WorldWideScience

Sample records for radiation facility application

  1. Synchrotron radiation facilities for chemical applications

    International Nuclear Information System (INIS)

    Hatano, Yoshihiko

    1995-01-01

    Synchrotron radiation (SR) research is of great importance in understanding radiation chemistry, physics, and biology. It is also clearly recognized in the international chemical community that chemical applications of SR are greatly advanced and divided into 1) Molecular Spectroscopy and Dynamics Studies-Gases, Surfaces, and Condensed Matter- , 2) Radiation Chemistry and Photochemistry, 3) X-ray Structural and XAFS Studies-Crystals, Surfaces, and Liquids- , 4) Analytical Chemistry, and 5) Synthesis or R and D of New Materials. In this paper, a survey is given of recent advances in the application of SR to the chemistry of excitation and ionization of molecules, i.e., SR chemistry, in the wavelength region between near-ultraviolet and hard X-rays. The topics will be chosen from those obtained at some leading SR facilities. (J.P.N.)

  2. Application of PSA techniques to synchrotron radiation source facilities

    International Nuclear Information System (INIS)

    Sanyasi Rao, V.V.S.; Vinod, G.; Vaze, K.K.; Sarkar, P.K.

    2011-01-01

    Synchrotron radiation sources are increasingly being used in research and medical applications. Various instances of overexposure in these facilities have been reported in literature. These instances have lead to the investigation of the risks associated with them with a view to minimise the risks and thereby increasing the level of safety. In nuclear industry, Probabilistic Safety Assessment (PSA) methods are widely used to assess the risk from nuclear power plants. PSA presents a systematic methodology to evaluate the likelihood of various accident scenarios and their possible consequences using fault/event tree techniques. It is proposed to extend similar approach to analyse the risk associated with synchrotron radiation sources. First step for such an analysis is establishing the failure criteria, considering the regulatory stipulations on acceptable limits of dose due to ionization radiation from normal as well as beam loss scenarios. Some possible scenarios considered in this study are (1) excessive Bremsstrahlung in the ring due to loss of vacuum, (2) Target failure due to excessively focused beam (3) mis-directed/mis-steered beam (4) beam loss and sky shine. Hazard analysis needs to cover the beam transfer line, storage ring and experimental beam line areas. Various safety provisions are in place to minimize the hazards from these facilities such as access control interlock systems, radiation shielding for storage ring and beam lines and safety shutters (for beam lines). Experimental beam line area is the most vulnerable locations that need to be critically analysed. There are multiple beam lines, that have different safety provisions and consequences from postulated beam strikes will also be different and this increases the complexity of analysis. Similar studies conducted for such experimental facilities have identified that the radiation safety interlock system, used to control access to areas inside ring and the hutches of beamline facilities has an

  3. Radiation applications research and facilities in AECL research company

    Science.gov (United States)

    Iverson, S. L.

    In the 60's and 70's Atomic Energy of Canada had a very active R&D program to discover and develop applications of ionizing radiation. Out of this grew the technology underlying the company's current product line of industrial irradiators. With the commercial success of that product line the company turned its R&D attention to other activities. Presently, widespread interest in the use of radiation for food processing and the possibility of developing reliable and competitive machine sources of radiation hold out the promise of a major increase in industrial use of radiation. While many of the applications being considered are straightforward applications of existing knowledge, others depend on more subtle effects including combined effects of two or more agents. Further research is required in these areas. In March 1985 a new branch, Radiation Applications Research, began operations with the objective of working closely with industry to develop and assist the introduction of new uses of ionizing radiation. The Branch is equipped with appropriate analytical equipment including HPLC (high performance liquid chromatograph) and GC/MS (gas chromatograph/mass spectrometer) as well as a Gammacell 220 and an I-10/1, one kilowatt 10 MeV electron accelerator. The accelerator is located in a specially designed facility equipped for experimental irradiation of test quantities of packaged products as well as solids, liquids and gases in various configurations. A conveyor system moves the packaged products from the receiving area, through a maze, past the electron beam at a controlled rate and finally to the shipping area. Other necessary capabilities, such as gamma and electron dosimetry and a microbiology laboratory, have also been developed. Initial projects in areas ranging from food through environmental and industrial applications have been assessed and the most promising have been selected for further work. As an example, the use of charcoal adsorbent beds to concentrate

  4. Radiation applications research and facilities in AECL Research Company

    International Nuclear Information System (INIS)

    Iverson, S.L.

    1988-01-01

    In the 60's and 70's Atomic Energy of Canada had a very active R and D program to discover and develop applications of ionizing radiation. Widespread interest in the use of radiation for food processing and the possibility of developing reliable and competitive machine sources of radiation hold out the promise of a major increase in industrial use of radiation. In March 1985 a new branch, Radiation Applications Research, began operations with the objective of working closely with industry to develop and assist the introduction of new uses of ionizing radiation. The Branch is equipped with appropriate analytical equipment including HPLC (high performance liquid chromatograph) and GC/MS (gas chromatograph/mass spectrometer) as well as a Gammacell 220 and an I-10/1, one kilowatt 10 MeV electron accelerator. The accelerator is located in a specially designed facility equipped for experimental irradiation of the test quantities of packaged products as well as solids, liquids and gases in various configurations. A conveyor system moves the packaged products from the receiving area, through a maze, past the electron beam at a controlled rate and finally to the shipping area. Other necessary capabilities, such as gamma and electron dosimetry and a microbiology laboratory, have also been developed. Initial projects in areas ranging from food through environmental and industrial applications have been assessed and the most promising have been selected for further work. As an example, the use of charcoal absorbent beds to concentrate the components of gas or liquid waste streams requiring treatment is showing promise as a method of significantly reducing the cost of radiation treatment for some effluents. A number of other projects are described. (author)

  5. Economic evaluation of slurry-, sewage-sludge, and crop disinfection facility applications based on industrial accelerator and 60Co radiation source

    International Nuclear Information System (INIS)

    Abelovszky, L.

    1979-01-01

    The degree of the compliance with the requirements of slurry and sewage treatment, the range of use of radiation sterilization procedures in agriculture and food industry, the possibilities of the complex application of radiation methods and factors influencing their economic efficiency, the economic evaluation of the versatile chargeable accelerators, the fixed and semi-mobile radioisotope facilities, the economic efficiency of the multipurpose utilization, the differences in the application of accelerators and radio isotopes as to the power source applied, the penetration, the dose rates and the radiation energy focusing are discussed. The radiation facility costs are compared. Conclusions concerning the choice of the most efficient applications are given. (author)

  6. Radiation safety in X-ray facilities

    International Nuclear Information System (INIS)

    2001-09-01

    The guide specifies the radiation safety requirements for structural shielding and other safety arrangements used in X-ray facilities in medical and veterinary X-ray activities and in industry, research and education. The guide is also applicable to premises in which X-ray equipment intended for radiation therapy and operating at a voltage of less than 25 kV is used. The guide applies to new X-ray facilities in which X-ray equipment that has been used elsewhere is transferred. The radiation safety requirements for radiation therapy X-ray devices operating at a voltage exceeding 25 kV, and for the premices in which such devices are used, are set out in Guide ST 2.2

  7. Radiation safety in X-ray facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    The guide specifies the radiation safety requirements for structural shielding and other safety arrangements used in X-ray facilities in medical and veterinary X-ray activities and in industry, research and education. The guide is also applicable to premises in which X-ray equipment intended for radiation therapy and operating at a voltage of less than 25 kV is used. The guide applies to new X-ray facilities in which X-ray equipment that has been used elsewhere is transferred. The radiation safety requirements for radiation therapy X-ray devices operating at a voltage exceeding 25 kV, and for the premices in which such devices are used, are set out in Guide ST 2.2.

  8. Synchrotron radiation facilities

    CERN Multimedia

    1972-01-01

    Particularly in the past few years, interest in using the synchrotron radiation emanating from high energy, circular electron machines has grown considerably. In our February issue we included an article on the synchrotron radiation facility at Frascati. This month we are spreading the net wider — saying something about the properties of the radiation, listing the centres where synchrotron radiation facilities exist, adding a brief description of three of them and mentioning areas of physics in which the facilities are used.

  9. Radiation activities and application of ionizing radiation on cultural heritage at ENEA Calliope gamma facility (Casaccia R.C., Rome, Italy

    Directory of Open Access Journals (Sweden)

    Baccaro Stefania

    2017-12-01

    Full Text Available Since the 1980s, research and qualification activities are being carried out at the 60Co gamma Calliope plant, a pool-type irradiation facility located at the Research Centre ENEA-Casaccia (Rome, Italy. The Calliope facility is deeply involved in radiation processing research and on the evaluation and characterization of the effects induced by gamma radiation on materials for different applications (crystals, glasses, optical fibres, polymers and biological systems and on devices to be used in hostile radiation environment such as nuclear plants, aerospace and high energy physics experiments. All the activities are carried out in the framework of international projects and collaboration with industries and research institutions. In the present work, particular attention will be paid to the cultural heritage activities performed at the Calliope facility, focused on two different aspects: (a conservation and preservation by bio-deteriogen eradication in archived materials, and (b consolidation and protection by degraded wooden and stone porous artefacts consolidation.

  10. Irradiation Facilities of the Takasaki Advanced Radiation Research Institute

    Directory of Open Access Journals (Sweden)

    Satoshi Kurashima

    2017-03-01

    Full Text Available The ion beam facility at the Takasaki Advanced Radiation Research Institute, the National Institutes for Quantum and Radiological Science and Technology, consists of a cyclotron and three electrostatic accelerators, and they are dedicated to studies of materials science and bio-technology. The paper reviews this unique accelerator complex in detail from the viewpoint of its configuration, accelerator specification, typical accelerator, or irradiation technologies and ion beam applications. The institute has also irradiation facilities for electron beams and 60Co gamma-rays and has been leading research and development of radiation chemistry for industrial applications in Japan with the facilities since its establishment. The configuration and utilization of those facilities are outlined as well.

