WorldWideScience

Sample records for radiation force pulse

  1. Continuous micro-feeding of fine cohesive powders actuated by pulse inertia force and acoustic radiation force in ultrasonic standing wave field.

    Science.gov (United States)

    Wang, Hongcheng; Wu, Liqun; Zhang, Ting; Chen, Rangrang; Zhang, Linan

    2018-07-10

    Stable continuous micro-feeding of fine cohesive powders has recently gained importance in many fields. However, it remains a great challenge in practice because of the powder aggregate caused by interparticle cohesive forces in small capillaries. This paper describes a novel method of feeding fine cohesive powder actuated by a pulse inertia force and acoustic radiation force simultaneously in an ultrasonic standing wave field using a tapered glass nozzle. Nozzles with different outlet diameters are fabricated using glass via a heating process. A pulse inertia force is excited to drive powder movement to the outlet section of the nozzle in a consolidated columnar rod mode. An acoustic radiation force is generated to suspend the particles and make the rod break into large quantities of small agglomerates which impact each other randomly. So the aggregation phenomenon in the fluidization of cohesive powders can be eliminated. The suspended powder is discharged continuously from the nozzle orifice owing to the self-gravities and collisions between the inner particles. The micro-feeding rates can be controlled accurately and the minimum values for RespitoseSV003 and Granulac230 are 0.4 mg/s and 0.5 mg/s respectively. The relative standard deviations of all data points are below 0.12, which is considerably smaller than those of existing vibration feeders with small capillaries. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Impact of nonlinear distortion on acoustic radiation force elastography.

    Science.gov (United States)

    Draudt, Andrew B; Cleveland, Robin O

    2011-11-01

    High-intensity focused ultrasound (HIFU) produces an acoustic radiation force that induces tissue displacement, which can be measured by monitoring time shifts in the backscattered signals from interrogation pulses. If the pulse occurs simultaneously with the HIFU, the arrival time of the backscatter will be biased because nonlinearity associated with the HIFU changes the local sound speed. Measurements of the pressure field using 1.1 MHz HIFU and a 7.5 MHz pulse in water exhibited a nonlinearly induced apparent displacement (NIAD) that varied with the HIFU pressure, propagation distance and the timing of the pulse relative to the HIFU. Nonlinear simulations employing the KZK equation predicted NIADs that agreed with measurements. Experiments with chicken breast demonstrated a NIAD with magnitude similar to that expected from the radiation force. Finally it was shown that if two pulses were fired with different phases relative to the HIFU, then upon averaging, the NIAD could be mitigated. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. The Use of Acoustic Radiation Force Decorrelation-Weighted Pulse Inversion for Enhanced Ultrasound Contrast Imaging.

    Science.gov (United States)

    Herbst, Elizabeth B; Unnikrishnan, Sunil; Wang, Shiying; Klibanov, Alexander L; Hossack, John A; Mauldin, Frank William

    2017-02-01

    The use of ultrasound imaging for cancer diagnosis and screening can be enhanced with the use of molecularly targeted microbubbles. Nonlinear imaging strategies such as pulse inversion (PI) and "contrast pulse sequences" (CPS) can be used to differentiate microbubble signal, but often fail to suppress highly echogenic tissue interfaces. This failure results in false-positive detection and potential misdiagnosis. In this study, a novel acoustic radiation force (ARF)-based approach was developed for superior microbubble signal detection. The feasibility of this technique, termed ARF decorrelation-weighted PI (ADW-PI), was demonstrated in vivo using a subcutaneous mouse tumor model. Tumors were implanted in the hindlimb of C57BL/6 mice by subcutaneous injection of MC38 cells. Lipid-shelled microbubbles were conjugated to anti-VEGFR2 antibody and administered via bolus injection. An image sequence using ARF pulses to generate microbubble motion was combined with PI imaging on a Verasonics Vantage programmable scanner. ADW-PI images were generated by combining PI images with interframe signal decorrelation data. For comparison, CPS images of the same mouse tumor were acquired using a Siemens Sequoia clinical scanner. Microbubble-bound regions in the tumor interior exhibited significantly higher signal decorrelation than static tissue (n = 9, P < 0.001). The application of ARF significantly increased microbubble signal decorrelation (n = 9, P < 0.01). Using these decorrelation measurements, ADW-PI imaging demonstrated significantly improved microbubble contrast-to-tissue ratio when compared with corresponding CPS or PI images (n = 9, P < 0.001). Contrast-to-tissue ratio improved with ADW-PI by approximately 3 dB compared with PI images and 2 dB compared with CPS images. Acoustic radiation force can be used to generate adherent microbubble signal decorrelation without microbubble bursting. When combined with PI, measurements of the resulting microbubble signal

  4. The use of Acoustic Radiation Force decorrelation-weighted pulse inversion (ADW-PI) for enhanced ultrasound contrast imaging

    Science.gov (United States)

    Herbst, Elizabeth; Unnikrishnan, Sunil; Wang, Shiying; Klibanov, Alexander L.; Hossack, John A.; Mauldin, F. William

    2016-01-01

    Objectives The use of ultrasound imaging for cancer diagnosis and screening can be enhanced with the use of molecularly targeted microbubbles. Nonlinear imaging strategies such as pulse inversion (PI) and “contrast pulse sequences” (CPS) can be used to differentiate microbubble signal, but often fail to suppress highly echogenic tissue interfaces. This failure results in false positive detection and potential misdiagnosis. In this study, a novel Acoustic Radiation Force (ARF) based approach was developed for superior microbubble signal detection. The feasibility of this technique, termed ARF-decorrelation-weighted PI (ADW-PI), was demonstrated in vivo using a subcutaneous mouse tumor model. Materials and Methods Tumors were implanted in the hindlimb of C57BL/6 mice by subcutaneous injection of MC38 cells. Lipid-shelled microbubbles were conjugated to anti-VEGFR2 antibody and administered via bolus injection. An image sequence using ARF pulses to generate microbubble motion was combined with PI imaging on a Verasonics Vantage programmable scanner. ADW-PI images were generated by combining PI images with inter-frame signal decorrelation data. For comparison, CPS images of the same mouse tumor were acquired using a Siemens Sequoia clinical scanner. Results Microbubble-bound regions in the tumor interior exhibited significantly higher signal decorrelation than static tissue (n = 9, p < 0.001). The application of ARF significantly increased microbubble signal decorrelation (n = 9, p < 0.01). Using these decorrelation measurements, ADW-PI imaging demonstrated significantly improved microbubble contrast-to-tissue ratio (CTR) when compared to corresponding CPS or PI images (n = 9, p < 0.001). CTR improved with ADW-PI by approximately 3 dB compared to PI images and 2 dB compared to CPS images. Conclusions Acoustic radiation force can be used to generate adherent microbubble signal decorrelation without microbubble bursting. When combined with pulse inversion

  5. Sources of pulsed radiation

    International Nuclear Information System (INIS)

    Sauer, M.C. Jr.

    1981-01-01

    Characteristics of various sources of pulsed radiation are examined from the viewpoint of their importance to the radiation chemist, and some examples of uses of such sources are mentioned. A summary is given of the application of methods of physical dosimetry to pulsed sources, and the calibration of convenient chemical dosimeters by physical dosimetry is outlined. 7 figures, 1 table

  6. Pulse generator circuit triggerable by nuclear radiation

    International Nuclear Information System (INIS)

    Fredrickson, P.B.

    1980-01-01

    A pulse generator circuit triggerable by a pulse of nuclear radiation is described. The pulse generator circuit includes a pair of transistors arranged, together with other electrical components, in the topology of a standard monostable multivibrator circuit. The circuit differs most significantly from a standard monostable multivibrator circuit in that the circuit is adapted to be triggered by a pulse of nuclear radiation rather than electrically and the transistors have substantially different sensitivities to radiation, due to different physical and electrical characteristics and parameters. One of the transistors is employed principally as a radiation detector and is in a normally non-conducting state and the other transistor is normally in a conducting state. When the circuit is exposed to a pulse of nuclear radiation, currents are induced in the collector-base junctions of both transistors but, due to the different radiation sensitivities of the transistors, the current induced in the collector-base junction of the radiation-detecting transistor is substantially greater than that induced in the collector-base junction of the other transistor. The pulse of radiation causes the radiation-detecting transistor to operate in its conducting state, causing the other transistor to operate in its non-conducting state. As the radiation-detecting transistor operates in its conducting state, an output signal is produced at an output terminal connected to the radiation-detecting transistor indicating the presence of a predetermined intensity of nuclear radiation

  7. Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse

    Directory of Open Access Journals (Sweden)

    T. C. Bond

    2011-02-01

    Full Text Available Climatic effects of short-lived climate forcers (SLCFs differ from those of long-lived greenhouse gases, because they occur rapidly after emission and because they depend upon the region of emission. The distinctive temporal and spatial nature of these impacts is not captured by measures that rely on global averages or long time integrations. Here, we propose a simple measure, the Specific Forcing Pulse (SFP, to quantify climate warming or cooling by these pollutants, where we define "immediate" as occurring primarily within the first year after emission. SFP is the amount of energy added to or removed from a receptor region in the Earth-atmosphere system by a chemical species, per mass of emission in a source region. We limit the application of SFP to species that remain in the atmosphere for less than one year. Metrics used in policy discussions, such as total forcing or global warming potential, are easily derived from SFP. However, SFP conveys purely physical information without incurring the policy implications of choosing a time horizon for the global warming potential.

    Using one model (Community Atmosphere Model, or CAM, we calculate values of SFP for black carbon (BC and organic matter (OM emitted from 23 source-region combinations. Global SFP for both atmosphere and cryosphere impacts is divided among receptor latitudes. SFP is usually greater for open-burning emissions than for energy-related (fossil-fuel and biofuel emissions because of the timing of emission. Global SFP for BC varies by about 45% for energy-related emissions from different regions. This variation would be larger except for compensating effects. When emitted aerosol has larger cryosphere forcing, it often has lower atmosphere forcing because of less deep convection and a shorter atmospheric lifetime.

    A single model result is insufficient to capture uncertainty. We develop a best estimate and uncertainties for SFP by combining forcing results from

  8. Pulse X-radiation in flaw detection

    International Nuclear Information System (INIS)

    Vavilov, S.P.; Gorbunov, V.I.

    1985-01-01

    Principles of physical and engineering application of pulse X-radiation (PXR) of micro- and nanosecond duration for nondestructive testing of processes, materials and devices are given. Methods and devices, aimed at generating X-ray pulses, as well as their radiation and flow detection characteristics, and testing methods by means of PXR are considered

  9. Atomic collision experiments using pulsed synchrotron radiation

    International Nuclear Information System (INIS)

    Arikawa, Tatsuo; Watanabe, Tsutomu.

    1982-01-01

    High intensity and continuous nature of the synchrotron radiation are the properties that are fundamentally important for studies of some atomic collision experiments, and many processes have been investigated by using these characteristics. However, so far the property that the radiation is highly polarized and pulsed in time has not been exploited significantly in atomic physics. As an example of the atomic processes relevant to such polarized and pulsed features of the synchrotron radiation, collisions involving optically-allowed excited atoms and molecules will be presented. (author)

  10. Pulsed radiation decay logging

    International Nuclear Information System (INIS)

    Mills, W.R. Jr.

    1983-01-01

    There are provided new and improved well logging processes and systems wherein the detection of secondary radiation is accomplished during a plurality of time windows in a manner to accurately characterize the decay rate of the secondary radiation. The system comprises a well logging tool having a primary pulsed radiation source which emits repetitive time-spaced bursts of primary radiation and detector means for detecting secondary radiation resulting from the primary radiation and producing output signals in response to the detected radiation. A plurality of measuring channels are provided, each of which produces a count rate function representative of signals received from the detector means during successive time windows occurring between the primary radiation bursts. The logging system further comprises means responsive to the measuring channels for producing a plurality of functions representative of the ratios of the radiation count rates measured during adjacent pairs of the time windows. Comparator means function to compare the ratio functions and select at least one of the ratio functions to generate a signal representative of the decay rate of the secondary radiation

  11. Superluminescence of cadmium sulfide crystals under pulse X-ray radiation

    International Nuclear Information System (INIS)

    Pavlovskaya, N.G.; Tarasov, M.D.; Balakin, V.A.; Varava, V.P.; Lobov, S.I.; Surskij, O.K.; Tsukerman, V.A.

    1977-01-01

    Studies were made to elucidate luminescence properties of CdS crystal radiated by short pulses of braking x-ray radiation. Such a radiation causes the appearance of superluminescence. The radiation was carried out at 295 and 170 K, the radiation dose being changed from 3600 to 1600 r/pulse. At the temperature of 295 K light luminescence was registered at the wave length of 528 nm and half-width of 15 nm. While the temperature lowers, the radiation shifts to the range of shorter wave lengths, and a decrease of the spectrum half-width is observed. With the increase of radiation dose the decrease of radiation spectrum half-width is observed. Approximate calculations show that to achieve the spectrum narrowing to 1 nm at room temperature it is necessary to increase radiation dose per pulse 5-6 times

  12. Electrical pulse burnout of transistors in intense ionizing radiation

    International Nuclear Information System (INIS)

    Hartman, E.F.; Evans, D.C.

    1975-01-01

    Tests examining possible synergistic effects of electrical pulses and ionizing radiation on transistors were performed and energy/power thresholds for transistor burnout determined. The effect of ionizing radiation on burnout thresholds was found to be minimal, indicating that electrical pulse testing in the absence of radiation produces burnout-threshold results which are applicable to IEMP studies. The conditions of ionized transistor junctions and radiation induced current surges at semiconductor device terminals are inherent in IEMP studies of electrical circuits

  13. Macrophage and tumor cell responses to repetitive pulsed X-ray radiation

    Science.gov (United States)

    Buldakov, M. A.; Tretyakova, M. S.; Ryabov, V. B.; Klimov, I. A.; Kutenkov, O. P.; Kzhyshkowska, J.; Bol'shakov, M. A.; Rostov, V. V.; Cherdyntseva, N. V.

    2017-05-01

    To study a response of tumor cells and macrophages to the repetitive pulsed low-dose X-ray radiation. Methods. Tumor growth and lung metastasis of mice with an injected Lewis lung carcinoma were analysed, using C57Bl6. Monocytes were isolated from a human blood, using CD14+ magnetic beads. IL6, IL1-betta, and TNF-alpha were determined by ELISA. For macrophage phenotyping, a confocal microscopy was applied. “Sinus-150” was used for the generation of pulsed X-ray radiation (the absorbed dose was below 0.1 Gy, the pulse repetition frequency was 10 pulse/sec). The irradiation of mice by 0.1 Gy pulsed X-rays significantly inhibited the growth of primary tumor and reduced the number of metastatic colonies in the lung. Furthermore, the changes in macrophage phenotype and cytokine secretion were observed after repetitive pulsed X-ray radiation. Conclusion. Macrophages and tumor cells had a different response to a low-dose pulsed X-ray radiation. An activation of the immune system through changes of a macrophage phenotype can result in a significant antitumor effect of the low-dose repetitive pulsed X-ray radiation.

  14. Electromagnetic field, excited by monodirected X-radiation pulse

    International Nuclear Information System (INIS)

    Zhemerov, A.V.; Metelkin, E.V.

    1994-01-01

    Parameters of electromagnetic field, generated in the atmosphere by monodirected pulse source of X radiation located at the altitude of approximately several kilometers have been estimated by the method of delayed potentials. The source radiation is directed towards the Earth surface. The conclusion was made that restricted areas of approximately 1 km with considerable pulse electromagnetic fields can be created on the Earth surface

  15. Femto-second pulses of synchrotron radiation

    International Nuclear Information System (INIS)

    Zholents, A.A.; Zolotorev, M.S.

    1995-07-01

    A method capable of producing femto-second pulses of synchrotron radiation is proposed. It is based on the interaction of femto-second light pulses with electrons in a storage ring. The application of the method to the generation of ultra-short x-ray pulses at the Advance Light Source of Lawrence Berkeley National Laboratory has been considered. The same method can also be used for extraction of electrons from a storage ring in ultra-short series of microbunches spaced by the periodicity of light wavelength

  16. A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force

    International Nuclear Information System (INIS)

    Yoon, Sangpil; Emelianov, Stanislav; Aglyamov, Salavat; Karpiouk, Andrei

    2012-01-01

    A high pulse repetition frequency ultrasound system for an ex vivo measurement of mechanical properties of an animal crystalline lens was developed and validated. We measured the bulk displacement of laser-induced microbubbles created at different positions within the lens using nanosecond laser pulses. An impulsive acoustic radiation force was applied to the microbubble, and spatio-temporal measurements of the microbubble displacement were assessed using a custom-made high pulse repetition frequency ultrasound system consisting of two 25 MHz focused ultrasound transducers. One of these transducers was used to emit a train of ultrasound pulses and another transducer was used to receive the ultrasound echoes reflected from the microbubble. The developed system was operating at 1 MHz pulse repetition frequency. Based on the measured motion of the microbubble, Young’s moduli of surrounding tissue were reconstructed and the values were compared with those measured using the indentation test. Measured values of Young’s moduli of four bovine lenses ranged from 2.6 ± 0.1 to 26 ± 1.4 kPa, and there was good agreement between the two methods. Therefore, our studies, utilizing the high pulse repetition frequency ultrasound system, suggest that the developed approach can be used to assess the mechanical properties of ex vivo crystalline lenses. Furthermore, the potential of the presented approach for in vivo measurements is discussed. (paper)

  17. Acoustic radiation force control: Pulsating spherical carriers.

    Science.gov (United States)

    Rajabi, Majid; Mojahed, Alireza

    2018-02-01

    The interaction between harmonic plane progressive acoustic beams and a pulsating spherical radiator is studied. The acoustic radiation force function exerted on the spherical body is derived as a function of the incident wave pressure and the monopole vibration characteristics (i.e., amplitude and phase) of the body. Two distinct strategies are presented in order to alter the radiation force effects (i.e., pushing and pulling states) by changing its magnitude and direction. In the first strategy, an incident wave field with known amplitude and phase is considered. It is analytically shown that the zero- radiation force state (i.e., radiation force function cancellation) is achievable for specific pulsation characteristics belong to a frequency-dependent straight line equation in the plane of real-imaginary components (i.e., Nyquist Plane) of prescribed surface displacement. It is illustrated that these characteristic lines divide the mentioned displacement plane into two regions of positive (i.e., pushing) and negative (i.e., pulling) radiation forces. In the second strategy, the zero, negative and positive states of radiation force are obtained through adjusting the incident wave field characteristics (i.e., amplitude and phase) which insonifies the radiator with prescribed pulsation characteristics. It is proved that zero radiation force state occurs for incident wave pressure characteristics belong to specific frequency-dependent circles in Nyquist plane of incident wave pressure. These characteristic circles divide the Nyquist plane into two distinct regions corresponding to positive (out of circles) and negative (in the circles) values of radiation force function. It is analytically shown that the maximum amplitude of negative radiation force is exactly equal to the amplitude of the (positive) radiation force exerted upon the sphere in the passive state, by the same incident field. The developed concepts are much more deepened by considering the required

  18. Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces

    International Nuclear Information System (INIS)

    David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth

    2015-01-01

    We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape

  19. Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces

    Energy Technology Data Exchange (ETDEWEB)

    David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth, E-mail: rsignorell@ethz.ch [Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich (Switzerland)

    2015-04-21

    We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.

  20. Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces.

    Science.gov (United States)

    David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth

    2015-04-21

    We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.

  1. Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces

    Science.gov (United States)

    David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth

    2015-04-01

    We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.

  2. Radiation and propagation of short acoustical pulses from underground explosions

    International Nuclear Information System (INIS)

    Banister, J.R.

    1982-06-01

    Radiation and propagation of short acoustical pulses from underground nuclear explosions were analyzed. The cone of more intense radiation is defined by the ratio of sound speeds in the ground and air. The pressure history of the radiated pulse is a function of the vertical ground-motion history, the range, the burial depth, and the velocity of longitudinal seismic waves. The analysis of short-pulse propagation employed an N-wave model with and without enegy conservation. Short pulses with initial wave lengths less than 100 m are severely attenuated by the energy loss in shocks and viscous losses in the wave interior. The methods developed in this study should be useful for system analysis

  3. Tropospheric radiative forcing of CH4

    International Nuclear Information System (INIS)

    Grossman, A.S.; Grant, K.E.

    1994-04-01

    We have evaluated the tropospheric radiative forcing of CH 4 in the 0-3000 cm -1 wavenumber range and compared this with prior published calculations. The atmospheric test cases involved perturbed methane scenarios in both a McClatchey mid latitude, summer, clear sky approximation, model atmosphere, as well as a globally and seasonally averaged model atmosphere containing a representative cloud distribution. The scenarios involved pure CH 4 radiative forcing and CH 4 plus a mixture of H 2 O, CO 2 , O 3 , and N 2 O. The IR radiative forcing was calculated using a correlated k-distribution transmission model. The major purposes of this paper are to first, use the correlated k-distribution model to calculate the tropospheric radiative forcing for CH 4 , as the only radiatively active gas, and in a mixture with H 2 O, CO 2 , O 3 , and N 2 O, for a McClatchey mid-latitude summer, clear-sky model atmosphere, and to compare the results to those obtained in the studies mentioned above. Second, we will calculate the tropospheric methane forcing in a globally and annually averaged atmosphere with and without a representative cloud distribution in order to validate the conjecture given in IPCC (1990) that the inclusion of clouds in the forcing calculations results in forcing values which are approximately 20 percent less than those obtained using clear sky approximations

  4. Radiative forcing for changes in tropospheric O3

    International Nuclear Information System (INIS)

    Grossman, A.S.; Wuebbles, D.J.; Grant, K.E.

    1994-06-01

    We have evaluated the radiative forcing for assumed changes in tropospheric O 3 in the 500-1650 cm -1 wavenumber range. The radiative forcing calculations were performed as a function of latitude as well as for a globally and seasonally averaged model atmosphere, both in a clear sky approximation and in a model containing a representative cloud distribution. The scenarios involved radiative forcing calculations for O 3 at normal atmospheric abundance and at a tropospheric abundance depleted by 25 ppbv, at each altitude, for all northern hemisphere latitudes. Normal abundances of H 2 O, CO 2 , CH 4 , and N 2 O were included in the calculations. The IR radiative forcing was calculated using a correlated k-distribution radiative transfer model. The tropospheric radiative forcing values are compared to the IPCC formulae for ozone tropospheric forcing as well as other published values to determine the validity of the correlated k-distribution approach to the radiative forcing calculations. The results for the global average atmosphere show agreement with previous results to the order of 10 percent. We conclude that the O 3 forcing is linear in the background abundance and that the radiative forcing for ozone for the globally averaged atmosphere and the latitude averaged radiative forcing in the clear sky approximation are in agreement to within 10 percent. For the case of an atmosphere in which the tropospheric ozone has been depleted by 25 ppbv at all altitudes in the northern hemisphere, the mid latitude zone contributes ∼50 percent of the forcing, tropic zone contributes ∼37 percent of the forcing and the polar zone contributes ∼13 percent of the total forcing

  5. Pulsed laser manipulation of an optically trapped bead: Averaging thermal noise and measuring the pulsed force amplitude

    DEFF Research Database (Denmark)

    Lindballe, Thue Bjerring; Kristensen, Martin V. G.; Keiding, Søren Rud

    2013-01-01

    An experimental strategy for post-eliminating thermal noise on position measurements of optically trapped particles is presented. Using a nanosecond pulsed laser, synchronized to the detection system, to exert a periodic driving force on an optically trapped 10 polystyrene bead, the laser pulse-bead...... interaction is repeated hundreds of times. Traces with the bead position following the prompt displacement from equilibrium, induced by each laser pulse, are averaged and reveal the underlying deterministic motion of the bead, which is not visible in a single trace due to thermal noise. The motion of the bead...... is analyzed from the direct time-dependent position measurements and from the power spectrum. The results show that the bead is on average displaced 208 nm from the trap center and exposed to a force amplitude of 71 nanoNewton, more than five orders of magnitude larger than the trapping forces. Our...

  6. Comparative investigation of three dose rate meters for their viability in pulsed radiation fields

    International Nuclear Information System (INIS)

    Gotz, M; Karsch, L; Pawelke, J

    2015-01-01

    Pulsed radiation fields, characterized by microsecond pulse duration and correspondingly high pulse dose rates, are increasingly used in therapeutic, diagnostic and research applications. Yet, dose rate meters which are used to monitor radiation protection areas or to inspect radiation shielding are mostly designed, characterized and tested for continuous fields and show severe deficiencies in highly pulsed fields. Despite general awareness of the problem, knowledge of the specific limitations of individual instruments is very limited, complicating reliable measurements. We present here the results of testing three commercial dose rate meters, the RamION ionization chamber, the LB 1236-H proportional counter and the 6150AD-b scintillation counter, for their response in pulsed radiation fields of varied pulse dose and duration. Of these three the RamION proved reliable, operating in a pulsed radiation field within its specifications, while the other two instruments were only able to measure very limited pulse doses and pulse dose rates reliably. (paper)

  7. Small compact pulsed electron source for radiation technologies

    International Nuclear Information System (INIS)

    Korenev, Sergey

    2002-01-01

    The small compact pulsed electron source for radiation technologies is considered in the report. The electron source consists of pulsed high voltage Marx generator and vacuum diode with explosive emission cathode. The main parameters of electron source are next: kinetic energy is 100-150 keV, beam current is 5-200 A and pulse duration is 100-400 nsec. The distribution of absorbed doses in irradiated materials is considered. The physical feasibility of pulsed low energy electron beam for applications is considered

  8. Intense Ion Pulses for Radiation Effects Research

    Science.gov (United States)

    2017-04-01

    induction linear accelerator that has been developed to deliver intense, up to 50 nC/pulse/mm2, sub-ns pulses of light ions with kinetic energy up to 1.2...II induction linear accelerator for intense ion beam pulses at Berkeley Lab. Figure 3. Helium current and integrated charge versus time at the...under contracts DE-AC02-205CH11231 and DE-AC52-07NA27344. JOURNAL OF RADIATION EFFECTS, Research and Engineering Vol. 35, No. 1, April 2017 158 INTENSE

  9. A Radiation Dosimetry Method Using Pulsed Optically Stimulated Luminescence

    International Nuclear Information System (INIS)

    Akselrod, M.S.; McKeever, S.W.S.

    1999-01-01

    A method for the determination of absorbed radiation dose is described based on pulsed optically stimulated luminescence (POSL). The method relies upon the stimulation of an irradiated sample with a train of light pulses from a suitable light source (e.g. a laser) using a wavelength which is within the range of wavelengths corresponding to the radiation-induced optical absorption in the irradiated sample. The subsequent emitted light, due to the detrapping of trapped charges and their subsequent recombination with charge of the opposite sign, is synchronously detected in the period between each stimulation pulse. The total luminescence is summed over the desired number of stimulation pulses and this forms the measured POSL signal. By monitoring the emitted light only in the period between stimulation pulses one can reduce the optical filtering required to discriminate between the stimulation light and the emission light; in this way a high measurement efficiency, and, therefore, a high radiation sensitivity (luminescence intensity per unit absorbed dose) is achieved. Key parameters in the method are the intrinsic luminescence lifetime for the material being used as the luminescent detector, the width of the optical stimulation pulse, and the period between pulses. For optimum operation the measurement parameters should be such that both the pulse width and the time between pulses are much less than the luminescence lifetime. By appropriate choice of the power of the optical stimulation, the frequency of the stimulation pulses, and the total stimulation period, one can also re-measure the absorbed dose several times. In this way, a re-read capability is available with the procedure. The method is illustrated using light from a 2nd-harmonic Nd:YAG laser, with irradiated, anion-deficient aluminium oxide as the luminescent detector material. (author)

  10. Measuring the nanomechanical properties of cancer cells by digital pulsed force mode imaging

    International Nuclear Information System (INIS)

    Marti, Othmar; Holzwarth, Michael; Beil, Michael

    2008-01-01

    In this paper, we demonstrate that the digital pulsed force mode data can distinguish two cancer cell lines (HeLa, Panc) by their mechanical properties. The live cells were imaged in buffer solution. The digital pulsed force mode measured 175 force-distance curves per second which, due to the speed of the measurement, were distorted by the viscous drag in the buffer. We show that this drag force causes a sinusoidal addition to the force-distance curves. By subtracting the viscous drag effect one obtains standard force-distance curves. The force-distance curves are then evaluated to extract key data on the curves, such as adhesion energies, local stiffness or the width of the hysteresis loop. These data are then correlated to classify the force-distance curves. We show examples based on the width of the hysteresis loop and the adhesion energies. Outliers in this classification scheme are points where, potentially, interesting new physics or different physics might happen. Based on classification schemes adapted to experimental settings, we propose that the digital pulsed force mode is a tool to evaluate the time evolution of the mechanical response of cells

  11. Measuring the nanomechanical properties of cancer cells by digital pulsed force mode imaging

    Energy Technology Data Exchange (ETDEWEB)

    Marti, Othmar; Holzwarth, Michael [Institute of Experimental Physics, Ulm University, D-89069 Ulm (Germany); Beil, Michael [Department of Internal Medicine, Ulm University, D-89069 Ulm (Germany)], E-mail: othmar.marti@uni-ulm.de, E-mail: michael.holzwarth@uni-ulm.de, E-mail: michael.beil@uni-ulm.de

    2008-09-24

    In this paper, we demonstrate that the digital pulsed force mode data can distinguish two cancer cell lines (HeLa, Panc) by their mechanical properties. The live cells were imaged in buffer solution. The digital pulsed force mode measured 175 force-distance curves per second which, due to the speed of the measurement, were distorted by the viscous drag in the buffer. We show that this drag force causes a sinusoidal addition to the force-distance curves. By subtracting the viscous drag effect one obtains standard force-distance curves. The force-distance curves are then evaluated to extract key data on the curves, such as adhesion energies, local stiffness or the width of the hysteresis loop. These data are then correlated to classify the force-distance curves. We show examples based on the width of the hysteresis loop and the adhesion energies. Outliers in this classification scheme are points where, potentially, interesting new physics or different physics might happen. Based on classification schemes adapted to experimental settings, we propose that the digital pulsed force mode is a tool to evaluate the time evolution of the mechanical response of cells.

  12. Achievement of radiative feedback control for long-pulse operation on EAST

    Science.gov (United States)

    Wu, K.; Yuan, Q. P.; Xiao, B. J.; Wang, L.; Duan, Y. M.; Chen, J. B.; Zheng, X. W.; Liu, X. J.; Zhang, B.; Xu, J. C.; Luo, Z. P.; Zang, Q.; Li, Y. Y.; Feng, W.; Wu, J. H.; Yang, Z. S.; Zhang, L.; Luo, G.-N.; Gong, X. Z.; Hu, L. Q.; Hu, J. S.; Li, J.

    2018-05-01

    The active feedback control of radiated power to prevent divertor target plates overheating during long-pulse operation has been developed and implemented on EAST. The radiation control algorithm, with impurity seeding via a supersonic molecular beam injection (SMBI) system, has shown great success in both reliability and stability. By seeding a sequence of short neon (Ne) impurity pulses with the SMBI from the outer mid-plane, the radiated power of the bulk plasma can be well controlled, and the duration of radiative control (feedforward and feedback) is 4.5 s during a discharge of 10 s. Reliable control of the total radiated power of bulk plasma has been successfully achieved in long-pulse upper single null (USN) discharges with a tungsten divertor. The achieved control range of {{f}rad} is 20%–30% in L-mode regimes and 18%–36% in H-mode regimes. The temperature of the divertor target plates was maintained at a low level during the radiative control phase. The peak particle flux on the divertor target was decreased by feedforward Ne injection in the L-mode discharges, while the Ne pulses from the SMBI had no influence on the peak particle flux because of the very small injecting volume. It is shown that although the radiated power increased, no serious reduction of plasma-stored energy or confinement was observed during the control phase. The success of the radiation control algorithm and current experiments in radiated power control represents a significant advance for steady-state divertor radiation and heat flux control on EAST for near-future long-pulse operation.

  13. A simulation technique for 3D MR-guided acoustic radiation force imaging

    International Nuclear Information System (INIS)

    Payne, Allison; Bever, Josh de; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-01-01

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  14. Heat effect of pulsed Er:YAG laser radiation

    Science.gov (United States)

    Hibst, Raimund; Keller, Ulrich

    1990-06-01

    Pulsed Er:YAG laser radiation has been found to be effective for dental enamel and dentin removal. Damage to the surrounding hard tissue is little, but before testing the Er:YAG laser clinically for the preparation of cavities, possible effects on the soft tissue of the pulp must be known. In order to estimate pulp damage , temperature rise in dentin caused by the laser radiation was measured by a thermocouple. Additionally, temperature distributions were observed by means of a thermal imaging system. The heat effect of a single Er:YAG laser pulse is little and limited to the vicinity of the impact side. Because heat energy is added with each additional pulse , the temperature distribution depends not only on the radiant energy, but also on the number of pulses and the repetition rate. Both irradiation conditions can be found , making irreversible pulp damage either likely or unlikely. The experimental observations can be explained qualitatively by a simple model of the ablation process.

  15. Harmonic pulsed excitation and motion detection of a vibrating reflective target.

    Science.gov (United States)

    Urban, Matthew W; Greenleaf, James F

    2008-01-01

    Elasticity imaging is an emerging medical imaging modality. Methods involving acoustic radiation force excitation and pulse-echo ultrasound motion detection have been investigated to assess the mechanical response of tissue. In this work new methods for dynamic radiation force excitation and motion detection are presented. The theory and model for harmonic motion detection of a vibrating reflective target are presented. The model incorporates processing of radio frequency data acquired using pulse-echo ultrasound to measure harmonic motion with amplitudes ranging from 100 to 10,000 nm. A numerical study was performed to assess the effects of different parameters on the accuracy and precision of displacement amplitude and phase estimation and showed how estimation errors could be minimized. Harmonic pulsed excitation is introduced as a multifrequency radiation force excitation method that utilizes ultrasound tonebursts repeated at a rate f(r). The radiation force, consisting of frequency components at multiples of f(r), is generated using 3.0 MHz ultrasound, and motion detection is performed simultaneously with 9.0 MHz pulse-echo ultrasound. A parameterized experimental analysis showed that displacement can be measured with small errors for motion with amplitudes as low as 100 nm. The parameterized numerical and experimental analyses provide insight into how to optimize acquisition parameters to minimize measurement errors.

  16. Generating high-power short terahertz electromagnetic pulses with a multifoil radiator.

    Science.gov (United States)

    Vinokurov, Nikolay A; Jeong, Young Uk

    2013-02-08

    We describe a multifoil cone radiator capable of generating high-field short terahertz pulses using short electron bunches. Round flat conducting foil plates with successively decreasing radii are stacked, forming a truncated cone with the z axis. The gaps between the foil plates are equal and filled with some dielectric (or vacuum). A short relativistic electron bunch propagates along the z axis. At sufficiently high particle energy, the energy losses and multiple scattering do not change the bunch shape significantly. When passing by each gap between the foil plates, the electron bunch emits some energy into the gap. Then, the radiation pulses propagate radially outward. For transverse electromagnetic waves with a longitudinal (along the z axis) electric field and an azimuthal magnetic field, there is no dispersion in these radial lines; therefore, the radiation pulses conserve their shapes (time dependence). At the outer surface of the cone, we have synchronous circular radiators. Their radiation field forms a conical wave. Ultrashort terahertz pulses with gigawatt-level peak power can be generated with this device.

  17. Synthesis of ultrawideband radiation of combined antenna arrays excited by nanosecond bipolar voltage pulses

    International Nuclear Information System (INIS)

    Koshelev, V I; Plisko, V V; Sevostyanov, E A

    2017-01-01

    To broaden the spectrum of high-power ultrawideband radiation, it is suggested to synthesize an electromagnetic pulse summing the pulses of different length in free space. On the example of model pulses corresponding to radiation of combined antennas excited by bipolar voltage pulses of the length of 2 and 3 ns, the possibility of twofold broadening of the radiation spectrum was demonstrated. Radiation pulses with the spectrum width exceeding three octaves were obtained. Pattern formation by the arrays of different geometry excited by the pulses having different time shifts was considered. Optimum array structure with the pattern maximum in the main direction was demonstrated on the example of a 2×2 array. (paper)

  18. Simulation of the saturation curve of the ionization chamber in overlapping pulsed radiation

    International Nuclear Information System (INIS)

    Park, Se Hwan; Kim, Yong Kyun; Kim, Han Soo; Kang, Sang Mook; Ha, Jang Ho

    2006-01-01

    Procedures for determination of collection efficiency in ionization chambers have been studied by numerous investigators. If the theoretical approach for air-filled ionization chambers exposed to continuous radiation is considered, the result in the near-saturation region is a linear relationship between ) (1/I(V) vs 1/V 2 , where I(V) is the current measured with the ionization chamber at a given polarization voltage V . For pulsed radiation beams, Boag developed a model and the resulted in a linear relationship between ) (1/I(V) and 1/V when the collection efficiency, f , is larger than 0.9. The assumption of the linear relationship of ) (1/I(V) with 1/V or 1/V 2 in the near-saturation region makes the determination of the saturation current simple, since the linear relationship may be determined with only two measured data points. The above discussion of the collection efficiency of the ionization chamber exposed to the pulsed radiation is valid only if each pulse is cleared before the next one occurs. The transit times of the ions in the chamber must be shorter than the time interval between the radiation pulses. Most of the previous works concerning the characteristics of the saturation curve of an ionization chamber in the pulsed beam were done for the case where the transit times of the ions were shorter than the interval between the radiation pulses. However, the experimental data for the intermediate case, where the ion transit time was comparable to the interval between the radiation pulses or the ion transit time was slightly longer than the interval between the radiation pulses, were rare. The saturation curves of the ionization chambers in the pulsed radiation were measured with the pulse beamed electron accelerator at the Korea Atomic Energy Research Institute (KAERI), where the ion transit times in the ionization chambers were longer than the time interval between the radiation pulses. We used two ionization chambers: one was a commercial thimble

  19. Generation of electromagnetic pulses from plasma channels induced by femtosecond light strings

    OpenAIRE

    Cheng, Chung-Chieh; Wright, E. M.; Moloney, J. V.

    2000-01-01

    We present a model that elucidates the physics underlying the generation of an electromagnetic pulse from a femtosecond laser induced plasma channel. The radiation pressure force from the laser pulse spatially separates the ionized electrons from the heavier ions and the induced dipole moment subsequently oscillates at the plasma frequency and radiates an electromagnetic pulse.

  20. ARTICLES: Thermohydrodynamic models of the interaction of pulse-periodic radiation with matter

    Science.gov (United States)

    Arutyunyan, R. V.; Baranov, V. Yu; Bol'shov, Leonid A.; Malyuta, D. D.; Mezhevov, V. S.; Pis'mennyĭ, V. D.

    1987-02-01

    Experimental and theoretical investigations were made of the processes of drilling and deep melting of metals by pulsed and pulse-periodic laser radiation. Direct photography of the surface revealed molten metal splashing due to interaction with single CO2 laser pulses. A proposed thermohydrodynamic model was used to account for the experimental results and to calculate the optimal parameters of pulse-periodic radiation needed for deep melting. The melt splashing processes were simulated numerically.

  1. Utilizations of intense pulsed neutron source in radiochemistry and radiation chemistry

    International Nuclear Information System (INIS)

    Shiokawa, Takanobu; Yoshihara, Kenji; Kaji, Harumi; Kusaka, Yuzuru; Tabata, Yoneho.

    1975-01-01

    Intense pulsed neutron sources is expected to supply more useful and fundamental informations in radiochemistry and radiation chemistry. Short-lived intermediate species may be detected and the mechanisms of radiation induced reactions will be elucidated more precisely. Analytical application of pulsed neutrons is also very useful. (auth.)

  2. Method to generate a pulse train of few-cycle coherent radiation

    Directory of Open Access Journals (Sweden)

    Bryant Garcia

    2016-09-01

    Full Text Available We develop a method to generate a long pulse train of few-cycle coherent radiation by modulating an electron beam with a high power laser. The large energy modulation disperses the beam in a radiating undulator and leads to the production of phase-locked few-cycle coherent radiation pulses. These pulses are produced at a high harmonic of the modulating laser, and are longitudinally separated by the modulating laser wavelength. We discuss an analytical model for this scheme and investigate the temporal and spectral properties of this radiation. This model is compared with numerical simulation results using the unaveraged code Puffin. We examine various harmful effects and how they might be avoided, as well as a possible experimental realization of this scheme.

  3. PERCEPTION LEVEL EVALUATION OF RADIO ELECTRONIC MEANS TO A PULSE OF ELECTROMAGNETIC RADIATION

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The method for evaluating the perception level of electronic means to pulsed electromagnetic radiation is consid- ered in this article. The electromagnetic wave penetration mechanism towards the elements of electronic systems and the impact on them are determined by the intensity of the radiation field on the elements of electronic systems. The impact of electromagnetic radiation pulses to the electronic systems refers to physical and analytical parameters of the relationship between exposure to pulses of electromagnetic radiation and the sample parameters of electronic systems. A physical and mathematical model of evaluating the perception level of electronic means to pulsed electromagnetic radiation is given. The developed model was based on the physics of electronics means failure which represents the description of electro- magnetic, electric and thermal processes that lead to the degradation of the original structure of the apparatus elements. The conditions that lead to the total equation electronic systems functional destruction when exposed to electromagnetic radia- tion pulses are described. The internal characteristics of the component elements that respond to the damaging effects are considered. The ratio for the power failure is determined. A thermal breakdown temperature versus pulse duration of expo- sure at various power levels is obtained. The way of evaluation the reliability of electronic systems when exposed to pulses of electromagnetic radiation as a destructive factor is obtained.

  4. Measurement of far-infrared subpicosecond coherent radiation for pulse radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kozawa, T. E-mail: kozawa@sanken.osaka-u.ac.jp; Mizutani, Y.; Yokoyama, K.; Okuda, S.; Yoshida, Y.; Tagawa, S

    1999-06-01

    Using a magnetic bunch compression method, a 26.5 MeV subpicosecond electron single bunch was generated with the L-band linac of Osaka University. The coherent transition radiation emitted from the subpicosecond single bunch was observed at wavelengths from 100 to 700 {mu}m. The intensity was 7.9x10{sup 9} times higher than that of the incoherent transition radiation obtained by calculation. The length of the compressed electron bunch was evaluated to be roughly 50 fs (rms) from the analysis of the spectra of the transition radiation. The coherent transition radiation has high enough intensity to be applied to pulse radiolysis as a pulsed light source.

  5. Development of advanced radiation monitors for pulsed neutron fields

    CERN Document Server

    AUTHOR|(CDS)2081895

    The need of radiation detectors capable of efficiently measuring in pulsed neutron fields is attracting widespread interest since the 60s. The efforts of the scientific community substantially increased in the last decade due to the increasing number of applications in which this radiation field is encountered. This is a major issue especially at particle accelerator facilities, where pulsed neutron fields are present because of beam losses at targets, collimators and beam dumps, and where the correct assessment of the intensity of the neutron fields is fundamental for radiation protection monitoring. LUPIN is a neutron detector that combines an innovative acquisition electronics based on logarithmic amplification of the collected current signal and a special technique used to derive the total number of detected neutron interactions, which has been specifically conceived to work in pulsed neutron fields. Due to its special working principle, it is capable of overcoming the typical saturation issues encountere...

  6. Electromagnetic radiation reaction force and radiation potential in general five-dimensional relativity

    International Nuclear Information System (INIS)

    Lo, C.Y.; Goldstein, G.R.; Napier, A.

    1989-01-01

    A unified theory of electromagnetic and gravitational fields should modify classical electrodynamics to account for the radiation reaction force. A conjecture that the radiation reaction force and the Lorentz force should be distinct, but in unified forms, results in a five-dimensional unified theory of five variables. It is found that a semicylindrical condition can reconcile the apparent differences between a five-dimensional physical space and our four-dimensional perceptions. Analysis of the geodesic equations results in the notion of gauge dynamics which manifests the influence of the unrestricted fifth variable. The element g 55 of the five-dimensional metric is identified as the radiation potential, which can directly determine the radiation reaction force. This gives a distinct physical origin for the radiation process in classical theory. The potential suggests that the electron can have excited states in quantum electrodynamics. This theory is supported with calculations which demonstrate that the motion of the fifth variable directly causes physical changes in the four-dimensional subspace

  7. Micromechanical Resonator Driven by Radiation Pressure Force.

    Science.gov (United States)

    Boales, Joseph A; Mateen, Farrukh; Mohanty, Pritiraj

    2017-11-22

    Radiation pressure exerted by light on any surface is the pressure generated by the momentum of impinging photons. The associated force - fundamentally, a quantum mechanical aspect of light - is usually too small to be useful, except in large-scale problems in astronomy and astrodynamics. In atomic and molecular optics, radiation pressure can be used to trap or cool atoms and ions. Use of radiation pressure on larger objects such as micromechanical resonators has been so far limited to its coupling to an acoustic mode, sideband cooling, or levitation of microscopic objects. In this Letter, we demonstrate direct actuation of a radio-frequency micromechanical plate-type resonator by the radiation pressure force generated by a standard laser diode at room temperature. Using two independent methods, the magnitude of the resonator's response to forcing by radiation pressure is found to be proportional to the intensity of the incident light.

  8. Experimental investigation of 1 GW repeatable ultra-wide band pulse radiating source

    International Nuclear Information System (INIS)

    Meng Fanbao; Ma Hongge; Zhou Chuanming; Yang Zhoubing; Lu Wei; Ju Bingquan; Yu Huilong

    2001-01-01

    The single cycle pulse of 1.6 GW peak power with 20 Hz repetition-rate was generated. It radiated a peak power of more than 500 MW with a coaxial biconical antenna. The technological problems of the insulation and energy loss during generating and radiating high peak power ultra-wide band (UWB) pulse have been resolved. The experiments show that the material insulation and dispersion in sub-nanosecond pulse should be investigated deeply

  9. Experimental investigation of 1 GW repeatable ultra-wide band pulse radiating source

    Energy Technology Data Exchange (ETDEWEB)

    Fanbao, Meng; Hongge, Ma; Chuanming, Zhou; Zhoubing, Yang; Wei, Lu; Bingquan, Ju; Huilong, Yu [China Academy of Engineering Physics, Chengdu (China)

    2000-11-01

    The single cycle pulse of 1.6 GW peak power with 20 Hz repetition-rate was generated. It radiated a peak power of more than 500 MW with a coaxial biconical antenna. The technological problems of the insulation and energy loss during generating and radiating high peak power ultra-wide band (UWB) pulse have been resolved. The experiments show that the material insulation and dispersion in subnanosecond pulse should be investigated deeply.

  10. Compression and radiation of high-power short rf pulses. II. A novel antenna array design with combined compressor/radiator elements

    KAUST Repository

    Sirenko, Kostyantyn

    2011-01-01

    The paper discusses the radiation of compressed high power short RF pulses using two different types of antennas: (i) A simple monopole antenna and (ii) a novel array design, where each of the elements is constructed by combining a compressor and a radiator. The studies on the monopole antenna demonstrate the possibility of a high power short RF pulse\\'s efficient radiation even using simple antennas. The studies on the novel array design demonstrate that a reduced size array with lower pulse distortion and power decay can be constructed by assembling the array from elements each of which integrates a compressor and a radiator. This design idea can be used with any type of antenna array; in this work it is applied to a phased array.

  11. Calculation of mass transfer in the remote cutting of metals by radiation of a high-power repetitively pulsed CO2 laser

    International Nuclear Information System (INIS)

    Gladush, G G; Rodionov, N B

    2002-01-01

    The mechanism of remote cutting of steel plates by radiation of a high-power repetitively pulsed CO 2 laser is theoretically studied. The models of melt removal by the gravity force and the recoil pressure of material vapour are proposed and the sufficient conditions for the initiation of cutting are determined. A numerical model of a thermally thin plate was employed to describe the cutting for large focal spots. (interaction of laser radiation with matter. laser plasma)

  12. Radiation-Force Assisted Targeting Facilitates Ultrasonic Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Shukui Zhao

    2004-07-01

    Full Text Available Ultrasonic molecular imaging employs contrast agents, such as microbubbles, nanoparticles, or liposomes, coated with ligands specific for receptors expressed on cells at sites of angiogenesis, inflammation, or thrombus. Concentration of these highly echogenic contrast agents at a target site enhances the ultrasound signal received from that site, promoting ultrasonic detection and analysis of disease states. In this article, we show that acoustic radiation force can be used to displace targeted contrast agents to a vessel wall, greatly increasing the number of agents binding to available surface receptors. We provide a theoretical evaluation of the magnitude of acoustic radiation force and show that it is possible to displace micron-sized agents physiologically relevant distances. Following this, we show in a series of experiments that acoustic radiation force can enhance the binding of targeted agents: The number of biotinylated microbubbles adherent to a synthetic vessel coated with avidin increases as much as 20-fold when acoustic radiation force is applied; the adhesion of contrast agents targeted to αvβ3 expressed on human umbilical vein endothelial cells increases 27-fold within a mimetic vessel when radiation force is applied; and finally, the image signal-to-noise ratio in a phantom vessel increases up to 25 dB using a combination of radiation force and a targeted contrast agent, over use of a targeted contrast agent alone.

  13. The radiative forcing potential of different climate geoengineering options

    Directory of Open Access Journals (Sweden)

    T. M. Lenton

    2009-08-01

    Full Text Available Climate geoengineering proposals seek to rectify the Earth's current and potential future radiative imbalance, either by reducing the absorption of incoming solar (shortwave radiation, or by removing CO2 from the atmosphere and transferring it to long-lived reservoirs, thus increasing outgoing longwave radiation. A fundamental criterion for evaluating geoengineering options is their climate cooling effectiveness, which we quantify here in terms of radiative forcing potential. We use a simple analytical approach, based on energy balance considerations and pulse response functions for the decay of CO2 perturbations. This aids transparency compared to calculations with complex numerical models, but is not intended to be definitive. It allows us to compare the relative effectiveness of a range of proposals. We consider geoengineering options as additional to large reductions in CO2 emissions. By 2050, some land carbon cycle geoengineering options could be of comparable magnitude to mitigation "wedges", but only stratospheric aerosol injections, albedo enhancement of marine stratocumulus clouds, or sunshades in space have the potential to cool the climate back toward its pre-industrial state. Strong mitigation, combined with global-scale air capture and storage, afforestation, and bio-char production, i.e. enhanced CO2 sinks, might be able to bring CO2 back to its pre-industrial level by 2100, thus removing the need for other geoengineering. Alternatively, strong mitigation stabilising CO2 at 500 ppm, combined with geoengineered increases in the albedo of marine stratiform clouds, grasslands, croplands and human settlements might achieve a patchy cancellation of radiative forcing. Ocean fertilisation options are only worthwhile if sustained on a millennial timescale and phosphorus addition may have greater long-term potential than iron or nitrogen fertilisation. Enhancing ocean

  14. Radiative Forcing Over Ocean by Ship Wakes

    Science.gov (United States)

    Gatebe, Charles K.; Wilcox, E.; Poudyal, R.; Wang, J.

    2011-01-01

    Changes in surface albedo represent one of the main forcing agents that can counteract, to some extent, the positive forcing from increasing greenhouse gas concentrations. Here, we report on enhanced ocean reflectance from ship wakes over the Pacific Ocean near the California coast, where we determined, based on airborne radiation measurements that ship wakes can increase reflected sunlight by more than 100%. We assessed the importance of this increase to climate forcing, where we estimated the global radiative forcing of ship wakes to be -0.00014 plus or minus 53% Watts per square meter assuming a global distribution of 32331 ships of size of greater than or equal to 100000 gross tonnage. The forcing is smaller than the forcing of aircraft contrails (-0.007 to +0.02 Watts per square meter), but considering that the global shipping fleet has rapidly grown in the last five decades and this trend is likely to continue because of the need of more inter-continental transportation as a result of economic globalization, we argue that the radiative forcing of wakes is expected to be increasingly important especially in harbors and coastal regions.

  15. Observationally constrained estimates of carbonaceous aerosol radiative forcing.

    Science.gov (United States)

    Chung, Chul E; Ramanathan, V; Decremer, Damien

    2012-07-17

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm(-2), to be compared with the Intergovernmental Panel on Climate Change's estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm(-2). This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm(-2) (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm(-2), thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon.

  16. An evaluation on environment radiation impact of pulsed reactor

    International Nuclear Information System (INIS)

    Gao Yingwei; Pu Gongxu; Li Jian

    1991-01-01

    The dose regulation, assessment scope and assessment method adopted by the environment impact evaluation for the pulsed reactor are discussed. The compute model, the compute programme and the compute result of the dose adopted for the model pulsed reactor are introduced. The probable environment radiation impact under normal status and accident status are also appraised

  17. Red Shift and Broadening of Backward Harmonic Radiation from Electron Oscillations Driven by Femtosecond Laser Pulse

    International Nuclear Information System (INIS)

    Tian Youwei; Yu Wei; Lu Peixiang; Senecha, Vinod K; Han, Xu; Deng Degang; Li Ruxin; Xu Zhizhan

    2006-01-01

    The characteristics of backward harmonic radiation due to electron oscillations driven by a linearly polarized fs laser pulse are analysed considering a single electron model. The spectral distributions of the electron's backward harmonic radiation are investigated in detail for different parameters of the driver laser pulse. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width the broadening of the high harmonic radiations can be controlled

  18. Research of pulse gamma ray radiation effect on microcontroller system

    International Nuclear Information System (INIS)

    Yang Shanchao; Ma Qiang; Jin Xiaoming; Li Ruibin; Lin Dongsheng; Chen Wei; Liu Yan

    2012-01-01

    An experimental result of power chip LM7805 and microcontroller EE80C196KC20 based on the EE80C196KC20 testing system was presented. The pulse gamma ray radiation effect was investigated using 'Qiangguang-Ⅰ' accelerator. Latchup threshold of the microcontroller was obtained, and the relationship of supply current and I/O output with the transient dose rate was observed. The result shows that the restrainability of power chip on pulse gamma ray radiation induces microcontroller latchup effect. (authors)

  19. Coherent Smith-Purcell radiation as a pulse length diagnostic

    International Nuclear Information System (INIS)

    Lampel, M.C.

    1997-01-01

    Recently, Smith-Purcell radiation has been studied as a candidate for laser-type radiation production in the submillimeter regime. With appropriate choices of beam energy, impact parameter, and grating spacing, there is good coupling to strongly polarized, forward directed radiation. Another regime of possible interest is to use Smith-Purcell radiation as a pulse length diagnostic for medium to high energy electron beams of extremely short pulse duration, on the order of tens of femtoseconds to 1000 fs. Strongly in favor of development of such a diagnostic is its relatively non-destructive nature. With the electron beam passing near, but not through, a metal grating, reaction of the beam distribution itself to the production of the radiation is reduced relative to the much stronger scattering induced by passage through a foil. By careful choice of parameters usable diagnostic radiation ought to be produced with acceptably small emittance growth for an on-line beam monitor, even for the extremely bright electron beams proposed for X-ray FELs, Compton backscatter X-ray sources, or laser/plasma accelerator schemes. In this paper coherent and incoherent Smith-Purcell radiation is examined for reasonable operating parameters of the SATURNUS system at UCLA, with comparisons with results reported from the accelerator test facility (ATF) at Brookhaven National Laboratory. (orig.)

  20. Black carbon radiative forcing at TOA decreased during aging.

    Science.gov (United States)

    Wu, Yu; Cheng, Tianhai; Zheng, Lijuan; Chen, Hao

    2016-12-05

    During aging processing, black carbon (also called soot) particles may tend to be mixed with other aerosols, and highly influence their radiative forcing. In this study, freshly emitted soot particles were simulated as fractal aggregates composed of small spherical primary monomers. After aging in the atmosphere, soot monomers were coated by a thinly layer of sulfate as thinly coated soot particles. These soot particles were entirely embedded into large sulfate particle by further aging, and becoming heavily coated soot particles. In clear-sky conditions, black carbon radiative forcing with different aging states were investigated for the bottom and top of atmosphere (BOA and TOA). The simulations showed that black carbon radiative forcing increased at BOA and decreased at TOA after their aging processes. Thinly and heavily coated states increased up to ~12% and ~35% black carbon radiative forcing at BOA, and black carbon radiative forcing at TOA can reach to ~20% and ~100% smaller for thinly and heavily coated states than those of freshly emitted states, respectively. The effect of aging states of black carbon radiative forcing was varied with surface albedo, aerosol optical depth and solar zenith angles. These findings would be helpful for the assessments of climate change.

  1. Two-wave generator of subnanosecond radiation pulses on an yttrium-aluminium garnet

    International Nuclear Information System (INIS)

    Babikov, Yu.I.; Ir, K.S.; Mironov, V.E.

    1988-01-01

    Great attention is paid to the electron accelerator based on the mechanism of electron accelerator in the field of plasma wave, excited by laser radiation. The laser system master generator based on serial LTIPC-8 laser is described. The system is intended for investigating the plasma excitation processes initiated by two-frequency laser radiation beats. Pulse duration is ≤1 ns at 3-4 pulse train. Radiation on 1.0615 and 1.0641 μm wave length is generated. 5 refs.; 3 figs

  2. Surface radiative forcing of forest disturbances over northeastern China

    International Nuclear Information System (INIS)

    Zhang, Yuzhen; Liang, Shunlin

    2014-01-01

    Forests provide important climate forcing through biogeochemical and biogeophysical processes. In this study, we investigated the climatic effects of forest disturbances due to changes in forest biomass and surface albedo in terms of radiative forcing over northeastern China. Four types of forest disturbances were considered: fires, insect damage, logging, and afforestation and reforestation. The mechanisms of the influence of forest disturbances on climate were different. ‘Instantaneous’ net radiative forcings caused by fires, insect damage, logging, and afforestation and reforestation were estimated at 0.53 ± 0.08 W m −2 , 1.09 ± 0.14 W m −2 , 2.23 ± 0.27 W m −2 , and 0.14 ± 0.04 W m −2 , respectively. Trajectories of CO 2 -driven radiative forcing, albedo-driven radiative forcing, and net forcing were different with time for each type of disturbance. Over a decade, the estimated net forcings were 2.24 ± 0.11 W m −2 , 0.20 ± 0.31 W m −2 , 1.06 ± 0.41 W m −2 , and −0.47 ± 0.07 W m −2 , respectively. These estimated radiative forcings from satellite observations provided evidence for the mechanisms of the influences of forest disturbances on climate. (paper)

  3. Fresnel formulas for the forced electromagnetic pulses and their application for optical-to-terahertz conversion in nonlinear crystals.

    Science.gov (United States)

    Bakunov, M I; Maslov, A V; Bodrov, S B

    2007-11-16

    We show that the usual Fresnel formulas for a free-propagating pulse are not applicable for a forced terahertz electromagnetic pulse supported by an optical pulse at the end of a nonlinear crystal. The correct linear reflection and transmission coefficients that we derive show that such pulses can experience a gain or loss at the boundary. This energy change depends on linear dielectric constants only. We also predict a regime where a complete disappearance of the forced pulse under oblique incidence occurs, an effect that has no counterpart for free-propagating pulses.

  4. Ultraviolet germicidal efficacy as a function of pulsed radiation parameters studied by spore film dosimetry.

    Science.gov (United States)

    Bauer, Stefan; Holtschmidt, Hans; Ott, Günter

    2018-01-01

    Disinfection by pulsed ultraviolet (UV) radiation is a commonly used method, e.g. in industry or medicine and can be carried out either with lasers or broadband UV radiation sources. Detrimental effects to biological materials depending on parameters such as pulse duration τ or pulse repetition frequency f p are well-understood for pulsed coherent UV radiation, however, relatively little is known for its incoherent variant. Therefore, within this work, it is the first time that disinfection rates of pulsed and continuous (cw) incoherent UV radiation studied by means of spore film dosimetry are presented, compared with each other, and in a second step further investigated regarding two pulse parameters. After analyzing the dynamic range of the Bacillus subtilis spore films with variable cw radiant exposures H=5-100Jm -2 a validation of the Bunsen-Roscoe law revealed its restricted applicability and a 28% enhanced detrimental effect of pulsed compared to cw incoherent UV radiation. A radiant exposure H=50Jm -2 and an irradiance E=0.5Wm -2 were found to be suitable parameters for an analysis of the disinfection rate as a function of τ=0.5-10ms and f p =25-500Hz unveiling that shorter pulses and lower frequencies inactivate more spores. Finally, the number of applied pulses as well as the experiment time were considered with regard to spore film disinfection. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces

    International Nuclear Information System (INIS)

    Sprangle, P.; Penano, J.R.; Hafizi, B.; Kapetanakos, C.A.

    2004-01-01

    Intense, ultrashort laser pulses propagating in the atmosphere have been observed to emit sub-THz electromagnetic pulses (EMPS). The purpose of this paper is to analyze EMP generation from the interaction of ultrashort laser pulses with air and with dielectric surfaces and to determine the efficiency of conversion of laser energy to EMP energy. In our self-consistent model the laser pulse partially ionizes the medium, forms a plasma filament, and through the ponderomotive forces associated with the laser pulse, drives plasma currents which are the source of the EMP. The propagating laser pulse evolves under the influence of diffraction, Kerr focusing, plasma defocusing, and energy depletion due to electron collisions and ionization. Collective effects and recombination processes are also included in the model. The duration of the EMP in air, at a fixed point, is found to be a few hundred femtoseconds, i.e., on the order of the laser pulse duration plus the electron collision time. For steady state laser pulse propagation the flux of EMP energy is nonradiative and axially directed. Radiative EMP energy is present only for nonsteady state or transient laser pulse propagation. The analysis also considers the generation of EMP on the surface of a dielectric on which an ultrashort laser pulse is incident. For typical laser parameters, the power and energy conversion efficiency from laser radiation to EMP radiation in both air and from dielectric surfaces is found to be extremely small, -8 . Results of full-scale, self-consistent, numerical simulations of atmospheric and dielectric surface EMP generation are presented. A recent experiment on atmospheric EMP generation is also simulated

  6. On the forces acting on radiating charge

    International Nuclear Information System (INIS)

    Khachatrian, B.V.

    2001-01-01

    It is shown that the force acting on a radiating charge is stipulated by two reasons- owing to exchange of a momentum between the radiating charge and electromagnetic field of radiation, and also between the charge and field accompanying the charge. 7 refs

  7. Force-free electromagnetic pulses in a laboratory plasma

    Science.gov (United States)

    Stenzel, R. L.; Urrutia, J. M.

    1990-01-01

    A short, intense current pulse is drawn from an electrode immersed in a magnetized afterglow plasma. The induced magnetic field B(r,t) assumes the shape of a helical double vortex which propagates along B(0) through the uniform plasma as a whistler mode. The observations support a prediction of force-free (J x B + neE = 0) electromagnetic fields and solitary waves. Energy and helicity are approximately conserved.

  8. Radiative forcing calculations for CH3Cl

    International Nuclear Information System (INIS)

    Grossman, A.S.; Grant, K.E.; Wuebbles, D.J.

    1994-06-01

    Methyl chloride, CH 3 Cl, is the major natural source of chlorine to the stratosphere. The production of CH 3 Cl is dominated by biological sources from the oceans and biomass burning. Production has a seasonal cycle which couples with the short lifetime of tropospheric CH 3 Cl to produce nonuniform global mixing. As an absorber of infrared radiation, CH 3 Cl is of interest for its potential affect on the tropospheric energy balance as well as for its chemical interactions. In this study, we estimate the radiative forcing and global warming potential (GWP) of CH 3 Cl. Our calculations use an infrared radiative transfer model based on the correlated k-distribution algorithm for band absorption. Global and annual average vertical profiles of temperature and trace gas concentration were assumed. The effects of clouds are modeled using three layers of global and annual average cloud optical properties. A radiative forcing value of 0.0053 W/m 2 ppbv was obtained for CH 3 Cl and is approximately linear in the background abundance. This value is about 2 percent of the forcing of CFC-11 and about 300 times the forcing of CO 2 , on a per molecule basis. The radiative forcing calculation for CH 3 Cl is used to estimate the global warming potential (GWP) of CH 3 Cl. The results give GWPs for CH 3 Cl of the order of 25 at a time of 20 years(CO 2 = 1). This result indicates that CH 3 Cl has the potential to be a major greenhouse gas if significant human related emissions were introduced into the atmosphere

  9. Deconvolving the temporal response of photoelectric x-ray detectors for the diagnosis of pulsed radiations

    International Nuclear Information System (INIS)

    Zou, Shiyang; Song, Peng; Pei, Wenbing; Guo, Liang

    2013-01-01

    Based on the conjugate gradient method, a simple algorithm is presented for deconvolving the temporal response of photoelectric x-ray detectors (XRDs) to reconstruct the resolved time-dependent x-ray fluxes. With this algorithm, we have studied the impact of temporal response of XRD on the radiation diagnosis of hohlraum heated by a short intense laser pulse. It is found that the limiting temporal response of XRD not only postpones the rising edge and peak position of x-ray pulses but also smoothes the possible fluctuations of radiation fluxes. Without a proper consideration of the temporal response of XRD, the measured radiation flux can be largely misinterpreted for radiation pulses of a hohlraum heated by short or shaped laser pulses

  10. Peculiarities of biological effect of pulsed laser radiation and 60Co γ rays on microorganisms

    International Nuclear Information System (INIS)

    Petin, V.G.; Rusina, L.K.; Sebrant, Yu.V.; Baranov, V.Yu.; Malyuta, D.D.; Nyz'ev, V.G.

