    Ishigaki, I.; Sugo, T.; Senoo, K.; Takayama, T.; Machi, S.; Okamoto, J.; Okada, T.

    1981-01-01

    Radiation grafting of vinyl monomers onto polymer films has been extensively studied by many workers. In the preirradiation method of grafting a polymer substrate is activated by irradiation (either in the presence or absence of oxygen) and subsequently allowed to react with a monomer. The preirradiation method was utilized in this study to synthesize an ion exchange membrane useful for a battery separator by grafting acrylic acid onto polyethylene film. The battery separator should be chemically and thermally stable, sufficiently durable in electrolyte as well as highly electrically conductive. Membranes made from regenerated cellulose, e.g., cellophane, have long been used as a separator in the batteries with alkaline electrolyte, such as silver oxide primary cell. However, it has poor durability, as short as one year, due to breakdown of the membrane during operation or storing. The acrylic acid-grafted polyethylene film was found to be quite useful for a separator in the alkaline batteries. This membrane has a high electric conductivity and an excellent durability. (author)

  6. Modification of flax fibres by radiation induced emulsion graft copolymerization of glycidyl methacrylate

    Science.gov (United States)

    Moawia, Rihab Musaad; Nasef, Mohamed Mahmoud; Mohamed, Nor Hasimah; Ripin, Adnan

    2016-05-01

    Flax fibres were modified by radiation induced graft copolymerization of glycidyl methacrylate (GMA) by pre-irradiation method in an emulsion medium. The effect of reaction parameters on the degree of grafting (DOG) such as concentration of bleaching agent, absorbed dose, monomer concentration, temperature and reaction time were investigated. The DOG was found to be dependent on the investigated parameters. The incorporation of poly(GMA) grafts in the bleached flax fibres was confirmed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The structural and mechanical changes were evaluated by X-ray diffraction (XRD) and mechanical tester, respectively. The results revealed that reacting bleached flax fibres irradiated with 20 kGy with 5% GMA emulsion containing 0.5% polyoxyethylene-sorbitan monolaurate (Tween 20) surfactant at 40 °C for 1 h led to a maximum DOG of 148%. The grafted fibres showed sufficient mechanical strength and hydrophobicity which make them promising precursors for development of adsorbents after appropriate chemical treatments.

  7. Relations between radiation risks and radiation protection measuring techniques

    International Nuclear Information System (INIS)

    Herrmann, K.; Kraus, W.

    Relations between radiation risks and radiation protection measuring techniques are considered as components of the radiation risk. The influence of the exposure risk on type and extent of radiation protection measurements is discussed with regard to different measuring tasks. Based upon measuring results concerning the frequency of certain external and internal occupational exposures in the GDR, it has been shown that only a small fraction of the monitored persons are subjected to a high exposure risk. As a consequence the following recommendations are presented: occupationally exposed persons with small exposure risk should be monitored using only a long-term desimeter (for instance a thermoluminescence desimeter). In the case of internal exposure, the surface and air contamination levels should be controlled so strictly that routine measurements of internal contamination need not be performed

  8. Novel Technique for Rebubbling DMEK Grafts at the Slit Lamp Using Intravenous Extension Tubing.

    Science.gov (United States)

    Sáles, Christopher S; Straiko, Michael D; Terry, Mark A

    2016-04-01

    To describe a novel technique for rebubbling DMEK grafts at the slit lamp using a cannula coupled to a syringe with intravenous (IV) extension tubing. We present a retrospective case series of eyes that underwent rebubbling using a novel technique at the slit lamp. The rebubbling apparatus is assembled using a standard 43-inch IV extension tube, a 5-cc luer lock syringe, and a 27-gauge cannula. The cannula is screwed onto one end of the extension tubing, and a 5-cc syringe that has been filled with air is screwed onto the opposite end. With the patient seated at the slit lamp, the cannula is positioned in the anterior chamber by the surgeon with one hand while the other hand operates the syringe and the joystick. We performed 5 rebubbling procedures at the slit lamp using a standard syringe and cannula. Despite suboptimal ergonomics with this approach, all of these cases achieved sufficient air fills without any complications. Four rebubbling procedures were subsequently performed at the slit lamp using our novel rebubbling technique. All of these cases also attained sufficient air fills without complications, but they were noted to be much easier to perform by the surgeon. Using IV extension tubing to couple a syringe to a cannula for rebubbling DMEK grafts at the slit lamp is ergonomically superior to the conventional alternative of using a standard cannula on a syringe. The technique is also simple and inexpensive to adopt.

  9. Radiation sterilisation dose determination for lyophilised amnion membranes and lyophilised bone grafts

    International Nuclear Information System (INIS)

    Hilmy, N.; Basril, A.; Febrida, A.

    1999-01-01

    Radiation sterilisation of medical products is now well established in commercial scale and at present there are more than two hundred irradiation facilities in operation throughout the world. It is a cold sterilisation process without toxic chemical residues, high degree of safety and easy to control, so that it is a safe technology to sterilise human tissue grafts. According to ISO (International Organisation of Standard) No. 11137, radiation sterilisation dose should be established based on the number of product's bioburden (number of product's contaminated microbes before irradiation). Bioburden of lyophilised amnion membranes and lyophilised bone grafts produced by Batan Research Tissue Bank (BRTB) have been determined since 1990 and 1994 consecutively by using 100 up to 120 pieces of samples per year. Results show that the average bioburden of the amnion membranes were 1.4 ( 0.2 x 103; 1.2 (0.2 x 103; 1.2 ( 1.2 x 103; 4.5 ( 0.5 x 102; 1.8 ( 0.9 x 102; 2.4 ( 2.3 x 102; 1.7(l.5 x 102; 1.5 ( 1.7 x 102 cells per sample, calculated in 1990 to 1997 consecutively and the average bioburden of the bonegrafts were 1.5 (0.4x 101; 0.25 (0.12 x 101; 0; 0 cells per sample, calculated in 1994 to 1997 consecutively. Morphological of those contaminants were found to be Gram positive coccoid forms (98%) and Gram positive vegetative rod (2%) with the D10 - values of 0.25 to 0.50 kGy. No spore forming bacteria and Gram negative bacteria were found in those contaminations. The highest bioburden of lyophilised amnion membranes and lyophilised bone grafts were found to be 4900 and 80 cells per sample consecutively, and the lowest was found to be 0 cell per sample in both of materials observed. According to ISO 11137 radiation sterilisation doses for amnion membranes were ranging between 21 to 25 kGy and for bone grafts was around 15 kGy with the Sterility Assurance Level (SAL) of 106. Since 1990, radiation sterilisation dose used for lyophilised amnion membranes produced by BRTB

  10. Aluminum uptake from natural waters by a radiation-grafted membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bazante-Yamaguishi, Renata; Moura, Eduardo; Manzoli, Jose E.; Geraldo, Aurea B.C., E-mail: ageraldo@ipen.br, E-mail: ryamaguishi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Styrene grafted, chemically modified polymeric membranes were used to carry off aluminum of drinking water from wells located at Billings dam region. The membranes comprised polymeric substrates of PVC (polyvinylchloride) and PP (polypropylene), which were mutually grafted with gamma radiation. The chemical modification included three basic reaction paths: Friedel-Crafts acylation, 2-methylanisole coupling and a final oxidation; this modification enables aluminum selectivity on the membrane. This chemical process inserts a salicylated derivative bonded onto the aromatic ring of styrene; such molecular arrangement is responsible for complexation of aluminum ions. The aluminum sorption capacity of these membranes was evaluated firstly from an aluminum control solution, where parameters like the ideal pH value for aluminum sorption and the interfering species were studied and correlated to know the best conditions for aluminum uptake. Later, the membranes were used for aluminum remediation of natural waters (real-life samples). The applicability results and limits are then discussed. (author)

  11. Aluminum uptake from natural waters by a radiation-grafted membrane

    International Nuclear Information System (INIS)

    Bazante-Yamaguishi, Renata; Moura, Eduardo; Manzoli, Jose E.; Geraldo, Aurea B.C.

    2013-01-01

    Styrene grafted, chemically modified polymeric membranes were used to carry off aluminum of drinking water from wells located at Billings dam region. The membranes comprised polymeric substrates of PVC (polyvinylchloride) and PP (polypropylene), which were mutually grafted with gamma radiation. The chemical modification included three basic reaction paths: Friedel-Crafts acylation, 2-methylanisole coupling and a final oxidation; this modification enables aluminum selectivity on the membrane. This chemical process inserts a salicylated derivative bonded onto the aromatic ring of styrene; such molecular arrangement is responsible for complexation of aluminum ions. The aluminum sorption capacity of these membranes was evaluated firstly from an aluminum control solution, where parameters like the ideal pH value for aluminum sorption and the interfering species were studied and correlated to know the best conditions for aluminum uptake. Later, the membranes were used for aluminum remediation of natural waters (real-life samples). The applicability results and limits are then discussed. (author)

  12. Single stage circumferential lingual mucosal graft urethroplasty in near obliterative bulbar urethra stricture: A novel technique

    Directory of Open Access Journals (Sweden)

    Umesh Sharma

    2016-01-01

    Full Text Available Aims: This is a prospective study of the use and efficacy of a novel technique of circumferential tubularised lingual mucosal graft (LMG in obliterative and near obliterative bulbar urethral stricture of >2 cm where excisional and augmented anastomotic urethroplasty are not feasible. Materials and Methods: The stenotic urethral segment was opened dorsally in midline and fibrosed urethra was excised taking care to preserve the healthy spongiosum tissue. LMG (av. Length 3 cm was placed from one end of corporal body towards spongy tissue in a circumferential manner. Another LMG was placed in similar manner to deal with longer stricture. The urethra was tubularised over 14 Fr silicone catheter. Results: A total of 12 men, of mean age 47 years underwent this procedure. The mean follow up period was 11 months starting from July 2014 till manuscript submission. Follow up included voiding cystourethrogram at 3 weeks, cystoscopy at 3 months (one patient didn't turned up and subsequent follow up. Mean stricture length was 4.66 cm (range, 3–8.5 cm and mean operative time was 195 min. (range, 160 to 200 min.. The technique was successful (normal voiding with no need for any post-operative procedure in 11(91.6% patients. One patient developed early recurrence at 4 month of surgery and had anastomotic stricture which was successfully managed by direct visual internal urethrotomy. Conclusion: Single stage circumferential tubularised graft urethroplasty is an excellent technique for strictures that include segments of obliterative and near obliterative diseased urethra. It provide a wider neourethra than patch graft urethroplasty.

  13. Analytical research using synchrotron radiation based techniques

    International Nuclear Information System (INIS)

    Jha, Shambhu Nath

    2015-01-01

    There are many Synchrotron Radiation (SR) based techniques such as X-ray Absorption Spectroscopy (XAS), X-ray Fluorescence Analysis (XRF), SR-Fourier-transform Infrared (SRFTIR), Hard X-ray Photoelectron Spectroscopy (HAXPS) etc. which are increasingly being employed worldwide in analytical research. With advent of modern synchrotron sources these analytical techniques have been further revitalized and paved ways for new techniques such as microprobe XRF and XAS, FTIR microscopy, Hard X-ray Photoelectron Spectroscopy (HAXPS) etc. The talk will cover mainly two techniques illustrating its capability in analytical research namely XRF and XAS. XRF spectroscopy: XRF spectroscopy is an analytical technique which involves the detection of emitted characteristic X-rays following excitation of the elements within the sample. While electron, particle (protons or alpha particles), or X-ray beams can be employed as the exciting source for this analysis, the use of X-ray beams from a synchrotron source has been instrumental in the advancement of the technique in the area of microprobe XRF imaging and trace level compositional characterisation of any sample. Synchrotron radiation induced X-ray emission spectroscopy, has become competitive with the earlier microprobe and nanoprobe techniques following the advancements in manipulating and detecting these X-rays. There are two important features that contribute to the superb elemental sensitivities of microprobe SR induced XRF: (i) the absence of the continuum (Bremsstrahlung) background radiation that is a feature of spectra obtained from charged particle beams, and (ii) the increased X-ray flux on the sample associated with the use of tunable third generation synchrotron facilities. Detection sensitivities have been reported in the ppb range, with values of 10 -17 g - 10 -14 g (depending on the particular element and matrix). Keeping in mind its demand, a microprobe XRF beamline has been setup by RRCAT at Indus-2 synchrotron

  14. Simplified technique for auxiliary orthotopic liver transplantation using a whole graft

    Science.gov (United States)

    ROCHA-SANTOS, Vinicius; NACIF, Lucas Souto; PINHEIRO, Rafael Soares; DUCATTI, Liliana; ANDRAUS, Wellington; D'ALBURQUERQUE, Luiz Carneiro

    2015-01-01

    Background Acute liver failure is associated with a high mortality rate and the main purposes of treatment are to prevent cerebral edema and infections, which often are responsible for patient death. The orthotopic liver transplantation is the gold standard treatment and improves the 1-year survival. Aim To describe an alternative technique to auxiliary liver transplant on acute liver failure. Method Was performed whole auxiliary liver transplantation as an alternative technique for a partial auxiliary liver transplantation using a whole liver graft from a child removing the native right liver performed a right hepatectomy. The patient met the O´Grady´s criteria and the rational to indicate an auxiliary orthotopic liver transplantation was the acute classification without hemodynamic instability or renal failure in a patient with deterioration in consciousness. Results The procedure improved liver function and decreased intracranial hypertension in the postoperative period. Conclusion This technique can overcome some postoperative complications that are associated with partial grafts. As far as is known, this is the first case of auxiliary orthotopic liver transplantation in Brazil. PMID:26176253

  15. Preparation of well-defined erythromycin imprinted non-woven fabrics via radiation-induced RAFT-mediated grafting

    Science.gov (United States)

    Söylemez, Meshude Akbulut; Barsbay, Murat; Güven, Olgun

    2018-01-01

    Radiation-induced RAFT polymerization technique was applied to synthesize well-defined molecularly imprinted polymers (MIPs) of erythromycin (ERY). Methacrylic acid (MAA) was grafted onto porous polyethylene (PE)/polypropylene (PP) nonwoven fabrics, under γ-irradiation by employing 2-pheny-2-propyl benzodithioate as the RAFT agent and ethylene glycol dimethacrylate (EGDMA) as the crosslinker. MAA/erythromycin ratios of 2/1, 4/1, 6/1 were tested to optimize the synthesis of MIPs. The highest binding capacity was encountered at a MAA/ERY ratio of 4/1. Non-imprinted polymers (NIPs) were also synthesized in the absence of ERY. The MIPs synthesized by RAFT method presented a better binding capacity compared to those prepared by conventional method where no RAFT agent was employed.

  16. Treatment of Rockwood type III acromioclavicular joint dislocation using autogenous semitendinosus tendon graft and endobutton technique

    Directory of Open Access Journals (Sweden)

    Ye G

    2016-01-01

    Full Text Available Gang Ye, Chao-An Peng, Hua-Bin Sun, Jing Xiao, Kang Zhu Department of Orthopedics, the People’s Hospital of Huangpi District, Wuhan City, People’s Republic of China Background: The aim of this study was to evaluate the therapeutic effect of autogenous semitendinosus graft and endobutton technique, and compare with hook plate in treatment of Rockwood type III acromioclavicular (AC joint dislocation.Methods: From April 2012 to April 2013, we treated 46 patients with Rockwood type III AC joint dislocation. Patients were randomly divided into two groups: Group A was treated using a hook plate and Group B with autogenous semitendinosus graft and endobutton technique. All participants were followed up for 12 months. Radiographic examinations were performed every 2 months postoperatively, and clinical evaluation was performed using the Constant–Murley score at the last follow-up.Results: Results indicated that patients in Group B showed higher mean scores (90.3±5.4 than Group A (80.4±11.5 in terms of Constant–Murley score (P=0.001. Group B patients scored higher in terms of pain (P=0.002, activities (P=0.02, range of motion (P<0.001, and strength (P=0.004. In Group A, moderate pain was reported by 2 (8.7% and mild pain by 8 (34.8% patients. Mild pain was reported by 1 (4.3% patient in Group B. All patients in Group B maintained complete reduction, while 2 (8.7% patients in Group A experienced partial reduction loss. Two patients (8.7% encountered acromial osteolysis on latest radiographs, with moderate shoulder pain and limited range of motion.Conclusion: Autogenous semitendinosus graft and endobutton technique showed better results compared with the hook plate method and exhibited advantages of fewer complications such as permanent pain and acromial osteolysis. Keywords: Rockwood type III acromioclavicular joint dislocation, autogenous semitendinosus graft, endobutton, hook plate

  17. Radiation induced graft copolymerization of n-butyl acrylate onto poly(ethylene terephthalate) (PET) films and thermal properties of the obtained graft copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Ping Xiang [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang Mozhen, E-mail: pstwmz@ustc.edu.c [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Ge Xuewu, E-mail: xwge@ustc.edu.c [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2011-05-15

    n-Butyl acrylate (BA) was successfully grafted onto poly(ethylene terephthalate) (PET) film using simultaneous radiation induced graft copolymerization with gamma rays. When BA concentration ranges from 20% to 30%, the Degree of Grafting (DG), measured by gravimetry and {sup 1}H NMR, increases with the monomer concentration and absorbed dose, but decreases with dose rate from 0.83 to 2.53 kGy/h. The maximum DG can reach up to 22.1%. The thermal transition temperatures such as glass-transition temperature (T{sub g}) and cold-crystallization temperature (T{sub cc}) of PET in grafted films were little different from those in original PET film, indicating that microphase separation occurred between PBA side chains and PET backbone. This work implied that if PET/elastomers (e.g., acrylate rubber) blends are radiated by high energy gamma rays under a certain condition, PET-g-polyacrylate copolymer may be produced in-situ, which will improve the compatibility between PET and the elastomers so as to improve the integral mechanical properties of PET based engineering plastic.

  18. GORE PRECLUDE MVP dura substitute applied as a nonwatertight "underlay" graft for craniotomies: product and technique evaluation.

    Science.gov (United States)

    Chappell, E Thomas; Pare, Laura; Salehpour, Mohammed; Mathews, Marlon; Middlehof, Charles

    2009-01-01

    While watertight closure of the dura is a long-standing tenet of cranial surgery, it is often not possible and sometimes unnecessary. Many graft materials with various attributes and drawbacks have been in use for many years. A novel synthetic dural graft material called GORE PRECLUDE MVP dura substitute (WL Gore & Associates, Inc, Flagstaff, Ariz) (henceforth called "MVP") is designed for use both in traditional watertight dural closure and as a dural "underlay" graft in a nonwatertight fashion. One surface of MVP is engineered to facilitate fibroblast in-growth so that its proximity to the underside of the dura will lead to rapid incorporation, whereas the other surface acts as a barrier to reduce tissue adhesion to the device. A series of 59 human subjects undergoing craniotomy and available for clinical and radiographic follow-up underwent nonwatertight underlay grafting of their durotomy with MVP. This is an assessment of the specific product and technique. No attempt is made to compare this to other products or techniques. The mean follow-up in this group was more than 4 months. All subjects have ultimately experienced excellent outcomes related to use of the graft implanted with the underlay technique. No complications occurred related directly to MVP, but the wound-related complication rate attributed to the underlay technique was higher than expected (17%). However, careful analysis found a high rate of risk factors for wound complications and determined that complications with the underlay technique could be avoided by assuring close approximation of the graft material to the underside of the dura. MVP can be used as an underlay graft in a nonwatertight fashion. However, if used over large voids (relaxed brain or large tumor bed), "tacking" or traditional watertight closure techniques should be used. The underlay application of MVP is best applied over the convexities and is particularly well-suited to duraplasty after hemicraniectomy.

  19. Alveolar ridge augmentation by connective tissue grafting using a pouch method and modified connective tissue technique: A prospective study.

    Science.gov (United States)

    Agarwal, Ashish; Gupta, Narinder Dev

    2015-01-01

    Localized alveolar ridge defect may create physiological and pathological problems. Developments in surgical techniques have made it simpler to change the configuration of a ridge to create a more aesthetic and more easily cleansable shape. The purpose of this study was to compare the efficacy of alveolar ridge augmentation using a subepithelial connective tissue graft in pouch and modified connective tissue graft technique. In this randomized, double blind, parallel and prospective study, 40 non-smoker individuals with 40 class III alveolar ridge defects in maxillary anterior were randomly divided in two groups. Group I received modified connective tissue graft, while group II were treated with subepithelial connective tissue graft in pouch technique. The defect size was measured in its horizontal and vertical dimension by utilizing a periodontal probe in a stone cast at base line, after 3 months, and 6 months post surgically. Analysis of variance and Bonferroni post-hoc test were used for statistical analysis. A two-tailed P connective tissue graft proposed significantly more improvement as compare to connective tissue graft in pouch.

  20. Influence of temperature on radiation-induced graft polymerization of styrene onto poly(ethylene terephthalate) nuclear membranes and films

    International Nuclear Information System (INIS)

    Zhitaryuk, N.I.; Shtan'ko, N.I.

    1989-01-01

    Temperature effect on kinetics of radiation-induced graft polymerization of styrene onto poly(ethylene terephthalate) (PETP) nuclear membranes with various parameters (pore diameter, the average distance between the pores) as well as onto PETP films with different thickness has been studied. Graft polymerization has been carried out by the methods of preirradiation in air and in vacuum. The overall activation energy of grafting as well as the activation energy of swelling of PETP in toluene has been obtained. It was found that in the method of preirradiation in vacuum the initial grafting rate in Arrhenius plot has two linear ranges. Activation energy in low temperature range correlates with activation energy of PETP swelling. Activation energy in high temperature range is determined by kinetics of graft polymerization in the method of preirradiation in air. Arrhenius plot of the initial grafting rate gives the activation energy that approximately corresponds to the initiation of grafting with oxyradicals. Dependence of PETP matrix critical thickness on temperature has also been obtained. The form of this dependence is identical to the one of the rate of graft polymerization. 33 refs.; 6 figs.; 2 tabs

  1. Radiation-grafting of 2-hydroxyethylmethacrylate and oligo (ethylene glycol) methyl ether methacrylate onto polypropylene films by one step method

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Jimenez, Alejandro [Departamento de Quimica de Radiaciones y Radioquimica, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Mexico DF 04510 (Mexico); Alvarez-Lorenzo, Carmen; Concheiro, Angel [Departamento de Farmacia y Tecnologia Farmaceutica, Universidad de Santiago de Compostela, 15782-Santiago de Compostela (Spain); Bucio, Emilio, E-mail: ebucio@nucleares.unam.mx [Departamento de Quimica de Radiaciones y Radioquimica, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Mexico DF 04510 (Mexico)

    2012-01-15

    Polypropylene films were modified with 2-hydroxyethylmethacrylate (HEMA) and oligo (ethylene glycol) methyl ether methacrylate (OEGMA) using the pre-irradiation method with gamma-rays (one step method). The effect of absorbed dose from 10 to 100 kGy, temperature (50, 60, and 70 {sup o}C), monomer concentration between 12.5% and 62.5%, monomers ratio from 10% to 90% and reaction time from 5 to 50 h; on the degree of grafting was determined. The grafted samples were analyzed by FTIR-ATR, TGA, DSC, swelling, and contact angle. Grafts onto polymeric films between 3% and 109% were obtained at doses from 10 to 100 kGy and a dose rate around 7.4 kGy/h. The graft percent increased with the content in HEMA in the HEMA:OEGMA feed mixture, which indicates a lower reactivity of OEGMA compared to HEMA. The hydrogel layer grafted on the polypropylene substrate increases the hydrophilicity of the surface and also provides certain temperature-responsiveness, which may be of interest for biomedical applications. - Highlights: > PP was grafted with a hydrogel layer applying the {gamma}-ray pre-irradiation method. > Effects of radiation dose, time, temperature and monomers concentration were evaluated. > Grafted layer increases the hydrophilicity of PP films. > HEMA and OEGMA grafted onto PP may be of interest for biomedical applications.

  2. Radiation Induced Preparation of Polymer Membranes Grafted with Basic and Acidic Monomers for Application in Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ajji, Z [Polymer Technology Division, Radiation Technology Department, Atomic Energy Commission of Syria (AECS), 17th Nissan Street, Kafar Sousah, Damascus (Syrian Arab Republic)

    2012-09-15

    Polymer membranes (PP and PE) had been grafted with basic and acidic functional groups using gamma radiation. Two binary mixtures had been used for the grafting reactions: acrylic acid/N-vinyl pyrrolidone, and acrylic acid/N-vinyl imidazole. The influence of different reaction parameters on the grafting yield had been investigated as: type of solvent and solvent composition, comonomer concentration and composition, addition of inhibitors, and dose. Water uptake with respect to the grafting yield had also been evaluated. The ability of PP films, grafted with acrylic acid/ vinyl pyrrolidone, to uptake heavy metal ions such as Hg{sup 2+}, Pb{sup 2+}, Cd{sup 2+}, Co{sup 2+}, Ni{sup 2+} and Cu{sup 2+} was elaborated. The uptake of the metal ions increases with increasing the grafting yield. Furthermore, the Pb{sup +2} uptake was much higher than the uptake of the Hg{sup 2+} and Cd{sup 2+} ions. The membranes may be considered for the separation of Pb{sup 2+} ions from Hg{sup 2+} or Cd{sup 2+} ions. Also the ability of PE films, grafted with acrylic acid/ N-vinyl imidazole to uptake heavy metal ions such as Pb{sup 2+}, Cd{sup 2+}, Co{sup 2+} and Ni{sup 2+} was elaborated. An increase in the uptake of the metal ions was observed as the grafting yield increased. (author)

  3. Production of sorption-active polypropylene fibers by radiation-induce grafting of glycidyl methacrylate as a precursor monomer

    International Nuclear Information System (INIS)

    Bondar, Yu.V.; Kim, H.J.; Lim, Y.J.; Kravets, L.I.

    2004-01-01

    Full text: Two types of sorption-active polypropylene fiber carrying strong-acid sulfonate groups and amino groups have been synthesized by radiation-induced graft polymerization of glycidyl methacrylate (GMA) with subsequent chemical modification of the epoxy groups of poly-GMA graft chains. The effect of various polymerization parameters on the GMA grafting degree was investigated in detail. The epoxy ring-opening of poly-GMA graft chains with introduction of strong-acid sulfonate groups was carried out with sodium hydrogen sulfite in water-dimethylformamide solution at 70 o C. The main peculiarities of the sulfonation reaction in depending on the reaction time and GMA grafting degree have been investigated. It was shown that for the samples with GMA grafting degree more than 50% two simultaneous processes take place during the sulfonation reaction, namely the incorporation of the sulfonate groups via opening of the GMA epoxy-rings as well as hydrolysis of the GMA epoxy-rings with the formation of α-glycol groups. Amine groups were incorporated by treatment of GMA-grafted polypropylene fibers with excess of diethylene triamine reagent. The conversion of the epoxy groups into the functional groups was investigated as a function of the degree of GMA grafting and reaction time. The ion-exchange characteristics of obtained sorption-active polypropylene fibers were determined

  4. Production of sorption-active polypropylene fiber by radiation-induce grafting of glycidyl methacrylate as a precursor monomer

    International Nuclear Information System (INIS)

    Bondar, Yu.V.; Kim, H.J.; Lim, Y.J.; Kravets, L.I.

    2004-01-01

    Two types of sorption-active polypropylene fiber carrying strong-acid sulfonate groups and amino groups have been synthesized by radiation-induced graft polymerization of glycidyl methacrylate (GMA) with subsequent chemical modification of the epoxy groups of poly-GMA graft chains. The effect of various polymerization parameters on the GMA grafting degree was investigated in detail. The epoxy ring-opening of poly-GMA graft chains with introduction of strong-acid sulfonate groups was carried out with sodium hydrogen sulfite in water-dimethylformamide solution at 70 o C. The main peculiarities of the sulfonation reaction in depending on the reaction time and GMA grafting degree have been investigated. It was shown that for the samples with GMA grafting degree more than 50% two simultaneous processes take place during the sulfonation reaction, namely the incorporation of the sulfonate groups via opening of the GMA epoxy-rings as well as hydrolysis of the GMA epoxy-rings with the formation of α-glycol groups. Amine groups were incorporated by treatment of GMA-grafted polypropylene fibers with excess of diethylene triamine reagent. The conversion of the epoxy groups into the functional groups was investigated as a function of the degree of GMA grafting and reaction time. The ion-exchange characteristics of obtained sorption-active polypropylene fibers were determined. (author)

  5. Study of energy transfer to solvent in radiation graft polymerization of styrene onto polyethylene

    International Nuclear Information System (INIS)

    Rabie, A.; Odian, G.

    1977-01-01

    The radiation-initiated graft polymerization of styrene onto polyethylene was studied to determine whether energy transfer to diluent was responsible for the previously observed high orders of dependence of the grafting rate on monomer concentration. n-Octane was used as the diluent instead of benzene. If energy transfer from excited polyethylene to benzene were present, it should not be with n-octane. The percent swelling of polyethylene by various n-octane--styrene mixtures was determined. The compositions of various n-octane--styrene mixtures absorbed inside polyethylene were determined by ultraviolet and refractive index measurements and found to be richer in styrene than the corresponding mixtures in which the polyethylene had been placed. The graft polymerization rates were determined at 0.000761, 0.0371, and 0.213 Mrad/hr and plotted against the inside styrene concentrations on a log-log scale to yield the kinetic orders of dependence of rate on monomer as 2, 3, and 3, respectively. It was concluded that energy transfer to diluent was not responsible for the high-order dependence observed

  6. Effects of combined radiation-burn injury on survival rate of allogeneic skin grafts and immune reaction in rats

    International Nuclear Information System (INIS)

    Ran Xinze; Yan Yongtang; Cheng Tianmin; Li Yuan; Wei Shuqing

    1996-01-01

    The effects of combined radiation-burn injury on survival rate of allogeneic skin grafts and immune reaction were studied in rats with combined injury of 3-8 Gy 60 Co γ-ray irradiation plus 15% total body surface area full thickness burn induced by exposure to a 5 kw bromotungsten lamp. The allogeneic skin was transplanted 24 hours after injury. It was found that all the skin grafts failed to survive in 10 days and the immune reaction significantly increased in the early stage of burn injury. But the immune reaction was obviously suppressed by the combined radiation-burn injury. The survival rates of skin grafts were 20% and 30% in the combined injury of burn plus 3 and 4 Gy irradiation respectively. When the radiation doses increased to 5,6 and 8 Gy, the survival rates elevated to 69%, 88% and 100% respectively (in the group of 8 Gy, bone marrow transplantation was conducted before receiving skin graft). At day 30 post-transplantation the survival rates were still 36%, 42% and 100% respectively. Compared with burn group, there was a significant difference in survival rate when the radiation doses were higher than 5 Gy. These results indicate that the survival rate of the allogeneic skin graft increases concurrently with the increase in radiation dose and decreases with the elapse of the post-transplantation time

  7. Role of radiation dating technique - one example

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Shigueo [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Etchevarne, Carlos A. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Fac. de Filosofia e Ciencias Humanas. Dept. Antropologia e Etnologia; Cano, Nilo F.; Munita, C.S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2012-07-01

    Full text: The great majority of archaeological or geological dating technique is based on radiation effect. The so called radioactivity method uses radioactive decays of elements. This is the case of the well known radiocarbon or carbon-14 method. Also the method of relating daughter nucleus to decaying nucleus, as in K-40/Ar-40, Th- 230/U-234, etc. Here we will concentrate in the method based on energy deposition in a solid by radiation from the disintegration of U-series and Th-series. {beta}-rays emitted by the decay of K-40 into Ca-40 (80%) and Ar-40 (11%) also contributes. The role of {alpha}, {beta} and {gamma} radiation emitted by radionuclides in the U-238 and Th-232 series and of {beta} rays from the decay of K-40, all of them in the soil irradiate anything in their course. For dating, we can have sediments as well as potteries produced by ancient people and became buried. The important process consists in transferring a fraction of the energy of radiation to the solid, mainly liberating electrons from valence band to conduction band and from there to traps. In many case the energy of the radiation is used to create defects which in turn create energy levels (traps) in the forbidden gap (or energy gap). There are three ways to recover the energy stored in the solid: (1) by emission of light optically stimulated (OSL), (2) by emission of light thermally stimulated (TL), (3) by microwave absorption (EPR or ESR). Using these techniques among several applications, we will present one to find the first settlers in the northeaster region of Brazil. (author)

  8. Role of radiation dating technique - one example

    International Nuclear Information System (INIS)

    Watanabe, Shigueo

    2012-01-01

    Full text: The great majority of archaeological or geological dating technique is based on radiation effect. The so called radioactivity method uses radioactive decays of elements. This is the case of the well known radiocarbon or carbon-14 method. Also the method of relating daughter nucleus to decaying nucleus, as in K-40/Ar-40, Th- 230/U-234, etc. Here we will concentrate in the method based on energy deposition in a solid by radiation from the disintegration of U-series and Th-series. β-rays emitted by the decay of K-40 into Ca-40 (80%) and Ar-40 (11%) also contributes. The role of α, β and γ radiation emitted by radionuclides in the U-238 and Th-232 series and of β rays from the decay of K-40, all of them in the soil irradiate anything in their course. For dating, we can have sediments as well as potteries produced by ancient people and became buried. The important process consists in transferring a fraction of the energy of radiation to the solid, mainly liberating electrons from valence band to conduction band and from there to traps. In many case the energy of the radiation is used to create defects which in turn create energy levels (traps) in the forbidden gap (or energy gap). There are three ways to recover the energy stored in the solid: (1) by emission of light optically stimulated (OSL), (2) by emission of light thermally stimulated (TL), (3) by microwave absorption (EPR or ESR). Using these techniques among several applications, we will present one to find the first settlers in the northeaster region of Brazil. (author)

  9. Study On The Application Of Hydrogel Prepared By Radiation Technique For Fermentation Of Sawdust

    International Nuclear Information System (INIS)

    Le Thuy Trang; Nguyen Huynh Phuong Uyen; Vo Thu Ha; Le Quang Luan

    2011-01-01

    The super water-adsorption hydrogels was successfully preparation by radiation crosslinking CMC in paste condition and radiation grafting acrylic acid into starch. The hydrogel with 76.36% gel fraction and 91.13% swelling degree were obtained by irradiation of CMC 20% at 20 kGy, while the hydrogel with 65.3% gel fraction and 234 swelling degree was acrylic acid and starch at 4 kGy. The supplementation of hydrogels prepared by radiation technique showed a higher cellulose degradation effect of waste of cattle after fermenting 30 and 45 days. The optimum condition was determined by mixing 1% (w/w) dried hydrogel in 99% (w/w) waste of cattle. The fermented sawdust using hydrogel prepared by radiation technique showed a better effect on the growth of F1 Chinese cabbage (Brassica Pe-tsai Bailey L.). (author)

  10. Hamstrings tendon graft preparation for anterior cruciate ligament reconstruction using the WhipKnotTM soft tissue cinch technique.

    Directory of Open Access Journals (Sweden)

    Amin Masoumiganjgah

    2012-04-01

    Full Text Available BackgroundAppropriate graft tension and secure graft incorporation inbone tunnels are essential for successful anterior cruciateligament (ACL reconstruction using hamstrings tendonautografts. The WhipKnot™ soft tissue cinch, introduced bySmith and Nephew in 2004, is an alternative option to thecommonly used whipstitch technique during preparation ofthe hamstring autograft in ACL reconstruction.AimsTo investigate the effectiveness of the WhipKnot™ softtissue cinch and technique during the preparation of thetendon graft for ACL reconstruction.MethodA total of 33 ACL reconstruction operations performedbetween February 2011 and December 2011 were includedin this study. These were performed by a single seniorsurgeon who used the Whipknot™ technique for thepreparation of each graft. Four were used for eachoperation; two for each end of the harvested hamstringstendons, including semitendinosus and gracilis tendonsrespectively.ResultsIn total, 132 WhipKnots were used during the kneeoperations. Use of the WhipKnot™ technique resulted insuccessful graft preparations, tensioning and effective graftplacement in the tibial and femoral tunnels in almost allinstances. Only one case of WhipKnot™ failure (slippagewas recorded.ConclusionThese results indicate that the Whipknot™ technique is asafe, reliable and practical option for the preparation of thehamstrings autografts.