  11. Studies on application of radiation and radioisotopes

    International Nuclear Information System (INIS)

    Kim, Jae Rok; Lee, Ji Bok; Lee, Yeong Iil; Jin, Joon Ha; Beon, Myeong Uh; Park, Kyeong Bae; Han, Heon Soo; Jeong, Yong Sam; Uh, Jong Seop; Kang, Kyeong Cheol; Cho, Han Ok; Song, Hui Seop; Yoon, Byeong Mok; Jeon, Byeong Jin; Park, Hong Sik; Kim, Jae Seong; Jeong, Un Soo; Baek, Sam Tae; Cho, Seong Won; Jeon, Yeong Keon; Kim, Joon Yeon; Kwon, Joong Ho; Kim, Ki Yeop; Yang, Jae Seung; No, Yeong Chang; Lee, Yeong Keun; Shin, Byeong Cheol; Park, Sang Joon; Hong, Kwang Pyo; Cho, Seung Yeon; Kang, Iil Joon; Cho, Seong Ki; Jeong, Yeong Joo; Park, Chun Deuk; Lee, Yeong Koo; Seo, Chun Ha; Han, Kwang Hui; Shin, Hyeon Young; Kim, Jong Kuk; Park, Soon Chul; Shin, In Cheol; Lee, Sang Jae; Lee, Ki Un; Lim, Yong Taek; Park, Eung Uh; Kim, Dong Soo; Jeon, Sang Soo

    1993-05-01

    With the completion of construction of KMRR, the facility and technology of radiation application will be greatly improved. This study was performed as follows; (1) Studies on the production and application of radioisotopes. (2) The development of radiation processing technology. (3) The application of Irradiation techniques for food preservation and process improvement. (4) Studies on the radiation application for the development of genetic resources (5) Development of the radioisotope (RI) production facilities for Korea Multipurpose Research Reactor (KMRR)

  12. European Synchrotron Radiation Facility

    International Nuclear Information System (INIS)

    Buras, B.

    1985-01-01

    How a European Synchrotron Radiation Facility has developed into a detailed proposal recently accepted as the basis for construction of the facility at Grenoble is discussed. In November 1977, the General Assembly of the European Science Foundation (ESF) approved the report of the ESF working party on synchrotron radiation entitled Synchrotron Radiation - a Perspective View for Europe. This report contained as one of its principal recommendations that work should commence on a feasibility study for a European synchrotron radiation laboratory having a dedicated hard X-ray storage ring and appropriate advanced instrumentation. In order to prepare a feasibility study the European Science Foundation set up the Ad-hoc Committee on Synchrotron Radiation, which in turn formed two working groups: one for the machine and another for instrumentation. This feasibility study was completed in 1979 with the publication of the Blue Book describing in detail the so called 1979 European Synchrotron Radiation Facility. The heart of the facility was a 5 GeV electron storage ring and it was assumed that mainly the radiation from bending magnets will be used. The facility is described

  13. Applications of ionizing radiations

    International Nuclear Information System (INIS)

    2014-01-01

    Developments in standard applications and brand new nuclear technologies, with high impact on the future of the agriculture, medicine, industry and the environmental preservation. The Radiation Technology Center (CTR) mission is to apply the radiation and radioisotope technologies in Industry, Health, Agriculture, and Environmental Protection, expanding the scientific knowledge, improving human power resources, transferring technology, generating products and offering services for the Brazilian society. The CTR main R and D activities are in consonance with the IPEN Director Plan (2011-2013) and the Applications of Ionizing Radiation Program, with four subprograms: Irradiation of Food and Agricultural Products; Radiation and Radioisotopes Applications in Industry and Environment; Radioactive Sources and Radiation Applications in Human Health; and Radioactive Facilities and Equipment for the Applications of Nuclear Techniques

  14. Applications of ionizing radiations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    Developments in standard applications and brand new nuclear technologies, with high impact on the future of the agriculture, medicine, industry and the environmental preservation. The Radiation Technology Center (CTR) mission is to apply the radiation and radioisotope technologies in Industry, Health, Agriculture, and Environmental Protection, expanding the scientific knowledge, improving human power resources, transferring technology, generating products and offering services for the Brazilian society. The CTR main R and D activities are in consonance with the IPEN Director Plan (2011-2013) and the Applications of Ionizing Radiation Program, with four subprograms: Irradiation of Food and Agricultural Products; Radiation and Radioisotopes Applications in Industry and Environment; Radioactive Sources and Radiation Applications in Human Health; and Radioactive Facilities and Equipment for the Applications of Nuclear Techniques.

  15. Calibration of high-dose radiation facilities (Handbook)

    International Nuclear Information System (INIS)

    Gupta, B.L.; Bhat, R.M.

    1986-01-01

    In India at present several high intensity radiation sources are used. There are 135 teletheraphy machines and 65 high intensity cobalt-60 sources in the form of gamma chambers (2.5 Ci) and PANBIT (50 Ci). Several food irradiation facilities and a medical sterilization plant ISOMED are also in operation. The application of these high intensity sources involve a wide variation of dose from 10 Gy to 100 kGy. Accurate and reproducible radiation dosimetry is essential in the use of these sources. This handbook is especially compiled for calibration of high-dose radiation facilities. The first few chapters discuss such topics as interaction of radiation with matter, radiation chemistry, radiation processing, commonly used high intensity radiation sources and their special features, radiation units and dosimetry principles. In the chapters which follow, chemical dosimeters are discussed in detail. This discussion covers Fricke dosimeter, FBX dosimeter, ceric sulphate dosimeter, free radical dosimetry, coloured indicators for irrdiation verification. A final chapter is devoted to practical hints to be followed in calibration work. (author)

  16. Radiation protection at nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Endo, K.; Momose, T.; Furuta, S.

    2011-01-01

    Radiation protection methodologies concerning individual monitoring, workplace monitoring and environmental monitoring in nuclear fuel facilities have been developed and applied to facilities in the Nuclear Fuel Cycle Engineering Laboratories (NCL) of Japan Atomic Energy Agency (JAEA) for over 40 y. External exposure to photon, beta ray and neutron and internal exposure to alpha emitter are important issues for radiation protection at these facilities. Monitoring of airborne and surface contamination by alpha and beta/photon emitters at workplace is also essential to avoid internal exposure. A critical accident alarm system developed by JAEA has been proved through application at the facilities for a long time. A centralised area monitoring system is effective for emergency situations. Air and liquid effluents from facilities are monitored by continuous monitors or sampling methods to comply with regulations. Effluent monitoring has been carried out for 40 y to assess the radiological impacts on the public and the environment due to plant operation. (authors)

  17. Development of radiation safety monitoring system at gamma greenhouse gamma facility

    International Nuclear Information System (INIS)

    Hairul Nizam Idris; Azimawati Ahmad, Ahmad Zaki Hussain; Ahmad Fairuz Mohd Nasir

    2009-01-01

    This paper is discussing about installation of radiation safety monitoring system at Gamma Greenhouse Gamma facility, Agrotechnology and Bioscience Division (BAB). This facility actually is an outdoor type irradiation facility, which first in Nuclear Malaysia and the only one in Malaysia. Source Cs-137 (801 Curie) was use as radiation source and it located at the centre of 30 metres diameter size of open irradiation area. The radiation measurement and monitoring system to be equipped in this facility were required the proper equipment and devices, specially purpose for application at outside of building. Research review, literature study and discussion with the equipment manufacturers was being carried out, in effort to identify the best system should be developed. Factors such as tropical climate, environment surrounding and security were considered during selecting the proper system. Since this facility involving with panoramic radiation type, several critical and strategic locations have been fixed with radiation detectors, up to the distance at 200 meter from the radiation source. Apart from that, this developed system also was built for capable to provide the online real-time reading (using internet). In general, it can be summarized that the radiation safety monitoring system for outdoor type irradiation facility was found much different and complex compared to the system for indoor type facility. Keyword: radiation monitoring, radiation safety, Gamma Greenhouse, outdoor irradiation facility, panoramic radiation. (Author)

  18. Consenting process for radiation facilities. V. 4

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and standards are formulated on the basis of nationally and internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety, codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Atomic Energy Regulatory Board (AERB) before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. AERB issued a safety code on Regulation of Nuclear and Radiation Facilities (AERB/SC/G) to spell out the requirements/obligations to be met by a nuclear or radiation facility for the issue of regulatory consent at every stage. This safety guide apprises the details of the regulatory requirements for setting up the radiation facility such as consenting process, the stages requiring consent, wherever applicable documents to be submitted and the nature and extent of review. The guide also gives information on methods of review and assessment adopted by AERB

  19. Consenting process for radiation facilities. V. 3

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and standards are formulated on the basis of nationally and internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety, codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Atomic Energy Regulatory Board (AERB) before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. AERB issued a safety code on Regulation of Nuclear and Radiation Facilities (AERB/SC/G) to spell out the requirements/obligations to be met by a nuclear or radiation facility for the issue of regulatory consent at every stage. This safety guide apprises the details of the regulatory requirements for setting up the radiation facility such as consenting process, the stages requiring consent, wherever applicable documents to be submitted and the nature and extent of review. The guide also gives information on methods of review and assessment adopted by AERB

  20. Consenting process for radiation facilities. V. 1

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and standards are formulated on the basis of nationally and internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety, codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Atomic Energy Regulatory Board (AERB) before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. AERB issued a safety code on Regulation of Nuclear and Radiation Facilities (AERB/SC/G) to spell out the requirements/obligations to be met by a nuclear or radiation facility for the issue of regulatory consent at every stage. This safety guide apprises the details of the regulatory requirements for setting up the radiation facility such as consenting process, the stages requiring consent, wherever applicable documents to be submitted and the nature and extent of review. The guide also gives information on methods of review and assessment adopted by AERB

  1. Radiation therapy facilities in the United States

    International Nuclear Information System (INIS)

    Ballas, Leslie K.; Elkin, Elena B.; Schrag, Deborah; Minsky, Bruce D.; Bach, Peter B.