    1978-01-01

    The sensitivity of yeast cells of different ploidy and bacterial cells of different strains to pulsed laser radiation and combined action of laser and ionizing radiation has been studied. Laser preirradiation of yeast cells did not change the cell sensitivity to the ionizing radiation. The biological effect was non-additive after the exposure to sequence of pulses in comparison with the exposure to a single pulse. The failure of cell reproductive ability after laser irradiation was irrepairable

  11. Efficient femtosecond mid-infrared pulse generation by dispersivewave radiation in bulk lithium niobate crystal

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Bache, Morten

    2014-01-01

    We experimentally demonstrate efficient mid-infrared pulse generation by dispersive wave radiation in bulk lithium niobate crystal. Femtosecond mid-IR pulses centering from 2.8–2.92 µm are generated using the single pump wavelengths from 1.25–1.45 µm.......We experimentally demonstrate efficient mid-infrared pulse generation by dispersive wave radiation in bulk lithium niobate crystal. Femtosecond mid-IR pulses centering from 2.8–2.92 µm are generated using the single pump wavelengths from 1.25–1.45 µm....

  12. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Calculation of mass transfer in the remote cutting of metals by radiation of a high-power repetitively pulsed CO2 laser

    Science.gov (United States)

    Gladush, G. G.; Rodionov, N. B.

    2002-01-01

    The mechanism of remote cutting of steel plates by radiation of a high-power repetitively pulsed CO2 laser is theoretically studied. The models of melt removal by the gravity force and the recoil pressure of material vapour are proposed and the sufficient conditions for the initiation of cutting are determined. A numerical model of a thermally thin plate was employed to describe the cutting for large focal spots.

  13. Pulsed laser radiation therapy of skin tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, A.P.; Moskalik, K.G.

    1980-11-15

    Radiation from a neodymium laser was used to treat 846 patients with 687 precancerous lesions or benign tumors of the skin, 516 cutaneous carcinomas, 33 recurrences of cancer, 51 melanomas, and 508 metastatic melanomas in the skin. The patients have been followed for three months to 6.5 years. No relapses have been observed during this period. Metastases to regional lymph nodes were found in five patients with skin melanoma. Pulsed laser radiation may be successfully used in the treatment of precancerous lesions and benign tumors as well as for skin carcinoma and its recurrences, and for skin melanoma. Laser radiation is more effective in the treatment of tumors inaccessible to radiation therapy and better in those cases in which surgery may have a bad cosmetic or even mutilating effect. Laser beams can be employed in conjunction with chemo- or immunotherapy.

  14. Variability of the contrail radiative forcing due to crystal shape

    Science.gov (United States)

    Markowicz, K. M.; Witek, M. L.

    2011-12-01

    The aim of this study is to examine the influence of particles' shape and particles' optical properties on the contrail radiative forcing. Contrail optical properties in the shortwave and longwave range are derived using a ray-tracing geometric method and the discrete dipole approximation method, respectively. Both methods present good correspondence of the single scattering albedo and the asymmetry parameter in a transition range (3-7μm). We compare optical properties defined following simple 10 crystals habits randomly oriented: hexagonal plates, hexagonal columns with different aspect ratio, and spherical. There are substantial differences in single scattering properties between ten crystal models investigated here (e.g. hexagonal columns and plates with different aspect ratios, spherical particles). The single scattering albedo and the asymmetry parameter both vary up to 0.1 between various crystal shapes. Radiative forcing calculations were performed using a model which includes an interface between the state-of-the-art radiative transfer model Fu-Liou and databases containing optical properties of the atmosphere and surface reflectance and emissivity. This interface allows to determine radiative fluxes in the atmosphere and to estimate the contrail radiative forcing for clear- and all-sky (including natural clouds) conditions for various crystal shapes. The Fu-Liou code is fast and therefore it is suitable for computing radiative forcing on a global scale. At the same time it has sufficiently good accuracy for such global applications. A noticeable weakness of the Fu-Liou code is that it does not take into account the 3D radiative effects, e.g. cloud shading and horizontal. Radiative transfer model calculations were performed at horizontal resolution of 5x5 degree and time resolution of 20 min during day and 3 h during night. In order to calculate a geographic distribution of the global and annual mean contrail radiative forcing, the contrail cover must be

  15. Radiation from a pulsed dipole source in a moving magnetized plasma

    International Nuclear Information System (INIS)

    Gavrilenko, V. G.; Petrov, E. Yu.; Pikulin, V. D.; Sutyagina, D. A.

    2006-01-01

    The problem of radiation from a pulsed dipole source in a moving magnetized plasma described by a diagonal permittivity tensor is considered. An exact solution describing the spatiotemporal behavior of the excited electromagnetic field is obtained. The shape of an electromagnetic pulse that is generated by the source and propagates at different angles to both the direction of the external magnetic field and the direction of plasma motion is investigated. It is found that even nonrelativistic motion of the plasma medium can substantially influence the parameters of radiation from prescribed unsteady sources

  16. Direct weakening of tropical circulations from masked CO2 radiative forcing.

    Science.gov (United States)

    Merlis, Timothy M

    2015-10-27

    Climate models robustly simulate weakened mean circulations of the tropical atmosphere in direct response to increased carbon dioxide (CO2). The direct response to CO2, defined by the response to radiative forcing in the absence of changes in sea surface temperature, affects tropical precipitation and tropical cyclone genesis, and these changes have been tied to the weakening of the mean tropical circulation. The mechanism underlying this direct CO2-forced circulation change has not been elucidated. Here, I demonstrate that this circulation weakening results from spatial structure in CO2's radiative forcing. In regions of ascending circulation, such as the intertropical convergence zone, the CO2 radiative forcing is reduced, or "masked," by deep-convective clouds and high humidity; in subsiding regions, such as the subtropics, the CO2 radiative forcing is larger because the atmosphere is drier and deep-convective clouds are infrequent. The spatial structure of the radiative forcing reduces the need for the atmosphere to transport energy. This, in turn, weakens the mass overturning of the tropical circulation. The previously unidentified mechanism is demonstrated in a hierarchy of atmospheric general circulation model simulations with altered radiative transfer to suppress the cloud masking of the radiative forcing. The mechanism depends on the climatological distribution of clouds and humidity, rather than uncertain changes in these quantities. Masked radiative forcing thereby offers an explanation for the robustness of the direct circulation weakening under increased CO2.

  17. Novel applications of the temporal kernel method: Historical and future radiative forcing

    Science.gov (United States)

    Portmann, R. W.; Larson, E.; Solomon, S.; Murphy, D. M.

    2017-12-01

    We present a new estimate of the historical radiative forcing derived from the observed global mean surface temperature and a model derived kernel function. Current estimates of historical radiative forcing are usually derived from climate models. Despite large variability in these models, the multi-model mean tends to do a reasonable job of representing the Earth system and climate. One method of diagnosing the transient radiative forcing in these models requires model output of top of the atmosphere radiative imbalance and global mean temperature anomaly. It is difficult to apply this method to historical observations due to the lack of TOA radiative measurements before CERES. We apply the temporal kernel method (TKM) of calculating radiative forcing to the historical global mean temperature anomaly. This novel approach is compared against the current regression based methods using model outputs and shown to produce consistent forcing estimates giving confidence in the forcing derived from the historical temperature record. The derived TKM radiative forcing provides an estimate of the forcing time series that the average climate model needs to produce the observed temperature record. This forcing time series is found to be in good overall agreement with previous estimates but includes significant differences that will be discussed. The historical anthropogenic aerosol forcing is estimated as a residual from the TKM and found to be consistent with earlier moderate forcing estimates. In addition, this method is applied to future temperature projections to estimate the radiative forcing required to achieve those temperature goals, such as those set in the Paris agreement.

  18. Spatially Refined Aerosol Direct Radiative Forcing Efficiencies

    Science.gov (United States)

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary...

  19. Black Carbon Radiative Forcing over the Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    He, Cenlin; Li, Qinbin; Liou, K. N.; Takano, Y.; Gu, Yu; Qi, L.; Mao, Yuhao; Leung, Lai-Yung R.

    2014-11-28

    We estimate the snow albedo forcing and direct radiative forcing (DRF) of black carbon (BC) in the Tibetan Plateau using a global chemical transport model in conjunction with a stochastic snow model and a radiative transfer model. Our best estimate of the annual BC snow albedo forcing in the Plateau is 2.9 W m-2 (uncertainty: 1.5–5.0 W m-226 ). We find that BC-snow internal mixing increases the albedo forcing by 40-60% compared with external mixing and coated BC increases the forcing by 30-50% compared with uncoated BC, whereas Koch snowflakes reduce the forcing by 20-40% relative to spherical snow grains. Our best estimate of the annual BC DRF at the top of the atmosphere is 2.3 W m-2 (uncertainty: 0.7–4.3 W m-230 ) in the Plateau after scaling the modeled BC absorption optical depth to Aerosol Robotic Network (AERONET) observations. The BC forcings are attributed to emissions from different regions.

  20. ANALYTICAL SYNTHESIS OF FORCED PULSE ELECTRONIC DRIVE CONTROL OF A TRACKING SYSTEM

    Directory of Open Access Journals (Sweden)

    A. S. Abufanas

    2017-01-01

    Full Text Available The problem of analytical synthesis of a control signal by a linear dynamical system is considered. As an optimization criterion, it is proposed to consider the transition time of the system from the initial state to a given final state. This type of control is called forced, providing the maximum system speed. The principle of solving this problem is considered on the basis of application of uncertain Lagrange multipliers and the Pontryagin maximum principle. Expressions are obtained for the matrix of transitions of the system and the control signal in a vector form.As an example, the electric drive described by the widespread second-order mathematical model is considered to evaluate the efficiency of the proposed method. Qualitative illustrations of the operability of the proposed approach, obtained by modeling in the Mathcad environment, and quantitative characteristics of the change in the input and output signals of the hypothetical control system are presented. It is shown that the use of forced control does not lead to the output of variables characterizing the state of the system, beyond the limits of admissible values.The use of forced control makes it possible to synthesize the control law in the form of a sequence of rectangular pulses of constant amplitude determined by the power source, variable duty cycle and polarity. This approach can be used for the control of DC-type DC motors used in various tracking systems used on unmanned aerial vehicles. Key words: forced control, target function, electric drive, pulse train. The use of forced control makes it possible to synthesize the control law in the form of a sequence of rectangular pulses of constant amplitude determined by the power source, variable duty cycle and polarity. This approach can be used for the control of DC-type DC motors used in various tracking systems used on unmanned aerial vehicles.

  1. Coherently enhanced radiation reaction effects in laser-vacuum acceleration of electron bunches

    NARCIS (Netherlands)

    Smorenburg, P.W.; Kamp, L.P.J.; Geloni, G.; Luiten, O.J.

    2010-01-01

    The effects of coherently enhanced radiation reaction on the motion of subwavelength electron bunches in interaction with intense laser pulses are analyzed. The radiation reaction force behaves as a radiation pressure in the laser beam direction, combined with a viscous force in the perpendicular

  2. Impact of Dust Radiative Forcing upon Climate. Chapter 13

    Science.gov (United States)

    Miller, Ronald L.; Knippertz, Peter; Perez Garcia-Pando, Carlos; Perlwitz, Jan P.; Tegan, Ina

    2014-01-01

    Dust aerosols perturb the atmospheric radiative flux at both solar and thermal wavelengths, altering the energy and water cycles. The climate adjusts by redistributing energy and moisture, so that local temperature perturbations, for example, depend upon the forcing over the entire extent of the perturbed circulation. Within regions frequently mixed by deep convection, including the deep tropics, dust particles perturb the surface air temperature primarily through radiative forcing at the top of the atmosphere (TOA). Many models predict that dust reduces global precipitation. This reduction is typically attributed to the decrease of surface evaporation in response to dimming of the surface. A counterexample is presented, where greater shortwave absorption by dust increases evaporation and precipitation despite greater dimming of the surface. This is attributed to the dependence of surface evaporation upon TOA forcing through its influence upon surface temperature and humidity. Perturbations by dust to the surface wind speed and vegetation (through precipitation anomalies) feed back upon the dust aerosol concentration. The current uncertainty of radiative forcing attributed to dust and the resulting range of climate perturbations calculated by models remain a useful test of our understanding of the mechanisms relating dust radiative forcing to the climate response.

  3. Factors Affecting Aerosol Radiative Forcing

    Science.gov (United States)

    Wang, J.; Lin, J.; Ni, R.

    2016-12-01

    Rapid industrial and economic growth has meant large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RFof aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissionsper unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size.South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions,its aerosol RF is alleviated by its lowest chemical efficiency.The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is loweredbyasmall per capita GDP.Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The resulting

  4. Terahertz Pulse Generation in Underdense Relativistic Plasmas: From Photoionization-Induced Radiation to Coherent Transition Radiation

    Science.gov (United States)

    Déchard, J.; Debayle, A.; Davoine, X.; Gremillet, L.; Bergé, L.

    2018-04-01

    Terahertz to far-infrared emission by two-color, ultrashort optical pulses interacting with underdense helium gases at ultrahigh intensities (>1019 W /cm2 ) is investigated by means of 3D particle-in-cell simulations. The terahertz field is shown to be produced by two mechanisms occurring sequentially, namely, photoionization-induced radiation (PIR) by the two-color pulse, and coherent transition radiation (CTR) by the wakefield-accelerated electrons escaping the plasma. We exhibit laser-plasma parameters for which CTR proves to be the dominant process, providing terahertz bursts with field strength as high as 100 GV /m and energy in excess of 10 mJ. Analytical models are developed for both the PIR and CTR processes, which correctly reproduce the simulation data.

  5. Active electromagnetic invisibility cloaking and radiation force cancellation

    Science.gov (United States)

    Mitri, F. G.

    2018-03-01

    This investigation shows that an active emitting electromagnetic (EM) Dirichlet source (i.e., with axial polarization of the electric field) in a homogeneous non-dissipative/non-absorptive medium placed near a perfectly conducting boundary can render total invisibility (i.e. zero extinction cross-section or efficiency) in addition to a radiation force cancellation on its surface. Based upon the Poynting theorem, the mathematical expression for the extinction, radiation and amplification cross-sections (or efficiencies) are derived using the partial-wave series expansion method in cylindrical coordinates. Moreover, the analysis is extended to compute the self-induced EM radiation force on the active source, resulting from the waves reflected by the boundary. The numerical results predict the generation of a zero extinction efficiency, achieving total invisibility, in addition to a radiation force cancellation which depend on the source size, the distance from the boundary and the associated EM mode order of the active source. Furthermore, an attractive EM pushing force on the active source directed toward the boundary or a repulsive pulling one pointing away from it can arise accordingly. The numerical predictions and computational results find potential applications in the design and development of EM cloaking devices, invisibility and stealth technologies.

  6. Photocurrent and photovoltage induced in a 2DEG under intense, pulsed THz radiation

    International Nuclear Information System (INIS)

    Lewis, R.A.; Xu, W.; Pellemans, H.P.M.; Langerak, C.J.G.M.

    1999-01-01

    Full text: Intense THz radiation emitted by FELIX (Free Electron Laser for Infrared eXperiments) induces both photovoltage and photocurrent signals in a high-mobility (μ = 2 x 10 6 cm 2 /V s), low-density (n e = 2 x 10 11 cm -2 ) GaAs/AlGaAs-based 2DEG. Within the ∼5 μs FELIX macropulse, there is a rapid response in the longitudinal voltage of a Hall-bar sample, reproducible between pulses. A large response continues well after the pulse; this long-time-scale behaviour varies between pulses if the current exceeds a critical value (which decreases with radiation intensity and magnetic field). Within the macropulse, the photovoltage varies with magnetic field, saturating at low field (<100 mT). The photocurrent shows a rapid, non-resonant response, evident at integral filling factors in both longitudinal and transverse data, and a slower, cyclotron resonant response, peaking at ∼390 μs after the FELIX pulse. No anisotropy in the resistivity under polarised radiation was found

  7. Compression force and radiation dose in the Norwegian Breast Cancer Screening Program

    Energy Technology Data Exchange (ETDEWEB)

    Waade, Gunvor G.; Sanderud, Audun [Department of Life Sciences and Health, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, P.O. 4 St. Olavs Plass, 0130 Oslo (Norway); Hofvind, Solveig, E-mail: solveig.hofvind@kreftregisteret.no [Department of Life Sciences and Health, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, P.O. 4 St. Olavs Plass, 0130 Oslo (Norway); The Cancer Registry of Norway, P.O. 5313 Majorstuen, 0304 Oslo (Norway)

    2017-03-15

    Highlights: • Compression force and radiation dose for 17 951 screening mammograms were analyzed. • Large variations in mean applied compression force between the breast centers. • Limited associations between compression force and radiation dose. - Abstract: Purpose: Compression force is used in mammography to reduce breast thickness and by that decrease radiation dose and improve image quality. There are no evidence-based recommendations regarding the optimal compression force. We analyzed compression force and radiation dose between screening centers in the Norwegian Breast Cancer Screening Program (NBCSP), as a first step towards establishing evidence-based recommendations for compression force. Materials and methods: The study included information from 17 951 randomly selected screening examinations among women screened with equipment from four different venors at fourteen breast centers in the NBCSP, January-March 2014. We analyzed the applied compression force and radiation dose used on craniocaudal (CC) and mediolateral-oblique (MLO) view on left breast, by breast centers and vendors. Results: Mean compression force used in the screening program was 116N (CC: 108N, MLO: 125N). The maximum difference in mean compression force between the centers was 63N for CC and 57N for MLO. Mean radiation dose for each image was 1.09 mGy (CC: 1.04mGy, MLO: 1.14mGy), varying from 0.55 mGy to 1.31 mGy between the centers. Compression force alone had a negligible impact on radiation dose (r{sup 2} = 0.8%, p = < 0.001). Conclusion: We observed substantial variations in mean compression forces between the breast centers. Breast characteristics and differences in automated exposure control between vendors might explain the low association between compression force and radiation dose. Further knowledge about different automated exposure controls and the impact of compression force on dose and image quality is needed to establish individualised and evidence

  8. Experimental study of the counting loss in an ionization chamber in pulsed radiation fields

    International Nuclear Information System (INIS)

    Goncalez, O.L.; Yanagihara, L.S.; Veissid, V.L.C.P.; Herdade, S.B.; Teixeira, A.N.

    1983-01-01

    The behavior of an ionization chamber gamma ray monitor in a pulsed radiation field at a linear electron accelerator facility was studied experiementally. A loss of sensitivity was observed as expected due to the pulsed nature of the radiation. By fitting the experiemental data to semi-empirical expressions, parameters for the correction of the counting efficiency were obtained. (Author) [pt

  9. Nonlinear 2D arm dynamics in response to continuous and pulse-shaped force perturbations.

    Science.gov (United States)

    Happee, Riender; de Vlugt, Erwin; van Vliet, Bart

    2015-01-01

    Ample evidence exists regarding the nonlinearity of the neuromuscular system but linear models are widely applied to capture postural dynamics. This study quantifies the nonlinearity of human arm postural dynamics applying 2D continuous force perturbations (0.2-40 Hz) inducing three levels of hand displacement (5, 15, 45 mm RMS) followed by force-pulse perturbations inducing large hand displacements (up to 250 mm) in a position task (PT) and a relax task (RT) recording activity of eight shoulder and elbow muscles. The continuous perturbation data were used to analyze the 2D endpoint dynamics in the frequency domain and to identify reflexive and intrinsic parameters of a linear neuromuscular shoulder-elbow model. Subsequently, it was assessed to what extent the large displacements in response to force pulses could be predicted from the 'small amplitude' linear neuromuscular model. Continuous and pulse perturbation responses with varying amplitudes disclosed highly nonlinear effects. In PT, a larger continuous perturbation induced stiffening with a factor of 1.5 attributed to task adaptation evidenced by increased co-contraction and reflexive activity. This task adaptation was even more profound in the pulse responses where reflexes and displacements were strongly affected by the presence and amplitude of preceding continuous perturbations. In RT, a larger continuous perturbation resulted in yielding with a factor of 3.8 attributed to nonlinear mechanical properties as no significant reflexive activity was found. Pulse perturbations always resulted in yielding where a model fitted to the preceding 5-mm continuous perturbations predicted only 37% of the recorded peak displacements in RT and 79% in PT. This demonstrates that linear neuromuscular models, identified using continuous perturbations with small amplitudes, strongly underestimate displacements in pulse-shaped (e.g., impact) loading conditions. The data will be used to validate neuromuscular models including

  10. Microwave radiation mechanism in a pulse-laser-irradiated Cu foil target revisited

    International Nuclear Information System (INIS)

    Chen Ziyu; Li Jianfeng; Li Jun; Peng Qixian

    2011-01-01

    The microwave radiation mechanism in a Cu-based foil target irradiated by an intense laser pulse has been investigated. Microwave emission in the frequency range 0.5-4 GHz has been observed from a 200 ps laser pulse of intensity about 10 12 W cm -2 normally incident on the target surface. The total microwave power and energy emitted from the interaction were found to be about 0.4 W and 2 nJ, respectively, corresponding to an efficiency of coupling laser energy to microwave energy of 2x10 -8 . The result agrees well with quadrupole radiation calculated based on a circuit model of a laser plasma, which indicates that the radiative process can be explained by magnetic dipole or electric quadrupole radiation from the laser-produced symmetric poloidal current distribution at the plasma-target interface.

  11. Microwave radiation mechanism in a pulse-laser-irradiated Cu foil target revisited

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ziyu; Li Jianfeng; Li Jun; Peng Qixian, E-mail: ziyuch@gmail.com [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2011-05-01

    The microwave radiation mechanism in a Cu-based foil target irradiated by an intense laser pulse has been investigated. Microwave emission in the frequency range 0.5-4 GHz has been observed from a 200 ps laser pulse of intensity about 10{sup 12} W cm{sup -2} normally incident on the target surface. The total microwave power and energy emitted from the interaction were found to be about 0.4 W and 2 nJ, respectively, corresponding to an efficiency of coupling laser energy to microwave energy of 2x10{sup -8}. The result agrees well with quadrupole radiation calculated based on a circuit model of a laser plasma, which indicates that the radiative process can be explained by magnetic dipole or electric quadrupole radiation from the laser-produced symmetric poloidal current distribution at the plasma-target interface.

  12. Thermomechanical effect of pulse-periodic laser radiation on cartilaginous and eye tissues

    Science.gov (United States)

    Baum, O. I.; Zheltov, G. I.; Omelchenko, A. I.; Romanov, G. S.; Romanov, O. G.; Sobol, E. N.

    2013-08-01

    This paper is devoted to theoretical and experimental studies into the thermomechanical action of laser radiation on biological tissues. The thermal stresses and strains developing in biological tissues under the effect of pulse-periodic laser radiation are theoretically modeled for a wide range of laser pulse durations. The models constructed allow one to calculate the magnitude of pressures developing in cartilaginous and eye tissues exposed to laser radiation and predict the evolution of cavitation phenomena occurring therein. The calculation results agree well with experimental data on the growth of pressure and deformations, as well as the dynamics of formation of gas bubbles, in the laser-affected tissues. Experiments on the effect of laser radiation on the trabecular region of the eye in minipigs demonstrated that there existed optimal laser irradiation regimens causing a substantial increase in the hydraulic permeability of the radiation-exposed tissue, which can be used to develop a novel glaucoma treatment method.

  13. Thermomechanical effect of pulse-periodic laser radiation on cartilaginous and eye tissues

    International Nuclear Information System (INIS)

    Baum, O I; Omelchenko, A I; Sobol, E N; Zheltov, G I; Romanov, G S; Romanov, O G

    2013-01-01

    This paper is devoted to theoretical and experimental studies into the thermomechanical action of laser radiation on biological tissues. The thermal stresses and strains developing in biological tissues under the effect of pulse-periodic laser radiation are theoretically modeled for a wide range of laser pulse durations. The models constructed allow one to calculate the magnitude of pressures developing in cartilaginous and eye tissues exposed to laser radiation and predict the evolution of cavitation phenomena occurring therein. The calculation results agree well with experimental data on the growth of pressure and deformations, as well as the dynamics of formation of gas bubbles, in the laser-affected tissues. Experiments on the effect of laser radiation on the trabecular region of the eye in minipigs demonstrated that there existed optimal laser irradiation regimens causing a substantial increase in the hydraulic permeability of the radiation-exposed tissue, which can be used to develop a novel glaucoma treatment method. (paper)

  14. Identifying Vulnerable Plaques with Acoustic Radiation Force Impulse Imaging

    Science.gov (United States)

    Doherty, Joshua Ryan

    The rupture of arterial plaques is the most common cause of ischemic complications including stroke, the fourth leading cause of death and number one cause of long term disability in the United States. Unfortunately, because conventional diagnostic tools fail to identify plaques that confer the highest risk, often a disabling stroke and/or sudden death is the first sign of disease. A diagnostic method capable of characterizing plaque vulnerability would likely enhance the predictive ability and ultimately the treatment of stroke before the onset of clinical events. This dissertation evaluates the hypothesis that Acoustic Radiation Force Impulse (ARFI) imaging can noninvasively identify lipid regions, that have been shown to increase a plaque's propensity to rupture, within carotid artery plaques in vivo. The work detailed herein describes development efforts and results from simulations and experiments that were performed to evaluate this hypothesis. To first demonstrate feasibility and evaluate potential safety concerns, finite- element method simulations are used to model the response of carotid artery plaques to an acoustic radiation force excitation. Lipid pool visualization is shown to vary as a function of lipid pool geometry and stiffness. A comparison of the resulting Von Mises stresses indicates that stresses induced by an ARFI excitation are three orders of magnitude lower than those induced by blood pressure. This thesis also presents the development of a novel pulse inversion harmonic tracking method to reduce clutter-imposed errors in ultrasound-based tissue displacement estimates. This method is validated in phantoms and was found to reduce bias and jitter displacement errors for a marked improvement in image quality in vivo. Lastly, this dissertation presents results from a preliminary in vivo study that compares ARFI imaging derived plaque stiffness with spatially registered composition determined by a Magnetic Resonance Imaging (MRI) gold standard

  15. Short-pulse laser interactions with disordered materials and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L. [Univ. of California, Berkeley, CA (United States)

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  16. Pulsed neutron well logging apparatus having means for determining background radiation

    International Nuclear Information System (INIS)

    Randall, R.R.

    1979-01-01

    A neutron generator in a well logging instrument is periodically pulsed and has an off period between pulses of 1000 microseconds. A neutron detector is gated on at intervals of 400 to 500, 550 to 650, and 700 to 800 microseconds, respectively, following the termination of each burst of fast neutrons. Circuitry is provided for determining the background radiation and for determining the macroscopic absorption. 3 claims

  17. Contrasting regional versus global radiative forcing by megacity pollution emissions

    Science.gov (United States)

    Dang, H.; Unger, N.

    2015-10-01

    We assess the regional and global integrated radiative forcing on 20- and 100-year time horizons caused by a one-year pulse of present day pollution emissions from 10 megacity areas: Los Angeles, Mexico City, New York City, Sao Paulo, Lagos, Cairo, New Delhi, Beijing, Shanghai and Manila. The assessment includes well-mixed greenhouse gases: carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4); and short-lived climate forcers: tropospheric ozone (O3) and fine mode aerosol particles (sulfate, nitrate, black carbon, primary and secondary organic aerosol). All megacities contribute net global warming on both time horizons. Most of the 10 megacity areas exert a net negative effect on their own regional radiation budget that is 10-100 times larger in magnitude than their global radiative effects. Of the cities examined, Beijing, New Delhi, Shanghai and New York contribute most to global warming with values ranging from +0.03 to 0.05 Wm-2yr on short timescales and +0.07-0.10 Wm-2yr on long timescales. Regional net 20-year radiative effects are largest for Mexico City (-0.84 Wm-2yr) and Beijing (-0.78 Wm-2yr). Megacity reduction of non-CH4 O3 precursors to improve air quality offers zero co-benefits to global climate. Megacity reduction of aerosols to improve air quality offers co-benefits to the regional radiative budget but minimal or no co-benefits to global climate with the exception of black carbon reductions in a few cities, especially Beijing and New Delhi. Results suggest that air pollution and global climate change mitigation can be treated as separate environmental issues in policy at the megacity level with the exception of CH4 action. Individual megacity reduction of CO2 and CH4 emissions can mitigate global warming and therefore offers climate safety improvements to the entire planet.

  18. Pulsed electron accelerator for radiation technologies in the enviromental applications

    Science.gov (United States)

    Korenev, Sergey

    1997-05-01

    The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.

  19. Activation of neuron generator of luciola mingrelica luminescence flashes under the effect of pulse X-radiation

    International Nuclear Information System (INIS)

    Bol'shakov, V.Yu.; Drobchenko, E.A.; Landa, S.B.; Pejmer, S.I.

    1990-01-01

    The effect of low-level pulse X-radiation on spontaneous photoactivity and luminous communicative behaviour of Luciola mingrelica has been investigated. It was shown that X-radiation doses of as low as 5x10 -5 Gy increased endogenous flashing activity and disinhibited the reaction of insects to light flashes imitating signals of mating partners. Powerful radiation pulses may influence significantly an instinctive behaviour and its neuronal organization

  20. Satellite-derived aerosol radiative forcing from the 2004 British Columbia wildfires

    Science.gov (United States)

    Guo, Song; Leighton, H.

    2008-01-01

    The British Columbia wildfires of 2004 was one of the largest wildfire events in the last ten years in Canada. Both the shortwave and longwave smoke aerosol radiative forcing at the top-of-atmosphere (TOA) are investigated using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Clouds and the Earth's Radiant Energy System (CERES) instruments. Relationships between the radiative forcing fluxes (??F) and wildfire aerosol optical thickness (AOT) at 0.55 ??m (??0.55) are deduced for both noontime instantaneous forcing and diurnally averaged forcing. The noontime averaged instantaneous shortwave and longwave smoke aerosol radiative forcing at the TOA are 45.8??27.5 W m-2 and -12.6??6.9 W m-2, respectively for a selected study area between 62??N and 68??N in latitude and 125??W and 145??W in longitude over three mainly clear-sky days (23-25 June). The derived diurnally averaged smoke aerosol shortwave radiative forcing is 19.9??12.1 W m-2 for a mean ??0.55 of 1.88??0.71 over the same time period. The derived ??F-?? relationship can be implemented in the radiation scheme used in regional climate models to assess the effect of wildfire aerosols.

  1. Area radiation monitor at the intense pulsed-neutron source

    International Nuclear Information System (INIS)

    Eichholz, J.J.; Lynch, F.J.; Mundis, R.L.; Howe, M.L.; Dolecek, E.H.

    1981-01-01

    A tissue-equivalent ionization chamber with associated circuitry has been developed for area radiation monitoring in the Intense Pulsed-Neutron Source (IPNS) facility at Argonne National Laboratory. The conventional chamber configuration was modified in order to increase the electric field and effective volume thereby achieving higher sensitivity and linearity. The instrument provides local and remote radiation level indications and a high level alarm. Twenty-four of these instruments were fabricated for use at various locations in the experimental area of the IPNS-1 facility

  2. Properties of spectra of the reflected and transmitted radiation during propagation of relativistically strong laser pulses in underdense plasmas

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Esirkepov, T.Z.; Naumova, N.M.

    1996-01-01

    Particle-in-cell simulation has been performed to study the spatial-temporal evolution of the pulse propagating in an underdense plasma. The spectra both of the reflected and transmitted radiation are investigated. The spectrum structure of the reflected radiation is due to the backward stimulated Raman scattering meanwhile the transmitted radiation structure is mainly due to the nonlinear self-phase-modulation. The influence of the pulse shape on the transmitted radiation spectrum is revealed. The dependence of the main features of the spectrum and the self-consistent pulse distortion is found. The pulse distortion is accompanied by the relativistic electrons generation. copyright 1996 American Institute of Physics

  3. Pulsed electromagnetic field radiation from a narrow slot antenna with a dielectric layer

    NARCIS (Netherlands)

    Štumpf, M.; De Hoop, A.T.; Lager, I.E.

    2010-01-01

    Analytic time domain expressions are derived for the pulsed electromagnetic field radiated by a narrow slot antenna with a dielectric layer in a two?dimensional model configuration. In any finite time window of observation, exact pulse shapes for the propagated, reflected, and refracted wave

  4. Effect of gamma radiation on egg hatchability of bruchids developing in three pulses

    International Nuclear Information System (INIS)

    Nagrare, V.S.; Bhatia, Parvathy

    2000-01-01

    One day old adults of Callosobruchus chinensis (Linn.) and Callosobruchus maculatus (Fab.) irradiated at 5, 10, 15, 20, 25, 30, 35 Gy dose of gamma radiation were bred on three pulses. Percent egg hatchability was inversely related with gamma radiation dose in both the species on three pulses and it was comparatively low in C. maculatus (Fab.). The mean percent hatchability was 70.66, 68.94, 65.41 on green gram, chickpea and cowpea, respectively in C. chinensis (Linn.) while in C. maculatus (Fab.) it was 66.52, 64.12, 61.27 on green gram, cowpea, chickpea, respectively. Both bruchids tolerated in the radiation doses when bred on green gram whereas they were susceptible on cowpea and chickpea. (author)

  5. Radiation-driven hydrodynamics of long pulse hohlraums on the National Ignition Facility

    International Nuclear Information System (INIS)

    Dewald, D L; Landen, O L; Suter, L J; Schein, J; Holder, J.; Campbell, K.; Glenzer, S H.; McDonald, J W.; Niemann, C.; Mackinnon, A J.; Schneider, M S.; Haynam, C.; Hinkel, D.; Hammel, B.A.

    2005-01-01

    The first hohlraum experiments on the National Ignition Facility (NIF) using the first four laser beams have activated the indirect drive experimental capabilities and tested radiation temperature limits imposed by hohlraum plasma filling. Vacuum hohlraums have been irradiated with laser powers up to 6 TW, 1 ns to 9 ns long square pulses and energies of up to 17 kJ to activate several diagnostics, to study the hohlraum radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. Furthermore, for a variety of hohlraum sizes and pulse lengths, the measured x-ray flux shows signatures of plasma filling that coincide with hard x-ray emission from plasma streaming out of the hohlraum. These observations agree with hydrodynamic simulations and with analytical modeling that includes hydrodynamic and coronal radiative losses. The modeling predicts radiation temperature limits on full NIF (1.8 MJ) that are significantly greater than required for ignition hohlraums

  6. Radiation chemistry and advanced polymer materials studied by picosecond pulse radiolysis combined with femtosecond laser

    International Nuclear Information System (INIS)

    Tagawa, S.; Yoshida, Y.; Miki, M.; Yamamoto, T.; Ushida, K.; Izumi, Y.

    1996-01-01

    We have synchronized a single picosecond MeV electron pulse from L-band linear accelerator (linac) of The Institute of Scientific and Industrial Research of Osaka University to a single femtosecond laser pulse of Ti:Sapphire laser. It is an essential technique for the future femtosecond pulse radiolysis and is also applied to many kinds of combined application of more than two different beams from accelerators in very short time range. Radiation chemistry and new type of polymers have been studied by LL (laser-linac) twin picosecond pulse radiolysis. Especially the early events in radiation chemistry such as geminate recombination processes of electrons and radical cations are have been studied in both liquids and solids. (author)

  7. Experimental Characterization of Radiation Forcing due to Atmospheric Aerosols

    Science.gov (United States)

    Sreenivas, K. R.; Singh, D. K.; Ponnulakshmi, V. K.; Subramanian, G.

    2011-11-01

    Micro-meteorological processes in the nocturnal atmospheric boundary layer (NBL) including the formation of radiation-fog and the development of inversion layers are controlled by heat transfer and the vertical temperature distribution close to the ground. In a recent study, it has been shown that the temperature profile close to the ground in stably-stratified, NBL is controlled by the radiative forcing due to suspended aerosols. Estimating aerosol forcing is also important in geo-engineering applications to evaluate the use of aerosols to mitigate greenhouse effects. Modeling capability in the above scenarios is limited by our knowledge of this forcing. Here, the design of an experimental setup is presented which can be used for evaluating the IR-radiation forcing on aerosols under either Rayleigh-Benard condition or under conditions corresponding to the NBL. We present results indicating the effect of surface emissivities of the top and bottom boundaries and the aerosol concentration on the temperature profiles. In order to understand the observed enhancement of the convection-threshold, we have determined the conduction-radiation time constant of an aerosol laden air layer. Our results help to explain observed temperature profiles in the NBL, the apparent stability of such profiles and indicate the need to account for the effect of aerosols in climatic/weather models.

  8. High-efficiency generation of pulsed Lyman-α radiation by resonant laser wave mixing in low pressure Kr-Ar mixture.

    Science.gov (United States)

    Saito, Norihito; Oishi, Yu; Miyazaki, Koji; Okamura, Kotaro; Nakamura, Jumpei; Louchev, Oleg A; Iwasaki, Masahiko; Wada, Satoshi

    2016-04-04

    We report an experimental generation of ns pulsed 121.568 nm Lyman-α radiation by the resonant nonlinear four-wave mixing of 212.556 nm and 845.015 nm radiation pulses providing a high conversion efficiency 1.7x10-3 with the output pulse energy 3.6 μJ achieved using a low pressure Kr-Ar mixture. Theoretical analysis shows that this efficiency is achieved due to the advantage of using (i) the high input laser intensities in combination with (ii) the low gas pressure allowing us to avoid the onset of full-scale discharge in the laser focus. In particular, under our experimental conditions the main mechanism of photoionization caused by the resonant 2-photon 212.556 nm radiation excitation of Kr atoms followed by the 1-photon ionization leads to ≈17% loss of Kr atoms and efficiency loss only by the end of the pulse. The energy of free electrons, generated by 212.556 nm radiation via (2 + 1)-photon ionization and accelerated mainly by 845.015 nm radiation, remains during the pulse below the level sufficient for the onset of full-scale discharge by the electron avalanche. Our analysis also suggests that ≈30-fold increase of 845.015 nm pulse energy can allow one to scale up the L-α radiation pulse energy towards the level of ≈100 μJ.

  9. Radiation closure and diurnal cycle of the clear-sky dust instantaneous direct radiative forcing over Arabian Peninsula

    KAUST Repository

    Osipov, Sergey

    2015-04-01

    To better quantify radiative effects of dust over the Arabian Peninsula we have developed a standalone column radiation transport model coupled with the Mie calculations and driven by reanalysis meteorological fields and atmospheric composition. Numerical experiments are carried out for a wide range of aerosol optical depths, including extreme values developed during the dust storm on 18-20 March 2012. Comprehensive ground-based observations and satellite retrievals are used to estimate aerosol optical properties, validate calculations and carry out radiation closure. The broadband surface albedo, fluxes at the bottom and top of the atmosphere as well as instantaneous dust radiative forcing are estimated both from the model and from observations. Diurnal cycle of the the shortwave instantaneous dust direct radiative forcing is studied for a range of aerosol and surface characteristics representative for the Arabian Peninsula. Mechanisms and parameters responsible for diurnal variability of the radiative forcing are evaluated. We found that intrinsic variability of the surface albedo and its dependence on atmospheric conditions along with anisotropic aerosol scattering are mostly responsible for diurnal effects. We also discuss estimates of the climatological dust instantaneous direct radiative forcing over land and the Red Sea using two approaches. The first approach is based on the probability density function of the aerosol optical depth, and the second is based on the climatologically average Spinning Enhanced Visible and Infrared Imager (SEVIRI) aerosol optical depth. Results are compared with Geostationary Earth Radiation Budget (GERB) derived top of the atmosphere climatological forcing over the Red Sea.

  10. EVALUATION OF THE THERAPEUTIC EFFICACY OF HIGH-INTENSITY PULSED-PERIODIC LASER RADIATION (CLINICAL AND EXPERIMENTAL OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    V. V. Sokolov

    2016-01-01

    Full Text Available From the experience of clinical observations, we have shown a high therapeutic effectiveness of the medical laser KULON-MED in: cosmetics, non-cancer inflammatory diseases of the gastrointestinal tract and cancer (cancer of the stomach and colon as at different wavelengths, and with different types of photosensitizers. In the area of anti-tumor photodynamic therapy (PDT, based on experimental studies, we have showed the high antitumor (sarcoma S‑37 effectiveness of the laser (with the inhibition of tumor growth of up to 100% for repetitively pulsed irradiation mode, and for mode fractionation doses laser radiation. In addition, significant differences are shown in the effectiveness of anticancer PDT methods in the application of high-intensity lasers, continuous and pulsed caused fundamental properties of laser radiation characteristics – time structure of the radiation pulses. Thus, for the first time we have shown that the time of high-intensity laser pulses structure significantly affects therapeutic efficacy laser system, and hence on the mechanisms of interaction of laser radiation with biological tissue.

  11. Controlling the acoustic streaming by pulsed ultrasounds.

    Science.gov (United States)

    Hoyos, Mauricio; Castro, Angélica

    2013-01-01

    We propose a technique based on pulsed ultrasounds for controlling, reducing to a minimum observable value the acoustic streaming in closed ultrasonic standing wave fluidic resonators. By modifying the number of pulses and the repetition time it is possible to reduce the velocity of the acoustic streaming with respect to the velocity generated by the continuous ultrasound mode of operation. The acoustic streaming is observed at the nodal plane where a suspension of 800nm latex particles was focused by primary radiation force. A mixture of 800nm and 15μm latex particles has been also used for showing that the acoustic streaming is hardly reduced while primary and secondary forces continue to operate. The parameter we call "pulse mode factor" i.e. the time of applied ultrasound divided by the duty cycle, is found to be the adequate parameter that controls the acoustic streaming. We demonstrate that pulsed ultrasound is more efficient for controlling the acoustic streaming than the variation of the amplitude of the standing waves. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Influence of laser pulse frequency on the microstructure of aluminum nitride thin films synthesized by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Antonova, K., E-mail: krasa@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Duta, L. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Szekeres, A. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Stan, G.E. [National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Magurele (Romania); Mihailescu, I.N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Anastasescu, M.; Stroescu, H.; Gartner, M. [Institute of Physical Chemistry, “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania)

    2017-02-01

    Highlights: • Study of pulsed laser deposited AlN films at different laser pulse frequencies. • Higher laser pulse frequency promotes nanocrystallites formation at temperature 450 °C. • AFM and GIXRD detect randomly oriented wurtzite AlN structures. • Characterization of the nanocrystallites’ orientation by FTIR reflectance spectra. • Berreman effect is registered in p-polarised radiation at large incidence angles. - Abstract: Aluminum Nitride (AlN) thin films were synthesized on Si (100) wafers at 450 °C by pulsed laser deposition. A polycrystalline AlN target was multipulsed irradiated in a nitrogen ambient, at different laser pulse repetition rate. Grazing Incidence X-Ray Diffraction and Atomic Force Microscopy analyses evidenced nanocrystallites with a hexagonal lattice in the amorphous AlN matrix. The thickness and optical constants of the layers were determined by infrared spectroscopic ellipsometry. The optical properties were studied by Fourier Transform Infrared reflectance spectroscopy in polarised oblique incidence radiation. Berreman effect was observed around the longitudinal phonon modes of the crystalline AlN component. Angular dependence of the A{sub 1}LO mode frequency was analysed and connected to the orientation of the particles’ optical axis to the substrate surface normal. The role of the laser pulse frequency on the layers’ properties is discussed on this basis.

  13. Pulse picker for synchrotron radiation driven by a surface acoustic wave.

    Science.gov (United States)

    Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Petsiuk, Andrei; Dolbnya, Igor; Sawhney, Kawal; Erko, Alexei

    2017-05-15

    A functional test for a pulse picker for synchrotron radiation was performed at Diamond Light Source. The purpose of a pulse picker is to select which pulse from the synchrotron hybrid-mode bunch pattern reaches the experiment. In the present work, the Bragg reflection on a Si/B4C multilayer was modified using surface acoustic wave (SAW) trains. Diffraction on the SAW alters the direction of the x rays and it can be used to modulate the intensity of the x rays that reach the experimental chamber. Using electronic modulation of the SAW amplitude, it is possible to obtain different scattering conditions for different x-ray pulses. To isolate the single bunch, the state of the SAW must be changed in the short time gap between the pulses. To achieve the necessary time resolution, the measurements have been performed in conical diffraction geometry. The achieved time resolution was 120 ns.

  14. Resolution of the uncertainties in the radiative forcing of HFC-134a

    International Nuclear Information System (INIS)

    Forster, Piers M. de F; Burkholder, J.B.; Clerbaux, C.; Coheur, P.F.; Dutta, M.; Gohar, L.K.; Hurley, M.D.; Myhre, G.; Portmann, R.W.; Shine, K.P.; Wallington, T.J.; Wuebbles, D.

    2005-01-01

    HFC-134a (CF 3 CH 2 F) is the most rapidly growing hydrofluorocarbon in terms of atmospheric abundance. It is currently used in a large number of household refrigerators and air-conditioning systems and its concentration in the atmosphere is forecast to increase substantially over the next 50-100 years. Previous estimates of its radiative forcing per unit concentration have differed significantly ∼25%. This paper uses a two-step approach to resolve this discrepancy. In the first step six independent absorption cross section datasets are analysed. We find that, for the integrated cross section in the spectral bands that contribute most to the radiative forcing, the differences between the various datasets are typically smaller than 5% and that the dependence on pressure and temperature is not significant. A 'recommended' HFC-134a infrared absorption spectrum was obtained based on the average band intensities of the strongest bands. In the second step, the 'recommended' HFC-134a spectrum was used in six different radiative transfer models to calculate the HFC-134a radiative forcing efficiency. The clear-sky instantaneous radiative forcing, using a single global and annual mean profile, differed by 8%, between the 6 models, and the latitudinally-resolved adjusted cloudy sky radiative forcing estimates differed by a similar amount. We calculate that the radiative forcing efficiency of HFC-134a is 0.16+/-0.02Wm -2 ppbv -1

  15. Micro-pulses generation in ECR breakdown stimulated by gyrotron radiation at 37,5 GHz

    International Nuclear Information System (INIS)

    Skalyga, V.; Zorin, V.; Izotov, I.; Golubev, S.; Razin, S.; Sidorov, A.; Vodopyanov, A.

    2012-01-01

    The present work is devoted to experimental and theoretical investigation of the creation of short pulsed (< 100 μs) multicharged ion beams. The possibility of quasi-stationary generation of short pulsed beams under conditions of quasi-gasdynamic plasma confinement was shown in recent experiments. Later another way of such beams creation based on the Pre-glow effect was proposed. In present work it was demonstrated that in the case when duration of microwave (MW) pulse is less than formation time of Pre-glow peak, realization of a regime when ion current is negligible during MW pulse and intense multicharged ions flux appears only when MW ends could be possible. Such pulses after the end of MW were called micro-pulses. In the present work the generation of micro-pulses was observed in experiments with ECR discharge stimulated by gyrotron radiation at 37,5 GHz, 100 kW. In this case pulses with duration less than 30 μs were obtained. Probably the same effect was observed in GANIL where 14 GHz radiation was used and pulses with duration about 2 ms were registered. In present work it was shown that the intensity of such micro-pulse could be higher than intensity of Pre-glow peak at the same conditions but with longer MW pulse. The generation of micro-pulses of nitrogen and argon multicharged ions with current of a few mA and length about 30 μs after MW pulse with duration of 30-100 μs was demonstrated. The low level of impurities, high current density and rather high average charge make possible to consider such micro-pulse regime as a possibility for the creation of a short pulsed ion source. The paper is followed by the slides of the presentation. (authors)

  16. Accuracy of Analog Fiber-Optic Links in Pulsed Radiation Environments

    International Nuclear Information System (INIS)

    E K Miller; G S Macrum; I J McKenna

    2007-01-01

    Interferometric fiber-optic links used in pulsed-power experiments are evaluated for accuracy in the presence of radiation fields which alter fiber transmission. Amplitude-modulated format (e.g., Mach-Zehnder) and phase-modulated formats are compared. Historically, studies of radiation effects on optical fibers have focused on degradation and recovery of the fibers transmission properties; such work is either in the context of survivability of fibers in catastrophic conditions or suitability of fibers installed for command and control systems within an experimental facility [1], [2]. In this work, we consider links used to transmit realtime diagnostic data, and we analyze the error introduced by radiation effects during the drive pulse. The result is increased uncertainties in key parameters required to unfold the sinusoidal transfer function. Two types of modulation are considered: amplitude modulation typical of a Mach-Zehnder (M-Z) modulator [3], and phase modulation, which offers more flexible demodulation options but relies on the spatiotemporal coherence of the light in the fiber. The M-Z link is shown schematically in Fig. 1, and the phase-modulated link is shown in Fig. 2. We present data from two experimental environments: one with intense, controlled radiation fields to simulate conditions expected at the next generation of pulsed-power facilities, and the second with radiation effects below the noise level of the recording system. In the first case, we intentionally expose three types of single-mode fiber (SMF) to ionizing radiation and study the response by simultaneously monitoring phase and amplitude of the transmitted light. The phase and amplitude effects are evidently dominated by different physical phenomena, as their recovery dynamics are markedly different; both effects, though, show similar short-term behavior during exposure, integrating the dose at the dose levels studied, from 1 to 300 kRad, over the exposure times of 50 ps and 30 ns. In the

  17. The possibility of multi-layer nanofabrication via atomic force microscope-based pulse electrochemical nanopatterning

    Science.gov (United States)

    Kim, Uk Su; Morita, Noboru; Lee, Deug Woo; Jun, Martin; Park, Jeong Woo

    2017-05-01

    Pulse electrochemical nanopatterning, a non-contact scanning probe lithography process using ultrashort voltage pulses, is based primarily on an electrochemical machining process using localized electrochemical oxidation between a sharp tool tip and the sample surface. In this study, nanoscale oxide patterns were formed on silicon Si (100) wafer surfaces via electrochemical surface nanopatterning, by supplying external pulsed currents through non-contact atomic force microscopy. Nanoscale oxide width and height were controlled by modulating the applied pulse duration. Additionally, protruding nanoscale oxides were removed completely by simple chemical etching, showing a depressed pattern on the sample substrate surface. Nanoscale two-dimensional oxides, prepared by a localized electrochemical reaction, can be defined easily by controlling physical and electrical variables, before proceeding further to a layer-by-layer nanofabrication process.

  18. Aerosol Direct Radiative Forcing and Forcing Efficiencies at Surface from the shortwave Irradiance Measurements in Abu Dhabi, UAE

    Science.gov (United States)

    Beegum S, N.; Ben Romdhane, H.; Ghedira, H.

    2013-12-01

    Atmospheric aerosols are known to affect the radiation balance of the Earth-Atmospheric system directly by scattering and absorbing the solar and terrestrial radiation, and indirectly by affecting the lifetime and albedo of the clouds. Continuous and simultaneous measurements of short wave global irradiance in combination with synchronous spectral aerosol optical depth (AOD) measurements (from 340 nm to 1640 nm in 8 channels), for a period of 1 year from June 2012 to May 2013, were used for the determination of the surface direct aerosol radiative forcing and forcing efficiencies under cloud free conditions in Abu Dhabi (24.42°N, 54.61o E, 7m MSL), a coastal location in United Arab Emirates (UAE) in the Arabian Peninsula. The Rotating Shadow band Pyranometer (RSP, LI-COR) was used for the irradiance measurements (in the spectral region 400-1100 nm), whereas the AOD measurements were carried out using CIMEL Sunphotometer (CE 318-2, under AERONET program). The differential method, which is neither sensitive to calibration uncertainties nor model assumptions, has been employed for estimating forcing efficiencies from the changes in the measured fluxes. The forcing efficiency, which quantifies the net change in irradiance per unit change in AOD, is an appropriate parameter for the characterization of the aerosol radiative effects even if the microphysical and optical properties of the aerosols are not completely understood. The corresponding forcing values were estimated from the forcing efficiencies. The estimated radiative forcing and forcing efficiencies exhibited strong monthly variations. The forcing efficiencies (absolute magnitudes) were highest during March, and showed continuous decrease thereafter to reach the lowest value during September. In contrast, the forcing followed a slightly different pattern of variability, with the highest solar dimming during April ( -60 W m-2) and the minimum during February ( -20 W m-2). The results indicate that the aerosol

  19. Plasma focus - a pulsed radiation source

    International Nuclear Information System (INIS)

    Blagoev, Alexandar; Zapryanov, Stanislav; Gol'tsev, Vasilii; Gemishev, Orlin

    2014-01-01

    The article is devoted to the applications of plasma focus (PF) in radiobiology. Briefly describes the principle of operation of the device and the parameters of the PF type 'Mader' at the Physics Department of the University. Phase pinch discharge zones appear hot and dense plasma, which is a source of X-ray and neutron pulse when the working gas is deuterium. These radiations are essential for biological applications. Besides these bundles are obtained from accelerated charged particles and shock wave of ionized gas. Described are some of the contributions of other authors using PF in radiobiology. Given the results in the exposure of living organisms with soft X-ray emission of PF. We examined the viability of the cells of the two types of yeasts, after irradiation with X-rays at a dose of 65 mSv, where no change was found on the performance. It is shown that soft X-ray radiation doses on the order of tens of mSv, cause a significant change in the productivity of the electronic transport in the photosynthetic apparatus of Chlamydomonas reinhardtii. Trichoderma reesei M7 shows remarkable vitality irradiation with substantial doses of hard X-ray radiation (tens Sv). Appear endoglyukonazata changes in the protein component and the residual mass

  20. Generation of pulsed far-infrared radiation and its application for far-infrared time-resolved spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Yasuhiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1996-07-01

    So-called time-resolved spectroscopy technique has been used from old time as the means for studying the dynamic optical property, light-induced reaction and so on of matters. As an example, there is the method called pump and probe, and here, the wavelength of this probe light is the problem. If the object energy region is limited to about 0.1 eV, fast time-resolved spectroscopy is feasible relatively easily. However, energy region is extended to low energy region, the light source which is available as the pulsed probe light having sufficient intensity is limited. In this paper, the attempt of time-resolved spectroscopy utilizing coherent radiation, which has ended in failure, and the laser pulse-induced far-infrared radiation which can be utilized as new far-infrared probe light are reported. The reason why far-infrared radiation is used is explained. The attempt of time-resolved spectroscopy using NaCl crystals is reported on the equipment, the method of measuring absorption spectra and the results. Laser pulse-induced far-infrared radiation and the method of generating it are described. The multi-channel detector for far-infrared radiation which was made for trial is shown. (K.I.)

  1. Effect of radiation damping on the interaction of ultra-intense laser pulses with an overdense plasma

    International Nuclear Information System (INIS)

    Zhidkov, Alexei; Koga, James; Sasaki, Akira; Ueshima, Yutaka

    2001-01-01

    The effect of radiation damping on the interaction of an ultra-intense laser pulse with an overdense plasma is studied via relativistic particle-in-cell simulation. The calculation is performed for a Cu solid slab including ionization. We find a strong effect from radiation damping on the electron energy cut-off at about 150 MeV and on the absorption of a laser pulse with an intensity I=5x10 22 W/cm 2 and duration of 20 fs. Hot electrons reradiate more then 10% of the laser energy during the laser pulse. With the laser intensity, the energy loss due to the radiation damping increases as I 3 . In addition, we observe that the laser pulse may not propagate in the plasma even if ω pl 2 /ω 2 γ<1. The increase of skin depth with the laser intensity due to relativistic effects gives rise to the absorption efficiency. (author)

  2. Acoustic radiation force on cylindrical shells in a plane standing wave

    International Nuclear Information System (INIS)

    Mitri, F G

    2005-01-01

    In this paper, the radiation force per length resulting from a plane standing wave incident on an infinitely long cylindrical shell is computed. The cases of elastic and viscoelastic shells immersed in ideal (non-viscous) fluids are considered with particular emphasis on their thickness and the content of their interior hollow spaces. Numerical calculations of the radiation force function Y st are performed. The fluid-loading effect on the radiation force function curves is analysed as well. The results show several features quite different when the interior hollow space is changed from air to water. Moreover, the theory developed here is more general since it includes the results on cylinders

  3. The Effect of Non-Lambertian Surface Reflectance on Aerosol Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Ricchiazzi, P.; O' Hirok, W.; Gautier, C.

    2005-03-18

    Surface reflectance is an important factor in determining the strength of aerosol radiative forcing. Previous studies of radiative forcing assumed that the reflected surface radiance is isotropic and does not depend on incident illumination angle. This Lambertian reflection model is not a very good descriptor of reflectance from real land and ocean surfaces. In this study we present computational results for the seasonal average of short and long wave aerosol radiative forcing at the top of the atmosphere and at the surface. The effect of the Lambertian assumption is found through comparison with calculations using a more detailed bi-direction reflectance distribution function (BRDF).

  4. Radiative forcing calculations for CH3Br

    International Nuclear Information System (INIS)

    Grossman, A.S.; Blass, W.E.; Wuebbles, D.J.

    1995-06-01

    Methyl Bromide, CH 3 Br, is the major organobromine species in the lower atmosphere and is a primary source of bromine in the stratosphere. It has a lifetime of 1.3 years. The IR methyl bromide spectra in the atmospheric window region, 7--13μ, was determined using a well tested Coriolis resonance and ell-doubling (and ell-resonance) computational system. A radiative forcing value of 0.00493 W/m 2 /ppbv was obtained for CH 3 Br and is approximately linear in the background abundance. This value is about 2 percent of the forcing of CFC-11 and about 278 times the forcing of C0 2 , on a per molecule basis. The radiative forcing calculation is used to estimate the global warming potential (GWP) of CH 3 Br. The results give GWPs for CH 3 Br of the order of 13 for an integration period of 20 years and 4 for an integration period of 100 years (assuming C0 2 = 1, following IPCC [1994]). While CH 3 Br has a GWP which is approximately 25 percent of the GWP of CH 4 , the current emission rates are too low to cause serious atmospheric greenhouse heating effects at this time

  5. Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model

    Directory of Open Access Journals (Sweden)

    U. Schumann

    2017-11-01

    Full Text Available Earth's surface temperature sensitivity to radiative forcing (RF by contrail cirrus and the related RF efficacy relative to CO2 are investigated in a one-dimensional idealized model of the atmosphere. The model includes energy transport by shortwave (SW and longwave (LW radiation and by mixing in an otherwise fixed reference atmosphere (no other feedbacks. Mixing includes convective adjustment and turbulent diffusion, where the latter is related to the vertical component of mixing by large-scale eddies. The conceptual study shows that the surface temperature sensitivity to given contrail RF depends strongly on the timescales of energy transport by mixing and radiation. The timescales are derived for steady layered heating (ghost forcing and for a transient contrail cirrus case. The radiative timescales are shortest at the surface and shorter in the troposphere than in the mid-stratosphere. Without mixing, a large part of the energy induced into the upper troposphere by radiation due to contrails or similar disturbances gets lost to space before it can contribute to surface warming. Because of the different radiative forcing at the surface and at top of atmosphere (TOA and different radiative heating rate profiles in the troposphere, the local surface temperature sensitivity to stratosphere-adjusted RF is larger for SW than for LW contrail forcing. Without mixing, the surface energy budget is more important for surface warming than the TOA budget. Hence, surface warming by contrails is smaller than suggested by the net RF at TOA. For zero mixing, cooling by contrails cannot be excluded. This may in part explain low efficacy values for contrails found in previous global circulation model studies. Possible implications of this study are discussed. Since the results of this study are model dependent, they should be tested with a comprehensive climate model in the future.

  6. Winds from accretion disks driven by the radiation and magnetocentrifugal force

    OpenAIRE

    Proga, D.

    2000-01-01

    We study the 2-D, time-dependent hydrodynamics of radiation-driven winds from luminous accretion disks threaded by a strong, large-scale, ordered magnetic field. The radiation force is due to spectral lines and is calculated using a generalized multidimensional formulation of the Sobolev approximation. The effects of the magnetic field are approximated by adding a force that emulates a magnetocentrifugal force. Our approach allows us to calculate disk winds when the magnetic field controls th...

  7. Laser radiation forces in laser-produced plasmas

    International Nuclear Information System (INIS)

    Stamper, J.A.

    1975-01-01

    There are two contributions to laser radiation forces acting on the electrons. Transfer of momentum from the fields to the electrons results in a field pressure contribution and occurs whenever there is absorption or reflection. The quiver pressure contribution, associated with electron quiver motion, is due to inhomogeneous fields inducing momentum transfer within the electron system. It is shown that the ponderomotive force with force density, (epsilon-1)/8πdel 2 >, does not include the field contribution and does not lead to a general description of macroscopic processes. A theory is discussed which does give a general macroscopic description (absorption, reflection, refraction, and magnetic field generation) and which reduces to the ponderomotive force for purely sinusoidal fields in a neutral, homogeneous, nonabsorbing plasma

  8. Acoustic radiation force impulse elastography of the kidneys: is shear wave velocity affected by tissue fibrosis or renal blood flow?

    Science.gov (United States)

    Asano, Kenichiro; Ogata, Ai; Tanaka, Keiko; Ide, Yoko; Sankoda, Akiko; Kawakita, Chieko; Nishikawa, Mana; Ohmori, Kazuyoshi; Kinomura, Masaru; Shimada, Noriaki; Fukushima, Masaki

    2014-05-01

    The aim of this study was to identify the main influencing factor of the shear wave velocity (SWV) of the kidneys measured by acoustic radiation force impulse elastography. The SWV was measured in the kidneys of 14 healthy volunteers and 319 patients with chronic kidney disease. The estimated glomerular filtration rate was calculated by the serum creatinine concentration and age. As an indicator of arteriosclerosis of large vessels, the brachial-ankle pulse wave velocity was measured in 183 patients. Compared to the degree of interobserver and intraobserver deviation, a large variance of SWV values was observed in the kidneys of the patients with chronic kidney disease. Shear wave velocity values in the right and left kidneys of each patient correlated well, with high correlation coefficients (r = 0.580-0.732). The SWV decreased concurrently with a decline in the estimated glomerular filtration rate. A low SWV was obtained in patients with a high brachial-ankle pulse wave velocity. Despite progression of renal fibrosis in the advanced stages of chronic kidney disease, these results were in contrast to findings for chronic liver disease, in which progression of hepatic fibrosis results in an increase in the SWV. Considering that a high brachial-ankle pulse wave velocity represents the progression of arteriosclerosis in the large vessels, the reduction of elasticity succeeding diminution of blood flow was suspected to be the main influencing factor of the SWV in the kidneys. This study indicates that diminution of blood flow may affect SWV values in the kidneys more than the progression of tissue fibrosis. Future studies for reducing data variance are needed for effective use of acoustic radiation force impulse elastography in patients with chronic kidney disease.