  11. Innovative chimney-graft technique for endovascular repair of a pararenal abdominal aortic aneurysm.

    Science.gov (United States)

    Galiñanes, Edgar Luis; Hernandez-Vila, Eduardo A; Krajcer, Zvonimir

    2015-02-01

    After abdominal aortic aneurysm repair, progressive degeneration of the aneurysm can be challenging to treat. Multiple comorbidities and previous operations place such patients at high risk for repeat surgery. Endovascular repair is a possible alternative; however, challenging anatomy can push the limits of available technology. We describe the case of a 71-year-old man who presented with a 5.3-cm pararenal aneurysm 4 years after undergoing open abdominal aortic aneurysm repair. To avoid reoperation, we excluded the aneurysm by endovascular means, using visceral-artery stenting, a chimney-graft technique. Low-profile balloons on a monorail system enabled the rapid exchange of coronary wires via a buddy-wire technique. This novel approach facilitated stenting and simultaneous angioplasty of multiple visceral vessels and the abdominal aorta.

  12. Mandible vertical height correction using lingual bone-split pedicle onlay graft technique

    Directory of Open Access Journals (Sweden)

    Coen Pramono D

    2006-09-01

    Full Text Available As edentulous mandible become atrophic, a denture bearing area will also be reduced. Difficulty in the removable prosthesis rehabilitation will be present as well. The purpose of this paper reports an innovative surgical technique to cope a problem of unstable complete lower denture due to bone atrophy and resulted of vertical height reduction of the anterior region of the mandible necessary for denture retention. Vertical advancement of the lower jaw using lingual bone split pedicle onlay graft technique in the anterior region of the mandible and followed by secondary epithelization vestibuloplasty in achieving the vertical height dimension. The surgery was achieved satisfactorily as the vertical dimension of the mandible anterior region had increased and the denture seated more stable comparing with the previous denture worn by the patient. It concluded that the surgery was achieved with a great result as the vertical height of the anterior region of the mandible had increased positively therefore lead the denture seated more stable.

  13. The study of preparation for immobilized cells membranes of E. Coli. by radiation technique

    International Nuclear Information System (INIS)

    Cao Jin; Chen Pin; Yu Yi

    1991-01-01

    The paper described the preparation of immobilized cells membranes with E. Coli by radiation technique. The nylon 6 was grafted with HEMA, which as a matrix to prepare immobilized cells membranes with E. Coli. by radiation entrapment at low temperature. The results showed that the retentive activity possessed a maximum value for membranes with E. Coli. when the irradiation dose was at 10-12 kGy, the entrapped cells has 2.3 g/ml at 50% HEMA concentration, the optimum pH and optimum temperature for membranes with E. Coli. are as same the original cells

  14. Dorsal buccal mucosal graft urethroplasty for anterior urethral stricture by Asopa technique.

    Science.gov (United States)

    Pisapati, V L N Murthy; Paturi, Srimannarayana; Bethu, Suresh; Jada, Srikanth; Chilumu, Ramreddy; Devraj, Rahul; Reddy, Bhargava; Sriramoju, Vidyasagar

    2009-07-01

    Buccal mucosal graft (BMG) substitution urethroplasty has become popular in the management of intractable anterior urethral strictures with good results. Excellent long-term results have been reported by both dorsal and ventral onlay techniques. Asopa reported a successful technique for dorsal placement of BMG in long anterior urethral strictures through a ventral sagittal approach. To evaluate prospectively the results and advantages of dorsal BMG urethroplasty for recurrent anterior urethral strictures by a ventral sagittal urethrotomy approach (Asopa technique). From December 2002 to December 2007, a total of 58 men underwent dorsal BMG urethroplasty by a ventral sagittal urethrotomy approach for recurrent urethral strictures. Forty-five of these patients with a follow-up period of 12-60 mo were prospectively evaluated, and the results were analysed. The urethra was split twice at the site of the stricture both ventrally and dorsally without mobilising it from its bed, and the buccal mucosal graft was secured in the dorsal urethral defect. The urethra was then retubularised in one stage. The overall results were good (87%), with a mean follow-up period of 42 mo. Seven patients developed minor wound infection, and five patients developed fistulae. There were six recurrences (6:45, 13%) during the follow-up period of 12-60 mo. Two patients with a panurethral stricture and four with bulbar or penobulbar strictures developed recurrences and were managed by optical urethrotomy and self-dilatation. The medium-term results were as good as those reported with the dorsal urethrotomy approach. Long-term results from this and other series are awaited. More randomised trials and meta-analyses are needed to establish this technique as a procedure of choice in future. The ventral sagittal urethrotomy approach is easier to perform than the dorsal urethrotomy approach, has good results, and is especially useful in long anterior urethral strictures.

  15. Development of radiation preservation technique in Beijing

    International Nuclear Information System (INIS)

    Zhang Hongdi; Li Guixiang; Pang Mei

    1990-12-01

    The 60 Co radiation preservation technique which was used to preserve persimmons, green peppers and four varieties of apple was studied. Apples and persimmons were irradiated with 0.1 ∼ 0.7kGy and 0.1 ∼ 1.0kGy respectively, then they were stored under a constant environmental temperature. Green peppers were treated with heat, irradiated with low dose and stored at low temperature. After a certain time of storing, the results showed that the quality of irradiated groups was better than control group, and there was no difference of main nutrient components between the irradiated groups and the control group. Finally, the radiation processing does not cause radioactivity increasing and microelements decreasing in the food

  16. Graft copolymers of polyurethane with various vinyl monomers via radiation-induced miniemulsion polymerization: Influential factors to grafting efficiency and particle morphology

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hua [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China); Wang Mozhen [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China)], E-mail: pstwmz@ustc.edu.cn; Ge Xuewu [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China)], E-mail: xwge@ustc.edu.cn

    2009-02-15

    Graft copolymers of polyurethane (PU) with various vinyl monomers were synthesized through a one-pot but two-step miniemulsion polymerization process. Firstly, the polycondensation of isophorone diisocyanate (IPDI) with hydroxyl-terminated polybutadiene (HTPB) had been performed in aqueous miniemulsion at 40 deg. C in order to obtain PU dispersions. Consecutively, an in-situ graft copolymerization of the vinyl monomers with the synthesized PU was initiated by {gamma}-ray radiation at room temperature. The grafting efficiency of PU with vinyl monomer (G{sub PU/monomer}) was calculated from {sup 1}H NMR spectra and the particle morphology of the final hybrid latex was observed by transmission electron microscopy (TEM). As there was no monomer transferring in miniemulsion system, homogenous hybrid particles would be synthesized provided that the monomer was miscible with PU, such as styrene. With the increase of the polarity of the monomer, the compatibility of PU with monomer decreased. G{sub PU/monomer} varied as G{sub PU/styrene}(37%)>G{sub PU/butyl} {sub acrylate} {sub (BA)}(21%)>G{sub PU/methyl} {sub methacrylate} {sub (MMA)}(12%). The proportion of homogeneous nucleation would increase as the hydrophilicity of the monomer increased. High temperature would destabilize the miniemulsion so as to result in a less grafting efficiency. Compared to the phase separation during the seeded emulsion polymerization, the miniemulsion polymerization method facilitated the preparation of homogeneous materials owing to its monomer droplet nucleation mechanism.

  17. Soft Tissue Closure of Grafted Extraction Sockets in the Anterior Maxilla: A Modified Palatal Pedicle Connective Tissue Flap Technique.

    Science.gov (United States)

    El Chaar, Edgard; Oshman, Sarah; Cicero, Giuseppe; Castano, Alejandro; Dinoi, Cinzia; Soltani, Leila; Lee, Yoonjung Nicole

    Localized ridge resorption, the consequence of socket collapse, following tooth extraction in the anterior maxilla can adversely affect esthetics, function, and future implant placement. Immediate grafting of extraction sockets may help preserve natural ridge contours, but a lack of available soft tissue can compromise the final esthetic outcome. The presented modified rotated palatal pedicle connective tissue flap is a useful technique for simultaneous soft tissue coverage and augmentation of grafted sockets to improve esthetic outcome. This article delineates its advantages through the presentation of a four-case series using this new technique.

  18. Patient radiation exposure during different kyphoplasty techniques

    International Nuclear Information System (INIS)

    Panizza, D.; Barbieri, M.; Parisoli, F.; Moro, L.

    2014-01-01

    The scope of this study was to quantify patient radiation exposure during two different techniques of kyphoplasty (KP), which differ by a cement delivery method, in order to assess whether or not one of the two used methods can reduce the patient dose. Twenty patients were examined for this investigation. One X-ray fluoroscopy unit was used for localization, navigation and monitoring of cement delivery. The patient bio-metric data, the setting of the fluoroscope, the exposure time and the kerma-area product (KAP) were monitored in all the procedures for anteroposterior (AP) and lateral (LL) fluoroscopic projections in order to assess the range of radiation doses imparted to the patient. Theoretical entrance skin dose (ESD) and effective dose (E) were calculated from intraoperatively measured KAP. An average ET per procedure was 1.5±0.5 min for the manual injection technique (study A) and 1.4±0.4 min for the distance delivery technique (study B) in the AP plane, while 3.2±0.7 and 5.1±0.6 min in the lateral plane, respectively. ESD was estimated as an average of 0.10±0.06 Gy for study A and 0.13±0.13 Gy for study B in the AP or/and 0.59±0.46 and 1.05±0.36 Gy in the lateral view, respectively. The cumulative mean E was 1.9±1.0 mSv procedure -1 for study A and 3.6±0.9 mSv procedure -1 for study B. Patient radiation exposure and associated effective dose from KP may be considerable. The technique of distance cement delivery appears to be slower than the manual injection technique and it requires a more protracted fluoroscopic control in the lateral projection, so that this system entails a higher amount of dose to the patient. (authors)

  19. Patient radiation exposure during different kyphoplasty techniques.

    Science.gov (United States)

    Panizza, Denis; Barbieri, Massimo; Parisoli, Francesco; Moro, Luca

    2014-01-01

    The scope of this study was to quantify patient radiation exposure during two different techniques of kyphoplasty (KP), which differ by a cement delivery method, in order to assess whether or not one of the two used methods can reduce the patient dose. Twenty patients were examined for this investigation. One X-ray fluoroscopy unit was used for localization, navigation and monitoring of cement delivery. The patient biometric data, the setting of the fluoroscope, the exposure time and the kerma-area product (KAP) were monitored in all the procedures for anteroposterior (AP) and lateral (LL) fluoroscopic projections in order to assess the range of radiation doses imparted to the patient. Theoretical entrance skin dose (ESD) and effective dose (E) were calculated from intraoperatively measured KAP. An average ET per procedure was 1.5±0.5 min for the manual injection technique (study A) and 1.4±0.4 min for the distance delivery technique (study B) in the AP plane, while 3.2±0.7 and 5.1±0.6 min in the lateral plane, respectively. ESD was estimated as an average of 0.10±0.06 Gy for study A and 0.13±0.13 Gy for study B in the AP or/and 0.59±0.46 and 1.05±0.36 Gy in the lateral view, respectively. The cumulative mean E was 1.9±1.0 mSv procedure(-1) for study A and 3.6±0.9 mSv procedure(-1) for study B. Patient radiation exposure and associated effective dose from KP may be considerable. The technique of distance cement delivery appears to be slower than the manual injection technique and it requires a more protracted fluoroscopic control in the lateral projection, so that this system entails a higher amount of dose to the patient.

  20. Skin Graft

    OpenAIRE

    Shimizu, Ruka; Kishi, Kazuo

    2012-01-01

    Skin graft is one of the most indispensable techniques in plastic surgery and dermatology. Skin grafts are used in a variety of clinical situations, such as traumatic wounds, defects after oncologic resection, burn reconstruction, scar contracture release, congenital skin deficiencies, hair restoration, vitiligo, and nipple-areola reconstruction. Skin grafts are generally avoided in the management of more complex wounds. Conditions with deep spaces and exposed bones normally require the use o...

  1. Use of modified Sandwich-graft technique to preserve hypogastric artery in EVAR treatment of complex aortic aneurysm anatomy.

    Science.gov (United States)

    Mosquera Arochena, N; Rodríguez Feijoo, G; Carballo Fernandez, C; Molina Herrero, F; Fernandez Lebrato, R; Barrios Castro, A; Garcia Fernandez, I

    2011-10-01

    Since the introduction of the first endoprosthetic devices, continuous development in techniques and implants has occurred, such as the introduction of a stent graft with branches designed to preserve antegrade flow in the hypogastric artery, a stent-graft designed to treat extreme neck angulation and iliac tortuosity, as well as "Sandwich" and "Chimney" techniques used to maintain perfusion in branch vessels originating in the region to be treated. This paper describes how the Sandwich-Graft technique was adapted, as described by Lobato et al., employing the Aorfix™ system (Lombard Medical) and the Viabahn™ (W.L.Gore) to preserve hypogastric flow in cases with extreme neck angulation and iliac tortuosity. The study included four patients treated from April 2010 until November 2010 with the modified Sandwich technique. All patients eligible for this approach were considered unfit for open repair and were not suitable for an iliac branch graft (Z-BIS Zenith™ Cook Medical). A bifurcated endograft was implanted with specific, in-situ, branching to the target hypogastric artery and achieved clinical and technical success, in all the patients. After a 11-month follow-up in two cases and a six-month follow-up in the other two, clinical results were successful. All patients were endoleak-free, had patent hypogastric branches and had shrinking or stable aneurysms. The initial experience shows that the Sandwich technique with the Aorfix™ stent-graft demonstrated to be effective in endovascular repair of abdominal aortic aneurysms in patients with aortoiliac anatomy hostile to preserving hypogastric artery patency. This graft allows a broader group of patients to be treated with endovascular repair without potential complications of hypogastric artery occlusion; however, further studies are needed to evaluate long-term results in larger numbers of patients.

  2. Radiation-induced grafting of styrene onto poly-vinylidene fluoride) film by simultaneous method with two different solvents

    International Nuclear Information System (INIS)

    Ferreira, H.P.; Parra, D.F.; Lugao, A.B.

    2011-01-01

    Complete text of publication follows. Radiation-induced grafting to create membranes with ion exchange capacity in fluorinated polymers has been studied for applications such as fuel cells, filtration and waste treatment and polymeric actuators due to their good physical and chemical properties. In this work, radiation-induced grafting of styrene into poly(vinylidene fluoride) (PVDF) films with 0.125 mm thickness at doses of 1 and 2.5 kGy in the presence of a styrene/N,N- dimethylformamide (DMF) solution (1:1, v/v) and at doses of 20, 40 and 80 kGy in presence of a styrene/toluene solution (1:1, v/v) at dose rate of 5 kGy h-1 was carried out by simultaneous method under nitrogen atmosphere and at room temperature, using gamma-rays form a Co-60. The films were characterized before and after modification by the grafting yield (GY), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). GY results shows that grafting increases with dose, and it was possible to confirm the grafting of styrene by FT-IR due to the new characteristics peaks and by the TG and DSC due to changes in thermal behavior of the grafted material. Results showed that the system allows the homogeneous grafting of styrene into PVDF using gamma irradiation at doses as low as 1 kGy when DMF is used and heterogeneous grafting when toluene is used, showing the importance of the solvent nature during the simultaneous method.

  3. The use of radiation-induced graft polymerization for obtaining polymeric biomaterial on the basis of preparation 'Piyavit'

    International Nuclear Information System (INIS)

    Kudryavtsev, V.N.; Degtyareva, T.V.; Kabanov, V.Ya.

    1998-01-01

    The purpose of the present study is to obtain hemocompatible polymeric materials. The method of modification of polymer surface have been elaborated using the radiation-induced graft polymerization after which the surface is capable of coupling with the biologically active substances (BAS) produced from the medicinal leeches. At the Biological Department of Lomonosov Moscow State University was created a medicinal preparation 'Piyavit' isolated from the salivary glands secretion of the medicinal leeches (Hirudo medicinalis). It possess a wide spectrum of biological action on the human organism thanks to the presence of an unique complex natural of BAS (enzymes, inhibitors of proteolityc ensymes, prostanoids and et. al) guaranteed the anticoagulating, thrombolytic, antithrombotic, antiphlogistic, antiatherosclerotic, hypotentic effects and et al.. It has several advantages over anticoagulant heparin which is widely used for above mentioned purpose. 'Piyavit' is the multifunctional preparation, has not negative side-effects and is more cheap. The method of obtaining biocompatible polymers (basically polyethylene) with immobilized 'Piyavit' consist of three stages: 1. The modification of polymer surface by the radiation-induced graft polymerization of acrylic acid to obtain grafted chains polyacrylic acid (PAA) with controlled number and length. 2. The treatment of radiation grafted PAA by thionyl chloride that lead to conversion carboxyl groups of PAA in highly reactive acide chloride groups. 3. The covalent immobilization BAS of 'Piyavit' by acylation amino- and hydroxy-groups (functional groups in BAS) by acide chloride of PAA grafted on the polymere. (author)

  4. Use of gamma and UV radiation in grafting hydrogel polymers to membranes

    International Nuclear Information System (INIS)

    Baker, L.; Hill, D.J.T.; Whittaker, A.; Hunter, D.; Davis, T.P.

    1998-01-01

    Full text: Dimethylacrylamide and N-isopropylacrylamide hydrogels are useful for their ability to absorb large amounts of water and for their thermotropic response. However as membranes they do not have the mechanical properties to be applicable in industry. Therefore these hydrogels have been grafted to polyvinylidinedifluoride (PVDF) membranes using radiation. Both UV and gamma irradiation were used. In the first method the PVDF membranes were first hydroxylated by immersion in a aqueous solution of potassium peroxydisulfate (10% w/v), with nitrogen purging for two hours at 80 deg C. This was followed by immersion in an aqueous solution of riboflavine (4mg/L) and monomer (10% v/v), degassing with nitrogen and irradiation under a Mercury UV light (wavelength 240 nm) at room temperature for 15 minutes. Membranes were washed by soxhlet extraction in distilled water and oven dried. The second method of grafting hydrogels to membranes involved immersing the membrane in 10 mL of distilled water containing monomer and CuSO 4 to prevent homopolymerisation. The solution was degassed with N 2 for 3 minutes then irradiated under nitrogen using a 60 Co source for various time periods. The effect of varying monomer and CuSO 4 concentration as well as dose rate and dose were studied. Membranes were rinsed in distilled water for 24 hours and dried in an oven before characterisation. Grafting was characterised by mass change (Mettler AC 100 balance), XPS (PHI Model 560 XPS/SAM/SIMA1 multitechnique surface analysis system), SEM (Hitachi S-900 Field Emission SEM) and FTIR-ATR (Perkn Elmer System 2000 FTIR with MIRMCT detector)

  5. Obtention of cationic polymeric membranes by radiation-induced grafting method

    International Nuclear Information System (INIS)

    Marin H E, H.

    1994-01-01

    Radiation-induced grafting of LDPE with the monomers, acrylic acid and methacrylic acid, has been studied. The grafting was made with several presentations of LDPE (foil, powder and pellets) by direct method using a Co 60 gamma rays. The irradiation was carried out in vacuum at room temperature at different doses (0.02 kGy - 0.2 kGy) with a rate dose of 0.8632 kGy/h. The graft yield was measured by the relation of initial and final weights. The variations of the LDPE structure was followed by infrared absorption spectroscopy and the results showed that there was important variations in LDPE structure when the dose increases. The tensile strong properties of the copolymers were investigated and it was found that the structure of LDPE was modified by the presence of chains of poly (acrylic) and poly (methacrylic) acid and this was reflected in the tensile properties of the polymer. A trial has been made in order to use the powder presentation of the copolymer like ion exchange resin first we measured volumetrically the quantity of milliequivalents per gram of carboxylic groups by titration 5 ml. of a solution 0.1 N of NaOH, which was 48 h. in contact with the copolymer, with a solution 0.1 N of HCl and we found that the quantity of milliequivalents enhance according with the irradiation dose. Finally, we made ion exchange experiments by passing a solution containing Ca +2 ions through ion exchange columns packed with the copolymer the results showed that these copolymers has good properties in retaining Ca +2 ions. We conclude that these copolymers can be used for ion exchange process however final conditions must be improved. (Author)

  6. Treatment of complex internal carotid artery aneurysms using radial artery grafts. Surgical technique, perioperative complications, and results in 17 patients

    International Nuclear Information System (INIS)

    Murai, Yasuo; Teramoto, Akira; Mizunari, Takayuki; Kobayashi, Shiro; Kamiyama, Hiroyasu

    2007-01-01

    Complex giant or large internal carotid artery aneurysms present a surgical challenge because limitations and difficulty are encountered with either clipping or endovascular treatment. Our review of previous reports suggests that no current vascular assessment can accurately predict the occurrence of ischemic complications after internal carotid artery ligation. The present study concerns surgical technique, complications, and clinical outcome of radial artery grafting followed by parent artery trapping or proximal occlusion for management of these difficult lesions. Between September 1997 and October 2005, we performed radial artery grafting followed immediately by parent artery occlusion in 17 patients with giant or large complex intracranial carotid aneurysms (3 men, 14 women; mean follow-up duration, 62 months). All patients underwent postoperative digital subtraction angiography to assess graft patency and aneurysm obliteration. All 17 aneurysms were excluded from the cerebral circulation, with all radial artery grafts patent. Among 4 patients with cranial nerve disturbances, dysfunction was temporary in 5; in the others, oculomotor nerve paresis persisted. No perioperative cerebral infarction occurred. Sensory aphasia reflecting cerebral contusions caused by temporal lobe retraction resolved within 2 months, as did hemiparesis from a postoperative epidural hematoma. With appropriate attention to surgical technique, radial artery grafting followed by acute parent artery occlusion is a safe treatment for complex internal carotid artery aneurysms. Graft patency and aneurysm thrombosis were achieved in all patients. Cranial nerve dysfunction (III, VI) caused by altered blood flow from the internal carotid artery after occlusion was the most common complication and typically was temporary. In our experience with these difficult aneurysms, not only clipping but also reconstruction of the internal carotid artery was required, especially for wide-necked symptomatic

  7. Structural, thermal and ion transport properties of radiation grafted lithium conductive polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Nasef, Mohamed Mahmoud [Business and Advanced Technology Centre (BATC), Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia)]. E-mail: mahmoudeithar@mailcity.com; Saidi, Hamdani [Business and Advanced Technology Centre (BATC), Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia)

    2006-10-10

    Structural, thermal and ion transport properties of lithium conductive polymer electrolytes prepared by radiation-induced grafting of styrene onto poly(vinylidene fluoride) (PVDF) films and subsequent activation with LiPH{sub 6}/EC/DEC liquid electrolyte were investigated in correlation with the content of the grafted polystyrene (Y%). The changes in the structure were studied using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Thermal gravimetric analysis (TGA) was used to evaluate the thermal stability. The ionic conductivity was measured by means of ac impedance spectroscopy at various temperatures. The polymer electrolytes were found to undergo considerable structural and morphological changes that resulted in a noticeable increase in their ionic conductivity with the increase in Y% at various temperatures (25-65 deg. C). The ionic conductivity achieved a value of 1.61 x 10{sup -3} S cm{sup -1} when Y of the polymer electrolyte reached 50% and at 25 deg. C. The polymer electrolytes also showed a multi-step degradation behaviour and thermal stability up to 120 deg. C, which suits normal lithium battery operation temperature range. The overall results of this work suggest that the structural changes took place in PVDF matrix during the preparation of these polymer electrolytes have a strong impact on their various properties.

  8. Adsorption of Cr(VI) using silica-based adsorbent prepared by radiation-induced grafting

    International Nuclear Information System (INIS)

    Qiu Jingyi; Wang Ziyue; Li Huibo; Xu Ling; Peng Jing; Zhai Maolin; Yang Chao; Li Jiuqiang; Wei Genshuan

    2009-01-01

    Silica-based adsorbent was prepared by radiation-induced grafting of dimethylaminoethyl methacrylate (DMAEMA) onto the silanized silica followed by a protonation process. The FTIR spectra and XPS analysis proved that DMAEMA was grafted successfully onto the silica surface. The resultant adsorbent manifested a high ion exchange capacity (IEC) of ca. 1.30 mmol/g and the Cr(VI) adsorption behavior of the adsorbent was further investigated, revealing the recovery of Cr(VI) increased with the adsorbent feed and the equilibrium adsorption could be achieved within 40 min. The adsorption capacity, strongly depended on the pH of the solution, reached a maximum Cr(VI) uptake (ca. 68 mg/g) as the pH was in the range of 2.5-5.0. Furthermore, even in strong acidic (4.0 mol/L HNO 3 ) or alkaline media (pH 11.0), the adsorbent had a sound Cr(VI) uptake capacity (ca. 22 and 30 mg/g, respectively), and the adsorption followed Langmuir mode. The results indicated that this adsorbent, prepared via a convenient approach, is applicable for removing heavy-metal-ion pollutants (e.g. Cr(VI)) from waste waters.

  9. Introduction of functionalizable groups via radiation grafting into polymer electrolyte membranes for fuel cells

    International Nuclear Information System (INIS)

    Buchmueller, Y.; Scherer, G.G.; Wokaun, A.; Gubler, L.

    2011-01-01

    Complete text of publication follows. Our work is focused on the introduction of functionalizable groups, so called linkers, to polymer electrolyte membranes. The aim is to attach antioxidant groups to the linkers to enhance the durability of the proton conducting membrane in a fuel cell. The synthetic route we chose is radiation cografting of functionalizable monomers and precursor monomers of a protogenic group into ETFE base film (thickness 25 μm) with subsequent amination. Typically, we performed cografting of styrene with different linkers, such as acryloyl chloride, vinylbenzyl chloride, and glycidyl methacrylate. Styrene is readily sulfonated to introduce proton conductivity. The cografting behavior of the linkers and styrene was investigated to target the desired molar fraction of the monomers in the grafted polymer. All films were characterized by Fourier transform infrared (FTIR) spectroscopy and elemental analysis. Using these data the graft polymerization kinetics of these systems have been determined. The cografted films were first functionalized with amines, such as thyramine and dopamine, and then sulfonated or vice-versa, depending on the stability of the compounds in acidic environment. The synthesized membranes were characterized for conductivity and ion exchange capacity (IEC). Promising membranes were tested in a fuel cell.

  10. Comparison of techniques for morphologic evaluation of glycerol-preserved human skim subjected to gamma radiation

    International Nuclear Information System (INIS)

    Bringel, Fabiana de A.; Isaac, Cesar; Herson, Marisa R.; Freitas, Anderson Z. de; Martinho Junior, Antonio C.; Mathor, Monica B.

    2011-01-01

    Extensive skin lesions expose the body to damaging agents, which makes spontaneous regeneration difficult and, in many cases, leads patient to death. In such cases, if there are no donating areas for auto graft, allografts can be used. In this type of graft, tissue is processed in tissue banks, where it can be subjected to radiosterilization. According to in vitro studies, gamma radiation, in doses higher than 25 kGy, causes breakdown of collagen I fibrils in the skin preserved in glycerol at 85% and this change influences fibroblast migration and deposition of new collagen. In order to assess if the alterations observed in vitro, would compromise in vivo use, transplants of human tissue, irradiated or not, were performed in Nude mice. After the surgery the skins of the mice was subjected to macroscopic analysis on the 3 rd , 7 th , 21 st and 90 th days; optical coherence tomography on the 90 th day and histological assay on the 3 rd , 7 th , 21 st days to compare the results of the repair process among the techniques, considering that the OCT allows in vivo and not destructive morphological analysis. According to the results obtained through OCT it was possible to observe a more organized repair process in the animals which received irradiated grafts (25 and 50 kGy) if compared to unirradiated grafts. It was not possible to observe such phenomena through macroscopic or histological evaluation. (author)

  11. Comparison of techniques for morphologic evaluation of glycerol-preserved human skim subjected to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bringel, Fabiana de A. [Faculty of Humanities, Economic and Health Sciences of Araguaina ITPAC (FAHESA/ITPAC/TO) Araguaina, TO (Brazil); Isaac, Cesar [Faculty of Medicine, University of Sao Paulo (FMUSP/SP) Sao Paulo, SP (Brazil); Herson, Marisa R., E-mail: marisah@vifm.org [Tissue Bank of Victoria, Victoria (Australia); Freitas, Anderson Z. de; Martinho Junior, Antonio C.; Mathor, Monica B., E-mail: azanardi@ipen.br, E-mail: mathor@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Radiation Technology Centre; Oliveira, Sergio F. de [Institute of Biomedical Sciences, University of Sao Paulo (ICB-USP/SP), SP (Brazil)

    2011-07-01

    Extensive skin lesions expose the body to damaging agents, which makes spontaneous regeneration difficult and, in many cases, leads patient to death. In such cases, if there are no donating areas for auto graft, allografts can be used. In this type of graft, tissue is processed in tissue banks, where it can be subjected to radiosterilization. According to in vitro studies, gamma radiation, in doses higher than 25 kGy, causes breakdown of collagen I fibrils in the skin preserved in glycerol at 85% and this change influences fibroblast migration and deposition of new collagen. In order to assess if the alterations observed in vitro, would compromise in vivo use, transplants of human tissue, irradiated or not, were performed in Nude mice. After the surgery the skins of the mice was subjected to macroscopic analysis on the 3{sup rd}, 7{sup th}, 21{sup st} and 90{sup th} days; optical coherence tomography on the 90{sup th} day and histological assay on the 3{sup rd}, 7{sup th}, 21{sup st} days to compare the results of the repair process among the techniques, considering that the OCT allows in vivo and not destructive morphological analysis. According to the results obtained through OCT it was possible to observe a more organized repair process in the animals which received irradiated grafts (25 and 50 kGy) if compared to unirradiated grafts. It was not possible to observe such phenomena through macroscopic or histological evaluation. (author)

  12. Femoral component revision with use of impaction bone-grafting and a cemented polished stem. Surgical technique.

    NARCIS (Netherlands)

    Schreurs, B.W.; Arts, J.J.C.; Verdonschot, N.J.J.; Buma, P.; Slooff, T.J.J.H.; Gardeniers, J.W.M.

    2006-01-01

    BACKGROUND: The purpose of this study was to evaluate the clinical and radiographic outcomes of revision of the femoral component of a hip arthroplasty with use of an impaction bone-grafting technique and a cemented polished stem. METHODS: Thirty-three consecutive femoral reconstructions that were

  13. Radioactive cesium removal from seawater using adsorptive fibers prepared by radiation-induced graft polymerization

    International Nuclear Information System (INIS)

    Goto, Shota; Kawai-Noma, Shigeko; Umeno, Daisuke; Saito, Kyoichi; Fujiwara, Kunio; Sugo, Takanobu; Kikuchi, Takahiro; Morimoto, Yasutomi

    2015-01-01

    The meltdown of three reactors of the TEPCO Fukushima Daiichi nuclear power station (NPS) caused by the Great East Japan Earthquake on March 11th 2011 resulted in the emission of radionuclides such as cesium-137 and strontium-90 to the environment. For example, radioactive cesium exceeding the legal discharge limit (90 Bq/L, 2×10 -13 M) was detected in the seawater of the seawater-intake area of the NPS at the end of September 2014. Adsorbents with a high selectivity for cesium ions over other alkali metal ions such as sodium and potassium ions are required for cesium removal from seawater because sodium and potassium ions dissolve respectively at much higher concentrations of 5×10 -1 and 1×10 -2 M than cesium ions (2×10 -9 M). In addition, the simple operations of the immersion in seawater and the recovery of the adsorbents from seawater are desirable at decontamination sites. We prepared a cobalt-ferrocyanide-impregnated fiber capable of specifically capturing cesium ions in seawater by radiation-induced graft polymerization and chemical modifications. First, a commercially available 6-nylon fiber was irradiated with γ-rays. Second, an epoxy-group-containing vinyl monomer, glycidyl methacrylate, was graft-polymerized onto the γ-ray-irradiated nylon fiber. Third, the epoxy ring of the grafted polymer chain was reacted with triethylenediamine to obtain an anion-exchange fiber. Fourth, ferrocyanide ions, [Fe(CN) 6 ] 4 - , were bound to the anion-exchange group of the polymer chains. Finally, the ferrocyanide-ion-bound-fiber was placed in contact with cobalt chloride to precipitate insoluble cobalt ferrocyanide onto the polymer chains. Insoluble cobalt ferrocyanide was immobilized at the periphery of the fiber. However, the impregnation structure remains unclear. Here, we clarified the structure of insoluble cobalt ferrocyanide impregnated onto the polymer chain grafted onto the fiber to ensure the chemical and physical stability of the adsorptive fiber in

  14. Alveolar ridge augmentation by connective tissue grafting using a pouch method and modified connective tissue technique: A prospective study

    Directory of Open Access Journals (Sweden)

    Ashish Agarwal

    2015-01-01

    Full Text Available Background: Localized alveolar ridge defect may create physiological and pathological problems. Developments in surgical techniques have made it simpler to change the configuration of a ridge to create a more aesthetic and more easily cleansable shape. The purpose of this study was to compare the efficacy of alveolar ridge augmentation using a subepithelial connective tissue graft in pouch and modified connective tissue graft technique. Materials and Methods: In this randomized, double blind, parallel and prospective study, 40 non-smoker individuals with 40 class III alveolar ridge defects in maxillary anterior were randomly divided in two groups. Group I received modified connective tissue graft, while group II were treated with subepithelial connective tissue graft in pouch technique. The defect size was measured in its horizontal and vertical dimension by utilizing a periodontal probe in a stone cast at base line, after 3 months, and 6 months post surgically. Analysis of variance and Bonferroni post-hoc test were used for statistical analysis. A two-tailed P < 0.05 was considered to be statistically significant. Results: Mean values in horizontal width after 6 months were 4.70 ± 0.87 mm, and 4.05 ± 0.89 mm for group I and II, respectively. Regarding vertical heights, obtained mean values were 4.75 ± 0.97 mm and 3.70 ± 0.92 mm for group I and group II, respectively. Conclusion: Within the limitations of this study, connective tissue graft proposed significantly more improvement as compare to connective tissue graft in pouch.

  15. Dependence of crystallinity degree with induced grafting by gamma radiation of N,N'-dimethyl acrylamide

    International Nuclear Information System (INIS)

    Queiroz, A.A.A.; Higa, O.Z.; Barrak, E.R.; Giolito, I.

    1991-01-01

    N,N' -dimethyl acrylamide (DMAA) graft copolymerization onto polyethylene films was carried out, using a organic solvent as a reaction medium and gamma rays from a 60 Co source for surface activation. Thermal analysis revealed the crystallinity and the grafting inversely proportional. The DSC curves fusion peaks decreased with grafting rate increase, the peak almost disappearing in the curve of PE 440% grafted. It was concluded that the graft occurs not only on the surface but also in the substrate bulk, being the PE absorption of DMAA an important factor for build up of grafted mass. (author)

  16. Studies on the mechanism of stable graft--host tolerance in canine and human radiation chimeras

    International Nuclear Information System (INIS)

    Storb, R.; Tsoi, M.S.; Weiden, P.L.; Graham, T.C.; Thomas, E.D.