    2006-01-01

    Purpose: About half of all cancer patients in the United States receive radiation therapy as a part of their cancer treatment. Little is known, however, about the facilities that currently deliver external beam radiation. Our goal was to construct a comprehensive database of all radiation therapy facilities in the United States that can be used for future health services research in radiation oncology. Methods and Materials: From each state's health department we obtained a list of all facilities that have a linear accelerator or provide radiation therapy. We merged these state lists with information from the American Hospital Association (AHA), as well as 2 organizations that audit the accuracy of radiation machines: the Radiologic Physics Center (RPC) and Radiation Dosimetry Services (RDS). The comprehensive database included all unique facilities listed in 1 or more of the 4 sources. Results: We identified 2,246 radiation therapy facilities operating in the United States as of 2004-2005. Of these, 448 (20%) facilities were identified through state health department records alone and were not listed in any other data source. Conclusions: Determining the location of the 2,246 radiation facilities in the United States is a first step in providing important information to radiation oncologists and policymakers concerned with access to radiation therapy services, the distribution of health care resources, and the quality of cancer care

  2. Synchrotron radiation: its characteristics and applications

    International Nuclear Information System (INIS)

    Blewett, J.P.; Chasman, R.; Green, G.K.

    1977-01-01

    It has been known for a century that charged particles radiate when accelerated and that relativistic electrons in the energy range between 100 MeV and several GeV and constrained to travel in circular orbits emit concentrated, intense beams with broad continuous spectra that can cover the electromagnetic spectrum from infrared through hard X-rays. Recently the possible applications of this radiation have been appreciated and electron synchrotrons and electron storage rings are now being used in many centers for studies of the properties of matter in the solid, liquid and gaseous states. A brief history is presented of ''synchrotron radiation'' as it is now called. The basic properties of this radiation are described and the world-wide distribution is indicated of facilities for its production. Particular attention is given to the proposed facility at Brookhaven which will be the first major installation to be dedicated only to the production and use of synchrotron radiation. Finally, typical examples are given of applications in the areas of radiation absorption studies, techniques based on scattering of radiation, and advances based on X-ray lithography

  3. New synchrotron radiation facility project. Panel on new synchrotron radiation facility project

    CERN Document Server

    Sato, S; Kimura, Y

    2003-01-01

    The project for constructing a new synchrotron radiation facility dedicated to the science in VUV (or EUV) and Soft X-ray (SX) region has been discussed for these two years at the Panel on New Synchrotron Radiation Facility Project. The Panel together with the Accelerator Design Working Group (WG), Beamline Design WG and Research Program WG suggested to the Ministry of Education, Science, Culture and Sports the construction of a 1.8 GeV electron storage ring suitable for 'Top-Up' operation and beamlines and monochromators designed for undulator radiation. The scientific programs proposed by nationwide scientists are summarized with their requirements of the characteristics of the beam. (author)

  4. Radiation safely culture in nuclear facilities

    International Nuclear Information System (INIS)

    Coates, R.

    2018-01-01

    The importance of developing a sound radiation safety culture is a relatively new development in the practical application of radiation protection in operational facilities. It is instructive to trace the evolution of the fundamental approaches to controlling operational exposures, staring with the engineering-based 'Distance, Shielding and Time' mantra, through the growing emphasis on ALARA and systematic management-based approaches, towards a recognition of the importance of developing a more 'hearts and minds' approach based within the wider safety culture of the organization. The underlying requirements for developing a strong radiation safety culture are not novel, and are largely identical to those necessary for nuclear safety culture, which is why an integrated approach to culture within the organization is essential

  5. Auditing radiation sterilization facilities

    Science.gov (United States)

    Beck, Jeffrey A.

    The diversity of radiation sterilization systems available today places renewed emphasis on the need for thorough Quality Assurance audits of these facilities. Evaluating compliance with Good Manufacturing Practices is an obvious requirement, but an effective audit must also evaluate installation and performance qualification programs (validation_, and process control and monitoring procedures in detail. The present paper describes general standards that radiation sterilization operations should meet in each of these key areas, and provides basic guidance for conducting QA audits of these facilities.

  6. Application of Glycine-TTC dosimeter in gamma radiation processing facility

    International Nuclear Information System (INIS)

    Shinde, S.H.; Mondal, S.; Kulkarni, M.S.

    2018-01-01

    Glycine-TTC dosimeter was found to have a useful dose range of 5 to 30 kGy using spectro-photometric read-out method. Potential use of this dosimeter was demonstrated by measuring dose-rate in gamma chamber GC 900. The aim of the present study was to verify the performance of this dosimeter in actual industrial processing conditions encountered in radiation processing facility such as Gamma Radiation Processing Plant for Spices (GRPPS), BRIT, Vashi. Accordingly, glycine-TTC dosimeters were irradiated along with routine dosimeter viz. ceric-cerous of GRPPS and reference standard dosimeter viz. alanine EPR

  7. Medical applications of synchrotron radiation

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved

  8. Medical applications of synchrotron radiation

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1992-01-01

    Ever since the first diagnostic X-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become incrasingly important. Both in clinical medicine and basic research the use of X-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved. (orig.)

  9. Radiation surveillance procedure during veterinary application of radioisotope

    International Nuclear Information System (INIS)

    Kamaldeep; Bhaktivinayagam, A.; Singh, Sanjay Kumar

    2012-01-01

    Radioisotopes have found wide applications in the field of biomedical veterinary nuclear medicine and research. Radiation safety issues during internal administration of radioisotopes to laboratory animals, unlike human use, are far more challenging and requires stringent, well planned and an organized system of radiation protection in the animal house facility. In this paper, we discuss our experience during veterinary research experiments involving use, handling and administration of liquid sources of 131 I. With extensive radiation protection surveillance and application of practical and essential radiation safety and hygiene practices, the radiation exposure and contamination levels during the veterinary application of isotopes can be kept ALARA

  10. Idaho National Engineering Laboratory irradiation facilities and their applications

    International Nuclear Information System (INIS)

    Gupta, V.P.; Herring, J.S.; Korenke, R.E.; Harker, Y.D.

    1986-05-01

    Although there is a growing need for neutron and gamma irradiation by governmental and industrial organizations in the United States and in other countries, the number of facilities providing such irradiations are limited. At the Idaho National Engineering Laboratory, there are several unique irradiation facilities producing high neutron and gamma radiation environments. These facilities could be readily used for nuclear research, materials testing, radiation hardening studies on electronic components/circuitry and sensors, and production of neutron transmutation doped (NTD) silicon and special radioisotopes. In addition, a neutron radiography unit, suitable for examining irradiated materials and assemblies, is also available. This report provides a description of the irradiation facilities and the neutron radiography unit as well as examples of their unique applications

  11. CERN radiation protection (RP) calibration facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Fabio

    2016-04-14

    Radiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some of the instruments are also tested in mixed radiation fields as often encountered close to high-energy particle accelerators. Moreover, calibration facilities are of great importance to evaluate the performance of prototype detectors; testing and measuring the response of a prototype detector to well-known and -characterized radiation fields contributes to improving and optimizing its design and capabilities. The CERN Radiation Protection group is in charge of performing the regular calibrations of all CERN radiation protection devices; these include operational and passive dosimeters, neutron and photon survey-meters, and fixed radiation detectors to monitor the ambient dose equivalent, H*(10), inside CERN accelerators and at the CERN borders. A new state-of-the-art radiation protection calibration facility was designed, constructed and commissioned following the related ISO recommendations to replace the previous ageing (more than 30 years old) laboratory. In fact, the new laboratory aims also at the official accreditation according to the ISO standards in order to be able to release certified calibrations. Four radiation fields are provided: neutrons, photons and beta sources and an X-ray generator. Its construction did not only involve a pure civil engineering work; many radiation protection studies were performed to provide a facility that could answer the CERN calibration needs and fulfill all related safety requirements. Monte Carlo simulations have been confirmed to be a valuable tool for the optimization of the building design, the radiation protection aspects, e.g. shielding, and, as consequence, the overall cost. After the source and irradiator installation

  12. CERN Radiation Protection (RP) calibration facilities

    CERN Document Server

    AUTHOR|(CDS)2082069; Macián-Juan, Rafael

    Radiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some of the instruments are also tested in mixed radiation fields as often encountered close to high-energy particle accelerators. Moreover, calibration facilities are of great importance to evaluate the performance of prototype detectors; testing and measuring the response of a prototype detector to well-known and -characterized radiation fields contributes to improving and optimizing its design and capabilities. The CERN Radiation Protection group is in charge of performing the regular calibrations of all CERN radiation protection devices; these include operational and passive dosimeters, neutron and photon survey-meters, and fixed radiation detectors to monitor the ambient dose equivalent, H*(10), inside CERN accelera...

  13. Regulatory control and challenges in Medical facilities using ionising radiation sources

    International Nuclear Information System (INIS)

    Agarwal, S.P.

    2008-01-01

    Medical facilities utilising ionising radiation sources for diagnostic and treatment of cancer are regulated under the provisions of Atomic Energy (Radiation Protection) Rules, 2004 promulgated under the Atomic Energy Act 1962. The Competent Authority for the enforcement of the rules is Chairman, Atomic Energy Regulatory Board (AERB). Practice specific codes are issued by AERB for medical facilities such as Radiotherapy, Nuclear Medicine and Radiology. Regulatory process for control of medical facilities covers the entire life cycle of the radiation sources in three stages viz pre-Iicensing, during useful life and decommissioning and disposal. Pre-Iicensing requirements include use of type approved sources and equipment, approval of design layout of the facility and installation, exclusive (safe and secure) source storage facility when the equipment is not in use, radiation (area/individual) monitoring devices, qualified, trained and certified manpower, emergency response plans and commitment from the licensee for the safe disposal of disused/decayed sources. Compliance to these requirements makes the applicant eligible to obtain license from AERB for the operation of the medical facility. During the use of radiation sources, specific prior approval of the Competent Authority is required in respect of every source replacement, sale, transfer, transport, import and export. Further, all licensees are required to send the periodic safety Status reports to AERB as well as reporting of any off normal events. AERB conducts inspection of the facilities to ensure compliance with the safety requirements during operation of the facility. Violation of safety norms by licensee attracts enforcement action which includes suspension, modification or withdrawal of licensee for operation of the facility. Upon completion of the useful life of the source, the licensee decommissions the facility and returns the source to the original supplier. For returning the source, prior

  14. Regulatory measures of BARC Safety Council to control radiation exposure in BARC Facilities

    International Nuclear Information System (INIS)

    Rajdeep; Jolly, V.M.; Jayarajan, K.