  9. Direct and semi-direct radiative forcing of smoke aerosols over clouds

    Directory of Open Access Journals (Sweden)

    E. M. Wilcox

    2012-01-01

    Full Text Available Observations from Earth observing satellites indicate that dark carbonaceous aerosols that absorb solar radiation are widespread in the tropics and subtropics. When these aerosols mix with clouds, there is generally a reduction of cloudiness owing to absorption of solar energy in the aerosol layer. Over the subtropical South Atlantic Ocean, where smoke from savannah burning in southern Africa resides above a persistent deck of marine stratocumulus clouds, radiative heating of the smoke layer leads to a thickening of the cloud layer. Here, satellite observations of the albedo of overcast scenes of 25 km2 size or larger are combined with additional satellite observations of clouds and aerosols to estimate the top-of-atmosphere direct radiative forcing attributable to presence of dark aerosol above bright cloud, and the negative semi-direct forcing attributable to the thickening of the cloud layer. The average positive direct radiative forcing by smoke over an overcast scene is 9.2±6.6 W m−2 for cases with an unambiguous signal of absorbing aerosol over cloud in passive ultraviolet remote sensing observations. However, cloud liquid water path is enhanced by 16.3±7.7 g m−2 across the range of values for sea surface temperature for cases of smoke over cloud. The negative radiative forcing associated with this semi-direct effect of smoke over clouds is estimated to be −5.9±3.5 W m−2. Therefore, the cooling associated with the semi-direct cloud thickening effect compensates for greater than 60 % of the direct radiative effect. Accounting for the frequency of occurrence of significant absorbing aerosol above overcast scenes leads to an estimate of the average direct forcing of 1.0±0.7 W m−2 contributed by these scenes averaged over the subtropical southeast Atlantic Ocean during austral winter. The regional average of the negative semi-direct forcing is −0.7±0.4 W m−2

  10. Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, M. L.; Liu, B.; Hu, R. H.; Shou, Y. R.; Lin, C.; Lu, H. Y.; Lu, Y. R.; Ma, W. J., E-mail: wenjun.ma@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871 (China); Gu, Y. Q. [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Yan, X. Q., E-mail: x.yan@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2016-08-15

    In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with higher energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.

  11. Direct radiative forcing due to aerosols in Asia during March 2002.

    Science.gov (United States)

    Park, Soon-Ung; Jeong, Jaein I

    2008-12-15

    The Asian dust aerosol model (ADAM) and the aerosol dynamic model including the gas-aerosol interaction processes together with the Column Radiation Model (CRM) of Community Climate Model 3 and the output of the fifth generation of meso-scale model (MM5) in a grid 60 x 60 km2 in the Asian domain (70-150E, Equator-50N) have been employed to estimate direct radiative forcing of the Asian dust and the anthropogenic aerosols including the BC, OC, secondary inorganic aerosol (SIA), mixed type aerosol (dust+BC+OC+SIA) and sea salt aerosols at the surface, the top of atmosphere (TOA) and in the atmosphere for the period of 1-31 March 2002 during which a severe Asian dust event has been occurred in the model domain. The results indicate that the ADAM model and the aerosol dynamic model simulate quite well the spatial and temporal distributions of the mass concentration of aerosols with the R2 value of more than 0.7. The estimated mean total column aerosol mass in the analysis domain for the whole period is found to be about 78 mg m(-2), of which 66% and 34% are, respectively, contributed by the Asian dust aerosol and all the other anthropogenic aerosols. However, the direct radiative forcing contributed by the Asian dust aerosol is about 22% of the mean radiative forcing at the surface (-6.8 W m(-2)), about 31% at the top of atmosphere (-2.9 W m(-2)) and about 13% in the atmosphere (3.8 W m(-2)), suggesting relatively inefficient contribution of the Asian dust aerosol on the direct radiative forcing compared to the anthropogenic aerosols. The aerosol direct radiative forcing at the surface is mainly contributed by the mixed type aerosol (30%) and the SIA aerosol (25%) while at the top of atmosphere it is mainly contributed by the SIA aerosol (43%) and the Asian dust aerosol (31%) with positively (warming) contributed by BC and mixed type aerosols. The atmosphere is warmed mainly by the mixed type aerosol (55%) and the BC aerosol (26%). However, the largest radiative

  12. Direct radiative forcing due to aerosols in Asia during March 2002

    International Nuclear Information System (INIS)

    Park, Soon-Ung; Jeong, Jaein I.

    2008-01-01

    The Asian dust aerosol model (ADAM) and the aerosol dynamic model including the gas-aerosol interaction processes together with the Column Radiation Model (CRM) of Community Climate Model 3 and the output of the fifth generation of meso-scale model (MM5) in a grid 60 x 60 km 2 in the Asian domain (70-150E, Equator-50N) have been employed to estimate direct radiative forcing of the Asian dust and the anthropogenic aerosols including the BC, OC, secondary inorganic aerosol (SIA), mixed type aerosol (dust + BC + OC + SIA) and sea salt aerosols at the surface, the top of atmosphere (TOA) and in the atmosphere for the period of 1-31 March 2002 during which a severe Asian dust event has been occurred in the model domain. The results indicate that the ADAM model and the aerosol dynamic model simulate quite well the spatial and temporal distributions of the mass concentration of aerosols with the R 2 value of more than 0.7. The estimated mean total column aerosol mass in the analysis domain for the whole period is found to be about 78 mg m -2 , of which 66% and 34% are, respectively, contributed by the Asian dust aerosol and all the other anthropogenic aerosols. However, the direct radiative forcing contributed by the Asian dust aerosol is about 22% of the mean radiative forcing at the surface (- 6.8 W m -2 ), about 31% at the top of atmosphere (- 2.9 W m -2 ) and about 13% in the atmosphere (3.8 W m -2 ), suggesting relatively inefficient contribution of the Asian dust aerosol on the direct radiative forcing compared to the anthropogenic aerosols. The aerosol direct radiative forcing at the surface is mainly contributed by the mixed type aerosol (30%) and the SIA aerosol (25%) while at the top of atmosphere it is mainly contributed by the SIA aerosol (43%) and the Asian dust aerosol (31%) with positively (warming) contributed by BC and mixed type aerosols. The atmosphere is warmed mainly by the mixed type aerosol (55%) and the BC aerosol (26%). However, the largest

  13. Conductivity of ion dielectrics during the mean flux-density electron- and X-ray pulse radiation

    International Nuclear Information System (INIS)

    Vajsburd, D.I.; Mesyats, G.A.; Naminov, V.L.; Tavanov, Eh.G.

    1982-01-01

    Conductivity of ion dielectrics under electron and X-ray pulse radiation is investigated. Investigations have been conducted in the range of average beam densities in which extinction of low-energy conductivity takes place. Thin plates of alkali-halogen crystals have been used as samples. Small-dimensional accelerator with controlled beam parameters: 1-20 ns, 0.1-2000 A/cm 2 , 0.3-0.5 MeV has been used for radiation. Temperature dependence of conductivity current pulse is determined. Time resolution of 10 - 10 s is achieved. In the 70-300 K range it practically coincides with radiation pulse. An essential inertial constituent is observed below 300 K. It is shown that at average beam densities a comparable contribution into fast conductivity is made by intracentre conductivity independent of temperature and high-temperature conductivity which decreases with temperature with activation energy equal to the energy of short-wave background. That is why amplitude of fast constituent decreases with temperature slower than high-energy conductivity

  14. Method for detecting and distinguishing between specific types of environmental radiation using a high pressure ionization chamber with pulse-mode readout

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2017-12-19

    An environmental radiation detector for detecting and distinguishing between all types of environmental radiation, including photons, charged particles, and neutrons. A large volume high pressure ionization chamber (HPIC) includes BF.sub.3 gas at a specific concentration to render the radiation detector sensitive to the reactions of neutron capture in Boron-10 isotope. A pulse-mode readout is connected to the ionization chamber capable of measuring both the height and the width of the pulse. The heavy charged products of the neutron capture reaction deposit significant characteristic energy of the reaction in the immediate vicinity of the reaction in the gas, producing a signal with a pulse height proportional to the reaction energy, and a narrow pulse width corresponding to the essentially pointlike energy deposition in the gas. Readout of the pulse height and the pulse width parameters of the signals enables distinguishing between the different types of environmental radiation, such as gamma (x-rays), cosmic muons, and neutrons.

  15. Climate Response to Negative Greenhouse Gas Radiative Forcing in Polar Winter

    Science.gov (United States)

    Flanner, M. G.; Huang, X.; Chen, X.; Krinner, G.

    2018-02-01

    Greenhouse gas (GHG) additions to Earth's atmosphere initially reduce global outgoing longwave radiation, thereby warming the planet. In select environments with temperature inversions, however, increased GHG concentrations can actually increase local outgoing longwave radiation. Negative top of atmosphere and effective radiative forcing (ERF) from this situation give the impression that local surface temperatures could cool in response to GHG increases. Here we consider an extreme scenario in which GHG concentrations are increased only within the warmest layers of winter near-surface inversions of the Arctic and Antarctic. We find, using a fully coupled Earth system model, that the underlying surface warms despite the GHG addition exerting negative ERF and cooling the troposphere in the vicinity of the GHG increase. This unique radiative forcing and thermal response is facilitated by the high stability of the polar winter atmosphere, which inhibit thermal mixing and amplify the impact of surface radiative forcing on surface temperature. These findings also suggest that strategies to exploit negative ERF via injections of short-lived GHGs into inversion layers would likely be unsuccessful in cooling the planetary surface.

  16. Improving Estimates of Cloud Radiative Forcing over Greenland

    Science.gov (United States)

    Wang, W.; Zender, C. S.

    2014-12-01

    Multiple driving mechanisms conspire to increase melt extent and extreme melt events frequency in the Arctic: changing heat transport, shortwave radiation (SW), and longwave radiation (LW). Cloud Radiative Forcing (CRF) of Greenland's surface is amplified by a dry atmosphere and by albedo feedback, making its contribution to surface melt even more variable in time and space. Unfortunately accurate cloud observations and thus CRF estimates are hindered by Greenland's remoteness, harsh conditions, and low contrast between surface and cloud reflectance. In this study, cloud observations from satellites and reanalyses are ingested into and evaluated within a column radiative transfer model. An improved CRF dataset is obtained by correcting systematic discrepancies derived from sensitivity experiments. First, we compare the surface radiation budgets from the Column Radiation Model (CRM) driven by different cloud datasets, with surface observations from Greenland Climate Network (GC-Net). In clear skies, CRM-estimated surface radiation driven by water vapor profiles from both AIRS and MODIS during May-Sept 2010-2012 are similar, stable, and reliable. For example, although AIRS water vapor path exceeds MODIS by 1.4 kg/m2 on a daily average, the overall absolute difference in downwelling SW is CRM estimates are within 20 W/m2 range of GC-Net downwelling SW. After calibrating CRM in clear skies, the remaining differences between CRM and observed surface radiation are primarily attributable to differences in cloud observations. We estimate CRF using cloud products from MODIS and from MERRA. The SW radiative forcing of thin clouds is mainly controlled by cloud water path (CWP). As CWP increases from near 0 to 200 g/m2, the net surface SW drops from over 100 W/m2 to 30 W/m2 almost linearly, beyond which it becomes relatively insensitive to CWP. The LW is dominated by cloud height. For clouds at all altitudes, the lower the clouds, the greater the LW forcing. By applying

  17. INTERACTION OF LASER RADIATION WITH MATTER: Influence of surface breakdown on the process of drilling metals with pulsed CO2 laser radiation

    Science.gov (United States)

    Arutyunyan, R. V.; Baranov, V. Yu; Bobkov, I. V.; Bol'shov, Leonid A.; Dolgov, V. A.; Kanevskiĭ, M. F.; Malyuta, D. D.; Mezhevov, V. S.

    1988-03-01

    A report is given of the influence of low-threshold surface optical breakdown, occurring under the action of short (~ 5-μs) radiation pulses from a CO2 laser, on the process of the laser drilling of metals. Data are given on the difference between the interaction of radiation pulses having the same duration but differing in shape. A study was made of the influence of the pressure of the atmosphere surrounding a target on the results of laser drilling of metals. A theoretical explanation is given of the experimental results.

  18. Evaluation of material dispersion using a nanosecond optical pulse radiator.

    Science.gov (United States)

    Horiguchi, M; Ohmori, Y; Miya, T

    1979-07-01

    To study the material dispersion effects on graded-index fibers, a method for measuring the material dispersion in optical glass fibers has been developed. Nanosecond pulses in the 0.5-1.7-microm region are generated by a nanosecond optical pulse radiator and grating monochromator. These pulses are injected into a GeO(2)-P(2)0(5)-doped silica graded-index fiber. Relative time delay changes between different wavelengths are used to determine material dispersion, core glass refractive index, material group index, and optimum profile parameter of the graded-index fiber. From the measured data, the optimum profile parameter on the GeO(2)-P(2)O(5)-doped silica graded-index fiber could be estimated to be 1.88 at 1.27 microm of the material dispersion free wavelength region and 1.82 at 1.55 microm of the lowest-loss wavelength region in silica-based optical fiber waveguides.

  19. Effects of anthropogenic emissions on tropospheric ozone and its radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Berntsen, T.; Isaksen, I.S.A.; Fuglestvedt, J.S.; Myhre, G.; Larsen, T. Alsvik; Stordal, F.; Freckleton, R.S.; Shine, K.P.

    1997-12-31

    As described in this report, changes in tropospheric ozone since pre-industrial times due to changes in emissions have been calculated by the University of Oslo global three-dimensional photochemical model. The radiative forcing caused by the increase in ozone has been calculated by means of two independent radiative transfer models: the University of Reading model (Reading), and the University of Oslo/Norwegian Institute for Air Research model (OsloRad). Significant increases in upper tropospheric ozone concentrations are found at northern mid-latitudes at about 10 km altitude. In the tropical regions the largest increase is found at about 15 km altitude. The increase is found to be caused mainly by enhanced in situ production due to transport of precursors from the boundary layer, with a smaller contribution from increased transport of ozone produced in the boundary layer. The lifetime of ozone in the troposphere decreased by about 35% as a result of enhanced concentrations of HO{sub 2}. The calculated increase in surface ozone in Europe is in good agreement with observations. The calculations of radiative forcing include the effect of clouds and allow for thermal adjustment in the stratosphere. The global and annual averaged radiative forcing at the tropopause from both models are in the lower part of the Intergovernmental Panel on Climate Change estimated range. The calculated radiative forcing is similar in magnitude to the negative radiative forcing by sulfate aerosols, but displaced southward in source regions at northern mid-latitudes. The increase in tropospheric ozone is calculated to have cooled the lower stratosphere by up to 0.9 K, with possibly half of this cooling occurring in the past 2 to 3 decades. 76 refs., 16 figs., 9 tabs.

  20. Key drivers of ozone change and its radiative forcing over the 21st century

    Science.gov (United States)

    Iglesias-Suarez, Fernando; Kinnison, Douglas E.; Rap, Alexandru; Maycock, Amanda C.; Wild, Oliver; Young, Paul J.

    2018-05-01

    Over the 21st century changes in both tropospheric and stratospheric ozone are likely to have important consequences for the Earth's radiative balance. In this study, we investigate the radiative forcing from future ozone changes using the Community Earth System Model (CESM1), with the Whole Atmosphere Community Climate Model (WACCM), and including fully coupled radiation and chemistry schemes. Using year 2100 conditions from the Representative Concentration Pathway 8.5 (RCP8.5) scenario, we quantify the individual contributions to ozone radiative forcing of (1) climate change, (2) reduced concentrations of ozone depleting substances (ODSs), and (3) methane increases. We calculate future ozone radiative forcings and their standard error (SE; associated with inter-annual variability of ozone) relative to year 2000 of (1) 33 ± 104 m Wm-2, (2) 163 ± 109 m Wm-2, and (3) 238 ± 113 m Wm-2 due to climate change, ODSs, and methane, respectively. Our best estimate of net ozone forcing in this set of simulations is 430 ± 130 m Wm-2 relative to year 2000 and 760 ± 230 m Wm-2 relative to year 1750, with the 95 % confidence interval given by ±30 %. We find that the overall long-term tropospheric ozone forcing from methane chemistry-climate feedbacks related to OH and methane lifetime is relatively small (46 m Wm-2). Ozone radiative forcing associated with climate change and stratospheric ozone recovery are robust with regard to background climate conditions, even though the ozone response is sensitive to both changes in atmospheric composition and climate. Changes in stratospheric-produced ozone account for ˜ 50 % of the overall radiative forcing for the 2000-2100 period in this set of simulations, highlighting the key role of the stratosphere in determining future ozone radiative forcing.

  1. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces

    DEFF Research Database (Denmark)

    Muller, Peter Barkholt; Barnkob, Rune; Jensen, Mads Jakob Herring

    2012-01-01

    We present a numerical study of the transient acoustophoretic motion of microparticles suspended in a liquid-filled microchannel and driven by the acoustic forces arising from an imposed standing ultrasound wave: the acoustic radiation force from the scattering of sound waves on the particles...

  2. Studies on the transmission and processing of pulse-shaped signals from nuclear radiation detectors using methods of systems theory

    International Nuclear Information System (INIS)

    Spillekothen, H.G.

    2007-01-01

    Using methods of the systems theory of electronic communications and theoretical electrical science, this study describes the transmission of pulse-shaped signals from nuclear radiation detectors from the detector over ''electrically long lines'' (cables) to the output of the first pulse amplifier. The example of pulses from BF 3 -proportional counters shows, using the Fourier transformation, that pulses from radiation detectors contain a frequency spectrum ranging well above 10 8 Hz. If these pulses are transmitted to the first amplifier over a line length of several meters, the laws of the theory of transmission lines must be taken into account to avoid false signals caused by reflections. In the example, line equations are applied and the influence of the line and the terminating impedance is demonstrated. The influence of the frequency response ν(ω) and the phase response δ(ω) of the amplifier is also considered in the sample calculation. The methods presented make it possible to analyze and optimize the transmission and amplification of signals from radiation detectors. Close agreement emerges between empirically observed and calculated pulse shapes. (orig.)

  3. Ultra-short laser pulse ablation using shear-force feedback: Femtosecond laser induced breakdown spectroscopy feasibility study

    International Nuclear Information System (INIS)

    Samek, Ota; Kurowski, Andre; Kittel, Silke; Kukhlevsky, Sergei; Hergenroeder, Roland

    2005-01-01

    This work reports on a feasibility study of proximity ablation using femtosecond pulses. Ultra-short pulses were launched to a bare tapered optical fiber and delivered to the sample. The tip-sample distance was controlled by means of shear-force feedback. Consequently, ablation craters with submicrometer dimensions were obtained. Potential analytical applications for Laser Induced Breakdown Spectroscopy (LIBS) technique, such as e.g. inclusions in steel or bio cells, are suggested

  4. Time-Dependent Measure of a Nano-Scale Force-Pulse Driven by the Axonemal Dynein Motors in Individual Live Sperm Cells

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M J; Rudd, R E; McElfresh, M W; Balhorn, R

    2009-04-23

    Nano-scale mechanical forces generated by motor proteins are crucial to normal cellular and organismal functioning. The ability to measure and exploit such forces would be important to developing motile biomimetic nanodevices powered by biological motors for Nanomedicine. Axonemal dynein motors positioned inside the sperm flagellum drive microtubule sliding giving rise to rhythmic beating of the flagellum. This force-generating action makes it possible for the sperm cell to move through viscous media. Here we report new nano-scale information on how the propulsive force is generated by the sperm flagellum and how this force varies over time. Single cell recordings reveal discrete {approx}50 ms pulses oscillating with amplitude 9.8 {+-} 2.6 nN independent of pulse frequency (3.5-19.5 Hz). The average work carried out by each cell is 4.6 x 10{sup -16} J per pulse, equivalent to the hydrolysis of {approx}5,500 ATP molecules. The mechanochemical coupling at each active dynein head is {approx}2.2 pN/ATP, and {approx}3.9 pN per dynein arm, in agreement with previously published values obtained using different methods.

  5. Pulse radiation effects in high temperature superconductors. [YBaCuO

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, S.A. (Joint Inst. for Nuclear Research, Dubna (Russia))

    1992-03-01

    Radiation effects in high temperature superconducting (HTSC) films, influenced by pulse electron and ion beams, are considered. The electron beams had kinetic energies E = 200-300 keV, current densities j = 10-2000 A/cm{sup 2} and pulse duration t{sub p} = 0.3-1.2 {mu}s; and ion beams of carbon, copper and silver with E = 200-350 keV, t{sub p} = 0.3 {mu}s and j = 5-15 A/cm{sup 2} were used in the experiments. The results of resistive threshold characteristics measurements by HTSC are described. Questions about the increase of critical current and electric strength of vacuum gaps with electrodes from HTSC are discussed. (orig.).

  6. Interaction of Repetitively Pulsed High Energy Laser Radiation With Matter

    Science.gov (United States)

    Hugenschmidt, Manfred

    1986-10-01

    The paper is concerned with laser target interaction processes involving new methods of improving the overall energy balance. As expected theoretically, this can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed by using a pulsed CO2 laser at mean powers up to 2 kW and repetition rates up to 100 Hz. The rates of temperature rise of aluminium for example were thereby increased by lore than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements were found for the overall absorptivities that were increased by this method by more than an order of magnitude.

  7. The impact of diurnal variations of air traffic on contrail radiative forcing

    Directory of Open Access Journals (Sweden)

    N. Stuber

    2007-06-01

    Full Text Available We combined high resolution aircraft flight data from the EU Fifth Framework Programme project AERO2k with analysis data from the ECMWF's integrated forecast system to calculate diurnally resolved 3-D contrail cover. We scaled the contrail cover in order to match observational data for the Bakan area (eastern-Atlantic/western-Europe.

    We found that less than 40% of the global distance travelled by aircraft is due to flights during local night time. Yet, due to the cancellation of shortwave and longwave effects during daytime, night time flights contribute a disproportional 60% to the global annual mean forcing. Under clear sky conditions the night flights contribute even more disproportionally at 76%. There are pronounced regional variations in night flying and the associated radiative forcing. Over parts of the North Atlantic flight corridor 75% of air traffic and 84% of the forcing occurs during local night, whereas only 35% of flights are during local night in South-East Asia, yet these contribute 68% of the radiative forcing. In general, regions with a significant local contrail radiative forcing are also regions for which night time flights amount to less than half of the daily total of flights. Therefore, neglecting diurnal variations in air traffic/contrail cover by assuming a diurnal mean contrail cover can over-estimate the global mean radiative forcing by up to 30%.

  8. Principles and techniques of radiation hardening. Volume 3. Electromagnetic pulse (EMP) and system generated EMP

    International Nuclear Information System (INIS)

    Rudie, N.J.

    1976-01-01

    The three-volume book is intended to serve as a review of the effects of thermonuclear explosion induced radiation (x-rays, gamma rays, and beta particles) and the resulting electromagnetic pulse (EMP). Volume 3 deals with the following topics: selected fundamentals of electromagnetic theory; EMP induced currents on antennas and cables; the EMP response of electronics; EMP hardening; EMP testing; injection currents; internal electromagnetic pulse (IEMP); replacement currents; and system generated electromagnetic pulse (SGEMP) hardening

  9. Repetitively pulsed UV radiation source based on a run-away electron preionised diffuse discharge in nitrogen

    Science.gov (United States)

    Baksht, E. Kh; Burachenko, A. G.; Lomaev, M. I.; Panchenko, A. N.; Tarasenko, V. F.

    2015-04-01

    An extended repetitively pulsed source of spontaneous UV radiation is fabricated, which may also be used for producing laser radiation. Voltage pulses with an incident wave amplitude of up to 30 kV, a half-amplitude duration of ~4 ns and a rise time of ~2.5 ns are applied to a gap with a nonuniform electric field. For an excitation region length of 35 cm and a nitrogen pressure of 30 - 760 Torr, a diffusive discharge up to a pulse repetition rate of 2 kHz is produced without using an additional system for gap preionisation. An investigation is made of the plasma of the run-away electron preionised diffuse discharge. Using a CCD camera it is found that the dense diffused plasma fills the gap in a time shorter than 1 ns. X-ray radiation is recorded from behind the foil anode throughout the pressure range under study; a supershort avalanche electron beam is recorded by the collector electrode at pressures below 100 Torr.

  10. Radiation reaction force and unification of electromagnetic and gravitational fields

    International Nuclear Information System (INIS)

    Lo, C.Y.; Goldstein, G.R.; Napier, A.

    1981-04-01

    A unified theory of electromagnetic and gravitational fields should modify classical electrodynamics such that the radiation reaction force is accounted for. The analysis leads to a five-dimensional unified theory of five variables. The theory is supported by showing that, for the case of a charged particle moving in a constant magnetic field, the radiation reaction force is indeed included. Moreover, this example shows explicitly that physical changes are associated with the fifth variable. Thus, the notion of a physical five-dimensional space should be seriously taken into consideration

  11. Nonlinear effects in the radiation force generated by amplitude-modulated focused beams

    Science.gov (United States)

    González, Nuria; Jiménez, Noé; Redondo, Javier; Roig, Bernardino; Picó, Rubén; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.; Camarena, Francisco

    2012-10-01

    Harmonic Motion Imaging (HMI) uses an amplitude-modulated (AM) beam to induce an oscillatory radiation force before, during and after ablation. In this paper, the findings from a numerical analysis of the effects related with the nonlinear propagation of AM focused ultrasonic beams in water on the radiation force and the location of its maxima will be presented. The numerical modeling is performed using the KZK nonlinear parabolic equation. The radiation force is generated by a focused transducer with a gain of 18, a carrier frequency of 1 MHz and a modulation frequency of 25 kHz. The modulated excitation generates a spatially-invariant force proportional to the intensity. Regarding the nonlinear wave propagation, the force is no longer proportional to the intensity, reaching a factor of eight between the nonlinear and linear estimations. Also, a 9 mm shift in the on-axis force peak occurs when the initial pressure increased from 1 to 300 kPa. This spatial shift, due to the nonlinear effects, becomes dynamic in AM focused beams, as the different signal periods have different amplitudes. This study shows that both the value and the spatial position of the force peak are affected by the nonlinear propagation of the ultrasonic waves.

  12. The extreme condition analyzing for NEMPI shielding of electronic system in high-intensity pulsed radiation diagnosing

    International Nuclear Information System (INIS)

    Cheng Xiaolei; Liu Fang; Ouyang Xiaoping

    2012-01-01

    The difficulty for estimating the NEMPI (electromagnetic pulsed interference caused by the nuclear reaction) on the electronic system in high-intensity pulsed radiation diagnosing is analyzed in this article. To solve the difficulty, a method called 'Extreme Condition Analyzing' is presented for estimating the NEMPI conservatively and reliably. Through an extreme condition hypothesizing which could be described as 'Entire Coupling of Electric Field Energy', the E max (maximum electric field intensity which could be endured by the electronic system in the high-intensity pulsed radiation) could be figured out without any other information of the EMP caused by the nuclear reaction. Then a feasibility inspection is introduced, to confirm that the EMPI shielding request according to E max is not too extreme to be achieved. (authors)

  13. The Use of Remote Sensing to Resolve the Aerosol Radiative Forcing

    Science.gov (United States)

    Kaufman, Y. J.; Tanre, D.; Remer, Lorraine

    1999-01-01

    Satellites are used for remote sensing of aerosol optical thickness and optical properties in order to derive the aerosol direct and indirect radiative forcing of climate. Accuracy of the derived aerosol optical thickness is used as a measure of the accuracy in deriving the aerosol radiative forcing. Several questions can be asked to challenge this concept. Is the accuracy of the satellite-derived aerosol direct forcing limited to the accuracy of the measured optical thickness? What are the spectral bands needed to derive the total aerosol forcing? Does most of the direct or indirect aerosol forcing of climate originate from regions with aerosol concentrations that are high enough to be detected from space? What should be the synergism ground-based and space-borne remote sensing to solve the problem? We shall try to answer some of these questions, using AVIRIS airborne measurements and simulations.

  14. Measuring the greenhouse effect and radiative forcing through the atmosphere

    Science.gov (United States)

    Philipona, Rolf; Kräuchi, Andreas; Brocard, Emmanuel

    2013-04-01

    In spite of a large body of existing measurements of incoming shortwave solar radiation and outgoing longwave terrestrial radiation at the Earth's surface and at the top of the atmosphere, there are few observations documenting how radiation profiles change through the atmosphere - information that is necessary to fully quantify the greenhouse effect of the Earth's atmosphere. Using weather balloons and specific radiometer equipped radiosondes, we continuously measured shortwave and longwave radiation fluxes from the surface of the Earth up to altitudes of 35 kilometers in the upper stratosphere. Comparing radiation profiles from night measurements with different amounts of water vapor, we show evidence of large greenhouse forcing. We show, that under cloud free conditions, water vapor increases with Clausius-Clapeyron ( 7% / K), and longwave downward radiation at the surface increases by 8 Watts per square meter per Kelvin. The longwave net radiation however, shows a positive increase (downward) of 2.4 Watts per square meter and Kelvin at the surface, which decreases with height and shows a similar but negative increase (upward) at the tropopause. Hence, increased tropospheric water vapor increases longwave net radiation towards the ground and towards space, and produces a heating of 0.42 Kelvin per Watt per square meter at the surface. References: Philipona et al., 2012: Solar and thermal radiation profiles and radiative forcing measured through the atmosphere. Geophys. Res. Lett., 39, L13806, doi: 10.1029/2012GL052087.

  15. Self-consistent Optomechanical Dynamics and Radiation Forces in Thermal Light Fields

    International Nuclear Information System (INIS)

    Sonnleitner, M.

    2014-01-01

    We discuss two different aspects of the mechanical interaction between neutral matter and electromagnetic radiation.The first part addresses the complex dynamics of an elastic dielectric deformed by optical forces. To do so we use a one-dimensional model describing the medium by an array of beam splitters such that the interaction with the incident waves can be described with a transfer-matrix approach. Since the force on each individual beam splitter is known we thus obtain the correct volumetric force density inside the medium. Sending a light field through an initially homogeneous dielectric then results in density modulations which in turn alter the optical properties of this medium.The second part is concerned with mechanical light-effects on atoms in thermal radiation fields. At hand of a generic setup of an atom interacting with a hot sphere emitting blackbody radiation we show that the emerging gradient force may surpass gravity by several orders of magnitude. The strength of the repulsive scattering force strongly depends on the spectrum of the involved atoms and can be neglected in some setups. A special emphasis lies on possible implications on astrophysical scenarios where the interactions between heated dust and atoms, molecules or nanoparticles are of crucial interest. (author) [de

  16. The importance of pulsed lavage on interface temperature and ligament tension force in cemented unicompartmental knee arthroplasty.

    Science.gov (United States)

    Clarius, M; Seeger, J B; Jaeger, S; Mohr, G; Bitsch, R G

    2012-05-01

    Mechanical loosening is the most common cause of revision in unicompartmental knee arthroplasty. We determined the effect of bone lavage on tibial cement penetration and interface temperature with controlled ligament tension forces. We presumed pulsed lavage would allow increased cement penetration compared with syringe lavage. Cemented unicompartmental knee arthroplasty was performed in 12 pairs of fresh-frozen knees. Lavage was performed using pulsed lavage on one side (A) and syringe lavage on the other (B). Cement penetration pressure, interface temperature, and ligament tension forces were continuously monitored during the operation. Screened radiographs were taken and cement penetration under the tibial plateau was measured. The pulsed lavage group showed a mean cement penetration area of 187.24 (SD 36.37) mm², whereas 144.29 (SD 35.74) mm(2) was measured in the group with syringe lavage. Cement penetration pressure was 13.29 (SD 8.69) kPa in Group A and 20.21 (SD 7.78) kPa in Group B. Maximum interface temperatures of 46.99°C were observed in Group A and 45.02°C in Group B. Our data showed pulsed lavage cleansing of the cancellous tibial bone substantially improved cement penetration compared with syringe lavage without reaching the temperature threshold for bone necrosis. We recommend the routine use of pulsed lavage to improve long-term fixation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Development of a homogeneous pulse shape discriminating flow-cell radiation detection system

    International Nuclear Information System (INIS)

    Hastie, K.H.; DeVol, T.A.; Fjeld, R.A.

    1999-01-01

    A homogeneous flow-cell radiation detection system which utilizes coincidence counting and pulse shape discrimination circuitry was assembled and tested with five commercially available liquid scintillation cocktails. Two of the cocktails, Ultima Flo (Packard) and Mono Flow 5 (National Diagnostics) have low viscosities and are intended for flow applications; and three of the cocktails, Optiphase HiSafe 3 (Wallac), Ultima Gold AB (Packard), and Ready Safe (Beckman), have higher viscosities and are intended for static applications. The low viscosity cocktails were modified with 1-methylnaphthalene to increase their capability for alpha/beta pulse shape discrimination. The sample loading and pulse shape discriminator setting were optimized to give the lowest minimum detectable concentration for methylnaphthalenein a 30 s count time. Of the higher viscosity cocktails, Optiphase HiSafe 3 had the lowest minimum detectable activities for alpha and beta radiation, 0.2 and 0.4 Bq/ml for 233 U and 90 Sr/ 90 Y, respectively, for a 30 s count time. The sample loading was 70% and the corresponding alpha/beta spillover was 5.5%. Of the low viscosity cocktails, Mono Flow 5 modified with 2.5% (by volume) 1-methylnaphthalene resulted in the lowest minimum detectable activities for alpha and beta radiation; 0.3 and 0.5 Bq/ml for 233 U and 90 Sr/ 90 Y, respectively, for a 30 s count time. The sample loading was 50%, and the corresponding alpha/beta spillover was 16.6%. HiSafe 3 at a 10% sample loading was used to evaluate the system under simulated flow conditions

  18. Transverse components of the radiation force on nonspherical particles in the T-matrix formalism

    International Nuclear Information System (INIS)

    Saija, Rosalba; Antonia Iati, Maria; Giusto, Arianna; Denti, Paolo; Borghese, Ferdinando

    2005-01-01

    In the framework of the transition matrix approach, we calculate the force exerted by a plane wave (radiation force) on a dispersion of nonspherical particles modeled as aggregates of spheres. Beyond the customary radiation pressure we also consider the components of the radiation force in a plane orthogonal to the direction of incidence of the incoming wave (transverse components). Our calculations show that, although the latter are generally smaller than the radiation pressure, they are in no way negligible and may be important for some applications, e.g. when studying the dynamics of cosmic dust grains. We also calculate the ensemble average of the components of the radiation force over the orientation of the particles in two physically significant cases: the case of random distribution and the case in which the orientations are randomly distributed around an axis fixed in space (axial average). As expected, we find that, unlike the case of random orientation, the transverse components do not vanish for axial average

  19. The capability of pulsed laser radiation for cutting band saws hardening

    Directory of Open Access Journals (Sweden)

    Marinin Evgeny

    2017-01-01

    Full Text Available The article deals with the possibilities of pulsed laser radiation for hardening the band saws. The regimes of pulsed laser hardening the band saws of 1 mm thick made of tool steel 9CrV are grounded theoretically and experimentally tested. Selected and justified modes of treatment harden in the autohardening mode without additional heat removal. The results of the experimental research of microhardness are presented and formed as a result of processing of the microstructure. Selected modes increase the microhardness of the surface to 8500 MPa and form ultra highly dispersed structure in the surface layer characterized by high resistance to abrasion.

  20. Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study

    Directory of Open Access Journals (Sweden)

    P. Stier

    2013-03-01

    Full Text Available Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is −4.47 Wm−2 and the inter-model standard deviation is 0.55 Wm−2, corresponding to a relative standard deviation of 12%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04 Wm−2, and the standard deviation increases to 1.01 W−2, corresponding to a significant relative standard deviation of 97%. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption is low, with absolute (relative standard deviations of 0.45 Wm−2 (8% clear-sky and 0.62 Wm−2 (11% all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11 Wm−2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model

  1. Study of Radiative Forcing of Dust Aerosols and its impact on Climate Characteristics

    KAUST Repository

    Qureshi, Fawwad H

    2012-12-01

    The purpose of following project is to study the effect of dust aerosols on the radiative forcing which is directly related to the surface temperature. A single column radiative convective model is used for simulation purpose. A series of simulations have been performed by varying the amount of dust aerosols present in the atmosphere to study the trends in ground temperature, heating rate and radiative forcing for both its longwave and shortwave components. A case study for dust storm is also performed as dust storms are common in Arabian Peninsula. A sensitivity analyses is also performed to study the relationship of surface temperature minimum and maximum against aerosol concentration, single scattering albedo and asymmetry factor. These analyses are performed to get more insight into the role of dust aerosols on radiative forcing.

  2. Interagency task force on the health effects of ionizing radiation. final report

    International Nuclear Information System (INIS)

    1979-06-01

    This is the final report of the task force and incorporates the findings and recommendations of six smaller work groups, each with a more specific focus; i.e., science, privacy, care and benefits, exposure reduction, public information, and institutional arrangements. A research agenda that could provide some answers to questions about the effects of low-level radiation is proposed, along with recommendations to facilitate research. A public information program is outlined. Recommendations are advanced to improve systems that deliver care and benefits to those who may have been injured by exposure to radiation, and proposals for steps that might reduce unnecessary radiation exposure in the future are identified. The task force also recommends measures to institutionalize the interagency cooperation that characterized the task force. Three tables and one figure show the collective estimates of the U.S. general population, Federal research financing, cancer linked to radiation in particular populations, and a general dose-response model

  3. Experimental verification of theoretical equations for acoustic radiation force on compressible spherical particles in traveling waves

    Science.gov (United States)

    Johnson, Kennita A.; Vormohr, Hannah R.; Doinikov, Alexander A.; Bouakaz, Ayache; Shields, C. Wyatt; López, Gabriel P.; Dayton, Paul A.

    2016-05-01

    Acoustophoresis uses acoustic radiation force to remotely manipulate particles suspended in a host fluid for many scientific, technological, and medical applications, such as acoustic levitation, acoustic coagulation, contrast ultrasound imaging, ultrasound-assisted drug delivery, etc. To estimate the magnitude of acoustic radiation forces, equations derived for an inviscid host fluid are commonly used. However, there are theoretical predictions that, in the case of a traveling wave, viscous effects can dramatically change the magnitude of acoustic radiation forces, which make the equations obtained for an inviscid host fluid invalid for proper estimation of acoustic radiation forces. To date, experimental verification of these predictions has not been published. Experimental measurements of viscous effects on acoustic radiation forces in a traveling wave were conducted using a confocal optical and acoustic system and values were compared with available theories. Our results show that, even in a low-viscosity fluid such as water, the magnitude of acoustic radiation forces is increased manyfold by viscous effects in comparison with what follows from the equations derived for an inviscid fluid.

  4. Radiative flux and forcing parameterization error in aerosol-free clear skies.

    Science.gov (United States)

    Pincus, Robert; Mlawer, Eli J; Oreopoulos, Lazaros; Ackerman, Andrew S; Baek, Sunghye; Brath, Manfred; Buehler, Stefan A; Cady-Pereira, Karen E; Cole, Jason N S; Dufresne, Jean-Louis; Kelley, Maxwell; Li, Jiangnan; Manners, James; Paynter, David J; Roehrig, Romain; Sekiguchi, Miho; Schwarzkopf, Daniel M

    2015-07-16

    Radiation parameterizations in GCMs are more accurate than their predecessorsErrors in estimates of 4 ×CO 2 forcing are large, especially for solar radiationErrors depend on atmospheric state, so global mean error is unknown.

  5. [Radiative and hygienic certification in Armed Forces, problems of its implementation and ways of perfection].

    Science.gov (United States)

    Rusakov, V N; Cherkashin, A V; Shishkanov, A P; Ian'shin, L A; Gracheva, T N

    2010-12-01

    Radiative and hygienic passportization is one of the most actual pattern of socio and hygienic monitoring in Armed Forces. Radiative and hygienic passport is the main document which characterizes the safety control in military unit and uses the sources of ionizing radiation. Sanitary and epidemiologic institutions were imputed to control the formation of radiative and hygienic passports, analysis and generalization of its data, formation of conclusions about the condition of radiation security in the military units. According to radiative and hygienic passportization, which took place in 2009, the radiation security in the Armed Forces and organizations is satisfactory, but there are some problems of providing of radiation security of personnel under the professional and medical radiation. The salvation of its problems requires the effective work of official functionary of radiac object and institutions of state sanitary and epidemiological supervision in Armed Forces of Russian Federation.

  6. [Pulse-modulated Electromagnetic Radiation of Extremely High Frequencies Protects Cellular DNA against Damaging Effect of Physico-Chemical Factors in vitro].

    Science.gov (United States)

    Gapeyev, A B; Lukyanova, N A

    2015-01-01

    Using a comet assay technique, we investigated protective effects of. extremely high frequency electromagnetic radiation in combination with the damaging effect of X-ray irradiation, the effect of damaging agents hydrogen peroxide and methyl methanesulfonate on DNA in mouse whole blood leukocytes. It was shown that the preliminary exposure of the cells to low intensity pulse-modulated electromagnetic radiation (42.2 GHz, 0.1 mW/cm2, 20-min exposure, modulation frequencies of 1 and 16 Hz) caused protective effects decreasing the DNA damage by 20-45%. The efficacy of pulse-modulated electromagnetic radiation depended on the type of genotoxic agent and increased in a row methyl methanesulfonate--X-rays--hydrogen peroxide. Continuous electromagnetic radiation was ineffective. The mechanisms of protective effects may be connected with an induction of the adaptive response by nanomolar concentrations of reactive oxygen species formed by pulse-modulated electromagnetic radiation.

  7. Cooling and trapping neutral atoms with radiative forces

    International Nuclear Information System (INIS)

    Bagnato, V.S.; Castro, J.C.; Li, M.S.; Zilio, S.C.

    1988-01-01

    Techniques to slow and trap neutral atoms at high densities with radiative forces are discussed in this review articles. Among several methods of laser cooling, it is emphasized Zeeman Tuning of the electronic levels and frequency-sweeping techniques. Trapping of neutral atoms and recent results obtained in light and magnetic traps are discussed. Techniques to further cool atoms inside traps are presented and the future of laser cooling of neutral atoms by means of radiation pressure is discussed. (A.C.A.S.) [pt

  8. Study of performance of electronic dosemeters in continuous and pulsed X-radiation beams

    International Nuclear Information System (INIS)

    Guimaraes, Margarete Cristina

    2014-01-01

    Personal radiation monitoring is a basic procedure to verify the compliance to regulatory requirements for radiological protection. Electronic personal dosimeters (EPD) based on solid state detectors have largely been used for personnel monitoring; including for pulsed radiation beams where their responses are not well known and deficiencies have been reported. In this work, irradiation conditions for testing the response of EPDs in both continuous and pulsed X-ray beams were studied to be established in a constant potential Seifert-Pantak and in a medical Pulsar 800 Plus VMI X-ray machines. Characterization of X-ray beams was done in terms of tube voltage, half-value layer, mean energy and air kerma rate. A Xi R/F Unfors solid state dosimeter used as reference for air kerma measurements was verified against a RC-6 and 10X6-6 Radical ionization chambers as far its metrological coherence. Rad-60 RADOS, PDM- 11 Aloka and EPD MK2 Thermo electron EPDs were selected to be tested in terms of relative intrinsic error and energy response in similar to IEC RQR, IEC RQA and ISO N reference radiations. Results demonstrated the reliability of the solid state Xi R/F Unfors dosimeter to be as reference dosimeter although its response was affected by heavily filtered beams. Results also showed that relative intrinsic errors in the response of the EPDs in terms of personal dose equivalent, Hp(10), were higher than the requirement established for continuous beams. In pulsed beams, some EPDs showed inadequate response and high relative intrinsic errors. This work stressed the need of performing additional checks for EPDs, besides the limited 137 Cs beam calibration, before using them in pulsed X-ray beams. (author)

  9. Technical specifications manual for the MARK-1 pulsed ionizing radiation detection system

    International Nuclear Information System (INIS)

    Lawrence, R.S.; Harker, Y.D.; Jones, J.L.; Hoggan, J.M.

    1993-03-01

    The MARK-1 detection system was developed by the Idaho National Engineering Laboratory for the US Department of Energy Office of Arms Control and Nonproliferation. The completely portable system was designed for the detection and analysis of intense photon emissions from pulsed ionizing radiation sources. This manual presents the technical design specifications for the MARK-1 detection system and was written primarily to assist the support or service technician in the service, calibration, and repair of the system. The manual presents the general detection system theory, the MARK-1 component design specifications, the acquisition and control software, the data processing sequence, and the system calibration procedure. A second manual entitled: Volume 2: Operations Manual for the MARK-1 Pulsed Ionizing Radiation Detection System (USDOE Report WINCO-1108, September 1992) provides a general operational description of the MARK-1 detection system. The Operations Manual was written primarily to assist the field operator in system operations and analysis of the data

  10. Repetitively pulsed UV radiation source based on a run-away electron preionised diffuse discharge in nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Baksht, E Kh; Burachenko, A G; Lomaev, M I; Panchenko, A N; Tarasenko, V F [Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk (Russian Federation)

    2015-04-30

    An extended repetitively pulsed source of spontaneous UV radiation is fabricated, which may also be used for producing laser radiation. Voltage pulses with an incident wave amplitude of up to 30 kV, a half-amplitude duration of ∼4 ns and a rise time of ∼2.5 ns are applied to a gap with a nonuniform electric field. For an excitation region length of 35 cm and a nitrogen pressure of 30 – 760 Torr, a diffusive discharge up to a pulse repetition rate of 2 kHz is produced without using an additional system for gap preionisation. An investigation is made of the plasma of the run-away electron preionised diffuse discharge. Using a CCD camera it is found that the dense diffused plasma fills the gap in a time shorter than 1 ns. X-ray radiation is recorded from behind the foil anode throughout the pressure range under study; a supershort avalanche electron beam is recorded by the collector electrode at pressures below 100 Torr. (laser applications and other topics in quantum electronics)

  11. Quasi-real-time photon pulse duration measurement by analysis of FEL radiation spectra

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Robin, E-mail: robin.engel@uni-oldenburg.de [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Institut für Physik, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg (Germany); Institut für Laser und Optik, Hochschule Emden/Leer, University of Applied Sciences, Constantiaplatz 4, D-26723 Emden (Germany); Düsterer, Stefan; Brenner, Günter [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Teubner, Ulrich [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Institut für Physik, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg (Germany); Institut für Laser und Optik, Hochschule Emden/Leer, University of Applied Sciences, Constantiaplatz 4, D-26723 Emden (Germany)

    2016-01-01

    Considering the second-order spectral correlation function of SASE-FEL radiation allows a real-time observation of the photon pulse duration during spectra acquisition. For photon diagnostics at free-electron lasers (FELs), the determination of the photon pulse duration is an important challenge and a complex task. This is especially true for SASE FELs with strongly fluctuating pulse parameters. However, most techniques require an extensive experimental setup, data acquisition and evaluation time, limiting the usability in all-day operation. In contrast, the presented work uses an existing approach based on the analysis of statistical properties of measured SASE FEL spectra and implements it as a software tool, integrated in FLASH’s data acquisition system. This allows the calculation of the average pulse durations from a set of measured spectral distributions with only seconds of delay, whenever high-resolution spectra are recorded.

  12. The Formation of a Power Multi-Pulse Extreme Ultraviolet Radiation in the Pulse Plasma Diode of Low Pressure

    Directory of Open Access Journals (Sweden)

    Ievgeniia V. Borgun

    2013-01-01

    Full Text Available In this paper results are presented on experimental studies of the temporal characteristics of spike extreme ultraviolet (EUV radiation in the spectral range of 12.2 ÷ 15.8 nm from the anode region of high-current (I = 40 kA pulsed discharges in tin vapor. It is observed that the intense multi-spike radiation in this range arises at an inductive stage of the discharge. It has been shown that the radiation spikes correlate with the sharp increase of active resistance and of pumped power, due to plasma heating by an electron beam, formed in the double layer of charged particles. It has been observed that for large number of spikes the conversion efficiency of pumped energy into radiationat double layer formation is essentially higher in comparison with collisional heating.

  13. Kharkov 3-GeV pulse stretcher ring as a source of synchrotron radiation

    International Nuclear Information System (INIS)

    Boldyshev, V.F.; Gladkikh, P.I.; Grigor'ev, Y.N.; Guk, I.S.; Efimov, S.V.; Karnaukhov, I.M.; Kononenko, S.G.; Mocheshnikov, N.I.; Popkov, Y.P.; Tarasenko, A.S.; Telegin, Y.N.; Chechetenko, V.F.; Shcherbakov, A.A.; Titov, V.A.; Nagaenko, M.G.

    1989-01-01

    The article discusses the possibility of using the pulse stretcher ring, designed at the Kharkov Institute of Physics and Technology, as a synchrotron radiation source (SRS). Comparison is made between our SRS design parameters and those of other dedicated SRSs

  14. On the contribution of circumferential resonance modes in acoustic radiation force experienced by cylindrical shells

    Science.gov (United States)

    Rajabi, Majid; Behzad, Mehdi

    2014-10-01

    A body insonified by a constant (time-varying) intensity sound field is known to experience a steady (oscillatory) force that is called the steady-state (dynamic) acoustic radiation force. Using the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of a resonance field and a background (non-resonance) component, we show that the radiation force acting on a cylindrical shell may be synthesized as a composition of three components: background part, resonance part and their interaction. The background component reveals the pure geometrical reflection effects and illustrates a regular behavior with respect to frequency, while the others demonstrate a singular behavior near the resonance frequencies. The results illustrate that the resonance effects associated to partial waves can be isolated by the subtraction of the background component from the total (steady-state or dynamic) radiation force function (i.e., residue component). In the case of steady-state radiation force, the components are exerted on the body as static forces. For the case of oscillatory amplitude excitation, the components are exerted at the modulation frequency with frequency-dependant phase shifts. The results demonstrate the dominant contribution of the non-resonance component of dynamic radiation force at high frequencies with respect to the residue component, which offers the potential application of ultrasound stimulated vibro-acoustic spectroscopy technique in low frequency resonance spectroscopy purposes. Furthermore, the proposed formulation may be useful essentially due to its intrinsic value in physical acoustics. In addition, it may unveil the contribution of resonance modes in the dynamic radiation force experienced by the cylindrical objects and its underlying physics.

  15. Transient pulse analysis of ionized electronics exposed to γ-radiation generated from a relativistic electron beam

    Science.gov (United States)

    Min, Sun-Hong; Kwon, Ohjoon; Sattorov, Matlabjon; Baek, In-Keun; Kim, Seontae; Hong, Dongpyo; Jeong, Jin-Young; Jang, Jungmin; Bera, Anirban; Barik, Ranjan Kumar; Bhattacharya, Ranajoy; Cho, Ilsung; Kim, Byungsu; Park, Chawon; Jung, Wongyun; Park, Seunghyuk; Park, Gun-Sik

    2018-02-01

    When a semiconductor element is irradiated with radiation in the form of a transient pulse emitted from a nuclear explosion, a large amount of charge is generated in a short time in the device. A photocurrent amplified in a certain direction by these types of charges cause the device to break down and malfunction or in extreme cases causes them to burn out. In this study, a pulse-type γ-ray generator based on a relativistic electron beam accelerator (γ=2.2, β=0.89) which functions by means of tungsten impingement was constructed and tested in an effort to investigate the process and effects of the photocurrent formed by electron hole pairs (EHP) generated in a pMOSFET device when a transient radiation pulse is incident in the device. The pulse-type γ-ray irradiating device used here to generate the electron beam current in a short time was devised to allow an increase in the irradiation dose. A precise signal processing circuit was constructed to measure the photocurrent of the small signal generated by the pMOSFET due to the electron beam accelerator pulse signal from the large noise stemming from the electromagnetic field around the relativistic electron beam accelerator. The pulse-type γ-ray generator was installed to meet the requirements of relativistic electron beam accelerators, and beam irradiation was conducted after a beam commissioning step.

  16. Diurnal cycle of the dust instantaneous direct radiative forcing over the Arabian Peninsula

    KAUST Repository

    Osipov, Sergey

    2015-08-27

    In this study we attempted to better quantify radiative effects of dust over the Arabian Peninsula and their dependence on input parameters. For this purpose we have developed a stand-alone column radiation transport model coupled with the Mie, T-matrix and geometric optics calculations and driven by reanalysis meteorological fields and atmospheric composition. Numerical experiments were carried out for a wide range of aerosol optical depths, including extreme values developed during the dust storm on 18–20 March 2012. Comprehensive ground-based observations and satellite retrievals were used to estimate aerosol optical properties, validate calculations and carry out radiation closure. The broadband surface albedo, fluxes at the bottom and top of the atmosphere as well as instantaneous dust radiative forcing were estimated both from the model and observations. Diurnal cycle of the shortwave instantaneous dust direct radiative forcing was studied for a range of aerosol and surface characteristics representative of the Arabian Peninsula. Mechanisms and parameters responsible for diurnal variability of the radiative forcing were evaluated. We found that intrinsic variability of the surface albedo and its dependence on atmospheric conditions, along with anisotropic aerosol scattering, are mostly responsible for diurnal effects.

  17. Density ratios in compressions driven by radiation pressure

    International Nuclear Information System (INIS)

    Lee, S.

    1988-01-01

    It has been suggested that in the cannonball scheme of laser compression the pellet may be considered to be compressed by the 'brute force' of the radiation pressure. For such a radiation-driven compression, an energy balance method is applied to give an equation fixing the radius compression ratio K which is a key parameter for such intense compressions. A shock model is used to yield specific results. For a square-pulse driving power compressing a spherical pellet with a specific heat ratio of 5/3, a density compression ratio Γ of 27 is computed. Double (stepped) pulsing with linearly rising power enhances Γ to 1750. The value of Γ is not dependent on the absolute magnitude of the piston power, as long as this is large enough. Further enhancement of compression by multiple (stepped) pulsing becomes obvious. The enhanced compression increases the energy gain factor G for a 100 μm DT pellet driven by radiation power of 10 16 W from 6 for a square pulse power with 0.5 MJ absorbed energy to 90 for a double (stepped) linearly rising pulse with absorbed energy of 0.4 MJ assuming perfect coupling efficiency. (author)

  18. Biological effectiveness of pulsed and continuous neutron radiation for cells of yeast Saccharomyces

    International Nuclear Information System (INIS)

    Tsyb, T.S.; Komarova, E.V.; Potetnya, V.I.; Obaturov, G.M.

    2001-01-01

    Data are presented on biological effectiveness of fast neutrons generated by BR-10 reactor (dose rate up to 3.8 Gy/s) in comparison with neutrons of pulsed BARS-6 reactor (dose rate ∼6x10 6 Gy/s) for yeast Saccharomyces vini cells of a wild type Menri 139-B and radiosensitive Saccharomyces cerevisiae (rad52/rad52; rad54/rad54) mutants which are defective over different systems of DNA reparation. Value of relative biological efficiency (RBE) of continuous radiation for wild stam is from 3.5 up to 2.5 when survival level being 75-10 %, and RBE of pulsed neutron radiation is in the limits of 2.0-1.7 at the same levels. For mutant stam the value of RBE (1.4-1.6) of neutrons is constant at all survival levels and does not depend on dose rate [ru

  19. Synchrotron Radiation

    International Nuclear Information System (INIS)

    Asfour, F.I

    2000-01-01

    Synchrotron light is produced by electron accelerators combined with storage rings. This light is generated over a wide spectral region; from infra-red (IR) through the visible and vacuum ultraviolet (VUV), and into the X-ray region. For relativistic electrons (moving nearly with the speed of light), most radiation is concentrated in a small cone with an opening angle of 1/gamma(some 0.1 to 1 milliradian),where gamma is the electron energy in units of rest energy (typically 10 3 -10 4 ). In synchrotron radiation sources (storage rings) highly relativistic electrons are stored to travel along a circular path for many hours. Radiation is caused by transverse acceleration due to magnetic forces(bending magnets). The radiation is emitted in pulses of 10-20 picosecond, separated by some 2 nanosecond or longer separation

  20. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation

    Science.gov (United States)

    Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Dunne, Eimear M.; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S.; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A.; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty J.; Richards, Nigel A. D.; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E.; Seinfeld, John H.; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S.

    2016-10-01

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by 0.22 W m-2 (27%) to -0.60 W m-2. Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.

  1. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation.

    Science.gov (United States)

    Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K; Wagner, Robert; Dunne, Eimear M; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P; Pringle, Kirsty J; Richards, Nigel A D; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E; Seinfeld, John H; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C; Wagner, Paul E; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M; Worsnop, Douglas R; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S

    2016-10-25

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by [Formula: see text] (27%) to [Formula: see text] Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.

  2. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    Science.gov (United States)

    Mitri, F. G.

    2015-12-01

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.

  3. Simulation of continious radiation effect on semiconductors by the pulse irradiation

    International Nuclear Information System (INIS)

    Radyuk, I.A.; Fejgin, O.O.; Shein, O.V.

    1986-01-01

    The problem of the laboratory radiation modelling of semiconductor devices and integrated circuits has been under consideration. The condition of adequacy of influencing the pulsed and continuous irradiation semiconductor devices and integrated circuits have been established. The methods of comparing and calculating the influences have been discussed. A number of expressions describing the connection between the parameters of impulced and continuous irradiation have been considered

  4. Infrared response of YBa2Cu3O7-δ films to pulsed, broadband synchrotron radiation

    International Nuclear Information System (INIS)

    Carr, G.L.; Quijada, M.; Tanner, D.B.; Etemad, S.; DeRosa, F.; Venkatesan, T.; Dutta, B.; Hemmick, D.; Xi, X.

    1990-01-01

    We report studies of a thin high T c film operating as a fast bolometric detector of infrared radiation. The film has a response of infrared radiation. The film has a response of several mV when exposed to a 1 W, 1 ns duration broadband infrared pulse. The decay after the pulse was about 4 ns. The temperature dependence of the response accurately tracked dR/dT. A thermal model, in which the film's temperature varies relative to the substrate, provides a good description of the response. We find no evidence for other (non-bolometric) response mechanisms for temperatures near or well below T c . 13 refs., 4 figs

  5. Effect of pulse slippage on resonant second harmonic generation of a short pulse laser in a plasma

    International Nuclear Information System (INIS)

    Nitikant; Sharma, A K

    2004-01-01

    The process of second harmonic generation of an intense short pulse laser in a plasma is resonantly enhanced by the application of a magnetic wiggler. The wiggler of suitable wave number k-vector 0 provides necessary momentum to second harmonic photons to make harmonic generation a resonant process. The laser imparts an oscillatory velocity to electrons and exerts a longitudinal ponderomotive force on them at (2ω 1 ,2k-vector 1 ), where ω 1 and k-vector 1 are the frequency and the wave number of the laser, respectively. As the electrons acquire oscillatory velocity at the second harmonic, the wiggler magnetic field beats with it to produce a transverse second harmonic current at (2ω 1 ,2k-vector 1 +k-vector 0 ), driving the second harmonic electromagnetic radiation. However, the group velocity of the second harmonic wave is greater than that of the fundamental wave, hence, the generated pulse slips out of the main laser pulse and its amplitude saturates

  6. Study on pulsed radiation generation in the accelerator AKVAGEN; Issledovanie po generatsii impul`sa izlucheniya uskoritelya AKVAGEN

    Energy Technology Data Exchange (ETDEWEB)

    Bakulin, Yu P [and others

    1994-12-31

    The pulse accelerator AKVAGEN is created according to a circuit of as single forming line, charged from two pulse transformers up to 1.5 voltage. Typical irradiation levels are presented. The accelerator x radiation efficiency calculated makes up for Si and SiC, SiO{sub 2}, GaAs compounds.

  7. Accounting for radiative forcing from albedo change in future global land-use scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Andrew D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Calvin, Katherine V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collins, William D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Edmonds, James A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-08-01

    We demonstrate the effectiveness of a new method for quantifying radiative forcing from land use and land cover change (LULCC) within an integrated assessment model, the Global Change Assessment Model (GCAM). The method relies on geographically differentiated estimates of radiative forcing from albedo change associated with major land cover transitions derived from the Community Earth System Model. We find that conversion of 1 km² of woody vegetation (forest and shrublands) to non-woody vegetation (crops and grassland) yields between 0 and –0.71 nW/m² of globally averaged radiative forcing determined by the vegetation characteristics, snow dynamics, and atmospheric radiation environment characteristic within each of 151 regions we consider globally. Across a set of scenarios designed to span a range of potential future LULCC, we find LULCC forcing ranging from –0.06 to –0.29 W/m² by 2070 depending on assumptions regarding future crop yield growth and whether climate policy favors afforestation or bioenergy crops. Inclusion of this previously uncounted forcing in the policy targets driving future climate mitigation efforts leads to changes in fossil fuel emissions on the order of 1.5 PgC/yr by 2070 for a climate forcing limit of 4.5 Wm–2, corresponding to a 12–67 % change in fossil fuel emissions depending on the scenario. Scenarios with significant afforestation must compensate for albedo-induced warming through additional emissions reductions, and scenarios with significant deforestation need not mitigate as aggressively due to albedo-induced cooling. In all scenarios considered, inclusion of albedo forcing in policy targets increases forest and shrub cover globally.

  8. Observational determination of surface radiative forcing by CO2 from 2000 to 2010.

    Science.gov (United States)

    Feldman, D R; Collins, W D; Gero, P J; Torn, M S; Mlawer, E J; Shippert, T R

    2015-03-19

    The climatic impact of CO2 and other greenhouse gases is usually quantified in terms of radiative forcing, calculated as the difference between estimates of the Earth's radiation field from pre-industrial and present-day concentrations of these gases. Radiative transfer models calculate that the increase in CO2 since 1750 corresponds to a global annual-mean radiative forcing at the tropopause of 1.82 ± 0.19 W m(-2) (ref. 2). However, despite widespread scientific discussion and modelling of the climate impacts of well-mixed greenhouse gases, there is little direct observational evidence of the radiative impact of increasing atmospheric CO2. Here we present observationally based evidence of clear-sky CO2 surface radiative forcing that is directly attributable to the increase, between 2000 and 2010, of 22 parts per million atmospheric CO2. The time series of this forcing at the two locations-the Southern Great Plains and the North Slope of Alaska-are derived from Atmospheric Emitted Radiance Interferometer spectra together with ancillary measurements and thoroughly corroborated radiative transfer calculations. The time series both show statistically significant trends of 0.2 W m(-2) per decade (with respective uncertainties of ±0.06 W m(-2) per decade and ±0.07 W m(-2) per decade) and have seasonal ranges of 0.1-0.2 W m(-2). This is approximately ten per cent of the trend in downwelling longwave radiation. These results confirm theoretical predictions of the atmospheric greenhouse effect due to anthropogenic emissions, and provide empirical evidence of how rising CO2 levels, mediated by temporal variations due to photosynthesis and respiration, are affecting the surface energy balance.

  9. Compression and radiation of high-power short rf pulses. II. A novel antenna array design with combined compressor/radiator elements

    KAUST Repository

    Sirenko, Kostyantyn; Pazynin, Vadim L.; Sirenko, Yu K.; Bagci, Hakan

    2011-01-01

    The paper discusses the radiation of compressed high power short RF pulses using two different types of antennas: (i) A simple monopole antenna and (ii) a novel array design, where each of the elements is constructed by combining a compressor and a

  10. Acoustic radiation force on a double-layer microsphere by a Gaussian focused beam

    International Nuclear Information System (INIS)

    Wu, Rongrong; Cheng, Kaixuan; Liu, Jiehui; Mao, Yiwei; Gong, Xiufen; Liu, Xiaozhou

    2014-01-01

    A new model for calculating the radiation force on double-layer microsphere is proposed based on the ray acoustics approach. The axial acoustic radiation force resulting from a focused Gaussian beam incident on spherical shells immersed in water is examined theoretically in relation to its thickness and the contents of its double-layer. The attenuation both in the water and inside the sphere is considered in this method, which cannot be ignored while the high frequency ultrasonic is used. Results of numerical calculations are presented for fat and low density polyethylene materials, with the hollow region filled with animal oil, water, or air. These results show how the acoustic impedance and the sound velocity of both layers, together with the thickness of the shell, affect the acoustic radiation force.

  11. Importance of representing optical depth variability for estimates of global line-shaped contrail radiative forcing.

    Science.gov (United States)

    Kärcher, Bernd; Burkhardt, Ulrike; Ponater, Michael; Frömming, Christine

    2010-11-09

    Estimates of the global radiative forcing by line-shaped contrails differ mainly due to the large uncertainty in contrail optical depth. Most contrails are optically thin so that their radiative forcing is roughly proportional to their optical depth and increases with contrail coverage. In recent assessments, the best estimate of mean contrail radiative forcing was significantly reduced, because global climate model simulations pointed at lower optical depth values than earlier studies. We revise these estimates by comparing the probability distribution of contrail optical depth diagnosed with a climate model with the distribution derived from a microphysical, cloud-scale model constrained by satellite observations over the United States. By assuming that the optical depth distribution from the cloud model is more realistic than that from the climate model, and by taking the difference between the observed and simulated optical depth over the United States as globally representative, we quantify uncertainties in the climate model's diagnostic contrail parameterization. Revising the climate model results accordingly increases the global mean radiative forcing estimate for line-shaped contrails by a factor of 3.3, from 3.5 mW/m(2) to 11.6 mW/m(2) for the year 1992. Furthermore, the satellite observations and the cloud model point at higher global mean optical depth of detectable contrails than often assumed in radiative transfer (off-line) studies. Therefore, we correct estimates of contrail radiative forcing from off-line studies as well. We suggest that the global net radiative forcing of line-shaped persistent contrails is in the range 8-20 mW/m(2) for the air traffic in the year 2000.