    1976-01-01

    In studies with dogs, marrow donors were immunized against their chimeras by repeated skin grafts which they rejected. Lymphocytes from chimeras and donors were tested for cell inhibition by exposure to skin fibroblasts from chimeras and donors. Results were not compatible with the concept that tolerance in radiation chimeras is maintained by serum-blocking factors. They provide circumstantial evidence against the possibility that the stable chimeric state is the result of the deletion of a close or inactivation of donor lymphocytes specifically responsive for host antigens. They are most consistent with the possibility that a suppressor-cell population is responsible for the maintenance of tolerance. Human recipients of marrow transplants were tested with the cell inhibition assay. Although the incidence of positive cell inhibition and blocking was somewhat higher than in the dog, results were not compatible with the concept that serum blocking is the sole mechanism for maintaining the stable chimeric state in human patients

  17. Vascular Reconstruction Technique Using a Tubular Graft for Leiomyosarcoma of the Inferior Vena Cava: A Case Report

    Directory of Open Access Journals (Sweden)

    C. Higutchi

    Full Text Available Objective/background: This study is a case report that addresses the key aspects of vascular reconstruction, as well as the intraoperative complications, postoperative morbidity, and possibility of adjunctive therapy. Methods: This article reports the case of a 46 year old female patient with a leiomyosarcoma located in the middle segment of the inferior vena cava (between the renal and hepatic veins who underwent surgical resection with vena cava reconstruction and insertion of a tubular graft made of a synthetic material. Results: This case report reveals that surgical resection of the tumor with the insertion of a smaller-caliber tubular graft provide better patency of the vena cava reconstruction, which was maintained for a year after surgery. In addition, the patient was asymptomatic for lower limb edema, despite having a local recurrence after one year. Surgical resection is the treatment of choice for leiomyosarcoma of the inferior vena cava (LIVC and is the only therapy that offers a chance of cure. Several surgical techniques are used for this condition, especially, reconstruction with a vascular graft using natural or synthetic materials. Conclusion: Due to the aggressiveness of the disease, this study suggests that surgical intervention used may have no influence on a patient's survival outcome. However, vascular reconstruction with a smaller-caliber tubular graft may yield a better prognosis for patients in terms of postoperative symptoms, such as edema and thrombosis. Keywords: Inferior vena cava, Leiomyosarcoma, Synthetic vascular grafting

  18. Development and validation of technique for in-vivo 3D analysis of cranial bone graft survival

    Science.gov (United States)

    Bernstein, Mark P.; Caldwell, Curtis B.; Antonyshyn, Oleh M.; Ma, Karen; Cooper, Perry W.; Ehrlich, Lisa E.

    1997-05-01

    Bone autografts are routinely employed in the reconstruction of facial deformities resulting from trauma, tumor ablation or congenital malformations. The combined use of post- operative 3D CT and SPECT imaging provides a means for quantitative in vivo evaluation of bone graft volume and osteoblastic activity. The specific objectives of this study were: (1) Determine the reliability and accuracy of interactive computer-assisted analysis of bone graft volumes based on 3D CT scans; (2) Determine the error in CT/SPECT multimodality image registration; (3) Determine the error in SPECT/SPECT image registration; and (4) Determine the reliability and accuracy of CT-guided SPECT uptake measurements in cranial bone grafts. Five human cadaver heads served as anthropomorphic models for all experiments. Four cranial defects were created in each specimen with inlay and onlay split skull bone grafts and reconstructed to skull and malar recipient sites. To acquire all images, each specimen was CT scanned and coated with Technetium doped paint. For purposes of validation, skulls were landmarked with 1/16-inch ball-bearings and Indium. This study provides a new technique relating anatomy and physiology for the analysis of cranial bone graft survival.

  19. Neo-glans reconstruction for penile cancer: Description of the primary technique using autologous testicular tunica vaginalis graft

    Directory of Open Access Journals (Sweden)

    Peter Weibl

    2018-06-01

    Neo-glans reconstruction with TV coverage may be another promising alternative, which certainly requires further evaluation. We believe that the donor-site associated morbidity is minimal when compared to other harvesting sites. However, this is just an assumption, because direct comparison data on grafting techniques and neo-glans reconstruction are not available. Nevertheless, we think that for re-do procedures a standardised approach using a STSG technique should be the treatment method of choice.

  20. Gamma radiation grafting process for preparing separator membranes for electrochemical cells

    International Nuclear Information System (INIS)

    Agostino, V.F. D'; Lee, J.Y.

    1982-01-01

    An irradiation grafting process for preparing separator membranes for use in electrochemical cells, comprises contacting a polymeric base film with an aqueous solution of a hydrophilic monomer and a polymerization retardant; and irradiating said contacted film to form a graft membrane having low electrical resistivity and having monomer molecules uniformly grafted thereon. In the examples (meth) acrylic acid is grafted on to polyethylene, polypropylene and polytetrafluoroethylene in the presence of ferrous sulphate or cupric sulphate as polymerization retardants. (author)

  1. Radiation crosslinking of poly(butyl acrylate) during polymerization and grafted copolymerization with Cr(III) crosslinked collagen

    International Nuclear Information System (INIS)

    Pietrucha, K.; Kroh, J.

    1984-01-01

    Enhanced crosslinking of synthetic polymer simultaneous with grafting and homopolymerization processes have been observed in irradiated leather tanned with Cr(III) and embedded with aqueous emulsions of butyl acrylate. Extent of poly(butyl acrylate) crosslinking during copolymerization was found to be approximately one order higher than in the case of radiation polymerization of butyl acrylate in emulsion. New method for isolation of grafted copolymer based on degradation of collagen has been developed. The extent of crosslinking was calculated from the swelling data. (author)

  2. Radiation crosslinking of poly(butyl acrylate) during polymerization and grafted copolymerization with Cr(III) crosslinked collagen

    International Nuclear Information System (INIS)

    Pietrucha, K.; Kroh, J.

    1986-01-01

    Enhanced crosslinking of synthetic polymer simultaneously with grafting and homopolymerization processes has been observed in irradiated leather tanned with Cr(III) and embedded with aqueous emulsions of butyl acrylate. The extent of poly(butyl acrylate) crosslinking during copolymerization was found to be approximately one order higher than in the case of radiation polymerization of butyl acrylate in emulsion. A new method for isolation of grafted copolymer based on degradation of collagen has been developed. The extent of crosslinking was calculated from the swelling data. (author)

  3. Radiation induced graft copolymerization of vinyl monomers onto synthetic polymeric films

    International Nuclear Information System (INIS)

    Chauhan, G.S.; Kaur, Inderjeet; Misra, B.N.

    1997-01-01

    Polyethylene (PE) and polyamide (PA) films have been modified by radiochemical grafting of methylacrylate (MA), ethylacrylate (EA), methyl methacrylate (MMA) and ethyl methacrylate (EMA) in aqueous medium in air. Grafted films show increased area and lower thermal stability. The swelling behaviour of these films vary as a function of percent grafting (P g ). (author). 8 refs., 1 tab

  4. Radiation Synthesis of Poly(N-Vinyl Pyrrolidone) Nanogels and Nanoscale Grafting of Poly(Acrylic Acid) from Cellulose

    International Nuclear Information System (INIS)

    Guven, Olgun; Isik, Semiha Duygu; Barsbay, Murat

    2010-01-01

    Ionizing radiation has long been known to be a very useful tool for the preparation of nanogels. Although preparation is straightforward, the control of the sizes of nanogels has been a challenging issue. This report shows the results of our work on using radiation for the synthesis of PVP nanogels in the range of 40-200nm by making use of the principles of solution thermodynamics of aqueous polymer solutions. Nanoscale grafting of responsive polymers however has been of scientific and industrial importance due to fine control of the molecular weight and molecular weight distribution of grafted polymers. The second part of this report deals with the grafting of poly(acrylic acid) onto the surface of cellulose, thus imparting pH response to the substrate. The use of radiation as a constant source of radical generation and Reversible-Addition-Fragmentation-Chain transfer agents for the control of free radical polymerization provided a full control over the molecular weight and distribution of poly(acrylic acid) grafts on cellulose. (author)

  5. Radiation Synthesis of Poly(N-Vinyl Pyrrolidone) Nanogels and Nanoscale Grafting of Poly(Acrylic Acid) from Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Guven, Olgun; Isik, Semiha Duygu; Barsbay, Murat [Hacettepe University, Department of Chemistry, 06800 Ankara (Turkey)

    2010-07-01

    Ionizing radiation has long been known to be a very useful tool for the preparation of nanogels. Although preparation is straightforward, the control of the sizes of nanogels has been a challenging issue. This report shows the results of our work on using radiation for the synthesis of PVP nanogels in the range of 40-200nm by making use of the principles of solution thermodynamics of aqueous polymer solutions. Nanoscale grafting of responsive polymers however has been of scientific and industrial importance due to fine control of the molecular weight and molecular weight distribution of grafted polymers. The second part of this report deals with the grafting of poly(acrylic acid) onto the surface of cellulose, thus imparting pH response to the substrate. The use of radiation as a constant source of radical generation and Reversible-Addition-Fragmentation-Chain transfer agents for the control of free radical polymerization provided a full control over the molecular weight and distribution of poly(acrylic acid) grafts on cellulose. (author)

  6. Effect of auto-skin grafting on bacterial infection of wound in rats inflicted with combined radiation-burn injury

    International Nuclear Information System (INIS)

    Ran Xinze; Yan Yongtang; Wei Shuqing

    1992-01-01

    Rats were exposed to 6 Gy whole body γ-ray irradiation from a 60 Co source followed by light radiation burn (15% TBSA, full thickness burn) from a 5 kw bromo-tungsten lamp. The effect of auto-skin grafting on invasive bacterial infection of wound in the rats with combined radiation-burn injury was studied, In the control group inflicted with combined radiation-burn injury but without skin grafting, bacteria were found on and in the eschars at 24th hour after injury, and in the subeschar tissue on 3rd day. Tremendous bacterial multiplication occurred from 7th to 15th day, and the amount of bacteria in the internal organs increased along with the increase of subeschar infection. At the same time, no bacterial infection was found in internal organs in auto-skin grafted group at 24th hour after injury. The results show that skin grafting can decrease or prevent bacterial infection in both subeschar tissue and internal organs

  7. Use of imaging techniques in radiation oncology

    International Nuclear Information System (INIS)

    Borras, C.; Rudder, D.; Jimenez, P.

    2002-01-01

    Imaging techniques are used in radiation oncology for: disease diagnosis, tumor localization and staging, treatment simulation, treatment planning, clinical dosimetry displays, treatment verification and patient follow up. In industrialized countries, up to the 1970's, conventional radiology was used for diagnosis, simulation and planning. Gamma cameras helped tumor staging by detecting metastases. In the 1970's, simulators were developed for exclusive use in radiation oncology departments. Clinical dosimetry displays consisted mainly in axial dose distributions. Treatment verification was done placing films in the radiation beam with the patient under treatment. In the 1980's, 2-D imaging was replaced by 3-D displays with the incorporation of computerized tomography (CT) scanners, and in the 1990's of magnetic resonance imagers (MRI). Ultrasound units, briefly used in the 1960's for treatment planning purposes, were found again useful, mainly for brachytherapy dosimetry. Digital portal imagers allowed accurate treatment field verification. Treatment planning systems incorporated the capability of 'inverse planning', i.e. once the desired dose distribution is decided, the field size, gantry, collimator and couch angles, etc, can be automatically selected. At the end of the millennium, image fusion permitted excellent anatomical display of tumors and adjacent sensitive structures. The 2000's are seeing a change from anatomical to functional imaging with the advent of MRI units capable of spectroscopy at 3 Tesla and positron emission tomography (PET) units. In 2001 combined CT/PET units appeared in RT departments. In 2002, fusion of CT, MRI and PET images became available. Molecular imaging is being developed. The situation in developing countries is quite different. To start with, cancer incidence is different in developing and in industrialized countries. In addition, the health services pattern is different: Cancer treatment is mostly done in public institutions

  8. Techniques for materials research with synchrotron radiation x-rays

    International Nuclear Information System (INIS)

    Bowen, D.K.

    1983-01-01

    A brief introductory survey is presented of the properties and generation of synchrotron radiation and the main techniques developed so far for its application to materials problems. Headings are:synchrotron radiation; X-ray techniques in synchrotron radiation (powder diffraction; X-ray scattering; EXAFS (Extended X-ray Absorption Fine Structure); X-ray fluorescent analysis; microradiography; white radiation topography; double crystal topography); future developments. (U.K.)

  9. A proton-exchange membrane prepared by the radiation grafting of styrene and silica into polytetrafluoroethylene films

    Science.gov (United States)

    Yu, Hongyan; Shi, Jianheng; Zeng, Xinmiao; Bao, Mao; Zhao, Xinqing

    2009-07-01

    A polytetrafluoroethylene (PTFE) based organic-inorganic hybrid proton-exchange membrane was prepared from simultaneous radiation grafting of styrene (St) into porous PTFE membrane with the in situ sol-gel reaction of tetraethoxysilane (TEOS) followed by sulfonation in fuming sulfonic acid. The effect of radiation on the sol-gel reaction was studied. The results show that radiation promotes the sol-gel reaction with the help of St at room temperature. Incorporated silica gel helps to produce higher degree of grafting (DOG). SEM analysis was conducted to confirm that the inorganic silicon oxide was introduced to produce hybrid membrane in this work. The proton conductivity of membrane evaluated using electrochemical impedance spectroscopy is much higher (14.3×10 -2 S cm -1) than that of Nafion ® 117 at temperature of 80 °C with acceptable water uptake 51 wt%.

  10. Polymer electrolyte membranes for fuel cells by radiation induced grafting with electron beam irradiation: state-of-the-art

    International Nuclear Information System (INIS)

    Nasef, M.M.; Nasef, M.M.

    2010-01-01

    Polymer electrolyte membranes have generated considerable interest in various fields of industrial interest due to their wide spread applications in fuel cells, batteries, electrolyzers sensors and actuators. Such diversity in applications implies a strong demand to architect the membranes towards particular properties for specific applications. Radiation induced grafting of vinyl and acrylic monomers into polymeric films, is an appealing method for producing various polymer electrolyte membranes. This method has the advantages of simplicity, controllability over the composition leading to tailored membrane properties and absence of shaping problem as preparation starts with substrate in a film form. It also has the flexibility of using various types of radiation sources such as gamma-rays and electron beam. Of all, electron beam (EB) accelerator is an advantageous source of high energy radiation that can initiate grafting reactions required for preparation of the membranes particularly when pilot scale production and commercial applications are sought. The grafting penetration can be varied from surface to bulk of membranes depending on the acceleration energy. This lecture reviews the-state of- the-art in the use of EB irradiation in preparation of composite and grafted polymer electrolyte membranes for fuel cell applications by radiation induced grafting with simultaneous irradiation and preirradiation methods. The use of simultaneous EB irradiation method was found to simplify the process and reduce the reaction time as well as the monomer consumption whereas the use of preirradiation method in a single-step route provides a shorter route to prepare polymer electrolyte membranes with improved properties and reduced cost in addition of setting basis for designing a continuous line to produce these membranes with dedicated EB facilities

  11. Autologous Cricoid Cartilage as a Graft for Airway Reconstruction in an Emergent Technique - A Case Report

    Directory of Open Access Journals (Sweden)

    Farzad Izadi

    2016-03-01

    Full Text Available Introduction: Laryngotracheal stenosis can be caused after traumatic injuries to the neck from the subglottic larynx to the trachea. Patients with laryngotracheal stenosis often need a tracheotomy and occasionally may become tracheotomy dependent. Different procedures have been described for the management of these lesions. Management options include techniques of endoscopic dilation, laser resection, laryngo-fissure, and an innovative array of plastic reconstructions with or without the use of stents.   Case Report:This paper presents airway reconstruction in a young patient with severe subglottic stenosis due to a blunt trauma to the neck, who was treated using particles of an autologous fractured cricoid cartilage as the source for airway augmentation. An incision was made in the anterior midline of the cricoid lamina and deepened through the scar tissue to the posterior cricoid lamina. Then two lateral incisions (right & left were made in the cricoid lamina and fractured cartilage particles and the scar tissue were removed via these two lateral incisions. The mucosal lining at the right and left of the midline incision, after debulking, were sutured to a lateral position. Thereafter three cartilage particles were used to reconstruct the anterior cricoid lamina and augment the lumen.   Conclusion:  It is worth to mention that an autologus cartilage graft can be used for certain cases with traumatic airway stenosis. Further follow up and more patients are needed to approve this method of reconstructive surgery in emergent situations.

  12. The γ-radiation induced grafting of unsaturated segmented polyurethanes with N-vinyl pyrrolidone

    International Nuclear Information System (INIS)

    Egboh, S.H.; George, M.H.; Barrie, J.A.

    1984-01-01

    Linear unsaturated segmented polyurethanes have been modified by hydrophilic grafting at 40 deg C with N-vinyl pyrrolidone, in N,N-dimethylformamide as solvent, using 60 Cobalt γ-irradiation. Graft copolymers were isolated from homopolymers by selective solvent extraction using a Soxhlet apparatus. The effects of reaction time, total dose, temperature and monomer concentration, on the graft yields have been examined. Relatively high irradiation doses were avoided during the grafting experiments to prevent possible degradation of the segmented polyurethanes and gelation of the homopolymer, poly(N-vinyl pyrrolidone). The ungrafted and grafted copolymers were characterized, and the graft copolymers were shown to be more thermally stable than the original polyurethanes, by thermogravimetric analysis. An explanation for the observed variation of the graft yields with some of the experimental variables is suggested. (author)

  13. Radiation detection technique on the fishery foods

    International Nuclear Information System (INIS)

    Oikawa, Hiroshi; Satomi, Masataka; Nakamura, Koji; Yano, Yutaka

    1999-01-01

    Recently irradiation of fishery products such as sea bream, lobster etc has been spreading in South-east Asia. It is thus necessary to establish a detection technique for irradiated foods . This study aimed to investigate the effects of irradiation on the production of tyrosine isomers with relation to the status of food sample (frozen and cold-storage) and also the stabilities of the isomers in frozen foods after irradiation. Production of tyrosin isomers (meta-tyrosine, ortho-tyrosine) due to γ-ray irradiation (5 kGy) were observed in the muscles of frozen prawns as well as those at room temperature and the contents of these isomers after the irradiation was not different between the two states of the sample. The content increased depending on the radiation dose. The contents of these tyrosine isomers were not changed after storage at -20degC for 120 days. Therefore, it was thought that the tyrosine isomers were available as an effective indicator for detection of an irradiated food. (M.N.)

  14. Optimization of reaction parameters of radiation induced grafting of 1-vinylimidazole onto poly(ethylene-co-tetraflouroethene) using response surface method

    Energy Technology Data Exchange (ETDEWEB)

    Nasef, Mohamed Mahmoud, E-mail: mahmoudeithar@fkkksa.utm.my [Institute of Hydrogen Economy, International Campus, Universiti Teknologi Malaysia, 54100 Kuala Lumpur (Malaysia); Aly, Amgad Ahmed; Saidi, Hamdani; Ahmad, Arshad [Institute of Hydrogen Economy, International Campus, Universiti Teknologi Malaysia, 54100 Kuala Lumpur (Malaysia)

    2011-11-15

    Radiation induced grafting of 1-vinylimidazole (1-VIm) onto poly(ethylene-co-tetraflouroethene) (ETFE) was investigated. The grafting parameters such as absorbed dose, monomer concentration, grafting time and temperature were optimized using response surface method (RSM). The Box-Behnken module available in the design expert software was used to investigate the effect of reaction conditions (independent parameters) varied in four levels on the degree of grafting (G%) (response parameter). The model yielded a polynomial equation that relates the linear, quadratic and interaction effects of the independent parameters to the response parameter. The analysis of variance (ANOVA) was used to evaluate the results of the model and detect the significant values for the independent parameters. The optimum parameters to achieve a maximum G% were found to be monomer concentration of 55 vol%, absorbed dose of 100 kGy, time in the range of 14-20 h and a temperature of 61 {sup o}C. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to investigate the properties of the obtained films and provide evidence for grafting. - Highlights: > A precursor for phosphoric acid membrane for a high temperature PEM fuel cell was prepared. > The grafting parameters for radiation induced grafting of 1-VIm onto ETFE film were optimized. > Surface response method was used to predict the degree of grafting. > The predicted value agreed well with the experimental data as indicated by a 3% deviation. > The number of the experiments and cost of radiation induced grafting were reduced.

  15. Radiation induced emulsion graft polymerization of 4-vinylpyridine onto PE/PP nonwoven fabric for As(V) adsorption

    International Nuclear Information System (INIS)

    Akkaş Kavaklı, Pınar; Kavaklı, Cengiz; Seko, Noriaki; Tamada, Masao; Güven, Olgun

    2016-01-01

    A novel nonwoven fabric adsorbent having 4-vinylpyridine functional groups was prepared by using radiation-induced emulsion graft polymerization method and grafting 4-vinylpyridine monomer onto a polyethylene-coated polypropylene nonwoven fabric (NWF) in aqueous emulsion solution. The grafting conditions of the 4-vinylpyridine monomer onto the NWF were optimised and 150% D g VP-g-NWF was prepared using 30 kGy pre-irradiation dose, 5% VP monomer concentration and 0.5% (w/w) Tween 20 in aqueous emulsion. Grafted 4-vinylpyridine chains on the NWF were then quaternized for the preparation of QVP-g-NWF adsorbent. All fabric structures were characterized by using Fourier-transform infrared spectrometer, x-ray photoelectron spectrometer and scanning electron microscope. QVP-g-NWF adsorbent was used in batch adsorption experiments for As(V) ions by studying the pH, contact time, and initial As(V) ion concentration parameters. Results showed that QVP-g-NWF adsorbent has significant As(V) adsorption and experimental As(V) adsorption capacity was 98.04 mg As(V)/g polymer from 500 mg/L initial As(V) concentration at pH 7.00. - Highlights: • Radiation induced grafting of 4-vinylpyridine onto PE/PP nonwoven fabric in emulsion. • 4-vinylpyridine grafting was characterized by FTIR, SEM and XPS. • As(V) adsorption was studied by QVP-g- NWF. • As(V) adsorption capacity was found to be 98.04 mg As(V)/g polymer.

  16. Radiation induced deposition of copper nanoparticles inside the nanochannels of poly(acrylic acid)-grafted poly(ethylene terephthalate) track-etched membranes

    Science.gov (United States)

    Korolkov, Ilya V.; Güven, Olgun; Mashentseva, Anastassiya A.; Atıcı, Ayse Bakar; Gorin, Yevgeniy G.; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2017-01-01

    Poly(ethylene terephthalate) PET, track-etched membranes (TeMs) with 400 nm average pore size were UV-grafted with poly(acrylic acid) (PAA) after oxidation of inner surfaces by H2O2/UV system. Carboxylate groups of grafted PAA chains were easily complexed with Cu2+ ions in aqueous solutions. These ions were converted into metallic copper nanoparticles (NPs) by radiation-induced reduction of copper ions in aqueous-alcohol solution by gamma rays in the dose range of 46-250 kGy. Copper ions chelating with -COOH groups of PAA chains grafted on PET TeMs form polymer-metal ion complex that prevent the formation of agglomerates during reduction of copper ions to metallic nanoparticles. The detailed analysis by X-Ray diffraction technique (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) confirmed the deposition of copper nanoparticles with the average size of 70 nm on the inner surface of nanochannels of PET TeMs. Samples were also investigated by FTIR, ESR spectroscopies to follow copper ion reduction.

  17. Influence of radiation-induced grafting process on mechanical properties of ETFE-based membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ben Youcef, H.; Alkan Guersel, S.; Buisson, A.; Gubler, L.; Wokaun, A.; Scherer, G.G. [Electrochemistry Laboratory, Paul Scherrer Institut, Villigen PSI (Switzerland)

    2010-06-15

    The mechanical stability is, in addition to thermal and chemical stability, a primary requirement of polymer electrolyte membranes in fuel cells. In this study, the impact of grafting parameters and preparation steps on stress-strain properties of ETFE-based proton conducting membranes, prepared by radiation-induced grafting and subsequent sulphonation, was studied. No significant change in the mechanical properties of the ETFE base film was observed below an irradiation dose of 50 kGy. It was shown that the elongation at break decreases with increasing both the crosslinker concentration and graft level (GL). However, the tensile strength was positively affected by the crosslinker concentration. Yield strength and modulus of elasticity are almost unaffected by the introduction of crosslinker. Interestingly, yield strength and modulus of elasticity increase gradually with GL without noticeable change of the inherent crystallinity of grafted films. The most brittle membranes are obtained via the combination of high GL and crosslinker concentration. The optimised ETFE-based membrane (GL of {proportional_to}25%, 5% DVB v/v), shows mechanical properties superior to those of Nafion registered 112 membrane. The obtained results were correlated qualitatively to the other ex situ properties, including crystallinity, thermal properties and water uptake of the grafted membranes. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. A new strategy of fingertip reattachment: sequential use of microsurgical technique and pocketing of composite graft.

    Science.gov (United States)

    Kim, K S; Eo, S R; Kim, D Y; Lee, S Y; Cho, B H

    2001-01-01

    Many methods have been used to reattach amputated fingertips. Of these methods, microsurgery has been accepted as the procedure of choice because the defining characteristic of a microsurgically replanted finger is that its surival in the recipient bed is predicated on functioning intravascular circulation. Although considerable progress has been made in the techniques for microvascular replantation of amputated fingers, the replantation of an amputated fingertip is difficult because digital arteries branch into small arteries. This is in addition to digital veins that run from both sides of the nail bed to the median dorsal sides, which are difficult to separate from the immobile soft tissue. Furthermore, even with the most technically skilled microsurgeon, replantation failure often occurs, especially in severe injury cases. Therefore, the technique is not the only protection against failure, and a new strategy of fingertip reattachment is needed. From March of 1997 to December of 1999, 12 fingers of 11 patients with zone 1 or zone 2 fingertip amputations that were reattached microsurgically but were compromised were deepithelialized, reattached, and then inserted into the abdominal pocket. All had been complete amputations with crushing injuries. Approximately 3 weeks later, the fingers were depocketed and covered with a skin graft. Of the 12 fingers, 7 survived completely and 3 had partial necrosis on less than one-third the volume of the amputated part. The complete survival rate was approximately 58 percent. The results of the above 10 fingers were satisfactory from both functional and cosmetic aspects. The authors believe that this high success rate was achieved because the deepithelialized finger pulp was placed in direct contact with the deep abdominal fascia, which was equipped with plentiful vascularity, not subcutaneous fat. In addition, the pocketing was performed promptly before necrosis of the compromised fingertip occurred. From the results of this

  19. Review of the afterloading techniques in gynecologic radiation therapy

    International Nuclear Information System (INIS)

    Rotte, K.

    1975-01-01

    A review of clinically used afterloading techniques - remote controlled and manually operated ones - is given by tables. The advantages of afterloading techniques are discussed with regard to radiation protection as well as to the therapy of gynecologic carcinomas. (orig.) [de

  20. Application of radiation grafted media for lectin affinity separation and urease immobilization: a novel approach to tumor therapy and renal disease diagnosis

    International Nuclear Information System (INIS)

    Mueller-Schulte, D.; Daschek, W.

    1995-01-01

    Carriers modified by synergistic radiation grafting are used as affinity media for the separation of a lectin from a mistletoe extract. The grafted supports show distinctly superior properties when compared to conventional affinity media. The application of these carriers as urease immobilization support incorporated in a conductimetric bioreactor for urea analysis as potential diagnostic device in renal diseases is also described. (Author)

  1. Vaginal-sparing ventral buccal mucosal graft urethroplasty for female urethral stricture: A novel modification of surgical technique.

    Science.gov (United States)

    Hoag, Nathan; Gani, Johan; Chee, Justin

    2016-07-01

    To present a novel modification of surgical technique to treat female urethral stricture (FUS) by a vaginal-sparing ventral buccal mucosal urethroplasty. Recurrent FUS represents an uncommon, though difficult clinical scenario to manage definitively. A variety of surgical techniques have been described to date, yet a lack of consensus on the optimal procedure persists. We present a 51-year-old female with urethral stricture involving the entire urethra. Suspected etiology was iatrogenic from cystoscopy 17 years prior. Since then, the patient had undergone at least 25 formal urethral dilations and periods of self-dilation. In lithotomy position, the urethra was dilated to accommodate forceps, and ventral urethrotomy carried out sharply, exposing a bed of periurethral tissue. Buccal mucosa was harvested, and a ventral inlay technique facilitated by a nasal speculum, was used to place the graft from the proximal urethra/bladder neck to urethral meatus without a vaginal incision. Graft was sutured into place, and urethral Foley catheter inserted. The vaginal-sparing ventral buccal mucosal graft urethroplasty was deemed successful as of last follow-up. Flexible cystoscopy demonstrated patency of the repair at 6 months. At 10 months of follow-up, the patient was voiding well, with no urinary incontinence. No further interventions have been required. This case describes a novel modification of surgical technique for performing buccal mucosal urethroplasty for FUS. By avoiding incision of the vaginal mucosa, benefits may include reduced: morbidity, urinary incontinence, and wound complications including urethro-vaginal fistula.

  2. Effects of solvents on the radiation grafting reaction of vinyl compounds on poly (3-hydroxybutyrate)

    International Nuclear Information System (INIS)

    Torres, Maykel González; Talavera, José Rogelio Rodríguez; Muñoz, Susana Vargas; Pérez, Manuel González; Castro, Ma. Pilar. Carreón.; Cortes, Jorge Cerna

    2015-01-01

    Vinyl Acetate was grafted onto poly (3-hydroxybutyrate) by the simultaneous gamma irradiation method using different types of solvents and in bulk (solvent free), at 10 kGy and 1.62 kGy/h dose and dose rate respectively. Subsequent complete hydrolysis allowed the conversion of grafted chains from poly (vinyl acetate) to poly (vinyl alcohol). The aim of this study is to determine the effect of solvent through the estimation of the dependence of the degree of grafting with the choice of solvent, the calculation of the degree of crystallinity, and to study the biodegradation of the products. The results showed a greater degree of grafting in bulk, while the more suitable solvent was hexane. Characterization of the grafted copolymer indicated that crystallinity percentage decreased by an increase in grafting, while the biodegradability was promoted by the increment in poly (vinyl alcohol) grafted. - Highlights: • PHB was indirectly grafted with PVA, by complete hydrolysis of grafted PVAc. • The effect of solvents on the grafting, crystallinity and biodegradation was studied. • The characterizations of the products were obtained by SEM, TGA, and DSC

  3. Lingual mucosal graft two-stage Bracka technique for redo hypospadias repair

    Directory of Open Access Journals (Sweden)

    Ahmed Sakr

    2017-09-01

    Conclusion: Lingual mucosa is a reliable and versatile graft material in the armamentarium of two-stage Bracka hypospadias repair with the merits of easy harvesting and minor donor-site complications.

  4. Characterization of polyethyleneterephthalate (PET) based proton exchange membranes prepared by UV-radiation-induced graft copolymerization of styrene

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Mostak; Khan, Mohammad B.; Alam, S. Shamsul; Khan, M. Anwar H. [Department of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114 (Bangladesh); Khan, Mubarak A. [Radiation and Polymer Chemistry Laboratory, Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, P.O. Box 3787, Dhaka (Bangladesh); Halim, Md. Abdul [Department of Chemistry, Jahangirnagar University, savar, Dhaka (Bangladesh)

    2011-01-15

    Polymer electrolyte membranes (PEMs) were successfully prepared by simultaneous ultraviolet (UV) radiation-induced graft copolymerization of styrene (35 vol.% concentration) onto poly(ethyleneterephthalate) (PET) film, followed by sulfonation on the styrene monomer units in the grafting chain using 0.05 M chlorosulfonic acid (ClSO{sub 3}H). The radiation grafting and the sulfonation have been confirmed by titrimetric and gravimetric analyses as well as Fourier Transform Infrared (FTIR) spectroscopy. The maximum ion-exchange capacity (IEC) of the PEM was measured to be 0.04385 mmol g{sup -1} at its highest level of grafting and sulfonation. They exhibited high thermal and mechanical properties as well as oxidative stability. They are highly stable in H{sub 2}SO{sub 4} solutions and can be used in the acidic fuel cells. The membranes showed low water uptake as well as low proton conductivity than Nafion. In this study, the preparation of PEMs from commodity-type polymers is found to be very inexpensive and is a suitable candidate for applications in fuel cells. (author)

  5. Antimicrobial-impregnated dressing combined with negative-pressure wound therapy increases split-thickness skin graft engraftment: a simple effective technique.

    Science.gov (United States)

    Wu, Cheng-Chun; Chew, Khong-Yik; Chen, Chien-Chang; Kuo, Yur-Ren

    2015-01-01

    Immobilization and adequate surface contact to wounds are critical for skin graft take. Techniques such as the tie-over dressing, cotton bolster, and vacuum-assisted closure are used to address this, but each has its limitations. This study is designed to assess the effect of antimicrobial-impregnated dressing (AMD) combined with negative-pressure wound therapy (NPWT) on skin graft survival. Retrospective case-control study : Patients with chronic or contaminated wounds treated with split-thickness skin graft. A broad spectrum of wounds was included, from causes such as trauma, burns, chronic diabetic ulcers, and infection. Antimicrobial-impregnated dressing, which contains 0.2% polyhexamethylene biguanide, with NPWT MAIN OUTCOME MEASURE:: Success of skin graft : In the AMD group, all skin grafts achieved 100% take without secondary intervention. No infection or graft failure was observed in any patients, and no complications, such as hematoma or seroma formation, were noted, although in the control group partial loss of skin grafts was noted in 3 patients. Infection and inadequate immobilization were thought to be the main reasons. There were no hematoma or seroma formations in the control group. Use of an AMD dressing with NPWT after split-thickness skin grafting can be an effective method to ensure good graft to wound contact and enhances skin graft take in chronic and contaminated wounds.

  6. Polyurethane Foam Wound Dressing Technique for Areola Skin Graft Stabilization and Nipple Protection After Nipple-Areola Reconstruction.

    Science.gov (United States)

    Satake, Toshihiko; Muto, Mayu; Nagashima, Yu; Haga, Shoko; Homma, Yuki; Nakasone, Reiko; Kadokura, Marina; Kou, Seiko; Fujimoto, Hiroshi; Maegawa, Jiro

    2018-04-01

    We describe a new wound management technique using a soft dressing material to stabilize the areola skin graft and protect the nipple after nipple-areola reconstruction at the final stage of breast reconstruction. We introduced a center-fenestrated multilayered hydrocellular polyurethane foam dressing material that provides adequate pressure and retains a moist environment for a smooth skin graft "take." Moreover, the reconstructed nipple can be monitored at any time through the fenestrated window for adequate blood circulation. Altogether, this simple and inexpensive wound dressing technique improves the clinical outcome. Level of Evidence IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  7. Optimization strategies for radiation induced grafting of 4-vinylpyridine onto poly(ethylene-co-tetraflouroethene) film using Box–Behnken design

    International Nuclear Information System (INIS)

    Mahmoud Nasef, Mohamed; Shamsaei, Ezzatollah; Ghassemi, Payman; Ahmed Aly, Amgad; Hamid Yahaya, Abdul

    2012-01-01

    The radiation induced grafting of 4-vinylpyridine (4-VP) onto poly(ethylene-co-tetrafluoroethene) (ETFE) was optimized using the Box–Behnken factorial design available in the response surface method (RSM). The optimized grafting parameters; absorbed dose, monomer concentration, grafting time and reaction temperature were varied in four levels to quantify their effect on the grafting yield (GY). The validity of the statistical model was supported by the small deviation between the predicted (GY=61%) and experimental (GY=57%) values. The optimum conditions for enhancing GY were determined at the following values: monomer concentration of 48 vol%, absorbed dose of 64 kGy, reaction time of 4 h and temperature of 68 °C. A comparison was made between the optimization model developed for the present grafting system and that for grafting of 1-vinylimidazole (1-VIm) onto ETFE to confirm the validly and reliability of the Box–Behnken for the optimization of various radiation induced grafting reactions. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD) were used to investigate the properties of the obtained films and provide evidence for grafting. - Highlights: ► Radiation induced grafting of 4-VP onto ETFE was studied in comparison of that of VIm onto ETFE. ► The parameters of grafting reaction were optimized using Box–Behnken factorial design. ► A statistical model to predict G% was developed taking the nature of 4-VP into account. ► The predicted response value agreed well with the experimental data as indicated by a 4% deviation. ► The model proved to be valid and reliable tool for predicting various radiation grafting reactions.