    2018-01-01

    Bhabha Atomic Research Centre is involved in multidisciplinary research and developmental activities, related to peaceful use of nuclear energy including societal benefits. BARC facilities at different parts of India include nuclear fuel fabrication facilities, research reactors, nuclear recycle facilities and various Physics, Chemistry and Biological laboratories. BARC Safety Council (BSC) is the regulatory body for BARC facilities and takes regulatory measures for radiation protection. BSC has many safety committees for radiation protection including Operating Plants Safety Review Committee (OPSRC), Committee to Review Applications for Authorization of Safe Disposal of Radioactive Wastes (CRAASDRW) and Design Safety Review Committees (DSRC) in 2 nd tier and Unit Level Safety Committees (ULSCs) in 3 rd tier under OPSRC

  15. Regulation for radiation protection in applications of radiation sources

    International Nuclear Information System (INIS)

    Sonawane, Avinash U.

    2016-01-01

    Applications of ionising radiation in multifarious field are increasing in the country for the societal benefits. The national regulatory body ensures safety and security of radiation sources by enforcing provisions in the national law and other relevant rules issued under the principle law. In addition, the enforcement of detailed requirements contained in practice specific safety codes and standard and issuance of safety directives brings effectiveness in ensuring safe handling and secure management of radiation sources. The regulatory requirements for control over radiation sources throughout their life-cycle have evolved over the years from experience gained. Nevertheless, some of the regulatory activities which require special attention have been identified such as the development of regulation to deal with advance emerging radiation technology in applications of radiation in medicine and industry; sustaining continuity in ensuring human resource development programme; inspections of category 3 and 4 disused sources and their safe disposal; measures for controlling transboundary movement of radiation sources. The regulatory measures have been contemplated and are being enforced to deal with the above issues in an effective manner. The complete involvement of the management of radiation facilities, radiation workers and their commitment in establishing and maintaining safety and security culture is essential to handle the radiation sources safely and efficiently at all times

  16. Review of radiation sources, calibration facilities and simulated workplace fields

    Energy Technology Data Exchange (ETDEWEB)

    Lacoste, V., E-mail: veronique.lacoste@irsn.f [Institut de Radioprotection et de Surete Nucleaire, BP3, Bat. 159, F-13115 Saint-Paul Lez Durance (France)

    2010-12-15

    A review on radiation sources, calibration facilities and realistic fields is presented and examples are given. The main characteristics of the fields are shortly described together with their domain of applications. New emerging fields are also mentioned and the question of needs for additional calibration fields is raised.

  17. The CERN-EU high-energy Reference Field (CERF) facility: applications and latest developments

    Science.gov (United States)

    Silari, Marco; Pozzi, Fabio

    2017-09-01

    The CERF facility at CERN provides an almost unique high-energy workplace reference radiation field for the calibration and test of radiation protection instrumentation employed at high-energy accelerator facilities and for aircraft and space dosimetry. This paper describes the main features of the facility and supplies a non-exhaustive list of recent (as of 2005) applications for which CERF is used. Upgrade work started in 2015 to provide the scientific and industrial communities with a state-of-the-art reference facility is also discussed.

  18. Radiation safety program in high dose rate brachytherapy facility at INHS Asvini

    Directory of Open Access Journals (Sweden)

    Kirti Tyagi

    2014-01-01

    Full Text Available Brachytherapy concerns primarily the use of radioactive sealed sources which are inserted into catheters or applicators and placed directly into tissue either inside or very close to the target volume. The use of radiation in treatment of patients involves both benefits and risks. It has been reported that early radiation workers had developed radiation induced cancers. These incidents lead to continuous work for the improvement of radiation safety of patients and personnel The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. The widespread adoption of high dose rate brachytherapy needs appropriate quality assurance measures to minimize the risks to both patients and medical staff. The radiation safety program covers five major aspects: quality control, quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. This paper will discuss the radiation safety program developedfor a high dose rate brachytherapy facility at our centre which may serve as a guideline for other centres intending to install a similar facility.

  19. Synchrotron radiation A general overview and a review of storage rings, research facilities, and insertion devices

    International Nuclear Information System (INIS)

    Winick, H.

    1989-01-01

    Synchrotron radiation, the electromagnetic radiation given off by electrons in circular motion, is revolutionizing many branches of science and technology by offering beams of vacuum ultraviolet light and x rays of immense flux and brightness. In the past decade there has been an explosion of interest in these applications leading activity to construct new research facilities based on advanced storage rings and insertion device sources. Applications include basic and applied research in biology, chemistry, medicine, and physics plus many areas of technology. In this article we present a general overview of the field of synchrotron radiation research, its history, the present status and future prospects of storage rings and research facilities, and the development of wiggler and undulator insertion devices as sources of synchrotron radiation

  20. Radiation sterilization facility for melon fly

    International Nuclear Information System (INIS)

    Danno, A.

    1985-01-01

    The melon fly (Dacus cucurbitae Coquillett) has been observed in Amami Island since l975. Kagoshima Prefecture has had a melon fly eradication project underway since 1979. A mass-fearing facility and a radiation sterilization facility were constructed in Naze in March of l98l. In the early stages of the project, sterile insects were produced at the rate of 4 x l0/sup 6/ pupae/week. In the later stages, the activity of the project was enlarged by tenfold. The conditions for design of the radiation sterilization facility, which has been developed with a central control system for automated irradiation, are examined from an engineering standpoint

  1. New nuclear facilities and their analytical applications in China

    International Nuclear Information System (INIS)

    Zhang, Z.Y.; He, X.; Ma, Y.H.; Ding, Y.Y.; Chai, Z.F.

    2014-01-01

    Nuclear analytical techniques are a family of modern analytical methods that are based on nuclear reactions, nuclear effects, nuclear radiations, nuclear spectroscopy, nuclear parameters, and nuclear facilities. Because of their combined characteristics of sensitivity and selectivity, they are widely used in projects ranging from life sciences to deep-space exploration. In this review article, new nuclear facilities and their analytical applications in China are selectively reviewed, covering the following aspects: large scientific facilities, national demands, and key scientific issues with the emphasis on the new achievements. (orig.)

  2. Radiation protection calibration facilities at the National Radiation Laboratory, New Zealand

    International Nuclear Information System (INIS)

    Foote, B.J.

    1995-01-01

    The National Radiation Laboratory (NRL), serving under the Ministry of Health, provides radiation protection services to the whole of New Zealand. Consequently it performs many functions that are otherwise spread amongst several organizations in larger countries. It is the national regulatory body for radiation protection. It writes and enforces codes of safe practice, and conducts safety inspections of all workplaces using radiation. It provides a personal monitoring service for radiation workers. It also maintains the national primary standards for x-ray exposure and 60 Co air kerma. These standards are transferred to hospitals through a calibration service. The purpose of this report is to outline the primary standards facilities at NRL, and to discuss the calibration of dosemeters using these facilities. (J.P.N.)

  3. Safety guide data on radiation shielding in a reprocessing facility

    International Nuclear Information System (INIS)

    Sekiguchi, Noboru; Naito, Yoshitaka

    1986-04-01

    In a reprocessing facility, various radiation sources are handled and have many geometrical conditions. To aim drawing up a safety guidebook on radiation shielding in order to evaluate shielding safety in a reprocessing facility with high reliability and reasonableness, JAERI trusted investigation on safety evaluation techniques of radiation shielding in a reprocessing facility to Nuclear Safety Research Association. This report is the collection of investigation results, and describes concept of shielding safety design principle, radiation sources in reprocessing facility and estimation of its strength, techniques of shielding calculations, and definite examples of shielding calculation in reprocessing facility. (author)

  4. Radiation safety and regulatory aspects in Medical Facilities

    International Nuclear Information System (INIS)

    Banerjee, Sharmila

    2017-01-01

    Radiation safety and regulatory aspect of medical facilities are relevant in the context where radiation is used in providing healthcare to human patients. These include facilities, which carry out radiological procedures in diagnostic radiology, including dentistry, image-guided interventional procedures, nuclear medicine, and radiation therapy. The safety regulations provide recommendations and guidance on meeting the requirements for the safe use of radiation in medicine. The different safety aspects which come under its purview are the personnel involved in medical facilities where radiological procedures are performed which include the medical practitioners, radiation technologists, medical physicists, radiopharmacists, radiation protection and over and above all the patients. Regulatory aspects cover the guidelines provided by ethics committees, which regulate the administration of radioactive formulation in human patients. Nuclear medicine is a modality that utilizes radiopharmaceuticals either for diagnosis of physiological disorders related to anatomy, physiology and patho-physiology and for diagnosis and treatment of cancer

  5. Synchrotron radiation applications in biophysics and medicine

    International Nuclear Information System (INIS)

    Burattini, E.