  12. Pulse shape and spectrum of coherent diffraction-limited transition radiation from electron beams

    Energy Technology Data Exchange (ETDEWEB)

    van Tilborg, J.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2003-12-20

    The electric field in the temporal and spectral domain of coherent diffraction-limited transition radiation is studied. An electron bunch, with arbitrary longitudinal momentum distribution, propagating at normal incidence to a sharp metal-vacuum boundary with finite transverse dimension is considered. A general expression for the spatiotemporal electric field of the transition radiation is derived, and closed-form solutions for several special cases are given. The influence of parameters such as radial boundary size, electron momentum distribution, and angle of observation on the waveform (e.g., radiation pulse length and amplitude) are discussed. For a Gaussian electron bunch, the coherent radiation waveform is shown to have a single-cycle profile. Application to a novel THz source based on a laser-driven accelerator is discussed.

  13. An exploration in acoustic radiation force experienced by cylindrical shells via resonance scattering theory.

    Science.gov (United States)

    Rajabi, Majid; Behzad, Mehdi

    2014-04-01

    In nonlinear acoustic regime, a body insonified by a sound field is known to experience a steady force that is called the acoustic radiation force (RF). This force is a second-order quantity of the velocity potential function of the ambient medium. Exploiting the sufficiency of linear solution representation of potential function in RF formulation, and following the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of the resonant field and a background (non-resonant) component, we will show that the radiation force is a composition of three components: background part, resonant part and their interaction. Due to the nonlinearity effects, each part contains the contribution of pure partial waves in addition to their mutual interaction. The numerical results propose the residue component (i.e., subtraction of the background component from the RF) as a good indicator of the contribution of circumferential surface waves in RF. Defining the modal series of radiation force function and its components, it will be shown that within each partial wave, the resonance contribution can be synthesized as the Breit-Wigner form for adequately none-close resonant frequencies. The proposed formulation may be helpful essentially due to its inherent value as a canonical subject in physical acoustics. Furthermore, it may make a tunnel through the circumferential resonance reducing effects on radiation forces. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. A modeling perspective on cloud radiative forcing

    International Nuclear Information System (INIS)

    Potter, G.L.; Corsetti, L.; Slingo, J.M.

    1993-02-01

    Radiation fields from a perpetual July integration of a T106 version of the ECM-WF operational model are used to identify the most appropriate way to diagnose cloud radiative forcing in a general circulation model, for the purposes of intercomparison between models. Differences between the Methods I and II of Cess and Potter (1987) and a variant method are addressed. Method I is shown to be the least robust of all methods, due to the potential uncertainties related to persistent cloudiness, length of the sampling period and biases in retrieved clear-sky quantities due to insufficient sampling of the diurnal cycle. Method II is proposed as an unambiguous way to produce consistent radiative diagnostics for intercomparing model results. The impact of the three methods on the derived sensitivities and cloud feedbacks following an imposed change in sea surface temperature is discussed. The sensitivity of the results to horizontal resolution is considered by using the diagnostics from parallel integrations with T21 version of the model

  15. Drift forces on vacancies and interstitials in alloys with radiation-induced segregation

    International Nuclear Information System (INIS)

    Wolfer, W.G.

    1983-01-01

    Radiation-induced segregation in alloys leads to compositional gradients around point defect sinks such as voids and dislocations. These compositional gradients in turn affect the drift forces on both interstitials and vacancies and thereby modify the bias. Linear irreversible thermodynamics is employed to derive the total drift force on interstitials and vacancies in substitutional binary alloys. The obtained results are evaluated for binary Fe-Ni alloys. It is shown that radiation-induced segregation produces new drift forces which can be of the same order of magnitude as the stress-induced drift force produced by edge dislocations in an alloy with uniform composition. Hence, segregation results in a significant modification of the bias for void nucleation and swelling. The additional drift forces on interstitials and vacancies are due to the compositional dependence of the formation and migration energies; due to the dependence of the point defect's strain energy on the local elastic properties; due to a coherency strain field caused by lattice parameter variations; and finally due to the Kirkendall force produced by the difference in tracer mobilities. Estimates of these forces given for Fe-Ni alloys indicate that the Kirkendall force is small compared to the other segregation-induced forces on interstitials. In contrast, the Kirkendall force seems to be the dominant one for vacancies. (orig.)

  16. The influence of the radiation pressure force on possible critical surfaces in binary systems

    International Nuclear Information System (INIS)

    Vanbeveren, D.

    1978-01-01

    Using a spherically symmetric approximation for the radiation pressure force to compute a possible critical surface for binary systems, previous authors found that the surface opens up at the far side of the companion. It is shown that this effect may be unreal, and could be a consequence of the simple approximation for the radiation pressure force, Due to the influence of the radiation force, mass will be lost over the whole surface of the star. In that way much mass could leave the system in massive binary systems. On the basis of evolutionary models, including mass loss by stellar wind, the results were applied on the X-ray binaries 3U 1700 - 37 and HD 77581. (Auth.)

  17. Non-Kyoto radiative forcing in long-run greenhouse gas emissions and climate change scenarios

    NARCIS (Netherlands)

    Rose, S.K.; Kriegler, E.; Bibas, R.; Calvin, K.; Popp, A.; van Vuuren, D.P.|info:eu-repo/dai/nl/11522016X; Weyant, J.

    2014-01-01

    Climate policies must consider radiative forcing from Kyoto greenhouse gases, as well as other forcing constituents, such as aerosols and tropospheric ozone that result from air pollutants. Non-Kyoto forcing constituents contribute negative, as well as positive forcing, and overall increases in

  18. On the role of coulomb forces in atomic radiative emission

    International Nuclear Information System (INIS)

    Yngstroem, S.

    1988-10-01

    It is shown how the generalized Coulomb interaction (electric and magnetic fields of force) competes with the radiative interaction causing overall inhibition of the radiative capability of atoms and ions in a gaseous sample of matter. Basic quantum mechanical aspects of the electromagnetic interaction are discussed in a heuristic introduction followed by a more precise treatment in the formalism of relativistic quantum electrodynamics. (author)

  19. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    International Nuclear Information System (INIS)

    Mitri, F. G.

    2015-01-01

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries

  20. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology–ETC, Santa Fe, New Mexico 87508 (United States)

    2015-12-07

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.

  1. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on the decline and recovery of muscle force.

    Science.gov (United States)

    Bochkezanian, Vanesa; Newton, Robert U; Trajano, Gabriel S; Vieira, Amilton; Pulverenti, Timothy S; Blazevich, Anthony J

    2017-05-02

    Neuromuscular electrical stimulation (NMES) is commonly used to activate skeletal muscles and reverse muscle atrophy in clinical populations. Clinical recommendations for NMES suggest the use of short pulse widths (100-200 μs) and low-to-moderate pulse frequencies (30-50 Hz). However, this type of NMES causes rapid muscle fatigue due to the (non-physiological) high stimulation intensities and non-orderly recruitment of motor units. The use of both wide pulse widths (1000 μs) and tendon vibration might optimize motor unit activation through spinal reflex pathways and thus delay the onset of muscle fatigue, increasing muscle force and mass. Thus, the objective of this study was to examine the acute effects of patellar tendon vibration superimposed onto wide-pulse width (1000 μs) knee extensor electrical stimulation (NMES, 30 Hz) on peak muscle force, total impulse before "muscle fatigue", and the post-exercise recovery of muscle function. Tendon vibration (Vib), NMES (STIM) or NMES superimposed onto vibration (STIM + Vib) were applied in separate sessions to 16 healthy adults. Total torque-time integral (TTI), maximal voluntary contraction torque (MVIC) and indirect measures of muscle damage were tested before, immediately after, 1 h and 48 h after each stimulus. TTI increased (145.0 ± 127.7%) in STIM only for "positive responders" to the tendon vibration (8/16 subjects), but decreased in "negative responders" (-43.5 ± 25.7%). MVIC (-8.7%) and rectus femoris electromyography (RF EMG) (-16.7%) decreased after STIM (group effect) for at least 1 h, but not after STIM + Vib. No changes were detected in indirect markers of muscle damage in any condition. Tendon vibration superimposed onto wide-pulse width NMES increased TTI only in 8 of 16 subjects, but reduced voluntary force loss (fatigue) ubiquitously. Negative responders to tendon vibration may derive greater benefit from wide-pulse width NMES alone.

  2. Using a Force Probe to Study Transverse Pulses and Reflections on a Plucked Elastic Cord

    Science.gov (United States)

    Hamalainen, Ari; Abbott, David

    2010-01-01

    Before the advent of microcomputer-based labware (MBL), "time-of-flight" measurements for the speed of a transverse pulse on a string required elegant apparatus. This paper describes how to use an off-the-shelf MBL force sensor and a computer to perform the measurement. The data shown in this paper were collected using Vernier Software's wireless…

  3. Post-tensioning tendon force loss detection using low power pulsed eddy current measurement

    Science.gov (United States)

    Kim, Ji-Min; Lee, Jun; Sohn, Hoon

    2018-04-01

    In the field of bridge engineering, pre-fabrication of a bridge member and its construction in site have been issued and studied, which achieves improved quality and rapid construction. For integration of those pre-fabricated segments into a structural member (i.e., a concrete slab, girder and pier), post-tensioning (PT) technique is adopted utilizing a high-strength steel tendon, and an effective investigation of the remaining PT tendon force is essential to assure an overall structural integrity. This study proposes a pulsed eddy current based tendon force loss detection system. A compact eddy current sensor is designed to be installed on the surface of an anchor holding a steel PT tendon. The intensity of the induced eddy current varies with PT tendon force alteration due to the magnetostriction effect of a ferromagnetic material. The advantages of the proposed system are as follows: (1) low power consumption, (2) rapid inspection, and (3) simple installation. Its performance was validated experimentally in a full-scale lab test of a 3.3-m long, 15.2-mm diameter mono-tendon that was tensioned using a universal testing machine. Tendon force was controlled from 20 to 180 kN with 20 kN interval, and eddy current responses were measured and analyzed at each force condition. The proposed damage index and the amount of force loss of PT tendon were monotonically related, and an excessive loss as much as 30 % of an initially-introduced tendon force was successfully predicted.

  4. Scenarios of Future Socio-Economics, Energy, Land Use, and Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Jiyong; Moss, Richard H.; Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.; Dooley, James J.; Kim, Son H.; Kopp, Roberrt; Kyle, G. Page; Luckow, Patrick W.; Patel, Pralit L.; Thomson, Allison M.; Wise, Marshall A.; Zhou, Yuyu

    2013-04-13

    This chapter explores uncertainty in future scenarios of energy, land use, emissions and radiative forcing that span the range in the literature for radiative forcing, but also consider uncertainty in two other dimensions, challenges to mitigation and challenges to adaptation. We develop a set of six scenarios that we explore in detail including the underlying the context in which they are set, assumptions that drive the scenarios, the Global Change Assessment Model (GCAM), used to produce quantified implications for those assumptions, and results for the global energy and land-use systems as well as emissions, concentrations and radiative forcing. We also describe the history of scenario development and the present state of development of this branch of climate change research. We discuss the implications of alternative social, economic, demographic, and technology development possibilities, as well as potential stabilization regimes for the supply of and demand for energy, the choice of energy technologies, and prices of energy and agricultural commodities. Land use and land cover will also be discussed with the emphasis on the interaction between the demand for bioenergy and crops, crop yields, crop prices, and policy settings to limit greenhouse gas emissions.

  5. Moderate Imaging Resolution Spectroradiometer (MODIS) Aerosol Optical Depth Retrieval for Aerosol Radiative Forcing

    Science.gov (United States)

    Asmat, A.; Jalal, K. A.; Ahmad, N.

    2018-02-01

    The present study uses the Aerosol Optical Depth (AOD) retrieved from Moderate Imaging Resolution Spectroradiometer (MODIS) data for the period from January 2011 until December 2015 over an urban area in Kuching, Sarawak. The results show the minimum AOD value retrieved from MODIS is -0.06 and the maximum value is 6.0. High aerosol loading with high AOD value observed during dry seasons and low AOD monitored during wet seasons. Multi plane regression technique used to retrieve AOD from MODIS (AODMODIS) and different statistics parameter is proposed by using relative absolute error for accuracy assessment in spatial and temporal averaging approach. The AODMODIS then compared with AOD derived from Aerosol Robotic Network (AERONET) Sunphotometer (AODAERONET) and the results shows high correlation coefficient (R2) for AODMODIS and AODAERONET with 0.93. AODMODIS used as an input parameters into Santa Barbara Discrete Ordinate Radiative Transfer (SBDART) model to estimate urban radiative forcing at Kuching. The observed hourly averaged for urban radiative forcing is -0.12 Wm-2 for top of atmosphere (TOA), -2.13 Wm-2 at the surface and 2.00 Wm-2 in the atmosphere. There is a moderate relationship observed between urban radiative forcing calculated using SBDART and AERONET which are 0.75 at the surface, 0.65 at TOA and 0.56 in atmosphere. Overall, variation in AOD tends to cause large bias in the estimated urban radiative forcing.

  6. Dose measurements in pulsed radiation fields with commercially available measuring components

    International Nuclear Information System (INIS)

    Friedrich, Sabrina; Hupe, Oliver

    2016-01-01

    Dose measurements in pulsed radiation fields with dosemeters using the counting technique are known to be inappropriate. Therefore, there is a demand for a portable device able to measure the dose in pulsed radiation fields. As a detector, ionisation chambers seem to be a good alternative. In particular, using a secondary standard ionisation chamber in combination with a reliable charge-measuring system would be a good solution. The Physikalisch-Technische Bundesanstalt (PTB) uses secondary standard ionisation chambers in combination with PTB-made measuring electronics for dose measurements at its reference fields. However, for general use, this equipment is too complex. For measurements on-site, a mobile special electronic system [Hupe, O. and Ankerhold, U. Determination of ambient and personal dose equivalent for personnel and cargo security screening. Radiat. Prot. Dosim. 121(4), 429-437 (2006)] has been used successfully. Still, for general use, there is a need for a much simpler but a just as good solution. A measuring instrument with very good energy dependence for H*(10) is the secondary standard ionisation chamber HS01. An easy-to-use and commercially available electrometer for measuring the generated charges is the UNIDOS by PTW Freiburg. Depending on the expected dose values, the ionisation chamber used can be selected. In addition, measurements have been performed by using commercially available area dosemeters, e.g. the Mini SmartION 2120S by Thermo Scientific, using an ionisation chamber and the Szintomat 6134 A/H by Automess, using a scintillation detector. (authors)

  7. Foot-pulse radiation drive necessary for ICF ignition capsule demonstrated on Z generator

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Olson, R.E.; Chandler, G.A.

    1999-01-01

    Implosion and ignition of an indirectly-driven ICF capsule operating near a Fermi-degenerate isentrope requires initial Planckian-radiation-drive temperatures of 70-to-90 eV to be present for a duration of 10-to-15 ns prior to the main drive pulse. Such capsules are being designed for high pulsed-power generators. This foot-pulse drive capability has been recently demonstrated in a NIF-sized (φ = 6-mm 1 = 7-mm), gold hohlraum, using a one-sided static-wall hohlraum geometry on the Z generator. The general arrangement utilized nested tungsten-wire arrays of radii (mass) 20 mm (2 mg) and 10 mm (1 mg) that had an axial length of approximately 10 mm. The arrays were driven by a peak current of approximately 21 MA and were made to implode on a 2-microm-thick Cu annulus (mass = 4.5 mg), which had a radius of 4 mm and was filled with a low-density CH foam, all centered about the z-axis. The gold hohlraum was mounted on axis and above the Cu/foam target. A 2.9-mm-radius axial hole between the top of the target and hohlraum permitted the x-rays generated from the implosion to enter the hohlraum. The radiation within the hohlraum was monitored by viewing the hohlraum through a 3-mm diameter hole on the lateral side of the hohlraum with a suite of diagnostics.The radiation entering the hohlraum was estimated by an additional suite of on-axis diagnostics, in a limited number of separate shots, when the hohlraum was not present. Additionally, the radiation generated outside the Cu annulus was monitored, for all shots, through a 3-mm diameter aperture located on the outside of the current return can. In the full paper, the characteristics of the radiation measured from these diagnostic sets, including the Planckian temperature of the hohlraum and radiation images, will be discussed as a function of the incident wire-array geometry (single vs nested array and array mass), target length (10, or 20 mm), annulus material (Cu, Au, or nothing), and CH-foam-fill density (10, 6, 2

  8. Reduction of vibration forces transmitted from a radiator cooling fan to a vehicle body

    Science.gov (United States)

    Lim, Jonghyuk; Sim, Woojeong; Yun, Seen; Lee, Dongkon; Chung, Jintai

    2018-04-01

    This article presents methods for reducing transmitted vibration forces caused by mass unbalance of the radiator cooling fan during vehicle idling. To identify the effects of mass unbalance upon the vibration characteristics, vibration signals of the fan blades were experimentally measured both with and without an added mass. For analyzing the vibration forces transmitted to the vehicle body, a dynamic simulation model was established that reflected the vibration characteristics of the actual system. This process included a method described herein for calculating the equivalent stiffness and the equivalent damping of the shroud stators and rubber mountings. The dynamic simulation model was verified by comparing its results with experimental results of the radiator cooling fan. The dynamic simulation model was used to analyze the transmitted vibration forces at the rubber mountings. Also, a measure was established to evaluate the effects of varying the design parameters upon the transmitted vibration forces. We present design guidelines based on these analyses to reduce the transmitted vibration forces of the radiator cooling fan.

  9. Resonant acoustic radiation force optical coherence elastography

    OpenAIRE

    Qi, Wenjuan; Li, Rui; Ma, Teng; Li, Jiawen; Kirk Shung, K.; Zhou, Qifa; Chen, Zhongping

    2013-01-01

    We report on a resonant acoustic radiation force optical coherence elastography (ARF-OCE) technique that uses mechanical resonant frequency to characterize and identify tissues of different types. The linear dependency of the resonant frequency on the square root of Young's modulus was validated on silicone phantoms. Both the frequency response spectrum and the 3D imaging results from the agar phantoms with hard inclusions confirmed the feasibility of deploying the resonant frequency as a mec...

  10. Air pollution radiative forcing from specific emissions sectors at 2030

    Science.gov (United States)

    Unger, Nadine; Shindell, Drew T.; Koch, Dorothy M.; Streets, David G.

    2008-01-01

    Reduction of short-lived air pollutants can contribute to mitigate global warming in the near-term with ancillary benefits to human health. However, the radiative forcings of short-lived air pollutants depend on the location and source type of the precursor emissions. We apply the Goddard Institute for Space Studies atmospheric composition-climate model to quantify near-future (2030 A1B) global annual mean radiative forcing by ozone (O3) and sulfate from six emissions sectors in seven geographic regions. At 2030 the net forcings from O3, sulfate, black and organic carbon, and indirect CH4 effects for each emission sector are (in mWm-2) biomass burning, +95; domestic, +68; transportation, +67; industry, -131; and power, -224. Biomass burning emissions in East Asia and central and southern Africa, domestic biofuel emissions in East Asia, south Asia, and central and southern Africa, and transportation emissions in Europe and North America have large net positive forcings and are therefore attractive targets to counter global warming. Power and industry emissions from East Asia, south Asia, and north Africa and the Middle East have large net negative forcings. Therefore air quality control measures that affect these regional sectors require offsetting climate measures to avoid a warming impact. Linear relationships exist between O3 forcing and biomass burning and domestic biofuel CO precursor emissions independent of region with sensitivity of +0.2 mWm-2/TgCO. Similarly, linear relationships exist between sulfate forcing and SO2 precursor emissions that depend upon region but are independent of sector with sensitivities ranging from -3 to -12 mWm-2/TgS.

  11. Expert judgments about transient climate response to alternative future trajectories of radiative forcing.

    Science.gov (United States)

    Zickfeld, Kirsten; Morgan, M Granger; Frame, David J; Keith, David W

    2010-07-13

    There is uncertainty about the response of the climate system to future trajectories of radiative forcing. To quantify this uncertainty we conducted face-to-face interviews with 14 leading climate scientists, using formal methods of expert elicitation. We structured the interviews around three scenarios of radiative forcing stabilizing at different levels. All experts ranked "cloud radiative feedbacks" as contributing most to their uncertainty about future global mean temperature change, irrespective of the specified level of radiative forcing. The experts disagreed about the relative contribution of other physical processes to their uncertainty about future temperature change. For a forcing trajectory that stabilized at 7 Wm(-2) in 2200, 13 of the 14 experts judged the probability that the climate system would undergo, or be irrevocably committed to, a "basic state change" as > or =0.5. The width and median values of the probability distributions elicited from the different experts for future global mean temperature change under the specified forcing trajectories vary considerably. Even for a moderate increase in forcing by the year 2050, the medians of the elicited distributions of temperature change relative to 2000 range from 0.8-1.8 degrees C, and some of the interquartile ranges do not overlap. Ten of the 14 experts estimated that the probability that equilibrium climate sensitivity exceeds 4.5 degrees C is > 0.17, our interpretation of the upper limit of the "likely" range given by the Intergovernmental Panel on Climate Change. Finally, most experts anticipated that over the next 20 years research will be able to achieve only modest reductions in their degree of uncertainty.

  12. Simulation of pulsed-ionizing-radiation-induced errors in CMOS memory circuits

    International Nuclear Information System (INIS)

    Massengill, L.W.

    1987-01-01

    Effects of transient ionizing radiation on complementary metal-oxide-semiconductor (CMOS) memory circuits was studied by computer simulation. Simulation results have uncovered the dominant mechanism leading to information loss (upset) in dense (CMOS) circuits: rail span collapse. This effect is the catastrophic reduction in the local power supply at a RAM cell location due to the conglomerate radiation-induced photocurrents from all other RAM cells flowing through the power-supply-interconnect distribution. Rail-span collapse leads to reduced RAM cell-noise margins and can predicate upset. Results show that rail-span collapse in the dominant pulsed radiation effect in many memory circuits, preempting local circuit responses to the radiation. Several techniques to model power-supply noise, such as that arising from rail span collapse, are presented in this work. These include an analytical model for design optimization against these effects, a hierarchical computer-analysis technique for efficient power bus noise simulation in arrayed circuits, such as memories, and a complete circuit-simulation tool for noise margin analysis of circuits with arbitrary topologies

  13. Dependence of the absorption of pulsed CO2-laser radiation by silane on wavenumber, fluence, pulse duration, temperature, optical path length, and pressure of absorbing and nonabsorbing gases

    International Nuclear Information System (INIS)

    Blazejowski, J.; Gruzdiewa, L.; Rulewski, J.; Lampe, F.W.

    1995-01-01

    The absorption of three lines [P(20), 944.2 cm -1 ; P(14), 949.2 cm -1 ; and R(24), 978.5 cm -1 ] of the pulsed CO 2 laser (00 0 1--10 0 0 transition) by SiH 4 was measured at various pulse energy, pulse duration, temperature, optical path length, and pressure of the compound and nonabsorbing foreign gases. In addition, low intensity infrared absorption spectrum of silane was compared with high intensity absorption characteristics for all lines of the pulsed CO 2 laser. The experimental dependencies show deviations from the phenomenological Beer--Lambert law which can be considered as arising from the high intensity of an incident radiation and collisions of absorbing molecules with surroundings. These effects were included into the expression, being an extended form of the Beer--Lambert law, which reasonably approximates all experimental data. The results, except for extending knowledge on the interaction of a high power laser radiation with matter, can help understanding and planning processes leading to preparation of silicon-containing technologically important materials

  14. Structural analysis of γ radiation-induced chromosomal aberrations observed by atomic force microscopy

    International Nuclear Information System (INIS)

    Qu Shuang; Chen Ying; Ge Shili; Liu Xiulin; Zhou Pingkun; Zhang Sa; Zhang Detian

    2003-01-01

    Objective: To find a new method for the measurement of radiation-induced damage, the structures of normal chromosomes and 60 Co γ-ray-induced chromosomal aberration were analyzed by atomic force microscopy. Methods: Normal and irradiated chromosomes of human peripheral blood lymphocytes were prepared, then three-dimensional structure and height of chromosomes were analyzed by atomic force microscopy. Results: Three-dimensional structures of normal chromosomes and dicentric aberration in irradiated chromosomes were observed clearly. The data of chromosome height were helpful to recognizing the dicentric aberrations. Conclusion: Atomic force microscopy providing three-dimension image and linear measurement is a new and valuable tool for structural analysis of radiation-induced chromosomal aberrations

  15. Spectral Longwave Cloud Radiative Forcing as Observed by AIRS

    Science.gov (United States)

    Blaisdell, John M.; Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2016-01-01

    AIRS V6 products contain the spectral contributions to Outgoing Longwave Radiation (OLR), clear-sky OLR (OLR(sub CLR)), and Longwave Cloud Radiative Forcing (LWCRF) in 16 bands from 100 cm(exp -1) to 3260 cm(exp -1). We show climatologies of selected spectrally resolved AIRS V6 products over the period of September 2002 through August 2016. Spectrally resolved LWCRF can better describe the response of the Earth system to cloud and cloud feedback processes. The spectral LWCRF enables us to estimate the fraction of each contributing factor to cloud forcing, i.e.: surface temperature, mid to upper tropospheric water vapor, and tropospheric temperature. This presentation also compares the spatial characteristics of LWCRF from AIRS, CERES_EBAF Edition-2.8, and MERRA-2. AIRS and CERES LWCRF products show good agreement. The OLR bias between AIRS and CERES is very close to that of OLR(sub CLR). This implies that both AIRS and CERES OLR products accurately account for the effect of clouds on OLR.

  16. Comparison of pulsed fluoroscopy by direct control using a grid-controlled x-ray tube with pulsed fluoroscopy by primary control

    International Nuclear Information System (INIS)

    Chida, Koichi; Zuguchi, Masayuki; Ito, Daisuke; Sato, Kunihiko; Shimura, Hirotaka; Sasaki, Masatoshi

    2001-01-01

    Interventional radiology (IVR) procedures may involve high radiation doses that are potentially harmful to the patient. In IVR procedures, pulsed fluoroscopy can greatly decrease the radiation that the physician and patient receive. There are two types of pulsed fluoroscopy: direct control and primary (indirect) control. The purpose of this study was to compare pulsed fluoroscopy by direct control, using a grid-controlled x-ray tube, with pulsed fluoroscopy using primary control. For both types of pulsed fluoroscopy, we measured the waveforms (x-ray tube voltage, x-ray tube current, and x-ray output) and the relative radiation dose. In addition, we compared the decrease in radiation during pulsed fluoroscopy using a care filter. The studies were performed using a Siemens Bicor Plus x-ray System (direct control) and a Siemens Multistar Plus x-ray System (primary control). Using primary pulse control, a 50% decrease in the x-ray output waveform took approximately 0.5-1.0 msec, or longer with a lower x-ray tube current. Using direct pulse control, a 50% decrease in the x-ray output waveform took approximately 0.1 msec, and was independent of x-ray tube current. The rate of radiation reduction with primary pulse control using the care filter with a lower x-ray tube current had a slope exceeding 10%. Pulsed fluoroscopy by direct control using a grid-controlled x-ray tube permits an optimal radiation dose. To decrease the radiation in primary pulse control, a care filter must be used, particularly with a lower x-ray tube current. (author)

  17. INTERACTION OF LASER RADIATION WITH MATTER: Influence of a target on operation of a pulsed CO2 laser emitting microsecond pulses

    Science.gov (United States)

    Baranov, V. Yu; Dolgov, V. A.; Malyuta, D. D.; Mezhevov, V. S.; Semak, V. V.

    1987-12-01

    The profile of pulses emitted by a TEA CO2 laser with an unstable resonator changed as a result of interaction of laser radiation with the surface of a metal in the presence of a breakdown plasma. This influence of a target on laser operation and its possible applications in laser processing of materials are analyzed.

  18. Standard Test Method for Measuring Dose for Use in Linear Accelerator Pulsed Radiation Effects Tests

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This test method covers a calorimetric measurement of the total dose delivered in a single pulse of electrons from an electron linear accelerator or a flash X-ray machine (FXR, e-beam mode) used as an ionizing source in radiation-effects testing. The test method is designed for use with pulses of electrons in the energy range from 10 to 50 MeV and is only valid for cases in which both the calorimeter and the test specimen to be irradiated are“thin” compared to the range of these electrons in the materials of which they are constructed. 1.2 The procedure described can be used in those cases in which (1) the dose delivered in a single pulse is 5 Gy (matl) (500 rd (matl)) or greater, or (2) multiple pulses of a lower dose can be delivered in a short time compared to the thermal time constant of the calorimeter. Matl refers to the material of the calorimeter. The minimum dose per pulse that can be acceptably monitored depends on the variables of the particular test, including pulse rate, pulse uniformity...

  19. Measuring radiation damage dynamics by pulsed ion beam irradiation: 2016 project annual report

    Energy Technology Data Exchange (ETDEWEB)

    Kucheyev, Sergei O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-04

    The major goal of this project is to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation in nuclear materials. In particular, the project exploits a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. For Year 3, this project had the following two major milestones: (i) the demonstration of the measurement of thermally activated defect-interaction processes by pulsed ion beam techniques and (ii) the demonstration of alternative characterization techniques to study defect dynamics. As we describe below, both of these milestones have been met.

  20. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    Energy Technology Data Exchange (ETDEWEB)

    Treweek, Benjamin C., E-mail: btreweek@utexas.edu; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P.O. Box 8029, Austin, TX 78713-8029 (United States)

    2015-10-28

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties.

  1. Pulsed neutron well logging apparatus having means for determining background radiation

    International Nuclear Information System (INIS)

    Randall, R.R.

    1979-01-01

    A neutron generator in a well logging instrument is periodically pulsed and has an off period between pulses of 1000 microseconds. A neutron detector is gated on at intervals of 400 to 500, 550 to 650, and 700 to 800 microseconds, respectively, following the termination of each burst of fast neutrons. Circuitry is provided for determining the background radiation by the equation: B = N 1 X N 3 - N 2 2 /N 1 + N 3 - 2N 2 where B is the background, and N 1 , N 2 and N 3 are the counts observed during the three gates, respectively. Circuitry is also provided for determining the macroscopic absorption (Σ) from the equation: Σ = 1/VΔt Log [N 1 - B/N 2 - B] where V is the velocity of thermal neutrons, being a constant and Δt represents an increment of time

  2. A nuclear radiation multi-parameter measurement system based on pulse-shape sampling

    International Nuclear Information System (INIS)

    Qiu Xiaolin; Fang Guoming; Xu Peng; Di Yuming

    2007-01-01

    In this paper, A nuclear radiation multi-parameter measurement system based on pulse-shape sampling is introduced, including the system's characteristics, composition, operating principle, experiment data and analysis. Compared with conventional nuclear measuring apparatus, it has some remarkable advantages such as the synchronous detection using multi-parameter measurement in the same measurement platform and the general analysis of signal data by user-defined program. (authors)

  3. One-dimensional central-force problem, including radiation reaction

    International Nuclear Information System (INIS)

    Kasher, J.C.

    1976-01-01

    Two equal masses of equal charge magnitude (either attractive or repulsive) are held a certain distance apart for their entire past history. AT t = 0 one of them is either started from rest or given an initial velocity toward or away from the other charge. When the Dirac radiation-reaction force is included in the force equation, our Taylor-series numerical calculations lead to two types of nonphysical results for both the attractive and repulsive cases. In the attractive case, the moving charge either stops and moves back out to infinity, or violates energy conservation as it nears collision with the fixed charge. For the repulsive charges, the moving particle either eventually approaches and collides with the fixed one, or violates energy conservation as it goes out to infinity. These results lead us to conclude that the Lorentz-Dirac equation is not valid for the one-dimensional central-force problem

  4. Radiofrequency radiation: safe working practices in the Royal Australian Air Force

    International Nuclear Information System (INIS)

    Joyner, K.H.; Stone, K.R.

    1988-01-01

    The Royal Australian Air Force (RAAF) has long recognised the value of its work force and the need to preserve their health and wellbeing to achieve operational objectives. The Directorate of Air Force Safety (DAFS) is required by the Chief of the Air Staff to take all measures possible to prevent accidents and incidents in the RAAF, under the provisions of the Defence Instruction, 'Air Force Safety and Occupational Health Policy'. Consequently, the RAAF has exercised a pragmatic approach to radiofrequency radiation (RFR) and has always adopted and implemented strict exposure standards. DAFS receives technical advice on RFR from the Directorate of Telecommunications Engineering (DTELENG) and on occupational health from the Directorate General of Air Force Health Services (DGAFHS)

  5. The doppler frequency shift caused by the inhomogeneities of a medium induced by pulses of intense laser radiation

    Science.gov (United States)

    Rozanov, N. N.; Kiselev, Al. S.; Kiselev, An. S.

    2008-08-01

    Self-reflection of pulses of intense laser radiation from an inhomogeneity induced by them in a medium with fast optical nonlinearity is analyzed. The reflected radiation is characterized by a considerable Doppler shift and by a signal magnitude that is sufficient for experimental detection.

  6. Pushing, pulling and electromagnetic radiation force cloaking by a pair of conducting cylindrical particles

    Science.gov (United States)

    Mitri, F. G.

    2018-02-01

    The present analysis shows that two conducting cylindrical particles illuminated by an axially-polarized electric field of plane progressive waves at arbitrary incidence will attract, repel or become totally cloaked (i.e., invisible to the transfer of linear momentum carried by the incident waves), depending on their sizes, the interparticle distance as well as the angle of incidence of the incident field. Based on the rigorous multipole expansion method and the translational addition theorem of cylindrical wave functions, the electromagnetic (EM) radiation forces arising from multiple scattering effects between a pair of perfectly conducting cylindrical particles of circular cross-sections are derived and computed. An effective incident field on a particular particle is determined first, and used subsequently with its corresponding scattered field to derive the closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the EM radiation force components (i.e. longitudinal and transverse) are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the interparticle distance and the expansion coefficients. Numerical examples illustrate the analysis for two perfectly conducting circular cylinders in a homogeneous nonmagnetic medium of wave propagation. The computations for the dimensionless radiation force functions are performed with particular emphasis on varying the angle of incidence, the interparticle distance, and the sizes of the particles. Depending on the interparticle distance and angle of incidence, the cylinders yield total neutrality (or invisibility); they experience no force and become unresponsive to the transfer of the EM linear momentum due to multiple scattering cancellation effects. Moreover, pushing or pulling EM forces between the two cylinders arise depending on the interparticle distance, the angle of incidence and their

  7. Dynamics of laser-induced channel formation in water and influence of pulse duration on the ablation of biotissue under water with pulsed erbium-laser radiation

    Science.gov (United States)

    Ith, M.; Pratisto, H.; Altermatt, H. J.; Frenz, M.; Weber, H. P.

    1994-12-01

    The ability to use fiber-delivered erbium-laser radiation for non-contact arthroscopic meniscectomy in a liquid environment was studied. The laser radiation is transmitted through a water-vapor channel created by the leading part of the laser pulse. The dynamics of the channel formation around a submerged fiber tip was investigated with time-resolved flash photography. Strong pressure transients with amplitudes up to a few hundreds of bars measured with a needle hydrophone were found to accompany the channel formation process. Additional pressure transients in the range of kbars were observed after the laser pulse associated with the collapse of the vapor channel. Transmission measurements revealed that the duration the laser-induced channel stays open, and therefore the energy transmittable through it, is substantially determined by the laser pulse duration. The optimum pulse duration was found to be in the range between 250 and 350 µS. This was confirmed by histological evaluations of the laser incisions in meniscus: Increasing the pulse duration from 300 to 800 µs leads to a decrease in the crater depth from 1600 to 300 µm. A comparison of the histological examination after laser treatment through air and through water gave information on the influence of the vapor channel on the ablation efficiency, the cutting quality and the induced thermal damage in the adjacent tissue. The study shows that the erbium laser combined with an adequate fiber delivery system represents an effective surgical instrument liable to become increasingly accepted in orthopedic surgery.

  8. Magnitude and pattern of Arctic warming governed by the seasonality of radiative forcing.

    Science.gov (United States)

    Bintanja, R; Krikken, F

    2016-12-02

    Observed and projected climate warming is strongest in the Arctic regions, peaking in autumn/winter. Attempts to explain this feature have focused primarily on identifying the associated climate feedbacks, particularly the ice-albedo and lapse-rate feedbacks. Here we use a state-of-the-art global climate model in idealized seasonal forcing simulations to show that Arctic warming (especially in winter) and sea ice decline are particularly sensitive to radiative forcing in spring, during which the energy is effectively 'absorbed' by the ocean (through sea ice melt and ocean warming, amplified by the ice-albedo feedback) and consequently released to the lower atmosphere in autumn and winter, mainly along the sea ice periphery. In contrast, winter radiative forcing causes a more uniform response centered over the Arctic Ocean. This finding suggests that intermodel differences in simulated Arctic (winter) warming can to a considerable degree be attributed to model uncertainties in Arctic radiative fluxes, which peak in summer.

  9. Technical specifications manual for the MARK-1 pulsed ionizing radiation detection system. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, R.S.; Harker, Y.D.; Jones, J.L.; Hoggan, J.M.

    1993-03-01

    The MARK-1 detection system was developed by the Idaho National Engineering Laboratory for the US Department of Energy Office of Arms Control and Nonproliferation. The completely portable system was designed for the detection and analysis of intense photon emissions from pulsed ionizing radiation sources. This manual presents the technical design specifications for the MARK-1 detection system and was written primarily to assist the support or service technician in the service, calibration, and repair of the system. The manual presents the general detection system theory, the MARK-1 component design specifications, the acquisition and control software, the data processing sequence, and the system calibration procedure. A second manual entitled: Volume 2: Operations Manual for the MARK-1 Pulsed Ionizing Radiation Detection System (USDOE Report WINCO-1108, September 1992) provides a general operational description of the MARK-1 detection system. The Operations Manual was written primarily to assist the field operator in system operations and analysis of the data.

  10. Measured pulse width of sonoluminescence flashes in the form of resonance radiation

    Science.gov (United States)

    Giri, Asis; Arakeri, Vijay H.

    1998-09-01

    Recent studies have shown that the measured flash widths from single and multibubble sonoluminescence are in subnanosecond or even picosecond regime. Here, we provide conclusive evidence for the existence of nanosecond multibubble sonoluminescence. This has become possible by our ability to find a medium from which exclusive sodium D line resonance radiation as a form of sonoluminescence is possible. The measured flash width of this emission is found to be in the range of tens of nanoseconds and is sensitively dependent on experimental parameters. Our finding is important since all the earlier pulse width measurements have been limited to emission with the physical source or species responsible for observed optical radiation not being clearly identified. We propose that the presently observed resonance radiation is from ``soft'' bubble collapse as analyzed by V. Kamath et al. [J. Acoust. Soc. Am. 94, 248 (1993)].

  11. Radiation-reaction force on a small charged body to second order

    Science.gov (United States)

    Moxon, Jordan; Flanagan, Éanna

    2018-05-01

    In classical electrodynamics, an accelerating charged body emits radiation and experiences a corresponding radiation-reaction force, or self-force. We extend to higher order in the total charge a previous rigorous derivation of the electromagnetic self-force in flat spacetime by Gralla, Harte, and Wald. The method introduced by Gralla, Harte, and Wald computes the self-force from the Maxwell field equations and conservation of stress-energy in a limit where the charge, size, and mass of the body go to zero, and it does not require regularization of a singular self-field. For our higher-order computation, an adjustment of the definition of the mass of the body is necessary to avoid including self-energy from the electromagnetic field sourced by the body in the distant past. We derive the evolution equations for the mass, spin, and center-of-mass position of the body through second order. We derive, for the first time, the second-order acceleration dependence of the evolution of the spin (self-torque), as well as a mixing between the extended body effects and the acceleration-dependent effects on the overall body motion.

  12. Generation of Femtosecond Electron and Photon Pulses

    CERN Document Server

    Thongbai, Chitrlada; Kangrang, Nopadol; Kusoljariyakul, Keerati; Rhodes, Michael W; Rimjaem, Sakhorn; Saisut, Jatuporn; Vilaithong, Thiraphat; Wichaisirimongkol, Pathom; Wiedemann, Helmut

    2005-01-01

    Femtosecond electron and photon pulses become a tool of interesting important to study dynamics at molecular or atomic levels. Such short pulses can be generated from a system consisting of an RF-gun with a thermionic cathode, an alpha magnet as a magnetic bunch compressor, and a linear accelerator. The femtosecond electron pulses can be used directly or used as sources to produce electromagnetic radiation of equally short pulses by choosing certain kind of radiation pruduction processes. At the Fast Neutron Research Facility (Thailand), we are especially interested in production of radiation in Far-infrared and X-ray regime. In the far-infrared wavelengths which are longer than the femtosecond pulse length, the radiation is emitted coherently producing intense radiation. In the X-ray regime, development of femtosecond X-ray source is crucial for application in ultrafast science.

  13. Study of Radiative Forcing of Dust Aerosols and its impact on Climate Characteristics

    KAUST Repository

    Qureshi, Fawwad H

    2012-01-01

    The purpose of following project is to study the effect of dust aerosols on the radiative forcing which is directly related to the surface temperature. A single column radiative convective model is used for simulation purpose. A series

  14. Emission of ultrashort electromagnetic pulses from electron bunches formed and accelerated by laser beams with tilted amplitude fronts

    International Nuclear Information System (INIS)

    Galkin, A.L.; Korobkin, V.V.; Romanovsky, M.Yu.; Shiryaev, O.B.; Trofimov, V.A.

    2013-01-01

    The dynamics of an electron in a standing wave generated by a pair of counterpropagating linearly polarized relativistically intense laser pulses and the emission of electromagnetic radiation by the electron are analyzed. The pulses are assumed to have tilted amplitude fronts and asymmetric focal spots. The analysis of the dynamics is performed by solving numerically the Newton equation with the corresponding Lorentz force, and the emission of radiation is simulated based on the Lienard-Wiechert potentials. The electrons are accelerated by the direct action of the standing wave field and are shown to form a small short bunch. For relativistic intensities, the energies gained by the electrons reach several GeV. It is demonstrated that the radiation emitted by the electrons in the bunch is a single electromagnetic pulse confined to a narrow solid angle and having an attosecond duration. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Irradiation of cells by single and double pulses of high intensity radiation: oxygen sensitization and diffusion kinetics

    International Nuclear Information System (INIS)

    Epp, E.R.; Ling, C.C.; Weiss, H.

    1976-01-01

    This paper discusses advances made on both experimental and theoretical approaches involving single and double pulses of high intensity ionizing radiation delivered to cultured bacterial and mammalian cells where the effect of oxygen is concerned. Information gained on the lifetime of oxygen-sensitive species suspected to be produced in critical molecules in irradiated cells and perhaps intimately related to the still unknown mechanisms of oxygen sensitization is described. The diffusion characteristics of oxygen at the cellular level obtained from experimental data are discussed. Current knowledge on intracellular radiolytic oxygen depletion is also presented. Future work on the use of high intensity pulsed radiation as a tool in cellular radiobiological research is outlined. It is expected that obtaining knowledge of the time available for damaged molecules to enter into chemical reactions may lead to insights into the mechanisms of radiation injury in cells, such as those involved in the oxygen effect. (Auth.)

  16. Electromagnetic Fields, Pulsed Radiofrequency Radiation, and Epigenetics: How Wireless Technologies May Affect Childhood Development

    Science.gov (United States)

    Sage, Cindy; Burgio, Ernesto

    2018-01-01

    Mobile phones and other wireless devices that produce electromagnetic fields (EMF) and pulsed radiofrequency radiation (RFR) are widely documented to cause potentially harmful health impacts that can be detrimental to young people. New epigenetic studies are profiled in this review to account for some neurodevelopmental and neurobehavioral changes…

  17. Radiation dose reduction in CT-guided sacroiliac joint injections to levels of pulsed fluoroscopy: a comparative study with technical considerations

    Directory of Open Access Journals (Sweden)

    Artner J

    2012-08-01

    Full Text Available Juraj Artner, Balkan Cakir, Heiko Reichel, Friederike LattigDepartment of Orthopaedic Surgery, University of Ulm, RKU, GermanyBackground: The sacroiliac (SI joint is frequently the primary source of low back pain. Over the past decades, a number of different SI injection techniques have been used in its diagnosis and therapy. Despite the concerns regarding exposure to radiation, image-guided injection techniques are the preferred method to achieve safe and precise intra-articular needle placement. The following study presents a comparison of radiation doses, calculated for fluoroscopy and CT-guided SI joint injections in standard and low-dose protocol and presents the technical possibility of CT-guidance with maximum radiation dose reduction to levels of fluoroscopic-guidance for a precise intra-articular injection technique.Objective: To evaluate the possibility of dose reduction in CT-guided sacroiliac joint injections to pulsed-fluoroscopy-guidance levels and to compare the doses of pulsed-fluoroscopy-, CT-guidance, and low-dose CT-guidance for intra-articular SI joint injections.Study design: Comparative study with technical considerations.Methods: A total of 30 CT-guided intra-articular SI joint injections were performed in January 2012 in a developed low-dose mode and the radiation doses were calculated. They were compared to 30 pulsed-fluoroscopy-guided SI joint injections, which were performed in the month before, and to five injections, performed in standard CT-guided biopsy mode for spinal interventions. The statistical significance was calculated with the SPSS software using the Mann–Whitney U-Test. Technical details and anatomical considerations were provided.Results: A significant dose reduction of average 94.01% was achieved using the low-dose protocol for CT-guided SI joint injections. The radiation dose could be approximated to pulsed-fluoroscopy-guidance levels.Conclusion: Radiation dose of CT-guided SI joint injections can be

  18. Digital pulse processing techniques for high resolution amplitude measurement of radiation detector

    International Nuclear Information System (INIS)

    Singhai, P.; Roy, A.; Dhara, P.; Chatterjee, S.

    2012-01-01

    The digital pulse processing techniques for high resolution amplitude measurement of radiation detector pulse is an effective replacement of expensive and bulky analog processing as the digital domain offers higher channel density and at the same time it is cheaper. We have demonstrated a prototype digital setup with highspeed sampling ADC with sampling frequency of 80-125 MHz followed by series of IIR filters for pulse shaping in a trigger-less acquisition mode. The IIR filters, peak detection algorithm and the data write-out logic was written on VHDL and implemented on FPGA. We used CAMAC as the read out platform. In conjunction with the full hardware implementation we also used a mixed platform with VME digitizer card with raw-sample read out using C code. The rationale behind this mixed platform is to test out various filter algorithms quickly on C and also to benchmark the performance of the chip level ADCs against the standard commercial digitizer in terms of noise or resolution. The paper describes implementation of both the methods with performance obtained in both the methods. (author)

  19. Acoustic manipulation of active spherical carriers: Generation of negative radiation force

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, Majid, E-mail: majid_rajabi@iust.ac.ir; Mojahed, Alireza

    2016-09-15

    This paper examines theoretically a novel mechanism of generating negative (pulling) radiation force for acoustic manipulation of spherical carriers equipped with piezoelectric actuators in its inner surface. In this mechanism, the spherical particle is handled by common plane progressive monochromatic acoustic waves instead of zero-/higher- order Bessel beams or standing waves field. The handling strategy is based on applying a spatially uniform harmonic electrical voltage at the piezoelectric actuator with the same frequency of handling acoustic waves, in order to change the radiation force effect from repulsive (away from source) to attractive (toward source). This study may be considered as a start point for development of contact-free precise handling and entrapment technology of active carriers which are essential in many engineering and medicine applications.

  20. Contrast generation in the nuclear-spin tomography by pulsed ultrasound

    International Nuclear Information System (INIS)

    Oehms, Ole Benjamin

    2009-01-01

    In the framework of this thesis a combined method of ultrasound and nuclear-spin tomography is presented. Via ultrasound pulses by the sound-radiation force in liquids and tissue phantoms motions are generated, which depend on ther viscoelastic properties. This motions are made visible by a motion-sensitive tomograph sequence in the phase image of the tomograph in form of a phase change. The first measurements on simple phantoms and liquids are presented. [de

  1. Radiation closure and diurnal cycle of the clear-sky dust instantaneous direct radiative forcing over Arabian Peninsula

    KAUST Repository

    Osipov, Sergey; Stenchikov, Georgiy L.; Brindley,  Helen; Banks,  Jamie

    2015-01-01

    Spinning Enhanced Visible and Infrared Imager (SEVIRI) aerosol optical depth. Results are compared with Geostationary Earth Radiation Budget (GERB) derived top of the atmosphere climatological forcing over the Red Sea.

  2. Towards diffractive imaging with single pulses of FEL radiation. Dynamics within irradiatied samples and their influence on the analysis of imaging data

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fenglin

    2010-08-15

    3D single particle coherent diffraction imaging (CDI) of bioparticles (such as proteins, macromolecules and viruses) is one of the main possible applications of the new generation of light sources: free-electron lasers (FELs), which are now available at FLASH (Hamburg, Germany) and LCLS (Stanford, U.S.A.). The extremely bright and ultrashort FEL pulses potentially enable CDI to achieve high resolution down to subnanometer length scale. However, intense FEL pulses cause serious radiation damage in bioparticles, even during single shots, which may set the resolution limits for CDI with FELs. Currently, since the signal-to-noise ratio is very low for small biological particles, direct experimental study of radiation damage in the single particle imaging is fairly difficult. Single atomic (noble gas) clusters become good objects to reveal effects of radiation damage processes on CDI with FEL radiation. This thesis studies three aspects of the radiation damage problem, which are treated in three independent chapters: (1) Molecular Dynamics simulations to quantitively describe radiation damage processes within irradiated atomic clusters during single pulses; (2) reconstruction analysis of single-shot CDI diffraction patterns of atomic clusters, which may potentially help to understand the radiation damage occurring in biological samples; and (3) testing the effects of coating water layers in CDI, which is supposed to minimize the radiation damage in irradiated bioparticles. (orig.)

  3. Demonstration of radiation pulse shaping with nested-tungsten-wire-array pinches for high-yield inertial confinement fusion.

    Science.gov (United States)

    Cuneo, M E; Vesey, R A; Sinars, D B; Chittenden, J P; Waisman, E M; Lemke, R W; Lebedev, S V; Bliss, D E; Stygar, W A; Porter, J L; Schroen, D G; Mazarakis, M G; Chandler, G A; Mehlhorn, T A

    2005-10-28

    Nested wire-array pinches are shown to generate soft x-ray radiation pulse shapes required for three-shock isentropic compression and hot-spot ignition of high-yield inertial confinement fusion capsules. We demonstrate a reproducible and tunable foot pulse (first shock) produced by interaction of the outer and inner arrays. A first-step pulse (second shock) is produced by inner array collision with a central CH2 foam target. Stagnation of the inner array at the axis produces the third shock. Capsules optimized for several of these shapes produce 290-900 MJ fusion yields in 1D simulations.

  4. Study of the oncogenic expression in human fibroblast cells after exposure to very short pulsed laser radiations

    International Nuclear Information System (INIS)

    Dormont, D.; Freville, Th.; Raoul, H.; Courant, D.; Court, L.

    1992-01-01

    The aim of this study is to evaluate the capacity of a laser, delivering very short pulses in the near infrared spectrum with a high pulse ratio frequency, to induce genetic modification on biological tissues. The absence of dicentric among chromosomal aberrations on human lymphocytes suggests that a repetitive very short pulses irradiation has a relatively low capacity to induce genetic abnormalities. The studies of the radiation effects on the cellular growth and the oncogenic expression show that the modifications, induced at the cellular level, do not seem the origin of a cellular transformation and a possible mechanism of carcinogenesis. (author)

  5. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    OpenAIRE

    Y. Liu; W. Wu; M. P. Jensen; T. Toto

    2011-01-01

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surfaced-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fractio...

  6. Relationship of scattering phase shifts to special radiation force conditions for spheres in axisymmetric wave-fields.

    Science.gov (United States)

    Marston, Philip L; Zhang, Likun

    2017-05-01

    When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.

  7. Acoustic backscattering and radiation force on a rigid elliptical cylinder in plane progressive waves.

    Science.gov (United States)

    Mitri, F G

    2016-03-01

    This work proposes a formal analytical theory using the partial-wave series expansion (PWSE) method in cylindrical coordinates, to calculate the acoustic backscattering form function as well as the radiation force-per-length on an infinitely long elliptical (non-circular) cylinder in plane progressive waves. The major (or minor) semi-axis of the ellipse coincides with the direction of the incident waves. The scattering coefficients for the rigid elliptical cylinder are determined by imposing the Neumann boundary condition for an immovable surface and solving a resulting system of linear equations by matrix inversion. The present method, which utilizes standard cylindrical (Bessel and Hankel) wave functions, presents an advantage over the solution for the scattering that is ordinarily expressed in a basis of elliptical Mathieu functions (which are generally non-orthogonal). Furthermore, an integral equation showing the direct connection of the radiation force function with the square of the scattering form function in the far-field from the scatterer (applicable for plane waves only), is noted and discussed. An important application of this integral equation is the adequate evaluation of the radiation force function from a bistatic measurement (i.e., in the polar plane) of the far-field scattering from any 2D object of arbitrary shape. Numerical predictions are evaluated for the acoustic backscattering form function and the radiation force function, which is the radiation force per unit length, per characteristic energy density, and per unit cross-sectional surface of the ellipse, with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes, as well as the dimensionless size parameter kb, without the restriction to a particular range of frequencies. The results are particularly relevant in acoustic levitation, acousto-fluidics and particle dynamics applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Radiation forces and the Abraham-Minkowski problem

    Science.gov (United States)

    Brevik, Iver

    2018-04-01

    Recent years have witnessed a number of beautiful experiments in radiation optics. Our purpose with this paper is to highlight some developments of radiation pressure physics in general, and thereafter to focus on the importance of the mentioned experiments in regard to the classic Abraham-Minkowski problem. That means, what is the “correct” expression for electromagnetic momentum density in continuous matter. In our opinion, one often sees that authors over-interpret the importance of their experimental findings with respect to the momentum problem. Most of these experiments are actually unable to discriminate between these energy-momentum tensors at all, since they can be easily described in terms of force expressions that are common for Abraham and Minkowski. Moreover, we emphasize the inherent ambiguity in applying the formal conservation principles to the radiation field in a dielectric, the reason being that the electromagnetic field in matter is only a subsystem which has to be supplemented by the mechanical subsystem to be closed. Finally, we make some suggestions regarding the connection between macroscopic electrodynamics and the Casimir effect, suggesting that there is a limit for the magnitudes of the cutoff parameters in QFT related to surface tension in ordinary hydromechanics.

  9. Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability.

    Science.gov (United States)

    Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai

    2016-05-24

    A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing.

  10. Measurement and analysis of the electric field radiation in pulsed power system of linear induction accelerator

    International Nuclear Information System (INIS)

    Cheng Qifeng; Ni Jianping; Meng Cui; Cheng Cheng; Liu Yinong; Li Jin

    2009-01-01

    The close of high voltage switch in pulsed power system of linear induction accelerator often radiates strong transient electric field, which may influence ambient sensitive electric equipment, signals and performance of other instruments, etc. By performing gridded measurement around the Marx generator, the general distribution law and basic characters of electric field radiation are summarized. The current signal of the discharge circuit is also measured, which demonstrates that the current and the radiated electric field both have a resonance frequency about 150 kHz, and contain much higher frequency components. (authors)

  11. Implications of Representative Concentration Pathway 4.5 Methane Emissions to Stabilize Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Emanuel, William R.; Janetos, Anthony C.

    2013-02-01

    Increases in the abundance of methane (CH4) in the Earth’s atmosphere are responsible for significant radiative forcing of climate change (Forster et al., 2007; Wuebbles and Hayhoe, 2002). Since 1750, a 2.5 fold increase in atmospheric CH4 contributed 0.5 W/m2 to direct radiative forcing and an additional 0.2 W/m2 indirectly through changes in atmospheric chemistry. Next to water and carbon dioxide (CO2), methane is the most abundant greenhouse gas in the troposphere. Additionally, CH4 is significantly more effective as a greenhouse gas on a per molecule basis than is CO2, and increasing atmospheric CH4 has been second only to CO2 in radiative forcing (Forster et al., 2007). The chemical reactivity of CH4 is important to both tropospheric and stratospheric chemistry. Along with carbon monoxide, methane helps control the amount of the hydroxyl radical (OH) in the troposphere where oxidation of CH4 by OH leads to the formation of formaldehyde, carbon monoxide, and ozone.

  12. Climatic Effects of 1950-2050 Changes in US Anthropogenic Aerosols. Part 1; Aerosol Trends and Radiative Forcing

    Science.gov (United States)

    Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W.-T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.

    2012-01-01

    We calculate decadal aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950-2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980-2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970-1990, with values over the eastern US (east of 100 deg W) of -2.0Wm(exp-2 for direct forcing including contributions from sulfate (-2.0Wm-2), nitrate (-0.2Wm(exp-2), organic carbon (-0.2Wm(exp-2), and black carbon (+0.4Wm(exp-2). The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50 %. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8Wm(exp-2) direct and 1.0Wm(exp-2 indirect), mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3Wm(exp-2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide) suggests that a US emission control strategy focused on BC would have only limited climate benefit.

  13. Picosecond, single pulse electron linear accelerator

    International Nuclear Information System (INIS)

    Kikuchi, Riichi; Kawanishi, Masaharu

    1979-01-01

    The picosecond, single pulse electron linear accelerators, are described, which were installed in the Nuclear Engineering Laboratory of the University of Tokyo and in the Nuclear Radiation Laboratory of the Osaka University. The purpose of the picosecond, single pulse electron linear accelerators is to investigate the very short time reaction of the substances, into which gamma ray or electron beam enters. When the electrons in substances receive radiation energy, the electrons get high kinetic energy, and the energy and the electric charge shift, at last to the quasi-stable state. This transient state can be experimented with these special accelerators very accurately, during picoseconds, raising the accuracy of the time of incidence of radiation and also raising the accuracy of observation time. The outline of these picosecond, single pulse electron linear accelerators of the University of Tokyo and the Osaka University, including the history, the systems and components and the output beam characteristics, are explained. For example, the maximum energy 30 -- 35 MeV, the peak current 1 -- 8 n C, the pulse width 18 -- 40 ps, the pulse repetition rate 200 -- 720 pps, the energy spectrum 1 -- 1.8% and the output beam diameter 2 -- 5 mm are shown as the output beam characteristics of the accelerators in both universities. The investigations utilizing the picosecond single pulse electron linear accelerators, such as the investigation of short life excitation state by pulsed radiation, the dosimetry study of pulsed radiation, and the investigation of the transforming mechanism and the development of the transforming technology from picosecond, single pulse electron beam to X ray, vacuum ultraviolet ray and visual ray, are described. (Nakai, Y.)

  14. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years.

    Science.gov (United States)

    Joos, Fortunat; Spahni, Renato

    2008-02-05

    The rate of change of climate codetermines the global warming impacts on natural and socioeconomic systems and their capabilities to adapt. Establishing past rates of climate change from temperature proxy data remains difficult given their limited spatiotemporal resolution. In contrast, past greenhouse gas radiative forcing, causing climate to change, is well known from ice cores. We compare rates of change of anthropogenic forcing with rates of natural greenhouse gas forcing since the Last Glacial Maximum and of solar and volcanic forcing of the last millennium. The smoothing of atmospheric variations by the enclosure process of air into ice is computed with a firn diffusion and enclosure model. The 20th century increase in CO(2) and its radiative forcing occurred more than an order of magnitude faster than any sustained change during the past 22,000 years. The average rate of increase in the radiative forcing not just from CO(2) but from the combination of CO(2), CH(4), and N(2)O is larger during the Industrial Era than during any comparable period of at least the past 16,000 years. In addition, the decadal-to-century scale rate of change in anthropogenic forcing is unusually high in the context of the natural forcing variations (solar and volcanoes) of the past millennium. Our analysis implies that global climate change, which is anthropogenic in origin, is progressing at a speed that is unprecedented at least during the last 22,000 years.

  15. Brachytherapy. Pulsed dose rate brachytherapy - Radiation protection: medical sheet ED 4250

    International Nuclear Information System (INIS)

    Celier, D.; Aubert, B.; Vidal, J.P.; Biau, A.; Lahaye, T.; Gauron, C.; Barret, C.; Boisserie, G.; Branchet, E.; Gambini, D.; Gondran, C.; Le Guen, B.; Guerin, C.; Nguyen, S.; Pierrat, N.; Sarrazin, T.; Donnarieix, D.

    2009-06-01

    After having indicated the required authorization to implement brachytherapy techniques, this document presents the various aspects and measures related to radiation protection when performing pulsed-dose-rate brachytherapy treatments. It presents the concerned personnel, describes the operational process, indicates the associated hazards and the risk related to ionizing radiation, and describes how the risk is to be assessed and how exposure levels are to be determined (elements of risk assessment, delimitation of controlled and monitored areas, personnel classification, and choice of the dose monitoring method). It describes the various components of a risk management strategy (risk reduction, technical measures regarding the installation and the personnel, training and information, prevention and medical monitoring). It briefly presents how risk management is to be assessed, and mentions other related risks (biological risk, handling and posture, handling of heavy loads, mental workload, chemical risk)

  16. Radiation therapy for renal transplant rejection refractory to pulse steroids and OKT3

    International Nuclear Information System (INIS)

    Noyes, William R.; Rodriguez, Rey; Knechtle, Stuart J.; Pirsch, John D.; Sollinger, Hans W.; D'Alessandro, Anthony M.; Chappell, Rick; Belzer, Folkert O.; Kinsella, Timothy J.

    1996-01-01

    Purpose: To determine the response rate and kidney graft survival following local irradiation to the transplanted renal graft undergoing persistent rejection after medical management including pulse steroids and OKT3. The role of radiation for renal transplant rejection after failure of OKT3 has not been previously reported. Methods and Materials: From July 1, 1988 to July 1, 1994, 72 consecutive patients with kidney graft rejection were treated with local irradiation to the transplanted renal graft following failure of medical management. All patients received pulse steroids and OKT3, an anti-CD3 immunosuppressant. Patients who failed to respond to methylprednisolone and OKT3 therapy were referred for radiation therapy. The median time from the diagnosis of rejection to irradiation was 8 days. All kidney grafts received local graft irradiation to a total of 8 Gy delivered in four daily fractions. Results: Sixty (83%) patients initially responded to radiotherapy at 7 days after completion of radiotherapy, as defined by a decrease in serum creatinine. Thirty-five responding patients have not experienced a second episode of graft rejection. Overall, 43 (60%) patients have renal graft survival, with a median follow-up of 16 months (range of 6-73 months). Conclusion: It is concluded that there is a subgroup of kidney graft patients undergoing graft rejection who are refractory to pulse steroids and OKT3 therapy where irradiation may be an effective modality with high rates of response and a moderate rate of graft survival. However, a prospective, randomized trial in these medically refractory patients is needed to ascertain whether these results are clinically significant

  17. Very Low-Power Consumption Analog Pulse Processing ASIC for Semiconductor Radiation Detectors

    International Nuclear Information System (INIS)

    Wessendorf, K.O.; Lund, J.C.; Brunett, B.A.; Laguna, G.R.; Clements, J.W.

    1999-01-01

    We describe a very-low power consumption circuit for processing the pulses from a semiconductor radiation detector. The circuit was designed for use with a cadmium zinc telluride (CZT) detector for unattended monitoring of stored nuclear materials. The device is intended to be battery powered and operate at low duty-cycles over a long period of time. This system will provide adequate performance for medium resolution gamma-ray pulse-height spectroscopy applications. The circuit incorporates the functions of a charge sensitive preamplifier, shaping amplifier, and peak sample and hold circuit. An application specific integrated circuit (ASIC) version of the design has been designed, built and tested. With the exception of the input field effect transistor (FET), the circuit is constructed using bipolar components. In this paper the design philosophy and measured performance characteristics of the circuit are described

  18. Experimental investigations on the weakening of pulsed X-radiation by contrast media

    Energy Technology Data Exchange (ETDEWEB)

    Moldenhauer, K

    1973-07-25

    In order to be able to carry out a videodensitometry simultaneously with the cineangiocardiography with pulsed X-rays, the weakening of the X-radiation by contrast media is more closely examined and a calibration of the amplitudes is carried out. The determination of the extinction curves for different parts of the X-ray pulses show that under unfavourable conditions (high voltage, low tube current, no Cu filtration) the spectrum is displaced to larger wavelengths, white an influence on the weakness coefficient only occurs after the intensity has fallen to 10% of the impulse maximum. On the other hand, the quantity depedence of the extinction coefficient is significant. The densitometry simulations performed with a digital computer using empirically gained calibration curves show that a quantitative densitometry is possible even if the Lambert-Beer law is not valid.