  8. Grafting and curing

    International Nuclear Information System (INIS)

    Garnett, J.L.; Loo-Teck Ng; Visay Viengkhou

    1998-01-01

    Progress in radiation grafting and curing is briefly reviewed. The two processes are shown to be mechanistically related. The parameters influencing yields are examined particularly for grafting. For ionising radiation grafting systems (EB and gamma ray) these include solvents, substrate and monomer structure, dose and dose-rate, temperature and more recently role of additives. In addition, for UV grafting, the significance of photoinitiators is discussed. Current applications of radiation grafting and curing are outlined. The recent development of photoinitiator free grafting and curing is examined as well as the potential for the new excimer laser sources. The future application of both grafting and curing is considered, especially the significance of the occurrence of concurrent grafting during cure and its relevance in environmental considerations

  9. Preparation of super water absorption materials by radiation grafting of sodium acrylate onto coir dust for agriculture use

    International Nuclear Information System (INIS)

    Nguyen Trong Hoanh Phong; Nguyen Tan Man; Nguyen Tuong Ly Lan; Tran Thi Thuy; Le Van Toan; Le Huu Tu; Le Xuan Cuong; Pham Thi Sam; Le Hong En; Le Hai

    2013-01-01

    Preparation of super water absorption materials using coir dust and sodium acrylate has been carried out by radiation grafting techniques using gamma irradiator of Co-60 source, at Radiation technology Dept., Nuclear Research Institute. Effect of irradiation dose, coir dust content and NaOH concentration to the forming-gel yield has been studied. Results show the gel content achieved the highest value of 96%, at 15 kGy of irradiation dose, 25% coir dust content and 20% NaOH. The parameters affect to the swelling behavior of studied products have been investigated. The characteristics of product structure have been determined by FTIR and SEM. It is indicated that swelling degree of products increases in the increasing of immerging time but decreases with the increase of irradiation dose. In the other hands, the swelling behavior of studied products extremely depends on processing condition such as drying temperature and their particle size. It is seen that 50 o C and 200 µm are the optimal parameters of drying temperature and particle sizes of product. The efficiency of water retention of products in sandy and soil media has been determined, results show the amount of water has been remained higher than 40%, in case of sand and soil contain 0.7% PSHT and keeping in dry condition after 60 days. Meanwhile the amount of water almost equal to 0 after 20 days and 60 days for sand and soil respectively. Application of studied products for corn and coffee crops on sand and soil has been evaluated for positive results after 45 days without irrigation but their growing still stable. (author)

  10. Industrial application of electron beams for grafting and vulcanization

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, Keizo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1994-12-31

    The topics discussed are radiation graft polymerization; industrial application of radiation grafting - ion exchange membrane for a battery separator, ammonia adsorbent, non-flammable PE (polyethylene) foam; R and D on radiation grafting, radiation vulcanization of natural rubber.

  11. Industrial application of electron beams for grafting and vulcanization

    International Nuclear Information System (INIS)

    Keizo Makuuchi

    1994-01-01

    The topics discussed are radiation graft polymerization; industrial application of radiation grafting - ion exchange membrane for a battery separator, ammonia adsorbent, non-flammable PE (polyethylene) foam; R and D on radiation grafting, radiation vulcanization of natural rubber

  12. Radiation-induced graft polymerization of amphiphilic monomers with different polymerization characteristics onto hydrophobic polysilane

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hidenori; Iwasaki, Isao; Kunai, Yuichiro [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Sato, Nobuhiro, E-mail: sato-n@rri.kyoto-u.ac.j [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Matsuyama, Tomochika [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2011-08-15

    The structures of poly(methyl-n-propylsilane) (PMPrS) amphiphilically modified through {gamma}-ray-induced graft polymerization were investigated with {sup 1}H NMR measurement. By the use of methyl methacrylate (MMA) or diethyl fumarate (DEF) as monomers for the graft polymerization, grafting yield rose with increasing total absorption dose and monomer concentrations, but decreased with increasing dose rate. This result means that grafting yield of modified PMPrS can be controlled by changing irradiation conditions. However, the number of PMMA or PDEF graft chains per PMPrS chain was estimated to be less than 1.0 by analysis of {sup 1}H NMR spectra, and this value was lower than that we had expected. To improve graft density, maleic anhydride (MAH), which is known as a non-homopolymerizable monomer in radical polymerization, was used as a monomer for grafting. As a result, high density grafting (one MAH unit for 4.2 silicon atoms) was attained. It demonstrates that the structure of {gamma}-ray-modified polysilane strongly depends on the polymerization characteristics of grafted monomers.

  13. Grafting of polyethylene films with acrylic acid and acrylonitril using gamma radiation

    International Nuclear Information System (INIS)

    Ajji, Z.; Al-Nesr, E.

    2003-12-01

    Acrylic acid (AAc) and acrylonitrile (AN) and their binary mixtures were graft copolymerized onto low density polyethylene (LDPE) films using gamma irradiation. The effects of different parameters on the graft yield were studies such as monomer concentration, inhibitor concentration, and irradiation dose. The obtained grafted films were characterized using FTIR spectroscopy, thermal gravimetry, and differential scanning calorimetry. Water uptake and the ion uptake were also evaluated, and the ability of grafted films to uptake heavy ions such as Ni 2+ and Cu 2+ was discussed. (author)

  14. Thermal degradation kinetics and estimation of lifetime of radiation grafted polypropylene films

    International Nuclear Information System (INIS)

    Mandal, Dev K.; Bhunia, Haripada; Bajpai, Pramod K.; Bhalla, Vinod Kumar

    2017-01-01

    In this research work, thermal stability and degradation behavior of acrylic acid grafted polypropylene (PP-g-PAAc) films were investigated by using thermogravimetric (TGA) analysis at four different heating rates 5, 10, 15 and 20 °C/min over a temperature range of 40–550 °C in nitrogen atmosphere. The kinetic parameters namely activation energy (E a ), reaction order (n) and frequency factor (Z) were calculated by three multiple heating rate methods. The thermal stability of PP-g-PAAc films is found to decrease with increase in degree of grafting. The TGA data and thermal kinetic parameters were also used to predict the lifetime of grafted PP films. The estimated lifetime of neat PP as well as grafted PP decreased with increase in temperature by all the three methods. Studies also indicated that E a and lifetime of PP-g-PAAc films decreased with increase in degree of grafting, which may also be helpful in biodegradation of grafted PP films. - Highlights: • Thermal stability of grafted polypropylene films have been observed lower than for neat polypropylene film. • Multiple heating rate methods have been used for determination of activation energy. • Activation energies of grafted polypropylene films were lower than polypropylene film. • The lifetimes of grafted polypropylene films were shorter than for neat polypropylene film.

  15. Radiation technique for the destruction of plutella

    International Nuclear Information System (INIS)

    1980-01-01

    Plutella can be destroyed by cultivation technique where cabbage is grown interchangebly with other plants, biological technique where the natural enemy of plutella is used, and chemical technique where insecticide is used. Those method do not better results than the sterile male technique which can be either nuclear or chemical in nature. Laboratory, semifield research, and research in a limited field have been carried out when applying the sterile male technique. (SMN)

  16. [Comparison of the grafting technique in treatment of thoracolumbar burst fractures:transpedicular intracorporeal versus posterolateral].

    Science.gov (United States)

    Li, Li; Shi, Ya-Min; Hou, Shu-Xun; Wang, Hua-Dong; Guo, Ji-Dong

    2011-02-01

    To retrospectively investigate the outcome of transpedicular intracorporeal grafting and posterolateral grafting in treatment of thoracolumbar burst fractures. Forty-six patients treated with transpedicular intracorporeal grafting from January 1999 to December 2009 and followed up for 19-119 months (average 67 ± 13 months) were reviewed retrospectively, and were compared with 18 patients who had underwent posterolateral fusion during the same period through radiographic analysis. Radiographic measurements included Cobb angle, vertebral wedge angle (VWA), ratio between anterior and posterior vertebral height (APHR), upper inter-vertebral angle, lower inter-vertebral angle on X-ray, CT and MRI. In transpedicular intracorporeal grafting group, the VWA was corrected from 27.2° ± 6.5° to 7.0° ± 3.0° and the APHR from (53.3 ± 11.8)% to (92.3 ± 2.4)%. In posterolateral fusion group, the VWA was corrected from 23.9° ± 4.4° to 8.8° ± 2.1° and the APHR from (60.7 ± 10.0)% to (88.5 ± 3.3)%. Transpedicular intracorporeal grafting group showed better postoperative correction results than posterolateral fusion group (P < 0.05), and had less loss of correction of Cobb angle, VWA and APHR at final follow-up (P < 0.05). The transpedicular intracorporeal grafting can improve injured vertebral body morphology recovery better than posterolateral bone grafting, but can not prevent the late loss of correction after implant removal.

  17. ESR investigations of radiation grafting of methyl methacrylate in aqueous emulsion onto chrome-tanned pig skin

    International Nuclear Information System (INIS)

    Pietrucha, K.; Pekala, W.; Plonka, A.

    1980-01-01

    Upon γ-irradiation at 77 K of the aqueous emulsions of methyl methacrylate embedded into chrome-tanned pig skins there are formed only the radicals of collagen and of 2-el-2-methylopropionic acid methyl ester. The presence of water in the system increases markedly the radiation yield of collagen radicals. During gradual heating up the polymerization reactions start and the macro-radical of growing polymer is observed. Chromium does not participate in the processes of initiation and grafting. (author)

  18. Acrylamide graft over silicone rubber tubes by simultaneous irradiation in 60 Co source

    International Nuclear Information System (INIS)

    Julio, C.A.; Higa, O.Z.

    1992-01-01

    The synthesis of a hydrogel having silicone rubber tubes as support was carried out through the radiation grafting technique. The best conditions for the grafting development were determined in relation to the monomer and inhibitor concentration, dose rate and irradiation dose. The addition of cupric ions in the process inhibited the acrylamide homo polymerization and enhanced the grafting yield. The water content in the grafted tubes characterized the hydrophilic property of the material. (author)

  19. The role of hydroperoxides as a precursor in the radiation-induced graft polymerization of methyl methacrylate to ultra-high molecular weight polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Ichiro, E-mail: enomoto.ichiro@iri-tokyo.j [Tokyo Metropolitan Industrial Technology Research Institute, KFC bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan); School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Katsumura, Yosuke [School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Kudo, Hisaaki [School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Sekiguchi, Masayuki [Tokyo Metropolitan Industrial Technology Research Institute, KFC bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan)

    2010-06-15

    A graft polymerization of methyl methacrylate (MMA) to ultra-high molecular weight polyethylene (UHMWPE) with Co-60 gamma-ray irradiation in air at room temperature has been carried out. The grafting yields were measured as a function of the storage time (elapsed time from the end of irradiation to the start of grafting), and it was found that the yields reach at the maximum values at around several days since the end of irradiation. In order to clarify the precursor of the graft polymerization, changes of the radical yields and the carbonyl groups were measured as a function of storage time with ESR and microscopic FT-IR, respectively. From the similarities between the depth profiles of the hydroperoxide formation and the grafting products, it was concluded that the hydroperoxides can be main precursors of the grafting of the radiation-induced polymerization of MMA to UHMWPE under the given conditions.

  20. The role of hydroperoxides as a precursor in the radiation-induced graft polymerization of methyl methacrylate to ultra-high molecular weight polyethylene

    International Nuclear Information System (INIS)

    Enomoto, Ichiro; Katsumura, Yosuke; Kudo, Hisaaki; Sekiguchi, Masayuki

    2010-01-01

    A graft polymerization of methyl methacrylate (MMA) to ultra-high molecular weight polyethylene (UHMWPE) with Co-60 γ-ray irradiation in air at room temperature has been carried out. The grafting yields were measured as a function of the storage time (elapsed time from the end of irradiation to the start of grafting), and it was found that the yields reach at the maximum values at around several days since the end of irradiation. In order to clarify the precursor of the graft polymerization, changes of the radical yields and the carbonyl groups were measured as a function of storage time with ESR and microscopic FT-IR, respectively. From the similarities between the depth profiles of the hydroperoxide formation and the grafting products, it was concluded that the hydroperoxides can be main precursors of the grafting of the radiation-induced polymerization of MMA to UHMWPE under the given conditions.

  1. Protective immunity to UV radiation-induced skin tumours induced by skin grafts and epidermal cells

    International Nuclear Information System (INIS)

    Ronald Sluyter; Kylie S Yuen; Gary M Halliday

    2001-01-01

    There is little evidence that cutaneous dendritic cells (DC), including epidermal Langerhans cells (LC), can induce immunity to UV radiation (UVR)-induced skin tumours. Here, it is shown that cells within skin can induce protective antitumour immunity against a UVR-induced fibrosarcoma. Transplantation of the skin overlying subcutaneous tumours onto naive recipients could induce protective antitumour immunity, probably because the grafting stimulated the tumour Ag-loaded DC to migrate to local lymph nodes. This suggests that cutaneous APC can present tumour Ag to induce protective antitumour immunity. Previously, it has been shown that immunization of mice with MHC class II+ epidermal cells (EC) pulsed with tumour extracts could induce delayed-type hypersensitivity against tumour cells. Here, this same immunization protocol could induce protective immunity against a minimum tumorigenic dose of UVR-induced fibrosarcoma cells, but not higher doses. Epidermal cells obtained from semiallogeneic donors and pulsed with tumour extract could also induce protective immunity. However, presentation of BSA Ag from the culture medium was found to contribute to this result using semiallogeneic EC. The results suggest that LC overlying skin tumours may be able to induce protective immunity to UVR-induced tumours if stimulated to migrate from the skin. Copyright (2001) Australasian Society of Immunology Inc

  2. Study of Radiation Induced Radicals in HAP and β-TCP Based Bone Graft Materials by ERP Spectroscopy

    International Nuclear Information System (INIS)

    Maltar-Strmecki, N.; Matkovic, I.

    2013-01-01

    Calcium phosphates such as beta-tricalcium phosphate (β-TCP) and hydroxyapatite (HAP) are frequently used as dental implants due to proven excellent biocompatibility. Because of their resorption in the body and direct contact with tissues, in order to inactivate bacteria, fungal spores and viruses, they are usually sterilized by γ-irradiation. However, literature provides little information about effects of γ-irradiation on the formation and stability of the free radicals in the bone graft materials during and after sterilization procedure. In this study EPR (electron paramagnetic resonance) spectroscopy was used to investigate HAP and β-TCP based dental implants present on the market. Eight dental graft materials present on the market were investigated: Bioresorb R Macropore, Poresorb R -TCP, Easy-Graft T M and Cerasorb R synthetic β-tricalcium phosphates, Easy-Graft T M crystal and Ossceram R two phase synthetic CaP consisting of 60 % HAP and 40 % β-TCP, and Dexabone R and Bio-Oss R bone graft material of bovine origin. EPR study shows that this is the only technique for characterization of free radicals that can simultaneously determine not only the presence and content, but also the position and the structure of free radicals formed by γ-sterilization in the investigated materials, as well as the paramagnetic substitutions incorporated in the materials during the synthesis (such as Mn 2+ , Fe 3+ or Cr 2+ ). Additionally, EPR provides information on stability of irradiation-induced radicals (CO 2 - , trapped H-atoms, NO 3 2 etc.) and processes for reducing them. Results show that EPR should be considered as a valuable technique in improving the quality of bone graft materials, which must be sterile, and to offer the high quality, efficacy and reliable materials to the patients.(author)

  3. Immune competence of splenic lymphocytes following graft-vs-host disease in mouse allogeneic radiation chimeras

    International Nuclear Information System (INIS)

    Urso, P.; Gengozian, N.

    1977-01-01

    The abnormal immune response of long-term mouse allogeneic chimeras is reflected by qualitative deficiencies in either T or B lymphocytes. The present study was undertaken to determine if a relationship existed between the severity of graft-vs-host disease (GVHD) that these animals had experienced and a functional defect in either the T or B cell population. The in vitro PFC response of chimera spleen cells to sheep red blood cells (SRBC) was evaluated in the presence of normal T or B lymphocytes 4 to 8 months after marrow transplantation and well beyond the GVHD period. In an analysis of several different allogeneic radiation chimeras, our results showed no relationship between the severity of GVHD experienced and the immunologic capacity of either T or B cells. Thus, different chimera combinations showing similar degrees of GVHD were functionally deficient in one or the other of these two cells types or both with no apparent predilection for abnormality in either population. In examining the quantitative in vitro PFC response to sheep RBC by spleen cells from individual chimeras, we found that the number of PFC formed was related to the severity of GVHD experienced by that animal. A general relationship between severity of GVHD and PFC capacity may also exist between chimeras of different genetic combinations. However, this relationship is not precise since gross exceptions occur. Our results, although documenting further the qualitative abnormalities in T and/or B lymphocytes of radiation chimeras, do not reveal the factor or mechanisms by which these cells are made unresponsive. It is suggested that the tolerance-inducing mechanism of these animals, whether it be humoral blocking factors or suppressor cells, is in some way interfering with the collaboration of T and B cells for antibody production

  4. Materials of 4. Spring School of Radiation Sterilization of Medical Materials, Grafts, Pharmaceutics and Cosmetics; Materialy 4. Wiosennej Szkoly Sterylizacji Radiacyjnej Sprzetu Medycznego, Przeszczepow, Farmaceutykow i Kosmetykow

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The state of art in well developed in Poland radiation technologies has been done. The legal and economical aspects have been discussed for radiation sterilization of health care products, drugs, biomaterials and grafts. Industrial plants and radiation procedures have been described. The perspectives for further development and other industrial applications have been also discussed.

  5. Radiation ionization is an underestimated industrial technique

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    Industrial radiation ionization requires electron beams coming from an accelerator or gamma radiation from a radioactive source (Co 60 ). The energy deposed in the irradiated material modifies its chemical bounds or kills micro-organisms. This process is used in medical material sterilization, in disinfestation of stored and packaged food products, in the production of plastic, in the coloring of glass, in the hardening of electronic components and in the modification of the properties of semi-conductors. For 40 years radiation ionization has been investigated, UNO (United Nations Organization) and WHO (World Health Organisation) recommend it for food processing. With a growing rate of 15% per year for the last 15 years, radiation ionization is now widely used. More than 170 gamma irradiation facilities are operating throughout the world. (A.C.)

  6. PEEP-ZEEP technique: cardiorespiratory repercussions in mechanically ventilated patients submitted to a coronary artery bypass graft surgery

    Directory of Open Access Journals (Sweden)

    Auler José

    2011-09-01

    Full Text Available Abstract Background The PEEP-ZEEP technique is previously described as a lung inflation through a positive pressure enhancement at the end of expiration (PEEP, followed by rapid lung deflation with an abrupt reduction in the PEEP to 0 cmH2O (ZEEP, associated to a manual bilateral thoracic compression. Aim To analyze PEEP-ZEEP technique's repercussions on the cardio-respiratory system in immediate postoperative artery graft bypass patients. Methods 15 patients submitted to a coronary artery bypass graft surgery (CABG were enrolled prospectively, before, 10 minutes and 30 minutes after the technique. Patients were curarized, intubated, and mechanically ventilated. To perform PEEP-ZEEP technique, saline solution was instilled into their orotracheal tube than the patient was reconnected to the ventilator. Afterwards, the PEEP was increased to 15 cmH2O throughout 5 ventilatory cycles and than the PEEP was rapidly reduced to 0 cmH2O along with manual bilateral thoracic compression. At the end of the procedure, tracheal suction was accomplished. Results The inspiratory peak and plateau pressures increased during the procedure (p Conclusion The PEEP-ZEEP technique seems to be safe, without alterations on hemodynamic variables, produces elevated expiratory flow and seems to be an alternative technique for the removal of bronchial secretions in patients submitted to a CABG.

  7. Studies in Fat Grafting: Part I. Effects of Injection Technique on in vitro Fat Viability and in vivo Volume Retention

    Science.gov (United States)

    Chung, Michael T.; Paik, Kevin J.; Atashroo, David A.; Hyun, Jeong S.; McArdle, Adrian; Senarath-Yapa, Kshemendra; Zielins, Elizabeth R.; Tevlin, Ruth; Duldulao, Chris; Hu, Michael S.; Walmsley, Graham G.; Parisi-Amon, Andreina; Momeni, Arash; Rimsa, Joe R.; Commons, George W.; Gurtner, Geoffrey C.; Wan, Derrick C.; Longaker, Michael T.

    2014-01-01

    Background Fat grafting has become increasingly popular for the correction of soft tissue deficits at many sites throughout the body. Long-term outcomes, however, depend on delivery of fat in the least traumatic fashion to optimize viability of the transplanted tissue. In this study, we compare the biologic properties of fat following injection using two methods. Methods Lipoaspiration samples were obtained from five female donors and cellular viability, proliferation, and lipolysis were evaluated following injection using either a modified Coleman technique or an automated, low shear device. Comparisons were made to minimally processed, uninjected fat. Volume retention was also measured over twelve weeks following injection of fat under the scalp of immunodeficient mice using either the modified Coleman technique or the Adipose Tissue Injector. Finally, fat grafts were analyzed histologically. Results Fat viability and cellular proliferation were both significantly greater with the Adipose Tissue Injector relative to injection with the modified Coleman technique. In contrast, significantly less lipolysis was noted using the automated device. In vivo fat volume retention was significantly greater than with the modified Coleman technique at 4, 6, 8, and 12 week time points. This corresponded with significantly greater histological scores for healthy fat and lower scores for injury following injection with the device. Conclusions Biological properties of injected tissues reflect how disruptive and harmful techniques for placement of fat may be, and our in vitro and in vivo data both support the use of the automated, low shear devices compared to the modified Coleman technique. PMID:24622574

  8. Endoscopic diode laser welding of mucosal grafts on the larynx: a new technique.

    Science.gov (United States)

    Wang, Z; Pankratov, M M; Rebeiz, E E; Perrault, D F; Shapshay, S M

    1995-01-01

    Epithelial coverage of a laryngotracheal wound is an important factor in preventing stenosis, and endoscopic transplantation of a free mucosal graft without stents or sutures would be a significant therapeutic advance. In vitro and in vivo canine studies were performed to explore the feasibility of transplantation with a low-power diode laser (400 mW) enhanced by indocyanine green dye-doped albumin. The tensile strength of graft adherence in 10 cadaver larynges was strong (35.25 +/- 10.39 g). Survival studies in live canine models with a specially designed endoscopic instrument set showed excellent healing at 6, 14, and 28 days. Healing was documented with photography and by histologic examination. Successful endoscopic transplantation of a free mucosal graft should improve results of treatment for laryngotracheal stenosis and laryngeal reconstructive surgery.

  9. Preliminary in Vivo Evaluation of a Hybrid Armored Vascular Graft Combining Electrospinning and Additive Manufacturing Techniques

    Directory of Open Access Journals (Sweden)

    Cristiano Spadaccio

    2016-01-01

    Full Text Available In this study, we tested in vivo effectiveness of a previously developed poly-L-lactide/poly-8-caprolactone armored vascular graft releasing heparin. This bioprosthesis was designed in order to overcome the main drawbacks of tissue-engineered vascular grafts, mainly concerning poor mechanical properties, thrombogenicity, and endothelialization. The bioprosthesis was successfully implanted in an aortic vascular reconstruction model in rabbits. All grafts implanted were patent at four weeks postoperatively and have been adequately populated by endogenous cells without signs of thrombosis or structural failure and with no need of antiplatelet therapy. The results of this preliminary study might warrant for further larger controlled in vivo studies to further confirm these findings.

  10. Reducing Postoperative Pterygium Recurrence: Comparison of Free Conjunctival Auto-Graft and Conjunctival Rotation Flap Techniques

    International Nuclear Information System (INIS)

    Akhter, W.; Tayyab, A.; Kausar, A.; Masrur, A.

    2014-01-01

    Objective: To compare the recurrence of pterygium between free conjunctival auto-graft and conjunctival rotation flap following simple surgical excision of pterygium. Study Design: Quasi-experimental study. Place and Duration of Study: Shifa Foundation Community Health Clinic, Shifa College of Medicine, Islamabad, from January to November 2012. Methodology: Fifty seven cases aged above 18 years, with a pterygium corneal encroachment of 2 mm which was responsible for visual disability or was cosmetically undesirable were recruited for the study and randomly assigned to conjunctival auto-graft group and conjunctival rotation flap group. Cases with a history of glaucoma or glaucoma suspect, prior pterygium surgery, pterygium with concurrent ocular surface and lid disease, conjunctival inflammation and scarring, pseudo-pterygium or collagen vascular disease were excluded. After simple pterygium excision conjunctival auto-graft group (n=26) cases received a free conjunctival flap was transplanted, while conjunctival rotation flap group (n=31) cases received a conjunctival rotation flap. All cases were followed-up for 6 months after surgery for recurrence and complications. Frequency distribution and significance of association of recurrence using Fisher's exact test and Mann- Whitney U-test was carried out using Statistical Package for Social Sciences (SPSS) version 20. Results: The median (and inter-quartile range) age and surgery duration in conjunctival auto-graft group and conjunctival rotation flap group were 60 (51.50 - 63.00) and 57 (45.00 - 60.00) years, 28.50 (27.00 - 30.50) and 16.00 (15.00 - 17.00) minutes respectively. Recurrence was seen in 2 (7.96%) and 3 (9.76%) cases in auto-graft and rotation flap groups respectively. No significant difference was seen in postoperative complications between the two groups (p=0.60). Conclusion: The surgical time for conjunctival rotation flap procedure is less as compared to free auto-graft, while their recurrence and

  11. Blood flow to palatal mucosal grafts in mandibular labial vestibuloplasty measured by 133Xe clearance technique

    International Nuclear Information System (INIS)

    Basa, S.; Ercan, M.T.; Aras, T.; Araz, K.

    1987-01-01

    In 11 subjects, the blood flow to alveolar and palatal mucosa was measured by intra-mucosal injection of 133 Xe. Later, mandibular labial vestibuloplasty was performed with mucosal grafts in all of them. The use of a stent was omitted. The subjects were followed by clinical observation and by blood flow measurements up to 6 weeks postoperatively. At certain intervals (3 and 10 days, 4 and 6 weeks), 133 Xe clearance in the graft was determined. Under normal conditions, the mean blood flows to the alveolar and to palatal mucosa were 53.2±12.9 and 58.3±3.5 ml/100 g/min, respectively. The difference between them was statistically insignificant (P>0.05). The graft blood flow was 13.4±3.2 and 21.7±15.0 ml/100 g/min on the 3rd and 10th days after operation. The decrease in both compared to normal values was statistically significant (P<0.001). The blood flow reached almost normal levels (46.2±16.9 ml/100 g/min) and above (63.9±9.7 ml/100 g/min; P<0.05) at 4 and 6 weeks after operation, respectively. These results were in agreement with the clinical observations. The palatal donor area healed in 3-5 weeks. The graft showed complete adaptation with the surrounding tissue and healing in 4-6 weeks. Our results also indicated that injections in the graft do not retard graft healing. (author)

  12. Cytogenetic techniques as biological indicator and dosimeter of radiation damage

    International Nuclear Information System (INIS)

    Hadjidekova, V.; Hristova, R.

    2006-01-01

    Full text: The cytogenetic methods are established techniques for bio monitoring and bio dosimetry of professionally and accidentally exposed to ionizing radiation subjects. They are applied to continue the evaluation of the physical dosimetry and to consider the individual radiosensitivity. The results of cytogenetic monitoring and dosimetry of radiation exposed subjects carried out during the last 5 years in laboratory of Radiation Genetics, NCRRP is reported. Laboratory of Radiation genetics performs cytogenetic monitoring of low dose radiation professionally or medically exposed subjects: workers in Kozloduy NPP, radioactive waste repository workers, X-rays diagnostically exposed patients, and radiotherapy exposed as well. Three cytogenetic indicators are applied as the most sensitive indicators for human radiation exposure: analysis of micronuclei (MN), chromosomal aberrations (CA) and stable translocations (FISH). The optimized methodology for application of different cytogenetic techniques for radiation estimation is discussed

  13. Preparation of antifouling ultrafiltration membranes via irradiation induced graft polymerization technique

    International Nuclear Information System (INIS)

    Deng Bo; Liu Zhognying; Lu Xiaofeng; Li Jingye; Yang Xuanxuan; Yu Ming; Zhang Bowu

    2010-01-01

    PVDF powders were irradiated in air at dose of 15 kGy by using gamma-rays. Macromolecular peroxides transformed from free radicals in the irradiated PVDF powders in air can be preserved for long-term at appropriate temperature stably. By mixing acrylic monomers with irradiated PVDF powders then the graft polymerization can be initiated by heating. Then a series of hydrophilic ultrafiltration (UF) membranes were fabricated by dissolving the PVDF-g-PAAc powders in the NMP under phase inversion method. The antifouling performances of UF membranes cast from virgin and grafted PVDF powders were compared. (authors)

  14. Skin and Composite Grafting Techniques in Facial Reconstruction for Skin Cancer.

    Science.gov (United States)

    Brenner, Michael J; Moyer, Jeffrey S

    2017-08-01

    Skin and composite grafting provide effective resurfacing and reconstruction for cutaneous defects after excision of the malignancy. The goal is to restore a natural appearance and function while preventing distortion of the eyelid, nose, or lips. With careful planning and attention to aesthetic subunits, the surgeon can camouflage incisions and avoid blunting aesthetically sensitive sulci. The surgical plan is also informed by the pathology, as basal or squamous cell carcinomas removed by Mohs micrographic excision have different prognostic and logistical considerations from melanoma. Skin and composite grafting are useful as stand-alone procedures or may complement local flaps and other soft tissue reconstructions. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Radiation induced emulsion graft polymerization of 4-vinylpyridine onto PE/PP nonwoven fabric for As(V) adsorption

    Science.gov (United States)

    Akkaş Kavaklı, Pınar; Kavaklı, Cengiz; Seko, Noriaki; Tamada, Masao; Güven, Olgun

    2016-10-01

    A novel nonwoven fabric adsorbent having 4-vinylpyridine functional groups was prepared by using radiation-induced emulsion graft polymerization method and grafting 4-vinylpyridine monomer onto a polyethylene-coated polypropylene nonwoven fabric (NWF) in aqueous emulsion solution. The grafting conditions of the 4-vinylpyridine monomer onto the NWF were optimised and 150% Dg VP-g-NWF was prepared using 30 kGy pre-irradiation dose, 5% VP monomer concentration and 0.5% (w/w) Tween 20 in aqueous emulsion. Grafted 4-vinylpyridine chains on the NWF were then quaternized for the preparation of QVP-g-NWF adsorbent. All fabric structures were characterized by using Fourier-transform infrared spectrometer, x-ray photoelectron spectrometer and scanning electron microscope. QVP-g-NWF adsorbent was used in batch adsorption experiments for As(V) ions by studying the pH, contact time, and initial As(V) ion concentration parameters. Results showed that QVP-g-NWF adsorbent has significant As(V) adsorption and experimental As(V) adsorption capacity was 98.04 mg As(V)/g polymer from 500 mg/L initial As(V) concentration at pH 7.00.

  16. Reconstruction of an amputated glans penis with a buccal mucosal graft: case report of a novel technique.

    Science.gov (United States)

    Aboutaleb, Hamdy

    2014-12-01

    Penile amputation is a rare catastrophe and a serious complication of circumcision. Reconstruction of the glans penis may be indicated following amputation. Our report discusses a novel technique for reconfiguration of an amputated glans penis 1 year after a complicated circumcision. A 2-year-old male infant presented to us with glans penis amputation that had occurred during circumcision 1 year previously. The parents complained of severe meatal stenosis with disfigurement of the penis. Penis length was 3 cm. Complete penile degloving was performed. The distal part of the remaining penis was prepared by removing fibrous tissue. A buccal mucosal graft was applied to the distal part of the penis associated with meatotomy. The use of a buccal mucosal graft is a successful and simple procedure with acceptable cosmetic and functional results for late reconfiguration of the glans penis after amputation when penile size is suitable.

  17. Transplantation and microsurgical anastomosis of free omental grafts: experimental animal model of a new operative technique in dogs.

    Science.gov (United States)

    Pap-Szekeres, Jozsef; Cserni, Gabor; Furka, Istvan; Svebis, Mihaly; Cserni, Tamas; Brath, Endre; Nemeth, Norbert; Miko, Iren

    2003-01-01

    Our objective was the elaboration of a new animal model for the free transplantation of an omental flap and the examination of its viability in dogs. The cooled omental flap from the abdomen was freely transplanted to the lateral cervical region, and its blood supply was established with microsurgical anastomoses. The technique was developed in 5 dogs, and short-term survival examinations were later carried out in 3 cases by means of this method. Postoperative viability was assessed by angiography, methylene blue testing, and histology. Of the 3 transplanted grafts, 2 still survived 1 week after the operation. For technical reasons, 1 flap thrombotized. For determination of the viability of the transplanted graft, histology proved best. Vital reactions, including granulation tissue and angiogenesis, were present on the histological slides. The short-term survival of an omental flap can be ensured with microsurgical transplantation in dogs. Copyright 2003 Wiley-Liss, Inc.

  18. Effect of gamma radiation on the mechanical and barrier properties of HEMA grafted chitosan-based films

    International Nuclear Information System (INIS)

    Khan, Avik; Huq, Tanzina; Khan, Ruhul A.; Dussault, Dominic; Salmieri, Stephane; Lacroix, Monique

    2012-01-01

    Chitosan films were prepared by dissolving 1% (w/v) chitosan powder in 2% (w/v) aqueous acetic acid solution. Chitosan films were prepared by solution casting. The values of puncture strength (PS), viscoelasticity coefficient and water vapor permeability (WVP) of the films were found to be 565 N/mm, 35%, and 3.30 g mm/m 2 day kPa, respectively. Chitosan solution was exposed to gamma irradiation (0.1–5 kGy) and it was revealed that PS values were reduced significantly (p≤0.05) after 1 kGy dose and it was not possible to form films after 5 kGy. Monomer, 2-hydroxyethyl methacrylate (HEMA) solution (0.1–1%, w/v) was incorporated into the chitosan solution and the formulation was exposed to gamma irradiation (0.3 kGy). A 0.1% (w/v) HEMA concentration at 0.3 kGy dose was found optimal-based on PS values for chitosan grafting. Then radiation dose (0.1–5 kGy) was optimized for HEMA grafting. The highest PS values (672 N/mm) were found at 0.7 kGy. The WVP of the grafted films improved significantly (p≤0.05) with the rise of radiation dose. - highlights: ► HEMA and Silane monomer were incorporated into the MC-based formulation and films. ► Films were exposed to gamma radiation. ► HEMA containing films showed the highest PS values. ► Surface morphology of the grafted films suggested better appearance.

  19. Development of Radiation Technique for Environmental Treatment

    International Nuclear Information System (INIS)

    Lee, Myun Joo; Kuk, Il Hiun; Jin, Joon Ha

    2007-02-01

    The purpose of this research is to development of technologies for 1) the removal of toxic organic chemicals in sewage sludges and the volume reduction of the sewage sludge 2) the recycling/reuse of sewage sludge 3) the reconvey of resource from fishery waste by using radiation technologies. This research project focused on the study of treatment, disposal, and recycling/reuse of sewage sludge by radiation technology, and recovery of highly value-added resources from the wastes. As basic studies with a radiation technology, an enhancement of dewaterbilities of sewage sludge, development of dewatering conditioner, reduction of trace toxic organic chemicals, and the toxicities of the byproducts were studied. Based on the basic experimental results, we developed the pilot-scale system with the continuous e-beam and dewatering unit and the advanced treatment system with the use of carbon source recovered from sewage sludge

  20. Development of Radiation Technique for Environmental Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myun Joo; Kuk, Il Hiun; Jin, Joon Ha [and others

    2007-02-15

    The purpose of this research is to development of technologies for 1) the removal of toxic organic chemicals in sewage sludges and the volume reduction of the sewage sludge 2) the recycling/reuse of sewage sludge 3) the reconvey of resource from fishery waste by using radiation technologies. This research project focused on the study of treatment, disposal, and recycling/reuse of sewage sludge by radiation technology, and recovery of highly value-added resources from the wastes. As basic studies with a radiation technology, an enhancement of dewaterbilities of sewage sludge, development of dewatering conditioner, reduction of trace toxic organic chemicals, and the toxicities of the byproducts were studied. Based on the basic experimental results, we developed the pilot-scale system with the continuous e-beam and dewatering unit and the advanced treatment system with the use of carbon source recovered from sewage sludge.