    1985-01-01

    The peculiar properties of synchrotron radiation are briefly summarized. A short review on the possible applications of synchrotron radiation in two important fields like Biophysics and Medicine is presented. Details are given on experiments both in progress and carried out in many synchrotron radiation facilities, all over the world, using different techniques like X-ray absorption and fluorescence spectroscopy, X-ray fluorescence microanalysis, X-ray microscopy and digital subtraction angiography. Some news about the photon-activation therapy are briefly reported too

  6. State of damage of radiation facilities in great Hanshin earthquake

    International Nuclear Information System (INIS)

    1995-01-01

    The southern Hyogo Prefecture earthquake of magnitude 7.2 occurred in the early morning of January 17, 1995. The outline of the earthquake and dead and injured, the damages of buildings, life lines, roads, railways and harbors, liquefaction phenomena, the state of occurrence of fires and so on are reported. The districts where the earthquakes of magnitude 5 or stronger occurred, and the radiation facilities in those districts are shown. The state of damage of radiation facilities in past earthquakes is summarized. From January 17 to 19 after the earthquake, Science and Technology Agency gave necessary instruction to and heard the state of damage from 79 permitted facilities in the areas of magnitude 7 or 6 by telephone, and received the report that there was not the fear of radiation damage in all facilities. Also the state of damage of radiation facilities was investigated at the actual places, and the questionnaires on the state of radiation facilities and the action at the time of the earthquake were performed. The state of radiation facilities accompanying the earthquake is reported. The matters to be reflected to the countermeasures to earthquakes anew for the protection of facilities, communication system, facility checkup system and the resumption of use are pointed out. (K.I.)

  7. Safety and radiation protection in mining and milling facilities

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Maisa H.; Schenato, Flavia; Cruz, Paulo R., E-mail: maisahm@cnen.gov.br, E-mail: schenato@cnen.gov.br, E-mail: pcruz@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Xavier, Ana M., E-mail: axavier@cnen.gov.br [Comissao Nacional de Energia Nuclear (ESPOA/CNEN-RS), Porto Alegre, RS (Brazil). Escritorio de Porto Alegre

    2011-07-01

    Federal Legislation in Brazil establishes that the Brazilian Nuclear Energy Commission - CNEN - is responsible for the surveillance of the industrialization of nuclear ores and the production and commerce of nuclear materials in such way that activities such as buying, selling, import and export, are subject to previous licensing and surveillance. Regulation CNEN-NN-4.01 on Safety and Radiation Protection in Mining and Milling Facilities of conventional ores containing naturally occurring radioactive materials, NORM, was issued in 2004 establishing both a methodology for classification of these facilities into three Categories, taking into account both the contents of uranium and thorium in the ores and the applicable radiation and safety requirements based on a graded approach. Although the lack of a licensing process in the above mentioned Regulation made its implementation a difficult task, CNEN, by means of an initial survey, identified ca. 30 mining and milling industries of conventional ores containing uranium and thorium with concentrations above 10 Bq/g. More recently, a new juridical understanding of the legislation concluded that CNEN must issue licences and authorizations for the possession and storage of all ores with uranium and thorium concentrations above exemption levels. A proper surveillance programme encompassing 13 of these mining facilities was then put forward aiming at the improvement of their safety and radiation protection. This article presents an overview of NORM exploitation in Brazil and put forward suggestions for achieving viable solutions for the protection of workers, general public and environment from the effects of ionizing radiation. (author)

  8. Radiation protection programme for a radioisotope production facility

    International Nuclear Information System (INIS)

    Makgato, Thutu Nelson

    2015-02-01

    The present project reviews reactor based radioisotope production facilities. An overview of techniques and methodologies used as well as laboratory facilities necessary for the production process are discussed. Specific details of reactor based production and processing of more commonly used industrial and pharmaceutical radioisotopes are provided. Ultimately, based on facilities and techniques utilized as well as the associated hazard assessment, a proposed radiation protection programme is discussed. Elements of the radiation protection programme will also consider lessons from recent incidents and accidents encountered in radioisotope production facilities. (au)

  9. Radiation protection in nuclear facilities

    International Nuclear Information System (INIS)

    Piechowski, J.; Lochard, J.; Lefaure, Ch.; Schieber, C.; Schneider, Th; Lecomte, J.F.; Delmont, D.; Boitel, S.; Le Fauconnier, J.P.; Sugier, A; Zerbib, J.C.; Barbey, P.

    1998-01-01

    Close ties exist between nuclear safety and radiation protection. Nuclear safety is made up of all the arrangements taken to prevent accidents occurring in nuclear facilities, these accidents would certainly involved a radiological aspect. Radiation protection is made up of all the arrangements taken to evaluate and reduce the impact of radiation on workers or population in normal situations or in case of accident. In the fifties the management of radiological hazards was based on the quest for minimal or even zero risk. This formulation could lead to call some activities in question whereas the benefits for the whole society were evident. Now a new attitude more aware of the real risks and of no wasting resources prevails. This attitude is based on the ALARA principle whose purpose is to maintain the exposure to radiation as low as reasonably achievable taking into account social and economic concerns. This document regroups articles illustrating different aspects of the radiation protection in nuclear facilities such as a research center, a waste vitrification workshop and a nuclear power plant. The surveillance of radiological impacts of nuclear sites on environment is examined, a point is made about the pending epidemiologic studies concerning La Hague complex. (A.C.)

  10. A synchrotron radiation facility for x-ray astronomy

    DEFF Research Database (Denmark)

    Hall, C.J.; Lewis, R.A.; Christensen, Finn Erland

    1997-01-01

    A proposal for an x-ray optics test facility based at a synchrotron radiation source is presented. The facility would incorporate a clean preparation area, and a large evacuable test area. The advantages of using a synchrotron as the source of the test radiation are discussed. These include the a...

  11. Work for radiation shielding concrete in large-scaled radiation facilities

    International Nuclear Information System (INIS)

    Konomi, Shinzo; Sato, Shoni; Otake, Takao.

    1980-01-01

    This paper reports the radiation shielding concrete work in the construction of radiation laboratory facilities of Electrotechnical Laboratory, a Japanese Government agency for the research and development of electronic technology. The radiation shielding walls of the facilities are made of ordinary concrete, heavy weight concrete and raw iron ore. This paper particularly relates the use of ordinary concrete which constitutes the majority of such concretes. The concrete mix was determined so as to increase its specific gravity for better shielding effect, to improve mass concrete effect and to advance good workability. The tendency of the concrete to decrease its specific gravity and the temperature variations were also made on how to place concrete to secure good shielding effect and uniform quality. (author)

  12. Radiation technology in emerging industrial applications. Proceedings

    International Nuclear Information System (INIS)

    2003-01-01

    applications, and discuss potential future trends and developments. A further objective was to consider potential needs of developing countries in terms of applied research in radiation processing and mechanism for promotion and transfer of the technology. The scientific programme covered a wide range of different applications of radiation technology, such as radiation processing of synthetic polymers, natural polymers, pharmaceutical applications, hydrogels and membranes, environmental applications, process control, facilities and international developments

  13. Radiation technology in emerging industrial applications. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-09-01

    applications, and discuss potential future trends and developments. A further objective was to consider potential needs of developing countries in terms of applied research in radiation processing and mechanism for promotion and transfer of the technology. The scientific programme covered a wide range of different applications of radiation technology, such as radiation processing of synthetic polymers, natural polymers, pharmaceutical applications, hydrogels and membranes, environmental applications, process control, facilities and international developments.

  14. Development of fusion first-wall radiation damage facilities

    International Nuclear Information System (INIS)

    McElroy, R.J.; Atkins, T.

    1986-11-01

    The report describes work performed on the development of fusion-reactor first-wall simulation facilities on the Variable Energy Cyclotron, at Harwell, United Kingdom. Two irradiation facilities have been constructed: i) a device for helium and hydrogen filling up to 1000 ppm for post-irradiation mechanical properties studies, and ii) a helium implantation and damage facility for simultaneous injection of helium and radiation damage into a specimen under stress. These facilities are now fully commissioned and are available for investigations of first-wall radiation damage and for intercorrelation of fission- and fusion -reactor materials behaviour. (U.K.)

  15. Environmental radiation monitoring around the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Woo; Choi, Geun Sik and others

    2001-02-01

    Environmental Radiation Monitoring was carried out with measurement of environment. Radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul Research Reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul Research Reactor are the follows : The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost same level compared with the past years. Gross {alpha}, {beta} radioactivity in environmental samples showed a environmental level. {gamma}-radionuclides in water samples were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul Research Reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by {gamma}-spectrometry.

  16. Environmental radiation monitoring around the nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Chang Woo; Choi, Young Ho

    2000-02-01

    Environmental radiation monitoring was carried out with measurement of environment radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul Research Reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul Research Reactor are the follows: The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost some level compared with the past years. Gross α, β radioactivity in environmental samples showed a environmental level. γ-radionuclides in water sample were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul Research Reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by γ-spectrometry. (author)

  17. Environmental radiation monitoring around the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Woo; Choi, Young Ho

    2000-02-01

    Environmental radiation monitoring was carried out with measurement of environment radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul Research Reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul Research Reactor are the follows: The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost some level compared with the past years. Gross {alpha}, {beta} radioactivity in environmental samples showed a environmental level. {gamma}-radionuclides in water sample were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul Research Reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by {gamma}-spectrometry. (author)

  18. Environmental radiation monitoring around the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Woo; Choi, Young Ho; Lee, M.H. [and others

    1999-02-01

    Environmental radiation monitoring was carried out with measurement of environment radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul research reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul research reactor are the follows : The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost same level compared with the past years. Gross {alpha}, {beta} radioactivity in environmental samples showed a environmental level. {gamma}-radionuclides in water samples were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul research reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by {gamma}-spectrometry. (author). 3 refs., 50 tabs., 12 figs.