  19. Experimental investigations on the weakening of pulsed X-radiation by contrast media

    International Nuclear Information System (INIS)

    Moldenhauer, K.

    1973-01-01

    In order to be able to carry out a videodensitometry simultaneously with the cineangiocardiography with pulsed X-rays, the weakening of the X-radiation by contrast media is more closely examined and a calibration of the amplitudes is carried out. The determination of the extinction curves for different parts of the X-ray pulses show that under unfavourable conditions (high voltage, low tube current, no Cu filtration) the spectrum is displaced to larger wavelengths, white an influence on the weakness coefficient only occurs after the intensity has fallen to 10% of the impulse maximum. On the other hand, the quantity depedence of the extinction coefficient is significant. The densitometry simulations performed with a digital computer using empirically gained calibration curves show that a quantitative densitometry is possible even if the Lambert-Beer law is not valid. (ORU/LH) [de

  20. Development of a cryogenic EOS capability for the Z Pulsed Radiation Source: Goals and accomplishments of FY97 LDRD project

    International Nuclear Information System (INIS)

    Hanson, D.L.; Johnston, R.R.; Asay, J.R.

    1998-03-01

    Experimental cryogenic capabilities are essential for the study of ICF high-gain target and weapons effects issues involving dynamic materials response at low temperatures. This report describes progress during the period 2/97-11/97 on the FY97 LDRD project ''Cryogenic EOS Capabilities on Pulsed Radiation Sources (Z Pinch)''. The goal of this project is the development of a general purpose cryogenic target system for precision EOS and shock physics measurements at liquid helium temperatures on the Z accelerator Z-pinch pulsed radiation source. Activity during the FY97 LDRD phase of this project has focused on development of a conceptual design for the cryogenic target system based on consideration of physics, operational, and safety issues, design and fabrication of principal system components, construction and instrumentation of a cryogenic test facility for off-line thermal and optical testing at liquid helium temperatures, initial thermal testing of a cryogenic target assembly, and the design of a cryogenic system interface to the Z pulsed radiation source facility. The authors discuss these accomplishments as well as elements of the project that require further work

  1. Effect of magnetic field and radiative condensation on the Jeans instability of dusty plasma with polarization force

    International Nuclear Information System (INIS)

    Prajapati, R.P.

    2013-01-01

    The Jeans instability of self-gravitating dusty plasma with polarization force is investigated considering the effects of magnetic field, dust temperature and radiative condensation. The condition of Jeans instability and expression of critical Jeans wave number are obtained which depend upon polarization force and dust temperature but these are unaffected by the presence of magnetic field. The radiative heat-loss functions also modify the Jeans condition of instability and expression of critical Jeans wave number. It is observed that the polarization force and ratio of radiative heat-loss functions have destabilizing while magnetic field and dust temperature have stabilizing influence on the growth rate of Jeans instability.

  2. Syrinx - a research program for the pulsed power radiation facility

    International Nuclear Information System (INIS)

    Etlicher, B.; Chuvatin, A.S.; Choi, P.

    1996-01-01

    Syrinx is a targeted research program with the objective to study, through practical examples, the fundamentals necessary to define the details of all parts which will be required for a new powerful plasma radiation source. The current level of activities of Syrinx is in the design and construction of a multi-megajoule class IES based pulsed power driver which will use long conduction Plasma Opening Switch technology. The present paper reviews mainly the basic experimental research of the POS a nd Z-pinch accomplished in the framework of Syrinx project. This work has a unique international level of participation, from conceptual designs to particular investigations. (author). 9 figs., 17 refs

  3. Electromagnetic radiation emitted by a plasma produced in air by laser pulses with lambda = 10.6 μm

    International Nuclear Information System (INIS)

    Danilychev, V.A.; Zvorykin, V.D.; Kholin, I.V.; Chugunov, A.Y.

    1981-01-01

    The spectrum, brightness, and energy have been measured for the electromagnetic radiation emitted by a plasma produced in air near a solid surface by pulses from a high-power CO 2 laser. The air pressure was varied over the range p 0 = 0.1--760 torr, and the laser power density was varied over the range q = 5 x 10 6 --10 8 W/cm 2 . At p 0 > or approx. =2--5 torr the radiation properties of the plasma are determined by a laser-beam absorption wave which arises in the gas. The maximum brightness temperature, T/sub b/approx. =50 000 K (lambda = 400 +- 20 nm), is reached at p 0 = 25 torr. The emission spectrum is quite different from an equilibrium spectrum, consisting primarily of NII, OII, and NIII lines. The total energy radiation by the plasma in the wavelength interval 360--2600 nm into a solid angle of 4π sr reaches 2.3% of the laser pulse energy

  4. The Brookhaven Radiation Effects Facility

    Energy Technology Data Exchange (ETDEWEB)

    Grand, P.; Snead, C.L.; Ward, T.

    1988-01-01

    The Neutral Particle Beam (NPB) Radiation Effects Facility (REF), funded by the Strategic Defense Initiative Office (SDIO) through the Defense Nuclear Agency (DNA) and the Air Force Weapons Laboratory (AFWL), has been constructed at Brookhaven National Laboratory (BNL). Operation started in October 1986. The facility is capable of delivering pulsed H{sup -}, H{sup o}, and H{sup +} beams of 100 to 200 MeV energy up to 30 mA peak current. Pulses can be adjusted from 5 {mu}s to 500 {mu}s length at a repetition rate of 5 pps. The beam spot on target is adjustable from 3 to 100 cm diameter (2 {sigma}) resulting in a maximum dose of about 10 MRads (Si) per pulse (small beam spot). Experimental use of the REF is being primarily supported by the SDI lethality (LTH-4) program. The program has addressed ionization effects in electronics, both dose rate and total dose dependence, radiation-sensitive components, and dE/dx effects in energetic materials including propellants and high explosives (HE). This paper describes the facility, its capabilities and potential, and the experiments that have been carried out to date or are being planned. 2 refs., 10 figs.

  5. The Brookhaven Radiation Effects Facility

    International Nuclear Information System (INIS)

    Grand, P.; Snead, C.L.; Ward, T.

    1988-01-01

    The Neutral Particle Beam (NPB) Radiation Effects Facility (REF), funded by the Strategic Defense Initiative Office (SDIO) through the Defense Nuclear Agency (DNA) and the Air Force Weapons Laboratory (AFWL), has been constructed at Brookhaven National Laboratory (BNL). Operation started in October 1986. The facility is capable of delivering pulsed H - , H/sup o/, and H + beams of 100 to 200 MeV energy up to 30 mA peak current. Pulses can be adjusted from 5 μs to 500 μs length at a repetition rate of 5 pps. The beam spot on target is adjustable from 3 to 100 cm diameter (2 σ) resulting in a maximum dose of about 10 MRads (Si) per pulse (small beam spot). Experimental use of the REF is being primarily supported by the SDI lethality (LTH-4) program. The program has addressed ionization effects in electronics, both dose rate and total dose dependence, radiation-sensitive components, and dE/dx effects in energetic materials including propellants and high explosives (HE). This paper describes the facility, its capabilities and potential, and the experiments that have been carried out to date or are being planned. 2 refs., 10 figs

  6. A study of the radiative forcing and global warming potentials of hydrofluorocarbons

    International Nuclear Information System (INIS)

    Zhang Hua; Wu Jinxiu; Lu Peng

    2011-01-01

    We developed a new radiation parameterization of hydrofluorocarbons (HFCs), using the correlated k-distribution method and the high-resolution transmission molecular absorption (HITRAN) 2004 database. We examined the instantaneous and stratospheric adjusted radiative efficiencies of HFCs for clear-sky and all-sky conditions. We also calculated the radiative forcing of HFCs from preindustrial times to the present and for future scenarios given by the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (SRES, in short). Global warming potential and global temperature potential were then examined and compared on the basis of the calculated radiative efficiencies. Finally, we discuss surface temperature changes due to various HFC emissions.

  7. A study of the real-time deconvolution of digitized waveforms with pulse pile up for digital radiation spectroscopy

    International Nuclear Information System (INIS)

    Guo Weijun; Gardner, Robin P.; Mayo, Charles W.

    2005-01-01

    Two new real-time approaches have been developed and compared to the least-squares fit approach for the deconvolution of experimental waveforms with pile-up pulses. The single pulse shape chosen is typical for scintillators such as LSO and NaI(Tl). Simulated waveforms with pulse pile up were also generated and deconvolved to compare these three different approaches under cases where the single pulse component has a constant shape and the digitization error dominates. The effects of temporal separation and amplitude ratio between pile-up component pulses were also investigated and statistical tests were applied to quantify the consistency of deconvolution results for each case. Monte Carlo simulation demonstrated that applications of these pile-up deconvolution techniques to radiation spectroscopy are effective in extending the counting-rate range while preserving energy resolution for scintillation detectors

  8. ARTICLES: Physical laws governing the interaction of pulse-periodic CO2 laser radiation with metals

    Science.gov (United States)

    Vedenov, A. A.; Gladush, G. G.; Drobyazko, S. V.; Pavlovich, Yu V.; Senatorov, Yu M.

    1985-01-01

    It is shown theoretically and experimentally that the efficiency of welding metals with a pulse-periodic CO2 laser beam of low duty ratio, at low velocities, can exceed that of welding with cw lasers and with electron beams. For the first time an investigation was made of the influence of the laser radiation parameters (energy and frequency) and of the welding velocity on the characteristics of the weld and on the shape of the weldpool. The influence of the laser radiation polarization on the efficiency of deep penetration was analyzed.

  9. Radiative Forcing from Emissivity Response in Polar Regions

    Science.gov (United States)

    Kuo, C.; Feldman, D.; Huang, X.; Flanner, M.; Chen, X.; Yang, P.; Kuo, C.

    2016-12-01

    A detailed assessment of the radiative balance and its controlling factors in polar regions is a critical prerequisite for understanding and predicting the polar amplification of climate change. Accordingly, we investigate the role of infrared surface emissivity in polar regions as a potential feedback mechanism following Feldman et al, 2014. In this work, we investigate the climatic response of the Community Earth System Model (CESM) with spectral emissivity values that are implemented in a physically consistent manner for non-vegetated surfaces. In a control model run where 1850 CO2 volume mixing ratio (vmr) is fixed, the updated spectral emissivity values are imposed for modified surface boundary conditions in the atmospheric model component. Climatic stability in the emergent globally averaged surface temperature is observed on decadal scales for an unforced (control) run. Analytic kernels representing the change in top of the atmosphere OLR given changes in emissivity are calculated on-line during the model runs, incorporating spatially and temporally varied humidity profiles impactful to transmission. Globally averaged kernels of the sensitivity of OLR to surface emissivity calculated for control and ramped CO2 runs exhibit temporal evolution with statistically significant differences in shape. Additionally, kernel and spectrally-averaged emissivity differences between monthly-averaged maps of control and ramped runs demonstrate a seasonal cycle. Similar to the treatment of cryosphere radiative forcing in Flanner et al, 2011, we define emissivity response as the product of the emissivity kernel and the change in month-to-month emissivity. At the end of 20th century, the 10-year emissivity forcing averaged at latitudes > 60°, is found to be negative (positive) in January (July), due to increasing (decreasing) sea-ice. These findings indicate that differences in surface emissivity between frozen and unfrozen surfaces decrease wintertime and increase summertime

  10. Radiative forcing and temperature response to changes in urban albedos and associated CO2 offsets

    International Nuclear Information System (INIS)

    Menon, Surabi; Akbari, Hashem; Sednev, Igor; Levinson, Ronnen; Mahanama, Sarith

    2010-01-01

    The two main forcings that can counteract to some extent the positive forcings from greenhouse gases from pre-industrial times to present day are the aerosol and related aerosol-cloud forcings, and the radiative response to changes in surface albedo. Here, we quantify the change in radiative forcing and land surface temperature that may be obtained by increasing the albedos of roofs and pavements in urban areas in temperate and tropical regions of the globe by 0.1. Using the catchment land surface model (the land model coupled to the GEOS-5 Atmospheric General Circulation Model), we quantify the change in the total outgoing (outgoing shortwave+longwave) radiation and land surface temperature to a 0.1 increase in urban albedos for all global land areas. The global average increase in the total outgoing radiation was 0.5 W m -2 , and temperature decreased by ∼0.008 K for an average 0.003 increase in surface albedo. These averages represent all global land areas where data were available from the land surface model used and are for the boreal summer (June-July-August). For the continental US the total outgoing radiation increased by 2.3 W m -2 , and land surface temperature decreased by ∼0.03 K for an average 0.01 increase in surface albedo. Based on these forcings, the expected emitted CO 2 offset for a plausible 0.25 and 0.15 increase in albedos of roofs and pavements, respectively, for all global urban areas, was found to be ∼57 Gt CO 2 . A more meaningful evaluation of the impacts of urban albedo increases on global climate and the expected CO 2 offsets would require simulations which better characterize urban surfaces and represent the full annual cycle.

  11. Calculation of the radiation force on a cylinder in a standing wave acoustic field

    Energy Technology Data Exchange (ETDEWEB)

    Haydock, David [Unilever R and D Colworth, Sharnbrook, Bedford MK44 1LQ (United Kingdom); Department of Physics, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2005-04-15

    We present a new calculation of the radiation force on a cylinder in a standing wave acoustic field. We use the formula to calculate the force on a cylinder which is free to move in the field and one which is fixed in space.

  12. Calculation of the radiation force on a cylinder in a standing wave acoustic field

    International Nuclear Information System (INIS)

    Haydock, David

    2005-01-01

    We present a new calculation of the radiation force on a cylinder in a standing wave acoustic field. We use the formula to calculate the force on a cylinder which is free to move in the field and one which is fixed in space

  13. SLAC pulsed X-ray facility

    Science.gov (United States)

    Ipe, N. E.; McCall, R. C.; Baker, E. D.

    1986-05-01

    The Stanford Linear Accelerator Center (SLAC) operates a high energy (up to 33 GeV) linear accelerator delivering pulses up to a few microseconds wide. The pulsed nature of the electron beam creates problems in the detection and measurement of radiation both from the accelerator beam and the klystrons that provide the RF power for the accelerator. Hence, a pulsed X-ray facility has been built at SLAC mainly for the purpose of testing the response of different radiation detection instruments to pulsed radiation fields. The X-ray tube consists of an electron gun with a control grid. This provides a stream of pulsed electrons that can be accelerated towards a confined target-window. The window is made up of aluminum 0.051 cm (20 mils) thick, plated on the vacuum side with a layer of gold 0.0006 cm (1/4 mil) thick. The frequency of electron pulses can be varied by an internal pulser from 60 to 360 pulses per second with pulse widths of 360 ns to 5 ms. The pulse amplitude can be varied over a wide range of currents. An external pulser can be used to obtain other frequencies or special pulse shapes. The voltage across the gun can be varied from 0 to 100 kV. The major part of the X-ray tube is enclosed in a large walk-in-cabinet made of 1.9 cm (3/4 in) plywood and lined with 0.32 cm (1/8 in) lead to make a very versatile facility.

  14. SLAC pulsed x-ray facility

    International Nuclear Information System (INIS)

    Ipe, N.E.; McCall, R.C.; Baker, E.D.

    1986-05-01

    The Stanford Linear Accelerator Center (SLAC) operates a high energy (up to 33 GeV) linear accelerator delivering pulses up to a few microseconds wide. The pulsed nature of the electron beam creates problems in the detection and measurement of radiation both from the accelerator beam and the klystrons that provide the rf power for the accelerator. Hence, a pulsed x-ray facility has been built at SLAC mainly for the purpose of testing the response of different radiation detection instruments to pulsed radiation fields. The x-ray tube consists of an electron gun with a control grid. This provides a stream of pulsed electrons that can be accelerated towards a confined target-window. The window is made up of aluminium 0.051 cm (20 mils) thick, plated on the vacuum side with a layer of gold 0.0006 cm (1/4 mil) thick. The frequency of electron pulses can be varied by an internal pulser from 60 to 360 pulses per second with pulse widths of 360 ns to 5 μs. The pulse amplitude can be varied over a wide range of currents. An external pulser can be used to obtain other frequencies or special pulse shapes. The voltage across the gun can be varied from 0 to 100 kV. The major part of the x-ray tube is enclosed in a large walk-in-cabinet made of 1.9 cm (3/4 in) plywood and lined with 0.32 cm (1/8 in) lead to make a very versatile facility. 3 refs., 5 figs

  15. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on muscle force production in people with spinal cord injury (SCI).

    Science.gov (United States)

    Bochkezanian, Vanesa; Newton, Robert U; Trajano, Gabriel S; Vieira, Amilton; Pulverenti, Timothy S; Blazevich, Anthony J

    2018-02-13

    Neuromuscular electrical stimulation (NMES) is commonly used in skeletal muscles in people with spinal cord injury (SCI) with the aim of increasing muscle recruitment and thus muscle force production. NMES has been conventionally used in clinical practice as functional electrical stimulation (FES), using low levels of evoked force that cannot optimally stimulate muscular strength and mass improvements, and thus trigger musculoskeletal changes in paralysed muscles. The use of high intensity intermittent NMES training using wide-pulse width and moderate-intensity as a strength training tool could be a promising method to increase muscle force production in people with SCI. However, this type of protocol has not been clinically adopted because it may generate rapid muscle fatigue and thus prevent the performance of repeated high-intensity muscular contractions in paralysed muscles. Moreover, superimposing patellar tendon vibration onto the wide-pulse width NMES has been shown to elicit further increases in impulse or, at least, reduce the rate of fatigue in repeated contractions in able-bodied populations, but there is a lack of evidence to support this argument in people with SCI. Nine people with SCI received two NMES protocols with and without superimposing patellar tendon vibration on different days (i.e. STIM and STIM+vib), which consisted of repeated 30 Hz trains of 58 wide-pulse width (1000 μs) symmetric biphasic pulses (0.033-s inter-pulse interval; 2 s stimulation train; 2-s inter-train interval) being delivered to the dominant quadriceps femoris. Starting torque was 20% of maximal doublet-twitch torque and stimulations continued until torque declined to 50% of the starting torque. Total knee extensor impulse was calculated as the primary outcome variable. Total knee extensor impulse increased in four subjects when patellar tendon vibration was imposed (59.2 ± 15.8%) but decreased in five subjects (- 31.3 ± 25.7%). However, there were no

  16. Modelling the effects of the radiation reaction force on the interaction of thin foils with ultra-intense laser fields

    Science.gov (United States)

    Duff, M. J.; Capdessus, R.; Del Sorbo, D.; Ridgers, C. P.; King, M.; McKenna, P.

    2018-06-01

    The effects of the radiation reaction (RR) force on thin foils undergoing radiation pressure acceleration (RPA) are investigated. Using QED-particle-in-cell simulations, the influence of the RR force on the collective electron dynamics within the target can be examined. The magnitude of the RR force is found to be strongly dependent on the target thickness, leading to effects which can be observed on a macroscopic scale, such as changes to the distribution of the emitted radiation and the target dynamics. This suggests that such parameters may be controlled in experiments at multi-PW laser facilities. In addition, the effects of the RR force are characterized in terms of an average radiation emission angle. We present an analytical model which, for the first time, describes the effect of the RR force on the collective electron dynamics within the ‘light-sail’ regime of RPA. The predictions of this model can be tested in future experiments with ultra-high intensity lasers interacting with solid targets.

  17. Acoustic radiation force on a multilayered sphere in a Gaussian standing field

    Science.gov (United States)

    Wang, Haibin; Liu, Xiaozhou; Gao, Sha; Cui, Jun; Liu, Jiehui; He, Aijun; Zhang, Gutian

    2018-03-01

    We develop a model for calculating the radiation force on spherically symmetric multilayered particles based on the acoustic scattering approach. An expression is derived for the radiation force on a multilayered sphere centered on the axis of a Gaussian standing wave propagating in an ideal fluid. The effects of the sound absorption of the materials and sound wave on acoustic radiation force of a multilayered sphere immersed in water are analyzed, with particular emphasis on the shell thickness of every layer, and the width of the Gaussian beam. The results reveal that the existence of particle trapping behavior depends on the choice of the non-dimensional frequency ka, as well as the shell thickness of each layer. This study provides a theoretical basis for the development of acoustical tweezers in a Gaussian standing wave, which may benefit the improvement and development of acoustic control technology, such as trapping, sorting, and assembling a cell, and drug delivery applications. Project supported by National Key R&D Program (Grant No. 2016YFF0203000), the National Natural Science Foundation of China (Grant Nos. 11774167 and 61571222), the Fundamental Research Funds for the Central Universities of China (Grant No. 020414380001), the Key Laboratory of Underwater Acoustic Environment, Institute of Acoustics, Chinese Academy of Sciences (Grant No. SSHJ-KFKT-1701), and the AQSIQ Technology R&D Program of China (Grant No. 2017QK125).

  18. Jeans instability in collisional strongly coupled dusty plasma with radiative condensation and polarization force

    International Nuclear Information System (INIS)

    Prajapati, R. P.; Bhakta, S.; Chhajlani, R. K.

    2016-01-01

    The influence of dust-neutral collisions, polarization force, and electron radiative condensation is analysed on the Jeans (gravitational) instability of partially ionized strongly coupled dusty plasma (SCDP) using linear perturbation (normal mode) analysis. The Boltzmann distributed ions, dynamics of inertialess electrons, charged dust and neutral particles are considered. Using the plane wave solutions, a general dispersion relation is derived which is modified due to the presence of dust-neutral collisions, strong coupling effect, polarization force, electron radiative condensation, and Jeans dust/neutral frequencies. In the long wavelength perturbations, the Jeans instability criterion depends upon strong coupling effect, polarization interaction parameter, and thermal loss, but it is independent of dust-neutral collision frequency. The stability of the considered configuration is analysed using the Routh–Hurwitz criterion. The growth rates of Jeans instability are illustrated, and stabilizing influence of viscoelasticity and dust-neutral collision frequency while destabilizing effect of electron radiative condensation, polarization force, and Jeans dust-neutral frequency ratio is observed. This work is applied to understand the gravitational collapse of SCDP with dust-neutral collisions.

  19. Behavioral changes induced by single and multiple electron beam pulses

    International Nuclear Information System (INIS)

    Pease, V.P.; McNulty, P.J.

    1985-01-01

    The effects of single, and low-dose, high-dose-rate and multiple electron beam pulses on passive avoidance behavior in mice were studied. Passive avoidance was measured by recording the time that an animal took to enter a chamber from a narrow platform. There were four conditions in the experiment: (1) no shock no radiation-control, (2) radiation only, (3) shock only, and (4) radiation plus shock. Forty animals were run for each data point. Dose rate was held constant at 9 x 10/sup 7/ rads/sec. Average doses for the two single pulses were 7.18 and 8.72 rads. The average total dose for a 25 pulse per second condition was 324.0 rads. The differences between the single versus multiple pulse radiation-only conditions were significant with longer avoidance latencies in the multiple pulse condition. Avoidance latencies were also significantly longer in the shock plus radiation condition for the multiple beam pulse than the single pulse. It is concluded that single and multiple electron beam pulses significantly effect behavior, in this case producing avoidance

  20. Attosecond pulse generation in noble gases in the presence of extreme high intensity THz pulses

    International Nuclear Information System (INIS)

    Balogh, E.; Varju, K.

    2010-01-01

    Complete text of publication follows. The shortest - attosecond - light pulses available today are produced by high harmonic generation (HHG) of near-infrared (NIR) laser pulses in noble gas jets, providing a broad spectral plateau of XUV radiation ending in a cutoff. The minimum pulse duration is determined by the achievable bandwidth (i.e. the position of the cutoff), and the chirp of the produced pulses. The extension of the cutoff by increasing the laser intensity is limited by the depletion and phase matching problems of the medium. An alternative method demonstrated to produce higher harmonic orders is by using longer pump pulse wavelength, with the disadvantage of decreased efficiency. Recently it was shown that application of a quasi-DC high strength electric field results in an increase of more than a factor of two in the order of efficiently generated high harmonics. However, the possibility to implement the method proposed in [3] of using a CO 2 laser to create a quasi-DC field for assisting HHG of the NIR laser is questionable, because it's technically very challenging to synchronize pulses from different laser sources. Alternatively, synchronous production of THz pulses with the NIR laser pulse offers a more promising route. The first numerical test of this idea has been reported in [4]. In this contribution we further investigate the method for realistic THz field strengths and short driving pulses, exploring the effect of longer pump laser wavelength on the process. We assume the presence of high intensity THz pulses for supplying the high-strength quasi-DC electric field. The spectrum as well as the chirp of the produced radiation is calculated. We use the non-adiabatic saddle point method to determine the generated radiation described in [6]. We simulate harmonic generation in noble gas atoms, with few cycle NIR pulses of peak intensity at and above 2 x 10 14 W/cm 2 (388 MV/cm) and wavelengths 800 nm and 1560 nm. The THz field strength is varied

  1. Tailored long range forces on polarizable particles by collective scattering of broadband radiation

    International Nuclear Information System (INIS)

    Holzmann, D; Ritsch, H

    2016-01-01

    Collective coherent light scattering by polarizable particles creates surprisingly strong, long range inter-particle forces originating from interference of the light scattered by different particles. While for monochromatic laser beams this interaction decays with the inverse distance, we show here that in general the effective interaction range and geometry can be controlled by the illumination bandwidth and geometry. As generic example we study the modifications inter-particle forces within a 1D chain of atoms trapped in the field of a confined optical nanofiber mode. For two particles we find short range attraction as well as optical binding at multiple distances. The range of stable distances shrinks with increasing light bandwidth and for a very large bandwidth field as e.g. blackbody radiation. We find a strongly attractive potential up to a critical distance beyond which the force gets repulsive. Including multiple scattering can even lead to the appearance of a stable configuration at a large distance. Such broadband scattering forces should be observable contributions in ultra-cold atom interferometers or atomic clocks setups. They could be studied in detail in 1D geometries with ultra-cold atoms trapped along or within an optical nanofiber. Broadband radiation force interactions might also contribute in astrophysical scenarios as illuminated cold dust clouds. (paper)

  2. Pulsed CH3OH terahertz laser radiation pumped by 9P(36) CO2 lasers

    International Nuclear Information System (INIS)

    Jiu Zhixian; Zuo Duluo; Miao Liang; Cheng Zuhai

    2011-01-01

    An efficient pulsed CH 3 OH terahertz (THz) laser pumped by a TEA CO 2 laser was investigated experimentally. A simple terahertz cavity and a TEA CO 2 laser for the optically pumped THz radiation were studied experimentally. To improve THz laser energy and photon conversion efficiency, two different TEA CO 2 lasers were developed to pump CH 3 OH. When CH 3 OH was pumped by the 9P(36) line with different powers of the CO 2 laser, the generation of terahertz radiation with energy as high as 0.307mJ and 23.75mJ were obtained, respectively. The corresponding photon conversion efficiencies were 0.29% and 2.4%. The photon conversion efficiency increases by a factor of about 8. Meanwhile, higher peak power of pump laser effectively improves the photon conversion efficiency. And the optimum THz laser pressure increases with narrower pulse width of pump laser because of increasing absorptive gases molecules of CH 3 OH with higher peak power of pump laser.

  3. Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere

    Science.gov (United States)

    Zhang, Yuzhong; Forrister, Haviland; Liu, Jiumeng; Dibb, Jack; Anderson, Bruce; Schwarz, Joshua P.; Perring, Anne E.; Jimenez, Jose L.; Campuzano-Jost, Pedro; Wang, Yuhang; Nenes, Athanasios; Weber, Rodney J.

    2017-07-01

    Carbonaceous aerosols affect the global radiative balance by absorbing and scattering radiation, which leads to warming or cooling of the atmosphere, respectively. Black carbon is the main light-absorbing component. A portion of the organic aerosol known as brown carbon also absorbs light. The climate sensitivity to absorbing aerosols rapidly increases with altitude, but brown carbon measurements are limited in the upper troposphere. Here we present aircraft observations of vertical aerosol distributions over the continental United States in May and June 2012 to show that light-absorbing brown carbon is prevalent in the troposphere, and absorbs more short-wavelength radiation than black carbon at altitudes between 5 and 12 km. We find that brown carbon is transported to these altitudes by deep convection, and that in-cloud heterogeneous processing may produce brown carbon. Radiative transfer calculations suggest that brown carbon accounts for about 24% of combined black and brown carbon warming effect at the tropopause. Roughly two-thirds of the estimated brown carbon forcing occurs above 5 km, although most brown carbon is found below 5 km. The highest radiative absorption occurred during an event that ingested a wildfire plume. We conclude that high-altitude brown carbon from biomass burning is an unappreciated component of climate forcing.

  4. Effect of chronic forced swimming stress on whole brain radiation induced cognitive dysfunction and related mechanism

    International Nuclear Information System (INIS)

    Zhang Yuan; Sun Rui; Zhu Yaqun; Zhang Liyuan; Ji Jianfeng; Li Kun; Tian Ye

    2014-01-01

    Objective: To explore whether chronic forced swimming stress could improve whole brain radiation induced cognitive dysfunction and possible mechanism. Methods: Thirty-nine one month old male Sprague-Dawley rats were randomized into sham control group(C), swimming group(C-S), radiation group(R), and radiation plus swimming group(R-S). Radiation groups were given a single dose of 20 Gy on whole-brain. Rats in the swimming groups were trained with swimming of 15 min/d, 5 d/w. Rat behavior was performed 3 months after radiation in an order of free activity in an open field and the Morris water maze test including the place navigation and spatial probe tests. Then, the protein expressions of BDNF, P-ERK, T-ERK, P-CREB and T-CREB in the rat hippocampus tissue were assayed by Western blot. Results: On the day 2, in the place navigation test of Morris water maze, the latency of swimming group was significantly shorter than that of sham group, the latency of sham group was significantly shorter than that of radiation group, and the latency of radiation swimming group was significantly shorter than that of radiation group(P 0.05). Western blot assay showed that the expressions of BDNF and its downstream signals including P-ERK and P-CREB were markedly reduced by radiation (P < 0.05), but this reduction was attenuated by the chronic forced swimming stress. Conclusion: The chronic forced swimming stress could improve whole brain radiation induced cognitive dysfunction by up-regulating the expressions of BDNF and its downstream signal molecules of P-ERK and P-CREB in hippocampus. (authors)

  5. Air Pollution Radiative Forcing From Specific Emissions Sectors at 2030: Prototype for a New IPCC Bar Chart

    Science.gov (United States)

    Unger, N.; Shindell, D. T.; Koch, D. M.

    2007-05-01

    Reduction of short-lived air pollutants provides a way to mitigate global warming in the short-term with ancillary benefits to human health. However, the radiative forcings of short-lived air pollutants depend on the location and source type of the precursor emissions. We apply the GISS atmospheric composition-climate model to quantify near future (2030 A1B) ozone (O3) and sulfate global mean direct radiative forcing impacts from 6 emissions sectors from 7 geographic regions. At 2030 the net forcings for the emissions sectors (including O3, sulfate, black and organic carbon forcings) are (in mW/m2): transportation = +106; biomass burning = +69; domestic = +38; power = -158; industry = -124. Hence the transportation sector is the most attractive target to counter global warming via reduction of short-lived air pollutants. Substantial transportation sector O3 forcings come from all regions (5-12 mW/m2). Central and Southern Africa and South America contribute the largest biomass burning O3 forcings (11-15 mW/m2). Domestic biofuel emissions from East Asia, South Asia and Central and South Africa and power and industry emissions from East Asia also contribute substantial O3 forcings (7-15mW/m2). The global mean sulfate forcings are dominated by the power and industry sectors with largest contributions from East Asia, South Asia and North Africa and Middle East (-30 to -50 mW/m2). Linear relationships exist between global mean radiative forcing by O3 and biomass burning and domestic biofuel CO precursor emissions independent of the region of origin with sensitivity of 0.02mW/m2/TgCO. Similarly, linear relationships are available for global mean radiative forcing by sulfate and SO2 precursor emissions that depend upon region but are independent of the emissions sector with sensitivities ranging from -3 to -12mW/m2/TgS. Such emissions to forcing diagnostics will assist development of climate-motivated policy for O3 and sulfate.

  6. Observation of a new coherent transient in NMR - nutational two-pulse stimulated echo in the angular distribution of gamma-radiation from oriented nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Shakhmuratova, L.N.; Hutchison, W.D.; Isbister, D.J.; Chaplin, D.H. [University of New South Wales, Australian Defence Force Academy, School of Physics, University College (Australia)

    1997-07-15

    A new coherent transient in pulsed NMR, the two-pulse nutational stimulated echo, is reported for the ferromagnetic system {sup 60}CoFe using resonant perturbations on the directional emission of anisotropic gamma-radiation from thermally oriented nuclei. The new spin echo is a result of non-linear nuclear spin dynamics due to large Larmor inhomogeneity active during radiofrequency pulse application. It is made readily observable through the gross detuning between NMR radiofrequency excitation and gamma radiation detection, and inhomogeneity in the Rabi frequency caused by metallic skin-effect. The method of concatenation of perturbation factors in a statistical tensor formalism is quantitatively applied to successfully predict and then fit in detail the experimental time-domain data.

  7. Observation of a new coherent transient in NMR - nutational two-pulse stimulated echo in the angular distribution of gamma-radiation from oriented nuclei

    International Nuclear Information System (INIS)

    Shakhmuratova, L.N.; Hutchison, W.D.; Isbister, D.J.; Chaplin, D.H.

    1997-01-01

    A new coherent transient in pulsed NMR, the two-pulse nutational stimulated echo, is reported for the ferromagnetic system 60 CoFe using resonant perturbations on the directional emission of anisotropic gamma-radiation from thermally oriented nuclei. The new spin echo is a result of non-linear nuclear spin dynamics due to large Larmor inhomogeneity active during radiofrequency pulse application. It is made readily observable through the gross detuning between NMR radiofrequency excitation and gamma radiation detection, and inhomogeneity in the Rabi frequency caused by metallic skin-effect. The method of concatenation of perturbation factors in a statistical tensor formalism is quantitatively applied to successfully predict and then fit in detail the experimental time-domain data

  8. Observation of a new coherent transient in NMR -- nutational two-pulse stimulated echo in the angular distribution of γ-radiation from oriented nuclei

    Science.gov (United States)

    Shakhmuratova, L. N.; Hutchison, W. D.; Isbister, D. J.; Chaplin, D. H.

    1997-07-01

    A new coherent transient in pulsed NMR, the two-pulse nutational stimulated echo, is reported for the ferromagnetic system 60CoFe using resonant perturbations on the directional emission of anisotropic γ-radiation from thermally oriented nuclei. The new spin echo is a result of non-linear nuclear spin dynamics due to large Larmor inhomogeneity active during radiofrequency pulse application. It is made readily observable through the gross detuning between NMR radiofrequency excitation and gamma radiation detection, and inhomogeneity in the Rabi frequency caused by metallic skin-effect. The method of concatenation of perturbation factors in a statistical tensor formalism is quantitatively applied to successfully predict and then fit in detail the experimental time-domain data.

  9. Induction of the 'in vivo' chlorophyll fluorescence excited by CW and pulse-periodical laser radiation

    International Nuclear Information System (INIS)

    Zakhidov, Eh.A.; Zakhidov, M.A.; Kasymdzhanov, M.A.; Khabibullaev, P.K.

    1996-01-01

    Inductional changes of fluorescence of the native chlorophyll molecules in plant leaves excited by CW and pulse-periodical laser radiation are studied. The opportunity of controlling of the photosynthesis efficiency through fluorescence response at different rates of the electron flow in charge transfer chain of the photosynthetic apparatus of plant is shown. (author). 13 refs.; 4 refs

  10. Numerical study of acoustic streaming and radiation forces on micro particles

    DEFF Research Database (Denmark)

    Jensen, Mads Jakob Herring; Muller, Peter Barkholt; Barnkob, Rune

    2012-01-01

    , and 2) Stokes drag from the induced acoustic streaming flow. Both effects are second order and require the solution of the full linearized Navier-Stokes equation in order to be captured correctly. The model shows the transition from streaming drag to radiation force dominated regimes. The transition...

  11. Incubation behaviour in triazenepolymer thin films upon near-infrared femtosecond laser pulse irradiation

    International Nuclear Information System (INIS)

    Bonse, J; Wiggins, S M; Solis, J; Sturm, H; Urech, L; Wokaun, A; Lippert, T

    2007-01-01

    The effects of laser radiation induced by a sequence of ultrashort (130 fs), near-infrared (800 nm) Ti:sapphire laser pulses in ∼1 μm thick triazenepolymer films on glass substrates have been investigated by means of in-situ real-time reflectivity measurements featuring a ps-resolution streak camera and a ns-resolution photodiode set-up. The polymer films show incubation effects when each laser pulse in the sequence has a fluence below the single-pulse damage threshold. Non-damage conditions are maintained for several incubation pulses such that the reflectivity of the film shows a rapid decrease of up to 30% within 1 ns but subsequently recovers to its initial value on a ms timescale. Additional pulses lead to a permanent film damage. The critical number of laser pulses needed to generate a permanent damage of the film has been studied as a function of the laser fluence. Once damage is created, further laser pulses cause a partial removal of the film material from the glass substrate. Scanning force microscopy has been used to characterise ex-situ the irradiated surface areas. Based on these complementary measurements possible incubation mechanisms are discussed

  12. Signatures of quantum radiation reaction in laser-electron-beam collisions

    International Nuclear Information System (INIS)

    Wang, H. Y.; Yan, X. Q.; Zepf, M.

    2015-01-01

    Electron dynamics in the collision of an electron beam with a high-intensity focused ultrashort laser pulse are investigated using three-dimensional QED particle-in-cell (PIC) simulations, and the results are compared with those calculated by classical Landau and Lifshitz PIC simulations. Significant differences are observed from the angular dependence of the electron energy distribution patterns for the two different approaches, because photon emission is no longer well approximated by a continuous process in the quantum radiation-dominated regime. The stochastic nature of photon emission results in strong signatures of quantum radiation-reaction effects under certain conditions. We show that the laser spot size and duration greatly influence these signatures due to the competition of QED effects and the ponderomotive force, which is well described in the classical approximation. The clearest signatures of quantum radiation reaction are found in the limit of large laser spots and few cycle pulse durations

  13. The Combined Effects of Pulsed Magnetic Radiation (Diapulse) and Chemotherapy on Tumor Bearing Mice. The Measurement of Rodent Palatal Explants as a Device for Measurement of the Biologic Effects of Nonionic Radiation (EMR)

    Science.gov (United States)

    Regelson, W.; West, B.; Depaola, D. P.

    1978-01-01

    Simultaneous treatment utilizing pulsed radiowave and cancer chemotherapy significantly extended the life span of mice with Lewis lung transplanted carcinoma. In comparison with nontreated controls, the combination of hydroxyurea and whole body nonionizing EM radiation (at 27.12 MHz) produced differential enhancement of longevity depending on hydroxyurea combined with highest power output achieved by pulsing the radiation 600 times per second; at a 3.9% duty cycle, peak watts = 975 produced the mean extension of life 67% greater than that of the group treated with hydroxyurea alone.

  14. Climatic effects of 1950–2050 changes in US anthropogenic aerosols – Part 1: Aerosol trends and radiative forcing

    Directory of Open Access Journals (Sweden)

    D. G. Streets

    2012-04-01

    Full Text Available We calculate decadal aerosol direct and indirect (warm cloud radiative forcings from US anthropogenic sources over the 1950–2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980–2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970–1990, with values over the eastern US (east of 100° W of −2.0 W m−2 for direct forcing including contributions from sulfate (−2.0 W m−2, nitrate (−0.2 W m−2, organic carbon (−0.2 W m−2, and black carbon (+0.4 W m−2. The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50%. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8 W m−2 direct and 1.0 W m−2 indirect, mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3 W m−2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide suggests that a US emission control strategy focused on BC would have only limited climate benefit.

  15. Origin and radiative forcing of black carbon aerosol: production and consumption perspectives.

    Science.gov (United States)

    Meng, Jing; Liu, Junfeng; Yi, Kan; Yang, Haozhe; Guan, Dabo; Liu, Zhu; Zhang, Jiachen; Ou, Jiamin; Dorling, Stephen; Mi, Zhifu; Shen, Huizhong; Zhong, Qirui; Tao, Shu

    2018-04-24

    Air pollution, a threat to air quality and human health, has attracted ever-increasing attention in recent years. In addition to having local influence, air pollutants can also travel the globe via atmospheric circulation and international trade. Black carbon (BC), emitted from incomplete combustion, is a unique but representative particulate pollutant. This study tracked down the BC aerosol and its direct radiative forcing to the emission sources and final consumers using the global chemical transport model (MOZART-4), the rapid radiative transfer model for general circulation simulations (RRTM) and a multiregional input-output analysis (MRIO). BC is physically transported (i.e., atmospheric transport) from western to eastern countries in the mid-latitude westerlies, but its magnitude is near an order of magnitude higher if the virtual flow embodied in international trade is considered. The transboundary effects on East and South Asia by other regions increased from about 3% (physical transport only) to 10% when considering both physical and virtual transport. The influence efficiency on East Asia is also large because of the comparatively large emission intensity and emission-intensive exports (e.g., machinery and equipment). The radiative forcing in Africa imposed by consumption from Europe, North America and East Asia (0.01Wm-2) was even larger than the total forcing in North America. Understanding the supply chain and incorporating both atmospheric and virtual transport may improve multilateral cooperation on air pollutant mitigation both domestically and internationally.

  16. Indirect radiative forcing by ion-mediated nucleation of aerosol

    Directory of Open Access Journals (Sweden)

    F. Yu

    2012-12-01

    Full Text Available A clear understanding of particle formation mechanisms is critical for assessing aerosol indirect radiative forcing and associated climate feedback processes. Recent studies reveal the importance of ion-mediated nucleation (IMN in generating new particles and cloud condensation nuclei (CCN in the atmosphere. Here we implement the IMN scheme into the Community Atmosphere Model version 5 (CAM5. Our simulations show that, compared to globally averaged results based on H2SO4-H2O binary homogeneous nucleation (BHN, the presence of ionization (i.e., IMN halves H2SO4 column burden, but increases the column integrated nucleation rate by around one order of magnitude, total particle number burden by a factor of ~3, CCN burden by ~10% (at 0.2% supersaturation to 65% (at 1.0% supersaturation, and cloud droplet number burden by ~18%. Compared to BHN, IMN increases cloud liquid water path by 7.5%, decreases precipitation by 1.1%, and increases total cloud cover by 1.9%. This leads to an increase of total shortwave cloud radiative forcing (SWCF by 3.67 W m−2 (more negative and longwave cloud forcing by 1.78 W m−2 (more positive, with large spatial variations. The effect of ionization on SWCF derived from this study (3.67 W m−2 is a factor of ~3 higher that of a previous study (1.15 W m−2 based on a different ion nucleation scheme and climate model. Based on the present CAM5 simulation, the 5-yr mean impacts of solar cycle induced changes in ionization rates on CCN and cloud forcing are small (~−0.02 W m−2 but have larger inter-annual (from −0.18 to 0.17 W m−2 and spatial variations.

  17. Assessment of the impact of the greenhouse gas emission and sink scenarios in Finland on radiative forcing and greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I; Sinisalo, J; Pipatti, R [Technical Research Centre of Finland, Espoo (Finland)

    1997-12-31

    The objective of this work is to study greenhouse gas emissions and sinks and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of global average radiative forcing, which measures the perturbation in the Earth`s radiation budget. Radiative forcing is calculated on the basis of the concentration changes of the greenhouse gases and the radiation absorption properties of the gases. It takes into account the relatively slow changes in the concentrations due to natural removal and transformation processes and also allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. In addition to the applications mentioned above, the anthropogenic greenhouse gas emission histories of Nordic countries have been estimated, and the radiative forcing caused by them has been calculated with REFUGE. The dynamic impact of aerosol emissions both from the global point of view and in the context of different energy sources (coal, oil and natural gas) have also been studied. In some instances the caused radiative forcing has been examined on a per capita basis. The radiative forcing calculations contain considerable uncertainty due to inaccurately known factors at several stages of the calculation (emission estimation, concentration calculation and radiative forcing calculation). The total uncertainty of the results is typically on the order of +- 40 %, when absolute values are used. If the results are used in a relative way, e.g. to compare the impacts of different scenarios, the final uncertainty is considerably less (typically + 10 %), due to correlations in almost all stages of the calculation process

  18. Assessment of the impact of the greenhouse gas emission and sink scenarios in Finland on radiative forcing and greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I.; Sinisalo, J.; Pipatti, R. [Technical Research Centre of Finland, Espoo (Finland)

    1996-12-31

    The objective of this work is to study greenhouse gas emissions and sinks and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of global average radiative forcing, which measures the perturbation in the Earth`s radiation budget. Radiative forcing is calculated on the basis of the concentration changes of the greenhouse gases and the radiation absorption properties of the gases. It takes into account the relatively slow changes in the concentrations due to natural removal and transformation processes and also allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. In addition to the applications mentioned above, the anthropogenic greenhouse gas emission histories of Nordic countries have been estimated, and the radiative forcing caused by them has been calculated with REFUGE. The dynamic impact of aerosol emissions both from the global point of view and in the context of different energy sources (coal, oil and natural gas) have also been studied. In some instances the caused radiative forcing has been examined on a per capita basis. The radiative forcing calculations contain considerable uncertainty due to inaccurately known factors at several stages of the calculation (emission estimation, concentration calculation and radiative forcing calculation). The total uncertainty of the results is typically on the order of +- 40 %, when absolute values are used. If the results are used in a relative way, e.g. to compare the impacts of different scenarios, the final uncertainty is considerably less (typically + 10 %), due to correlations in almost all stages of the calculation process

  19. Analytical model for electromagnetic radiation from a wakefield excited by intense short laser pulses in an unmagnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ziyu; Chen Shi; Dan Jiakun; Li Jianfeng; Peng Qixian, E-mail: ziyuch@gmail.com [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2011-10-15

    A simple one-dimensional analytical model for electromagnetic emission from an unmagnetized wakefield excited by an intense short-pulse laser in the nonlinear regime has been developed in this paper. The expressions for the spectral and angular distributions of the radiation have been derived. The model suggests that the origin of the radiation can be attributed to the violent sudden acceleration of plasma electrons experiencing the accelerating potential of the laser wakefield. The radiation process could help to provide a qualitative interpretation of existing experimental results, and offers useful information for future laser wakefield experiments.

  20. Analytical model for electromagnetic radiation from a wakefield excited by intense short laser pulses in an unmagnetized plasma

    International Nuclear Information System (INIS)

    Chen Ziyu; Chen Shi; Dan Jiakun; Li Jianfeng; Peng Qixian

    2011-01-01

    A simple one-dimensional analytical model for electromagnetic emission from an unmagnetized wakefield excited by an intense short-pulse laser in the nonlinear regime has been developed in this paper. The expressions for the spectral and angular distributions of the radiation have been derived. The model suggests that the origin of the radiation can be attributed to the violent sudden acceleration of plasma electrons experiencing the accelerating potential of the laser wakefield. The radiation process could help to provide a qualitative interpretation of existing experimental results, and offers useful information for future laser wakefield experiments.

  1. Experimental applications for the MARK-1 and MARK-1A pulsed ionizing radiation detection systems. Volume 3

    International Nuclear Information System (INIS)

    Harker, Y.D.; Lawrence, R.S.; Yoon, W.Y.; Lones, J.L.

    1993-12-01

    This report is the third volume in a three volume set describing the MARK series of pulsed ionizing radiation detection systems. This volume describes the MARK-1A detection system, compares it with the MARK-1 system, and describes the experimental testing of the detection systems. Volume 1 of this set presents the technical specifications for the MARK-1 detection system. Volume 2 is an operations manual specifically for the MARK-1 system, but it generally applies to the MARK-1A system as well. These detection systems operate remotely and detect photon radiation from a single or a multiple pulsed source. They contain multiple detector (eight in the MARK-1 and ten in the MARK-1A) for determination of does and incident photon effective energy. The multiple detector arrangement, having different detector sizes and shield thicknesses, provides the capability of determining the effective photon energy of the radiation spectrum. Dose measurements using these units are consistent with TLD measurements. The detection range is from 3 nanorads to 90 microrads per source burst; the response is linear over that range. Three units were built and are ready for field deployment

  2. The Atmospheric Aerosols And Their Effects On Cloud Albedo And Radiative Forcing

    International Nuclear Information System (INIS)

    Stefan, S.; Iorga, G.; Zoran, M.

    2007-01-01

    The aim of this study is to provide results of the theoretical experiments in order to improve the estimates of indirect effect of aerosol on the cloud albedo and consequently on the radiative forcing. The cloud properties could be changed primarily because of changing of both the aerosol type and concentration in the atmosphere. Only a part of aerosol interacts effectively with water and will, in turn, determine the number concentration of cloud droplets (CDNC). We calculated the CDNC, droplet effective radius (reff), cloud optical thickness (or), cloud albedo and radiative forcing, for various types of aerosol. Our results show into what extent the change of aerosol characteristics (number concentration and chemical composition) on a regional scale can modify the cloud reflectivity. Higher values for cloud albedo in the case of the continental (urban) clouds were obtained

  3. Force generation due to three-dimensional plasma discharge on a conical forebody using pulsed direct current actuators

    International Nuclear Information System (INIS)

    Singh, Kunwar Pal; Roy, Subrata

    2008-01-01

    Understanding the behavior of three-dimensional plasmas around a pulsed dc actuator can be useful for its efficient operation in many applications. The effect of such actuators is studied using a self-consistent multibody system of neutral oxygen species and its plasma. The equations governing the motion of charged species are solved with the drift diffusion approximation. The electrostatic potential is computed from Poisson's equation. The electric field and ionization level are the highest close to the junction of electrodes and dielectric. The plasma body force thus generated also follows a similar characteristic. Results also show some dc corona instabilities. The temporal average of such force shows mostly acceleration from anode to cathode above the actuator

  4. The outflows accelerated by the magnetic fields and radiation force of accretion disks

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xinwu, E-mail: cxw@shao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai, 200030 (China)

    2014-03-01

    The inner region of a luminous accretion disk is radiation-pressure-dominated. We estimate the surface temperature of a radiation-pressure-dominated accretion disk, Θ=c{sub s}{sup 2}/r{sup 2}Ω{sub K}{sup 2}≪(H/r){sup 2}, which is significantly lower than that of a gas-pressure-dominated disk, Θ ∼ (H/r){sup 2}. This means that the outflow can be launched magnetically from the photosphere of the radiation-pressure-dominated disk only if the effective potential barrier along the magnetic field line is extremely shallow or no potential barrier is present. For the latter case, the slow sonic point in the outflow will probably be in the disk, which leads to a slow circular dense flow above the disk. This implies that hot gas (probably in the corona) is necessary for launching an outflow from the radiation-pressure-dominated disk, which provides a natural explanation for the observational evidence that the relativistic jets are related to hot plasma in some X-ray binaries and active galactic nuclei. We investigate the outflows accelerated from the hot corona above the disk by the magnetic field and radiation force of the accretion disk. We find that with the help of the radiation force, the mass loss rate in the outflow is high, which leads to a slow outflow. This may be why the jets in radio-loud narrow-line Seyfert galaxies are in general mildly relativistic compared with those in blazars.

  5. Pulsed energy storage antennas for ionospheric modification

    Directory of Open Access Journals (Sweden)

    R. F. Wuerker

    2005-01-01

    Full Text Available Interesting, "new", very high peak-power pulsed radio frequency (RF antennas have been assembled at the HIPAS Observatory (Alaska, USA and also at the University of California at Los Angeles (UCLA, USA; namely, a pair of quarter wavelength (λ/4 long cylindrical conductors separated by a high voltage spark gap. Such a combination can radiate multi-megawatt RF pulses whenever the spark gap fires. The antenna at HIPAS is 53m long (λ/2 with a central pressurized SF6 spark gap. It is mounted 5 meters (λ/21 above a ground plane. It radiates at 2.85MHz. The two antenna halves are charged to ± high voltages by a Tesla coil. Spark gap voltages of 0.4 MV (at the instant of spark gap closure give peak RF currents of ~1200A which correspond to ~14 MW peak total radiated power, or ~56 MW of Effective Radiated Power (ERP. The RF pulse train is initially square, decaying exponentially in time with Qs of ~50. Two similar but smaller 80-MHz antennas were assembled at UCLA to demonstrate their synchronization with a pulsed laser which fired the spark gaps in the two antennas simultanoeously. These experiments show that one can anticipate a pulsed array of laser synchronized antennas having a coherent Effective Radiated Power (ERP>10GW. One can even reconsider a pulse array radiating at 1.43MHz which corresponds to the electron gyrofrequency in the Earth's magnetic field at ~200km altitude. These "new" pulsed high power antennas are hauntingly similar to the ones used originally by Hertz (1857-1894 during his (1886-1889 seminal verifications of Maxwell's (1864 theory of electrodynamics.

  6. Pulsed energy storage antennas for ionospheric modification

    Directory of Open Access Journals (Sweden)

    R. F. Wuerker

    2005-01-01

    Full Text Available Interesting, "new", very high peak-power pulsed radio frequency (RF antennas have been assembled at the HIPAS Observatory (Alaska, USA and also at the University of California at Los Angeles (UCLA, USA; namely, a pair of quarter wavelength (λ/4 long cylindrical conductors separated by a high voltage spark gap. Such a combination can radiate multi-megawatt RF pulses whenever the spark gap fires. The antenna at HIPAS is 53m long (λ/2 with a central pressurized SF6 spark gap. It is mounted 5 meters (λ/21 above a ground plane. It radiates at 2.85MHz. The two antenna halves are charged to ± high voltages by a Tesla coil. Spark gap voltages of 0.4 MV (at the instant of spark gap closure give peak RF currents of ~1200A which correspond to ~14 MW peak total radiated power, or ~56 MW of Effective Radiated Power (ERP. The RF pulse train is initially square, decaying exponentially in time with Qs of ~50. Two similar but smaller 80-MHz antennas were assembled at UCLA to demonstrate their synchronization with a pulsed laser which fired the spark gaps in the two antennas simultanoeously. These experiments show that one can anticipate a pulsed array of laser synchronized antennas having a coherent Effective Radiated Power (ERP>10GW. One can even reconsider a pulse array radiating at 1.43MHz which corresponds to the electron gyrofrequency in the Earth's magnetic field at ~200km altitude. These "new" pulsed high power antennas are hauntingly similar to the ones used originally by Hertz (1857-1894 during his (1886-1889 seminal verifications of Maxwell's (1864 theory of electrodynamics.

  7. Technical note: Fu-Liou-Gu and Corti-Peter model performance evaluation for radiative retrievals from cirrus clouds

    Science.gov (United States)

    Lolli, Simone; Campbell, James R.; Lewis, Jasper R.; Gu, Yu; Welton, Ellsworth J.

    2017-06-01

    We compare, for the first time, the performance of a simplified atmospheric radiative transfer algorithm package, the Corti-Peter (CP) model, versus the more complex Fu-Liou-Gu (FLG) model, for resolving top-of-the-atmosphere radiative forcing characteristics from single-layer cirrus clouds obtained from the NASA Micro-Pulse Lidar Network database in 2010 and 2011 at Singapore and in Greenbelt, Maryland, USA, in 2012. Specifically, CP simplifies calculation of both clear-sky longwave and shortwave radiation through regression analysis applied to radiative calculations, which contributes significantly to differences between the two. The results of the intercomparison show that differences in annual net top-of-the-atmosphere (TOA) cloud radiative forcing can reach 65 %. This is particularly true when land surface temperatures are warmer than 288 K, where the CP regression analysis becomes less accurate. CP proves useful for first-order estimates of TOA cirrus cloud forcing, but may not be suitable for quantitative accuracy, including the absolute sign of cirrus cloud daytime TOA forcing that can readily oscillate around zero globally.

  8. Calculations of Aerosol Radiative Forcing in the SAFARI Region from MODIS Data

    Science.gov (United States)

    Remer, L. A.; Ichoku, C.; Kaufman, Y. J.; Chu, D. A.

    2003-01-01

    SAFARI 2000 provided the opportunity to validate MODIS aerosol retrievals and to correct any assumptions in the retrieval process. By comparing MODIS retrievals with ground-based sunphotometer data, we quantified the degree to which the MODIS algorithm underestimated the aerosol optical thickness. This discrepancy was attributed to underestimating the degree of light absorption by the southern African smoke aerosol. Correcting for this underestimation of absorption, produces more realistic aerosol retrievals that allow various applications of the MODIS aerosol products. One such application is the calculation of the aerosol radiative forcing at the top and bottom of the atmosphere. The combination of MODIS accuracy, coverage, resolution and the ability to separate fine and coarse mode make this calculation substantially advanced over previous attempts with other satellites. We focus on the oceans adjacent to southern Africa and use a solar radiative transfer model to perform the flux calculations. The forcing at the top of atmosphere is calculated to be 10 W/sq m, while the forcing at the surface is -26 W/sq m. These results resemble those calculated from INDOEX data, and are most sensitive to assumptions of aerosol absorption, the same parameter that initially interfered with our retrievals.

  9. The formation of ozone and UV radiation from high-power pulsed electric discharges

    Science.gov (United States)

    Piskarev, I. M.; Ushkanov, V. A.; Selemir, V. D.; Spirov, G. M.; Malevannaya Pikar', I. A.; Zuimach, E. A.

    2008-09-01

    High-power electric discharges with pulse energies of from 0.15 J to 4 kJ were studied. The yields of UV photons and ozone were found to be approximately equal, which led us to conclude that discharge conditions under which UV radiation and ozone fully destroyed each other were possible. If ozone formation was suppressed, as when a negative volume charge was created in the spark gap region, the flux of UV photons reached 3 × 1023 photons/(cm2 s).

  10. Radiative forcing estimates of sulfate aerosol in coupled climate-chemistry models with emphasis on the role of the temporal variability

    Directory of Open Access Journals (Sweden)

    C. Déandreis

    2012-06-01

    Full Text Available This paper describes the impact on the sulfate aerosol radiative effects of coupling the radiative code of a global circulation model with a chemistry-aerosol module. With this coupling, temporal variations of sulfate aerosol concentrations influence the estimate of aerosol radiative impacts. Effects of this coupling have been assessed on net fluxes, radiative forcing and temperature for the direct and first indirect effects of sulfate.

    The direct effect respond almost linearly to rapid changes in concentrations whereas the first indirect effect shows a strong non-linearity. In particular, sulfate temporal variability causes a modification of the short wave net fluxes at the top of the atmosphere of +0.24 and +0.22 W m−2 for the present and preindustrial periods, respectively. This change is small compared to the value of the net flux at the top of the atmosphere (about 240 W m−2. The effect is more important in regions with low-level clouds and intermediate sulfate aerosol concentrations (from 0.1 to 0.8 μg (SO4 m−3 in our model.

    The computation of the aerosol direct radiative forcing is quite straightforward and the temporal variability has little effect on its mean value. In contrast, quantifying the first indirect radiative forcing requires tackling technical issues first. We show that the preindustrial sulfate concentrations have to be calculated with the same meteorological trajectory used for computing the present ones. If this condition is not satisfied, it introduces an error on the estimation of the first indirect radiative forcing. Solutions are proposed to assess radiative forcing properly. In the reference method, the coupling between chemistry and climate results in a global average increase of 8% in the first indirect radiative forcing. This change reaches 50% in the most sensitive regions. However, the reference method is not suited to run long climate

  11. On radiation forces acting on a transparent nanoparticle in the field of a focused laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Afanas' ev, A A; Rubinov, A N [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus); Gaida, L S; Guzatov, D V; Svistun, A Ch [Yanka Kupala State University of Grodno, Grodno (Belarus)

    2015-10-31

    Radiation forces acting on a transparent spherical nanoparticle in the field of a focused Gaussian laser beam are studied theoretically in the Rayleigh scattering regime. Expressions are derived for the scattering force and Cartesian components of the gradient force. The resultant force acting on a nanoparticle located in the centre of a laser beam is found. The parameters of the focused beam and optical properties of the nanoparticle for which the longitudinal component of the gradient force exceeds the scattering force are determined. Characteristics of the transverse gradient force are discussed. (nanophotonics)

  12. Response of heterogeneous vegetation to aerosol radiative forcing over a northeast Indian station.

    Science.gov (United States)

    Latha, R; Vinayak, B; Murthy, B S

    2018-01-15

    Importance of atmospheric aerosols through direct and indirect effects on hydrological cycle is highlighted through multiple studies. This study tries to find how much the aerosols can affect evapo-transpiration (ET), a key component of the hydrological cycle over high NDVI (normalized difference vegetation index)/dense canopy, over Dibrugarh, known for vast tea plantation. The radiative effects of aerosols are calculated using satellite (Terra-MODIS) and reanalysis data on daily and monthly scales. Aerosol optical depth (AOD) obtained from satellite and ground observations compares well. Aerosol radiative forcing (ARF), calculated using MERRA data sets of 'clean-clear radiation' and 'clear-radiation' at the surface, shows a lower forcing efficiency, 35 Wm -zs , that is about half of that of ground observations. As vegetation controls ET over high NDVI area to the maximum and that gets modified through ARF, a regression equation is fitted between ET, AOD and NDVI for this station as ET = 0.25 + (-84.27) × AOD + (131.51) × NDVI that explains 82% of 'daily' ET variation using easily available satellite data. ET is found to follow net radiation closely and the direct relation between soil moisture and ET is weak on daily scale over this station as it may be acting through NDVI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    M. Kopacz

    2011-03-01

    Full Text Available The remote and high elevation regions of central Asia are influenced by black carbon (BC emissions from a variety of locations. BC deposition contributes to melting of glaciers and questions exist, of both scientific and policy interest, as to the origin of the BC reaching the glaciers. We use the adjoint of the GEOS-Chem model to identify the location from which BC arriving at a variety of locations in the Himalayas and Tibetan Plateau originates. We then calculate its direct and snow-albedo radiative forcing. We analyze the seasonal variation in the origin of BC using an adjoint sensitivity analysis, which provides a detailed map of the location of emissions that directly contribute to black carbon concentrations at receptor locations. We find that emissions from northern India and central China contribute the majority of BC to the Himalayas, although the precise location varies with season. The Tibetan Plateau receives most BC from western and central China, as well as from India, Nepal, the Middle East, Pakistan and other countries. The magnitude of contribution from each region varies with season and receptor location. We find that sources as varied as African biomass burning and Middle Eastern fossil fuel combustion can significantly contribute to the BC reaching the Himalayas and Tibetan Plateau. We compute radiative forcing in the snow-covered regions and find the forcing due to the BC induced snow-albedo effect to vary from 5–15 W m−2 within the region, an order of magnitude larger than radiative forcing due to the direct effect, and with significant seasonal variation in the northern Tibetan Plateau. Radiative forcing from reduced snow albedo likely accelerates glacier melting. Our analysis may help inform mitigation efforts to slow the rate of glacial melt by identifying regions that make the largest contributions to BC deposition in the Himalayas and Tibetan Plateau.

  14. Retention and radiative forcing of black carbon in eastern Sierra Nevada snow

    Directory of Open Access Journals (Sweden)

    K. M. Sterle

    2013-02-01

    Full Text Available When contaminated by absorbing particles, such as refractory black carbon (rBC and continental dust, snow's albedo decreases and thus its absorption of solar radiation increases, thereby hastening snowmelt. For this reason, an understanding of rBC's affect on snow albedo, melt processes, and radiation balance is critical for water management, especially in a changing climate. Measurements of rBC in a sequence of snow pits and surface snow samples in the eastern Sierra Nevada of California during the snow accumulation and ablation seasons of 2009 show that concentrations of rBC were enhanced sevenfold in surface snow (~25 ng g–1 compared to bulk values in the snowpack (~3 ng g–1. Unlike major ions, which were preferentially released during the initial melt, rBC and continental dust were retained in the snow, enhancing concentrations well into late spring, until a final flush occurred during the ablation period. We estimate a combined rBC and continental dust surface radiative forcing of 20 to 40 W m−2 during April and May, with dust likely contributing a greater share of the forcing.

  15. Dose reduction in pulsed fluoroscopy by modifying the high-voltage pulse shape

    International Nuclear Information System (INIS)

    Sabau, M.N.; Phelps, G.