  1. Synchrotron radiation based analytical techniques (XAS and XRF)

    International Nuclear Information System (INIS)

    Jha, Shambhu Nath

    2014-01-01

    A brief description of the principles of X-ray absorption spectroscopy (XAS) and X-ray fluorescence (XRF) techniques is given in this article with emphasis on the advantages of using synchrotron radiation-based instrumentation/beamline. XAS technique is described in more detail to emphasize the strength of the technique as a local structural probe. (author)

  2. Principles and techniques of radiation hardening. Volume 2. Transient radiation effects in electronics (TREE)

    International Nuclear Information System (INIS)

    Rudie, N.J.

    1976-01-01

    The three-volume book is intended to serve as a review of the effects of thermonuclear explosion induced radiation (x-rays, gamma rays, and beta particles) and the resulting electromagnetic pulse (EMP). Volume 2 deals with the following topics: radiation effects on quartz crystals, tantalum capacitors, bipolar semiconductor devices and integrated circuits, field effect transistors, and miscellaneous electronic devices; hardening electronic systems to photon and neutron radiation; nuclear radiation source and/or effects simulation techniques; and radiation dosimetry

  3. Radiation-grafting of N-vinylimidazole onto silicone rubber for antimicrobial properties

    Science.gov (United States)

    Meléndez-Ortiz, H. Iván; Alvarez-Lorenzo, Carmen; Burillo, Guillermina; Magariños, Beatriz; Concheiro, Angel; Bucio, Emilio

    2015-05-01

    Poly(N-vinylimidazole) (PVIm) was grafted numbers onto silicone rubber (SR) with the aim of providing antimicrobial properties. The grafting was carried out by means of gamma rays using the direct method. The influence on the grafting yield of absorbed dose, monomer concentration, addition of FeSO4 salt, composition and type of solvent (H2O, MeOH, THF, and acetone) was investigated. Grafts onto SR between 10% and 90% were obtained at doses from 20 to 100 kGy and a dose rate 10.9 kGy h-1; grafting yield increased with monomer concentration and dose. The new graft copolymers were confirmed by Fourier transform infrared spectroscopy (FT-IR). Differential scanning calorimeter (DSC) showed glass transition at 149 and 159 °C for 38% and 88% grafting respectively. Thermogravimetry analysis (TGA) presented two decomposition temperatures for SR-g-VIm at 380 (PVIm) and 440 °C (SR). SR-g-VIm showed antibacterial activity against Pseudomonas aeruginosa.

  4. Automation of scanning technique by gamma radiation

    International Nuclear Information System (INIS)

    Aamira, Yahya

    2011-01-01

    The gamma scan technique is a nuclear test allowing the analysis of the internal mechanical properties of distillation columns used in petrochemical industries. Such technique is performed manually. So we propose in this work to automate the gamma scan procedure test by using a PLC. In addition, supervision and data acquisition interfaces are proposed.

  5. Functionalization of polypropylene by radiation grafting of acryloyl chloride and sterification with disperse red

    International Nuclear Information System (INIS)

    Bucio, E.; Burillo, G.; Carreon, M.P.; Ogawa, T.

    2002-01-01

    Complete text of publication follows. A practical method for obtaining films containing functional groups on the surface, is the gamma ray-induced grafting of acryloyl or methacryloyl chloride on the films, followed by the reaction of hydroxy or amino groups of the functional compounds. Direct grafting of acrylates or methacrylates with bulky functional groups onto films of polyethylene, polypropylene, polycarbonate, etc, is often encounter difficulty in polymerization of bulky monomers, loss due to homopolymerization, etc. In this work, polypropylene (PP) films were irradiated by gamma rays of Co-60 (Gamma Beam 651 PT source) and grafted with acryloyl chloride; grafting was carried out by direct and phase vapor direct method, at a dose rate of 5.1 kGy/h, different acryloyl concentration on toluene, and doses from 1 to 5 kGy, at room temperature. The unreacted acryloyl chloride and its homopolymer were removed by chloroform extraction. The grafted poly(acryloyl chloride) was then reacted with Disperse Red 1,2-[4-(4-nitrophenylazo)-N-ethylphenylamino] ethanol. The grafted films were characterized by NMR, FTIR-ATR, Visible Spectroscopy, DSC, X-ray diffractometry, SEM, AFM, NMR of solids and Elemental Analysis. Scanning electron micrographs of fractured surfaces indicated that grafting took place not only on the surface of PP film, but the grafted polymer penetrated into the PP films. Thermochromic properties of the films were observed by FTIR and UV-VIS spectrophotometers at different temperatures. AFM showed depth profiles and average rough for samples with different percentage of graft

  6. Original technique for penile girth augmentation through porcine dermal acellular grafts: results in a 69-patient series.

    Science.gov (United States)

    Alei, Giovanni; Letizia, Piero; Ricottilli, Francesco; Simone, Pierfranco; Alei, Lavinia; Massoni, Francesco; Ricci, Serafino

    2012-07-01

    Although different techniques for augmentation phalloplasty have been reported in the medical literature, this issue is still highly controversial, and none of the proposed procedures has been unanimously approved. The aim of this study is to describe an innovative surgical technique for penile girth augmentation with porcine dermal acellular grafts, through a small transverse incision at the penile base, along the penopubic junction. Between 2000 and 2009, 104 patients were referred to our institution for penile enhancement. After a preoperative psychosexual consultation and a general medical assessment, 69 patients were deemed suitable good candidates for surgery. The average penis circumference was measured at the mid-length of the penis and was 8.1 cm (5.4-10.7 cm) and 10.8 cm (6.5-15.8 cm) during flaccidity and erection, respectively. All patients received penile augmentation with porcine dermal acellular grafts. Results evaluation of an innovative technique for penile girth augmentation through exogenous porcine grafts and small penobubic incision. Postoperative measurements were performed at 6 and 12 months. At the 1-year follow-up, the average penis circumference was 11.3 cm (8.2-13.2 cm, 3.1 cm mean increase) during flaccidity and 13.2 cm (8.8-14.5 cm, 2.4 cm mean increase) during erection. No major complications occurred in the series. Minor complications were resolved with conservative treatment within 3 weeks. Sexual activity was resumed from 1 to 2 months after surgery. The psychosexual impact of the operation was beneficial in the majority of cases. Penile girth enlargement with acellular dermal matrix grafts has several advantages over augmentation with autogenous dermis-fat grafts: the elimination of donor site morbidity and a significantly shorter operation time. With this approach, through a short dorsal incision at the base of the penis, the scar is concealed in a crease covered by pubic hair and thus hardly visible. © 2012

  7. A comparative study on the graft copolymerization of acrylic acid onto rayon fibre by a ceric ion redox system and a γ-radiation method.

    Science.gov (United States)

    Kaur, Inderjeet; Kumar, Raj; Sharma, Neelam

    2010-10-13

    Functionalization of rayon fibre has been carried out by grafting acrylic acid (AAC) both by a chemical method using a Ce(4+)-HNO(3) redox initiator and by a mutual irradiation (γ-rays) method. The reaction conditions affecting the grafting percentage have been optimized for both methods, and the results are compared. The maximum percentage of grafting (50%) by the chemical method was obtained utilizing 18.24 × 10(-3) moles/L of ceric ammonium nitrate (CAN), 39.68 × 10(-2) moles/L of HNO(3), and 104.08 × 10(-2) moles/L of AAc in 20 mL of water at 45°C for 120 min. For the radiation method, the maximum grafting percentage (60%) was higher, and the product was obtained under milder reaction conditions using a lower concentration of AAc (69.38 × 10(-2) moles/L) in 10 mL of water at an optimum total dose of 0.932 kGy. Swelling studies showed higher swelling for the grafted rayon fibre in water (854.54%) as compared to the pristine fibre (407%), while dye uptake studies revealed poor uptake of the dye (crystal violet) by the grafted fibre in comparison with the pristine fibre. The graft copolymers were characterized by IR, TGA, and scanning electron micrographic methods. Grafted fibre, prepared by the radiation-induced method, showed better thermal behaviour. Comparison of the two methods revealed that the radiation method of grafting of acrylic acid onto rayon fibre is a better method of grafting in comparison with the chemical method. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Modification of polyethylene films by radiation grafting of glycidyl methacrylate and immobilization of {beta}-cyclodextrin

    Energy Technology Data Exchange (ETDEWEB)

    Nava-Ortiz, C.A.B. [Departamento de Quimica de Radiaciones y Radioquimica, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Mexico DF 04510 (Mexico); Burillo, G. [Departamento de Quimica de Radiaciones y Radioquimica, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Mexico DF 04510 (Mexico)], E-mail: burillo@nucleares.unam.mx; Bucio, E. [Departamento de Quimica de Radiaciones y Radioquimica, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Mexico DF 04510 (Mexico); Alvarez-Lorenzo, C. [Departamento de Farmacia y Tecnologia Farmaceutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2009-01-15

    Glycidyl methacrylate was grafted onto polyethylene films using a preirradiation method with {gamma} rays. The effect of absorbed dose, monomer concentration, and reaction time on the degree of grafting was determined. The grafted samples were verified by FTIR-ATR spectroscopy. {beta}-Cyclodextrin was immobilized onto polypropylene modified with glycidyl methacrylate, and the ability of the cavities of {beta}-cyclodextrin to form inclusion complexes was demonstrated using the typically organic compound approach with m-toluic acid (3-MBA) as a probe.

  9. Models for formation of macroheterogeneous structure in radiation-grafted polymers

    International Nuclear Information System (INIS)

    Babkin, I.Yu.; Burukhin, S.B.; Maksimov, A.F.

    1994-01-01

    Mathematical models, which describe the formation of grafted polymer layer with respect to variations in sorption and kinetic characteristics due to the changes in composition of the modified polymer and grafted polymer under variable boundary conditions were obtained. The influence of heat effect of polymerization reaction on concentration profiles was estimated. Taking into account the nonlinear diffusion kinetics, the conditions providing diffuse and step profiles of concentration of grafted polymer in polymer matrix were revealed. Step concentration profiles were shown to be associated with a nonlinear dependence of diffusion and kinetic parameters of polymerization on the composition of modified polymer. 22 refs.; 11 figs.; 2 tabs

  10. Swelling, ion uptake and biodegradation studies of PE film modified through radiation induced graft copolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Inderjeet, E-mail: ij_kaur@hotmail.com [Department Chemistry, HPU Shimla 171005 (India); Gupta, Nitika; Kumari, Vandna [Department Chemistry, HPU Shimla 171005 (India)

    2011-09-15

    An attempt to develop biodegradable polyethylene film grafting of mixture of hydrophilic monomers methacrylic acid (MAAc) and acrylamide (AAm) onto PE film has been carried out by preirradiation method using benzoyl peroxide as the radical initiator. Since ether linkages are susceptible to easy cleavage during degradation process, PE film was irradiated before the grafting reactions by {gamma}-rays to introduce peroxidic linkages (PE-OO-PE) that offer sites for grafting. The effect of irradiation dose, monomer concentration, initiator concentration, temperature, time and amount of water on the grafting percent was determined. Maximum percentage of grafting of binary mixture (MAAc+AAm), (1792%) was obtained at a total concentration of binary monomer mixture=204.6x10{sup -2} mol/L ([MAAc]=176.5x10{sup -2} mol/L, [AAm]=28.1x10{sup -2} mol/L), [BPO]=8.3x10{sup -2} mol/L at 100 deg. C in 70 min. The grafted PE film was characterized by the Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and Scanning Electron Microscopic (SEM) methods. Some selective properties of grafted films such as swelling studies, ion uptake and biodegradation studies have been investigated. The grafted films show good swelling in water, ion uptake studies shows promising results for desalination of brackish water and the soil burial test shows that PE film grafted with binary monomer mixture degrades up to 47% within 50 days. - Highlights: > Binary mixture of methacrylic acid (MAAc) and acrylamide (AAm) onto PE film by preirradiation method was carried out. > Graft copolymers of MAAc+AAm and PE film were characterized by FTIR, TGA and SEM studies and was found to be thermally stable. > Grafting of MAAc+AAm improved swelling behavior giving maximum swelling (485.71%) in water as against PE with 0% swelling. > The grafted PE-g-poly (MAAc-co-AAm) behaves as an excellent material for ion separation. > Biodegradation studies by soil burial test showed 47.19% of

  11. Radiation grafting of pH-sensitive acrylic acid and 4-vinyl pyridine onto nylon-6 using one- and two-step methods

    International Nuclear Information System (INIS)

    Ortega, Alejandra; Alarcón, Darío; Muñoz-Muñoz, Franklin; Garzón-Fontecha, Angélica; Burillo, Guillermina

    2015-01-01

    Acrylic acid (AAc) and 4-vinyl pyridine (4VP) were γ-ray grafted onto nylon-6 (Ny 6 ) films via pre-irradiation oxidative method. These monomers were grafted using a one-step method to render Ny 6 -g–(AAc/4VP). A two-step or sequential method was used to render (Ny 6 -g–AAc)-g–4VP. Random copolymer branches were obtained when the grafting was carried out via one-step method using the two monomers together. The two-step method was applied to graft chains of 4VP on both Ny 6 substrate and previously grafted AAc chains (Ny 6 -g–AAc). The two types of binary copolymers synthesized were characterized to determine the amount of grafted polymers, the thermal behavior (DSC and TGA), the surface composition (XPS), and the pH responsiveness. In the two-step process, it is possible to achieve a higher graft yield, better control of the amount of each monomer, good reversibility in the swelling/deswelling process and shorter time to achieve equilibrium swelling. - Highlights: • A new binary graft of 4VP and AAc onto Ny 6 films was synthesized by γ-radiation. • The binary grafted material has potential application for heavy ion retention. • The two-step method shows better conditions in swelling and reversibility properties. • Surface distribution of monomers was evaluate by XPS characterization

  12. Vaginal-sparing ventral buccal mucosal graft urethroplasty for female urethral stricture: A novel modification of surgical technique

    Directory of Open Access Journals (Sweden)

    Nathan Hoag

    2016-07-01

    Full Text Available Purpose: To present a novel modification of surgical technique to treat female urethral stricture (FUS by a vaginal-sparing ventral buccal mucosal urethroplasty. Recurrent FUS represents an uncommon, though difficult clinical scenario to manage definitively. A variety of surgical techniques have been described to date, yet a lack of consensus on the optimal procedure persists. Materials and Methods: We present a 51-year-old female with urethral stricture involving the entire urethra. Suspected etiology was iatrogenic from cystoscopy 17 years prior. Since then, the patient had undergone at least 25 formal urethral dilations and periods of self-dilation. In lithotomy position, the urethra was dilated to accommodate forceps, and ventral urethrotomy carried out sharply, exposing a bed of periurethral tissue. Buccal mucosa was harvested, and a ventral inlay technique facilitated by a nasal speculum, was used to place the graft from the proximal urethra/bladder neck to urethral meatus without a vaginal incision. Graft was sutured into place, and urethral Foley catheter inserted. Results: The vaginal-sparing ventral buccal mucosal graft urethroplasty was deemed successful as of last follow-up. Flexible cystoscopy demonstrated patency of the repair at 6 months. At 10 months of follow-up, the patient was voiding well, with no urinary incontinence. No further interventions have been required. Conclusions: This case describes a novel modification of surgical technique for performing buccal mucosal urethroplasty for FUS. By avoiding incision of the vaginal mucosa, benefits may include reduced: morbidity, urinary incontinence, and wound complications including urethro-vaginal fistula.

  13. Techniques for radiation measurements: Micro-dosimetry and dosimetry

    International Nuclear Information System (INIS)

    Waker, A. J.

    2006-01-01

    Experimental Micro-dosimetry is concerned with the determination of radiation quality and how this can be specified in terms of the distribution of energy deposition arising from the interaction of a radiation field with a particular target site. This paper discusses various techniques that have been developed to measure radiation energy deposition over the three orders of magnitude of site-size; nano-meter, micrometer and millimetre, which radiation biology suggests is required to fully account for radiation quality. Inevitably, much of the discussion will concern the use of tissue-equivalent proportional counters and variants of this device, but other technologies that have been studied, or are under development, for their potential in experimental Micro-dosimetry are also covered. Through an examination of some of the quantities used in radiation metrology and dosimetry the natural link with Micro-dosimetric techniques will be shown and the particular benefits of using Micro-dosimetric methods for dosimetry illustrated. (authors)

  14. Dorsal onlay (Barbagli technique) versus dorsal inlay (Asopa technique) buccal mucosal graft urethroplasty for anterior urethral stricture: a prospective randomized study.

    Science.gov (United States)

    Aldaqadossi, Hussein; El Gamal, Samir; El-Nadey, Mohamed; El Gamal, Osama; Radwan, Mohamed; Gaber, Mohamed

    2014-02-01

    To compare both the dorsal onlay technique of Barbagli and the dorsal inlay technique of Asopa for the management of long anterior urethral stricture. From January 2010 to May 2012, a total of 47 patients with long anterior urethral strictures were randomized into two groups. The first group included 25 patients who were managed by dorsal onlay buccal mucosal graft urethroplasty. The second group included 22 patients who were managed by dorsal inlay buccal mucosal graft urethroplasty. Different clinical parameters, postoperative complications and success rates were compared between both groups. The overall success rate in the dorsal onlay group was 88%, whereas in the dorsal inlay group the success rate was 86.4% during the follow-up period. The mean operative time was significantly longer in the dorsal onlay urethroplasty group (205 ± 19.63 min) than in the dorsal inlay urethroplasty group (128 ± 4.9 min, P-value <0.0001). The average blood loss was significantly higher in the dorsal onlay urethroplasty group (228 ± 5.32 mL) than in the dorsal inlay urethroplasty group (105 ± 12.05 mL, P-value <0.0001). The dorsal onlay technique of Barbagli and the dorsal inlay technique of Asopa buccal mucosal graft urethroplasty provide similar success rates. The Asopa technique is easy to carry out, provides shorter operative time and less blood loss, and it is associated with fewer complications for anterior urethral stricture repair. © 2013 The Japanese Urological Association.

  15. Effect of fire retardants on cotton fabric grafted with acrylic acid by EB radiation: a thermal analysis study

    International Nuclear Information System (INIS)

    Mitra, D.; Sabharwal, S.; Majali, A.B.

    1998-01-01

    Electron beam irradiation technique has been utilized to graft acrylic acid to cotton fabric in order to provide suitable functional groups that can subsequently react with urea or borax for making the fabric fire resistant. Thermal analytical technique such as, DSC and TG have been utilized to investigate the flame retardency characteristic of the grafted and treated fabric. The result shows that decay curve of exothermic peak due to combustion of cotton fabric in case of urea treated fabric at 330 degC becomes broad and shifts to higher temperature in DSC analysis as compared to pure cotton fabric and char residue in TG analysis is 20% in both the case. In borax treated fabric, char residue is found to be 40% in TG analysis and DSC profile is similar to that of urea treated fabric. (author)

  16. Skin graft influence in human tissue radiated in nude mice regeneration

    International Nuclear Information System (INIS)

    Miranda, Jurandir Tomaz de

    2016-01-01

    Over the last few years it has increased the interest in the human skin grafts radio sterilized for application mainly in extensive and deep burns. Because these grafts quickly grip and present antigenic lower potential, compared with other treatments used. The purpose of this study was to evaluate the histoarchitecture of human skin grafts irradiated with doses 25 kGy, 50 kGy and non-irradiated during the repair tissue process in nude mice submitted by skin grafting in the dorsal region. Three groups of animals received irradiated human skin grafts (25 kGy and 50 kGy) and non-irradiated and were euthanized on the 3 rd , 7 th and 21 th day after the surgery. Indeed, routine histologic procedures, tissue samples were stained with hematoxylin and eosin (HE) for quantification of keratinocytes, fibroblasts, immune cells and blood vessels and immunofluorescence (IF) was performed to determine the expression human collagen type I and collagen type I and III mouse. Therefore, quantification of both the cells and the collagen types was performed by image analysis using Image-Pro Plus 6.0 software. Histologic results demonstrated at a dose of 25 kGy that human skin irradiation when grafted influences the increase in the number of cells in wound site over time and it provides better dispersion of these cells. In addition, on the 21 st day, three groups of animals with human skin graft were embedded part of the graft in the healing process. On the other hand, the group not irradiated showed greater incorporation of the graft (43 %), but less production of collagen type III mouse (22 %). Since the groups irradiated skin graft showed lower graft incorporation (6 and 15%), but with greater production of collagen type III mice (35 % and 28 % to 25 kGy and 50 kGy, respectively). In conclusion, this study presented that the group irradiated to 25 kGy and it has a higher cell proliferation and vessel formation, and better remodeling of the healing area. (author)

  17. Nuclear and radiation techniques - state of art and development trends

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1995-01-01

    The state of art and development trends of nuclear and radiation techniques in Poland and worldwide have been presented. Among them the radiometric gages, radiation technologies, radiotracer methods and measuring systems for pipeline and vessels, brightness control have been described and their applications in industry, agriculture, health and environment protection have been shown and discussed. 35 refs, 1 fig

  18. Techniques for predicting environment electromagnetic radiation at satellite ground station

    International Nuclear Information System (INIS)

    Xu Peiji

    1987-01-01

    The measurement theories, techniques, and calculation methods on public exposure level of electromagnetic radiation at satellite ground station are described for the purpose of enviroment protection and research of EM compatibility. According to the results of the measurement and calculation, it is possible to predict the effects of electromagnetic radiation to environment at satellite ground station

  19. Relations between radiation risks and radiation protection measuring techniques

    International Nuclear Information System (INIS)

    Herrmann, K.; Kraus, W.

    1975-10-01

    'Risk of damage' and 'exposure risk' are considered as components of the radiation risk. The influence of the 'exposure risk' on type and extent of radiation protection measurements is discussed with regard to different measuring tasks. Basing upon measuring results concerning the frequency of certain external and internal occupational exposures in the GDR, it has been shown that only a small fraction of the monitored persons are subjected to a high 'exposure risk'. As a consequence the following recommendations are given for discussion: (a) occupationally exposed persons with small 'exposure risk' should be monitored using only a long-term dosimeter (for instance a thermoluminescence dosimeter), (b) in the case of internal exposure the surface and, if necessary, air contamination should be controlled so strictly that routine measurements of internal contamination need not be performed. (author)

  20. A new technique for augmentation phalloplasty: albugineal surgery with bilateral saphenous grafts--three years of experience.

    Science.gov (United States)

    Austoni, E; Guarneri, A; Cazzaniga, A

    2002-09-01

    Penile augmentation surgery is a highly controversial issue due to the low level of standardisation of surgical techniques. The aim of the study is to illustrate a new technique to solve the problem of enlarging the penis by means of additive surgery on the albuginea of the corpora cavernosa, guaranteeing a real increase in size of the erect penis. Between 1995 and 1997, 39 patients who requested an increase in the diameter of their penises underwent augmentation phalloplasty with bilateral saphena grafts. The patients considered eligible for surgery were patients with either hypoplasia of the penis or functional penile dysmorphophobia. All the patients included in our study presented normal erection at screening. The average penis diameter in a flaccid state and during erection was found to be 2.1cm (1.6-2.7 cm) and 2.9 cm (2.2-3.7 cm), respectively. Before surgery the patients were informed of the experimental nature of the surgical procedure. The increase in volume of the corpora cavernosa was achieved by applying saphena grafts to longitudinal openings made bilaterally in the albuginea along the whole length of the penis. No major complications and specifically no losses of sensitivity of the penis or erection deficiencies occurred during the post-operative follow-up period. All the patients resumed their sexual activity in 4 months. A measurement of the penile dimensions was carried out 9 months after surgery. No clinical meaningful increases in the diameter of the flaccid penis were documented. The average penis diameter during erection was found to be 4.2 cm (3.4-4.9) with post-surgery increases in diameter varying from 1.1 to 2.1cm (penlargement phalloplasty technique with albuginea surgery suggested by the authors definitely is indicated for increasing the volume of the corpora cavernosa during erection. Albuginea surgery with saphena grafts has been found to be free from aesthetic and functional complications with excellent patient satisfaction.

  1. Hydrophil diaphragms on the basis of perfluorated copolymers FEP and polyacryl nitrile: Manufacture by radiation- initiated grafting and their use for pervaporation

    International Nuclear Information System (INIS)

    Scholz, H.

    1986-01-01

    The radiation-initiated grafting copolymerisation of hydrophil monomers to FEP, a copolymer of tetrafluorethene and hexafluorpropene and to polyacryl nitrile (PAN) was examined in this dissertation. The grafted products were used as diaphragms for the separation of water-ethanol mixtures by pervaporation. Water was separated through the diaphragm from the mixture in the pervaporation experiments. It was shown how the mechanical properties of the basic polymer affect the interaction between basic polymer and grafted polymer and how the grafting conditions affect the diaphragm properties. By grafting acrylic acid on to the basic polymers FEP and PAN, very good results were achieved for the water-ethanol separation, if the diaphragms were used in the K form. The selectivity of PAN-g-acrylic acid-K for water reached values of α > 1000. (orig./RB) [de

  2. Radiation technologies and techniques friendly for environment and men

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Walis, L.

    1995-01-01

    Development of radiation technologies and techniques in Poland has been shown. Especially thermoshrinkable olefins with shape memory, fast thermistors and radiation sterilization have been presented. Also the radiometric gages produced in the Institute of Nuclear Chemistry and Technology, Warsaw for air monitoring have been described. A broad group of radiotracer techniques being used for environmental study have been presented as well. Radiation technologies with electron beam use for flue gas purification, sewage sludge hygienization and food processing have been shown and their development has been discussed

  3. Hybrid hydrogels produced by ionizing radiation technique

    Science.gov (United States)

    Oliveira, M. J. A.; Amato, V. S.; Lugão, A. B.; Parra, D. F.

    2012-09-01

    The interest in biocompatible hydrogels with particular properties has increased considerably in recent years due to their versatile applications in biomedicine, biotechnology, pharmacy, agriculture and controlled release of drugs. The use of hydrogels matrices for particular drug-release applications has been investigated with the synthesis of modified polymeric hydrogel of PVAl and 0.5, 1.0, 1.5% nano-clay. They were processed using gamma radiation from Cobalt-60 source at 25 kGy dose. The characterization of the hydrogels was conducted and toxicity was evaluated. The dried hydrogel was analyzed for thermogravimetry analysis (TGA), infrared spectroscopy (FTIR) and swelling in solutions of different pH. The membranes have no toxicity. The nano-clay influences directly the equilibrium swelling.

  4. Removal of phosphate using copper-loaded polymeric ligand exchanger prepared by radiation grafting of polypropylene/polyethylene (PP/PE) nonwoven fabric

    Science.gov (United States)

    Barsbay, Murat; Kavaklı, Pınar Akkaş; Güven, Olgun

    2010-03-01

    A novel polymeric ligand exchanger (PLE) was prepared for the removal of phosphate ions from water. 2,2'-dipyridylamine (DPA), a bidentate ligand forming compound with high coordination capacity with a variety of metal ions was bound to glycidyl methacrylate (GMA) grafted polypropylene/polyethylene (PP/PE) nonwoven fabric synthesized by radiation-induced grafting technique. DPA attachment on epoxy ring of GMA units was tested in different solvents, i.e. methanol, ethanol, dioxane and dimethylsulfoxide (DMSO). The highest amount of modification was achieved in dioxane. In order to prepare the corresponding PLE for the removal of phosphate, DPA-immobilized fabric was loaded with Cu(II) ions. Phosphate adsorption experiments were performed in batch mode at different pH (5-9) and phosphate concentrations. The fabric was found to be effective for the removal of phosphate ions. At every stage of preparation and use, the nonwoven fabric was characterized by thermal (i.e. DSC and TGA) and spectroscopic (FTIR) methods. Competitive adsorption experiments were also carried out using two solutions with different concentration levels at pH 7 to see the effect of competing ions. Phosphate adsorption was found to be effective and selective from solutions having trace amounts of competitive anions. It is expected that the novel PLE synthesized can be used for the removal of phosphate ions in low concentrations over a large range of pH.

  5. Radiation grafting of various water-soluble monomers on ultra-high molecular weight polyethylene powder. Part II: Thermal, FTIR and morphological characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Aydinli, Bahattin; Tincer, Teoman E-mail: teotin@metu.edu.tr

    2001-10-01

    Radiation induced grafted polyacrylic acid (PAA), polymethacrylic acid (PMAA), polyacrylamide (PAAm), poly N,N-dimethyl acrylamide (PNDAAm) and poly 1-vinyl-2 pyrrolidone (PVP) on ultra-high molecular weight polyethylene (UHMWPE) were characterised by DSC, FTIR and SEM analysis. While the effect of irradiation on pure UHMWPE was found to increase crystallinity and cause higher enthalpy of crystallisation, grafted UHMWPE powders showed lower crystallinity and enthalpy of crystallisation. In all grafted UHMWPE there existed secondary transitions corresponding to grafting polymers in the first run of DSC above 60 deg. C and they became clearer at a higher grafting level. In the second run of DSC some T{sub g} values appeared to shift to higher temperatures while some were not detected. FTIR analysis indicated the presence of water-soluble polymers in the grafted UHMWPE. The characteristic peaks of water-soluble polymers became sharper in the grafted UHMWPE. SEM analysis revealed that the grafting occurs both on fiber and microparticles of UHMWPE while flowing characteristic of powder is retained.

  6. Radiation grafting of various water-soluble monomers on ultra-high molecular weight polyethylene powder. Part II: Thermal, FTIR and morphological characterisation

    Science.gov (United States)

    Aydınlı, Bahattin; Tin c̡er, Teoman

    2001-10-01

    Radiation induced grafted polyacrylic acid (PAA), polymethacrylic acid (PMAA), polyacrylamide (PAAm), poly N,N-dimethyl acrylamide (PNDAAm) and poly 1-vinyl-2 pyrrolidone (PVP) on ultra-high molecular weight polyethylene (UHMWPE) were characterised by DSC, FTIR and SEM analysis. While the effect of irradiation on pure UHMWPE was found to increase crystallinity and cause higher enthalpy of crystallisation, grafted UHMWPE powders showed lower crystallinity and enthalpy of crystallisation. In all grafted UHMWPE there existed secondary transitions corresponding to grafting polymers in the first run of DSC above 60°C and they became clearer at a higher grafting level. In the second run of DSC some Tg values appeared to shift to higher temperatures while some were not detected. FTIR analysis indicated the presence of water-soluble polymers in the grafted UHMWPE. The characteristic peaks of water-soluble polymers became sharper in the grafted UHMWPE. SEM analysis revealed that the grafting occurs both on fiber and microparticles of UHMWPE while flowing characteristic of powder is retained.

  7. Homologous tracheal transplantation with grafts previously exposed to high doses of gamma radiation in dogs without immunosuppressive agents

    International Nuclear Information System (INIS)

    Yokomise, Hiroyasu; Inui, Kenji; Kure, Toshio; Wada, Hiromi; Itomi, Shigeki

    1993-01-01

    The study was designed to determine whether previous high doses irradiation of gamma radiation would contribute to tracheal transplantation with no use of immunosuppressive agents. Twenty mongrel dogs were used as experimental animals. Five rings of thoracic tracheas, which were extracted from recipients, were exposed to 20000, 50000, or 100000 cGy in each 5 dogs. Five other non-irradiated dogs served as controls. Irradiated tracheal grafts were transplanted and covered with pedicled omentum. After transplantation, no immunosuppressive agents were given to dogs. All dogs in the control group died of tracheal stenosis due to graft-host rejection within one month. All but one long-term survivor died of tracheal stenosis, as well, in both the 20000 cGy and 50000 cGy groups. In the 100000 cGy group, grafts became viable in 4 dogs, and three of these survived one year or more. In conclusion, previous irradiation with high doses of 100000 cGy allowed homologous tracheal transplantation even when no immunosuppressive agents are given. (N.K.)

  8. Gamma Radiation-Induced Template Polymerization Technique

    International Nuclear Information System (INIS)

    Siyam, T.

    2005-01-01

    Gamma radiation induced copolymerization of acrylamide sodiumacrylate (AM-AANa) in the presence and absence of the polymer additive was studied at low monomer concentration(1.4M/l). The results showed that the exponents of the dose rate for the polymerization rate was found to be 1.3 and 1.4 in the absence and in the presence of the polymer additive respectively. The molecular weight of the formed polymer increased by addition of the polymer to the system. In the presence of the polymer the comonomers polymerize on the added polymer. In the absence of the added polymer the comonomers polymerize according to the copolymerization process at the initial stage of the copolymerization. While at high conversion the residual comonomers polymerize on the formed macromolecular chains of the produced polymer. These studies showed that the copolymerization in the presence of added polymer is completely template copolymerization while in the absence of the polymer the copolymerization process is only template process with a high conversion

  9. Hybrid hydrogels produced by ionizing radiation technique

    International Nuclear Information System (INIS)

    Oliveira, M.J.A.; Amato, V.S.; Lugão, A.B.; Parra, D.F.

    2012-01-01

    The interest in biocompatible hydrogels with particular properties has increased considerably in recent years due to their versatile applications in biomedicine, biotechnology, pharmacy, agriculture and controlled release of drugs. The use of hydrogels matrices for particular drug-release applications has been investigated with the synthesis of modified polymeric hydrogel of PVAl and 0.5, 1.0, 1.5% nano-clay. They were processed using gamma radiation from Cobalt-60 source at 25 kGy dose. The characterization of the hydrogels was conducted and toxicity was evaluated. The dried hydrogel was analyzed for thermogravimetry analysis (TGA), infrared spectroscopy (FTIR) and swelling in solutions of different pH. The membranes have no toxicity. The nano-clay influences directly the equilibrium swelling. - Highlights: ► Chemical interaction is observed when nanoclay is irradiated in PVAl hybrid hydrogels. ► Osmotic pressure within network promotes the rehydration capacity of the membranes. ► This effect is an important characteristic for hydrogels drug delivery systems.

  10. Deepening Fornix Technique Using Central Split-Medium Thickness Skin Graft to Treat Contracted Anophthalmic Sockets.

    Science.gov (United States)

    AlHassan, Sultan; Galindo-Ferreiro, Alicia; Khandekar, Rajiv; AlShaikh, Osama; Schellini, Silvana Artioli

    2018-05-08

    The aim of thhis study was to present the outcomes of postauricular split-medium thickness skin graft (SMTSG) to treat anophthalmic sockets with contracted fornices. This case series enrolled patients with grade 2 or 3 anophthalmic sockets between 2015 and 2016. Data were collected on patient demographics, objective and subjective parameters preoperatively and 180 days postoperatively. Success of the surgery was graded on the height of the graft, the depth of the superior and inferior fornices, and presence/abscence of lagophthalmos, entropion, and ability to retain an external prosthesis. Eighteen patients were enrolled with a mean age of 35.9 ± 18 years. The median height of the graft was 22 mm (25% quartile = 18.75) when removed and 20 mm (25% quartile = 16) postoperatively. The median depth of the superior fornix was 6.5 mm (25% quartile = 4.5 mm) preoperatively and 10 mm (25% quartile = 8 mm) postoperatively (P = 0.5). The median inferior fornix depth was 7 mm (25% quartile = 3.5 mm) preoperatively and 8 mm (25% quartile = 5 mm) (P = 0.27) postoperatively. Preoperatively, there were 13 (72.2%) patients with lagophthalmos, 10 (44.4%) with entropion, 3 (37.5%) with poor prosthesis retention, and 5 (62.5%) who were unable to retain the prosthesis. Postoperatively, 7 (38.9%) patients had lagophthamos, 1 (5.6%) had entropion, and all the patients could retain the prosthesis. None of the sockets had a foul odor postoperatively. Postauricular SMTSG achieves successful outcomes for the treatment of contracted anophthalmic sockets, reshaping the anterior socket surface and deepening the fornices.