  19. Environmental radiation monitoring around the nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Chang Woo; Choi, Geun Sik and others

    2001-02-01

    Environmental Radiation Monitoring was carried out with measurement of environment. Radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul Research Reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul Research Reactor are the follows : The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost same level compared with the past years. Gross α, β radioactivity in environmental samples showed a environmental level. γ-radionuclides in water samples were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul Research Reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by γ-spectrometry

  20. Operational and safety requirement of radiation facility

    International Nuclear Information System (INIS)

    Zulkafli Ghazali

    2007-01-01

    Gamma and electron irradiation facilities are the most common industrial sources of ionizing radiation. They have been used for medical, industrial and research purposes since the 1950s. Currently there are more than 160 gamma irradiation facilities and over 600 electron beam facilities in operation worldwide. These facilities are either used for the sterilization of medical and pharmaceutical products, the preservation of foodstuffs, polymer synthesis and modification, or the eradication of insect infestation. Irradiation with electron beam, gamma ray or ultra violet light can also destroy complex organic contaminants in both liquid and gaseous waste. EB systems are replacing traditional chemical sterilization methods in the medical supply industry. The ultra-violet curing facility, however, has found more industrial application in printing and furniture industries. Gamma and electron beam facilities produce very high dose rates during irradiation, and thus there is a potential of accidental exposure in the irradiation chamber which can be lethal within minutes. Although, the safety record of this industry has been relatively very good, there have been fatalities recorded in Italy (1975), Norway (1982), El Salvador (1989) and Israel (1990). Precautions against uncontrolled entry into irradiation chamber must therefore be taken. This is especially so in the case of gamma irradiation facilities those contain large amounts of radioactivity. If the mechanism for retracting the source is damaged, the source may remain exposed. This paper will, to certain extent, describe safety procedure and system being installed at ALURTRON, Nuclear Malaysia to eliminate accidental exposure of electron beam irradiation. (author)

  1. Applicability study of optical fiber distribution sensing to nuclear facilities

    International Nuclear Information System (INIS)

    Takada, Eiji; Kimura, Atsushi; Nakazawa, Masaharu; Kakuta, Tsunemi

    1999-01-01

    Optical fibers have advantages like flexible configuration, intrinsic immunity for electromagnetic fields etc., and they have been used for signal transmission and as optical fiber sensors (OFSs). By some of these sensor techniques, continuous or discrete distribution of physical parameters can be measured. Here, in order to discuss the applicability of these OFSs to nuclear facilities, irradiation experiments to optical fibers were carried out using the fast neutron source reactor 'YAYOI' and a 60 Co γ source. It has been shown that, under irradiation with fast neutrons, the radiation induced loss increase almost linearly with the neutron fluence. On the other hand, when irradiated with 60 Co γ rays, the loss shows a saturation tendency. As an example of the OFSs, applicability of the Raman distributed temperature sensor (RDTS) to the monitoring of nuclear facilities has been examined. Two correction techniques for radiation induced errors have been developed and for the demonstration of their feasibility, measurements were carried out along the primary piping system of the experimental fast reactor: JOYO. During the continuous measurements with the total dose of more than 10 7 [R], the radiation induced errors showed a saturating tendency and the feasibility of the loss correction technique was demonstrated. Although the time response of the system should be improved, the RDTS can be expected as a noble temperature monitor in nuclear facilities. (author)

  2. Gamma irradiation facilities for radiation tolerance assessment of components and systems at SCK.CEN

    International Nuclear Information System (INIS)

    Coenen, S.; Decreton, M.

    1999-01-01

    This paper presents the different gamma irradiation facilities available at SCK-CEN (Mol, Belgium). With gamma dose rates ranging from 1 Gy/h up to 50 kGy/h, extensive environmental control and on-line instrumentation possibilities, they offer ideal test environments for the radiation tolerance assessment of components and systems for many applications where radiation tolerance is a concern. (authors)

  3. Radiation cross-linked polymers: Recent developments and new applications

    International Nuclear Information System (INIS)

    Rouif, Sophie

    2005-01-01

    The purpose of the present paper is to review the innovative and recent applications of radiation cross-linking of polymers that reinforces their dimensional stability in chemically aggressive and high temperature conditions. Radiation cross-linking can be applied to a great number of plastics: thermoplastics, elastomers and thermoplastic elastomers (TPE). Some of them can cross-link on their own, some others need to be formulated with a cross-linking agent (promoter) or to be modified during their polymerization. Some results of chemical and thermomechanical characterizations of radiation cross-linked plastics based on engineering polymers will be described, and their advantages will be emphasized in relation with their applications in various sectors: pipes and cables, packaging, automotive, electrical engineering and electronics, including connectors, surface mounted devices, integrated circuits, 3D-MID technology, etc. The paper will conclude with a short review of the industrial irradiation facilities (EB facilities and gamma plants) adapted to the treatment of such various products

  4. The radiation protection code of practice in teletherapy facilities

    International Nuclear Information System (INIS)

    Fadlalla, N. S. M.

    2010-05-01

    This study aimed to provide a document (code) for the standard practice in teletherapy facilities to be a reference and guide for establishing new teletherapy facilities or mending an existing one, another aim was to evaluated the teletherapy facilities with regard to their compliance to the recommendations and guides mentioned in this document. This document includes: safety specifications for teletherapy equipment, facility planning and shielding design, radiation protection and work practice, quality assurance and personnel requirements and responsibilities. In order to assess the degree of compliance of the two centers in the country with what was stated in the developed document IAEA inspection checklist was utilized and made some radiation measurement were made around the treatment rooms. The results of such inspection mission revealed that the current status of radiation protection in both of inspected centers is almost similar and both are not satisfactory as many of the essential items of radiation protection as stipulated in this document were not followed, which lead to unnecessary, radiation exposure to patients and staff. Finally, some recommendations that may help to improve the status of radiation protection in radiotherapy departments in Sudan are given. (Author)

  5. An economic benefit analysis on the cobalt-60 irradiation facility of Beijing Radiation Research Center

    International Nuclear Information System (INIS)

    Wang Binlin

    1995-01-01

    The peculiarity, the investment and annual operating cost of the 3.7 x 10 16 Bq (MCi) cobalt-60 irradiation facility at Beijing Radiation Application Research Centre are described. Its economic benefits each year are analyzed according to several year operating practice. Some related questions on carrying out radiation processing are raised and discussed. (author)

  6. A commercial multipurpose radiation processing facility for Hawaii

    International Nuclear Information System (INIS)

    Welt, M.A.

    1985-01-01

    The State of Hawaii offers a unique challenge for the designer of an economically feasible radiation processing system. Based on the prevailing agricultural export requirements, the radiation facility must be capable for handling a variety of bulky fruit and vegetable products for insect disinfestation purposes and, yet, provide proper economies for the users of the facility. A capability must exist for irradiating other types of products requiring higher doses, e.g., fish and shellfish products for shelf-life extension, which might require a dose approximately eight times higher than the disinfestation dose, or even medical product or a food sterilization dose, which would be approximately twelve times higher than the required shelf-life extension dose. The Radiation Technology Model RT 4l0l-4048 radiation processing facility provides the necessary versatility and operational reliability to meet the challenge. The technical features and economic analyses demonstrate the advantages of this computer-operated pallet irradiation system. Actual performance data from the Radiation Technology subsidiary operations in West Memphis, Arkasas, and Burlilngton, North Carolina, are presented along with photographs of the proposed system for Hawaii

  7. Concerning control of radiation exposure to workers in nuclear reactor facilities for testing and nuclear reactor facilities in research and development phase (fiscal 1987)

    International Nuclear Information System (INIS)

    1988-01-01

    A nuclear reactor operator is required by the Nuclear Reactor Control Law to ensure that the radiation dose to workers engaged in the operations of his nuclear reactor is controlled below the permissible exposure doses that are specified in notifications issued based on the Law. The present note briefly summarizes the data given in the Reports on Radiation Control, which have been submitted according to the Nuclear Reactor Control Law by the operators of nuclear reactor facilities for testing and those in the research and development phase, and the Reports on Control of Radiation Exposure to Workers submitted in accordance with the applicable administrative notices. According to these reports, the measured exposure to workers in 1987 were below the above-mentioned permissible exposure doses in all these nuclear facilities. The 1986 and 1987 measurements of radiation exposure dose to workers in nuclear reactor facilities for testing are tabulated. The measurements cover dose distribution among the facilities' personnel and workers of contractors. They also cover the total exposure dose for all workers in each of four plants operated under the Japan Atomic Energy Research Institute and the Power Reactor and Nuclear Fuel Development Corporation. (N.K.)

  8. The Synchrotron Radiation Facility ESFR in Grenoble

    International Nuclear Information System (INIS)

    Haensel, R.

    1994-01-01

    The European Synchrotron Radiation Facility (ESFR) is the first synchrotron radiation source of the 3-th generation for Roentgen radiations.It permits a new series of experiments in the domains of physics, chemistry, materials studies, micromechanics, biology, medicine and crystallography. The main part of device represents the 850 meter storage ring of 6 GeV electrons. (MSA)

  9. The TAC Radiation Source for Bremsstrahlung Application

    International Nuclear Information System (INIS)

    Demir, N.

    2008-01-01

    The TAC is a project for the first Turkish radiation source and currently design study is produced with funding from the DPT (State Planning Unity). Two main part of the project will be IR-FEL and Bremsstrahlung facility. Each LINAC will provide max. electron energy of 20 MeV. The Bremsstrahlung facility at TAC will consist two of the LINAC module and will be obtained 35 MeV photon energy. This would provide a chance to investigate nuclear structure at this energy range and also some application of photonuclear physics. In this work the main parameter and plans for those of facility will be detailed

  10. MOSFET dosimetry of the radiation therapy microbeams at the European synchrotron radiation facility

    International Nuclear Information System (INIS)

    Rozenfeld, A.; Lerch, M.