    1988-01-01

    This paper presents the dose reduction results in pulsed fluoroscopy by modifying the high-voltage pulse shape (HVPS). Since the HVPS in regular pulsed fluoroscopy has a long tail, the radiation pulse shape (RPS) is similar. Using specially designed circuitry in the high-voltage generator to produce a rectangular HVPS, and consequently a rectangular RPS, it was possible to obtain a reduction of up to 25% of patient exposure. This dose reduction obtained by cutting the long tail of RPS does not damage the image quality

  16. System for increasing laser pulse rate

    International Nuclear Information System (INIS)

    1980-01-01

    A technique of static elements is disclosed for combining a plurality of laser beams having time sequenced, pulsed radiation to achieve an augmented pulse rate. The technique may also be applied in a system for combining both time sequenced pulses and frequency distinct pulses for use in a system for isotope enrichment. (author)

  17. Radiative forcing over the conterminous United States due to contemporary land cover land use change and sensitivity to snow and interannual albedo variability

    Science.gov (United States)

    Barnes, Christopher A.; Roy, David P.

    2010-01-01

    Satellite-derived land cover land use (LCLU), snow and albedo data, and incoming surface solar radiation reanalysis data were used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing for 58 ecoregions covering 69% of the conterminous United States. A net positive surface radiative forcing (i.e., warming) of 0.029 Wm−2 due to LCLU albedo change from 1973 to 2000 was estimated. The forcings for individual ecoregions were similar in magnitude to current global forcing estimates, with the most negative forcing (as low as −0.367 Wm−2) due to the transition to forest and the most positive forcing (up to 0.337 Wm−2) due to the conversion to grass/shrub. Snow exacerbated both negative and positive forcing for LCLU transitions between snow-hiding and snow-revealing LCLU classes. The surface radiative forcing estimates were highly sensitive to snow-free interannual albedo variability that had a percent average monthly variation from 1.6% to 4.3% across the ecoregions. The results described in this paper enhance our understanding of contemporary LCLU change on surface radiative forcing and suggest that future forcing estimates should model snow and interannual albedo variation.

  18. Fire-induced albedo change and surface radiative forcing in sub-Saharan Africa savanna ecosystems: Implications for the energy balance

    Science.gov (United States)

    Dintwe, Kebonye; Okin, Gregory S.; Xue, Yongkang

    2017-06-01

    Surface albedo is a critical parameter that controls surface energy balance. In dryland ecosystems, fires play a significant role in decreasing surface albedo, resulting in positive radiative forcing. Here we investigate the long-term effect of fire on surface albedo. We devised a method to calculate short-, medium-, and long-term effect of fire-induced radiative forcing and their relative effects on energy balance. We used Moderate Resolution Imaging Spectroradiometer (MODIS) data in our analysis, covering different vegetation classes in sub-Saharan Africa (SSA). Our analysis indicated that mean short-term fire-induced albedo change in SSA was -0.022, -0.035, and -0.041 for savannas, shrubland, and grasslands, respectively. At regional scale, mean fire-induced albedo change in savannas was -0.018 and -0.024 for northern sub-Saharan of Africa and the southern hemisphere Africa, respectively. The short-term mean fire-induced radiative forcing in burned areas in sub-Saharan Africa (SSA) was 5.41 W m-2, which contributed continental and global radiative forcings of 0.25 and 0.058 W m-2, respectively. The impact of fire in surface albedo has long-lasting effects that varies with vegetation type. The long-term energetic effects of fire-induced albedo change and associated radiative forcing were, on average, more than 19 times greater across SSA than the short-term effects, suggesting that fires exerted far more radiative forcing than previously thought. Taking into account the actual duration of fire's effect on surface albedo, we conclude that the contribution of SSA fires, globally and throughout the year, is 0.12 W m-2. These findings provide crucial information on possible impact of fire on regional climate variability.

  19. Installation And Test Of Electron Beam Generation System To Produce Far-Infrared Radiation And X-Ray Pulses

    International Nuclear Information System (INIS)

    Wichaisirimongkol, Pathom; Jinamoon, Witoon; Khangrang, Nopadon; Kusoljariyakul, Keerati; Rhodes, Michael W.; Rimjaem, Sakhorn; Saisut, Jatuporn; Chitrlada, Thongbai; Vilaithong, Thiraphat; Wiedemann, Helmut

    2005-10-01

    SURIYA project at the Fast Neutron Research Facility, Chiang Mai University, aims to establish a facility to generate femtosecond electron beams. This electron beam can be used to generate high intensity far-infrared radiation and ultra-short X-ray pulses. The main components of the system are a 3 MeV RF electron gun with a thermionic cathode, an a-magnet as a bunch compressor, and post acceleration 15-20 MeV by a linear accelerator (linac). Between the main components, there are focusing quadrupole magnets and steering magnets to maintain the electron beam within a high vacuum tube. At the end of the beam transport line, a dipole magnet has been installed to function as a beam dump and an energy spectrometer. After the installation and testing of individual major components were completed, we have been investigating the generation of the electron beam, intense far- infrared radiation and ultra short X-ray pulses

  20. Spatial variability of the direct radiative forcing of biomass burning aerosols and the effects of land use change in Amazonia

    Directory of Open Access Journals (Sweden)

    E. T. Sena

    2013-02-01

    Full Text Available This paper addresses the Amazonian shortwave radiative budget over cloud-free conditions after considering three aspects of deforestation: (i the emission of aerosols from biomass burning due to forest fires; (ii changes in surface albedo after deforestation; and (iii modifications in the column water vapour amount over deforested areas. Simultaneous Clouds and the Earth's Radiant Energy System (CERES shortwave fluxes and aerosol optical depth (AOD retrievals from the Moderate Resolution Imaging SpectroRadiometer (MODIS were analysed during the peak of the biomass burning seasons (August and September from 2000 to 2009. A discrete-ordinate radiative transfer (DISORT code was used to extend instantaneous remote sensing radiative forcing assessments into 24-h averages.

    The mean direct radiative forcing of aerosols at the top of the atmosphere (TOA during the biomass burning season for the 10-yr studied period was −5.6 ± 1.7 W m−2. Furthermore, the spatial distribution of the direct radiative forcing of aerosols over Amazonia was obtained for the biomass burning season of each year. It was observed that for high AOD (larger than 1 at 550 nm the maximum daily direct aerosol radiative forcing at the TOA may be as high as −20 W m−2 locally. The surface reflectance plays a major role in the aerosol direct radiative effect. The study of the effects of biomass burning aerosols over different surface types shows that the direct radiative forcing is systematically more negative over forest than over savannah-like covered areas. Values of −15.7 ± 2.4 W m−2τ550 nm and −9.3 ± 1.7 W m−2τ550 nm were calculated for the mean daily aerosol forcing efficiencies over forest and savannah-like vegetation respectively. The overall mean annual land use change radiative forcing due to deforestation over the state of Rondônia, Brazil, was determined as −7.3 ± 0.9 W m

  1. Acoustofluidics: Theory and simulation of streaming and radiation forces at ultrasound resonances in microfluidic devices

    DEFF Research Database (Denmark)

    Bruus, Henrik

    2009-01-01

    fields, which are directly related to the acoustic radiation force on single particles and to the acoustic streaming of the liquid. For the radiation pressure effects, there is good agreement between theory and simulation, while the numeric results for the acoustic streaming effects are more problematic...

  2. Revised model for the radiation force exerted by standing surface acoustic waves on a rigid cylinder

    Science.gov (United States)

    Liang, Shen; Chaohui, Wang

    2018-03-01

    In this paper, a model for the radiation force exerted by standing surface acoustic waves (SSAWs) on a rigid cylinder in inviscid fluids is extended to account for the dependence on the Rayleigh angle. The conventional model for the radiation force used in the SSAW-based applications is developed in plane standing waves, which fails to predict the movement of the cylinder in the SSAW. Our revised model reveals that, in the direction normal to the piezoelectric substrate on which the SSAW is generated, acoustic radiation force can be large enough to drive the cylinder even in the long-wavelength limit. Furthermore, the force in this direction can not only push the cylinder away, but also pull it back toward the substrate. In the direction parallel to the substrate, the equilibrium positions for particles can be actively tuned by changing Rayleigh angle. As an example considered in the paper, with the reduction of Rayleigh angle the equilibrium positions for steel cylinders in water change from pressure nodes to pressure antinodes. The model can thus be used in the design of SSAWs for particle manipulations.

  3. The Impact of Desert Dust Aerosol Radiative Forcing on Global and West African Precipitation

    Science.gov (United States)

    Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.; Dezfuli, A. K.

    2015-12-01

    Desert dust aerosols exert a radiative forcing on the atmosphere, influencing atmospheric temperature structure and modifying radiative fluxes at the top of the atmosphere (TOA) and surface. As dust aerosols perturb radiative fluxes, the atmosphere responds by altering both energy and moisture dynamics, with potentially significant impacts on regional and global precipitation. Global Climate Model (GCM) experiments designed to characterize these processes have yielded a wide range of results, owing to both the complex nature of the system and diverse differences across models. Most model results show a general decrease in global precipitation, but regional results vary. Here, we compare simulations from GFDL's CM2Mc GCM with multiple other model experiments from the literature in order to investigate mechanisms of radiative impact and reasons for GCM differences on a global and regional scale. We focus on West Africa, a region of high interannual rainfall variability that is a source of dust and that neighbors major Sahara Desert dust sources. As such, changes in West African climate due to radiative forcing of desert dust aerosol have serious implications for desertification feedbacks. Our CM2Mc results show net cooling of the planet at TOA and surface, net warming of the atmosphere, and significant increases in precipitation over West Africa during the summer rainy season. These results differ from some previous GCM studies, prompting comparative analysis of desert dust parameters across models. This presentation will offer quantitative analysis of differences in dust aerosol parameters, aerosol optical properties, and overall particle burden across GCMs, and will characterize the contribution of model differences to the uncertainty of forcing and climate response affecting West Africa.

  4. Numerical and experimental studies of mechanisms underlying the effect of pulsed broadband terahertz radiation on nerve cells

    Energy Technology Data Exchange (ETDEWEB)

    Duka, M V; Dvoretskaya, L N; Babelkin, N S; Khodzitskii, M K; Chivilikhin, S A; Smolyanskaya, O A [St. Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg (Russian Federation)

    2014-08-31

    We have studied the mechanisms underlying the effect of pulsed broadband terahertz radiation on the growth of neurites of sensory ganglia using a comparative analysis of measured reflection spectra of ganglion neurites (in the frequency range 0.1 – 2.0 THz) and spectra obtained by numerical simulation with CST Microwave Studio. The observed changes are shown to be mainly due to pulse energy absorption in the ganglion neurites. Of particular interest are the observed single resonance frequencies related to resonance size effects, which can be used to irradiate ganglia in order to activate their growth. (laser biophotonics)

  5. Acoustic signal generation in excised muscle by pulsed proton beam irradiation and the possibility of its clinical application to radiation therapy

    International Nuclear Information System (INIS)

    Hayakawa, Yoshinori; Tada, Junichiro; Inada, Tetsuo; Kitagawa, Toshio; Wagai, Toshio; Yoshioka, Katsuya.

    1989-01-01

    Acoustic signals generated in liquids and in metals by pulsed proton beam are thought to be thermal shock wave due to localized energy deposition of incident protons. Thus the intensity of generated acoustic signals is almost proportional to the energy deposited at the region. This suggests the possibility for measuring spatial distribution of energy deposition of proton beam using the acoustic method. In proton beam radiation therapy, treatment planning is developed from data of X-ray computer tomography which reflects the information on the electron density distribution in the patient's body. Ensuring the agreement of the dose distribution in the patient with the planned one, however, is difficult. It is expected that the acoustic method can provide a useful tool for this purpose. The pulsed proton beam of 50ns in pulse width is used for cancer therapy at the University of Tsukuba. A hydrophone is used to detect acoustic signals generated by pulsed proton beam. Detected signals are amplified ten thousand times before being averaged and analyzed by digital oscilloscope. Measurements made suggest that the method could be useful for radiation therapy. (N.K.)

  6. Variable pattern of high-order harmonic spectra from a laser-produced plasma by using the chirped pulses of narrow-bandwidth radiation

    International Nuclear Information System (INIS)

    Ganeev, R. A.; Suzuki, M.; Baba, M.; Kuroda, H.; Redkin, P. V.

    2007-01-01

    Various plasmas prepared by laser ablation of the surfaces of solid targets were examined by the narrow-bandwidth radiation of different chirp and pulse durations. The high-order harmonics generated during laser-plasma interaction showed different brightness, wavelength shift, harmonic cutoff, and efficiency by using variable chirps of pump radiation. An analysis of harmonic optimization at these conditions is presented. The blueshifted and redshifted harmonics observed in this case were analyzed and attributed to the abundance of free electrons and self-phase modulation of the driving pulse. The resonance-induced enhancement of the 15th harmonic from GaN-nanoparticle-containing plasma caused by the tuning of harmonic wavelength close to the ionic transition was demonstrated

  7. Generation of thermo-acoustic waves from pulsed solar/IR radiation

    Science.gov (United States)

    Rahman, Aowabin

    Acoustic waves could potentially be used in a wide range of engineering applications; however, the high energy consumption in generating acoustic waves from electrical energy and the cost associated with the process limit the use of acoustic waves in industrial processes. Acoustic waves converted from solar radiation provide a feasible way of obtaining acoustic energy, without relying on conventional nonrenewable energy sources. One of the goals of this thesis project was to experimentally study the conversion of thermal to acoustic energy using pulsed radiation. The experiments were categorized into "indoor" and "outdoor" experiments, each with a separate experimental setup. The indoor experiments used an IR heater to power the thermo-acoustic lasers and were primarily aimed at studying the effect of various experimental parameters on the amplitude of sound waves in the low frequency range (below 130 Hz). The IR radiation was modulated externally using a chopper wheel and then impinged on a porous solid, which was housed inside a thermo-acoustic (TA) converter. A microphone located at a certain distance from the porous solid inside the TA converter detected the acoustic signals. The "outdoor" experiments, which were targeted at TA conversion at comparatively higher frequencies (in 200 Hz-3 kHz range) used solar energy to power the thermo-acoustic laser. The amplitudes (in RMS) of thermo-acoustic signals obtained in experiments using IR heater as radiation source were in the 80-100 dB range. The frequency of acoustic waves corresponded to the frequency of interceptions of the radiation beam by the chopper. The amplitudes of acoustic waves were influenced by several factors, including the chopping frequency, magnitude of radiation flux, type of porous material, length of porous material, external heating of the TA converter housing, location of microphone within the air column, and design of the TA converter. The time-dependent profile of the thermo-acoustic signals

  8. Cloud forming properties of ambient aerosol in the Netherlands and resultant shortwave radiative forcing of climate

    NARCIS (Netherlands)

    Khlystov, A.

    1998-01-01

    This thesis discusses properties of ambient aerosols in the Netherlands which are controlling the magnitude of the local aerosol radiative forcing. Anthropogenic aerosols influence climate by changing the radiative transfer through the atmosphere via two effects, one is direct and a second

  9. Drilling and cutting of thin metal plates in water with radiation of a repetitively pulsed Nd : YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Glova, A F; Lysikov, A Yu [State Research Center of Russian Federation ' Troitsk Institute for Innovation and Fusion Research' , Troitsk, Moscow Region (Russian Federation)

    2011-10-31

    The conditions of drilling and cutting of 0.15-mm-thick titanium and stainless steel plates in water with the radiation of a repetitively pulsed Nd : YAG laser having the mean power up to 30 W are studied experimentally in the absence of water and gas jets. Dependences of the maximal cutting speed in water on the radiation power are obtained, the cutting efficiency is determined, and the comparison with the conditions of drilling and cutting of plates in air is carried out.

  10. Observed linkages between the northern annular mode/North Atlantic Oscillation, cloud incidence, and cloud radiative forcing

    Science.gov (United States)

    Li, Ying; Thompson, David W. J.; Huang, Yi; Zhang, Minghong

    2014-03-01

    The signature of the northern annular mode/North Atlantic Oscillation (NAM/NAO) in the vertical and horizontal distribution of tropospheric cloudiness is investigated in CloudSat and CALIPSO data from June 2006 to April 2011. During the Northern Hemisphere winter, the positive polarity of the NAM/NAO is marked by increases in zonally averaged cloud incidence north of ~60°N, decreases between ~25 and 50°N, and increases in the subtropics. The tripolar-like anomalies in cloud incidence associated with the NAM/NAO are largest over the North Atlantic Ocean basin/Middle East and are physically consistent with the NAM/NAO-related anomalies in vertical motion. Importantly, the NAM/NAO-related anomalies in tropospheric cloud incidence lead to significant top of atmosphere cloud radiative forcing anomalies that are comparable in amplitude to those associated with the NAM/NAO-related temperature anomalies. The results provide observational evidence that the most prominent pattern of Northern Hemisphere climate variability is significantly linked to variations in cloud radiative forcing. Implications for two-way feedback between extratropical dynamics and cloud radiative forcing are discussed.

  11. Revisiting Bragg's X-ray microscope: scatter based optical transient grating detection of pulsed ionising radiation.

    Science.gov (United States)

    Fullagar, Wilfred K; Paganin, David M; Hall, Chris J

    2011-06-01

    Transient optical gratings for detecting ultrafast signals are routine for temporally resolved photochemical investigations. Many processes can contribute to the formation of such gratings; we indicate use of optically scattering centres that can be formed with highly variable latencies in different materials and devices using ionising radiation. Coherent light scattered by these centres can form the short-wavelength-to-optical-wavelength, incoherent-to-coherent basis of a Bragg X-ray microscope, with inherent scope for optical phasing. Depending on the dynamics of the medium chosen, the way is open to both ultrafast pulsed and integrating measurements. For experiments employing brief pulses, we discuss high-dynamic-range short-wavelength diffraction measurements with real-time optical reconstructions. Applications to optical real-time X-ray phase-retrieval are considered. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Suppression and utilization of spurious pulse occurence in organic GM-counters

    International Nuclear Information System (INIS)

    Narita, Y.; Igarashi, R.; Akagami, H.; Ozawa, Y.

    1979-01-01

    The authors have made a study of suppression and utilization of spurious pulse occurrence in organic GM-counters. Almost all spurious pulses in the organic GM-counter are the delayed pulses which occur being dependent upon the radiation intensity. The occurrence rate of the delayed pulses against the radiation intensity is affected by the intensity of the electric field in the vicinity of the cathode of the GM-counter. The occurrence of the delayed pulses can be suppressed when the electric field in the vicinity of the cathode is kept at high value. On the contrary, the occurrence of the delayed pulses can be utilized for the dosimetry of the pulsed radiation by means of increasing the space of the weak electric field in the GM-counter. (Auth.)

  13. Measuring radiation damage dynamics by pulsed ion beam irradiation. 2015 Annual Progress Report for DOE/NE/NEET

    Energy Technology Data Exchange (ETDEWEB)

    Kucheyev, S. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-07

    The major goal of this project is to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation processes in nuclear materials. In particular, the project exploits a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. For Year 2, this project had the following two major milestones: (i) measurement of the temperature dependence of defect dynamics in SiC and (ii) the evaluation of the robustness of the pulsed beam method from studies of the defect generation rate. As we describe below, both of these milestones have been met.

  14. Anthropogenic radiative forcing of southern African and Southern Hemisphere climate variability and change

    CSIR Research Space (South Africa)

    Engelbrecht, FA

    2014-10-01

    Full Text Available of stratospheric ozone, greenhouse gasses, aerosols and sulphur dioxide, can improve the model's skill to simulate inter-annual variability over southern Africa. The paper secondly explores the role of different radiative forcings of future climate change over...

  15. Nonlinear aspects of acoustic radiation force in biomedical applications

    International Nuclear Information System (INIS)

    Ostrovsky, Lev; Tsyuryupa, Sergey; Sarvazyan, Armen

    2015-01-01

    In the past decade acoustic radiation force (ARF) became a powerful tool in numerous biomedical applications. ARF from a focused ultrasound beam acts as a virtual “finger” for remote probing of internal anatomical structures and obtaining diagnostic information. This presentation deals with generation of shear waves by nonlinear focused beams. Albeit the ARF has intrinsically nonlinear origin, in most cases the primary ultrasonic wave was considered in the linear approximation. In this presentation, we consider the effects of nonlinearly distorted beams on generation of shear waves by such beams

  16. Nonlinear aspects of acoustic radiation force in biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ostrovsky, Lev, E-mail: Lev.A.Ostrovsky@noaa.gov [NOAA Earth System Research Laboratory, 325 Broadway, Boulder, Colorado 80305 (United States); Tsyuryupa, Sergey; Sarvazyan, Armen, E-mail: armen@artannlabs.com [Artann Laboratories, Inc., 1459 Lower Ferry Rd., West Trenton, New Jersey,08618 (United States)

    2015-10-28

    In the past decade acoustic radiation force (ARF) became a powerful tool in numerous biomedical applications. ARF from a focused ultrasound beam acts as a virtual “finger” for remote probing of internal anatomical structures and obtaining diagnostic information. This presentation deals with generation of shear waves by nonlinear focused beams. Albeit the ARF has intrinsically nonlinear origin, in most cases the primary ultrasonic wave was considered in the linear approximation. In this presentation, we consider the effects of nonlinearly distorted beams on generation of shear waves by such beams.

  17. Nonlinear aspects of acoustic radiation force in biomedical applications

    Science.gov (United States)

    Ostrovsky, Lev; Tsyuryupa, Sergey; Sarvazyan, Armen

    2015-10-01

    In the past decade acoustic radiation force (ARF) became a powerful tool in numerous biomedical applications. ARF from a focused ultrasound beam acts as a virtual "finger" for remote probing of internal anatomical structures and obtaining diagnostic information. This presentation deals with generation of shear waves by nonlinear focused beams. Albeit the ARF has intrinsically nonlinear origin, in most cases the primary ultrasonic wave was considered in the linear approximation. In this presentation, we consider the effects of nonlinearly distorted beams on generation of shear waves by such beams.

  18. Time evolution of tropospheric ozone and its radiative forcing

    International Nuclear Information System (INIS)

    Berntsen, Terje K.; Isaksen, Ivar S.A.; Myhre, Gunnar; Stordal, Frode

    1999-01-01

    The overview presents results from studies of ozone concentrations from pre industrial time and up to the end of the 20th century. Different models and also a global 3-D chemistry transport model have been used. Experiments have been performed for 1850, 1900, 1950, 1960, 1970, 1980 and 1990. The radiative forcing increases with increasing ozone levels and has been steadily increasing. It has escalated towards the end of the century. Comparative evaluations with project results and external results are presented. Connections to other greenhouse gases are mentioned

  19. Comparison of radiative forcing impacts of the use of wood, peat, and fossil fuels

    International Nuclear Information System (INIS)

    Savolainen, I.; Hillebrand, K.; Nousiainen, I.; Sinisalo, J.

    1994-01-01

    The present study investigates the greenhouse impacts and the relevant time factors of the use of peat and wood for energy production and compares them with those of fossil fuels. Emissions and sinks of the whole energy production chain and subsequent use of the wood or peat production site are taken into account. The radiative forcing caused by energy production is used as a measure for the greenhouse impact. Economical considerations are not included. Radiative forcing is calculated for carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) emissions. The real emissions of energy production are calculated by subtracting the emissions of non-use from the emissions of energy production. All the emissions are given as a function of time, i.e. their evolution over time is taken into account. At this point the estimates for some emission developments are quite crude and should be considered exemplary. The studied energy production chains can be divided roughly into three groups, if the greenhouse impact caused by continuous energy production of hundred years is considered. In this case forest residues, planted stands and unused merchantable wood cause the least radiative forcing per unit of primary energy generated. Natural gas and peat from cultivated peatland form the middle group. According to the calculations coal and conventional peat cause the greatest greenhouse impact

  20. Application of pulsed multi-ion irradiations in radiation damage research: A stochastic cluster dynamics simulation study

    Science.gov (United States)

    Hoang, Tuan L.; Nazarov, Roman; Kang, Changwoo; Fan, Jiangyuan

    2018-07-01

    Under the multi-ion irradiation conditions present in accelerated material-testing facilities or fission/fusion nuclear reactors, the combined effects of atomic displacements with radiation products may induce complex synergies in the structural materials. However, limited access to multi-ion irradiation facilities and the lack of computational models capable of simulating the evolution of complex defects and their synergies make it difficult to understand the actual physical processes taking place in the materials under these extreme conditions. In this paper, we propose the application of pulsed single/dual-beam irradiation as replacements for the expensive steady triple-beam irradiation to study radiation damages in materials under multi-ion irradiation.

  1. Radiobiological response to ultra-short pulsed megavoltage electron beams of ultra-high pulse dose rate.

    Science.gov (United States)

    Beyreuther, Elke; Karsch, Leonhard; Laschinsky, Lydia; Leßmann, Elisabeth; Naumburger, Doreen; Oppelt, Melanie; Richter, Christian; Schürer, Michael; Woithe, Julia; Pawelke, Jörg

    2015-08-01

    In line with the long-term aim of establishing the laser-based particle acceleration for future medical application, the radiobiological consequences of the typical ultra-short pulses and ultra-high pulse dose rate can be investigated with electron delivery. The radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance) was used to mimic the quasi-continuous electron beam of a clinical linear accelerator (LINAC) for comparison with electron pulses at the ultra-high pulse dose rate of 10(10) Gy min(-1) either at the low frequency of a laser accelerator or at 13 MHz avoiding effects of prolonged dose delivery. The impact of pulse structure was analyzed by clonogenic survival assay and by the number of residual DNA double-strand breaks remaining 24 h after irradiation of two human squamous cell carcinoma lines of differing radiosensitivity. The radiation response of both cell lines was found to be independent from electron pulse structure for the two endpoints under investigation. The results reveal, that ultra-high pulse dose rates of 10(10) Gy min(-1) and the low repetition rate of laser accelerated electrons have no statistically significant influence (within the 95% confidence intervals) on the radiobiological effectiveness of megavoltage electrons.

  2. Scattering of an ultrashort electromagnetic pulse in a plasma

    International Nuclear Information System (INIS)

    Astapenko, V. A.

    2011-01-01

    An analytic approach is developed to describing how ultrashort electromagnetic pulses with a duration of one period or less at the carrier frequency are scattered in a plasma. Formulas are derived to calculate and analyze the angular and spectral probabilities of radiation scattering via two possible mechanisms-Compton and transition radiation channels-throughout the entire pulse. Numerical simulations were carried out for a Gaussian pulse. The effect of the phase of the carrier frequency relative to the pulse envelope on the scattering parameters is investigated.

  3. Temperature rise, sea level rise and increased radiative forcing - an application of cointegration methods

    Science.gov (United States)

    Schmith, Torben; Thejll, Peter; Johansen, Søren

    2016-04-01

    We analyse the statistical relationship between changes in global temperature, global steric sea level and radiative forcing in order to reveal causal relationships. There are in this, however, potential pitfalls due to the trending nature of the time series. We therefore apply a statistical method called cointegration analysis, originating from the field of econometrics, which is able to correctly handle the analysis of series with trends and other long-range dependencies. Further, we find a relationship between steric sea level and temperature and find that temperature causally depends on the steric sea level, which can be understood as a consequence of the large heat capacity of the ocean. This result is obtained both when analyzing observed data and data from a CMIP5 historical model run. Finally, we find that in the data from the historical run, the steric sea level, in turn, is driven by the external forcing. Finally, we demonstrate that combining these two results can lead to a novel estimate of radiative forcing back in time based on observations.

  4. A method for ultrashort electron pulse-shape measurement using coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Geloni, G.; Yurkov, M.V.

    2003-03-01

    In this paper we discuss a method for nondestructive measurements of the longitudinal profile of sub-picosecond electron bunches for X-ray free electron lasers (XFELs). The method is based on the detection of the coherent synchrotron radiation (CSR) spectrum produced by a bunch passing a dipole magnet system. This work also contains a systematic treatment of synchrotron radiation theory which lies at the basis of CSR. Standard theory of synchrotron radiation uses several approximations whose applicability limits are often forgotten: here we present a systematic discussion about these assumptions. Properties of coherent synchrotron radiation from an electron moving along an arc of a circle are then derived and discussed. We describe also an effective and practical diagnostic technique based on the utilization of an electromagnetic undulator to record the energy of the coherent radiation pulse into the central cone. This measurement must be repeated many times with different undulator resonant frequencies in order to reconstruct the modulus of the bunch form-factor. The retrieval of the bunch profile function from these data is performed by means of deconvolution techniques: for the present work we take advantage of a constrained deconvolution method. We illustrate with numerical examples the potential of the proposed method for electron beam diagnostics at the TESLA test facility (TTF) accelerator. Here we choose, for emphasis, experiments aimed at the measure of the strongly non-Gaussian electron bunch profile in the TTF femtosecond-mode operation. We demonstrate that a tandem combination of a picosecond streak camera and a CSR spectrometer can be used to extract shape information from electron bunches with a narrow leading peak and a long tail. (orig.)

  5. Integral-equation based methods for parameter estimation in output pulses of radiation detectors: Application in nuclear medicine and spectroscopy

    Science.gov (United States)

    Mohammadian-Behbahani, Mohammad-Reza; Saramad, Shahyar

    2018-04-01

    Model based analysis methods are relatively new approaches for processing the output data of radiation detectors in nuclear medicine imaging and spectroscopy. A class of such methods requires fast algorithms for fitting pulse models to experimental data. In order to apply integral-equation based methods for processing the preamplifier output pulses, this article proposes a fast and simple method for estimating the parameters of the well-known bi-exponential pulse model by solving an integral equation. The proposed method needs samples from only three points of the recorded pulse as well as its first and second order integrals. After optimizing the sampling points, the estimation results were calculated and compared with two traditional integration-based methods. Different noise levels (signal-to-noise ratios from 10 to 3000) were simulated for testing the functionality of the proposed method, then it was applied to a set of experimental pulses. Finally, the effect of quantization noise was assessed by studying different sampling rates. Promising results by the proposed method endorse it for future real-time applications.

  6. High-voltage pulsed life of multistressed polypropylene capacitor dielectric

    International Nuclear Information System (INIS)

    Laghari, J.R.

    1992-01-01

    High-voltage polypropylene capacitors were aged under singular as well as simultaneous multiple stresses (electrical, thermal, and radiation) at the University of Buffalo's 2 MW thermal nuclear reactor. These stresses were combined neutron-gamma radiation with a total dose of 1.6 x 10 6 rad, electrical stress at 40 V rms /μm, and thermal stress at 90 degrees C. After exposure, the polypropylene dielectric was tested for life (number of pulses to fail) under high-voltage high-repetition-rate (100 pps) pulses. Pulsed life data were also compared with ac life data. Results show that radiation stress causes the most degradation in life, either acting alone or in combination with other stresses. The largest reduction in life occurs when polypropylene is aged under simultaneous multiple stresses (electrical, thermal, and radiation). In this paper, it is shown that pulsed life can be equivalently compared with ac life

  7. Pulse laser induced change in thermal radiation from a single spherical particle on thermally bad conducting surface : an analytical solution

    International Nuclear Information System (INIS)

    Moksin, M.M.; Grozescu, V.I.; Yunus, W.M.M.; Azmi, B.Z.; Talib, Z.A.; Wahab, Z.A.

    1996-01-01

    A relatively simple analytical expression was derived that provided a description of the radius and thermal properties of a single particle from the change in grey body radiation emission subsequent to pulse laser heating of the particle

  8. Radiation forcing by the atmospheric aerosols in the nocturnal boundary layer

    Science.gov (United States)

    Singh, D. K.; Ponnulakshami, V. K.; Mukund, V.; Subramanian, G.; Sreenivas, K. R.

    2013-05-01

    We have conducted experimental and theoretical studies on the radiation forcing due to suspended aerosols in the nocturnal boundary layer. We present radiative, conductive and convective equilibrium profile for different bottom boundaries where calculated Rayleigh number is higher than the critical Rayleigh number in laboratory conditions. The temperature profile can be fitted using an exponential distribution of aerosols concentration field. We also present the vertical temperature profiles in a nocturnal boundary in the presence of fog in the field. Our results show that during the presence of fog in the atmosphere, the ground temperature is greater than the dew-point temperature. The temperature profiles before and after the formation of fog are also observed to be different.

  9. Interagency task force on the health effects of ionizing radiation: report of the work group on public information

    International Nuclear Information System (INIS)

    1979-06-01

    The health effects of ionizing radiation recently have been the focus of increased public concern. In response to this concern, in a May 9, 1978, memorandum the White House requested the Secretary of Health, Education, and Welfare to coordinate an interagency program that would, among other things, ensure public awareness and knowledge of the health effects of ionizing radiation. As a result, the Interagency Task Force on Ionizing Radiation was formed. The Information Work Group of the Task Force was asked to outline a public information program to meet the needs of the general public, the health and scientific community, workers, and other persons exposed to low levels of ionizing radiation in the past and at present or who may be exposed in the future. The Work Group is composed of 16 members, each representing an agency participating on the Interagency Task Force on Ionizing Radiation. The Work Group members used the draft Reports of the Science Work Group, the Radiation Exposure Reduction Work Group, the Care and Benefits Work Group, and the Privacy Work Group as a basis for developing the Information Report. In addition, the Information Work Group conducted a preliminary review of existing federal information programs. Meetings were held with representatives of environmental and trade groups, unions, and professional societies to help define the dimensions and priorities of a public information program

  10. Effect of counter electric field during the irradiation of pulsed x-ray on the after-pulses of GM counter

    International Nuclear Information System (INIS)

    Igarashi, Ryuji; Narita, Yuichi; Ozawa, Yasutomo.

    1979-01-01

    The authors once made it clear by using pulsed radiation that the number of spurious discharge generation in organic gas-quenching type GM counters depends on the intensity of incident radiation. This spurious discharge is peculiar to the organic gas-quenching type GM counters, which the authors named after-pulses. The present study has been carried out to find the experimental conditions to verify the delayed generation mechanism of such after-pulses in bipolar GM tubes and the conditions to give the maximum number of after-pulses generation. For this purpose, a large low electric field region, whose field intensity is variable, should be provided in the tubes. Since it has been generally impossible in the bipolar GM tubes, the provision of that region transiently has been tried. The effect of the intensity of electric field in GM tubes during irradiation on the generation of after-pulses has been investigated by changing radiation intensity, anode voltage, and irradiated position. Consideration of the results has revealed that the number of after-pulse generation can be increased by forming transient low electric field region in the bipolar GM counters of organic gas-quenching type. It was the new knowledge that the transient anode voltage to maximize the after-pulse generating factor was several tens of negative voltage even if the conditions were varied. It seems that this fact depends upon the voltage giving the conditions to maximize the probability of forming after-pulse factors. (Wakatsuki, Y.)

  11. Industrial Applications of Pulsed Power Technology

    Science.gov (United States)

    Takaki, Koichi; Katsuki, Sunao

    Recent progress of the industrial applications of pulsed power is reviewed in this paper. Repetitively operated pulsed power generators with a moderate peak power have been developed for industrial applications. These generators are reliable and low maintenance. Development of the pulsed power generators helps promote industrial applications of pulsed power for such things as food processing, medical treatment, water treatment, exhaust gas treatment, ozone generation, engine ignition, ion implantation and others. Here, industrial applications of pulsed power are classified by application for biological effects, for pulsed streamer discharges in gases, for pulsed discharges in liquid or liquid-mixture, and for bright radiation sources.

  12. The application of pulsed concentrated solar radiation with the purpose of immune system correction of rheumatic arthritis patients

    International Nuclear Information System (INIS)

    Shonazarov, N.P.

    1996-01-01

    The investigation results of dosed pulsed concentrated solar radiation(PCSR) influence to rheumatic arthritis patients are given. It was obtained that PCSR especially in the complex with balneological physiotherapy factors corrects regulator functions of cell link and decreases the density of humoral link of immune system. (author). 2 refs., 2 tabs

  13. Supersonic Ionization Wave Driven by Radiation Transport in a Short-Pulse Laser-Produced Plasma

    International Nuclear Information System (INIS)

    Ditmire, T.; Gumbrell, E.T.; Smith, R.A.; Mountford, L.; Hutchinson, M.H.

    1996-01-01

    Through the use of an ultrashort (2ps) optical probe, we have time resolved the propagation of an ionization wave into solid fused silica. This ionization wave results when a plasma is created by the intense irradiation of a solid target with a 2ps laser pulse. We find that the velocity of the ionization wave is consistent with radiation driven thermal transport, exceeding the velocity expected from simple electron thermal conduction by nearly an order of magnitude. copyright 1996 The American Physical Society

  14. Sonic excitation by means of ultrasound; an experimental illustration of acoustic radiation forces

    NARCIS (Netherlands)

    Roozen, N.B.; Nuij, P.W.J.M.

    2011-01-01

    Ultrasonic acoustic waves are known to induce a vibration of particles around an equilibrium position. However, for large acoustic amplitudes, due to non-linear acoustic effects, a rectified, net acoustic radiation force can occur. Experimental work is performed in which the non-linear behavior is

  15. Source attribution of black carbon and its direct radiative forcing in China

    International Nuclear Information System (INIS)

    Yang, Yang; Wang, Hailong; Ma, Po-Lun; Rasch, Philip J.; Smith, Steven J.

    2017-01-01

    The source attributions for mass concentration, haze formation, transport and direct radiative forcing of black carbon (BC) in various regions of China are quantified in this study using the Community Earth System Model (CESM) with a source-tagging technique. Anthropogenic emissions are from the Community Emissions Data System that is newly developed for the Coupled Model Intercomparison Project Phase 6 (CMIP6). Over north China where the air quality is often poor, about 90 % of near-surface BC concentration is contributed by local emissions. Overall, 35 % of BC concentration over south China in winter can be attributed to emissions from north China, and 19 % comes from sources outside China in spring. For other regions in China, BC is largely contributed from nonlocal sources. We further investigated potential factors that contribute to the poor air quality in China. During polluted days, a net inflow of BC transported from nonlocal source regions associated with anomalous winds plays an important role in increasing local BC concentrations. BC-containing particles emitted from East Asia can also be transported across the Pacific. Our model results show that emissions from inside and outside China are equally important for the BC outflow from East Asia, while emissions from China account for 8 % of BC concentration and 29 % in column burden in the western United States in spring. Radiative forcing estimates show that 65 % of the annual mean BC direct radiative forcing (2.2 W m -2 ) in China results from local emissions, and the remaining 35 % is contributed by emissions outside of China. Efficiency analysis shows that a reduction in BC emissions over eastern China could have a greater benefit for the regional air quality in China, especially in the winter haze season.

  16. Pulsed currents carried by whistlers. IV. Electric fields and radiation excited by an electrode

    International Nuclear Information System (INIS)

    Stenzel, R.L.; Urrutia, J.M.; Rousculp, C.L.

    1995-01-01

    Electromagnetic properties of current pulses carried by whistler wave packets are obtained from a basic laboratory experiment. While the magnetic field and current density are described in the preceding companion paper (Part III), the present analysis starts with the electric field. The inductive and space charge electric field contributions are separately calculated in Fourier space from the measured magnetic field and Ohm's law along B 0 . Inverse Fourier transformation yields the total electric field in space and time, separated into rotational and divergent contributions. The space-charge density in whistler wave packets is obtained. The cross-field tensor conductivity is determined. The frozen-in condition is nearly satisfied, E+v e xB congruent 0. The dissipation is obtained from Poynting's theorem. The waves are collisionally damped; Landau damping is negligible. A radiation resistance for the electrode is determined. Analogous to Poynting's theorem, the transport of helicity is analyzed. Current helicity is generated by a flow of helicity between pulses traveling in opposite directions which carry opposite signs of helicity. Helicity is dissipated by collisions. These observations complete a detailed description of whistler/current pulses which can occur in various laboratory and space plasmas. copyright 1995 American Institute of Physics

  17. Impact of ice particle shape on short-wave radiative forcing: A case study for an arctic ice cloud

    International Nuclear Information System (INIS)

    Kahnert, Michael; Sandvik, Anne Dagrun; Biryulina, Marina; Stamnes, Jakob J.; Stamnes, Knut

    2008-01-01

    We used four different non-spherical particle models to compute optical properties of an arctic ice cloud and to simulate corresponding cloud radiative forcings and fluxes. One important finding is that differences in cloud forcing, downward flux at the surface, and absorbed flux in the atmosphere resulting from the use of the four different ice cloud particle models are comparable to differences in these quantities resulting from changing the surface albedo from 0.4 to 0.8, or by varying the ice water content (IWC) by a factor of 2. These findings show that the use of a suitable non-spherical ice cloud particle model is very important for a realistic assessment of the radiative impact of arctic ice clouds. The differences in radiative broadband fluxes predicted by the four different particle models were found to be caused mainly by differences in the optical depth and the asymmetry parameter. These two parameters were found to have nearly the same impact on the predicted cloud forcing. Computations were performed first by assuming a given vertical profile of the particle number density, then by assuming a given profile of the IWC. In both cases, the differences between the cloud radiative forcings computed with the four different non-spherical particle models were found to be of comparable magnitude. This finding shows that precise knowledge of ice particle number density or particle mass is not sufficient for accurate prediction of ice cloud radiative forcing. It is equally important to employ a non-spherical shape model that accurately reproduces the ice particle's dimension-to-volume ratio and its asymmetry parameter. The hexagonal column/plate model with air-bubble inclusions seems to offer the highest degree of flexibility

  18. Aerosol optical properties and direct radiative forcing at Taihu.

    Science.gov (United States)

    Lü, Rui; Yu, Xingna; Jia, Hailing; Xiao, Sihan

    2017-09-01

    Ground-based characteristics (optical, type, size, and radiative properties) of aerosols measured between 2005 and 2012 were investigated over the Taihu rim region, which encompasses the cities of Shanghai, Suzhou, Wuxi, and Changzhou. The aerosol optical depth (AOD) showed a distinct seasonal variation with the highest value in summer and the lowest AOD in winter. There was broadest frequency distribution with a multimodal structure in summer. The Ångström exponent (AE) showed high values during spring; the relative frequency of AE in the range of 0-0.8 was 5-10 times greater than that of other seasons. The samples with high AOD 440 and low AE 440-870 were mainly observed in spring, which is attributed to the relative abundance of coarse particles. The monthly aerosol volume size distributions presented a bimodal structure (fine and coarse modes). The coarse mode was dominant during spring, while the fine mode was predominant in other seasons. The main aerosol type over Taihu during all the seasons was the mixed small-particle category, followed by the urban/industrial category. The minimum single scattering albedo (SSA) occurred in winter, suggesting that atmosphere aerosol had a higher absorption. All monthly averaged asymmetry factors (ASY) had positive values and no distinct seasonal variation. Both high real (Re) and imaginary (Im) parts of the refractive index occurred in winter. The atmospheric warming effect of aerosol was more significant in winter compared with other seasons, with the averaged atmosphere aerosol radiative forcing (ARF) and the corresponding atmospheric heating rate up to +69.46  W·m -2 and 1.95  K·day -1 , respectively. There existed a significant positive correlation between AOD and ARF (absolute value), and the correlation coefficients (r) exceeded 0.86 in each season with maximum r in summer. Along with the increasing of the SSA, the aerosol radiative forcing efficiency (absolute value) showed a decreasing trend at the

  19. Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Zhou, Binbin

    2011-01-01

    When ultrafast noncritical cascaded second-harmonic generation of energetic femtosecond pulses occur in a bulk lithium niobate crystal optical Cherenkov waves are formed in the near- to mid-IR. Numerical simulations show that the few-cycle solitons radiate Cherenkov (dispersive) waves in the λ = 2...

  20. Experimental and numerical investigations of radiation characteristics of Russian portable/compact pulsed neutron generators: ING-031, ING-07, ING-06 and ING-10-20-120

    International Nuclear Information System (INIS)

    Chernikova, D.; Romodanov, V.L.; Belevitin, A.G.; Afanas'ev, V.V.; Sakharov, V.K.; Bogolubov, E.P.; Ryzhkov, V.I.; Khasaev, T.O.; Sladkov, A.A.; Bitulev, A.A.

    2014-01-01

    The present paper discusses results of full-scale experimental and numerical investigations of influence of construction materials of portable pulsed neutron generators ING-031, ING-07, ING-06 and ING-10-20-120 (VNIIA, Russia) to their radiation characteristics formed during and after an operation (shutdown period). In particular, it is shown that an original monoenergetic isotropic angular distribution of neutrons emitted by TiT target changes into the significantly anisotropic angular distribution with a broad energy spectrum stretching to the thermal region. Along with the low-energetic neutron part, a significant amount of photons appears during the operation of generators. In the pulse mode of operation of neutron generator, a presence of the construction materials leads to the “tailing” of the original neutron pulse and the appearance of an accompanying photon pulse at ∼3ns after the instant neutron pulse. In addition to that, reactions of neutron capture and inelastic scattering lead to the creation of radioactive nuclides, such as 58 Co, 62 Cu, 64 Cu and 18 F, which form the so-called activation radiation. Thus, the selection of a portable neutron generator for a particular type of application has to be done considering radiation characteristics of the generator itself. This paper will be of interest to users of neutron generators, providing them with valuable information about limitations of a specific generator and with recommendations for improving the design and performance of the generator as a whole

  1. Effect of laser pulsed radiation on the properties of implanted layers of silicon carbide

    International Nuclear Information System (INIS)

    Violin, Eh.E.; Voron'ko, O.N.; Nojbert, F.; Potapov, E.N.

    1984-01-01

    Results are presented of investigation into pulsed laser radiation effects on the layers of GH polytype silicon carbide converted to amorphous state by implantation of boron and aluminium ions. The implantation doses were selected to be 5x10 16 for boron and 5x10 15 cm -2 for aluminium, with the ion energies being 60 and 80 keV, respectively. The samples annealed under nanosecond regime are stated to posseys neither photoluminescence (PL) nor cathodoluminescence (CL). At the same time the layers annealed in millisecond regime have a weak PL at 100 K and CL at 300 K. The PL and CL are observed in samples, laser-annealed at radiation energy density above 150-160 J/cm 2 in case of boron ion implantation and 100-120 J/cm 2 in case of aluminium ion implantation. Increasing the radiation energy density under the nanosecond regime of laser annealing results in the surface evaporation due to superheating of amorphous layers. Increasing the energy density above 220-240 J/cm 2 results in destruction of the samples

  2. Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Niti [Department of Physics, Lovely Professional University, Phagwara, Punjab 144 402 (India); Nandan Gupta, Devki [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Suk, Hyyong [Advanced Photonics Research Institute (APRI) and Graduate Program of Photonics and Applied Physics, Gwangju Institute of Science and Technology, Gwangju 500 712 (Korea, Republic of)

    2012-01-15

    In semiconductors, free carriers are created in pairs in inter-band transitions and consist of an electron and its corresponding hole. At very high carrier densities, carrier-carrier collisions dominate over carrier-lattice collisions and carriers begin to behave collectively to form plasma. Here, we apply a short-pulse laser to generate third-harmonic radiation from a semiconductor plasma (electron-hole plasma) in the presence of a transverse wiggler magnetic-field. The process of third-harmonic generation of an intense short-pulse laser is resonantly enhanced by the magnetic wiggler, i.e., wiggler magnetic field provides the necessary momentum to third-harmonic photons. In addition, a high-power laser radiation, propagating through a semiconductor imparts an oscillatory velocity to the electrons and exerts a ponderomotive force on electrons at the third-harmonic frequency of the laser. This oscillatory velocity produces a third-harmonic longitudinal current. And due to the beating of the longitudinal electron velocity and the wiggler magnetic field, a transverse third-harmonic current is produced that drives third-harmonic electromagnetic radiation. It is finally observed that for a specific wiggler wave number value, the phase-matching conditions for the process are satisfied, leading to resonant enhancement in the energy conversion efficiency.

  3. Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas

    International Nuclear Information System (INIS)

    Kant, Niti; Nandan Gupta, Devki; Suk, Hyyong

    2012-01-01

    In semiconductors, free carriers are created in pairs in inter-band transitions and consist of an electron and its corresponding hole. At very high carrier densities, carrier-carrier collisions dominate over carrier-lattice collisions and carriers begin to behave collectively to form plasma. Here, we apply a short-pulse laser to generate third-harmonic radiation from a semiconductor plasma (electron-hole plasma) in the presence of a transverse wiggler magnetic-field. The process of third-harmonic generation of an intense short-pulse laser is resonantly enhanced by the magnetic wiggler, i.e., wiggler magnetic field provides the necessary momentum to third-harmonic photons. In addition, a high-power laser radiation, propagating through a semiconductor imparts an oscillatory velocity to the electrons and exerts a ponderomotive force on electrons at the third-harmonic frequency of the laser. This oscillatory velocity produces a third-harmonic longitudinal current. And due to the beating of the longitudinal electron velocity and the wiggler magnetic field, a transverse third-harmonic current is produced that drives third-harmonic electromagnetic radiation. It is finally observed that for a specific wiggler wave number value, the phase-matching conditions for the process are satisfied, leading to resonant enhancement in the energy conversion efficiency.

  4. Atmospheric radiation measurement: A program for improving radiative forcing and feedback in general circulation models

    International Nuclear Information System (INIS)

    Patrinos, A.A.; Renne, D.S.; Stokes, G.M.; Ellingson, R.G.

    1991-01-01

    The Atmospheric Radiation Measurement (ARM) Program is a key element of the Department of Energy's (DOE's) global change research strategy. ARM represents a long-term commitment to conduct comprehensive studies of the spectral atmospheric radiative energy balance profile for a wide range of cloud conditions and surface types, and to develop the knowledge necessary to improve parameterizations of radiative processes under various cloud regimes for use in general circulation models (GCMs) and related models. The importance of the ARM program is a apparent from the results of model assessments of the impact on global climate change. Recent studies suggest that radiatively active trace gas emissions caused by human activity can lead to a global warming of 1.5 to 4.5 degrees Celsius and to important changes in water availability during the next century (Cess, et al. 1989). These broad-scale changes can be even more significant at regional levels, where large shifts in temperature and precipitation patterns are shown to occur. However, these analyses also indicate that considerable uncertainty exists in these estimates, with the manner in which cloud radiative processes are parameterized among the most significant uncertainty. Thus, although the findings have significant policy implications in assessment of global and regional climate change, their uncertainties greatly influence the policy debate. ARM's highly focused observational and analytical research is intended to accelerate improvements and reduce key uncertainties associated with the way in which GCMs treat cloud cover and cloud characteristics and the resulting radiative forcing. This paper summarizes the scientific context for ARM, ARM's experimental approach, and recent activities within the ARM program

  5. What is the impact of natural variability and aerosol-cloud interaction on the effective radiative forcing of anthropogenic aerosol?

    Science.gov (United States)

    Fiedler, S.; Stevens, B.; Mauritsen, T.

    2017-12-01

    State-of-the-art climate models have persistently shown a spread in estimates of the effective radiative forcing (ERF) associated with anthropogenic aerosol. Different reasons for the spread are known, but their relative importance is poorly understood. In this presentation we investigate the role of natural atmospheric variability, global patterns of aerosol radiative effects, and magnitudes of aerosol-cloud interaction in controlling the ERF of anthropogenic aerosol (Fiedler et al., 2017). We use the Earth system model MPI-ESM1.2 for conducting ensembles of atmosphere-only simulations and calculate the shortwave ERF of anthropogenic aerosol at the top of the atmosphere. The radiative effects are induced with the new parameterisation MACv2-SP (Stevens et al., 2017) that prescribes observationally constrained anthropogenic aerosol optical properties and an associated Twomey effect. Firstly, we compare the ERF of global patterns of anthropogenic aerosol from the mid-1970s and today. Our results suggest that such a substantial pattern difference has a negligible impact on the global mean ERF, when the natural variability of the atmosphere is considered. The clouds herein efficiently mask the clear-sky contributions to the forcing and reduce the detectability of significant anthropogenic aerosol radiative effects in all-sky conditions. Secondly, we strengthen the forcing magnitude through increasing the effect of aerosol-cloud interaction by prescribing an enhanced Twomey effect. In that case, the different spatial pattern of aerosol radiative effects from the mid-1970s and today causes a moderate change (15%) in the ERF of anthropogenic aerosol in our model. This finding lets us speculate that models with strong aerosol-cloud interactions would show a stronger ERF change with anthropogenic aerosol patterns. Testing whether the anthropogenic aerosol radiative forcing is model-dependent under prescribed aerosol conditions is currently ongoing work using MACv2-SP in

  6. Pulse shaping system research of CdZnTe radiation detector for high energy x-ray diagnostic

    Science.gov (United States)

    Li, Miao; Zhao, Mingkun; Ding, Keyu; Zhou, Shousen; Zhou, Benjie

    2018-02-01

    As one of the typical wide band-gap semiconductor materials, the CdZnTe material has high detection efficiency and excellent energy resolution for the hard X-ray and the Gamma ray. The generated signal of the CdZnTe detector needs to be transformed to the pseudo-Gaussian pulse with a small impulse-width to remove noise and improve the energy resolution by the following nuclear spectrometry data acquisition system. In this paper, the multi-stage pseudo-Gaussian shaping-filter has been investigated based on the nuclear electronic principle. The optimized circuit parameters were also obtained based on the analysis of the characteristics of the pseudo-Gaussian shaping-filter in our following simulations. Based on the simulation results, the falling-time of the output pulse was decreased and faster response time can be obtained with decreasing shaping-time τs-k. And the undershoot was also removed when the ratio of input resistors was set to 1 to 2.5. Moreover, a two stage sallen-key Gaussian shaping-filter was designed and fabricated by using a low-noise voltage feedback operation amplifier LMH6628. A detection experiment platform had been built by using the precise pulse generator CAKE831 as the imitated radiation pulse which was equivalent signal of the semiconductor CdZnTe detector. Experiment results show that the output pulse of the two stage pseudo-Gaussian shaping filter has minimum 200ns pulse width (FWHM), and the output pulse of each stage was well consistent with the simulation results. Based on the performance in our experiment, this multi-stage pseudo-Gaussian shaping-filter can reduce the event-lost caused by pile-up in the CdZnTe semiconductor detector and improve the energy resolution effectively.

  7. Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations

    Directory of Open Access Journals (Sweden)

    M. Schulz

    2006-01-01

    Full Text Available Nine different global models with detailed aerosol modules have independently produced instantaneous direct radiative forcing due to anthropogenic aerosols. The anthropogenic impact is derived from the difference of two model simulations with prescribed aerosol emissions, one for present-day and one for pre-industrial conditions. The difference in the solar energy budget at the top of the atmosphere (ToA yields a new harmonized estimate for the aerosol direct radiative forcing (RF under all-sky conditions. On a global annual basis RF is −0.22 Wm−2, ranging from +0.04 to −0.41 Wm−2, with a standard deviation of ±0.16 Wm−2. Anthropogenic nitrate and dust are not included in this estimate. No model shows a significant positive all-sky RF. The corresponding clear-sky RF is −0.68 Wm−2. The cloud-sky RF was derived based on all-sky and clear-sky RF and modelled cloud cover. It was significantly different from zero and ranged between −0.16 and +0.34 Wm−2. A sensitivity analysis shows that the total aerosol RF is influenced by considerable diversity in simulated residence times, mass extinction coefficients and most importantly forcing efficiencies (forcing per unit optical depth. The clear-sky forcing efficiency (forcing per unit optical depth has diversity comparable to that for the all-sky/ clear-sky forcing ratio. While the diversity in clear-sky forcing efficiency is impacted by factors such as aerosol absorption, size, and surface albedo, we can show that the all-sky/clear-sky forcing ratio is important because all-sky forcing estimates require proper representation of cloud fields and the correct relative altitude placement between absorbing aerosol and clouds. The analysis of the sulphate RF shows that long sulphate residence times are compensated by low mass extinction coefficients and vice versa. This is explained by more sulphate particle humidity growth and thus higher extinction in those models where short-lived sulphate

  8. Toric focusing for radiation force applications using a toric lens coupled to a spherically focused transducer.

    Science.gov (United States)

    Arnal, Bastien; Nguyen, Thu-Mai; O'Donnell, Matthew

    2014-12-01

    Dynamic elastography using radiation force requires that an ultrasound field be focused during hundreds of microseconds at a pressure of several megapascals. Here, we address the importance of the focal geometry. Although there is usually no control of the elevational focal width in generating a tissue mechanical response, we propose a tunable approach to adapt the focus geometry that can significantly improve radiation force efficiency. Several thin, in-house-made polydimethylsiloxane lenses were designed to modify the focal spot of a spherical transducer. They exhibited low absorption and the focal spot widths were extended up to 8-fold in the elevation direction. Radiation force experiments demonstrated an 8-fold increase in tissue displacements using the same pressure level in a tissue-mimicking phantom with a similar shear wave spectrum, meaning it does not affect elastography resolution. Our results demonstrate that larger tissue responses can be obtained for a given pressure level, or that similar response can be reached at a much lower mechanical index (MI). We envision that this work will impact 3-D elastography using 2-D phased arrays, where such shaping can be achieved electronically with the potential for adaptive optimization.

  9. Radiative Forcing in the ACCMIP Historical and Future Climate Simulations

    Science.gov (United States)

    Shindell, Drew Todd; Lamarque, J.-F.; Schulz, M.; Flanner, M.; Jiao, C.; Chin, M.; Young, P. J.; Lee, Y. H.; Rotstayn, L.; Mahowald, N.; hide

    2013-01-01

    A primary goal of the Atmospheric Chemistry and Climate Model IntercomparisonProject (ACCMIP) was to characterize the short-lived drivers of preindustrial to 2100climate change in the current generation of climate models. Here we evaluate historicaland 5 future radiative forcing in the 10 ACCMIP models that included aerosols, 8 of whichalso participated in the Coupled Model Intercomparison Project phase 5 (CMIP5).The models generally reproduce present-day climatological total aerosol opticaldepth (AOD) relatively well. components to this total, however, and most appear to underestimate AOD over East10 Asia. The models generally capture 1980-2000 AOD trends fairly well, though theyunderpredict AOD increases over the YellowEastern Sea. They appear to strongly underestimate absorbing AOD, especially in East Asia, South and Southeast Asia, SouthAmerica and Southern Hemisphere Africa.We examined both the conventional direct radiative forcing at the tropopause (RF) and the forcing including rapid adjustments (adjusted forcing AF, including direct andindirect effects). The models calculated all aerosol all-sky 1850 to 2000 global meanannual average RF ranges from 0.06 to 0.49 W m(sup -2), with a mean of 0.26 W m(sup -2) and a median of 0.27 W m(sup -2. Adjusting for missing aerosol components in some modelsbrings the range to 0.12 to 0.62W m(sup -2), with a mean of 0.39W m(sup -2). Screen20ing the models based on their ability to capture spatial patterns and magnitudes ofAOD and AOD trends yields a quality-controlled mean of 0.42W m(sup -2) and range of0.33 to 0.50 W m(sup -2) (accounting for missing components). The CMIP5 subset of ACCMIPmodels spans 0.06 to 0.49W m(sup -2), suggesting some CMIP5 simulations likelyhave too little aerosol RF. A substantial, but not well quantified, contribution to histori25cal aerosol RF may come from climate feedbacks (35 to 58). The mean aerosol AF during this period is 1.12W m(sup -2) (median value 1.16W m(sup -2), range 0.72 to1.44W m

  10. Fatigue expectations in a molybdenum/silicon multilayer under pulsed soft X-ray radiation

    International Nuclear Information System (INIS)

    Weber, F.J.; Kassner, M.E.; Stearns, D.G.

    1995-01-01

    The temperature rise in a Mo/a-Si multilayer x-ray reflective film due to radiation absorption is modeled for the first condenser mirror in a projection lithography system such as the one designed by the Advanced Microtechnology Program at LLNL. The radiation load is pulsed at 1000 Hz with a time average intensity of 500mW/cm 2 . This intensity is the expected maximum on the first condenser mirror. The temperature rise is calculated using the integral transform technique. The film is assumed to have the thermal properties of its poorly conducting substrate, yielding a more conservative (higher) temperature estimate. The surface temperature rise is found to range between 35.6 degrees C and 76.3 degrees C. The stress due to this rise is greatest in the molybdenum film and ranges between 73MPa and 166MPa compressive. This fluctuating stress level, however, is believed to be insufficient, by a factor of five or so, to cause fatigue failure of the film

  11. STUCTURE OF PULSED BED

    Directory of Open Access Journals (Sweden)

    I. A. Bokun

    2014-01-01

    Full Text Available The structure of pulsed layer is proposed which can be suggested as a state of particulates that is blown by intermittent gas flow with speed which has the force to start material moving. Layer during one cycle is in a suspension, falling down and immobile state resulting in changes of particles arrangement as well as ways of gas flowing through layer. Moreover, it allows carrying out effective interphase heat exchange even adamant real granulation.The process of formation of impact flows is considered aw well as their influence on formation of air bubbles in pulsed layer. At startup of air blast the balance between the force of hydro-dynamic resistance is broken, on one side, and forces of gravity, particles inertia and their links with walls on the other side. The layer is transferred in the state of pulsed pseudo-fluidization, and presents gas-disperse mixture, inside of which impulse of pressure increasing is spreading to all sides as pressure waves (compression. These waves are the sources of impact flows’ formation, the force of which is two times more than during the stationary flow.The waves of pressure are divided into weak and strong ones depending on movement velocity within gas-disperse system. Weak waves are moving with a sound speed and strong ones in active phase of pulsed layer are moving over the speed of sound limit within gas-disperse system. The peculiarity of strong wave is that parameters of system (pressure, density and others are changing in discrete steps.The article describes the regime of layer’s falling down in the passive stage of cycle, which begins after finishing of gas impulse action. And suspension layer of moving up granular material is transferred in the state of falling resulting in change of the layer structure.

  12. Wave equations for pulse propagation

    International Nuclear Information System (INIS)

    Shore, B.W.

    1987-01-01

    Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity. The memo discusses various ways of characterizing the polarization characteristics of plane waves, that is, of parameterizing a transverse unit vector, such as the Jones vector, the Stokes vector, and the Poincare sphere. It discusses the connection between macroscopically defined quantities, such as the intensity or, more generally, the Stokes parameters, and microscopic field amplitudes. The material presented here is a portion of a more extensive treatment of propagation to be presented separately. The equations presented here have been described in various books and articles. They are collected here as a summary and review of theory needed when treating pulse propagation

  13. Intercomparison of radiative forcing calculations of stratospheric water vapour and contrails

    Energy Technology Data Exchange (ETDEWEB)

    Myhre, Gunnar [Dept. of Geosciences, Univ. of Oslo (Norway); Center for International Climate and Environmental Research-Oslo (CICERO), Oslo (Norway); Kvalevaag, Maria [Dept. of Geosciences, Univ. of Oslo (Norway); Raedel, Gaby; Cook, Jolene; Shine, Keith P. [Dept. of Meteorology, Univ. of Reading (United Kingdom); Clark, Hannah [CNRM/GAME Meteo France, Toulouse (France); Lab. d' Aerologie, Univ. de Toulouse (France); Karcher, Fernand [CNRM/GAME Meteo France, Toulouse (France); Markowicz, Krzysztof; Kardas, Aleksandra; Wolkenberg, Paulina [Inst. of Geophysics, Univ. of Warsaw (Poland); Balkanski, Yves [LSCE/IPSL, Lab. CEA-CNRS-UVSQ (France); Ponater, Michael [Deutsches Zentrum fuer Luft und Raumfahrt (DLR), Inst. fuer Physik der Atmosphaere, Oberpfaffenhofen (Germany); Forster, Piers; Rap, Alexandru [School of Earth and Environment, Univ. of Leeds (United Kingdom); Leon, Ruben Rodriguez de [Manchester Metropolitan Univ. (United Kingdom)

    2009-12-15

    Seven groups have participated in an intercomparison study of calculations of radiative forcing (RF) due to stratospheric water vapour (SWV) and contrails. a combination of detailed radiative transfer schemes and codes for global-scale calculations have been used, as well as a combination of idealized simulations and more realistic global-scale changes in stratospheric water vapour and contrails. Detailed line-by-line codes agree within about 15% for longwave (LW) and shortwave (SW) RF, except in one case where the difference is 30%. Since the LW and SW RF due to contrails and SWV changes are of opposite sign, the differences between the models seen in the individual LW and SW components can be either compensated or strengthened in the net RF. and thus in relative terms uncertainties are much larger for the net RF. Some of the models used for global-scale simulations of changes in SWV and contrails differ substantially in RF from the more detailed radiative transfer schemes. For the global-scale calculations we use a method of weighting the results to calculate a best estimate based on their performance compared to the more detailed radiative transfer schemes in the idealized simulations. (orig.)