  11. Radiation detection technique on the fishery foods

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Koji; Yano, Yutaka; Oikawa, Hiroshi [National Research Inst. of Fisheries Science, Yokohama (Japan)

    2000-02-01

    When muscles and myofibril are irradiated by gamma ray, Mg-ATPase activity increased with increasing of dose, but EDTA-ATPase decreased. If dose is very large, Ca-ATPase activity increased. The effects of state of protein on these phenomena were investigated. The muscles, myofibril and myosin B of Tilapia nilotica were used as samples. Change of Ca-ATPase, Mg-ATPase and EDTA-ATPase activity of myosin B by gamma-ray irradiation was the same as myofibril and muscles, but myosin B showed high sensitivity and each ATPase activity was changed by low dose. Accordingly, these values were more difficult to apply to detection technique of irradiation than state of muscle and myofibril. Collagen is known to degenerate and coagulate by gamma-ray irradiation. However, amount of hot water soluble collagen was increased with increasing of dose. (S.Y.)

  12. Development of Plant Application Technique of Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jae Sung; Lim, Yong Taek (and others)

    2007-07-15

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources.

  13. Development of Plant Application Technique of Low Dose Radiation

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jae Sung; Lim, Yong Taek

    2007-07-01

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources

  14. Kinetic investigations of emulsion- and solvent-mediated radiation induced graft copolymerization of glycidyl methacrylate onto nylon-6 fibres

    International Nuclear Information System (INIS)

    Teo Ming Ting; Paveswari Sithambaranathan

    2017-01-01

    Kinetic behaviour of graft copolymerisation of glycidyl methacrylate onto nylon-6 fibres in solvent- and emulsion- media was investigated. The order for the dependence of the initial rate of grafting on the monomer concentration for solvent and emulsion grafting systems were found to be 1.65 and 1.57, respectively. The order of dependence of the initial rate of grafting on the absorbed dose was found to be 1.55 for solvent and 0.62 emulsion grafting systems. The results showed that grafting in both systems is controlled by diffusion mechanism and the degree of grafting can be effectively tuned by variation of the grafting parameters. (author)

  15. Ventral inlay buccal mucosal graft urethroplasty: a novel surgical technique for the management of urethral stricture disease.

    Science.gov (United States)

    Kovell, Robert Caleb; Terlecki, Ryan Patrick

    2015-02-01

    To describe the novel technique of ventral inlay substitution urethroplasty for the management of male anterior urethral stricture disease. A 58-year-old gentleman with multifocal bulbar stricture disease measuring 7 cm in length was treated using a ventral inlay substitution urethroplasty. A dorsal urethrotomy was created, and the ventral urethral plated was incised. The edges of the urethral plate were mobilized without violation of the ventral corpus spongiosum. A buccal mucosa graft was harvested and affixed as a ventral inlay to augment the caliber of the urethra. The dorsal urethrotomy was closed over a foley catheter. No intraoperative or postoperative complications occurred. Postoperative imaging demonstrated a widely patent urethra. After three years of follow-up, the patient continues to do well with no voiding complaints and low postvoid residuals. Ventral inlay substitution urethroplasty appears to be a safe and feasible technique for the management of bulbar urethral strictures.

  16. Intensity-modulated radiation therapy clinical evidence and techniques

    CERN Document Server

    Nishimura, Yasumasa

    2015-01-01

    Successful clinical use of intensity-modulated radiation therapy (IMRT) represents a significant advance in radiation oncology. Because IMRT can deliver high-dose radiation to a target with a reduced dose to the surrounding organs, it can improve the local control rate and reduce toxicities associated with radiation therapy. Since IMRT began being used in the mid-1990s, a large volume of clinical evidence of the advantages of IMRT has been collected. However, treatment planning and quality assurance (QA) of IMRT are complicated and difficult for the clinician and the medical physicist. This book, by authors renowned for their expertise in their fields, provides cumulative clinical evidence and appropriate techniques for IMRT for the clinician and the physicist. Part I deals with the foundations and techniques, history, principles, QA, treatment planning, radiobiology and related aspects of IMRT. Part II covers clinical applications with several case studies, describing contouring and dose distribution with cl...

  17. Role of cytogenetic techniques in biological dosimetry of absorbed radiation

    International Nuclear Information System (INIS)

    Rao, B.S.

    2016-01-01

    In most of the radiation accidents, physical dosimetric information is rarely available. Further, most of the accidental exposures are non-uniform involving either partial body or localized exposure to significant doses. In such situations, physical dosimetry does not provide reliable dose estimate. It has now been realized that biological dosimetric techniques can play an important role in the assessment of absorbed dose. In recent years, a number of biological indicators of radiation have been identified. These include the kinetics of onset and persistence of prodromal syndromes (radiation sickness), cytogenetic changes in peripheral blood lymphocytes, hematological changes, biochemical indicators, ESR spectroscopy of biological samples, induction of gene mutations in red blood cells, cytogenetic and physiological changes in skin and neurophysiological changes. In general, dosimetric information is derived by a combination of several different methods, as they have potential to serve as prognostic indicators. The role of cytogenetic techniques in peripheral blood lymphocytes (PBL) as biological indicators of absorbed radiation is reviewed here

  18. Fundamentals - state of the art of radiation techniques

    International Nuclear Information System (INIS)

    Wogman, N.A.

    1982-01-01

    In minerals exploration and extraction, nuclear techniques have several advantages. The techniques are elementally specific and their exploration range varies from a few millimeters in average rock formations to more than a meter. Because of the heterogeneous disposition of minerals and difficult environments in which measurements are required (in boreholes, on conveyor belts, in bunkers), interrogating techniques are required which exhibit both elemental specificity and range. It is for these fundamental reasons that nuclear techniques are the only possible techniques which satisfy all requirements. A variety of techniques have been developed and used. These are based on energy dispersive x-ray fluorescence (EDXRF), measurement of natural gamma-ray radiation, gamma-ray attenuation and scattering, and on neutron interactions. This paper discusses the fundamentals of these four techniques and their applications. A table is also provided listing some existing selected applications of nuclear techniques in mineral exploration, mining and processing

  19. Study on radiation grafting of acrylic acid onto fluorine-containing polymers. II. Properties of membrane obtained by preirradiation grafting onto poly(tetrafluoroethylene)

    International Nuclear Information System (INIS)

    Hegazy, E.S.A.; Ishigaki, I.; Rabie, A.; Dessouki, A.M.; Okamoto, J.

    1981-01-01

    Some properties of the membranes obtained by the preirradiation grafting of acrylic acid onto poly(tetrafluoroethylene) (PTFE) film have been studied. The dimensional change by grafting and swelling, water uptake, electric conductivity, and mechanical properties of the grafted PTFE films were measured and were found to increase as the grafting proceeds. These properties were found to be dependent mainly on the degree of grafting regardless of grafting conditions except higher monomer concentration (80 wt %). The electric conductivity and mechanical properties of the membranes at 80 wt % monomer concentration is lower than those at a lower monomer concentration. The results suggest that the membranes obtained at 80-wt % acrylic acid solution have a somewhat heterogeneous distribution of electrolyte groups as compared with those prepared at a monomer concentration less than 60 wt %. X-ray microscopy of the grafted films revealed that the grafting begins at the part close to the film surface and proceeds into the center with progressive diffusion of monomer to give finally the homogeneous distribution of electrolyte groups. The membranes show good electrochemical and mechanical properties which make them acceptable for the practical uses as cation exchange membrane

  20. Radiation-grafted membranes based on polyethylene for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sherazi, Tauqir A. [Department of Chemistry, Government College University, Lahore 54000 (Pakistan); Institute for Chemical Process and Environmental Technology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6 (Canada); Guiver, Michael D.; Kingston, David; Xue, Xinzhong [Institute for Chemical Process and Environmental Technology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6 (Canada); Ahmad, Shujaat [PIEAS/PINSTECH, P O Nilore, Islamabad 45650 (Pakistan); Kashmiri, M. Akram [Department of Chemistry, Government College University, Lahore 54000 (Pakistan); Board of Intermediate and Secondary Education, Lahore 54000 (Pakistan)

    2010-01-01

    Styrene was grafted onto ultrahigh molecular weight polyethylene powder (UHMWPE) by gamma irradiation using a {sup 60}Co source. Compression moulded films of selected pre-irradiated styrene-grafted ultrahigh molecular weight polyethylene (UHMWPE-g-PS) were post-sulfonated to the sulfonic acid derivative (UHMWPE-g-PSSA) for use as proton exchange membranes (PEMs). The sulfonation was confirmed by X-ray photoelectron spectroscopy (XPS). The melting and flow properties of UHMWPE and UHMWPE-g-PS are conducive to forming homogeneous pore-free membranes. Both the ion conductivity and methanol permeability coefficient increased with degree of grafting, but the grafted membranes showed comparable or higher ion conductivity and lower methanol permeability than Nafion {sup registered} 117 membrane. One UHMWPE-g-PS membrane was fabricated into a membrane-electrode assembly (MEA) and tested as a single cell direct methanol fuel cell (DMFC). Low membrane cost and acceptable fuel cell performance indicate that UHMWPE-g-PSSA membranes could offer an alternative approach to perfluorosulfonic acid-type membranes for DMFC. (author)

  1. The regeneration of polluted active carbon by radiation techniques

    International Nuclear Information System (INIS)

    Bao Borong; Wu Minghong; Hu Longxin; Zhou Riumin; Zhu Jinliang

    1998-01-01

    In this paper, we investigated the regeneration of polluted active carbon from monosodium glutamate factory by combination of radiation and acid-alkali chemical techniques. The experimental results show that the polluted active carbon will be highly regenerated on the conditions of process concentration 3%, process time 0.5 hour and the adjustment process concentration 2%, time 0.5 hour, radiation dose 5kGy. As regeneration times increase, the regenerated active carbon behaves with good repetition and stable property

  2. Review of retrospective dosimetry techniques for external ionising radiation exposures

    International Nuclear Information System (INIS)

    Ainsbury, E. A.; Bakhanova, E.; Barquinero, J. F.; Brai, M.; Chumak, V.; Correcher, V.; Darroudi, F.; Fattibene, P.; Gruel, G.; Guclu, I.; Horn, S.; Jaworska, A.; Kulka, U.; Lindholm, C.; Lloyd, D.; Longo, A.; Marrale, M.; Monteiro Gil, O.; Oestreicher, U.; Pajic, J.; Rakic, B.; Romm, H.; Trompier, F.; Veronese, I.; Voisin, P.; Vral, A.; Whitehouse, C. A.; Wieser, A.; Woda, C.; Wojcik, A.; Rothkamm, K.

    2011-01-01

    The current focus on networking and mutual assistance in the management of radiation accidents or incidents has demonstrated the importance of a joined-up approach in physical and biological dosimetry. To this end, the European Radiation Dosimetry Working Group 10 on 'Retrospective Dosimetry' has been set up by individuals from a wide range of disciplines across Europe. Here, established and emerging dosimetry methods are reviewed, which can be used immediately and retrospectively following external ionising radiation exposure. Endpoints and assays include dicentrics, translocations, premature chromosome condensation, micronuclei, somatic mutations, gene expression, electron paramagnetic resonance, thermoluminescence, optically stimulated luminescence, neutron activation, haematology, protein biomarkers and analytical dose reconstruction. Individual characteristics of these techniques, their limitations and potential for further development are reviewed, and their usefulness in specific exposure scenarios is discussed. Whilst no single technique fulfils the criteria of an ideal dosemeter, an integrated approach using multiple techniques tailored to the exposure scenario can cover most requirements. (authors)

  3. Physics of nuclear radiations concepts, techniques and applications

    CERN Document Server

    Rangacharyulu, Chary

    2013-01-01

    Physics of Nuclear Radiations: Concepts, Techniques and Applications makes the physics of nuclear radiations accessible to students with a basic background in physics and mathematics. Rather than convince students one way or the other about the hazards of nuclear radiations, the text empowers them with tools to calculate and assess nuclear radiations and their impact. It discusses the meaning behind mathematical formulae as well as the areas in which the equations can be applied. After reviewing the physics preliminaries, the author addresses the growth and decay of nuclear radiations, the stability of nuclei or particles against radioactive transformations, and the behavior of heavy charged particles, electrons, photons, and neutrons. He then presents the nomenclature and physics reasoning of dosimetry, covers typical nuclear facilities (such as medical x-ray machines and particle accelerators), and describes the physics principles of diverse detectors. The book also discusses methods for measuring energy a...

  4. In-situ formation of silver nanoparticles on poly (lactic acid) film by γ-radiation induced grafting of N-vinyl pyrrolidone

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingxia; Chen, Hao; Chen, Zhuping; Chen, Yuheng; Guo, Dan; Ni, Maojun; Liu, Siyang; Peng, Chaorong, E-mail: pengchaorong_siae@163.com

    2016-06-01

    A fast, easy and novel method for preparing biodegradable polymer films with silver nanoparticles was investigated to endow the material with excellent biocompatibility and antibacterial property. Silver nanoparticles (Ag NPs) were immobilized on the surface of polylactic acid (PLA) film by gamma radiation induced grafting of N-vinyl pyrrolidone (NVP). In this method, poly (N-vinyl pyrrolidone) (PVP) was produced and grafted onto the surface of PLA film by gamma radiation polymerization of NVP. PVP acted as both a bridge to connect the Ag NPs with the PLA film, and a stabilizer to protect the Ag NPs from agglomeration. The effect of various reaction parameters, including NVP/Ag mole ratio and radiation dose, on the fabrication of PLA-g-NVP/Ag film was demonstrated. Moreover, the interaction between PVP and Ag NPs was studied by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy, that revealed the Ag NPs coordinated through the oxygen atom on the carbonyl group of PVP at 15 kGy radiation dose, but through the nitrogen atom and the oxygen atom of the amide group of PVP at 1 kGy dose. - Highlights: • PLA-graft-NVP/Ag film was produced by a simple one-step method. • Ag nanoparticles were immobilized on PLA film by gamma radiation grafting technology. • PVP acted as a bridge to connect Ag nanoparticles and PLA film. • Different content and size of Ag NPs can be reached by varying radiation dose.

  5. In-situ formation of silver nanoparticles on poly (lactic acid) film by γ-radiation induced grafting of N-vinyl pyrrolidone

    International Nuclear Information System (INIS)

    Wang, Jingxia; Chen, Hao; Chen, Zhuping; Chen, Yuheng; Guo, Dan; Ni, Maojun; Liu, Siyang; Peng, Chaorong

    2016-01-01

    A fast, easy and novel method for preparing biodegradable polymer films with silver nanoparticles was investigated to endow the material with excellent biocompatibility and antibacterial property. Silver nanoparticles (Ag NPs) were immobilized on the surface of polylactic acid (PLA) film by gamma radiation induced grafting of N-vinyl pyrrolidone (NVP). In this method, poly (N-vinyl pyrrolidone) (PVP) was produced and grafted onto the surface of PLA film by gamma radiation polymerization of NVP. PVP acted as both a bridge to connect the Ag NPs with the PLA film, and a stabilizer to protect the Ag NPs from agglomeration. The effect of various reaction parameters, including NVP/Ag mole ratio and radiation dose, on the fabrication of PLA-g-NVP/Ag film was demonstrated. Moreover, the interaction between PVP and Ag NPs was studied by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy, that revealed the Ag NPs coordinated through the oxygen atom on the carbonyl group of PVP at 15 kGy radiation dose, but through the nitrogen atom and the oxygen atom of the amide group of PVP at 1 kGy dose. - Highlights: • PLA-graft-NVP/Ag film was produced by a simple one-step method. • Ag nanoparticles were immobilized on PLA film by gamma radiation grafting technology. • PVP acted as a bridge to connect Ag nanoparticles and PLA film. • Different content and size of Ag NPs can be reached by varying radiation dose.

  6. Hybrid endovascular stent-grafting technique for patent ductus arteriosus in an adult.

    Science.gov (United States)

    Kainuma, S; Kuratani, T; Sawa, Y

    2011-09-01

    A 51-year-old man was referred to our institution for patent ductus arteriosus (PDA) complicated by left ventricular dysfunction and pulmonary hypertension. Surgical closure of a PDA is usually carried out via a small posterior thoracotomy. However, thoracoscopic procedures are probably not appropriate in adults because of the frequency of calcification and the greater risk of rupture while ligating the ductus. To minimize surgical trauma, we used hybrid endovascular stent grafting combined with revascularization of the left subclavian artery, which enabled us to eliminate shunt flow to the pulmonary artery. At 11-month follow-up, the patient was asymptomatic and showed no complications. © Georg Thieme Verlag KG Stuttgart · New York.

  7. An Accurate Technique for Calculation of Radiation From Printed Reflectarrays

    DEFF Research Database (Denmark)

    Zhou, Min; Sorensen, Stig B.; Jorgensen, Erik

    2011-01-01

    The accuracy of various techniques for calculating the radiation from printed reflectarrays is examined, and an improved technique based on the equivalent currents approach is proposed. The equivalent currents are found from a continuous plane wave spectrum calculated by use of the spectral dyadic...... Green's function. This ensures a correct relation between the equivalent electric and magnetic currents and thus allows an accurate calculation of the radiation over the entire far-field sphere. A comparison to DTU-ESA Facility measurements of a reference offset reflectarray designed and manufactured...

  8. Posterolateral Corner Reconstruction using the Anatomical Two-Tailed Graft Technique: Clinical Outcomes in the Multiligament Injured Knee.

    Science.gov (United States)

    Woodmass, Jarret M; Sanders, Thomas L; Johnson, Nick R; Wu, Isabella T; Krych, Aaron J; Stuart, Michael J; Levy, Bruce A

    2018-02-14

    Injury to the posterolateral corner (PLC) of the knee can lead to both varus and rotational instability. Multiple PLC reconstruction techniques have been described, including one-tailed graft (fibula-based constructs) or two-tailed graft (combined fibula- and tibia-based constructs). The purpose of our study was to evaluate the clinical outcomes of anatomical two-tailed graft reconstruction of the PLC in the setting of multiligament knee injuries (MKLIs) with grade III varus instability. Patients were identified through a prospective MLKI database between 2004 and 2013. Patients who received fibular collateral ligament and PLC reconstructions using a two-tailed graft and had a minimum follow-up of 2 years were included. Patients were assessed for clinical laxity grade, range of motion, and functional outcomes using Lysholm and International Knee Documentation Committee (IKDC) scores. Twenty patients (16 male, 4 female) with a mean age of 30.7 (range: 16-52) and a mean follow-up of 52.2 months (range: 24-93 months) were included. Knee dislocation (KD) grades included: 4 KD-1, 10 KD 3-L, 5 KD-4, and 1 KD-5. No patients had isolated PLC injuries. Mean IKDC and Lysholm score were 73.1 ± 25.8 and 78 ± 26, respectively. Mean range of motion was -1.1 to 122.8. In full extension, two patients (10%) had grade 1 laxity to varus stress. In 30 degrees of knee flexion, five (25%) patients had grade 1 laxity, and two (10%) had grade 2 laxity. Anatomical two-tailed PLC reconstruction can reliably restore varus stability when performed on patients with MLKIs and type C posterolateral instability with hyperextension external rotation recurvatum deformity. Satisfactory functional outcome scores were achieved in the majority of patients. This study supports the use of an anatomical two-tailed PLC reconstruction in the multiligament injured knee. The level of evidence is IV, case series. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  9. On the influence of X-ray surface radiation of the donor or recipient site on the revascularisation of autologous free full thickness skin grafts

    International Nuclear Information System (INIS)

    Lange, R.

    1972-01-01

    Experimental X-ray injuries of the skin were created on guineapigs with contact therapy conditions with a total dose of 14,000 or 12,000R. Measurements of the skin temperature and heat release of the skin show that regardless of whether the donor or recipient site was injured, a reproduction of the plethora and a reduction of the blood circulation of antologous, free full thickness skin grafts was brought about compared to control grafts if the operation was performed 2 - 3 weeks after ending irradiation. Extensively corresponding results were obtained if the operation was performed 5 months after terminating irradiation; however, an increased blood circulation was detected on the 7th post-operative day with the pre-injury of the graft bed. Corresponding measurements on 10 human full thickness skin grafts with radiation-injured graft bed and 15 comparison grafts also showed a negative influence of the revascularisation by the X-ray injury of the graft bed. (orig./LH) [de

  10. Intensifying radiation induced grafting of 4-vinylpyridine/glycidyl methacrylate mixtures onto poly(ethylene-co-tetrafluoroethylene) films using ultrasound

    International Nuclear Information System (INIS)

    Nasef, Mohamed Mahmoud; Sithambaranathan, Paveswari; Ahmad, Arshad; Abouzari-lotf, Ebrahim

    2017-01-01

    A new ultrasound-aided method was used to enhance grafting of 4-vinylpyridine (4-VP) and glycidyl methacrylate (GMA) monomers mixtures onto electron beam (EB) irradiated poly(ethylene-co-tetrafluoroethylene) (ETFE) film for the first time. The effects of reaction parameters such as absorbed dose, monomer concentration, reaction time on both of degree of grafting (DG) and grafting efficiency (GE) were investigated under sonication and conventional grafting at similar temperatures. Fourier transform infrared (FTIR) and atomic force microscopy (AFM) were used to monitor the impact of the applied ultrasound on composition and surfaces of the grafted films whereas 1 H-NMR was used to investigate composition of the grafting residues. The ultrasound-aided grafting of 4-VP/GMA was found to enhance both of DG% and GE remarkably. Moreover, it produced grafted ETFE films having smoother surfaces without homopolymer contamination compared to grafted films obtained from conventional grafting. The results of this study suggest that the use of ultrasound is a promising way for intensifying grafting process and improving its economy. - Highlights: • Grafting of 4-VP/GMA onto ETFE films was carried out with the aid of ultrasound. • Degree of grafting was found to be strongly dependent on reaction parameters. • Sonication remarkably enhanced the reaction kinetics and grafting efficiency. • Grafted films with smoother surfaces without homopolymer contamination were obtained. • Ultrasound aided grafting is superior to conventional one and promotes intensification.

  11. In vitro release studies of vitamin B12 from poly N-vinyl pyrrolidone /starch hydrogels grafted with acrylic acid synthesized by gamma radiation

    International Nuclear Information System (INIS)

    Eid, M.

    2008-01-01

    Co-polymeric hydrogels containing N-vinyl pyrrolidone and starch grafted with acrylic acid were synthesized by gamma radiation. Their gel contents, grafting process and swelling were evaluated. The gels were also characterized by thermal gravimetric analysis. The gel content found to be increase with increasing the irradiation dose up to 50 kGy then decrease. The grafting percent increase by increasing the percentage of acrylic acid in the grafted hydrogels. The thermal stability and the rate of the thermal decomposition showed to be changed according to the different composition of the hydrogels. It also showed a decrease in the maximum rate of the thermal decomposition by the increasing of the irradiation dose from 20 to 30 kGy and increases by increasing the irradiation dose from 30 to 70 kGy. The hydrogels loaded with vitamin B 12 as drug model, demonstrated a decrease release in acidic medium than the neutral one

  12. Skin graft

    Science.gov (United States)

    Skin transplant; Skin autografting; FTSG; STSG; Split thickness skin graft; Full thickness skin graft ... donor site. Most people who are having a skin graft have a split-thickness skin graft. This takes ...

  13. Development of anionic membranes produced by radiation-grafting for alkaline fuel cell applications

    International Nuclear Information System (INIS)

    Pereira, Clotilde Coppini

    2017-01-01

    Anion Exchange Membranes (AEMs) are a promising alternative to the development of more efficient electrolytes for alkaline fuel cells. In general, the AEMs are ionomeric membranes able to conduct hydroxide ions (OH - ) due to the quaternary ammonium groups, which confer high pH equivalent to the AEM. In order to develop alkaline membranes with high chemical and thermal stability, besides satisfactory ionic conductivity for alkaline fuel cells, membranes based on low density polyethylene (LDPE), ultrahigh weight molecular weight polyethylene (UHWHPE), poly(ethylene-co-tetrafluoroethylene) (PETFE) and poly(hexafluoropropylene-co-tetrafluoroethylene) (PFEP) previously irradiated by using 60 Co gamma and electron beam sources, have been synthesized by styrene-grafting, and functionalized with trimethylamine to introduced quaternary ammonium groups. The resulting membranes were characterized by electron paramagnetic resonance (EPR), Raman spectroscopy, thermogravimetry (TG) and electrochemical impedance spectroscopy (EIS). The determination of the grafting degree and water uptake were conducted by gravimetry and ion exchange capacity, by titration. The membranes synthesized with PELD and PEUHMW polymers pre-irradiated at 70 kGy and stored at low temperature (-70 deg C), up to 10 months, showed ionic conductivity results, in hydroxide form (OH - ), of 29 mS.cm -1 and 14 mS.cm -1 at 65 deg C, respectively. The PFEP polymers irradiated by the simultaneous process showed insufficient grating levels for the membrane synthesis, requiring more studies to improve the irradiation and grafting process. The styrene-grafted PETFE membranes, pre-irradiated at 70 kGy and stored at low temperature (-70 deg C), up to 10 months, showed ionic conductivity results, in hydroxide form (OH - ), of 90 mS.cm -1 to 165 mS.cm -1 , in the temperature range 30 to 60 deg C. Such results have demonstrated that LDPE, UHMWPE and PETFE based AEMs are promising electrolytes for alkaline fuel cell

  14. Local full-thickness skin graft of the donor arm--a novel technique for the reduction of donor site morbidity in radial forearm free flap.

    Science.gov (United States)

    Riecke, B; Assaf, A T; Heiland, M; Al-Dam, A; Gröbe, A; Blessmann, M; Wikner, J

    2015-08-01

    A novel technique to reduce donor site morbidity after radial forearm free flap (RFFF) harvest, using a local full-thickness skin graft (FTSG), is described. Thirty consecutive patients undergoing RFFF for head and neck reconstruction were enrolled in a prospective study. Donor site defect closure was performed with spindle-shaped FTSGs excised from the wavelike skin incision made for the vascular pedicle. Both the removal site of the FTSG on the volar forearm and the covered RFFF donor site healed uneventfully in 29 cases, with no impairment of function related to the skin graft. No skin graft failure and no exposure, tenting, or adherence of the flexor tendons occurred. All patients expressed satisfaction with postoperative pain, the functional outcome, and cosmetic appearance. Primary donor site defect closure could be achieved in all cases with the use of a local FTSG. This graft can be gained at the access incision for the vascular pedicle, avoids expansion of the incision for a local flap technique, and does not prolong wound healing, and thus reduces both donor site and graft site morbidity of the RFFF. This technique leads to an inconspicuous aesthetic result with no apparent relevant functional deficits and avoids the need for a second donor site. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. Styrene grafted natural rubber reinforced by in situ silica generated via sol–gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Sittiphan, Torpong [Program of Petrochemistry and Polymer Sciences, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Prasassarakich, Pattarapan [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Poompradub, Sirilux, E-mail: sirilux.p@chula.ac.th [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2014-02-15

    Highlights: • Sol–gel reaction by NR latex was the absence of use of organic solvent and base catalyst. • Well dispersed in situ formed silica particles in the rubber matrix were obtained. • In situ silica was better to improve mechanical properties of rubber vulcanizates. -- Abstract: The filling of styrene graft natural rubber (ST-GNR) with in situ formed silica was performed using the sol–gel reaction via the latex solution method. The mechanical properties of ST-GNR/NR vulcanizate were improved when using the in situ formed silica to levels higher than those obtained with the commercial ex situ formed silica filled ST-GNR/NR vulcanizates at a comparable silica content of 12 parts by weight per hundred parts of rubber. Transmission electron microscopy analysis revealed that the in situ silica particles were small (∼40 nm diameter) and well dispersed, while the commercial silica particles were larger (∼60 nm diameter) and markedly agglomerated in the rubbery matrix. The mechanical properties of the composites prepared via both the solid rubber and latex solution methods were comparable.

  16. Radiation technique in conservation of antique objects - achievement in Poland

    International Nuclear Information System (INIS)

    Perkowski, J.

    2002-01-01

    In this work the progress of the radiation technique in conservation of antique objects in Poland was presented. From two, quite different problems: radiation's disinfection or consolidation, only the first one was applied in our country. The technique of radiation disinfection and desinsection was applied only in the nine cases, in spite of numerous propaganda's information's and advertisement's actions. It were both wooden antiques (altars, sculptures, furniture), sandstone sculpture and prison footwear. In the first case it was connected with destruction of the wood's pest, in the second with bacteria which were destroying of the object inside and in the third with the elimination of the moulds, fungus and bacteria. Differ dose of gamma radiation was applied, depending on the kind and size of initial infection. The time of the operation depended on the quality of the dose rate which was connected first of all with the size and shape of the object. Decisive significance for obtained values of irregular distribution absorbed radiation dose had the type of the material in which the object was done and it's size. (author)

  17. A Novel Surgical Technique for Fixation of Recurrent Acromioclavicular Dislocations: AC Dog Bone Technique in Combination with Autogenous Semitendinosus Tendon Graft

    Directory of Open Access Journals (Sweden)

    Patrick Holweg

    2017-01-01

    Full Text Available Various surgical techniques have been described for the fixation of acromioclavicular (AC dislocations. However, recurrent dislocation is one of the main complications associated with the majority of these techniques. We report a case of postoperative AC joint redislocation. In order to overcome recurrent dislocation after revision surgery, a reconstruction of the conoid and trapezoid ligament with the use of a free tendon graft in combination with a FiberTape was provided within a novel surgical technique. After 12 months, the patient was very satisfied with the functional outcome. The patient achieved excellent results in the Constant (98 points, SPADI (0 points, and QuickDASH score (0 points. The described technique results in an anatomic reconstruction of the AC joint. The nonrigid nature of the intervention seems to restore the normal arthrokinematics by reconstructing the coracoclavicular ligaments with an autograft which is then protected by the AC Dog Bone artificial ligaments during the healing period. The arthroscopic approach to the AC joint with minimal exposure reduces the risks and complications of the intervention. This is the first case in literature that utilizes the artificial dog bone ligament securing the autograft in an anatomic AC reconstruction.

  18. Radiation Effects and Hardening Techniques for Spacecraft Microelectronics

    Science.gov (United States)

    Gambles, J. W.; Maki, G. K.

    2002-01-01

    The natural radiation from the Van Allen belts, solar flares, and cosmic rays found outside of the protection of the earth's atmosphere can produce deleterious effects on microelectronics used in space systems. Historically civil space agencies and the commercial satellite industry have been able to utilize components produced in special radiation hardened fabrication process foundries that were developed during the 1970s and 1980s under sponsorship of the Departments of Defense (DoD) and Energy (DoE). In the post--cold war world the DoD and DoE push to advance the rad--hard processes has waned. Today the available rad--hard components lag two-plus technology node generations behind state- of-the-art commercial technologies. As a result space craft designers face a large performance gap when trying to utilize available rad--hard components. Compounding the performance gap problems, rad--hard components are becoming increasingly harder to get. Faced with the economic pitfalls associated with low demand versus the ever increasing investment required for integrated circuit manufacturing equipment most sources of rad--hard parts have simply exited this market in recent years, leaving only two domestic US suppliers of digital rad--hard components. This paper summarizes the radiation induced mechanisms that can cause digital microelectronics to fail in space, techniques that can be applied to mitigate these failure mechanisms, and ground based testing used to validate radiation hardness/tolerance. The radiation hardening techniques can be broken down into two classes, Hardness By Process (HBP) and Hardness By Design (HBD). Fortunately many HBD techniques can be applied to commercial fabrication processes providing space craft designer with radiation tolerant Application Specific Integrated Circuits (ASICs) that can bridge the performance gap between the special HBP foundries and the commercial state-of-the-art performance.

  19. Adsorption of chromium (Vi) on radiation grafted N,N-dimethylaminoethylmethacrylate onto polypropylene, from aqueous solutions

    International Nuclear Information System (INIS)

    Burillo, G.; Serrano G, J.; Bonifacio M, J.

    2013-01-01

    Polypropylene (Pp) grafted with dimethylaminoethylmethacrylate (DMAEMA), was prepared by irradiation with a 60 Co γ source. The obtained Pp-g-DMAEMA was used to study the Cr(Vi) ion adsorption as a function of contact time, initial ph, initial concentration of metal ion and temperature. Chromium adsorption data on Pp-g-DMAEMA at various initial concentration fit well the Freundlich and Langmuir isotherms. The maximum adsorption capacity (a max ) was found to be 0.3103 x 0 -4 mol g -1 . The thermodynamic parameters ΔH 0 , ΔG 0 and ΔS 0 were estimated showing the adsorption process to be exothermic and spontaneous. (Author)

  20. Novel additives in radiation polymerisation processes. Significance of molecular weight data in their application to grafting, curing and composite formation

    International Nuclear Information System (INIS)

    Garnett, J.L.; Mohajerani, S.; Viengkhou, V.; Loo-Teck NG

    1995-01-01

    The role of additives in accelerating rates of reaction has been investigated in the following related radiation polymerisation processes, i.e simple homopolymerisation, grafting, WPC formation and curing. Additives used include mineral acid, polyfunctional monomers, urea and thermal and photochemical initiators. Molecular weight analysis carried out on the polymers formed in the presence of the additives indicate that both chemical and physical processes are involved in the mechanism of the polymerisation reaction. Chemical processes (free radicals) lead to an enhancement in initial rate of polymerisation whilst the physical parameter involves partitioning of reagents during reaction. Both chemical and physical processes are shown to act in concert to influence both polymer yield and properties

  1. Introduction of Functional Structures in Nano-Scales into Engineering Polymer Films Using Radiation Technique

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Y., E-mail: maekawa.yasunari@jaea.go.jp [Japan Atomic Energy Agency (JAEA), Quantum Beam Science Directorate, High Performance Polymer Group, 1233 Watanuki-Machi, Takasaki, Gunma-ken 370-1292 (Japan)

    2010-07-01

    Introduction of functional regions in nanometer scale in polymeric films using γ-rays, EB, and ion beams are proposed. Two approaches to build nano-scale functional domains in polymer substrates are proposed: 1) Radiation-induced grafting to transfer nano-scale polymer crystalline structures (morphology), acting as a nano-template, to nano-scale graft polymer regions. The obtained polymers with nano structures can be applied to high performance polymer membranes. 2) Fabrication of nanopores and functional domains in engineering plastic films using ion beams, which deposit the energy in very narrow region of polymer films. Hydrophilic grafting polymers are introduced into hydrophobic fluorinated polymers, cross-linked PTFE (cPTFE) and aromatic hydrocarbon polymer, poly(ether ether ketone (PEEK), which is known to have lamella and crystallite in the polymer films. Then, the hierarchical structures of graft domains are analyzed by a small angle neutron scattering (SANS) experiment. From these analyses, the different structures and the different formation of graft domains were observed in fluorinated and hydrocarbon polymer substrates. the grafted domains in the cPTFE film, working as an ion channel, grew as covering the crystallite and the size of domain seems to be similar to that of crystallite. On the other hand, the PEEK-based PEM has a smaller domain size and it seems to grow independently on the crystallites of PEEK substrate. For nano-fabrication of polymer films using heavy ion beams, the energy distribution in radial direction, which is perpendicular to ion trajectory, is mainly concerned. For penumbra, we re-estimated effective radius of penumbra, in which radiation induced grafting took place, for several different ion beams. We observed the different diameters of the ion channels consisting of graft polymers. The channel sizes were quite in good agreement with the effective penumbra which possess the absorption doses more than 1 kGy. (author)

  2. Introduction of Functional Structures in Nano-Scales into Engineering Polymer Films Using Radiation Technique

    International Nuclear Information System (INIS)

    Maekawa, Y.