    2002-01-01

    Full text: We have developed an innovative on-line MOSFET readout system for use in the quality assurance of radiation treatment beams. Recently the system has found application in areas where excellent spatial resolution is also a requirement in the quality assurance process, for example IMRT, and microbeam radiation therapy. The excellent spatial resolution is achieved by using a quadruple RADFET TM chip in 'edge on' mode. In developing this approach we have found that the system can be utilised to determine any error in the beam profile measurements due to misalignment of RADFET with respect to the radiation beam or microbeam. Using this approach will ensure that the excellent spatial resolution of the RADFET used in 'edge-on' mode is fully utilised. In this work we report on dosimetry measurements performed at the microbeam radiation therapy beamline located at the European Synchrotron Radiation Facility. The synchrotron planar array microbeam with size 10-30 μm and pitch ∼200 μm has found an important application in microbeam radiation therapy (MRT) of brain tumours in infants for whom other kinds of radiotherapy are inadequate and/or unsafe. The radiation damage from an array of parallel microbeams correlates strongly with the range of peak-valley dose ratios (PVDR), ie, the range of the ratio of the absorbed dose to tissue directly in line with the mid-plane of the microbeam to that in the mid-plane between adjacent microbeams. Novel physical dosimetry of the microbeams using the online MOSFET reader system will be presented. Comparison of the experimental results with both GaF film measurements and Monte Carlo computer-simulated dosimetry are described here for selected points in the peak and valley regions of a microbeam-irradiated tissue phantom

  11. The status and prospects of radiation application technology in Korea

    International Nuclear Information System (INIS)

    Sung-Kee, Jo

    2010-01-01

    Full text : This article describes the Nuclear age in Korea which began in 1959 when Korea Atomic Energy Research Institute (KAERI) was first established. Since then, Korea became one of the leading countries in the world nuclear technology and industry. In Korea, 20 nuclear power plants are currently in operation, which produced 34.1% of total electricity in 2009. Furthermore, 8 nuclear power plants are under construction. Eventually, Korea succeeded in exporting nuclear power plant to United Arab Emirates and research reactor to Jordan in 2009. The nuclear application can be divided into two fields. The first one is nuclear power production, and the other is radiation application. Due to the governmental promotion policy, the research activity on radiation and RI application is greatly rising in Korea. Korea Atomic Energy Research Institute (KAERI) and Korea Institute of Radiological and Medical Sciences (KIRAMS) are two leading research institutes in this field. KAERI is conducting RI production and neutron research by using research reactor, and radiation application research such as radiation processing, biotechnological and agricultural application, and cyclotron application. KIRAMS is dedicated to the research on the medical application of radiation. Advanced Radiation Technology Institute (ARTI), constructed in 2006 as a sub organization of KAERI, is a major research institute for radiation application to material engineering, agriculture, biotechnology, environmental technology, and cyclotron beam application. ARTI is equipped with various radiation facilities such as Co-60 irradiation facility (490 kCi and 3 kCi), gamma phytotron, gamma cell, electron beam irradiator, ion implanter, and 30 MeV cyclotron. In material engineering field, new industrial and biomedical materials (carbon fiber filament, composite electrolyte, fuel cell membrane, hydrogels) are developed by radiation processing of polymer materials. In agricultural area, new plant varieties

  12. The Brookhaven Radiation Effects Facility

    Energy Technology Data Exchange (ETDEWEB)

    Grand, P.; Snead, C.L.; Ward, T.

    1988-01-01

    The Neutral Particle Beam (NPB) Radiation Effects Facility (REF), funded by the Strategic Defense Initiative Office (SDIO) through the Defense Nuclear Agency (DNA) and the Air Force Weapons Laboratory (AFWL), has been constructed at Brookhaven National Laboratory (BNL). Operation started in October 1986. The facility is capable of delivering pulsed H{sup -}, H{sup o}, and H{sup +} beams of 100 to 200 MeV energy up to 30 mA peak current. Pulses can be adjusted from 5 {mu}s to 500 {mu}s length at a repetition rate of 5 pps. The beam spot on target is adjustable from 3 to 100 cm diameter (2 {sigma}) resulting in a maximum dose of about 10 MRads (Si) per pulse (small beam spot). Experimental use of the REF is being primarily supported by the SDI lethality (LTH-4) program. The program has addressed ionization effects in electronics, both dose rate and total dose dependence, radiation-sensitive components, and dE/dx effects in energetic materials including propellants and high explosives (HE). This paper describes the facility, its capabilities and potential, and the experiments that have been carried out to date or are being planned. 2 refs., 10 figs.

  13. The Brookhaven Radiation Effects Facility

    International Nuclear Information System (INIS)

    Grand, P.; Snead, C.L.; Ward, T.

    1988-01-01

    The Neutral Particle Beam (NPB) Radiation Effects Facility (REF), funded by the Strategic Defense Initiative Office (SDIO) through the Defense Nuclear Agency (DNA) and the Air Force Weapons Laboratory (AFWL), has been constructed at Brookhaven National Laboratory (BNL). Operation started in October 1986. The facility is capable of delivering pulsed H - , H/sup o/, and H + beams of 100 to 200 MeV energy up to 30 mA peak current. Pulses can be adjusted from 5 μs to 500 μs length at a repetition rate of 5 pps. The beam spot on target is adjustable from 3 to 100 cm diameter (2 σ) resulting in a maximum dose of about 10 MRads (Si) per pulse (small beam spot). Experimental use of the REF is being primarily supported by the SDI lethality (LTH-4) program. The program has addressed ionization effects in electronics, both dose rate and total dose dependence, radiation-sensitive components, and dE/dx effects in energetic materials including propellants and high explosives (HE). This paper describes the facility, its capabilities and potential, and the experiments that have been carried out to date or are being planned. 2 refs., 10 figs

  14. Recent status on cobalt-60 gamma ray radiation sources production and its application in China

    International Nuclear Information System (INIS)

    Cao Zhijian; Song Yunjiang; Zhang Chunhua; Li Maoling

    1993-01-01

    This paper describes the status of Co-60 γ ray radiation sources and their application in China. At present, the production capacity of Co-60 γ ray radiation sources in China is about 11.1 PBq (0.3 MCi) per year. 5 years later, it is increased to 37 PBq (1 MCi) per year. The radioactivity of each source is 370 TBq - 740 TBq (1000-2000 Ci). There are over 150 Co-60 γ ray radiation facilities with total design capacity of over 370 PBq (10 MCi) and practical capacity of about 92.5 PBq (2.5 MCi) in operation. The number of Co-60 γ ray radiation facilities with practical capacity of over 3.7 PBq (0.1 MCi) is 14. The main applications of the Co-60 γ ray sources are radiation crosslinking, radiation sterilization of disposable medical supplies and food irradiation. The prospects for Co-60 γ ray radiation source application in China are good. (author)

  15. Quality control through dosimetry at a contract radiation processing facility

    International Nuclear Information System (INIS)

    Du Plessis, T.A.; Roediger, A.H.A.

    1985-01-01

    Reliable dosimetry procedures constitute a very important part of process control and quality assurance at a contract gamma radiation processing facility that caters for a large variety of different radiation applications. The choice, calibration and routine intercalibration of the dosimetry systems employed form the basis of a sound dosimetry policy in radiation processing. With the dosimetric procedures established, detailed dosimetric mapping of the irradiator upon commissioning (and whenever source modifications take place) is carried out to determine the radiation processing characteristics and peformance of the plant. Having established the irradiator parameters, routine dosimetry procedures, being part of the overall quality control measures, are employed. In addition to routine dosimetry, independent monitoring of routine dosimetry is performed on a bi-monthly basis and the results indicate a variation of better than 3%. On an annaul basis the dosimetry systems are intercalibrated through at least one primary standard dosimetry laboratory and to date a variation of better than 5% has been experienced. The company also participates in the Pilot Dose Assurance Service of the International Atomic Energy Agency, using the alanine/ESR dosimetry system. Routine calibration of the instrumentation employed is carried out on a regular basis. Detailed permanent records are compiled on all dosimetric and instrumentation calibrations, and the routine dosimetry employed at the plant. Certificates indicating the measured absorbed radiation doses are issued on request and in many cases are used for the dosimetric release of sterilized medical and pharmaceutical products. These procedures, used by Iso-Ster at its industrial gamma radiation facility, as well as the experience built up over a number of years using radiation dosimetry for process control and quality assurance are discussed. (author)

  16. Health physics experience with nondestructive X-radiation facilities in the US Air Force

    International Nuclear Information System (INIS)

    Stencel, J.R.; Piltingsrud, H.V.

    1976-01-01

    Radiation safety experience in the construction and use of enclosed nondestructive inspection (NDI) facilities in the US Air Force, has reaffirmed the constant need for the health physicist to continually monitor and assit in upgrading these facilities. Health physics contributions include evaluation of initial shielding requirements, proper selection of construction material, insuring that adequate safety devices are installed and adequate personnel dosimetry devices are available, surveying the facility, and assisting in the safety education program. There is a need to better define NDI warning/safety devices, using the National Bureau of Standards, (NBS) Handbook 107 as the most applicable guide

  17. Operational experience of gamma radiation processing facility

    International Nuclear Information System (INIS)

    Patel, Nilesh

    2014-01-01

    Universal lSO-MED is now proud to announce an extension of its irradiation service for low-dose applications specifically in agriculture commodities, food and healthcare applications with the start of Gujarat Agro Radiation Processing Facility at Village: Bavla, Ahmedabad (A Government Enterprise) Operated, Maintained and Managed by Universal Medicap Ltd. Availability of hygienic, safe and nutritious food commodities is essential for any sustainable human development. Food stability is an important element of economic stability and self-reliance of a nation. Though the need to preserve food has been felt by the mankind since the time immemorial, it is even stronger in today's context. The rising population and increasing gap between demand and supply, agro-climatic conditions, in adequate post-harvest practices, seasonal nature of produce and long distances between production and consumption centers underscore the need to device improved conservation and preservation strategies

  18. NIST Accelerator Facilities And Programs In Support Of Industrial Radiation Research

    International Nuclear Information System (INIS)

    Bateman, F.B.; Desrosiers, M.F.; Hudson, L.T.; Coursey, B.M.; Bergstrom, P.M. Jr.; Seltzer, S.M.

    2003-01-01

    NIST's Ionizing Radiation Division maintains and operates three electron accelerators used in a number of applications including waste treatment and sterilization, radiation hardness testing, detector calibrations and materials modification studies. These facilities serve a large number of governmental, academic and industrial users as well as an active intramural research program. They include a 500 kV cascaded-rectifier accelerator, a 2.5 MV electron Van de Graaff accelerator and a 7 to 32 MeV electron linac, supplying beams ranging in energy from a few keV up to 32 MeV. In response to the recent anthrax incident, NIST along with the US Postal Service and the Armed Forces Radiobiology Research Institute (AFRRI) are working to develop protocols and testing procedures for the USPS mail sanitization program. NIST facilities and personnel are being employed in a series of quality-assurance measurements for both electron- and photon-beam sanitization. These include computational modeling, dose verification and VOC (volatile organic compounds) testing using megavoltage electron and photon sources

  19. Bejing synchrotron radiation TXRF facility and its applications on trace element study of cells

    International Nuclear Information System (INIS)

    Yuying, H.; Yingrong, W.; Limin, Z.; Guangcheng, L.; Wie, H.