  14. Shipwreck rates reveal Caribbean tropical cyclone response to past radiative forcing.

    Science.gov (United States)

    Trouet, Valerie; Harley, Grant L; Domínguez-Delmás, Marta

    2016-03-22

    Assessing the impact of future climate change on North Atlantic tropical cyclone (TC) activity is of crucial societal importance, but the limited quantity and quality of observational records interferes with the skill of future TC projections. In particular, North Atlantic TC response to radiative forcing is poorly understood and creates the dominant source of uncertainty for twenty-first-century projections. Here, we study TC variability in the Caribbean during the Maunder Minimum (MM; 1645-1715 CE), a period defined by the most severe reduction in solar irradiance in documented history (1610-present). For this purpose, we combine a documentary time series of Spanish shipwrecks in the Caribbean (1495-1825 CE) with a tree-growth suppression chronology from the Florida Keys (1707-2009 CE). We find a 75% reduction in decadal-scale Caribbean TC activity during the MM, which suggests modulation of the influence of reduced solar irradiance by the cumulative effect of cool North Atlantic sea surface temperatures, El Niño-like conditions, and a negative phase of the North Atlantic Oscillation. Our results emphasize the need to enhance our understanding of the response of these oceanic and atmospheric circulation patterns to radiative forcing and climate change to improve the skill of future TC projections.

  15. Electrons in a relativistic-intensity laser field: generation of zeptosecond electromagnetic pulses and energy spectrum of the accelerated electrons

    International Nuclear Information System (INIS)

    Andreev, A A; Galkin, A L; Kalashnikov, M P; Korobkin, V V; Romanovsky, Mikhail Yu; Shiryaev, O B

    2011-01-01

    We study the motion of an electron and emission of electromagnetic waves by an electron in the field of a relativistically intense laser pulse. The dynamics of the electron is described by the Newton equation with the Lorentz force in the right-hand side. It is shown that the electrons may be ejected from the interaction region with high energy. The energy spectrum of these electrons and the technique of using the spectrum to assess the maximal intensity in the focus are analysed. It is found that electromagnetic radiation of an electron moving in an intense laser field occurs within a small angle around the direction of the electron trajectory tangent. The tangent quickly changes its direction in space; therefore, electromagnetic radiation of the electron in the far-field zone in a certain direction in the vicinity of the tangent is a short pulse with a duration as short as zeptoseconds. The calculation of the temporary and spectral distribution of the radiation field is carried out. (superintense laser fields)

  16. An ultrashort pulse ultra-violet radiation undulator source driven by a laser plasma wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Anania, M. P. [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); INFN, Laboratori Nazionali di Frascati, I-00044 Frascati (Italy); Brunetti, E.; Wiggins, S. M.; Grant, D. W.; Welsh, G. H.; Issac, R. C.; Cipiccia, S.; Shanks, R. P.; Manahan, G. G.; Aniculaesei, C.; Jaroszynski, D. A., E-mail: d.a.jaroszynski@strath.ac.uk [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Geer, S. B. van der; Loos, M. J. de [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands); Poole, M. W.; Shepherd, B. J. A.; Clarke, J. A. [ASTeC, STFC, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Gillespie, W. A. [SUPA, School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); MacLeod, A. M. [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee DD1 1HG (United Kingdom)

    2014-06-30

    Narrow band undulator radiation tuneable over the wavelength range of 150–260 nm has been produced by short electron bunches from a 2 mm long laser plasma wakefield accelerator based on a 20 TW femtosecond laser system. The number of photons measured is up to 9 × 10{sup 6} per shot for a 100 period undulator, with a mean peak brilliance of 1 × 10{sup 18} photons/s/mrad{sup 2}/mm{sup 2}/0.1% bandwidth. Simulations estimate that the driving electron bunch r.m.s. duration is as short as 3 fs when the electron beam has energy of 120–130 MeV with the radiation pulse duration in the range of 50–100 fs.

  17. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.

    Science.gov (United States)

    Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F

    2012-03-07

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements.

  18. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshiyuki [Department of Intelligent Mechanical Engineering, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashiku, Fukuoka 811-0295 (Japan)

    2016-01-15

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO{sub 2}) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO{sub 2} gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  19. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale.

    Science.gov (United States)

    Kawamura, Yoshiyuki

    2016-01-01

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  20. Radiation detection system

    International Nuclear Information System (INIS)

    Haeuszer, F.A.

    1976-01-01

    A circuit is disclosed that detects radiation transients and provides a clamping signal in response to each transient. The clamping signal is present from the time the transient rises above a given threshold level and for a known duration thereafter. The system includes radiation sensors, a blocking oscillator that generates a pulse in response to each sensor signal, and an output pulse duration control circuit. The oscillator pulses are fed simultaneously to the output pulse duration control circuit and to an OR gate, the output of which comprises the system output. The output pulse duration is controlled by the time required to magnetize a magnetic core to saturation in first one direction and then the other

  1. Survivable pulse power space radiator

    Science.gov (United States)

    Mims, James; Buden, David; Williams, Kenneth

    1989-01-01

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometeorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length.

  2. Radiative forcing in the ACCMIP historical and future climate simulations

    Directory of Open Access Journals (Sweden)

    D. T. Shindell

    2013-03-01

    Full Text Available The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP examined the short-lived drivers of climate change in current climate models. Here we evaluate the 10 ACCMIP models that included aerosols, 8 of which also participated in the Coupled Model Intercomparison Project phase 5 (CMIP5. The models reproduce present-day total aerosol optical depth (AOD relatively well, though many are biased low. Contributions from individual aerosol components are quite different, however, and most models underestimate east Asian AOD. The models capture most 1980–2000 AOD trends well, but underpredict increases over the Yellow/Eastern Sea. They strongly underestimate absorbing AOD in many regions. We examine both the direct radiative forcing (RF and the forcing including rapid adjustments (effective radiative forcing; ERF, including direct and indirect effects. The models' all-sky 1850 to 2000 global mean annual average total aerosol RF is (mean; range −0.26 W m−2; −0.06 to −0.49 W m−2. Screening based on model skill in capturing observed AOD yields a best estimate of −0.42 W m−2; −0.33 to −0.50 W m−2, including adjustment for missing aerosol components in some models. Many ACCMIP and CMIP5 models appear to produce substantially smaller aerosol RF than this best estimate. Climate feedbacks contribute substantially (35 to −58% to modeled historical aerosol RF. The 1850 to 2000 aerosol ERF is −1.17 W m−2; −0.71 to −1.44 W m−2. Thus adjustments, including clouds, typically cause greater forcing than direct RF. Despite this, the multi-model spread relative to the mean is typically the same for ERF as it is for RF, or even smaller, over areas with substantial forcing. The largest 1850 to 2000 negative aerosol RF and ERF values are over and near Europe, south and east Asia and North America. ERF, however, is positive over the Sahara, the Karakoram, high Southern latitudes and especially the Arctic. Global aerosol RF

  3. Radiative forcing in the ACCMIP historical and future climate simulations

    Energy Technology Data Exchange (ETDEWEB)

    Shindell, D. T.; Lamarque, J. -F.; Schulz, M.; Flanner, M.; Jiao, C.; Chin, M.; Young, P. J.; Lee, Y. H.; Rotstayn, L.; Mahowald, N.; Milly, G.; Faluvegi, G.; Balkanski, Y.; Collins, W. J.; Conley, A. J.; Dalsoren, S.; Easter, R.; Ghan, S.; Horowitz, L.; Liu, X.; Myhre, G.; Nagashima, T.; Naik, V.; Rumbold, S. T.; Skeie, R.; Sudo, K.; Szopa, S.; Takemura, T.; Voulgarakis, A.; Yoon, J. -H.; Lo, F.

    2013-01-01

    The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) examined the short-lived drivers of climate change in current climate models. Here we evaluate the 10 ACCMIP models that included aerosols, 8 of which also participated in the Coupled Model Intercomparison Project phase 5 (CMIP5). The models reproduce present-day total aerosol optical depth (AOD) relatively well, though many are biased low. Contributions from individual aerosol components are quite different, however, and most models underestimate east Asian AOD. The models capture most 1980-2000 AOD trends well, but underpredict increases over the Yellow/Eastern Sea. They strongly underestimate absorbing AOD in many regions. We examine both the direct radiative forcing (RF) and the forcing including rapid adjustments (effective radiative forcing; ERF, including direct and indirect effects). The models’ all-sky 1850 to 2000 global mean annual average total aerosol RF is (mean; range) -0.26Wm-2-2. Screening based on model skill in capturing observed AOD yields a best estimate of -0.42Wm-2-2-2-2forcing than direct RF. Despite this, the multi-model spread relative to the mean is typically the same for ERF as it is for RF, or even smaller, over areas with substantial forcing. The largest 1850 to 2000 negative aerosol RF and ERF values are over and near Europe, south and east Asia and North America. ERF, however, is positive over the Sahara, the Karakoram, high Southern latitudes and especially the Arctic. Global

  4. A 10-TW Pulsed Facility "PIRIT" for Investigation of Short-Wave Radiation Generation.

    Science.gov (United States)

    Popkov, N F; Ryaslov, E A; Kargin, V I; Pikar', A S; Kotel'nikov, D V; Melkozerov, A V

    1995-01-01

    The results of experiments with a plasma x-ray source in the PIRIT-2000 facility are presented in this paper. The facility is designed with module capacitive energy storage energizing vacuum inductive storage. The formation of a rapidly growing current pulse as well as its commutation on a load was carried out by a plasma opening switch. A vacuum diode as well as various types of plasma loads can be used for the generation of a high-power x-ray flux. The storage energy of a 54-module capacitive storage is up to 2 MJ, its inductance is 15 nH, and its output voltage is 500 kV. The peak current in the plasma load constituted 4 MA with a 150-ns rise time. The maximum integral energy output of x radiation measured by an open thermocouple calorimeter was as high as 100 kJ, while the primary storage energy was 1 MJ. The plasma load usage at a current of 4 MA ensured a 100-kJ generation in x-ray radiation and the density of the radiation flux at a distance of 1 m from the source was as much as 0.8 J/cm2, while near the source it was 10 J/cm2.

  5. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects

    Science.gov (United States)

    González de Alaiza Martínez, P.; Davoine, X.; Debayle, A.; Gremillet, L.; Bergé, L.

    2016-01-01

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >1015 W/cm2. We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 1017 W/cm2 laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents. PMID:27255689

  6. On-line statistical processing of radiation detector pulse trains with time-varying count rates

    International Nuclear Information System (INIS)

    Apostolopoulos, G.

    2008-01-01

    Statistical analysis is of primary importance for the correct interpretation of nuclear measurements, due to the inherent random nature of radioactive decay processes. This paper discusses the application of statistical signal processing techniques to the random pulse trains generated by radiation detectors. The aims of the presented algorithms are: (i) continuous, on-line estimation of the underlying time-varying count rate θ(t) and its first-order derivative dθ/dt; (ii) detection of abrupt changes in both of these quantities and estimation of their new value after the change point. Maximum-likelihood techniques, based on the Poisson probability distribution, are employed for the on-line estimation of θ and dθ/dt. Detection of abrupt changes is achieved on the basis of the generalized likelihood ratio statistical test. The properties of the proposed algorithms are evaluated by extensive simulations and possible applications for on-line radiation monitoring are discussed

  7. A 10 TW pulsed energy complex PIRIT-2000 for investigation of short-wave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Popkov, N F; Ryaslov, E A; Kargin, V I; Pikar` , A S; Vorontsov, V I; Kotel` nikov, D V; Melkozerov, A V [All-Russian Scientific Research Inst. of Experimental Physics, Sarov (Russian Federation)

    1997-12-31

    The results of investigation of a pulsed plasma x-ray source at the PIRIT-2000 fast operating capacitor bank are reported. The maximum energy stored in a primary 54-module capacitive storage at the output voltage of 500 kV reaches 2 MJ. The capacitor bank energizes a vacuum inductive storage, which is commutated by a plasma opening switch. The plasma diode consists of a tube cathode of diameter 15 cm and of a larger tube anode with six plasma injecting guns. The current amplitude and the current rise time at the plasma load amounts to 4 MA and 150 ns, respectively. The x-ray doses were measured by means of thermoluminescent dosemeters and the integral radiation output by means of a thermocouple calorimeter. The radiation output as high as 100 kJ was achieved at the stored energy of 1 MJ. (J.U.). 4 figs., 4 refs.

  8. Interannual Variability in Radiative Forcing and Snowmelt Rates by Desert Dust in Snowcover in the Colorado River Basin

    Science.gov (United States)

    Skiles, S.; Painter, T. H.; Barrett, A. P.; Landry, C.; Deems, J. S.; Winstral, A. H.

    2010-12-01

    Dust in snow accelerates snowmelt through its direct reduction of albedo and its further reduction of albedo by accelerating the growth of snow effective grain size. Since the Anglo expansion and disturbance of the western US that began in the mid 19th century, the mountain snow cover of the Colorado River Basin has been subject to five-fold greater dust loading. This research expands on the work done in Painter et al. (2007) by assessing the interannual variability in radiative forcing, melt rates, and shortening of snow cover duration from 2005 to 2010, and the relative response of melt rates to simulated increases in air temperature. We ran the SNOBAL snowmelt model over the 6 year energy balance record at the alpine and subalpine towers in the Senator Beck Basin Study Area, San Juan Mountains, Colorado, USA. Observations indicate that dust concentrations are not correlated with total number of dust events and that dust loading and concentrations vary by an order of magnitude during the 6 year record. Our modeling results indicate that the number of days that dust advances retreat of snow cover and cumulative radiative forcing are linearly related to total dust concentration. Over the 6 years of record we have shown that for all years dust advances melt relative to a clean snowpack, even in lowest dust concentration years melt is advanced by up to 26 days. The greatest dust radiative impact occurred in 2009, when snow cover duration was shortened by 50 days, and the highest observed end of year dust concentrations reduced visible albedo to less than 0.35 during the last three weeks of snowcover. This work also shows that dust radiative forcing has a markedly greater impact on snow cover duration than increases in temperature. In the presence of dust there is little impact from temperature increases of 2 °C and 4 °C (0-4 days) and, in the absence of dust radiative forcing, temperature increases shorten snow cover duration by 5-18 days, compared with the 26

  9. DOE Task Force meeting on Electrical Breakdown of Insulating Ceramics in a High Radiation Field

    International Nuclear Information System (INIS)

    Green, P.H.

    1991-08-01

    This volume contains the abstracts and presentation material from the Research Assistance Task Force Meeting ''Electrical Breakdown of Insulating Ceramics in a High-Radiation Field.'' The meeting was jointly sponsored by the Office of Basic Energy Sciences and the Office of Fusion Energy of the US Department of Energy in Vail, Colorado, May 28--June 1, 1991. The 26 participants represented expertise in fusion, radiation damage, electrical breakdown, ceramics, and semiconductor and electronic structures. These participants came from universities, industries, national laboratories, and government. The attendees represented eight nations. The Task Force meeting was organized in response to the recent discovery that a combination of temperature, electric field, and radiation for an extended period of time has an unexplained adverse effect in ceramics, termed radiation-enhanced electrical degradation (REED). REED occurs after an incubation period and continues to accelerate with irradiation until the ceramics can no longer be regarded as insulators. It appears that REED is irreversible and the ceramic insulators cannot be readily annealed or otherwise repaired for future services. This effect poses a serious threat for fusion reactors, which require electrical insulators in diagnostic devices, in radio frequency and neutral beam systems, and in magnetic assemblies. The problem of selecting suitable electrical insulating materials in thus far more serious than previously anticipated

  10. Generation of Attosecond x-ray pulse using Coherent Relativistic Nonlinear Thomson Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Tae; Park, Seong Hee; Cha, Yong Ho; Jeong, Young Uk; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2005-07-01

    Relativistic plasma, a new regime in physics, has been opened due to the development in ultra-intense laser technology during the past decade. Not only the fundamental aspect of relativistic plasma are attractive but also its potential application seems to be significant especially in the area of the generation of high energy particles such as electrons, ions, positrons, and {gamma}-rays. The generation of x-ray radiation with a pulse width of sub-femtoseconds presently draws much attention because such a radiation allows one to explore ultra-fast dynamics of electrons and nucleons. Several schemes have been proposed and/or demonstrated to generate an ultra-short x-ray pulse: the relativistic Doppler shift of a backscattered laser pulse by a relativistic electron beam, the harmonic frequency upshift of a laser pulse by relativistic nonlinear motion of electrons, high order harmonic generation in the interaction of intense laser pulse with noble gases and solids The train of a few 100 attosecond pulses has been observed in the case of laser-noble gas interaction. When a low-intensity laser pulse is irradiated on an electron, the electron undergoes a harmonic oscillatory motion and generates a dipole radiation with the same frequency as the incident laser pulse, which is called Thomson scattering. As the laser intensity increases, the oscillatory motion of the electron becomes relativistically nonlinear, which leads to the generation of harmonic radiations, referred to as Relativistic Nonlinear Thomson Scattered (RNTS) radiation. The motion of the electron begins to be relativistic as the following normalized vector potential approaches to unity: a{sub 0}=8.5 x 10{sup -10} {lambda}{iota}{sup 1/2} , (1) where {lambda} is the laser wavelength in {mu}m and I the laser intensity in W/cm{sup 2} The RNTS radiation has been investigated in analytical ways. Recently, indebted to the development of the ultra-intense laser pulse, experiments on RNTS radiation have been carried

  11. Radiobiological influence of megavoltage electron pulses of ultra-high pulse dose rate on normal tissue cells.

    Science.gov (United States)

    Laschinsky, Lydia; Karsch, Leonhard; Leßmann, Elisabeth; Oppelt, Melanie; Pawelke, Jörg; Richter, Christian; Schürer, Michael; Beyreuther, Elke

    2016-08-01

    Regarding the long-term goal to develop and establish laser-based particle accelerators for a future radiotherapeutic treatment of cancer, the radiobiological consequences of the characteristic short intense particle pulses with ultra-high peak dose rate, but low repetition rate of laser-driven beams have to be investigated. This work presents in vitro experiments performed at the radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance). This accelerator delivered 20-MeV electron pulses with ultra-high pulse dose rate of 10(10) Gy/min either at the low pulse frequency analogue to previous cell experiments with laser-driven electrons or at high frequency for minimizing the prolonged dose delivery and to perform comparison irradiation with a quasi-continuous electron beam analogue to a clinically used linear accelerator. The influence of the different electron beam pulse structures on the radiobiological response of the normal tissue cell line 184A1 and two primary fibroblasts was investigated regarding clonogenic survival and the number of DNA double-strand breaks that remain 24 h after irradiation. Thereby, no considerable differences in radiation response were revealed both for biological endpoints and for all probed cell cultures. These results provide evidence that the radiobiological effectiveness of the pulsed electron beams is not affected by the ultra-high pulse dose rates alone.

  12. Radiobiological influence of megavoltage electron pulses of ultra-high pulse dose rate on normal tissue cells

    International Nuclear Information System (INIS)

    Laschinsky, Lydia; Karsch, Leonhard; Schuerer, Michael; Lessmann, Elisabeth; Beyreuther, Elke; Oppelt, Melanie; Pawelke, Joerg; Richter, Christian

    2016-01-01

    Regarding the long-term goal to develop and establish laser-based particle accelerators for a future radiotherapeutic treatment of cancer, the radiobiological consequences of the characteristic short intense particle pulses with ultra-high peak dose rate, but low repetition rate of laser-driven beams have to be investigated. This work presents in vitro experiments performed at the radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance). This accelerator delivered 20-MeV electron pulses with ultra-high pulse dose rate of 10"1"0 Gy/min either at the low pulse frequency analogue to previous cell experiments with laser-driven electrons or at high frequency for minimizing the prolonged dose delivery and to perform comparison irradiation with a quasi-continuous electron beam analogue to a clinically used linear accelerator. The influence of the different electron beam pulse structures on the radiobiological response of the normal tissue cell line 184A1 and two primary fibroblasts was investigated regarding clonogenic survival and the number of DNA double-strand breaks that remain 24 h after irradiation. Thereby, no considerable differences in radiation response were revealed both for biological endpoints and for all probed cell cultures. These results provide evidence that the radiobiological effectiveness of the pulsed electron beams is not affected by the ultra-high pulse dose rates alone. (orig.)

  13. Influence of Selected Parameters of XeCl Excimer Laser System on Characteristics of Radiation Pulses

    International Nuclear Information System (INIS)

    Pokora, L.; Iwanejko, L.

    1998-01-01

    We present the dependences of energy and duration of radiation pulses as well as efficiency of XeCl laser on selected parameters of the laser system such as: C 2 capacitance, the separating inductance, L S , the distance between electrodes in laser's chamber, d K and also the supply voltage, U 0 , composition, and pressure of the active-medium mixture of gases. Results of numerical computations relate to a three-component mixture of gases, He-Xe-HCl, of the active medium of the excimer laser. (author)

  14. 8th conference on Ultra-Wideband Short-Pulse Electromagnetics

    CERN Document Server

    Tyo, J. Scott; Baum, Carl E; Ultra-Wideband Short-Pulse Electromagnetics 8; UWBSP8

    2007-01-01

    The purpose of the Ultra-Wideband Short-Pulse Electromagnetics Conference series is to focus on advanced technologies for the generation, radiation and detection of ultra-wideband short pulse signals, taking into account their propagation and scattering from and coupling to targets of interest. This Conference series reports on developments in supporting mathematical and numerical methods and presents current and potential future applications of the technology. Ultra-Wideband Short-Pulse Electromagnetics 8 is based on the American Electromagnetics 2006 conference held from June 3-7 in Albuquerque, New Mexico. Topical areas covered in this volume include pulse radiation and measurement, scattering theory, target detection and identification, antennas, signal processing, and communications.

  15. Formation of a fine-dispersed liquid-metal target under the action of femto- and picosecond laser pulses for a laser-plasma radiation source in the extreme ultraviolet range

    Energy Technology Data Exchange (ETDEWEB)

    Vinokhodov, A Yu; Krivokorytov, M S [EUV Labs, Ltd., Troitsk, Moscow (Russian Federation); Koshelev, K N; Krivtsun, V M; Sidelnikov, Yu V; Medvedev, V V; Kompanets, V O; Melnikov, A A; Chekalin, S V [Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow (Russian Federation)

    2016-01-31

    We report the results of studying the dynamics of deformation and fragmentation of liquid-metal droplets under the action of ultrashort laser pulses. The experiments have been performed to optimise the shape of the droplet target used in extreme ultraviolet (EUV) radiation sources based on the laser-produced plasma using the pre-pulse technology. The pre-pulse is generated by a system incorporating a master Ti : sapphire oscillator and a regenerative amplifier, allowing one to vary the pulse duration from 50 fs to 50 ps. The power density of laser radiation at the droplet target, averaged over the pulse duration and spatial coordinates, has reached 3 × 10{sup 15} W cm{sup -2}. The production of liquid-metal droplets has been implemented by means of a droplet generator based on a nozzle with a ring piezoceramic actuator. The droplet material is the eutectic indium – tin alloy. The droplet generator could operate in the droplet and jet regime with a maximal rate of stable operation 5 and 150 kHz, respectively. The spatial stability of droplet position σ = 1% – 2% of its diameter is achieved. The size of the droplets varied within 30 – 70 μm, their velocity was 2 – 8 m s{sup -1} depending on the operation regime. (interaction of laser radiation with matter. laser plasma)

  16. Role of pulsed electromagnetic therapy in the management of backache: a study conducted at armed forces institute of rehabilitation medicine, rawalpindi

    International Nuclear Information System (INIS)

    Mumtaz, N.; Ahmad, K.; Shah, S.H.

    2014-01-01

    To determine the role of pulsed electromagnetic therapy in providing pain relief for backache. Study Design: This was a quasi experimental study. Place and Duration: This study was conducted at Armed Forces Institute of Rehabilitation Medicine, Rawalpindi, Pakistan from Jan 2012 to June 2012. Material and Methods: This study included 65 consecutive patients with backache. The pain was assessed on 11 points (0-10) Numeric Rating Scale (NRS) and patients with score = 1 were included in the study. Detailed history was obtained and examination was performed. All patients were subjected to pulsed electromagnetic therapy. The pain was assessed at first week, 2nd week, third week and six week after start of the pulsed electromagnetic therapy. Data was compiled and analysed using SPSS version 17. A p-value < 0.05 was considered as significant. Results: There was marked reduction in pain of patients with backache after treatment with pulsed electromagnetic therapy. Reduction in pain as calculated by the NRS (numeric rating scale) value after 1st week was 25.35% (p=0.002), after 2nd week was 43.66% (p=0.001), after 3rd week was 50.7% (p=0.001) and after 6 weeks was 71.83% (p=0.001). Conclusion: Pulsed electromagnetic therapy is very effective in relieving pain in patients with backache. (author)

  17. Revisiting Bragg's X-ray microscope: Scatter based optical transient grating detection of pulsed ionising radiation

    International Nuclear Information System (INIS)

    Fullagar, Wilfred K.; Paganin, David M.; Hall, Chris J.

    2011-01-01

    Transient optical gratings for detecting ultrafast signals are routine for temporally resolved photochemical investigations. Many processes can contribute to the formation of such gratings; we indicate use of optically scattering centres that can be formed with highly variable latencies in different materials and devices using ionising radiation. Coherent light scattered by these centres can form the short-wavelength-to-optical-wavelength, incoherent-to-coherent basis of a Bragg X-ray microscope, with inherent scope for optical phasing. Depending on the dynamics of the medium chosen, the way is open to both ultrafast pulsed and integrating measurements. For experiments employing brief pulses, we discuss high-dynamic-range short-wavelength diffraction measurements with real-time optical reconstructions. Applications to optical real-time X-ray phase-retrieval are considered. -- Research highlights: → It is timely that the concept of Bragg's X-ray microscope be revisited. → Transient gratings can be used for X-ray all-optical information processing. → Applications to optical real-time X-ray phase-retrieval are considered.

  18. Measurement of the energy and power radiated by a pulsed blackbody x-ray source

    International Nuclear Information System (INIS)

    Chandler, Gordon Andrew; McDaniel, Dillon Heirman; Jorgenson, Roy E.; Warne, Larry Kevin; Dropinski, Steven Clark; Hanson, Donald L.; Johnson, William Arthur; York, Mathew William; Lewis, D.F.; Korde, R.; Haslett, C.L.; Wall, D.L.; Ruggles, Laurence E.; Ramirez, L.E.; Stygar, William A.; Porter, John Larry Jr.; McKenney, John Lee; Bryce, Edwin Anthony; Cuneo, Michael Edward; Torres, Jose A.; Mills, Jerry Alan; Leeper, Ramon Joe; McGurn, John Stephen; Fehl, David Lee; Spielman, R. B.; Pyle, John H.; Mazarakis, Michael Gerrassimos; Ives III, Harry Crockett; Seamen, Johann F.; Simpson, Walter W.

    2006-01-01

    We have developed a diagnostic system that measures the spectrally integrated (i.e. the total) energy and power radiated by a pulsed blackbody x-ray source. The total-energy-and-power (TEP) diagnostic system is optimized for blackbody temperatures between 50 and 350 eV. The system can view apertured sources that radiate energies and powers as high as 2 MJ and 200 TW, respectively, and has been successfully tested at 0.84 MJ and 73 TW on the Z pulsed-power accelerator. The TEP system consists of two pinhole arrays, two silicon-diode detectors, and two thin-film nickel bolometers. Each of the two pinhole arrays is paired with a single silicon diode. Each array consists of a 38 x 38 square array of 10-(micro)m-diameter pinholes in a 50-(micro)m-thick tantalum plate. The arrays achromatically attenuate the x-ray flux by a factor of ∼1800. The use of such arrays for the attenuation of soft x rays was first proposed by Turner and co-workers [Rev. Sci. Instrum. 70, 656 (1999)RSINAK0034-674810.1063/1.1149385]. The attenuated flux from each array illuminates its associated diode; the diode's output current is recorded by a data-acquisition system with 0.6-ns time resolution. The arrays and diodes are located 19 and 24 m from the source, respectively. Because the diodes are designed to have an approximately flat spectral sensitivity, the output current from each diode is proportional to the x-ray power. The nickel bolometers are fielded at a slightly different angle from the array-diode combinations, and view (without pinhole attenuation) the same x-ray source. The bolometers measure the total x-ray energy radiated by the source and--on every shot--provide an in situ calibration of the array-diode combinations. Two array-diode pairs and two bolometers are fielded to reduce random uncertainties. An analytic model (which accounts for pinhole-diffraction effects) of the sensitivity of an array-diode combination is presented

  19. Electromagnetic wave collapse in a radiation background

    International Nuclear Information System (INIS)

    Marklund, Mattias; Brodin, Gert; Stenflo, Lennart

    2003-01-01

    The nonlinear interaction, due to quantum electrodynamical (QED) effects between an electromagnetic pulse and a radiation background, is investigated by combining the methods of radiation hydrodynamics with the QED theory for photon-photon scattering. For the case of a single coherent electromagnetic pulse, we obtain a Zakharov-like system, where the radiation pressure of the pulse acts as a driver of acoustic waves in the photon gas. For a sufficiently intense pulse and/or background energy density, there is focusing and the subsequent collapse of the pulse. The relevance of our results for various astrophysical applications are discussed

  20. Subpicosecond pulse radiolysis studies on spur reactions and nanotechnology

    International Nuclear Information System (INIS)

    Tagawa, S.

    2003-01-01

    Recently we developed a subpicosecond pulse radiolysis system, although the time resolution of pulse radiolysis had remained about 30 ps for these 30 years. Time resolution and S/N ratio have been improved dramatically. The subpicosecond pulse radiolysis is a very powerful method to detect and observe transient phenomena in radiation chemistry and physics within 30 ps. By using the subpicosecond pulse radiolysis, many researches have been carried out on ultrafast phenomena in radiation chemistry, physics, biology and applied fields such as material science.Especially the spur reaction, which is one of the most important reactions in radiation chemistry, physics and biology, has been studied in the very wide time range from subpicosecond to several hundred nanoseconds by very high S/N ratio. These experimental results were analyzed theoretically and applied to the basic data for nanofabrication, which are very important in both next generation lithography and nanotechnology

  1. On the relationship between aerosol model uncertainty and radiative forcing uncertainty.

    Science.gov (United States)

    Lee, Lindsay A; Reddington, Carly L; Carslaw, Kenneth S

    2016-05-24

    The largest uncertainty in the historical radiative forcing of climate is caused by the interaction of aerosols with clouds. Historical forcing is not a directly measurable quantity, so reliable assessments depend on the development of global models of aerosols and clouds that are well constrained by observations. However, there has been no systematic assessment of how reduction in the uncertainty of global aerosol models will feed through to the uncertainty in the predicted forcing. We use a global model perturbed parameter ensemble to show that tight observational constraint of aerosol concentrations in the model has a relatively small effect on the aerosol-related uncertainty in the calculated forcing between preindustrial and present-day periods. One factor is the low sensitivity of present-day aerosol to natural emissions that determine the preindustrial aerosol state. However, the major cause of the weak constraint is that the full uncertainty space of the model generates a large number of model variants that are equally acceptable compared to present-day aerosol observations. The narrow range of aerosol concentrations in the observationally constrained model gives the impression of low aerosol model uncertainty. However, these multiple "equifinal" models predict a wide range of forcings. To make progress, we need to develop a much deeper understanding of model uncertainty and ways to use observations to constrain it. Equifinality in the aerosol model means that tuning of a small number of model processes to achieve model-observation agreement could give a misleading impression of model robustness.

  2. SU-C-201-03: Ionization Chamber Collection Efficiency in Pulsed Radiation Fields of High Pulse Dose

    Energy Technology Data Exchange (ETDEWEB)

    Gotz, M; Karsch, L [Oncoray - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden (Germany); Pawelke, J [Oncoray - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden (Germany); Helmholtz-Zentrum Dresden - Rossendorf, Dresden (Germany)

    2016-06-15

    Purpose: To investigate the reduction of collection efficiency of ionization chambers (IC) by volume recombination and its correction in pulsed fields of very high pulse dose. Methods: Measurements of the collection efficiency of a plane-parallel advanced Markus IC (PTW 34045, 1mm electrode spacing, 300V nominal voltage) were obtained for collection voltages of 100V and 300V by irradiation with a pulsed electron beam (20MeV) of varied pulse dose up to approximately 600mGy (0.8nC liberated charge). A reference measurement was performed with a Faraday cup behind the chamber. It was calibrated for the liberated charge in the IC by a linear fit of IC measurement to reference measurement at low pulse doses. The results were compared to the commonly used two voltage approximation (TVA) and to established theories for volume recombination, with and without considering a fraction of free electrons. In addition, an equation system describing the charge transport and reactions in the chamber was solved numerically. Results: At 100V collection voltage and moderate pulse doses the established theories accurately predict the observed collection efficiency, but at extreme pulse doses a fraction of free electrons needs to be considered. At 300V the observed collection efficiency deviates distinctly from that predicted by any of the established theories, even at low pulse doses. However, the numeric solution of the equation system is able to reproduce the measured collection efficiency across the entire dose range of both voltages with a single set of parameters. Conclusion: At high electric fields (3000V/cm here) the existing theoretical descriptions of collection efficiency, including the TVA, are inadequate to predict pulse dose dependency. Even at low pulse doses they might underestimate collection efficiency. The presented, more accurate numeric solution, which considers additional effects like electric shielding by the charges, might provide a valuable tool for future

  3. SU-C-201-03: Ionization Chamber Collection Efficiency in Pulsed Radiation Fields of High Pulse Dose

    International Nuclear Information System (INIS)

    Gotz, M; Karsch, L; Pawelke, J

    2016-01-01

    Purpose: To investigate the reduction of collection efficiency of ionization chambers (IC) by volume recombination and its correction in pulsed fields of very high pulse dose. Methods: Measurements of the collection efficiency of a plane-parallel advanced Markus IC (PTW 34045, 1mm electrode spacing, 300V nominal voltage) were obtained for collection voltages of 100V and 300V by irradiation with a pulsed electron beam (20MeV) of varied pulse dose up to approximately 600mGy (0.8nC liberated charge). A reference measurement was performed with a Faraday cup behind the chamber. It was calibrated for the liberated charge in the IC by a linear fit of IC measurement to reference measurement at low pulse doses. The results were compared to the commonly used two voltage approximation (TVA) and to established theories for volume recombination, with and without considering a fraction of free electrons. In addition, an equation system describing the charge transport and reactions in the chamber was solved numerically. Results: At 100V collection voltage and moderate pulse doses the established theories accurately predict the observed collection efficiency, but at extreme pulse doses a fraction of free electrons needs to be considered. At 300V the observed collection efficiency deviates distinctly from that predicted by any of the established theories, even at low pulse doses. However, the numeric solution of the equation system is able to reproduce the measured collection efficiency across the entire dose range of both voltages with a single set of parameters. Conclusion: At high electric fields (3000V/cm here) the existing theoretical descriptions of collection efficiency, including the TVA, are inadequate to predict pulse dose dependency. Even at low pulse doses they might underestimate collection efficiency. The presented, more accurate numeric solution, which considers additional effects like electric shielding by the charges, might provide a valuable tool for future

  4. Pulse discrimination of background and gamma-ray source by digital pulse shape discrimination in a BF3 detector

    International Nuclear Information System (INIS)

    Kim, Jinhyung; Kim, J. H.; Choi, H. D.

    2014-01-01

    As a representative method of non-destructive assay, accurate neutron measurement is difficult due to large background radiation such as γ-ray, secondary radiation, spurious pulse, etc. In a BF 3 detector, the process of signal generation is different between neutron and other radiations. As the development of detection technique, all of signal data can be digitized by digital measurement method. In the previous study, Applied Nuclear Physics Group in Seoul National University has developed digital Pulse Shape Discrimination (PSD) method using digital oscilloscope. In this study, optimization of parameters for pulse discrimination is discussed and γ-ray region is determined by measuring 60 Co source. The background signal of BF 3 detector is discriminated by digital PSD system. Parameters for PSD are optimized through FOM calculation. And the γ-ray region is determined by measuring 60 Co source. In the future, the performance of developed system will be tested in low and high intensity neutron field

  5. Radiation effect on implanted pacemakers

    International Nuclear Information System (INIS)

    Pourhamidi, A.H.

    1983-01-01

    It was previously thought that diagnostic or therapeutic ionizing radiation did not have an adverse effect on the function of cardiac pacemakers. Recently, however, some authors have reported damaging effect of therapeutic radiation on cardiac pulse generators. An analysis of a recently-extracted pacemaker documented the effect of radiation on the pacemaker pulse generator

  6. Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC.

    Science.gov (United States)

    Brühl, C; Lelieveld, J; Tost, H; Höpfner, M; Glatthor, N

    2015-03-16

    Multiyear simulations with the atmospheric chemistry general circulation model EMAC with a microphysical modal aerosol module at high vertical resolution demonstrate that the sulfur gases COS and SO 2 , the latter from low-latitude and midlatitude volcanic eruptions, predominantly control the formation of stratospheric aerosol. Marine dimethyl sulfide (DMS) and other SO 2 sources, including strong anthropogenic emissions in China, are found to play a minor role except in the lowermost stratosphere. Estimates of volcanic SO 2 emissions are based on satellite observations using Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument for total injected mass and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat or Stratospheric Aerosol and Gases Experiment for the spatial distribution. The 10 year SO 2 and COS data set of MIPAS is also used for model evaluation. The calculated radiative forcing of stratospheric background aerosol including sulfate from COS and small contributions by DMS oxidation, and organic aerosol from biomass burning, is about 0.07W/m 2 . For stratospheric sulfate aerosol from medium and small volcanic eruptions between 2005 and 2011 a global radiative forcing up to 0.2W/m 2 is calculated, moderating climate warming, while for the major Pinatubo eruption the simulated forcing reaches 5W/m 2 , leading to temporary climate cooling. The Pinatubo simulation demonstrates the importance of radiative feedback on dynamics, e.g., enhanced tropical upwelling, for large volcanic eruptions.

  7. Generation of Attosecond X-Ray Pulse through Coherent Relativistic Nonlinear Thomson Scattering

    CERN Document Server

    Lee, K; Jeong, Y U; Lee, B C; Park, S H

    2005-01-01

    In contrast to some recent experimental results, which state that the Nonlinear Thomson Scattered (NTS) radiation is incoherent, a coherent condition under which the scattered radiation of an incident laser pulse by a bunch of electrons can be coherently superposed has been investigated. The Coherent Relativistic Nonlinear Thomson Scattered (C-RNTS) radiation makes it possible utilizing the ultra-short pulse nature of NTS radiation with a bunch of electrons, such as plasma or electron beams. A numerical simulation shows that a 25 attosecond X-ray pulse can be generated by irradiating an ultra-intense laser pulse of 4x10(19) W/cm2 on an ultra-thin solid target of 50 nm thickness, which is commercially available. The coherent condition can be easily extended to an electron beam from accelerators. Different from the solid target, much narrower electron beam is required for the generation of an attosecond pulse. Instead, this condition could be applied for the generation of intense Compton scattered X-rays with a...

  8. Gravitational radiation resistance, radiation damping and field fluctuations

    International Nuclear Information System (INIS)

    Schaefer, G.

    1981-01-01

    Application is made of two different generalised fluctuation-dissipation theorems and their derivations to the calculation of the gravitational quadrupole radiation resistance using the radiation-reaction force given by Misner, Thorne and Wheeler (Gravitation (San Francisco: Freeman) ch 36,37 (1973)) and the usual tidal force on one hand and the tidal force and the free gravitational radiation field on the other hand. The quantum-mechanical version (including thermal generalisations) of the well known classical quadrupole radiation damping formula is obtained as a function of the radiation resistance. (author)

  9. Concave pulse shaping of a circularly polarized laser pulse from non-uniform overdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Min Sup [School of Natural Science, UNIST, BanYeon-Ri 100, Ulju-gun, Ulsan, 689-798 (Korea, Republic of); Kulagin, Victor V. [Sternberg Astronomical Institute, Moscow State University, Universitetsky prosp. 13, Moscow, 119992 (Russian Federation); Suk, Hyyong, E-mail: hysuk@gist.ac.kr [Department of Physics and Photon Science, GIST, 123 Cheomdan-gwangiro, Buk-gu, Gwangju, 500-712 (Korea, Republic of)

    2015-03-20

    Pulse shaping of circularly polarized laser pulses in nonuniform overdense plasmas are investigated numerically. Specifically we show by two-dimensional particle-in-cell simulations the generation of a concave pulse front of a circularly polarized, a few tens of petawatt laser pulse from a density-tapered, overdense plasma slab. The concept used for the transverse-directional shaping is the differential transmittance depending on the plasma density, and the laser intensity. For suitable selection of the slab parameters for the concave pulse shaping, we studied numerically the pulse transmittance, which can be used for further parameter design of the pulse shaping. The concavely shaped circularly polarized pulse is expected to add more freedom in controlling the ion-beam characteristics in the RPDA regime. - Highlights: • Laser pulse shaping for a concave front by non-uniform overdense plasma was studied. • Particle-in-cell (PIC) simulations were used for the investigation. • A laser pulse can be shaped by a density-tapered overdense plasma. • The concave and sharp pulse front are useful in many laser–plasma applications. • They are important for ion acceleration, especially in the radiation pressure dominant regime.

  10. The electromagnetic radiation fields of a relativistic electron avalanche with special attention to the origin of narrow bipolar pulses

    Science.gov (United States)

    Cooray, G. V.; Cooray, G. K.

    2011-12-01

    Gurevich et al. [1] postulated that the source of narrow bipolar pulses, a class of high energy pulses that occur during thunderstorms, could be a runaway electron avalanche driven by the intense electric fields of a thunderstorm. Recently, Watson and Marshall [2] used the modified transmission line model to test the mechanism of the source of narrow bipolar pulses. In a recent paper, Cooray and Cooray [3] demonstrated that the electromagnetic fields of accelerating charges could be used to evaluate the electromagnetic fields from electrical discharges if the temporal and spatial variation of the charges in the discharge is known. In the present study, those equations were utilized to evaluate the electromagnetic fields generated by a relativistic electron avalanche. In the analysis it is assumed that all the electrons in the avalanche are moving with the same speed. In other words, the growth or the decay of the number of electrons takes place only at the head of the avalanche. It is shown that the radiation is emanating only from the head of the avalanche where electrons are being accelerated. It is also shown that an analytical expression for the radiation field of the avalanche at any distance can be written directly in terms of the e-folding length of the avalanche. This makes it possible to extract directly the spatial variation of the e-folding length of the avalanche from the measured radiation fields. In the study this model avalanche was used to investigate whether it can be used to describe the measured electromagnetic fields of narrow bipolar pulses. The results obtained are in reasonable agreement with the two station data of Eack [4] for speeds of propagation around (2 - 2.5) x 10^8 m/s and when the propagation effects on the electric fields measured at the distant station is taken into account. [1] Gurevich et al. (2004), Phys. Lett. A., 329, pp. 348 -361. [2] Watson, S. S. and T. C. Marshall (2007), Geophys. Res. Lett., Vol. 34, L04816, doi: 10

  11. Acoustic attraction, repulsion and radiation force cancellation on a pair of rigid particles with arbitrary cross-sections in 2D: Circular cylinders example

    Science.gov (United States)

    Mitri, F. G.

    2017-11-01

    The acoustic radiation forces arising on a pair of sound impenetrable cylindrical particles of arbitrary cross-sections are derived. Plane progressive, standing or quasi-standing waves with an arbitrary incidence angle are considered. Multiple scattering effects are described using the multipole expansion formalism and the addition theorem of cylindrical wave functions. An effective incident acoustic field on a particular object is determined, and used with the scattered field to derive closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the radiation force components are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the reflection coefficient forming the progressive or the (quasi)standing wave field, the addition theorem, and the expansion coefficients. Numerical examples illustrate the analysis for two rigid circular cross-sections immersed in a non-viscous fluid. Computations for the dimensionless radiation force functions are performed with emphasis on varying the angle of incidence, the interparticle distance, the sizes of the particles as well as the characteristics of the incident field. Depending on the interparticle distance and angle of incidence, one of the particles yields neutrality; it experiences no force and becomes unresponsive (i.e., ;invisible;) to the linear momentum transfer of the effective incident field due to multiple scattering cancellation effects. Moreover, attractive or repulsive forces between the two particles may arise depending on the interparticle distance, the angle of incidence and size parameters of the particles. This study provides a complete analytical method and computations for the axial and transverse radiation force components in multiple acoustic scattering encompassing the cases of plane progressive, standing or quasi-standing waves of arbitrary incidence by a pair of scatterers

  12. Direct radiative forcing properties of atmospheric aerosols over semi-arid region, Anantapur in India.

    Science.gov (United States)

    Kalluri, Raja Obul Reddy; Gugamsetty, Balakrishnaiah; Kotalo, Rama Gopal; Nagireddy, Siva Kumar Reddy; Tandule, Chakradhar Rao; Thotli, Lokeswara Reddy; Rajuru Ramakrishna, Reddy; Surendranair, Suresh Babu

    2016-10-01

    This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500nm are found to be 0.47±0.09, 0.34±0.08, 0.29±0.06 and 0.30±0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α380-1020) value is observed maximum in March (1.25±0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33±0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00-08:00 (IST) and evening 19:00-21:00 (IST) hours and one minima noticed during afternoon (13:00-16:00). The highest monthly mean BC concentration is observed in the month of January (3.4±1.2μgm(-3)) and the lowest in July (1.1±0.2μgm(-3)). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be +36.8±1.7Wm(-2), +26.9±0.2Wm(-2), +18.0±0.6Wm(-2) and +18.5±3.1Wm(-2) during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80Wm(-2)) which contributes more increase in atmospheric heating by ~1K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Development of subpicosecond pulse radiolysis system

    International Nuclear Information System (INIS)

    Kozawa, T.; Saeki, A.; Okamoto, K.; Numata, Y.; Kaseda, K.; Yamamoto, T.; Suemine, S.; Yoshida, Y.; Tagawa, S.

    2000-01-01

    Subpicosecond pulse radiolysis system was developed to elucidate the primary processes of radiation chemistry in the time region of femtosecond. The system consists of a femtosecond electron linac as an irradiation source, a femtosecond laser as an analyzing light and a jitter compensation system which was designed to reduce the effect of jitter between an electron pulse and a laser pulse on the time resolution. The time resolution of 800 fs was achieved. (author)

  14. Investigation of dynamics of soft X-ray radiation of mixed-material wire-arrays on S-300 pulsed power generator

    NARCIS (Netherlands)

    Cai, HC; Chernenko, AC; Korolev, VD; Ustroev, GI; Ivanov, MI

    2004-01-01

    The dynamics of radiation spectra of fast Z-pinch plasmas was studied. The experiments were carried out on the S-300 pulsed power machine (4 MA, 0.15 Omega, 100 ns). By means of the polychromator, X-ray spectra of imploding wire arrays were measured in the range of 60 divided by 1500 eV, where the

  15. Radiative forcing due to greenhouse gas emission and sink histories in Finland and its future control potential

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I; Sinisalo, J; Pipatti, R [VTT Energy, Espoo (Finland)

    1996-12-31

    The effective atmospheric lifetimes of the greenhouse gases like carbon dioxide (CO{sub 2}),nitrous oxide (N{sub 2}O) and many of the CFCs are of the order of 100 years. Human activities, as an example GDP, very often change at rates of a few per cents per year,corresponding time constants of some tens of years. Also the forest ecosystems have time constants of this order. Even the human population of the globe is increasing by about two percent per year. Because so many natural and human-linked processes, which are relevant to global warming, have slow change rates of about same order, a time-dependent consideration of the greenhouse warming and its control can give useful information for the understanding of the problem. The objective of the work is to study the anthropogenic greenhouse gas emissions and sinks in Finland and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of radiative forcing which describes the perturbation in the Earth`s radiation budget. Radiative forcing allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. The idea behind the calculations is that Finland should in some way steer its share of the global radiative forcing and greenhouse effect. This presentation describes the calculation model REFUGE and the projects in which it has been used

  16. Radiative forcing due to greenhouse gas emission and sink histories in Finland and its future control potential

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I.; Sinisalo, J.; Pipatti, R. [VTT Energy, Espoo (Finland)

    1995-12-31

    The effective atmospheric lifetimes of the greenhouse gases like carbon dioxide (CO{sub 2}),nitrous oxide (N{sub 2}O) and many of the CFCs are of the order of 100 years. Human activities, as an example GDP, very often change at rates of a few per cents per year,corresponding time constants of some tens of years. Also the forest ecosystems have time constants of this order. Even the human population of the globe is increasing by about two percent per year. Because so many natural and human-linked processes, which are relevant to global warming, have slow change rates of about same order, a time-dependent consideration of the greenhouse warming and its control can give useful information for the understanding of the problem. The objective of the work is to study the anthropogenic greenhouse gas emissions and sinks in Finland and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of radiative forcing which describes the perturbation in the Earth`s radiation budget. Radiative forcing allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. The idea behind the calculations is that Finland should in some way steer its share of the global radiative forcing and greenhouse effect. This presentation describes the calculation model REFUGE and the projects in which it has been used

  17. The model evaluation of subsonic aircraft effect on the ozone and radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Rozanov, E.; Zubov, V.; Egorova, T.; Ozolin, Y. [Main Geophysical Observatory, St.Petersburg (Russian Federation)

    1997-12-31

    Two dimensional transient zonally averaged model was used for the evaluation of the effect of subsonic aircraft exhausts upon the ozone, trace gases and radiation in the troposphere and lower stratosphere. The mesoscale transformation of gas composition was included on the base of the box model simulations. It has been found that the transformation of the exhausted gases in sub-grid scale is able to influence the results of the modelling. The radiative forcing caused by gas, sulfate aerosol, soot and contrails changes was estimated as big as 0.12-0.15 W/m{sup 2} (0.08 W/m{sup 2} globally and annually averaged). (author) 10 refs.

  18. The model evaluation of subsonic aircraft effect on the ozone and radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Rozanov, E; Zubov, V; Egorova, T; Ozolin, Y [Main Geophysical Observatory, St.Petersburg (Russian Federation)

    1998-12-31

    Two dimensional transient zonally averaged model was used for the evaluation of the effect of subsonic aircraft exhausts upon the ozone, trace gases and radiation in the troposphere and lower stratosphere. The mesoscale transformation of gas composition was included on the base of the box model simulations. It has been found that the transformation of the exhausted gases in sub-grid scale is able to influence the results of the modelling. The radiative forcing caused by gas, sulfate aerosol, soot and contrails changes was estimated as big as 0.12-0.15 W/m{sup 2} (0.08 W/m{sup 2} globally and annually averaged). (author) 10 refs.

  19. Pulse radiolysis

    International Nuclear Information System (INIS)

    Greenshields, H.; Seddon, W.A.

    1982-03-01

    This supplement to two bibliographies published in 1970 and 1972 lists 734 references to the literature of pulse radiolysis, arranged under eight broad subject headings. The references were compiled by searching Biological Abstracts, Chemical Abstracts, Nuclear Science Abstracts and the Weekly List of Papers in Radiation Chemistry issued by the Radiation Chemistry Data Center of Notre Dame University. Full bibliographic data is given for papers published in the period 1971 to 1974. A personal author index listing more than 600 authors and a similar number of co-authors is included

  20. The random signal generator of imitated nuclear radiation pulse

    International Nuclear Information System (INIS)

    Li Dongcang; Yang Lei; Yuan Shulin; Yang Yinghui; Zang Fujia

    2007-01-01

    Based in pseudo-random uniformity number, it produces random numbers of Gaussian distribution and exponential distribution by arithmetic. The hardware is the single-chip microcomputer of 89C51. Program language makes use of Keil C. The output pulse amplitude is Gaussian distribution, exponential distribution or uniformity distribution. Likewise, it has two mode or upwards two. The time alternation of output pulse is both periodic and exponential distribution. The generator has achieved output control of multi-mode distribution, imitated random characteristic of nuclear pulse in amplitude and in time. (authors)

  1. Effects of low-intensity pulsed ultrasound on new trabecular bone during bone-tendon junction healing in a rabbit model: a synchrotron radiation micro-CT study.

    Directory of Open Access Journals (Sweden)

    Hongbin Lu

    Full Text Available This study was designed to evaluate the effects of low-intensity pulsed ultrasound on bone regeneration during the bone-tendon junction healing process and to explore the application of synchrotron radiation micro computed tomography in three dimensional visualization of the bone-tendon junction to evaluate the microarchitecture of new trabecular bone. Twenty four mature New Zealand rabbits underwent partial patellectomy to establish a bone-tendon junction injury model at the patella-patellar tendon complex. Animals were then divided into low-intensity pulsed ultrasound treatment (20 min/day, 7 times/week and placebo control groups, and were euthanized at week 8 and 16 postoperatively (n = 6 for each group and time point. The patella-patellar tendon specimens were harvested for radiographic, histological and synchrotron radiation micro computed tomography detection. The area of the newly formed bone in the ultrasound group was significantly greater than that of control group at postoperative week 8 and 16. The high resolution three dimensional visualization images of the bone-tendon junction were acquired by synchrotron radiation micro computed tomography. Low-intensity pulsed ultrasound treatment promoted dense and irregular woven bone formation at week 8 with greater bone volume fraction, number and thickness of new trabecular bone but with lower separation. At week 16, ultrasound group specimens contained mature lamellar bone with higher bone volume fraction and thicker trabeculae than that of control group; however, there was no significant difference in separation and number of the new trabecular bone. This study confirms that low-intensity pulsed ultrasound treatment is able to promote bone formation and remodeling of new trabecular bone during the bone-tendon junction healing process in a rabbit model, and the synchrotron radiation micro computed tomography could be applied for three dimensional visualization to quantitatively evaluate

  2. Economic Value of Narrowing the Uncertainty in Climate Sensitivity: Decadal Change in Shortwave Cloud Radiative Forcing and Low Cloud Feedback

    Science.gov (United States)

    Wielicki, B. A.; Cooke, R. M.; Golub, A. A.; Mlynczak, M. G.; Young, D. F.; Baize, R. R.

    2016-12-01

    Several previous studies have been published on the economic value of narrowing the uncertainty in climate sensitivity (Cooke et al. 2015, Cooke et al. 2016, Hope, 2015). All three of these studies estimated roughly 10 Trillion U.S. dollars for the Net Present Value and Real Option Value at a discount rate of 3%. This discount rate is the nominal discount rate used in the U.S. Social Cost of Carbon Memo (2010). The Cooke et al studies approached this problem by examining advances in accuracy of global temperature measurements, while the Hope 2015 study did not address the type of observations required. While temperature change is related to climate sensitivity, large uncertainties of a factor of 3 in current anthropogenic radiative forcing (IPCC, 2013) would need to be solved for advanced decadal temperature change observations to assist the challenge of narrowing climate sensitivity. The present study takes a new approach by extending the Cooke et al. 2015,2016 papers to replace observations of temperature change to observations of decadal change in the effects of changing clouds on the Earths radiative energy balance, a measurement known as Cloud Radiative Forcing, or Cloud Radiative Effect. Decadal change in this observation is direclty related to the largest uncertainty in climate sensitivity which is cloud feedback from changing amount of low clouds, primarily low clouds over the world's oceans. As a result, decadal changes in shortwave cloud radiative forcing are more directly related to cloud feedback uncertainty which is the dominant uncertainty in climate sensitivity. This paper will show results for the new approach, and allow an examination of the sensitivity of economic value results to different observations used as a constraint on uncertainty in climate sensitivity. The analysis suggests roughly a doubling of economic value to 20 Trillion Net Present Value or Real Option Value at 3% discount rate. The higher economic value results from two changes: a

  3. 3D periodic structures grown on silicon by radiation of a pulsed Nd:YAG laser and their field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Karabutov, A.V. [A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow (Russian Federation); Shafeev, G.A. [A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow (Russian Federation)]. E-mail: shafeev@kapella.gpi.ru; Badi, N. [Physics Department, The University of Houston, Houston, TX 77204-5005 (United States); Nair, A.M. [TcSAM, The University of Houston, Houston, TX 77204-5004 (United States); Bensaoula, A. [Physics Department, The University of Houston, Houston, TX 77204-5005 (United States)

    2006-04-30

    Periodic three-dimensional structures were successfully grown on single crystal Si wafers either bare or Au-covered under their exposure to a pulsed radiation of a Nd:YAG laser in vacuum. The structures protrude above the initial wafer surface for 10 {mu}m while their spatial period is about 70 {mu}m. The coupling of the laser radiation to Si surface is related to the thermal non-linear absorption of the near band gap radiation. The structures exhibit an efficient field emission with an average emission current of 5 mA/cm{sup 2} and is sensitive to the post-treatment of samples. The drawbacks of the emission current densities are discussed.

  4. Control of giant pulse duration in neodymium mini lasers with controllable cavity length and pulsed pumping

    International Nuclear Information System (INIS)

    Berenberg, Vladimir A.; Cervantes, Miguel A.; Terpugov, Vladimir S.

    2006-01-01

    In a solid-state laser incident on aLiNdP4O12 crystal, pumped by a short light pulse, giant pulse oscillation without the use of resonator Q switching is realized. Tuning of the oscillation pulse duration from 2 up to 20 ns is achieved by changing the cavity length from 24 to 3 mm, respectively. Our analysis of this mode of laser radiation is made on the basis of the rate equations. The factors influencing oscillation pulse duration a reinvestigated. It is shown that in a limiting case the minimal value of the pulse duration is limited by only the rate of excitation transfer from the pumping band to the metastable level

  5. ''Intelligent'' radiation measurements

    International Nuclear Information System (INIS)

    Ward, A.

    1980-01-01

    A description is given of three applications of current microprocessor technology which are characterized by the use of the microprocessor to impart a degree of intelligence to conventional radiation detection techniques. In the first application the microcomputer computes the radiation dose from the observed counting rate in a Geiger counter. In the second application the microcomputer provides the pulse height distribution and the radioisotopes used, from the spectrum of pulses from a scintillation counter. The third application is an arrangement for radiation monitor calibration. (H.K.)

  6. Acoustic radiation force on an air bubble and soft fluid spheres in ideal liquids: example of a high-order Bessel beam of quasi-standing waves.

    Science.gov (United States)

    Mitri, F G

    2009-04-01

    The partial wave series for the scattering of a high-order Bessel beam (HOBB) of acoustic quasi-standing waves by an air bubble and fluid spheres immersed in water and centered on the axis of the beam is applied to the calculation of the acoustic radiation force. A HOBB refers to a type of beam having an axial amplitude null and an azimuthal phase gradient. Radiation force examples obtained through numerical evaluation of the radiation force function are computed for an air bubble, a hexane, a red blood and mercury fluid spheres in water. The examples were selected to illustrate conditions having progressive, standing and quasi-standing waves with appropriate selection of the waves' amplitude ratio. An especially noteworthy result is the lack of a specific vibrational mode contribution to the radiation force determined by appropriate selection of the HOBB parameters.

  7. Linear transformer driver for pulse generation

    Science.gov (United States)

    Kim, Alexander A; Mazarakis, Michael G; Sinebryukhov, Vadim A; Volkov, Sergey N; Kondratiev, Sergey S; Alexeenko, Vitaly M; Bayol, Frederic; Demol, Gauthier; Stygar, William A

    2015-04-07

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first power delivery module that includes a first charge storage devices and a first switch. The first power delivery module sends a first energy in the form of a first pulse to the load. The linear transformer driver also includes a second power delivery module including a second charge storage device and a second switch. The second power delivery module sends a second energy in the form of a second pulse to the load. The second pulse has a frequency that is approximately three times the frequency of the first pulse. The at least one ferrite ring is positioned to force the first pulse and the second pulse to the load by temporarily isolating the first pulse and the second pulse from an electrical ground.

  8. Development of superconducting pulsed poloidal coil in JAERI

    International Nuclear Information System (INIS)

    Shimamoto, S.; Okuno, K.; Ando, T.; Tsuji, H.

    1990-01-01

    In the Japan Atomic Energy Research Institute, (JAERI), development work on pulsed superconductors and coils started in 1979, aiming at the demonstration of the applicability of superconducting technologies to pulsed poloidal coils in a fusion reactor. Initially our effort was concentrated mainly on the development of pool-cooled large-current pulsed conductors. Over the past ten years, superconducting technology has made great progress and the forced-flow cooled coil has assumed great importance in the development work. Now the Demo Poloidal Coil Project is in progress in JAERI, and three large forced-flow cooled coils have so far been fabricated and tested. Many improvements have been achieved in ac-loss performance and mechanical characteristics. (author)

  9. Survey on result promotion of the atomic force technique

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, Masato; Okuno, Yumiko [Nikkei Research Inst. of Industry and Markets, Tokyo (Japan)

    1998-02-01

    By change of environment around research and development of atomic force, investigation has been recently executed not only on a theme directing a specific aim, but also on technical development considering some applications to the other field reflected by social needs. Therefore, an effective procedure and program capable of reflecting and promoting results of the atomic fore development to other industrial field were necessary. In this study, methods of evaluation and industrialization on study results of the atomic force were investigated. As a result, in order to promote the study results to other field, it was found to be important that some free reasons and concept engineering to mediate between developing and applying sides were to be present. In addition, it was suggested by some searches that a new atomic industry has a probability to be created by using potential energies such as heat, radiation, pulse, and so on. In this paper, evaluation on industrialization of the atomic force technical resources, and establishment of the industrialization program were described. (G.K.)

  10. Pulsed Power: Sandia's Plans for the New Millenium

    International Nuclear Information System (INIS)

    Quintenz, Jeffrey P.

    2000-01-01

    Pulsed power science and engineering activities at Sandia National Laboratories grew out of a programmatic need for intense radiation sources to advance capabilities in radiographic imaging and to create environments for testing and certifying the hardness of components and systems to radiation in hostile environments. By the early 1970s, scientists in laboratories around the world began utilizing pulsed power drivers with very short (10s of nanoseconds) pulse lengths for Inertial Confinement Fusion (ICF) experiments. In the United States, Defense Programs within the Department of Energy has sponsored this research. Recent progress in pulsed power, specifically fast-pulsed-power-driven z pinches, in creating temperatures relevant to ICF has been remarkable. Worldwide developments in pulsed power technologies and increased applications in both defense and industry are contrasted with ever increasing stress on research and development tiding. The current environment has prompted us at Sandia to evaluate our role in the continued development of pulsed power science and to consider options for the future. This presentation will highlight our recent progress and provide an overview of our plans as we begin the new millennium

  11. The acoustic radiation force on a small thermoviscous or thermoelastic particle suspended in a viscous and heat-conducting fluid

    Science.gov (United States)

    Karlsen, Jonas; Bruus, Henrik

    2015-11-01

    We present a theoretical analysis (arxiv.org/abs/1507.01043) of the acoustic radiation force on a single small particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid. Our analysis places no restrictions on the viscous and thermal boundary layer thicknesses relative to the particle radius, but it assumes the particle to be small in comparison to the acoustic wavelength. This is the limit relevant to scattering of ultrasound waves from sub-micrometer particles. For particle sizes smaller than the boundary layer widths, our theory leads to profound consequences for the acoustic radiation force. For example, for liquid droplets and solid particles suspended in gasses we predict forces orders of magnitude larger than expected from ideal-fluid theory. Moreover, for certain relevant choices of materials, we find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to applications in acoustic levitation or separation of micro-particles in gases, as well as to handling of μm- and nm-sized particles such as bacteria and vira in lab-on-a-chip systems.

  12. AIRFORCE. Aircraft emissions and radiative forcing from emissions

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, E.W.; Kelder, H.; Velthoven, P.F.J. van; Wauben, W.M.F. [Royal Netherlands Meteorological Inst., De Bilt (Netherlands); Beck, J.P.; Velders, G.J.M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands); Lelieveld, J.; Scheeren, B.A. [Institute of Marine and Atmospheric Research Utrecht (Netherlands)

    1997-12-31

    The Dutch AIRFORCE project focuses on the effects of subsonic aircraft emissions on the chemical composition of the atmosphere and subsequent radiative forcing. It includes measurements in the tropopause region and the modelling of exhaust plumes and large-scale effects. An aircraft exhaust plume model has been developed to study plume processes. The results of the plume model are used in the global transport chemistry model CTMK to determine large-scale effects of plume processes. Due to the efficient conversion of NO{sub x} into HNO{sub 3} inside aircraft exhaust plumes, a decrease of about 25% of the O{sub 3} perturbation was found in the NAFC at 200 hPa in July. Measurements of hydrocarbons revealed a dominant role of the anthropogenic continental emissions of light hydrocarbons in the tropopause region. (author) 20 refs.