    2010-01-01

    Introduction of functional regions in nanometer scale in polymeric films using γ-rays, EB, and ion beams are proposed. Two approaches to build nano-scale functional domains in polymer substrates are proposed: 1) Radiation-induced grafting to transfer nano-scale polymer crystalline structures (morphology), acting as a nano-template, to nano-scale graft polymer regions. The obtained polymers with nano structures can be applied to high performance polymer membranes. 2) Fabrication of nanopores and functional domains in engineering plastic films using ion beams, which deposit the energy in very narrow region of polymer films. Hydrophilic grafting polymers are introduced into hydrophobic fluorinated polymers, cross-linked PTFE (cPTFE) and aromatic hydrocarbon polymer, poly(ether ether ketone (PEEK), which is known to have lamella and crystallite in the polymer films. Then, the hierarchical structures of graft domains are analyzed by a small angle neutron scattering (SANS) experiment. From these analyses, the different structures and the different formation of graft domains were observed in fluorinated and hydrocarbon polymer substrates. the grafted domains in the cPTFE film, working as an ion channel, grew as covering the crystallite and the size of domain seems to be similar to that of crystallite. On the other hand, the PEEK-based PEM has a smaller domain size and it seems to grow independently on the crystallites of PEEK substrate. For nano-fabrication of polymer films using heavy ion beams, the energy distribution in radial direction, which is perpendicular to ion trajectory, is mainly concerned. For penumbra, we re-estimated effective radius of penumbra, in which radiation induced grafting took place, for several different ion beams. We observed the different diameters of the ion channels consisting of graft polymers. The channel sizes were quite in good agreement with the effective penumbra which possess the absorption doses more than 1 kGy. (author)

  3. Highlights in radiation measuring technique's - Serial Micro Channel SMC 2100

    International Nuclear Information System (INIS)

    Kandler, M.; Hoffmann, Ch.

    2002-01-01

    The Serial Micro Channel SMC 2100 offers an ''intelligent stand alone'' electronics for the radiation measuring technique's. First it is designed of being connected to a serial interface RS232 of a PC. With a RS485 serial interface on a PC, a network structure can be generated. It has all functional modules which are necessary for the measurement of detector signals. Hence it is possible to directly connect any detector for radiation measurement to a PC, laptop, or notebook. All variations can be operated without PC support too. It has a modular structure and consists of two blocks, the functional modules and the basic modules. The Serial Micro Channel SMC 2100 may be directly coupled to a detector, which therefore makes the realisation of an ''intelligent radiation detector'' with serial link RS232 or RS485. (orig.)

  4. Impacts of radiation management techniques on the North Atlantic Oscillation

    Science.gov (United States)

    Adakudlu, Muralidhar; Helge Otterå, Odd; Tjiputra, Jerry; Muri, Helene; Grini, Alf; Schulz, Michael

    2017-04-01

    The effectiveness of various climate engineering techniques in limiting the global warming signal to reasonable levels has been the topic of state-of-the-art research on climate change. Using an Earth system model, we show that these techniques have the potential to bring down the high CO2 concentration climate in RCP8.5 to a moderate climate similar to RCP4.5 in terms of global temperature. Nevertheless, their influence on the regional aspects of atmospheric circulation is not clear. The regional circulation patterns in the atmosphere are largely characterized by the natural variability modes, such as the North Atlantic Oscillation (NAO). In this study, we assess the impacts of three radiation managment techniques, namely, Stratospheric Aerosol Injection (SAI), Marine Sky Brightening (MSB) and Cirrus Cloud Thinning (CCT), on the structure and features of the NAO. The results indicate an east-northeastward shift as well as intensification of the NAO spatial pattern in the global warming scenarios of RCP4.5 and RCP8.5, with the signal being most intense in the latter. The climate engineering forcings when applied to the RCP8.5 case tend to reduce the strength of the NAO with little impact on its position. The CCT case appears to have the maximum effect on the NAO signal. The patterns of cloud radiative forcing, expressed as the difference between net radiative forcing at TOA under average conditions and clear sky conditions, reveal a northeastward shift of the radiative heating in the north Atlantic region. This implies a possible link between the changes in the NAO signal and the cloud radiative forcing.

  5. Techniques of production and analysis of polarized synchrotron radiation

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    The use of the unique polarization properties of synchrotron radiation in the hard x-ray spectral region (E>3 KeV) is becoming increasingly important to many synchrotron radiation researchers. The radiation emitted from bending magnets and conventional (planar) insertion devices (IDs) is highly linearly polarized in the plane of the particle's orbit. Elliptically polarized x-rays can also be obtained by going off axis on a bending magnet source, albeit with considerable loss of flux. The polarization properties of synchrotron radiation can be further tailored to the researcher's specific needs through the use of specialized insertion devices such as helical and crossed undulators and asymmetrical wigglers. Even with the possibility of producing a specific polarization, there is still the need to develop x-ray optical components which can manipulate the polarization for both analysis and further modification of the polarization state. A survey of techniques for producing and analyzing both linear and circular polarized x-rays will be presented with emphasis on those techniques which rely on single crystal optical components

  6. The Stonehenge technique. A method for aligning coherent bremsstrahlung radiators

    International Nuclear Information System (INIS)

    Livingston, Ken

    2009-01-01

    This paper describes a technique for the alignment of crystal radiators used to produce high energy, linearly polarized photons via coherent bremsstrahlung scattering at electron beam facilities. In these experiments the crystal is mounted on a goniometer which is used to adjust its orientation relative to the electron beam. The angles and equations which relate the crystal lattice, goniometer and electron beam direction are presented here, and the method of alignment is illustrated with data taken at MAMI (the Mainz microtron). A practical guide to setting up a coherent bremsstrahlung facility and installing new crystals using this technique is also included.

  7. The Stonehenge technique. A method for aligning coherent bremsstrahlung radiators

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, Ken [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)], E-mail: k.livingston@physics.gla.ac.uk

    2009-05-21

    This paper describes a technique for the alignment of crystal radiators used to produce high energy, linearly polarized photons via coherent bremsstrahlung scattering at electron beam facilities. In these experiments the crystal is mounted on a goniometer which is used to adjust its orientation relative to the electron beam. The angles and equations which relate the crystal lattice, goniometer and electron beam direction are presented here, and the method of alignment is illustrated with data taken at MAMI (the Mainz microtron). A practical guide to setting up a coherent bremsstrahlung facility and installing new crystals using this technique is also included.

  8. The Stonehenge technique. A method for aligning coherent bremsstrahlung radiators

    Science.gov (United States)

    Livingston, Ken

    2009-05-01

    This paper describes a technique for the alignment of crystal radiators used to produce high energy, linearly polarized photons via coherent bremsstrahlung scattering at electron beam facilities. In these experiments the crystal is mounted on a goniometer which is used to adjust its orientation relative to the electron beam. The angles and equations which relate the crystal lattice, goniometer and electron beam direction are presented here, and the method of alignment is illustrated with data taken at MAMI (the Mainz microtron). A practical guide to setting up a coherent bremsstrahlung facility and installing new crystals using this technique is also included.

  9. High-energy radiation processing, a smart approach to obtain PVP-graft-AA nanogels

    International Nuclear Information System (INIS)

    Grimaldi, N.; Sabatino, M.A.; Przybytniak, G.; Kaluska, I.; Bondì, M.L.; Bulone, D.; Alessi, S.; Spadaro, G.; Dispenza, C.

    2014-01-01

    Poly(N-vinylpyrrolidone)-grafted-acrylic acid biocompatible nanogels (NGs) were prepared using an exiting industrial-type electron accelerator and setups, starting from semi-dilute aqueous solutions of a commercial PVP and the acrylic acid monomer. As a result, NGs with tunable size and structure can be obtained quantitatively. Sterility was also imparted at the integrated dose absorbed. The chemical structure of the NGs produced was confirmed through Fourier Transformer Infrared Spectroscopy (FT-IR). The molecular and physico-chemical properties of NGs, such as the hydrodynamic dimensions and surface charge densities, for various polymer and monomer concentrations in the irradiated solutions, are discussed here. - Highlights: • Aqueous solutions of PVP and AA were irradiated by industrial electron accelerator. • NGs with different physico-chemical and molecular properties can be obtained. • Carboxyl-functionalized NGs produced are promising building blocks for bio-devices

  10. Adsorption of chromium (Vi) on radiation grafted N,N-dimethylaminoethylmethacrylate onto polypropylene, from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Burillo, G. [UNAM, Instituto de Ciencias Nucleares, Departamento de Quimica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Serrano G, J.; Bonifacio M, J., E-mail: juan.serrano@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-08-01

    Polypropylene (Pp) grafted with dimethylaminoethylmethacrylate (DMAEMA), was prepared by irradiation with a {sup 60}Co {gamma} source. The obtained Pp-g-DMAEMA was used to study the Cr(Vi) ion adsorption as a function of contact time, initial ph, initial concentration of metal ion and temperature. Chromium adsorption data on Pp-g-DMAEMA at various initial concentration fit well the Freundlich and Langmuir isotherms. The maximum adsorption capacity (a{sub max}) was found to be 0.3103 x 0{sup -4} mol g{sup -1}. The thermodynamic parameters {Delta}H{sup 0}, {Delta}G{sup 0} and {Delta}S{sup 0} were estimated showing the adsorption process to be exothermic and spontaneous. (Author)

  11. Five-Strand versus Four-Strand Hamstring Tendon Graft Technique for Anterior Cruciate Ligament Reconstruction: A Biomechanical Comparison.

    Science.gov (United States)

    Vaillant, Eric R; Parks, Brent G; Camire, Lyn M; Hinton, Richard Y

    2017-11-01

    The aim of this article is to compare diameter and stiffness, displacement, and strain in a five-strand versus four-strand hamstring graft for anterior cruciate ligament reconstruction. Eight matched pairs of lower extremities underwent four-strand or five-strand hamstring graft reconstruction. Diameter was significantly higher in the five-strand versus the four-strand construct ( p  = 0.002). No significant difference was found between the groups in construct displacement or stiffness. Significantly higher strain was observed in the inner limb versus the outer limb in the four-strand construct ( p  = 0.001) and in the inner limb versus the fifth limb in the 5-strand construct ( p  = 0.004). A fifth limb added to a four-strand hamstring graft significantly increased graft diameter but did not significantly change stiffness or displacement, suggesting that attachment of additional graft material via suture did not provide for full incorporation of the added limb into the graft at time zero. The inner limb in both constructs absorbed significantly greater load than did other limbs. The use of suture to attach additional material to a four-strand hamstring graft may not contribute to improved biomechanical qualities of the graft at time zero. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Sokker, H.H., E-mail: hesham_sokkre@yahoo.com [Jazan University, Faculty of Science (Saudi Arabia); National Center for Radiation Research and Technology, Polymer Chemistry Department, P.O. Box 29, Cairo (Egypt); El-Sawy, Naeem M. [National Center for Radiation Research and Technology, Polymer Chemistry Department, P.O. Box 29, Cairo (Egypt); Hassan, M.A. [Scib Company of Paints, Cairo (Egypt); El-Anadouli, Bahgat E. [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2011-06-15

    The adsorption of crude oil (initial concentration 0.5-30 g/L) from aqueous solution using hydrogel of chitosan based polyacrylamide (PAM) prepared by radiation induced graft polymerization has been investigated. The prepared hydrogel was characterized by FTIR and SEM micrographs. The experiments were carried out as a function of different initial concentrations of oil residue, acrylamide concentration, contact time and pH to determine the optimum condition for the adsorption of residue oil from aqueous solution and sea water. The results obtained showed that the hydrogel prepared at concentration of 40% acrylamide (AAm) and at a radiation dose of 5 kGy has high removal efficiency of crude oil 2.3 g/g at pH 3. Equilibrium studies have been carried out to determine the capacity of the hydrogel for adsorption of crude oil, Langmuir and Freundlich adsorption models were applied to describe the experimental isotherms and isotherms constants. Equilibrium data were found to fit very well with both Freundlich and Langmuir models. Also the adsorption of oil onto the hydrogel behaves as a pseudo-second-order kinetic models rather than the pseudo-first-order kinetic model.

  13. Radiation Grafting of Vinyl Comonomers to Wood [Status and technology of polymer-containing fibrous materials in the Eastern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, T. [Government Forest Experiment Station, Ministry of Agriculture and Forestry, Tokyo (Japan)

    1968-10-15

    The author has been studying graft-copolymerization of wood materials and the preparation of WPC by radiation since 1961 and has submitted 15 reports on the subject to the academic societies concerned. He named this type of material 'Plamo-wood' and studied its mechanical properties to determine possible new applications. It became apparent that it is most desirable to reduce the total dosage to a minimum and this problem must be solved first before successful commercialization can be realized. The total dosage was reduced to about 1/3 to 1/5 (0. 2 to 0. 5 Mrad) of that required for the manufacture of the WPC commercialized in the United States of America, the essentials of which are given below. Two methods of manufacturing WPC have been reported in the United States, one being the radiation method, established by the AEC in 1960, and the other the chemical method (making use of a polymerization initiator) which was proposed by J. A. Meyer et al. in 1966. However, the specimens used with the latter method are limited in size. The author examined these two methods and compared them with each other. As pointed out by Harmison, the use of large-sized specimens in the polymerization initiator method will give rise to the following problems, which may lead to deterioration in the properties of the wood material.

  14. Radiation-Induced Graft Polymerization of Vinyl Monomers with Anion Groups onto MWNT Supports and Their Application as Electrogenerated Chemiluminescence (ECL Biosensors

    Directory of Open Access Journals (Sweden)

    Ji-Hye Park

    2014-01-01

    Full Text Available Vinyl polymer-grafted multiwalled carbon nanotube (MWNT supports with anion groups were prepared for use as biosensor supports by radiation-induced graft polymerization (RIGP of the vinyl monomers acryloyl diphosphoric acid (ADPA, acrylic acid (AA, sodium styrenesulfonate (NaSS, and methacrylic acid (MA onto the surface of MWNTs. The electrogenerated chemiluminescence sensors based on a glass carbon electrode (ECL-GCE and a screen printed electrode (ECL-SPE were fabricated by immobilization of Ru(bpy3 2+ complex after coating of vinyl polymer-grafted MWNT inks on the surface of the GCE and SPE without any polymer binders in order to obtain high electrogenerated chemiluminescence intensity. For detection of alcohol concentration, alcohol dehydrogenase (ADH was immobilized onto an ECL-GCE sensor prepared by poly(NaSS-g-MWNT supports. The prepared biosensor based on ADH is suitable for the detection of ethanol concentration in commercial drinks.

  15. Management of chest deformity caused by microtia reconstruction: Comparison of autogenous diced cartilage versus cadaver cartilage graft partial filling techniques.

    Science.gov (United States)

    Go, Ju Young; Kang, Bo Young; Hwang, Jin Hee; Oh, Kap Sung

    2017-01-01

    Efforts to prevent chest wall deformity after costal cartilage graft are ongoing. In this study, we introduce a new method to prevent donor site deformation using irradiated cadaver cartilage (ICC) and compare this method to the autogenous diced cartilage (ADC) technique. Forty-two pediatric patients comprised the ADC group (n = 24) and the ICC group (n = 18). After harvesting costal cartilage, the empty perichondrial space was filled with autologous diced cartilage in the ADC group and cadaver cartilage in the ICC group. Digital photographs and rib cartilage three-dimensional computed tomography (CT) data were analyzed to compare the preventive effect of donor site deformity. We compared the pre- and postoperative costal cartilage volumes using 3D-CT and graded the volumes (grade I: 0%-25%, grade II: 25%-50%, grade III: 50%-75%, and grade IV: 75%-100%). The average follow-up period was 20 and 24 months in the ADC and ICC groups, respectively. Grade IV maintenance of previous costal cartilage volume was evident postoperatively in 22% of patients in the ADC group and 82% of patients in the ICC group. Intercostal space narrowing and chest wall depression were less in the ICC group. There were no complications or severe resorption of cadaver cartilage. ICC support transected costal ring and prevented stability loss by acting as a spacer. The ICC technique is more effective in preventing intercostal space narrowing and chest wall depression than the ADC technique. Samsung Medical Center Institution Review Board, Unique protocol ID: 2009-10-006-008. This study is also registered on PRS (ClinicalTrials.gov Record 2009-10-006). Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Radiation safety in industrial applications of nuclear techniques

    International Nuclear Information System (INIS)

    Lam, E.S.

    1981-01-01

    The hazards associated with the use of industrial equipment is one of the undesirable by-products of advanced technology. The use of nuclear techniques is a good example. Due to the usefulness of such techniques, one may accept the risks involved if they can be brought down to manageable levels. Most of the nuclear techniques in use in industries in Malaysia require only minimal safety precautions as they make use of only small amounts of radioactive material. However, some large sources are also being used and safety precautions have to be strictly enforced. The management plays a critical role in these industries. The requirements for radiation safety include the monitoring of workers and work areas, the medical surveillance of workers and the provision of barriers and other safety precautions. The management should also look to the training of the workers and be prepared for any emergencies that may arise. (author)

  17. Radiation safety in industrial applications of nuclear techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lam, E S [Ministry of Health, Kuala Lumpur (Malaysia)

    1981-01-01

    The hazards associated with the use of industrial equipment is one of the undesirable by-products of advanced technology. The use of nuclear techniques is a good example. Due to the usefulness of such techniques, one may accept the risks involved if they can be brought down to manageable levels. Most of the nuclear techniques in use in industries in Malaysia require only minimal safety precautions as they make use of only small amounts of radioactive material. However, some large sources are also being used and safety precautions have to be strictly enforced. The management plays a critical role in these industries. The requirements for radiation safety include the monitoring of workers and work areas, the medical surveillance of workers and the provision of barriers and other safety precautions. The management should also look to the training of the workers and be prepared for any emergencies that may arise.

  18. Applications of radiations, radioisotopes and nuclear techniques in biotechnology

    International Nuclear Information System (INIS)

    Bhatia, C.R.

    1994-01-01

    Applications of radiations, radioisotopes and other nuclear techniques has contributed a great deal in our understanding of microbial plant and animal biochemistry and molecular biology. Electron microscopy has provided visual evidence for molecular events. Developments in cell tissue culture of both plants and animals and immunology have contributed to advances in what we now refer as biotechnology. This paper focuses on the applications in the high-tech end of biotechnology, limited to the use of recombinant-DNA techniques. Molecular identification of the genes, their cloning and horizontal transfer across the species of microbes, plants and animals and expression of the transferred genes is the major strength of modern biotechnology. The techniques described in this paper have played a significant role in the development of biotechnology. 6 refs

  19. Synthesis of a hollow fiber type porous chelating resin containing the amide oxime group by radiation induced graft polymerization for the uranium recovery

    International Nuclear Information System (INIS)

    Hori, Takahiro; Saito, Kyoichi; Furusaki, Shintaro; Sugo, Takanobu; Okamoto, Jiro.

    1986-01-01

    A hollow fiber type porous chelating resin containing amide oxime as a functional group was synthesized and used as an adsorbent for the recovery of uranium. Hollow fiber type porous polyethylene was used as a base polymer. Acrylonitrile was grafted onto it by the radiation-induced graft polymerization. By changing the reaction time, four kinds of graft polymer were obtained. The degree of grafting ranged from 79 % to 127 %. Each resin was soaked in hydroxylamine solution, and the cyano group was converted to amide oxime group. By elemental analysis, the amount of nitrogen introduced on the graft polymer resin in amidoximation was determined to range from 4.3 mmol to 8.5 mmol per 1 g of base polymer. Most of the nitrogen is considered to belong to the amide oxime group. The pore radius, which was initially distributed broadly from about 500 A to 10000 A for the base polymer, was changed to about 1000 A with narrow distribution by the grafting. The pore volume was 1.2 ∼ 1.4 cm 3 per 1 gram of the amide oxime resin, which was about half of that of the initial base polymer. But the pore volume per 1 g base polymer of the amide oxime resin increased with an increase in the grafting degree, e.g. 4.5 cm 3 /g base polymer at 127 % of grafting degree. Specific surface area, which was 30 m 2 /g in base polymer, decreased with an increase in the grafting degree, e.g. 15 m 2 /g at 127 % of grafting degree. Both the amounts of the adsorbed hydrochloric acid and the adsorbed copper were about 1.5 times of the amount of nitrogen introduced in the amidoximation. The reason is considered to be caused by the formation of hydroxamic acid and amide from the measurements of the IR spectra. The amount of uranium adsorbed on the resin was 64 % of the amount of nitrogen introduced in the amidoximation. (author)

  20. Nickel adsorption by sodium polyacrylate-grafted activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ewecharoen, A. [Division of Biotechnology, School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, 83 Moo 8 Thakham, Bangkhuntien, Bangkok 10150 (Thailand); Thiravetyan, P., E-mail: paitip@hotmail.com [Division of Biotechnology, School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, 83 Moo 8 Thakham, Bangkhuntien, Bangkok 10150 (Thailand); Wendel, E.; Bertagnolli, H. [Institut fuer Physikalische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany)

    2009-11-15

    A novel sodium polyacrylate grafted activated carbon was produced by using gamma radiation to increase the number of functional groups on the surface. After irradiation the capacity for nickel adsorption was studied and found to have increased from 44.1 to 55.7 mg g{sup -1}. X-ray absorption spectroscopy showed that the adsorbed nickel on activated carbon and irradiation-grafted activated carbon was coordinated with 6 oxygen atoms at 2.04-2.06 A. It is proposed that this grafting technique could be applied to other adsorbents to increase the efficiency of metal adsorption.

  1. One-stage reconstruction of soft tissue defects with the sandwich technique: Collagen-elastin dermal template and skin grafts

    Directory of Open Access Journals (Sweden)

    Uwe Wollina

    2011-01-01

    Full Text Available Background : A full-thickness soft tissue defect closure often needs complex procedures. The use of dermal templates can be helpful in improving the outcome. Objective : The objective was to evaluate a sandwich technique combining the dermal collagen-elastin matrix with skin grafts in a one-stage procedure. Materials and Methods : Twenty-three patients with 27 wounds were enrolled in this prospective single-centre observational study. The mean age was 74.8 ± 17.2 years. Included were full-thickness defects with exposed bone, cartilage and/ or tendons. The dermal collagen-elastin matrix was applied onto the wound bed accomplished by skin transplants, i.e. ′sandwich′ transplantation. In six wounds, the transplants were treated with intermittent negative pressure therapy. Results : The size of defects was ≤875 cm 2 . The use of the dermal template resulted in a complete and stable granulation in 100% of wounds. Seventeen defects showed a complete closure and 19 achieved a complete granulation with an incomplete closure. There was a marked pain relief. No adverse events were noted due to the dermal template usage. Conclusions : Sandwich transplantation with the collagen-elastin matrix is a useful tool when dealing with full-thickness soft tissue defects with exposed bone, cartilage or tendons.

  2. Relevant insight of surface characterization techniques to study covalent grafting of a biopolymer to titanium implant and its acidic resistance

    Science.gov (United States)

    D'Almeida, Mélanie; Amalric, Julien; Brunon, Céline; Grosgogeat, Brigitte; Toury, Bérangère

    2015-02-01

    Peri-implant bacterial infections are the main cause of complications in dentistry. Our group has previously proposed the attachment of chitosan on titanium implants via a covalent bond to improve its antibacterial properties while maintaining its biocompatibility. A better knowledge of the coating preparation process allows a better understanding of the bioactive coating in biological conditions. In this work, several relevant characterization techniques were used to assess an implant device during its production phase and its resistance in natural media at different pH. The titanium surface was functionalized with 3-aminopropyltriethoxysilane (APTES) followed by grafting of an organic coupling agent; succinic anhydride, able to form two covalent links, with the substrate through a Ti-O-Si bond and the biopolymer through a peptide bond. Each step of the coating synthesis as well as the presence confirmation of the biopolymer on titanium after saliva immersion was followed by FTIR-ATR, SEM, EDS, 3D profilometry, XPS and ToF-SIMS analyses. Results allowed to highlight the efficiency of each step of the process, and to propose a mechanism occurring during the chitosan coating degradation in saliva media at pH 5 and at pH 3.

  3. Grafted Cellulose Based Adsorbents for Selective Separation Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Takacs, E; Wojnarovits, L [Institute of Isotopes, Hungarian Academy of Sciences, Budapest (Hungary)

    2012-09-15

    The effect of high energy ionizing radiation on cotton-cellulose was studied. It was found that degradation of cellulose started at low doses, below 5 kGy, resulting in decrease in the degree of polymerization. However, the mechanical properties of cotton-cellulose samples only slightly changed with the dose up to 40 kGy. Acrylate type monomers were successfully grafted to cellulose by mutual and by pre-irradiation grafting technique. With both techniques the grafting yield increased with increasing dose and monomer concentration. In the case of pre-irradiation grafting the increase in grafting time also resulted in an increase in grafting percentage. Cotton-cellulose was functionalized using pre-irradiation grafting (PIG) and simultaneous grafting (SG) of glycidyl methacrylate (GMA). The adsorption properties of this material were further enhanced by {beta}-cyclodextrin (CD) immobilization. This molecule is known for its unique ability to form inclusion complexes among others with aromatic compounds like phenols, pesticide, dyes, etc. (author)

  4. Radiation techniques in crop and plant breeding. Multiplying the benefits

    International Nuclear Information System (INIS)

    Ahloowalia, B.S.

    1998-01-01

    World food production is based on growing a wide variety of fruits, vegetables, and crops developed through advances in science. Plant breeders have produced multiple varieties that grow well in various types of soils and under diverse climates in different regions of the world. Conventionally, this is done by sexual hybridization. This involves transferring pollen from one parent plant to another to obtain hybrids. The subsequent generations of these hybrids are grown to select plants which combine the desired characters of the parents. However, another method exists by which the genetic make-up of a given plant variety can be changed without crossing with another variety. With this method, a variety retains all its original attributes but is upgraded in one or two changed characteristics. This method is based on radiation-induced genetic changes, and its referred to as ''induced mutations''. During the past thirty years, more than 1800 mutant varieties of plants have been released, many, of which were induced with radiation. Plant tissue and cell culture (also called in vitro culture) in combination with radiation is a powerful technique to induce mutations, particularly for the improvement of vegetatively propagated crops. These crops include cassava, garlic, potato, sweet potato, yams, sugarcane, ornamentals such as chrysanthemum, carnation, roses, tulips, daffodil, and many fruits (e.g. apple, banana, plantain, citrus, date palm, grape, papaya, passion fruit, and kiwi fruit). In some of these plants, either there is no seed set (e.g. banana) or the seed progeny produces plants which do not have the right combination of the desired characteristics. These techniques are also useful in the improvement of forest trees having a long lifespan before they produce fruit and seed. This article briefly reviews advances in plant breeding techniques, with a view towards improving the transfer of technologies to more countries

  5. Advanced crystal growth techniques for thallium bromide semiconductor radiation detectors

    Science.gov (United States)

    Datta, Amlan; Becla, Piotr; Guguschev, Christo; Motakef, Shariar

    2018-02-01

    Thallium Bromide (TlBr) is a promising room-temperature radiation detector candidate with excellent charge transport properties. Currently, Travelling Molten Zone (TMZ) technique is widely used for growth of semiconductor-grade TlBr crystals. However, there are several challenges associated with this type of crystal growth process including lower yield, high thermal stress, and low crystal uniformity. To overcome these shortcomings of the current technique, several different crystal growth techniques have been implemented in this study. These include: Vertical Bridgman (VB), Physical Vapor Transport (PVT), Edge-defined Film-fed Growth (EFG), and Czochralski Growth (Cz). Techniques based on melt pulling (EFG and Cz) were demonstrated for the first time for semiconductor grade TlBr material. The viability of each process along with the associated challenges for TlBr growth has been discussed. The purity of the TlBr crystals along with its crystalline and electronic properties were analyzed and correlated with the growth techniques. Uncorrected 662 keV energy resolutions around 2% were obtained from 5 mm x 5 mm x 10 mm TlBr devices with virtual Frisch-grid configuration.

  6. Standard evaluation techniques for containment and surveillance radiation monitors

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1982-01-01

    Evaluation techniques used at Los Alamos for personnel and vehicle radiation monitors that safeguard nuclear material determine the worst-case sensitivity. An evaluation tests a monitor's lowest sensitivity regions with sources that have minimum emission rates. The result of our performance tests are analyzed as a binomial experiment. The number of trials that are required to verify the monitor's probability of detection is determined by a graph derived from the confidence limits for a binomial distribution. Our testing results are reported in a way that characterizes the monitor yet does not compromise security by revealing its routine performance for detecting process materials

  7. Preparation of vinyl acetate grafted natural rubber by irradiation method

    Energy Technology Data Exchange (ETDEWEB)

    Porntrairat, A.; Pattamaprom, C. [Center of Excellence on Natural Rubber Technology, Department of Chemical Engineering, Faculty of Engineering, Thammasat University, Pathumthani 12120 (Thailand)

    2016-03-09

    Improvement in properties of natural rubber could be done by several methods. In this research, gamma radiation technique, which is simple, accurate, easy to control and clean, was applied to enhance the properties of natural rubber (NR) in latex state. The purpose of this research is to study the appropriate condition for preparing grafted natural rubber latex by using irradiation method. Vinyl acetate monomers (VAc) were grafted onto natural rubber latex (NR-g-PVAc) at 0-10 kGys by gamma radiation from Cobalt-60 source at room temperature. Physical properties of grafted natural rubber such as chloroform number, swelling ratio and gel content were measured. The VAc content of NR-g-PVAc was investigated by titration and visualized by FTIR spectroscopy. The FTIR spectra of NR-g-PVAc prepared at 0-10 kGys showed characteristic peaks of the vinyl acetate confirming that VAc could be grafted onto natural rubber molecular chains effectively under appropriate irradiation conditions. From the result, radiation grafting was found to be a useful technique for grafting of vinyl acetate onto natural rubber.

  8. Blood compatibility of AAc, HEMA, and PEGMA-grafted cellulose film

    International Nuclear Information System (INIS)

    Nho, Young Chang.; Kwon, Oh Hyun

    2003-01-01

    To improve surface blood compatibility on cellulose film for hemodialysis, acrylic acid, 2-hydroxyethyl methacrylate and three kinds of polyethylene glycol methacrylates were grafted onto the cellulose film surface by radiation grafting technique. Heparin was introduced onto the grafted cellulose film surfaces. The grafting and heparinization were confirmed by Fourier transform infrared spectroscopy in the attenuated total reflectance mode and electron spectroscopy for chemical analysis. The blood compatibility of the modified cellulose film was examined by the determination of platelet adhesion and thrombus formation

  9. Techniques to maximize software reliability in radiation fields

    International Nuclear Information System (INIS)

    Eichhorn, G.; Piercey, R.B.

    1986-01-01

    Microprocessor system failures due to memory corruption by single event upsets (SEUs) and/or latch-up in RAM or ROM memory are common in environments where there is high radiation flux. Traditional methods to harden microcomputer systems against SEUs and memory latch-up have usually involved expensive large scale hardware redundancy. Such systems offer higher reliability, but they tend to be more complex and non-standard. At the Space Astronomy Laboratory the authors have developed general programming techniques for producing software which is resistant to such memory failures. These techniques, which may be applied to standard off-the-shelf hardware, as well as custom designs, include an implementation of Maximally Redundant Software (MRS) model, error detection algorithms and memory verification and management

  10. The synthesis of a new type adsorbent for the removal of toxic gas by radiation-induced graft polymerization

    International Nuclear Information System (INIS)

    Okamoto, Jiro; Sugo, Takanobu

    1990-01-01

    A new type of adsorbent containing sulfuric acid group for the removal of ammonia gas was synthesized by radiation-induced graft polymerization of styrene onto fibrous and nonwoven type polypropylene followed by sulufonation with chlorosulfonic acid. The rate of the adsorption of ammonia gas by H-type adsorbent is independent of the ion-exchange capacity. The amount of ammonia gas adsorbed by the chemical adsorption was dependent on the ion-exchange capacity of H-type fibrous adsorbent and was kept constant value in spite of the equilibrium pressure of ammonia gas. Cu(II)- and Ni(II)-types fibrous adsorbent were prepared by the ion exchange reaction of Na-type fibrous adsorbent with metal nitrate solutions. Although, the rate of adsorption of ammonia gas by metal-type fibrous adsorbent is lower than that of H-type adsorbent, the amount of ammonia gas adsorbed increases compared to H-type adsorbent with the same ion exchange capacity. It was related to the highest coordination number of metal ion. The ratio of the number of ammonia molecules adsorbed chemically and the number of metal ion adsorbed in fibrous adsorbent was 4 for Cu-type and 6 for Ni-type fibrous adsorbent, respectively. (author)

  11. Chronic graft-versus-host disease in the rat radiation chimera. III. Immunology and immunopathology in rapidly induced models

    International Nuclear Information System (INIS)

    Beschorner, W.E.; Tutschka, P.J.; Santos, G.W.

    1983-01-01

    Although chronic graft-versus-host disease (GVHD) frequently develops in the long-term rat radiation chimera, we present three additional models in which a histologically similar disease is rapidly induced. These include adoptive transfer of spleen and bone marrow from rats with spontaneous chronic GVHD into lethally irradiated rats of the primary host strain; sublethal irradiation of stable chimeras followed by a booster transplant; and transfer of spleen cells of chimeras recovering from acute GVHD into second-party (primary recipient strain) or third-party hosts. Some immunopathologic and immune abnormalities associated with spontaneous chronic GVHD were not observed in one or more of the induced models. Thus, IgM deposition in the skin, antinuclear antibodies, and vasculitis appear to be paraphenomena. On the other hand, lymphoid hypocellularity of the thymic medulla, immaturity of splenic follicles, and nonspecific suppressor cells were consistently present in the long term chimeras, and in all models. These abnormalities therefore may be pathogenetically important, or closely related to the development of chronic GVHD

  12. Investigations to increase the efficiency of fluorine and boron removal from groundwater using radiation-induced graft polymerization adsorbent

    International Nuclear Information System (INIS)

    Iyatomi, Yosuke; Shimada, Akiomi; Ogata, Nobuhisa; Sugihara, Kozo; Hoshina, Hiroyuki; Seko, Noriaki; Kasai, Noboru; Ueki, Yuji; Tamada, Masao

    2010-01-01

    The Japan Atomic Energy Agency is performing a research project in the Mizunami Underground Research Laboratory (MIU) to build a firm scientific and technological basis for the studies of the deep underground environment in crystalline rock. In the project, it is necessary to reduce the fluorine and boron concentrations in groundwater pumped from the MIU shafts to levels below the environmental standards. This is done at the MIU water treatment facility using coagulation and ion exchange treatment for fluorine and boron, respectively. In addition, in 2006, research started on the efficient treatment of groundwater for removal of fluorine and boron using a radiation-induced graft polymerization adsorbent. The adsorbent removed boron at a flow rate (space velocity (SV)=120 h -1 ) higher than that of a general ion exchange resin (SV=10 h -1 ) and the adsorbent could be used repeatedly. It was also apparent that the pH of groundwater had an influence on adsorption performance. With respect to fluorine removal, more than 90% of fluorine was removed. However, the adsorbent for fluorine showed a lower adsorption capacity than that for boron. The reason for this difference is considered to be related to the initial concentration difference between fluorine and boron in the groundwater. Therefore, it is necessary to define the initial concentrations of dissolved materials, which can be used as better indicators of the performance of the adsorbent. (author)

  13. Radiation chemistry of mineral constituents of bone and its consequences in sterilization and grafting

    International Nuclear Information System (INIS)

    Stachowicz, W.; Michalik, J.; Szmid, Z.; Ostrowski, K.; Dziedzic-Goclawska, A.

    1973-01-01

    The yields of the stable paramagnetic centres induced by gamma radiation in synthetic hydroxyapatites were estimated by electron spin resonance (ESR) method. The results were compared with the data obtained by X-ray diffraction method and by chemical analysis (Ca/P molar ratio). A close relationship was found between the intensity of the ESR signals derived from the stable paramagnetic centres and the structure of investigated samples. The obtained results will be applied to the estimation of the degree of crystallinity in mineralized tissues. (author)

  14. Development and Application of Chlorinated, Fluorinated and Technological Polymer Films Modified by Grafting Process Using Electron Beam and Gamma Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Manzoli, J E [Nuclear Energy National Commission, Nuclear and Energetic Research Institute, Sao Paulo (Brazil); Universidade Sao Judas Tadeu, Sao Paulo (Brazil); Geraldo, A B.C.; Moura, E; Somesari, E S.R.; Silveira, C G; Oikawa, H; Moreira, N S; Forbicini, C [Nuclear Energy National Commission, Nuclear and Energetic Research Institute, Sao Paulo (Brazil); Tenorio, E [FATEC, Tatui (Brazil); Augusto, C G [IFSP, Sao Paulo (Brazil); Universidade Sao Judas Tadeu, Sao Paulo (Brazil); Panzarini, L C.G.A. [FEI, Sao Bernardo do Campo (Brazil)

    2012-09-15

    The ionizing irradiation (electron beam and gamma irradiation) induced grafting to fluorinated and chlorinated polymeric films were studied. Styrene grafting onto fluorinated and perfluorinated polymers and their ulterior sulfonation constitute a process to produce ionomers for many applications. The modification of polyvinylchloride with dimethylaminethylmethacrylate-heparin grafting attempt for the fact that grafting can be applied in packaging industry as an alternative for decreasing of plasticizer or another chemical species migration, in many cases nocivus contaminant for human health, and, in the specific study of this project, to obtain a less thrombogenic polymer surface to be used in medical applications. The results indicate mutual styrene grafting performed by industrial EB accelerator can be a fast alternative to produce ionomers that can compete in market. The numerical method to simulate diffusion process evolved is simple and fast and applied to fit experimental results. (author)

  15. Radiation-Induced Grafting for the Synthesis of Adsorbents for Phosphate and Chromate Removal from Aqueous Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kavakli, P A; Kavakli, C; Guven, O [Department of Chemistry, Hacettepe University, Beytepe, 06800, Ankara (Turkey)

    2012-09-15

    Nonwoven fabrics made of PE coated PP fibres were irradiated by accelerated electrons in inert atmospheres for grafting of two different monomers, glycidyl methacrylate and dimethylaminoethyl methacrylate. Grafting conditions were optimized by a systematic investigation of the effects of absorbed dose, monomer concentration, grafting reaction temperature and duration. 150% grafted copolymers were later modified by protonation and quaternization of poly(dimethylaminoethyl methacrylate) chains and by Cu(II) loading of dipyridyl amine modified poly(glycidyl methacrylate) graft chains. The PE/PP based adsorbents thus prepared were used for their suitability of removing phosphate and chromate ions from aqueous systems. Adsorption/removal studies were carried out in both batch and continuous flow type systems. The selectivity of adsorption of phosphate ions in the presence of other competing anions were also checked showing the enhanced selectivity for phosphate ions. (author)

  16. Radiation synthesized protein-based nanoparticles: A technique overview

    International Nuclear Information System (INIS)

    Varca, Gustavo H.C.; Perossi, Gabriela G.; Grasselli, Mariano; Lugão, Ademar B.

    2014-01-01

    Seeking for alternative routes for protein engineering a novel techniqueradiation induced synthesis of protein nanoparticles – to achieve size controlled particles with preserved bioactivity has been recently reported. This work aimed to evaluate different process conditions to optimize and provide an overview of the technique using γ-irradiation. Papain was used as model protease and the samples were irradiated in a gamma cell irradiator in phosphate buffer (pH=7.0) containing ethanol (0–35%). The dose effect was evaluated by exposure to distinct γ-irradiation doses (2.5, 5, 7.5 and 10 kGy) and scale up experiments involving distinct protein concentrations (12.5–50 mg mL −1 ) were also performed. Characterization involved size monitoring using dynamic light scattering. Bityrosine detection was performed using fluorescence measurements in order to provide experimental evidence of the mechanism involved. Best dose effects were achieved at 10 kGy with regard to size and no relevant changes were observed as a function of papain concentration, highlighting very broad operational concentration range. Bityrosine changes were identified for the samples as a function of the process confirming that such linkages play an important role in the nanoparticle formation. - Highlights: • Synthesis of protein-based nanoparticles by γ-irradiation. • Optimization of the technique. • Overview of mechanism involved in the nanoparticle formation. • Engineered papain nanoparticles for biomedical applications

  17. Application of PSA techniques to synchrotron radiation source facilities

    International Nuclear Information System (INIS)

    Sanyasi Rao, V.V.S.; Vinod, G.; Vaze, K.K.; Sarkar, P.K.

    2011-01-01

    Synchrotron radiation sources are increasingly being used in research and medical applications. Various instances of overexposure in these facilities have been reported in literature. These instances have lead to the investigation of the risks associated with them with a view to minimise the risks and thereby increasing the level of safety. In nuclear industry, Probabilistic Safety Assessment (PSA) methods are widely used to assess the risk from nuclear power plants. PSA presents a systematic methodology to evaluate the likelihood of various accident scenarios and their possible consequences using fault/event tree techniques. It is proposed to extend similar approach to analyse the risk associated with synchrotron radiation sources. First step for such an analysis is establishing the failure criteria, considering the regulatory stipulations on acceptable limits of dose due to ionization radiation from normal as well as beam loss scenarios. Some possible scenarios considered in this study are (1) excessive Bremsstrahlung in the ring due to loss of vacuum, (2) Target failure due to excessively focused beam (3) mis-directed/mis-steered beam (4) beam loss and sky shine. Hazard analysis needs to cover the beam transfer line, storage ring and experimental beam line areas. Various safety provisions are in place to minimize the hazards from these facilities such as access control interlock systems, radiation shielding for storage ring and beam lines and safety shutters (for beam lines). Experimental beam line area is the most vulnerable locations that need to be critically analysed. There are multiple beam lines, that have different safety provisions and consequences from postulated beam strikes will also be different and this increases the complexity of analysis. Similar studies conducted for such experimental facilities have identified that the radiation safety interlock system, used to control access to areas inside ring and the hutches of beamline facilities has an

  18. Radiation grafting of pH and thermosensitive N-isopropylacrylamide and acrylic acid onto PTFE films by two-steps process

    International Nuclear Information System (INIS)

    Bucio, E.; Burillo, G.

    2007-01-01

    Polytetrafluoroethylene (PTFE) was grafted (g) with acrylic acid (AAc) by γ-ray pre-irradiation method to get PTFE-g-AAc films, then N-isopropylacrylamide (NIPAAm) was grafted onto PTFE-g-AAc films with γ-ray to get (PTFE-g-AAc)-g-NIPAAm. PTFE films were irradiated in air at a dose rate of 3.0 kGy h -1 and different radiation dose. The irradiated films were placed in glass ampoules, which contained aqueous solutions with different monomer concentration (AAc), and then they were heated at different temperatures and reaction time. NIPAAm onto PTFE-g-AAc was carried out with the same procedure with monomer concentration of 1 mol L -1 . The thermosensitivity of the samples was defined and calculated as the ratio of the grafted samples swelling at 28 and 35 o C, and pH sensitivity defined as the ratio of the grafted samples swelling at pH 2 and 8

  19. Blood flow to palatal mucosal grafts in mandibular labial vestibuloplasty measured by /sup 133/Xe clearance technique

    Energy Technology Data Exchange (ETDEWEB)

    Basa, S; Ercan, M T; Aras, T; Araz, K

    1987-01-01

    In 11 subjects, the blood flow to alveolar and palatal mucosa was measured by intra-mucosal injection of /sup 133/Xe. Later, mandibular labial vestibuloplasty was performed with mucosal grafts in all of them. The use of a stent was omitted. The subjects were followed by clinical observation and by blood flow measurements up to 6 weeks postoperatively. At certain intervals (3 and 10 days, 4 and 6 weeks), /sup 133/Xe clearance in the graft was determined. Under normal conditions, the mean blood flows to the alveolar and to palatal mucosa were 53.2+-12.9 and 58.3+-3.5 ml/100 g/min, respectively. The difference between them was statistically insignificant (P>0.05). The graft blood flow was 13.4+-3.2 and 21.7+-15.0 ml/100 g/min on the 3rd and 10th days after operation. The decrease in both compared to normal values was statistically significant (P<0.001). The blood flow reached almost normal levels (46.2+-16.9 ml/100 g/min) and above (63.9+-9.7 ml/100 g/min; P<0.05) at 4 and 6 weeks after operation, respectively. These results were in agreement with the clinical observations. The palatal donor area healed in 3-5 weeks. The graft showed complete adaptation with the surrounding tissue and healing in 4-6 weeks. Our results also indicated that injections in the graft do not retard graft healing.

  20. Preparation of permselective membranes by means of radiation induced grafting. Part of a coordinated programme on radiation modified polymers for biomedical and biochemical applications

    International Nuclear Information System (INIS)

    Lee, C.K.

    1982-09-01

    Styrene grafting to cellulose acetate membrane was studied to prepare a cellulose acetate reverse osmosis membrane with improved dimensional stability. The combination of cross-linking agents such as divinylbenzene or trimethyl propane triacrylate was found to increase the percentage of grafting. For the grafting of styrene:4-vinylpyridine:benzoyl peroxide mixture to cellulose acetate, the activation energy was determined to be 21.8 Kcal/mole over the range of 55-80 deg. C. The initial rate of grafting in % per hour was proportional to 0.76 power of dose intensities

  1. Overview of novel techniques for radiation protection and dosimetry

    International Nuclear Information System (INIS)

    Agosteo, Stefano

    2010-01-01

    Generally, the main approaches for assessing the radiation protection (RP) quantities in neutron fields are: i) the use of an instrument with a response to the protection quantity quasi-independent of energy; ii) neutron spectrometry; iii) microdosimetry. The techniques based on the first approach include rem-meters, superheated emulsions and the electronic personal dosemeters. Passive rem-meters have recently been developed for assessing the ambient dose equivalent in pulsed neutron fields around particle accelerators for hadrontherapy and research. Most of these instruments are characterised by a response extended to high-energies (up to a few GeV). An example is given by the GSI-ball, which employs a pair of LiF TLDs as a thermal neutron detector. It is likely that passive instruments will play a fundamental role also for monitoring the neutron fields generated by ultra-high intensity lasers, where the duration of a single pulse is of the order of hundreds femtoseconds. Arrays of tissue-equivalent proportional counters (TEPCs) of a millimetric/sub-millimetric physical size have been developed both for assessing the quality of therapeutic radiation beams and for estimating the RP quantities in low-intensity fields, which may limit the use of conventional microdosemeters. Very satisfactory results were obtained with GEM-based TEPCs and gas microstrip detectors (GMDs). Moreover, mini-TEPCs have been constructed and tested for measuring the quality of hadrontherapy beams (BNCT included). Silicon microdosemeters have also been demonstrated to be very promising for characterizing proton and ion beams for radiation therapy and for estimating the occurrence of single event effects in space applications.

  2. Dental CT: examination technique, radiation load and anatomy

    International Nuclear Information System (INIS)

    Lenglinger, F.X.; Muhr, T.

    1999-01-01

    Traditionally oral surgeons and dentists have evaluated the jaws using intraoral films and panoramic radiographs. The involvement of radiologists has been limited. In the past few years dedicated CT-software-programs developed to evaluate dental implant patients have provided a new look at the jaws. The complex anatomy is described and identified on human skulls and on axial, panoramic, and cross-sectional images. With this anatomic description Dental-CT-scans are used to demonstrate the anatomy of maxilla and the mandible. An overview of the technique of Dental-CT is provided, furthermore the radiation dose of different organs is explained. Suggestions to reduce these doses by simple modifications of the recommended protocols are given. (orig.) [de

  3. Intensity Modulated Radiation Therapy. Development of the technique

    International Nuclear Information System (INIS)

    Rafailovici, L.; Alva, R.; Chiozza, J.; Donato, H.; Falomo, S.; Cardiello, C.; Furia, O.; Martinez, A.; Filomia, M.L.; Sansogne, R.; Arbiser, S.; Dosoretz, B.

    2008-01-01

    Full text: Introduction: Intensity Modulated Radiation Therapy (IMRT) is a result of advances in computer sciences that allowed the development of new technology related to planning and radiation therapy. IMRT was developed to homogenize the dose in the target volumes and decrease the dose in the surrounding healthy tissue. Using a software with high calculation capacity a simultaneous irradiation with different doses in a given volume is achieved. IMRT is based on internal planning. Material and methods: 628 patients were treated with IMRT in prostate lesions, head and neck, breast, thorax, abdomen and brain since August 2008. The software for IMRT is the XIO CMS and the accelerator used is a Varian Clinac 6 / 100. IMRT requires a first simulation, where immobilization systems are selected (mats, thermoplastic masks, among others) and the demarcation of the target structures, healthy tissue and dose prescription by a tattoo. Images of CT / MRI are merged when necessary. Once the system made the treatment optimization, this one is regulated by modulators. These are produced by numerical control machines from digital files produced by software. In a second modulation the planned irradiation is checked and tattoo is carried out according with this. We have a strict process of quality assurance to assess the viability of the plan before its implementation. We use the Map Check it possible to compare the dose on the central axis and the distribution in the whole plane regarding to that generated by the planning system. From 03/2008 the virtual simulation process was implemented integrating the described stages. Results and Conclusions: IMRT is a complex technique. The meticulous planning, implementation of process and quality control allows the use of this technique in a reliable and secure way. With IMRT we achieved a high level of dose conformation, less irradiation of healthy tissue, lower rates of complications and the dose escalation for some tumors. (authors) [es

  4. Satisfactory knee function after single-stage posterolateral corner reconstruction in the multi-ligament injured/dislocated knee using the anatomic single-graft technique.

    Science.gov (United States)

    Sanders, Thomas L; Johnson, Nick R; Pareek, Ayoosh; Krych, Aaron J; Marx, Robert G; Stuart, Michael J; Levy, Bruce A

    2018-04-01

    Increasing importance has been placed on the posterolateral corner (PLC) in maintaining varus and rotational stability of the knee. The goal of this study was to evaluate knee function and clinical stability following a single-graft PLC reconstruction technique and identify factors associated with poor knee function. This study identified patients with a multi-ligament knee injury between 2006 and 2013. Patients who received a single-graft fibular collateral ligament and PLC reconstruction with a single-stage surgery during the study period and had a minimum follow-up of 2 years after surgery were included. Functional outcomes were assessed using Lysholm and IKDC scores. Varus and rotational knee laxity and range of motion were assessed using physical examination. The final study cohort included 61 patients who underwent PLC reconstruction using a single-graft technique. The mean IKDC score was 74.1 (± 22.3) and the mean Lysholm score was 80.3 (± 21.8) at mean follow-up of 3.8 years (range 2-9 years). Mean range of motion at final follow-up measured from 0° to 126° [range flexion: 95-145, range extension: 0-5]. Fifty-eight patients (95%) had grade 0 varus laxity in full knee extension, and 54 patients (88.5%) had grade 0 varus laxity at 30° of knee flexion. Female gender was associated with a lower postoperative IKDC score (p = 0.04). Surgical treatment of the PLC using a single-graft technique can result in satisfactory knee function and stable physical examination findings at minimum 2 years after surgery. Female gender was predictive of poor knee function after PLC reconstruction. Surgical treatment of PLC injuries should be individualized based on the timing of surgery, specific injured knee structures, and physical examination findings. This study helps validate the use of a single-graft technique for PLC reconstruction and can be used to help counsel patients about expected knee function after surgical treatment of PLC injuries. Level of evidence

  5. Percutaneous intramedullary decompression, curettage, and grafting with medical-grade calcium sulfate pellets for unicameral bone cysts in children: a new minimally invasive technique.

    Science.gov (United States)

    Dormans, John P; Sankar, Wudbhav N; Moroz, Leslie; Erol, Bülent

    2005-01-01

    Several treatment options exist for unicameral bone cysts (UBCs), including observation, steroid injection, bone marrow injection, and curettage and bone grafting. These are all associated with high recurrence rates, persistence, and occasional complications. Newer techniques have been described, most with variable success and only short follow-up reported. Because of these factors, a new minimally invasive percutaneous technique was developed for the treatment of UBCs in children. Twenty-eight children with UBCs who underwent percutaneous intramedullary decompression, curettage, and grafting with medical-grade calcium sulfate (MGCS) pellets by the senior author (J.P.D.) between April 2000 and April 2003 were analyzed as part of a pediatric musculoskeletal tumor registry at a large tertiary children's hospital. Four patients were lost to follow-up, and the remaining 24 patients had an average follow-up of 21.9 months (range 4-48 months). Twelve patients were followed for at least 24 months. Six of the 24 children had received previous treatment of their UBC, most often at an outside institution. Follow-up was performed through clinical evaluation and radiographic review. Postoperative radiographs at most recent follow-up showed complete healing, defined as more than 95% opacification, in 22 of 24 patients (91.7%). One patient (4.2%) demonstrated partial healing, defined as 80% to 95% opacification. One patient had less than 80% radiographic healing (4.2%). All 24 patients returned to full activities and were asymptomatic at most recent follow-up. The only complication noted was a superficial suture abscess that occurred in one patient; this resolved with local treatment measures. The new minimally invasive technique of percutaneous intramedullary decompression, curettage, and grafting with MGCS pellets demonstrates favorable results with low complication and recurrence rates compared with conventional techniques. The role of intramedullary decompression as a part

  6. The initial instability of cemented and non-cemented femoral stems fixated with a bone grafting technique

    NARCIS (Netherlands)

    Schreurs, B.W.; Huiskes, H.W.J.; Slooff, T.J.J.H.

    1994-01-01

    To reconstruct intramedullary bone stock in revision surgery of failed total hip arthroplasties, a method was developed using impacted trabecular bone grafts. In an in vitro model with femora of the goat, the initial stabilities of both cemented and non-cemented hydroxylapatite-coated stems in this

  7. Radiation protection in newer medical imaging techniques: CT colonography

    International Nuclear Information System (INIS)

    2008-01-01

    Multislice/detector computed tomography (CT) scanning, applied to visualization of the colon in CT colonography (CTC), also known as virtual colonoscopy (VC), is a relatively new application of CT introduced in recent years. The possibility of its application in population screening techniques raises a number of questions. Effort is required to ensure that the benefit of this new practice will not pose an undue level of detriment to the individual in multiple examinations. For practitioners and regulators, it is evident that innovation has been driven by both the imaging industry and by an ever increasing array of new applications generated and validated in the clinical environment. Regulation, industrial standardization, safety procedures and advice on best practice lag (inevitably) behind the industrial and clinical innovations being achieved. This series of Safety Reports (Nos 58, 60 and 61) is designed to help fill this growing vacuum, by bringing up to date and timely advice to bear on the problems involved. Under its statutory responsibility to establish standards for the protection of people against exposure to ionizing radiation and to provide for worldwide application of these standards, the IAEA has developed the Fundamental Safety Principles and the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS). The BSS was issued by the IAEA and co-sponsored by the Food and Agriculture Organization of the United Nations (FAO), the International Labour Organisation (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO), and requires radiation protection of patients undergoing medical exposures through justification of the procedures involved and through optimization. The IAEA programme on radiation protection of patients encourages the reduction of patient doses without losing diagnostic benefits. To facilitate this

  8. Radiation protection in newer medical imaging techniques: PET/CT

    International Nuclear Information System (INIS)

    2008-01-01

    A major part of patient exposure now arises from practices that barely existed two decades ago, and the technological basis for their successful dissemination only began to flourish in the last decade or so. Hybrid imaging systems, such as the combination of computed tomography (CT) and positron emission tomography (PET), are an example of a technique that has only been introduced in the last decade. PET/CT has established a valuable place for itself in medical research and diagnosis. However, it is an application that can result in high patient and staff doses. For practitioners and regulators, it is evident that innovation has been driven both by the imaging industry and by an increasing array of new applications generated and validated in the clinical environment. Regulation, industrial standardization, safety procedures and advice on best practices lag (inevitably) behind the industrial and clinical innovations. This series of Safety Reports (Nos 58, 60 and 61) is designed to help fill the growing vacuum, by bringing up to date and timely advice from experienced practitioners to bear on the problems involved. The advice in this report has been developed within the IAEA's statutory responsibility to establish standards for the protection of people against exposure to ionizing radiation and to provide for the worldwide application of these standards. The Fundamental Safety Principles and the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) were issued by the IAEA and co-sponsored by organizations including the Food and Agriculture Organization of the United Nations (FAO), the International Labour Organisation (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO), and require the radiation protection of patients undergoing medical exposures through justification of the procedures involved and through

  9. Temperature-sensitive porous membrane production through radiation co-grafting of NIPAAm on/in PVDF porous membrane

    International Nuclear Information System (INIS)

    Liu Qi; Zhu Zhiyong; Yang Xiaomin; Chen Xiliang; Song Yufeng

    2007-01-01

    N-isopropylacrylamide (NIPAAm) monomer was grafted on and in poly(vinylidene fluoride) (PVDF) micro-pore membrane by γ-irradiation. The influence of irradiation and reaction conditions on the grafting yield was investigated in detail. The chemical structure of NIPAAm-grafted PVDF (NIPAAm-g-PVDF) membrane was characterized by Fourier transform infrared spectra and X-ray photoelectron spectra measurements. The morphology of the sample surface as well as the cross-section before and after grafting was characterized by scanning electron microscope. The temperature sensitive properties of the membrane were monitored by measuring the conductance as well as the water flux through the sample thickness. The results show that the membrane exhibits clearly temperature-sensitive permeability to water as expected, i.e. the permeability of water changes dramatically as the temperature goes over the lower critical solution temperature of NIPAAm

  10. Sorption of Different Dye Wastes By Poly(vinyl alcohol) /Poly (Carboxymethyl Cellulose) Blend Grafted Through A Radiation Method

    International Nuclear Information System (INIS)

    El-Salmawi Kariman, M.; Abu Zaid Magda, M.; Ibraheim Sayeda, M.; El-Naggar Abdel Wahab, M.; Zahran Abdel Hamid, H.

    1999-01-01

    The sorption of different dye wastes normaly released from industrial textile factories by a graft copolymer of poly(vinyl alcohol)/poly(carboxymethyl cellulose) blend with polystyrene has been investigated. The dye sorption was evaluated at different conditions. The amount of sorbed dye was determined by using a spectroscopic method. The blend graft copolymer showed a relatively high sorption for basic dye than other dyestuffs such as acid, reactive and direct. Moreover, it was found that the dye sorption did not depend on the weight of the blend graft copolymer or the volume of the waste solution. The treatment of the dye waste by using the prepared blend graft copolymer may be considered a practical one from the point of view of environmental methods

  11. Comparison with adsorption of Re (VII) by two different γ-radiation synthesized silica-grafting of vinylimidazole/4-vinylpyridine adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Pu [Beijing Key Laboratory for Solid Waste Utilization and Management, Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871,China (China); Han, Dong; Zhai, Maolin [Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Xu, Ling, E-mail: lingxu@pku.edu.cn [Beijing Key Laboratory for Solid Waste Utilization and Management, Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871,China (China); Li, Huibo, E-mail: hb0012@sina.com [China Institute of Atomic Energy, P.O. Box 275-26, Beijing 102413 (China)

    2017-02-15

    Highlights: • Two Re adsorbents were synthesized by grafting of vinylimidazole and vinylpyridine onto silanized silica gel via γ-radiation. • The Re adsorption capacities of SS-MPTS-VIMH and SS-MPTS-VPQ were 145.99 mg g{sup −1} and 71.08 mg g{sup −1}, respectively. • Both the adsorbents had fast adsorption kinetics, and could be used for column adsorption. • SS-MPTS-VPQ had good anti-interference abilities, and might be used for the disposal of Tc in the future. - Abstract: Two silica gel based adsorbents for Re (VII), i.e. SS-MPTS-VIMH and SS-MPTS-VPQ, were synthesised. Silica gel was used as the matrix for γ-radiation grafting, and the monomer of 1-vinyl imidazole (VIM) and 4-vinylpyridine (4-VP) was grafted onto the silica silanized by methacryloxy propyl trimethoxyl silane, respectively. A VIM concentration of 2 mol L{sup −1} and an absorbed dose of 30 kGy were the optimal grafting conditions for adsorbent SS-MPTS-VIM, and a 4-VP concentration of 4 mol L{sup −1} and an absorbed dose of 40 kGy were the optimal grafting conditions for adsorbent SS-MPTS-VP. At the certain condition, the grafting yield of SS-MPTS-VIM was 30.1% and that of SS-MPTS-VP was 21.0%. The adsorption capacity of adsorbent SS-MPTS-VIMH was 145.99 mg g{sup −1} and that of SS-MPTS-VPQ was 71.08 mg g{sup −1} according to the Langmuir model. The adsorbent SS-MPTS-VPQ had better adsorption properties of acid resistance and anti-interference than SS-MPTS-VIMH. Dynamic column experiments showed that protonated adsorbent SS-MTPS-VIMH could be recycled with good performance while quaternized adsorbent SS-MPTS-VPQ could not. The adsorbent SS-MPTS-VIMH belongs to weak anion exchange adsorbent and SS-MPTS-VPQ belongs to strong anion exchange adsorbent. This study paves a way to the synthesis and application of a novel silica base adsorbents for Re (VII).

  12. Propagação de Jabuticabeira por enxertia e alporquia Propagation of jabuticaba tree for grafting and air layering techniques

    Directory of Open Access Journals (Sweden)

    Simone Aparecida Zolet Sasso

    2010-06-01

    Full Text Available O objetivo deste trabalho foi investigar a eficiência das técnicas de enxertia e alporquia na produção de mudas de jabuticabeira. Testou-se a pega de enxertia de três espécies de jabuticabeira (Plinia cauliflora, P. trunciflora, P. jaboticaba sobre porta-enxertos de P. cauliflora, em duas épocas (maio e agosto. Avaliaram-se a brotação e o número e tamanho de brotos, após 90 dias da implantação do experimento. Para alporquia, foram testados dois diâmetros de ramos (1,0-1,5 cm e 2,0-2,5 cm e duas larguras do anelamento (1,5 cm e 3,0 cm, na espécie P. cauliflora. Avaliaram-se o enraizamento e o número e tamanho de raízes, após 180 dias da implantação do experimento. A enxertia e a alporquia são técnicas recomendáveis para a propagação da jabuticabeira, pois proporcionam alto percentual de formação de mudas, de até 72,9% e 87,5%, respectivamente. Houve pega de enxertia das três espécies enxertadas sobre P. cauliflora. A utilização de garfos retirados de plantas em frutificação deve ser evitada, pois ocorre inibição da brotação dos enxertos. Na alporquia, ramos de diâmetro de 2,0-2,5 cm proporcionam maior enraizamento e maior número e tamanho de raízes, em relação a ramos de menor diâmetro (1,0 a 1,5 cm.The objective of this work was to test the efficiency of grafting and air layering propagation techniques for jabuticaba tree. Was tested compatibility of grafting of three species of jabuticaba tree (Plinia cauliflora, P. trunciflora and P. jaboticaba on rootstocks of P. cauliflora, and two periods (May and August. The percentage of grafting, number and size of shoots, was evaluated 90 days after the experiment started. Air layering was made in P. cauliflora using two diameters of branches (1.0-1.5 cm and 2.0-2.5 cm and two widths of girdling (1.5 cm and 3.0 cm. It was evaluated the rooting percentage, number and length of roots, 180 days after the experiment started. Both grafting and the air layering are

  13. Post irradiation effects on the graft of poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) (PFA) films

    International Nuclear Information System (INIS)

    Geraldes, Adriana N.; Zen, Heloisa A.; Ribeiro, Geise; Ferreira, Henrique P.; Souza, Camila P.; Parra, Duclerc F.; Lugao, Ademar B.

    2009-01-01

    Radiation induced grafting of monomers into fluorinated polymers was designed as an alternative route to polymer modification. In this work, grafting of styrene onto poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) (PFA) was studied. Radiation-induced grafting of styrene onto PFA films was investigated after simultaneous irradiation (in post-irradiation condition) using a 60 Co source. The films of PFA were irradiated at 20, 40, 80 and 100 kGy doses at room temperature and chemical changes were monitored after contact with styrene for grafting. The post-irradiation time was established between 7 and 28 days when films of PFA were maintained in styrene/toluene 1:1 v/v solution at room temperature. After these periods the grafting degrees were evaluated in the samples. The highest degree of grafting was achieved after 14 days. Chemical modifications were evaluated by infrared spectroscopic analysis (FTIR), thermogravimetry (TG), differential scanning calorimetry (DSC) and also by scanning electron microscopy (SEM). The degree of grafting (DOG) was determined gravimetrically. The results showed that irradiated PFA films at 100 kGy exhibited higher grafting degree. Surface analysis by SEM technique of irradiated, grafted and original films have presented an homogeneous surface. (author)

  14. Radiation treatment planning techniques for lymphoma of the stomach

    International Nuclear Information System (INIS)

    Della Biancia, Cesar; Hunt, Margie; Furhang, Eli; Wu, Elisa; Yahalom, Joachim

    2005-01-01

    Purpose: Involved-field radiation therapy of the stomach is often used in the curative treatment of gastric lymphoma. Yet, the optimal technique to irradiate the stomach with minimal morbidity has not been well established. This study was designed to evaluate treatment planning alternatives for stomach irradiation, including intensity-modulated radiation therapy (IMRT), to determine which approach resulted in improved dose distribution and to identify patient-specific anatomic factors that might influence a treatment planning choice. Methods and Materials: Fifteen patients with lymphoma of the stomach (14 mucosa-associated lymphoid tissue lymphomas and 1 diffuse large B-cell lymphoma) were categorized into 3 types, depending on the geometric relationship between the planning target volume (PTV) and kidneys. AP/PA and 3D conformal radiation therapy (3DCRT) plans were generated for each patient. IMRT was planned for 4 patients with challenging geometric relationship between the PTV and the kidneys to determine whether it was advantageous to use IMRT. Results: For type I patients (no overlap between PTV and kidneys), there was essentially no benefit from using 3DCRT over AP/PA. However, for patients with PTVs in close proximity to the kidneys (type II) or with high degree of overlap (type III), the 4-field 3DCRT plans were superior, reducing the kidney V 15Gy by approximately 90% for type II and 50% for type III patients. For type III, the use of a 3DCRT plan rather than an AP/PA plan decreased the V 15Gy by approximately 65% for the right kidney and 45% for the left kidney. In the selected cases, IMRT led to a further decrease in left kidney dose as well as in mean liver dose. Conclusions: The geometric relationship between the target and kidneys has a significant impact on the selection of the optimum beam arrangement. Using 4-field 3DCRT markedly decreases the kidney dose. The addition of IMRT led to further incremental improvements in the left kidney and liver

  15. Vascular graft infections with Mycoplasma

    DEFF Research Database (Denmark)

    Levi-Mazloum, Niels Donald; Skov Jensen, J; Prag, J

    1995-01-01

    laboratory techniques, the percentage of culture-negative yet grossly infected vascular grafts seems to be increasing and is not adequately explained by the prior use of antibiotics. We have recently reported the first case of aortic graft infection with Mycoplasma. We therefore suggest the hypothesis...... that the large number of culture-negative yet grossly infected vascular grafts may be due to Mycoplasma infection not detected with conventional laboratory technique....

  16. Comparison of a new hydro-surgical technique to traditional methods for the preparation of full-thickness skin grafts from canine cadaveric skin and report of a single clinical case.

    Science.gov (United States)

    Townsend, F I; Ralphs, S C; Coronado, G; Sweet, D C; Ward, J; Bloch, C P

    2012-01-01

    To compare the hydro-surgical technique to traditional techniques for removal of subcutaneous tissue in the preparation of full-thickness skin grafts. Ex vivo experimental study and a single clinical case report. Four canine cadavers and a single clinical case. Four sections of skin were harvested from the lateral flank of recently euthanatized dogs. Traditional preparation methods used included both a blade or scissors technique, each of which were compared to the hydro-surgical technique individually. Preparation methods were compared based on length of time for removal of the subcutaneous tissue from the graft, histologic grading, and measurable thickness as compared to an untreated sample. The hydro-surgical technique had the shortest skin graft preparation time as compared to traditional techniques (p = 0.002). There was no significant difference in the histological grading or measurable subcutaneous thickness between skin specimens. The hydro-surgical technique provides a rapid, effective debridement of subcutaneous tissue in the preparation of full-thickness skin grafts. There were not any significant changes in histological grade and subcutaneous tissue remaining among all treatment types. Additionally the hydro-surgical technique was successfully used to prepare a full-thickness meshed free skin graft in the reconstruction of a traumatic medial tarsal wound in a dog.

  17. Improving the cell affinity of a poly(D,L-lactide) film modified by grafting collagen via a plasma technique

    International Nuclear Information System (INIS)

    Zhao Jianhao; Wang Jue; Tu Mei; Luo Binghong; Zhou Changren

    2006-01-01

    Poly(D,L-lactide) films were surface-modified by grafting collagen via NH 3 plasma to improve cell affinity. The modified films were characterized by IR analysis, contact angle measurement, SEM analysis and collagen quantity determination. It was demonstrated that -NH 2 and collagen were incorporated into the surface of PDLLA films. The hydrophilicity of the PDLLA film increased after NH 3 plasma treatment, but decreased with further collagen modification. More collagen was incorporated into the PDLLA films by a grating method as compared to that with an anchorage treatment. L929 fibroblast cells were used to evaluate the cell affinity of the modified films and control. It was shown that PDLLA films surface-modified by grafting collagen via NH 3 plasma more efficiently enhanced the cells attachment and proliferation than those films modified by collagen anchorage or only NH 3 plasma treatment

  18. Development of food preservation and processing techniques by radiation

    International Nuclear Information System (INIS)

    Byun, Myung Woo; Yook, Hong Sun; Lee, Ju Woon and others

    1999-03-01

    Development of food preservation and processing techniques by radiation was performed. Gamma irradiation at 2-10 kGy is considered to be an effective method to control pathogenic bacteria in species including Escherichia coli O157:H7. Gamma irradiation at 5 kGy completely eliminated pathogenic bacteria in beef. Gamma irradiation at such doses and subsequent storage at less than 4 deg C could ensure hygienic quality and prolong the microbiological shelf-life resulting from the reduction of spoilage microorganisms. Gamma irradiation on pre-rigor beef shortens the aging-period, improves tenderness and enhances the beef quality. And, a new beef processing method using gamma irradiation, such as in the low salt sausage and hygienic beef patty was developed. Safety tests of gamma-irradiated meats(beefs: 0-5 kGy; porks: 0-30 kGy) in areas such as genotoxicity, acute toxicity, four-week oral toxicity, rat hepato carcinogenesis and the anti oxidative defense system, were not affected by gamma irradiation. To pre-establish an alternative technique to the toxic fumigant, methyl bromide, which is the current quarantine measure of agricultural products for export and import, some selected agricultural products, such as chestnuts, acorns, red beans and mung beans, were subjected to a preliminary study to confirm the comparative effects of gamma irradiation and MBr fumigant on their disinfestation and quality, thereby preparing the basic data for the practical approach.Current fumigation(MBr) was perfect in its disinfecting capability, but it caused detrimental effects on the physical quality of agricultural produce. However, irradiation doses suitable for controlling pests did not induce any significant changes in the quality of the products. (author)

  19. Tomotherapeutic stereotactic body radiation therapy: Techniques and comparison between modalities

    International Nuclear Information System (INIS)

    Fuss, Martin; Chengyu Shi; Papanikolaou, Niko

    2006-01-01

    Presentation and comparison of tomotherapeutic intensity-modulated techniques for planning and delivery of stereotactic body radiation therapy. Serial tomotherapeutic SBRT has been planned and delivered at our institution since 8/2001. Since 12/2005, 12 patients have been treated using a helical tomotherapy unit. For these 12 patients both helical and serial tomotherapy plans were computed and clinically approved. Techniques and considerations of tomotherapy SBRT planning, associated image-guidance, and delivery are presented. The respective treatment plans were compared based on dosimetric parameters as well as time to develop a treatment plan and delivery times. Also the associated quality of megavoltage CT (MVCT) image-guidance inherent to the helical tomotherapy unit was assessed. Tumor volumes averaged 9.3, 9.8, and 58.7 cm 3 for liver, lung, and spinal targets. Helical and ser