  13. AIRFORCE. Aircraft emissions and radiative forcing from emissions

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, E W; Kelder, H; Velthoven, P F.J. van; Wauben, W M.F. [Royal Netherlands Meteorological Inst., De Bilt (Netherlands); Beck, J P; Velders, G J.M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands); Lelieveld, J; Scheeren, B A [Institute of Marine and Atmospheric Research Utrecht (Netherlands)

    1998-12-31

    The Dutch AIRFORCE project focuses on the effects of subsonic aircraft emissions on the chemical composition of the atmosphere and subsequent radiative forcing. It includes measurements in the tropopause region and the modelling of exhaust plumes and large-scale effects. An aircraft exhaust plume model has been developed to study plume processes. The results of the plume model are used in the global transport chemistry model CTMK to determine large-scale effects of plume processes. Due to the efficient conversion of NO{sub x} into HNO{sub 3} inside aircraft exhaust plumes, a decrease of about 25% of the O{sub 3} perturbation was found in the NAFC at 200 hPa in July. Measurements of hydrocarbons revealed a dominant role of the anthropogenic continental emissions of light hydrocarbons in the tropopause region. (author) 20 refs.

  14. Wiring of instrument for measuring pulse count of pseudocoincidences in radiation detectors

    International Nuclear Information System (INIS)

    Hekrdle, J.

    1978-01-01

    A network is described consisting of a flip-flop circuit, a pulse counter, a shift register, a gate and a clock generator. Pulses from an alpha detector are applied to the adjusting input of the control flip-flop whose output is connected to the reset input of the pulse counter and to the control input of the gate for beta pulses delayed by the shift register. The pulse counter is supplied with pulses from the clock generator output. The pulses also energize the shift register. The control flip-flop is reset by the output of the pulse counter overflow and also by the beta pulse passing through the open gate to the output terminal. (H.S.)

  15. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    Energy Technology Data Exchange (ETDEWEB)

    Caresana, M., E-mail: marco.caresana@polimi.it [Politecnico di Milano, CESNEF, Dipartimento di Energia, via Ponzio 34/3, 20133 Milano (Italy); Denker, A. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Esposito, A. [IFNF-LNF, FISMEL, via E. Fermi 40, 00044 Frascati (Italy); Ferrarini, M. [CNAO, Via Privata Campeggi, 27100 Pavia (Italy); Golnik, N. [Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Sw. A. Boboli 8, 02-525 Warsaw (Poland); Hohmann, E. [Paul Scherrer Institut (PSI), Radiation Metrology Section, CH-5232 Villigen PSI (Switzerland); Leuschner, A. [Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg (Germany); Luszik-Bhadra, M. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Manessi, G. [CERN, 1211 Geneva 23 (Switzerland); University of Liverpool, Department of Physics, L69 7ZE Liverpool (United Kingdom); Mayer, S. [Paul Scherrer Institut (PSI), Radiation Metrology Section, CH-5232 Villigen PSI (Switzerland); Ott, K. [Helmholtz-Zentrum Berlin, BESSYII, Albert-Einstein-Str.15, 12489 Berlin (Germany); Röhrich, J. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Silari, M. [CERN, 1211 Geneva 23 (Switzerland); Trompier, F. [Institute for Radiological Protection and Nuclear Safety, F-92262 Fontenay aux Roses (France); Volnhals, M.; Wielunski, M. [Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg (Germany)

    2014-02-11

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instruments were placed in a reference position and irradiated with neutrons delivered in bursts of different intensity. The analysis of the instrument response as a function of the burst charge (the total electric charge of the protons in the burst shot onto the tungsten target) permitted to assess for each device the dose underestimation due to the time structure of the radiation field. The personal neutron dosemeters were exposed on a standard PMMA slab phantom and the response linearity was evaluated.

  16. A new model for volume recombination in plane-parallel chambers in pulsed fields of high dose-per-pulse.

    Science.gov (United States)

    Gotz, M; Karsch, L; Pawelke, J

    2017-11-01

    In order to describe the volume recombination in a pulsed radiation field of high dose-per-pulse this study presents a numerical solution of a 1D transport model of the liberated charges in a plane-parallel ionization chamber. In addition, measurements were performed on an Advanced Markus ionization chamber in a pulsed electron beam to obtain suitable data to test the calculation. The experiment used radiation pulses of 4 μs duration and variable dose-per-pulse values up to about 1 Gy, as well as pulses of variable duration up to 308 [Formula: see text] at constant dose-per-pulse values between 85 mGy and 400 mGy. Those experimental data were compared to the developed numerical model and existing descriptions of volume recombination. At low collection voltages the observed dose-per-pulse dependence of volume recombination can be approximated by the existing theory using effective parameters. However, at high collection voltages large discrepancies are observed. The developed numerical model shows much better agreement with the observations and is able to replicate the observed behavior over the entire range of dose-per-pulse values and collection voltages. Using the developed numerical model, the differences between observation and existing theory are shown to be the result of a large fraction of the charge being collected as free electrons and the resultant distortion of the electric field inside the chamber. Furthermore, the numerical solution is able to calculate recombination losses for arbitrary pulse durations in good agreement with the experimental data, an aspect not covered by current theory. Overall, the presented numerical solution of the charge transport model should provide a more flexible tool to describe volume recombination for high dose-per-pulse values as well as for arbitrary pulse durations and repetition rates.

  17. Undulator radiation in a waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2007-03-15

    We propose an analytical approach to characterize undulator radiation near resonance, when the presence of the vacuum-pipe considerably affects radiation properties. This is the case of the far-infrared undulator beamline at the Free-electron LASer (FEL) in Hamburg (FLASH), that will be capable of delivering pulses in the TeraHertz (THz) range. This undulator will allow pump-probe experiments where THz pulses are naturally synchronized to the VUV pulse from the FEL, as well as the development of novel electron-beam diagnostics techniques. Since the THz radiation diffraction-size exceeds the vacuum-chamber dimensions, characterization of infrared radiation must be performed accounting for the presence of a waveguide.We developed a theory of undulator radiation in a waveguide based on paraxial and resonance approximation. We solved the field equation with a tensor Green's function technique, and extracted figure of merits describing in a simple way the influence of the vacuum-pipe on the radiation pulse as a function of the problem parameters. Our theory, that makes consistent use of dimensionless analysis, allows treatment and physical understanding of many asymptotes of the parameter space, together with their region of applicability. (orig.)

  18. Undulator radiation in a waveguide

    International Nuclear Information System (INIS)

    Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2007-03-01

    We propose an analytical approach to characterize undulator radiation near resonance, when the presence of the vacuum-pipe considerably affects radiation properties. This is the case of the far-infrared undulator beamline at the Free-electron LASer (FEL) in Hamburg (FLASH), that will be capable of delivering pulses in the TeraHertz (THz) range. This undulator will allow pump-probe experiments where THz pulses are naturally synchronized to the VUV pulse from the FEL, as well as the development of novel electron-beam diagnostics techniques. Since the THz radiation diffraction-size exceeds the vacuum-chamber dimensions, characterization of infrared radiation must be performed accounting for the presence of a waveguide.We developed a theory of undulator radiation in a waveguide based on paraxial and resonance approximation. We solved the field equation with a tensor Green's function technique, and extracted figure of merits describing in a simple way the influence of the vacuum-pipe on the radiation pulse as a function of the problem parameters. Our theory, that makes consistent use of dimensionless analysis, allows treatment and physical understanding of many asymptotes of the parameter space, together with their region of applicability. (orig.)

  19. Sync transmission method and apparatus for high frequency pulsed neutron spectral analysis systems

    International Nuclear Information System (INIS)

    Culver, R.B.

    1981-01-01

    An improved synchronization system was developed for high-frequency pulsed-neutron gamma ray well-logging which extends the upper limit of the usable source pulsing frequency. A clock is used to pulse the neutron generator at a given frequency and a scaler generates scaled-down sync pulses at a lower frequency. Radiation from the formations surrounding the borehole is detected and electrical signals related functionally to the radiation are generated. The scaled-down sync pulses and electrical signals are transmitted to the earth's surface via a seven conductor well logging cable. (DN)

  20. Electro-optic sampling of THz pulses at the CTR source at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Steffen

    2012-06-15

    Several applications in material science, non-linear optics and solid-state physics require short pulses with a high pulse energy of radiation in the far-infrared and in the terahertz (THz) regime in particular. As described in the following, coherent transition radiation generated by high-relativistic electron bunches at FLASH provides broadband single-cycle pulses of sub-picosecond length. The pulses are characterized using the quantitative and time-resolved technique of electro-optic sampling showing peak field strengths in the order of 1 MV/cm.

  1. Electro-optic sampling of THz pulses at the CTR source at FLASH

    International Nuclear Information System (INIS)

    Wunderlich, Steffen

    2012-06-01

    Several applications in material science, non-linear optics and solid-state physics require short pulses with a high pulse energy of radiation in the far-infrared and in the terahertz (THz) regime in particular. As described in the following, coherent transition radiation generated by high-relativistic electron bunches at FLASH provides broadband single-cycle pulses of sub-picosecond length. The pulses are characterized using the quantitative and time-resolved technique of electro-optic sampling showing peak field strengths in the order of 1 MV/cm.

  2. Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam

    Science.gov (United States)

    Cole, J. M.; Behm, K. T.; Gerstmayr, E.; Blackburn, T. G.; Wood, J. C.; Baird, C. D.; Duff, M. J.; Harvey, C.; Ilderton, A.; Joglekar, A. S.; Krushelnick, K.; Kuschel, S.; Marklund, M.; McKenna, P.; Murphy, C. D.; Poder, K.; Ridgers, C. P.; Samarin, G. M.; Sarri, G.; Symes, D. R.; Thomas, A. G. R.; Warwick, J.; Zepf, M.; Najmudin, Z.; Mangles, S. P. D.

    2018-02-01

    The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today's lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (ɛ >500 MeV ) with an intense laser pulse (a0>10 ). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays), consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy ɛcrit>30 MeV .

  3. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    CERN Document Server

    Caresana, M; Esposito, A; Ferrarini, M; Golnik, N; Hohmann, E; Leuschner, A; Luszik-Bhadra, M; Manessi, G; Mayer, S; Ott, K; Röhrich, J; Silari, M; Trompier, F; Volnhals, M; Wielunski, M

    2014-01-01

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instru...

  4. A method for ultra-short pulse-shape measurements using far infrared coherent radiation from an undulator

    International Nuclear Information System (INIS)

    Geloni, G.; Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2004-01-01

    In this paper, we discuss a method for non-destructive measurements of the longitudinal profile of sub-picosecond electron bunches for X-ray free electron lasers. The method is based on the detection of the coherent synchrotron radiation (CSR) produced by a bunch passing through an undulator. Coherent radiation energy within a central cone turns out to be proportional, per pulse, to the square modulus of the bunch form-factor at the resonant frequency of the fundamental harmonic. An attractive feature of the proposed technique is the absence of any apparent limitation which would distort measurements. Indeed, the radiation process takes place in vacuum and is described by analytical formulae. CSR propagates to the detector placed in vacuum. Since CSR energy is in the range up to a fraction of mJ, a simple bolometer is used to measure the energy with a high accuracy. The proposed technique is very sensitive and it is capable of probing the electron bunches with a resolution down to a few microns

  5. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Characteristics of the evolution of a plasma formed by cw and pulse-periodic CO2 laser radiation in various gases

    Science.gov (United States)

    Kanevskiĭ, M. F.; Stepanova, M. A.

    1990-06-01

    An investigation was made of the interaction between high-power cw and pulse-periodic CO2 laser radiation and a low-threshold optical breakdown plasma near a metal surface. Characteristics of the breakdown plasma were studied as a function of the experimental conditions. A qualitative analysis was made of the results using a simple one-dimensional model for laser combustion waves.

  6. Shortwave radiative forcing and efficiency of key aerosol types using AERONET data

    Directory of Open Access Journals (Sweden)

    O. E. García

    2012-06-01

    Full Text Available The shortwave radiative forcingF and the radiative forcing efficiency (ΔFeff of natural and anthropogenic aerosols have been analyzed using estimates of radiation both at the Top (TOA and at the Bottom Of Atmosphere (BOA modeled based on AERONET aerosol retrievals. Six main types of atmospheric aerosols have been compared (desert mineral dust, biomass burning, urban-industrial, continental background, oceanic and free troposphere in similar observational conditions (i.e., for solar zenith angles between 55° and 65° in order to compare the nearly same solar geometry. The instantaneous ΔF averages obtained vary from −122 ± 37 Wm−2 (aerosol optical depth, AOD, at 0.55 μm, 0.85 ± 0.45 at the BOA for the mixture of desert mineral dust and biomass burning aerosols in West Africa and −42 ± 22 Wm−2 (AOD = 0.9 ± 0.5 at the TOA for the pure mineral dust also in this region up to −6 ± 3 Wm−2 and −4 ± 2 Wm−2 (AOD = 0.03 ± 0.02 at the BOA and the TOA, respectively, for free troposphere conditions. This last result may be taken as reference on a global scale. Furthermore, we observe that the more absorbing aerosols are overall more efficient at the BOA in contrast to at the TOA, where they backscatter less solar energy into the space. The analysis of the radiative balance at the TOA shows that, together with the amount of aerosols and their absorptive capacity, it is essential to consider the surface albedo of the region on which they are. Thus, we document that in regions with high surface reflectivity (deserts and snow conditions atmospheric aerosols lead to a warming of the Earth-atmosphere system.

  7. Impact of springtime biomass-burning aerosols on radiative forcing over northern Thailand during the 7SEAS campaign

    Science.gov (United States)

    Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Lee, Chung-Te; Tsay, Si-Chee; Holben, Brent; Janjai, Serm; Hsiao, Ta-Chih; Chuang, Ming-Tung; Chantara, Somporn

    2016-04-01

    dominate the both surface mass concentration and the columnar burden. The BC contributed only 6% to the aerosol mass loading, but its contribution to the total AOD and net atmospheric forcing were 12% and 75%, respectively. The mean radiative forcing was -6.8 to -8.7 W m-2 at the top-of-atmosphere and -28 to -33 W m-2 at surface. Furthermore BC aerosols contributed 45-49% to the surface radiative forcing along with the water soluble aerosols (49-52%), thus, significantly contributing to solar dimming

  8. A general method for computing the total solar radiation force on complex spacecraft structures

    Science.gov (United States)

    Chan, F. K.

    1981-01-01

    The method circumvents many of the existing difficulties in computational logic presently encountered in the direct analytical or numerical evaluation of the appropriate surface integral. It may be applied to complex spacecraft structures for computing the total force arising from either specular or diffuse reflection or even from non-Lambertian reflection and re-radiation.

  9. Generation and characterization of atto second pulses

    International Nuclear Information System (INIS)

    Mairesse, Y.

    2005-07-01

    Atto-second pulse trains in the extreme ultraviolet range can be produced by high-order harmonic generation, by focusing an intense femtosecond pulse in a rare gas jet. In this thesis, we present a temporal characterization of this radiation on the femtosecond and atto-second timescales. By transposing a spectral interferometry technique commonly used in the infrared range (SPIDER), we make a complete single-shot characterization of the temporal profile of individual harmonics, on the femtosecond timescale. In a second part, we study experimentally the atto-second structure of the harmonic radiation, and demonstrate a temporal drift in the emission: the lowest harmonics are emitted before the highest ones. This chirp, which is directly related to the electron dynamics in the generation process, imposes a lower limit to the duration that can be achieved by increasing the spectral range. We show how generating conditions can be optimized in order to enhance the synchronization in the emission, and how atto-second pulses can be re-compressed. Last, we propose a new technique for the complete characterization of arbitrary atto-second pulses: FROGCRAB. This method would allow simultaneous measurements of the femtosecond and atto-second structures of the radiation, and thus a complete knowledge of the atto-second light source in the perspective of applications. (author)

  10. Laser spectroscopy on atoms and ions using short-wavelength radiation

    International Nuclear Information System (INIS)

    Larsson, Joergen.

    1994-05-01

    Radiative properties and energy structures in atoms and ions have been investigated using UV/VUV radiation. In order to obtain radiation at short wavelengths, frequency mixing of pulsed laser radiation in crystals and gases has been performed using recently developed frequency-mixing schemes. To allow the study of radiative lifetimes shorter than the pulses from standard Q-switched lasers, different techniques have been used to obtain sufficiently short pulses. The Hanle effect has been employed following pulsed laser excitation for the same purpose. High-resolution spectroscopic techniques have been adapted for use with the broad-band, pulsed laser sources which are readily available in the UV/VUV spectral region. In order to investigate sources of radiation in the XUV and soft X-ray spectral regions, harmonic generation in rare gases has been studied. The generation of coherent radiation by the interaction between laser radiation and relativistic electrons in a synchrotron storage ring has also been investigated. 60 refs

  11. Impacts of Human Alteration of the Nitrogen Cycle in the U.S. on Radiative Forcing

    Science.gov (United States)

    Nitrogen cycling processes affect radiative forcing directly through emissions of nitrous oxide (N2O) and indirectly because emissions of nitrogen oxide (NO x ) and ammonia (NH3) affect atmospheric concentrations of methane (CH4), carbon dioxide (CO2), water vapor (H2O), ozone (O...

  12. Tropospheric Aerosol Radiative Forcing Observational eXperiment - University of Washington instrumented C-131A aircraft Data Set

    Data.gov (United States)

    National Aeronautics and Space Administration — TARFOX_UWC131A is the Tropospheric Aerosol Radiative Forcing Observational eXperiment (TARFOX) - University of Washington instrumented C-131A aircraft data set. The...

  13. Satellite observed impacts of wildfires on regional atmosphere composition and shortwave radiative forcing: multiple cases study

    Science.gov (United States)

    Fu, Y.; Li, R.; Huang, J.; Bergeron, Y.; Fu, Y.

    2017-12-01

    Emissions of aerosols and trace gases from wildfires and the direct shortwave radiative forcing were studied using multi-satellite/sensor observations from Aqua Moderate-Resolution Imaging Spectroradiometer (MODIS), Aqua Atmospheric Infrared Sounder (AIRS), Aura Ozone Monitoring Instrument (OMI), and Aqua Cloud's and the Earth's Radiant Energy System (CERES). The selected cases occurred in Northeast of China (NEC), Siberia of Russia, California of America have dominant fuel types of cropland, mixed forest and needleleaf forest, respectively. The Fire radiative power (FRP) based emission coefficients (Ce) of aerosol, NOx (NO2+NO), formaldehyde (HCHO), and carbon monoxide (CO) showed significant differences from case to case. 1) the FRP of the cropland case in NEC is strongest, however, the Ce of aerosol is the lowest (20.51 ± 2.55 g MJ-1). The highest Ce of aerosol is 71.34 ± 13.24 g MJ-1 in the needleleaf fire case in California. 2) For NOx, the highest Ce existed in the cropland case in NEC (2.76 ± 0.25 g MJ-1), which is more than three times of those in the forest fires in Siberia and California. 3) The Ce of CO is 70.21±10.97 and 88.38±46.16 g MJ-1 in the forest fires in Western Siberia and California, which are about four times of that in cropland fire. 4) The variation of Ce of HCHO are relatively small among cases. Strong spatial correlations are found among aerosol optical depth (AOD), NOx, HCHO, and CO. The ratios of NOx to AOD, HCHO, and CO in the cropland case in NEC show much higher values than those in other cases. Although huge differences of emissions and composition ratios exist among cases, the direct shortwave (SW) radiative forcing efficiency (SWARFE) of smoke at the top of the atmosphere (TOA) are in good agreement, with the shortwave radiative forcing efficiencies values of 20.09 to 22.93 per unit AOD. Results in this study reveal noteworthy variations of the FRP-based emissions coefficient and relative chemical composition in the smoke

  14. Effect of holed reflector on acoustic radiation force in noncontact ultrasonic dispensing of small droplets

    Science.gov (United States)

    Tanaka, Hiroki; Wada, Yuji; Mizuno, Yosuke; Nakamura, Kentaro

    2016-06-01

    We investigated the fundamental aspects of droplet dispensing, which is an important procedure in the noncontact ultrasonic manipulation of droplets in air. A holed reflector was used to dispense a droplet from a 27.4 kHz standing-wave acoustic field to a well. First, the relationship between the hole diameter of the reflector and the acoustic radiation force acting on a levitated droplet was clarified by calculating the acoustic impedance of the point just above the hole. When the hole diameter was half of (or equal to) the acoustic wavelength λ, the acoustic radiation force was ∼80% (or 50%) of that without a hole. The maximal diameters of droplets levitated above the holes through flat and half-cylindrical reflectors were then experimentally investigated. For instance, with the half-cylindrical reflector, the maximal diameter was 5.0 mm for a hole diameter of 6.0 mm, and droplets were levitatable up to a hole diameter of 12 mm (∼λ).

  15. A long-pulse repetitive operation magnetically insulated transmission line oscillator

    International Nuclear Information System (INIS)

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-01-01

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO

  16. A long-pulse repetitive operation magnetically insulated transmission line oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang [College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2014-05-15

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  17. A long-pulse repetitive operation magnetically insulated transmission line oscillator.

    Science.gov (United States)

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-05-01

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  18. Primary processes of the radiation-induced cationic polymerization of aromatic olefins studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Brede, O.; Boes, J.; Helmstreit, W.; Mehnert, R.

    1982-01-01

    By pulse radiolysis of solutions of aromatic olefins (styrene, 1-methylstyrene, 1,1-diphenylethylene) in non-polar solvents (cyclohexane, carbon tetrachloride, n-butylchloride) the mechanism and kinetics of primary processes of radiation-induced cationic polymerization were investigated. In cyclohexane, radical cations of the olefins are generated by charge transfer from solvent cations. These cations dimerize in a diffusion-controlled reaction. The next step of chain-growth is slower by 3 to 4 orders of magnitude. In carbon tetrachloride and in n-butyl chloride growing olefin cations are produced by a reaction of radical cations with solvent as well as by addition of solvent carbonium ions to the monomer. In strongly acidic aqueous solution of olefins radical cations produced indirectly from hydroxycyclohexadienyl radicals dimerize and react in a subsequent step by deprotonation forming non-saturated dimer radicals. The reaction mechanism established shows that in the case of radiation-induced cationic polymerization it is not possible to define a uniform first step of the chain reaction. (author)

  19. Pulsed laser light forces cancer cells to absorb anticancer drugs--the role of water in nanomedicine.

    Science.gov (United States)

    Sommer, Andrei P; Zhu, Dan; Mester, Adam R; Försterling, Horst-Dieter

    2011-06-01

    Anticancer drugs executing their function intracellularly enter cancer cells via diffusive processes. Complementary to these slow processes, cells can be forced to incorporate drugs by convection - a more efficient transport process. Transmembrane convection is induced by moderately intense pulsed laser light (or light emitting diodes) changing the structure of nanoscopic water layers in cells. This is a fundamental difference with the method of photodynamic therapy. In a model system we demonstrate that a total irradiation time of one minute is sufficient to completely inhibit proliferation of cancer cells. Transmembrane convection protects healthy cells from extended chemotherapy exposure, could be exploited to overcome multidrug resistance, and is a promising new tool in a variety of therapies as well as in skin rejuvenation.

  20. Method to calculating an internal electromagnetic pulse generated in a system under gamma radiation effect; Metod rascheta vnutrennego ehlektromagnitnogo impul`sa, generiruemogo v sisteme pri vozdejstvii gamma-izlucheniya

    Energy Technology Data Exchange (ETDEWEB)

    Ogorodnikov, S N

    1994-12-31

    A method of calculating internal electromagnetic pulse, generated in the system under effect of gamma radiation is developed. Ratios for basic electron flux characteristics and components of electric and magnetic fields generated by gamma radiation, are indicated for a cylindrical cavity under gamma radiation effect on its surface. To illustrate this a case is considered when a single flux velocity component is present.

  1. Generation of sub-100-fs Stokes pulses upon SRS in a barium nitrate crystal

    International Nuclear Information System (INIS)

    Konyashchenko, Aleksandr V; Losev, Leonid L; Tenyakov, S Yu

    2010-01-01

    72-fs pulses are generated at the first Stokes component frequency upon stimulated Raman scattering in a barium nitrate crystal for the radiation of the Ti 3+ :Al 2 O 3 laser with the pulse duration of 50 fs. The energy efficiency of conversion is 20%. The barium nitrate crystal was optically pumped by two consecutive orthogonally polarised chirped pulses with the following time compression of the Stokes radiation pulse. (nonlinear optical phenomena)

  2. Three-body radiative heat transfer and Casimir-Lifshitz force out of thermal equilibrium for arbitrary bodies

    Science.gov (United States)

    Messina, Riccardo; Antezza, Mauro

    2014-05-01

    We study the Casimir-Lifshitz force and the radiative heat transfer in a system consisting of three bodies held at three independent temperatures and immersed in a thermal environment, the whole system being in a stationary configuration out of thermal equilibrium. The theory we develop is valid for arbitrary bodies, i.e., for any set of temperatures, dielectric, and geometrical properties, and describes each body by means of its scattering operators. For the three-body system we provide a closed-form unified expression of the radiative heat transfer and of the Casimir-Lifshitz force (both in and out of thermal equilibrium). This expression is thus first applied to the case of three planar parallel slabs. In this context we discuss the nonadditivity of the force at thermal equilibrium, as well as the equilibrium temperature of the intermediate slab as a function of its position between two external slabs having different temperatures. Finally, we consider the force acting on an atom inside a planar cavity. We show that, differently from the equilibrium configuration, the absence of thermal equilibrium admits one or more positions of minima for the atomic potential. While the corresponding atomic potential depths are very small for typical ground-state atoms, they may become particularly relevant for Rydberg atoms, becoming a promising tool to produce an atomic trap.

  3. Numerical simulation of a TLD pulsed laser-heating scheme for determination of shallow dose and deep dose in low-LET radiation fields

    International Nuclear Information System (INIS)

    Kearfott, K.J.; Han, S.; Wagner, E.C.; Samei, E.; Wang, C.-K.C.

    2000-01-01

    A new method is described to determine the depth-dose distribution in low-LET radiation fields using a thick thermoluminescent dosimeter (TLD) with a pulsed laser-heating scheme to obtain TL glow output. The computational simulation entails heat conduction and glow curve production processes. An iterative algorithm is used to obtain the dose distribution in the detector. The simulation results indicate that the method can predict the shallow and deep dose in various radiation fields with relative errors less than 20%

  4. Investigating the performances of a 1 MV high pulsed power linear transformer driver: from beam dynamics to x radiation

    Science.gov (United States)

    Maisonny, R.; Ribière, M.; Toury, M.; Plewa, J. M.; Caron, M.; Auriel, G.; d'Almeida, T.

    2016-12-01

    The performance of a 1 MV pulsed high-power linear transformer driver accelerator were extensively investigated based on a numerical approach which utilizes both electromagnetic and Monte Carlo simulations. Particle-in-cell calculations were employed to examine the beam dynamics throughout the magnetically insulated transmission line which governs the coupling between the generator and the electron diode. Based on the information provided by the study of the beam dynamics, and using Monte Carlo methods, the main properties of the resulting x radiation were predicted. Good agreement was found between these simulations and experimental results. This work provides a detailed understanding of mechanisms affecting the performances of this type of high current, high-voltage pulsed accelerator, which are very promising for a growing number of applications.

  5. Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam

    Directory of Open Access Journals (Sweden)

    J. M. Cole

    2018-02-01

    Full Text Available The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today’s lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (ϵ>500  MeV with an intense laser pulse (a_{0}>10. We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays, consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy ϵ_{crit}>30  MeV.

  6. The Effect of Asian Dust Aerosols on Cloud Properties and Radiative Forcing from MODIS and CERES

    Science.gov (United States)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk

    2005-01-01

    The effects of dust storms on cloud properties and radiative forcing are analyzed over northwestern China from April 2001 to June 2004 using data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of the cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. The humidity differences are larger in the dusty region than in the dust-free region, and may be caused by removal of moisture by wet dust precipitation. Due to changes in cloud microphysics, the instantaneous net radiative forcing is reduced from -71.2 W/m2 for dust contaminated clouds to -182.7 W/m2 for dust-free clouds. The reduced cooling effects of dusts may lead to a net warming of 1 W/m2, which, if confirmed, would be the strongest aerosol forcing during later winter and early spring dust storm seasons over the studied region.

  7. Radiative forcing of the desert aerosol at Ouarzazate (Morocco)

    Science.gov (United States)

    Tahiri, Abdelouahid; Diouri, Mohamed

    2018-05-01

    The atmospheric aerosol contributes to the definition of the climate with direct effect, the diffusion and absorption of solar and terrestrial radiations, and indirect, the cloud formation process where aerosols behave as condensation nuclei and alter the optical properties. Satellites and ground-based networks (solar photometers) allow the terrestrial aerosol observation and the determination of impact. Desert aerosol considered among the main types of tropospheric aerosols whose optical property uncertainties are still quite important. The analysis concerns the optical parameters recorded in 2015 at Ouarzazate solar photometric station (AERONET/PHOTONS network, http://aeronet.gsfc.nasa.gov/) close to Saharan zone. The daily average aerosol optical depthτaer at 0.5μm, are relatively high in summer and less degree in spring (from 0.01 to 1.82). Daily average of the Angstrom coefficients α vary between 0.01 and 1.55. The daily average of aerosol radiative forcing at the surface range between -150W/m2 and -10 W/m2 with peaks recorded in summer, characterized locally by large loads of desert aerosol in agreement with the advections of the Southeast of Morocco. Those recorded at the Top of the atmosphere show a variation from -74 W/m2 to +24 W/m2

  8. The effect of applied electric field on pulsed radio frequency and pulsed direct current plasma jet array

    International Nuclear Information System (INIS)

    Hu, J. T.; Liu, X. Y.; Liu, J. H.; Xiong, Z. L.; Liu, D. W.; Lu, X. P.; Iza, F.; Kong, M. G.

    2012-01-01

    Here we compare the plasma plume propagation characteristics of a 3-channel pulsed RF plasma jet array and those of the same device operated by a pulsed dc source. For the pulsed-RF jet array, numerous long life time ions and metastables accumulated in the plasma channel make the plasma plume respond quickly to applied electric field. Its structure similar as “plasma bullet” is an anode glow indeed. For the pulsed dc plasma jet array, the strong electric field in the vicinity of the tube is the reason for the growing plasma bullet in the launching period. The repulsive forces between the growing plasma bullets result in the divergence of the pulsed dc plasma jet array. Finally, the comparison of 309 nm and 777 nm emissions between these two jet arrays suggests the high chemical activity of pulsed RF plasma jet array.

  9. Comparison of acoustic radiation force impulse imaging (ARFI) to liver biopsy histologic scores in the evaluation of chronic liver disease: A pilot study.

    Science.gov (United States)

    Haque, Mazhar; Robinson, Charlotte; Owen, David; Yoshida, Eric M; Harris, Alison

    2010-01-01

    Acoustic Radiation Force Impulse Imaging (ARFI) is a novel non invasive technique studying the localized mechanical properties of tissue by utilising short, high intensity acoustic pulses (shear wave pulses) to assess the mechanical response (tissue displacement), providing a measure of tissue elasticity. The aim of this study is to investigate the feasibility of ARFI imaging as a non-invasive method for the assessment of liver fibrosis compared to liver biopsy scores. A prospective blind comparison study of ARFI elastography (Virtual Touch Imaging., ACUSON S2000 Ultrasound Unit, Siemens, Mountain View CA) in a consecutive series of patients who underwent liver biopsy for assessment of fibrosis in chronic liver disease. ARFI shear-wave propagation velocity was measured in meters per second. Mean ARFI velocities were compared with both Batts-Ludwig (F0 to F4) and Modified Ishak scores (F0 to F4) for fibrosis in liver biopsy findings. Twenty-one patients with chronic liver disease (Hepatitis C (HCV) =16, Hepatitis B (HBV) = 1, both HCV and HBV = 1 Alcoholic liver disease (ALD) = 1, others = 2) underwent ARFI and liver biopsy on the same day. The Spearman correlation coefficients between the median values of the ARFI measurements and the histological fibrosis stage of the Modified Ishak score and Batts-Lud- (3) wig score were both highly significant (p shak score in chronic liver disease. It.s accuracy in prediction of severe fibrosis and cirrhosis is maximal in comparison with earlier stages.

  10. Controlling output pulse and prepulse in a resonant microwave pulse compressor

    International Nuclear Information System (INIS)

    Shlapakovski, A.; Artemenko, S.; Chumerin, P.; Yushkov, Yu.

    2013-01-01

    A resonant microwave pulse compressor with a waveguide H-plane-tee-based energy extraction unit was studied in terms of its capability to produce output pulses that comprise a low-power long-duration (prepulse) and a high-power short-duration part. The application of such combined pulses with widely variable prepulse and high-power pulse power and energy ratios is of interest in the research area of electronic hardware vulnerability. The characteristics of output radiation pulses are controlled by the variation of the H-plane tee transition attenuation at the stage of microwave energy storage in the compressor cavity. Results of theoretical estimations of the parameters tuning range and experimental investigations of the prototype S-band compressor (1.5 MW, 12 ns output pulse; ∼13.2 dB gain) are presented. The achievable maximum in the prepulse power is found to be about half the power of the primary microwave source. It has been shown that the energy of the prepulse becomes comparable with that of the short-duration (nanosecond) pulse, while the power of the latter decreases insignificantly. The possible range of variation of the prepulse power and energy can be as wide as 40 dB. In the experiments, the prepulse level control within the range of ∼10 dB was demonstrated.

  11. Characteristics of the saturation curve of the ionization chambers in overlapping pulsed beams

    International Nuclear Information System (INIS)

    Park, S.H.; Kim, Y.K.; Kim, H.S.; Kang, S.M.; Ha, J.H.

    2006-01-01

    When a pulsed radiation is incident on an air-filled ionization chamber wherein the primary electrons are rapidly absorbed to become negative ions, it is known that the reciprocal of the ionizing current is linearly proportional to the reciprocal of the polarization voltage in the near saturation region. However, the relationship between the reciprocal of the ionizing current and the reciprocal of the polarization voltage will deviate from a simple linearity when the ion transit time in the ionization chamber is longer than the interval between the radiation pulses. Two thimble-type ionization chambers, one of which was designed and fabricated by us, were employed to measure the saturation curves of the ionization chambers in a pulsed Bremsstrahlung X-ray, which was generated with an electron accelerator. A model was developed to explain the shape of the measured saturation curves in the overlapping pulsed radiation, and the results of it were compared with the measured ones. The dependency of the shape of the saturation curve on the geometrical design of the ionization chambers in the pulsed radiation was discussed

  12. Generation and amplification of sub-THz radiation in a rare gases plasma formed by a two-color femtosecond laser pulse

    Science.gov (United States)

    Bogatskaya, A. V.; Volkova, E. A.; Popov, A. M.

    2018-06-01

    A new approach to constructing the source of radiation in the sub-THz frequency range is discussed. It is based on the strong-field ionization of heavy rare gases with Ramsauer minimum in the transport cross-section by a two-color () femtosecond laser pulse. Then a four-photon nonlinear process ( are the frequencies from the spectral width of the pulse with frequency ω, and is the frequency from the spectral width of the second harmonic 2ω) with a transition to the initial state results in a low-frequency spontaneous emission that can be amplified in the strongly nonequilibrium laser plasma if the position of the photoelectron peaks is located in the region of growing energy transport cross-section.

  13. Pulse radiolysis based on a femtosecond electron beam and a femtosecond laser light with double-pulse injection technique

    International Nuclear Information System (INIS)

    Yang Jinfeng; Kondoh, Takafumi; Kozawa, Takahiro; Yoshida, Youichi; Tagawa, Seiichi

    2006-01-01

    A new pulse radiolysis system based on a femtosecond electron beam and a femtosecond laser light with oblique double-pulse injection was developed for studying ultrafast chemical kinetics and primary processes of radiation chemistry. The time resolution of 5.2 ps was obtained by measuring transient absorption kinetics of hydrated electrons in water. The optical density of hydrated electrons was measured as a function of the electron charge. The data indicate that the double-laser-pulse injection technique was a powerful tool for observing the transient absorptions with a good signal to noise ratio in pulse radiolysis

  14. Study of Coherence Limits and Chirp Control in Long Pulse FEL Oscillator

    CERN Document Server

    Gover, Avraham; Socol, Yehoshua; Volshonok, Mark

    2004-01-01

    Electrostatic Accelerator FELs have the capacity to generate long pulses of tens microseconds and more, that in principle can be elongated indefinitely (CW operation). This allows the generation of very coherent radiation. The fundamental linewidth is extremely narrow [1], and in practice the spectral width is limited by the pulse duration (Fourier transform limit) and e-beam stability. Practical problems such as the accelerator terminal voltage drop due to a non-ideal electron beam transport may reduce the length of the radiation pulse and hence create a limiting factor for coherence measurement. The current status of the Israeli Tandem Electrostatic Accelerator FEL allows the generation of pulses of tens microseconds duration. It has been operated recently past saturation, and produces single mode coherent radiation of relative linewidth ~Δf/f=10-5 at frequencies near 100GHz. A clear frequency chirp is observed during pulses of tens of microseconds (0.1-1 MHz/mS), and is directly proportional to th...

  15. Multi-Model Simulations of Aerosol and Ozone Radiative Forcing Due to Anthropogenic Emission Changes During the Period 1990-2015

    Science.gov (United States)

    Myhre, Gunnar; Aas, Wenche; Ribu, Cherian; Collins, William; Faluvegi, Gregory S.; Flanner, Mark; Forster, Piers; Hodnebrog, Oivind; Klimont, Zbigniew; Lund, Marianne T.

    2017-01-01

    Over the past few decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and air pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990-2015, as simulated by seven global atmospheric composition models. The models broadly reproduce large-scale changes in surface aerosol and ozone based on observations (e.g. 1 to 3 percent per year in aerosols over the USA and Europe). The global mean radiative forcing due to ozone and aerosol changes over the 1990-2015 period increased by 0.17 plus or minus 0.08 watts per square meter, with approximately one-third due to ozone. This increase is more strongly positive than that reported in IPCC AR5 (Intergovernmental Panel on Climate Change Fifth Assessment Report). The main reasons for the increased positive radiative forcing of aerosols over this period are the substantial reduction of global mean SO2 emissions, which is stronger in the new emission inventory compared to that used in the IPCC analysis, and higher black carbon emissions.

  16. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1996-01-01

    The National Institute for Nuclear Research has established a Radiation detector laboratory that has the possibility of providing to the consultants on the handling and applications of the nuclear radiation detectors. It has special equipment to repair the radiation detectors used in spectroscopy as the hyper pure Germanium for gamma radiation and the Lithium-silica for X-rays. There are different facilities in the laboratory that can become useful for other institutions that use radiation detectors. This laboratory was created to satisfy consultant services, training and repairing of the radiation detectors both in national and regional levels for Latin America. The laboratory has the following sections: Nuclear Electronic Instrumentation; where there are all kind of instruments for the measurement and characterization of detectors like multichannel analyzers of pulse height, personal computers, amplifiers and nuclear pulse preamplifiers, nuclear pulses generator, aleatories, computer programs for radiation spectra analysis, etc. High vacuum; there is a vacuum escape measurer, two high vacuum pumps to restore the vacuum of detectors, so the corresponding measurers and the necessary tools. Detectors cleaning; there is an anaerobic chamber for the detectors handling at inert atmosphere, a smoke extraction bell for cleaning with the detector solvents. Cryogenic; there are vessels and tools for handling liquid nitrogen which is used for cooling the detectors when they required it. (Author)

  17. Acoustical radiation torque and force for spheres and Bessel beam extinction efficiency

    Science.gov (United States)

    Marston, Philip L.; Zhang, Likun

    2014-11-01

    The scattering of optical and acoustical beams is relevant to the levitation and manipulation of drops. Here we examine theoretical developments in the acoustical case. We previously showed how the optical theorem for extinction can be extended to invariant beams. The example of a sphere in a Bessel beam facilitates the direct comparison with a circular disc computed using Babinet's principle and the Kirchhoff approximation. In related work, by considering traveling or standing wave first-order vortex beams we previously showed that the radiation torque is the ratio of the absorbed power and the radian acoustic frequency. By modifying the scattering to account for the viscosity of the surrounding fluid in the analysis of the absorbed power, approximations for radiation torque and force are obtained at long wavelengths in special cases and these can be compared with results published elsewhere.

  18. Pulse radiolysis of liquid water using picosecond electron pulses produced by a table-top terawatt laser system

    International Nuclear Information System (INIS)

    Saleh, Ned; Flippo, Kirk; Nemoto, Koshichi; Umstadter, Donald; Crowell, Robert A.; Jonah, Charles D.; Trifunac, Alexander D.

    2000-01-01

    A laser based electron generator is shown, for the first time, to produce sufficient charge to conduct time resolved investigations of radiation induced chemical events. Electron pulses generated by focussing terawatt laser pulses into a supersonic helium gas jet are used to ionize liquid water. The decay of the hydrated electrons produced by the ionizing electron pulses is monitored with 0.3 μs time resolution. Hydrated electron concentrations as high as 22 μM were generated. The results show that terawatt lasers offer both an alternative to linear accelerators and a means to achieve subpicosecond time resolution for pulse radiolysis studies. (c) 2000 American Institute of Physics

  19. Effect of pulsed electron beam on cell killing

    International Nuclear Information System (INIS)

    Acharya, Santhosh; Joseph, Praveen; Sanjeev, Ganesh; Narayana, Y.; Bhat, N.N.

    2009-01-01

    The extent of repairable and irreparable damage in a living cell produced by ionizing radiation depends on the quality of the radiation. In the case of sparsely ionizing radiation, the dose rate and the pattern of energy deposition of the radiation are the important physical factors which can affect the amount of damage in living cells. In the present study, radio-sensitive and radioresistive bacteria cells were exposed to 8 MeV pulsed electron beam and the efficiency of cell-killing was investigated to evaluate the Do, the mean lethal dose. The dose to the cell was delivered in micro-second pulses at an instantaneous dose rate of 2.6 x 10 5 Gy s -1 . Fricke dosimeter was used to measure the absorbed dose of electron beam. The results were compared with those of gamma rays. The survival curve of radio-resistive Deinococcus-radiodurans (DR) is found to be sigmoidal and the survival response for radio-sensitive Escherichia-coli (E-coli) is found to be exponential without any shoulder. Comparison of Do values indicate that irradiation with pulsed electron beam resulted in more cell-killing than was observed for gamma irradiation. (author)

  20. Signal processing for radiation detectors

    CERN Document Server

    Nakhostin, Mohammad

    2018-01-01

    This book provides a clear understanding of the principles of signal processing of radiation detectors. It puts great emphasis on the characteristics of pulses from various types of detectors and offers a full overview on the basic concepts required to understand detector signal processing systems and pulse processing techniques. Signal Processing for Radiation Detectors covers all of the important aspects of signal processing, including energy spectroscopy, timing measurements, position-sensing, pulse-shape discrimination, and radiation intensity measurement. The book encompasses a wide range of applications so that readers from different disciplines can benefit from all of the information. In addition, this resource: * Describes both analog and digital techniques of signal processing * Presents a complete compilation of digital pulse processing algorithms * Extrapolates content from more than 700 references covering classic papers as well as those of today * Demonstrates concepts with more than 340 origin...

  1. Evaluation of cytogenetic effects of very short laser pulsed radiations

    International Nuclear Information System (INIS)

    Guedeney, G.; Courant, D.; Malarbet, J.-L.; Dolloy, M.-T.; Court, L.

    1992-01-01

    The aim of this study is to evaluate the capacity of a laser, delivering very short pulses in the near infrared spectrum with a high pulse ratio frequency, to induce genetic modification on biological tissues. Chromatid exchanges and chromosomal aberrations studies are used to test potential effect on human lymphocytes. The laser irradiation induces a significant increase of acentric fragments but the absence of dicentric suggests that a repetitive very short pulses irradiation has a relatively low capacity to induce genetic abnormalities. (author)

  2. Estimation of shortwave direct aerosol radiative forcing at four locations on the Indo-Gangetic plains: Model results and ground measurement

    Science.gov (United States)

    Bibi, Humera; Alam, Khan; Bibi, Samina

    2017-08-01

    This study provides observational results of aerosol optical and radiative characteristics over four locations in IGP. Spectral variation of Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA) and Asymmetry Parameter (AP) were analysed using AErosol RObotic NETwork (AERONET) data. The analysis revealed that coarse particles were dominant in summer and pre-monsoon, while fine particles were more pronounced in winter and post-monsoon. Furthermore, the spatio-temporal variations of Shortwave Direct Aerosol Radiative Forcing (SDARF) and Shortwave Direct Aerosol Radiative Forcing Efficiency (SDARFE) at the Top Of Atmosphere (TOA), SURface (SUR) and within ATMosphere (ATM) were calculated using SBDART model. The atmospheric Heating Rate (HR) associated with SDARFATM were also computed. It was observed that the monthly averaged SDARFTOA and SDARFSUR were found to be negative leading to positive SDARFATM during all the months over all sites. The increments in net atmospheric forcing lead to maximum HR in November-December and May. The seasonal analysis of SDARF revealed that SDARFTOA and SDARFSUR were negative during all seasons. The SW atmospheric absorption translates to highest atmospheric HR during summer over Karachi and during pre-monsoon over Lahore, Jaipur and Kanpur. Like SDARF, the monthly and seasonal variations of SDARFETOA and SDARFESUR were found to be negative, resulting in positive atmospheric forcing. Additionally, to compare the model estimated forcing against AERONET derived forcing, the regression analysis of AERONET-SBDART forcing were carried out. It was observed that SDARF at SUR and TOA showed relatively higher correlation over Lahore, moderate over Jaipur and Kanpur and lower over Karachi. Finally, the analysis of National Oceanic and Atmospheric Administration Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model revealed that air masses were arriving from multiple source locations.

  3. An ideal scintillator – ZnO:Sc for sub-nanosecond pulsed radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kan, E-mail: zhangkan8414@163.com [Northwest Institute of Nuclear Technology, Xi’an 710024 (China); Ouyang, Xiaoping [Northwest Institute of Nuclear Technology, Xi’an 710024 (China); Xi’an Jiaotong University, Xi’an 710049 (China); Song, Zhaohui; Han, Hetong [Northwest Institute of Nuclear Technology, Xi’an 710024 (China); Zuo, Yanbin [China Nonferrous Metal Guilin Research Institute of Geology for Mineral Resource, Guilin 541004 (China); Guan, Xingyin [Northwest Institute of Nuclear Technology, Xi’an 710024 (China); Xi’an Jiaotong University, Xi’an 710049 (China); Tan, Xinjian; Zhang, Zichuan; Liu, Junhong [Northwest Institute of Nuclear Technology, Xi’an 710024 (China)

    2014-08-21

    ZnO-based scintillators are particularly well suited for use as ultrafast pulsed radiation detectors which have shown broad application prospects in various fields such as the inertial confinement fusion (ICF) diagnosis, the nuclear reaction mechanism, etc. Using the hydro-thermal method, a ZnO single-crystal doped with Scandium (ZnO:Sc) sample was prepared. As a new ZnO-based scintillator, the scintillation characteristics of ZnO:Sc have not been reported previously. In this paper, optical and scintillation characteristics of ZnO:Sc single-crystal were studied. Also a scintillation detector based on ZnO:Sc was designed. Excited by the alpha-particle, the rise time of ZnO:Sc detectors was from 162.5 to 170.7 ps, and the fall time was from 300.4 to 328.8 ps.

  4. An ideal scintillator – ZnO:Sc for sub-nanosecond pulsed radiation detection

    International Nuclear Information System (INIS)

    Zhang, Kan; Ouyang, Xiaoping; Song, Zhaohui; Han, Hetong; Zuo, Yanbin; Guan, Xingyin; Tan, Xinjian; Zhang, Zichuan; Liu, Junhong

    2014-01-01

    ZnO-based scintillators are particularly well suited for use as ultrafast pulsed radiation detectors which have shown broad application prospects in various fields such as the inertial confinement fusion (ICF) diagnosis, the nuclear reaction mechanism, etc. Using the hydro-thermal method, a ZnO single-crystal doped with Scandium (ZnO:Sc) sample was prepared. As a new ZnO-based scintillator, the scintillation characteristics of ZnO:Sc have not been reported previously. In this paper, optical and scintillation characteristics of ZnO:Sc single-crystal were studied. Also a scintillation detector based on ZnO:Sc was designed. Excited by the alpha-particle, the rise time of ZnO:Sc detectors was from 162.5 to 170.7 ps, and the fall time was from 300.4 to 328.8 ps

  5. Current Status and Recommendations for the Future of Research, Teaching, and Testing in the Biological Sciences of Radiation Oncology: Report of the American Society for Radiation Oncology Cancer Biology/Radiation Biology Task Force, Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, Paul E., E-mail: pwallner@theabr.org [21st Century Oncology, LLC, and the American Board of Radiology, Bethesda, Maryland (United States); Anscher, Mitchell S. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Barker, Christopher A. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Bassetti, Michael [Department of Human Oncology, University of Wisconsin Carbone Cancer Center, Madison, Wisconsin (United States); Bristow, Robert G. [Departments of Radiation Oncology and Medical Biophysics, Princess Margaret Cancer Center/University of Toronto, Toronto, Ontario (Canada); Cha, Yong I. [Department of Radiation Oncology, Norton Cancer Center, Louisville, Kentucky (United States); Dicker, Adam P. [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Formenti, Silvia C. [Department of Radiation Oncology, New York University, New York, New York (United States); Graves, Edward E. [Departments of Radiation Oncology and Radiology, Stanford University, Stanford, California (United States); Hahn, Stephen M. [Department of Radiation Oncology, University of Pennsylvania (United States); Hei, Tom K. [Center for Radiation Research, Columbia University, New York, New York (United States); Kimmelman, Alec C. [Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Kirsch, David G. [Department of Radiation Oncology, Duke University, Durham, North Carolina (United States); Kozak, Kevin R. [Department of Human Oncology, University of Wisconsin (United States); Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan (United States); Marples, Brian [Department of Radiation Oncology, Oakland University, Oakland, California (United States); and others

    2014-01-01

    In early 2011, a dialogue was initiated within the Board of Directors (BOD) of the American Society for Radiation Oncology (ASTRO) regarding the future of the basic sciences of the specialty, primarily focused on the current state and potential future direction of basic research within radiation oncology. After consideration of the complexity of the issues involved and the precise nature of the undertaking, in August 2011, the BOD empanelled a Cancer Biology/Radiation Biology Task Force (TF). The TF was charged with developing an accurate snapshot of the current state of basic (preclinical) research in radiation oncology from the perspective of relevance to the modern clinical practice of radiation oncology as well as the education of our trainees and attending physicians in the biological sciences. The TF was further charged with making suggestions as to critical areas of biological basic research investigation that might be most likely to maintain and build further the scientific foundation and vitality of radiation oncology as an independent and vibrant medical specialty. It was not within the scope of service of the TF to consider the quality of ongoing research efforts within the broader radiation oncology space, to presume to consider their future potential, or to discourage in any way the investigators committed to areas of interest other than those targeted. The TF charge specifically precluded consideration of research issues related to technology, physics, or clinical investigations. This document represents an Executive Summary of the Task Force report.

  6. Impact of Two Intense Dust Storms on Aerosol Characteristics and Radiative Forcing over Patiala, Northwestern India

    Directory of Open Access Journals (Sweden)

    Deepti Sharma

    2012-01-01

    Full Text Available Impact of dust storms on the aerosol characteristics and radiative forcing over Patiala, northwestern India has been studied during April-June of 2010 using satellite observations and ground-based measurements. Six dust events (DE have been identified during the study period with average values of Aqua-MODIS AOD550 and Microtops-II AOD500 over Patiala as 1.00±0.51 and 0.84±0.41, respectively while Aura-OMI AI exhibits high values ranging from 2.01 to 6.74. The Ångström coefficients α380–870 and β range from 0.12 to 0.31 and 0.95 to 1.40, respectively. The measured spectral AODs, the OPAC-derived aerosol properties and the surface albedo obtained from MODIS were used as main inputs in SBDART model for the calculation of aerosol radiative forcing (ARF over Patiala. The ARF at surface (SRF and top of atmosphere (TOA ranges from ∼−50 to −100 Wm−2 and from ∼−10 to −25 Wm−2, respectively during the maximum of dust storms. The radiative forcing efficiency was found to be −66 Wm−2AOD−1 at SRF and −14 Wm−2AOD−1 at TOA. High values of ARF in the atmosphere (ATM, ranging between ∼+40 Wm−2 and +80.0 Wm−2 during the DE days, might have significant effect on the warming of the lower and middle atmosphere and, hence, on climate over northwestern India.

  7. Development of a new picosecond pulse radiolysis system by using a femtosecond laser synchronized with a picosecond linac. A step to femtosecond pulse radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Yoichi; Yamamoto, Tamotsu; Miki, Miyako; Seki, Shu; Okuda, Shuichi; Honda, Yoshihide; Kimura, Norio; Tagawa, Seiichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Ushida, Kiminori

    1997-03-01

    A new picosecond pulse radiolysis system by using a Ti sapphire femtosecond laser synchronized with a 20 ps electron pulse from the 38 MeV L-band linac has been developed for the research of the ultra fast reactions in primary processes of radiation chemistry. The timing jitter in the synchronization of the laser pulse with the electron pulse is less than several picosecond. The technique can be used in the next femtosecond pulse radiolysis. (author)

  8. Solar Radiation as Driving Force In Early Evolution

    Science.gov (United States)

    Rothschild, Lynn J.; Peterson, David L. (Technical Monitor)

    2002-01-01

    Ultraviolet radiation (UVR) has provided an evolutionary challenge to life on Earth in that it is both an agent of mutation and as well as a selective force. Today surface fluxes of UVR vary diurnally, seasonally, etc. Still, the UVR flux was probably substantially higher during the early phases of evolution, suggesting that its role in evolution was even more prominent during this time. In this presentation, the creative role of UVR in evolution is discussed, specifically in connection with the role that UVR may have played in the evolution of early microbial ecosystems. The presentation will include discussions of the direct influence of UVR on such processes as photosynthesis and genetic damage, as well as the indirect influence of UVR as mediated through the production of reactive oxygen species. These biological effects of UVR will be viewed against the backdrop of the physical nature of the early Earth, surely a very different place then than now.

  9. Nonlinear Thomson scattering of a relativistically strong tightly focused ultrashort laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Vais, O. E.; Bochkarev, S. G., E-mail: bochkar@sci.lebedev.ru; Bychenkov, V. Yu. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2016-09-15

    The problem of nonlinear Thomson scattering of a relativistically strong linearly polarized ultrashort laser pulse tightly focused into a spot with a diameter of D{sub F} ≳ λ (where λ is the laser wavelength) is solved. The energy, spectral, and angular distributions of radiation generated due to Thomson scattering from test electrons located in the focal region are found. The characteristics of scattered radiation are studied as functions of the tightness of laser focusing and the initial position of test particles relative to the center of the focal region for a given laser pulse energy. It is demonstrated that the ultratight focusing is not optimal for obtaining the brightest and hardest source of secondary electromagnetic radiation. The hardest and shortest radiation pulse is generated when the beam waist diameter is ≃10λ.

  10. Placement and efficiency effects on radiative forcing of solar installations

    International Nuclear Information System (INIS)

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno

    2015-01-01

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes

  11. Placement and efficiency effects on radiative forcing of solar installations

    Energy Technology Data Exchange (ETDEWEB)

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno, E-mail: bmi@zurich.ibm.com [IBM Research - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland)

    2015-09-28

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes.

  12. Efficient compression of the femtosecond pulses of an ytterbium laser in a gas-filled capillary

    International Nuclear Information System (INIS)

    Konyashchenko, Aleksandr V; Losev, Leonid L; Tenyakov, S Yu

    2011-01-01

    A 290-fs radiation pulse of an ytterbium laser system with a central wavelength of 1028 nm and an energy of 145 μJ was compressed to a 27-fs pulse with an energy of 75 μJ. The compression was realised on the basis of the effect of pulse spectrum broadening in a xenon-filled glass capillary for a pulse repetition rate of 3kHz. (control of laser radiation parameters)

  13. Direct radiative forcing properties of atmospheric aerosols over semi-arid region, Anantapur in India

    Energy Technology Data Exchange (ETDEWEB)

    Kalluri, Raja Obul Reddy; Gugamsetty, Balakrishnaiah [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Kotalo, Rama Gopal, E-mail: krgverma@yahoo.com [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Nagireddy, Siva Kumar Reddy; Tandule, Chakradhar Rao; Thotli, Lokeswara Reddy [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Rajuru Ramakrishna, Reddy [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Srinivasa Ramanujan Institute of Technology, B.K. Samudram Mandal, Anantapur 515 701, Andhra Pradesh (India); Surendranair, Suresh Babu [Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum 695 022, Kerala (India)

    2016-10-01

    This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500 nm are found to be 0.47 ± 0.09, 0.34 ± 0.08, 0.29 ± 0.06 and 0.30 ± 0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α{sub 380–1020}) value is observed maximum in March (1.25 ± 0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33 ± 0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00–08:00 (IST) and evening 19:00–21:00 (IST) hours and one minima noticed during afternoon (13:00–16:00). The highest monthly mean BC concentration is observed in the month of January (3.4 ± 1.2 μg m{sup −3}) and the lowest in July (1.1 ± 0.2 μg m{sup −3}). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be + 36.8 ± 1.7 W m{sup −2}, + 26.9 ± 0.2 W m{sup −2}, + 18.0 ± 0.6 W m{sup −2} and + 18.5 ± 3.1 W m{sup −2} during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80 W m{sup −2}) which contributes more increase in atmospheric heating by ~ 1 K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating. - Highlights: • The mean values of AOD{sub 500} are found to be high during summer whereas low in monsoon. • The highest values of BC are observed in January and the lowest in the month of July. • The annual mean

  14. Direct radiative forcing properties of atmospheric aerosols over semi-arid region, Anantapur in India

    International Nuclear Information System (INIS)

    Kalluri, Raja Obul Reddy; Gugamsetty, Balakrishnaiah; Kotalo, Rama Gopal; Nagireddy, Siva Kumar Reddy; Tandule, Chakradhar Rao; Thotli, Lokeswara Reddy; Rajuru Ramakrishna, Reddy; Surendranair, Suresh Babu

    2016-01-01

    This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500 nm are found to be 0.47 ± 0.09, 0.34 ± 0.08, 0.29 ± 0.06 and 0.30 ± 0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α_3_8_0_–_1_0_2_0) value is observed maximum in March (1.25 ± 0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33 ± 0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00–08:00 (IST) and evening 19:00–21:00 (IST) hours and one minima noticed during afternoon (13:00–16:00). The highest monthly mean BC concentration is observed in the month of January (3.4 ± 1.2 μg m"−"3) and the lowest in July (1.1 ± 0.2 μg m"−"3). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be + 36.8 ± 1.7 W m"−"2, + 26.9 ± 0.2 W m"−"2, + 18.0 ± 0.6 W m"−"2 and + 18.5 ± 3.1 W m"−"2 during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80 W m"−"2) which contributes more increase in atmospheric heating by ~ 1 K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating. - Highlights: • The mean values of AOD_5_0_0 are found to be high during summer whereas low in monsoon. • The highest values of BC are observed in January and the lowest in the month of July. • The annual mean atmospheric forcing is found to be

  15. Optical force on a discrete invisibility cloak in time-dependent fields

    International Nuclear Information System (INIS)

    Chaumet, Patrick C.; Zolla, Frederic; Nicolet, Andre; Belkebir, Kamal; Rahmani, Adel

    2011-01-01

    We study, in time domain, the exchange of momentum between an electromagnetic pulse and a three-dimensional, discrete, spherical invisibility cloak. We find that a discrete cloak, initially at rest, would experience an electromagnetic force due to the pulse but would acquire zero net momentum and net displacement. On the other hand, we find that while the cloak may manage to conceal an object and shroud it from the electromagnetic forces associated with the pulse, the cloak itself can experience optomechanical stress on a scale much larger than the object would in the absence of the cloak. We also consider the effects of material dispersion and losses on the electromagnetic forces experienced by the cloak and show that they lead to a transfer of momentum from the pulse to the cloak.

  16. Luminescent Characteristics of a Pulsed Discharge Plasma in Xe-KBr Mixture

    Science.gov (United States)

    Heneral, A. A.; Zhmenyak, Y. V.

    2018-03-01

    A mixture of xenon with a nontoxic halogen carrier Xe-KBr is used to create a plasma radiation source at the 282-nm transition of the XeBr* molecule excited by a high-voltage pulsed-periodic discharge. The luminescence spectra of the plasma of a longitudinal pulsed-periodic discharge in the Xe-KBr mixture at low pressures are studied experimentally. The most intense UV bands of exciplex XeBr* molecules are recorded in the spectral range of 250-350 nm. The spectral, temporal, and energetic characteristics of the radiation source are presented, as well as the dependence of the XeBr* exciplex molecule formation efficiency on the discharge excitation conditions. The optimal conditions for the excitation of UV radiation in the pulsed-periodic discharge plasma are determined.

  17. Characteristics of the evolution of a plasma generated by radiation from CW and repetitively pulsed CO2 lasers in different gases

    Science.gov (United States)

    Kanevskii, M. F.; Stepanova, M. A.

    1990-06-01

    The interaction between high-power CW and repetitively pulsed CO2 laser radiation and a low-threshold optical-breakdown plasma near a metal surface is investigated. The characteristics of the breakdown plasma are examined as functions of the experimental conditions. A qualitative analysis of the results obtained was performed using a simple one-dimensional model for laser combustion waves.

  18. Breaking time-resolution limits in pulse radiolysis

    International Nuclear Information System (INIS)

    Yang Jinfeng; Kondoh, Takafumi; Norizawa, Kimihiro; Yoshida, Yoichi; Tagawa, Seiichi

    2009-01-01

    Pulse radiolysis, which is a time-resolved stroboscopic method based on ultrashort electron pulse and ultrashort analyzing light, is widely used for the study of the chemical kinetics and radiation primary processes or reactions. Although it has become possible to use femtosecond-pulse electron beam and femtosecond laser light in pulse radiolysis, the resolution is limited by the difference in group velocities of the electrons and the light in sample. In this contribution, we introduce a concept of equivalent velocity spectroscopy (EVS) into pulse radiolysis and demonstrate the methodology experimentally. In EVS, both the electron and the analyzing light pulses precisely overlap at every point in the sample and throughout the propagation time by rotating the electron pulse. The advance allows us to overcome the resolution degradation due to the different group velocity. We also present a method for measuring the rotated angle of the electron pulse and a technique for rotating the electron pulse with a deflecting cavity.

  19. System for evaluation of the true average input-pulse rate

    International Nuclear Information System (INIS)

    Eichenlaub, D.P.; Garrett, P.

    1977-01-01

    The description is given of a digital radiation monitoring system making use of current digital circuit and microprocessor for rapidly processing the pulse data coming from remote radiation controllers. This system analyses the pulse rates in order to determine if a new datum is statistically the same as that previously received. Hence it determines the best possible average time for itself. So long as the true average pulse rate stays constant, the time required to establish an average can increase until the statistical error is under the desired level, i.e. 1%. When the digital processing of the pulse data indicates a change in the true average pulse rate, the time required to establish an average can be reduced so as to improve the response time of the system at the statistical error. This concept includes a fixed compromise between the statistical error and the response time [fr

  20. Radiative forcing associated with particulate carbon emissions resulting from the use of mercury control technology.

    Science.gov (United States)

    Lin, Guangxing; Penner, Joyce E; Clack, Herek L

    2014-09-02

    Injection of powdered activated carbon (PAC) adsorbents into the flue gas of coal fired power plants with electrostatic precipitators (ESPs) is the most mature technology to control mercury emissions for coal combustion. However, the PAC itself can penetrate ESPs to emit into the atmosphere. These emitted PACs have similar size and optical properties to submicron black carbon (BC) and thus could increase BC radiative forcing unintentionally. The present paper estimates, for the first time, the potential emission of PAC together with their climate forcing. The global average maximum potential emissions of PAC is 98.4 Gg/yr for the year 2030, arising from the assumed adoption of the maximum potential PAC injection technology, the minimum collection efficiency, and the maximum PAC injection rate. These emissions cause a global warming of 2.10 mW m(-2) at the top of atmosphere and a cooling of -2.96 mW m(-2) at the surface. This warming represents about 2% of the warming that is caused by BC from direct fossil fuel burning and 0.86% of the warming associated with CO2 emissions from coal burning in power plants. Its warming is 8 times more efficient than the emitted CO2 as measured by the 20-year-integrated radiative forcing per unit of carbon input (the 20-year Global Warming Potential).