    2000-01-01

    In this paper, Beijing synchrotron radiation TXRF facility and experimental method were described. The minimum detection limits of some elements were tested by using several kinds of standard reference materials. The feasibility of using TXRF in biomedical field is discussed. With this technique small intestine cells of both normal and radiated white mice were analyzed, and the elemental average contents of each single cell are also given. The results indicated that the contents of some trace elements for normal and radiated white mice are greatly different, which may be used to provide valuable reference for clinic medicine. On the other hand, the trace elements of cells of lung and cervix cancer before and after apoptosis were determined by SRTXRF and the changes of trace elements in these cells were discussed. (author)

  20. Radiation Safety of Accelerator Facility with Regard to Regulation

    International Nuclear Information System (INIS)

    Dedi Sunaryadi; Gloria Doloresa

    2003-01-01

    The radiation safety of accelerator facility and the status of the facilities according to licensee in Indonesia as well as lesson learned from the accidents are described. The atomic energy Act No. 10 of 1997 enacted by the Government of Indonesia which is implemented in Radiation Safety Government Regulation No. 63 and 64 as well as practice-specific model regulation for licensing request are discussed. (author)

  1. Comparison of Design and Practices for Radiation Safety among Five Synchrotron Radiation Facilities

    International Nuclear Information System (INIS)

    Liu, James C.; Rokni, Sayed H.; SLAC; Asano, Yoshihiro; JAERI-RIKEN, Hyogo; Casey, William R.; Brookhaven; Donahue, Richard J.

    2005-01-01

    There are more and more third-generation synchrotron radiation (SR) facilities in the world that utilize low emittance electron (or positron) beam circulating in a storage ring to generate synchrotron light for various types of experiments. A storage ring based SR facility consists of an injector, a storage ring, and many SR beamlines. When compared to other types of accelerator facilities, the design and practices for radiation safety of storage ring and SR beamlines are unique to SR facilities. Unlike many other accelerator facilities, the storage ring and beamlines of a SR facility are generally above ground with users and workers occupying the experimental floor frequently. The users are generally non-radiation workers and do not wear dosimeters, though basic facility safety training is required. Thus, the shielding design typically aims for an annual dose limit of 100 mrem over 2000 h without the need for administrative control for radiation hazards. On the other hand, for operational and cost considerations, the concrete ring wall (both lateral and ratchet walls) is often desired to be no more than a few feet thick (with an even thinner roof). Most SR facilities have similar operation modes and beam parameters (both injection and stored) for storage ring and SR beamlines. The facility typically operates almost full year with one-month start-up period, 10-month science program for experiments (with short accelerator physics studies and routine maintenance during the period of science program), and a month-long shutdown period. A typical operational mode for science program consists of long periods of circulating stored beam (which decays with a lifetime in tens of hours), interposed with short injection events (in minutes) to fill the stored current. The stored beam energy ranges from a few hundreds MeV to 10 GeV with a low injection beam power (generally less than 10 watts). The injection beam energy can be the same as, or lower than, the stored beam energy

  2. Standards and general criteria for the planning and certification of need of megavoltage radiation oncology units in health care facilities

    International Nuclear Information System (INIS)

    1977-01-01

    Minimum standards and guidelines to be applied by State agencies and New Jersey health systems agencies in the examination of certificate-of-need applications and in the development of planning activities for radiation oncology units in health care facilities are presented. Radiation oncology is a medical discipline devoted to education and research in the use of ionizing radiation for the treatment of neoplastic disease. The proper application of radiation can be directed at either curative or palliative intent. It is an important and effective technique for the management of cancer. Radiotherapy equipment in clinical use is divided into four main categories: superficial, orthovoltage, megavoltage, and treatment planning facilities. Particular attention is given to megavoltage equipment which emits or generates rays over 1,000 kilovolts. These high energy rays effect better penetration of human tissue and are skin-sparing in nature, thus allowing for better tumor-to- skin dose ratios. The regionalization of megavoltage therapy services is discussed. Data on hospital megavoltage facilities in New Jersey for 1974, 1975, and 1976 are provided. The standards and guidelines pertain to utilization, personnel, and general criteria. A form for use by megavoltage radiation therapy units is appended

  3. Radiological Considerations in the Desgin of Synchrotron Radiation Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ipe, Nisy E.

    1999-01-06

    As synchrotron radiation (SR) facilities are rapidly being designed and built all over the world, the radiological considerations should be weighed carefully at an early stage in the design of the facility. This necessitates the understanding and identification of beam losses in the machines, especially the storage ring. The potential sources of radiation are photons and neutrons from loss of injected or stored beam, gas bremsstrahlung and synchrotron radiation. Protection against radiation is achieved through the adequate design of the shielding walls of the storage ring and the synchrotron radiation beam lines. In addition safety systems such as stoppers and shutters provide protection in the forward direction for entry into the experimental enclosures. Special care needs to be exercised in the design of SR experimental enclosures to minimize radiation leakage through penetrations and gaps between doors and walls, and doors and floors.

  4. Report of promotion expert commission for radiation application on 'Promotion of accelerator application study'

    International Nuclear Information System (INIS)

    1997-01-01

    This is a report published on June, 1996, by promotion expert commission for radiation application of the Atomic Energy Commission. Japanese research and development in the fields of forming and application techniques of radiation beams using accelerator is at comparatively high level in the world, and it seems to be important for Japan not only to maintain these research and development level but also to contribute to creation of worldwide intelligent welfare due to scientific technology. In this report, some investigations are conducted on present state and future view of the radiation application study using accelerator, accelerator facility necessary to promote such application study and a procedure to execute its smooth application. However, objects of the study are not limited only for physical study on elementary particle and atomic nucleus, but expanded to photon, electron, positron, muon, proton, neutron, various inonic beams and RI beams for radiations, which are widely applied to industries such as materials science, material engineering, bio-and life-science, medical science, technical engineering, and so forth, and which will be expected for large contribution to development of these industries. The following items are discussed here; 1) present state and future view of radiation application study using accelerator, 2) Accelerator to be prepared and its executing method, and 3) Promotion method of the accelerator application study. (G.K.)

  5. Report of questionnaire result concerning the radiation control in medicare facilities

    International Nuclear Information System (INIS)

    Nakamura, Yutaka

    2009-01-01

    Radiation control in Japanese medicare facilities is regulated generally by multiple laws of radiation and the Committee has investigated their actual radiation control practice through questionnaire, of which result and its analysis are described here. The questionnaire on web (Committee's homepage) was conducted in the period Apr., 13-May, 1, 2009, by asking to medical radiology personnel (MRP) with 20 items, mainly about personnel working for radiation medicare (RM), monitoring of their external dose, notice of exposure dose to individual person, archiving of the dose record, and questions about the Law Concerning Prevention from Radiation Hazard due to Radioisotopes, Etc.; was answered by 378 facilities where 15,281 persons in total worked for RM (41/facility in average); and the facilities were under regulation by 1 (Medical, 39%) and 2 (Medical and for Prevention, 61%) laws. Major findings were: 71% of facilities had no clear rule to select MRP; 98% trusted dosimetry outside; in 76%, personnel participating in RM had pocket dosimeter as well; 70% investigated the exposure history at personnel employment; to personnel whose dose could exceed or exceeded 20 mSv/y, 45% transferred the person to other work site, 34% issued warning and 21% had no such personnel; 73% felt the necessity of qualified expert for radiation control; 81% conducted education and training to MRP; 54% used radiation-generating equipments, 27%, unsealed radioisotopes and 19%, sealed ones; and 77% felt the radiation control should be unified in the Medical Law. Based on the findings, the Committee discussed and commented about definition and selection of MRP, dosimetry and its record of MRP having multiple, increasing works, uncertainty of the exact number of MRP in Japan, and desirable unification of radiation control practice in the medicare facility into the Medical Law if amended in future. (K.T.)

  6. An application of data processing in the radiation measuring means near the nuclear facilities

    International Nuclear Information System (INIS)

    Joffre, H.

    1979-01-01

    The utilization of digital techniques in health physics is becoming general. A recent application, described here, is the realization of the radiation monitoring panel TCR in a building at the 'Centre d'Etudes Nucleaires Saclay'. This building, run by the 'Departement des Rayonnements Ionisants', produces radioelements used in research, medicine and industry. The TCR as designed and built includes 120 measuring channels, its centralizer unit comprises two computers, three visualization screens, two fast printers, a curve plotting table and a recording disc. After some months in operation, this facility proves to be very efficient in its monitoring function by providing new indications, the most important of which is the virtually immediate indication of the level of air contamination by radioactive aerosols in the working areas and in the gas effluents. The data processing by two computers and the super-dimensioned peripherals also appear to ensure an excellent reliability of the whole unit. Finally, in comparison with conventional TCRs, this new installation has very good operational and reliability characteristics in spite of a markedly lower cost [fr

  7. Application of an experimental irradiation facility type K-120 for the radiation treatment of agricultural products in large quantity

    International Nuclear Information System (INIS)

    Stenger, V.; Foeldiak, G.; Horvath, I.; Hargittai, P.; Bartfai, Cs.

    1979-01-01

    During experimental and pilot irradiation carried out by the 60 Co irradiation facility type K-120 of the Institute of Isotopes of the Hungarian Academy of Sciences an irradiation technology for the treatment of agricultural and food products of considerable density has been developed. Applying transport containers of commercial size the intermittent radiation treatment of great quantity products was made possible with homogeneous dose distribution. The radiation technical characteristics, the utilization coefficient and the capacity of the facility for every agricultural product were calculated. (author)

  8. Software application for a total management of a radioactive facility

    International Nuclear Information System (INIS)

    Mirpuri, E.; Escudero, R.; Macias, M.T.; Perez, J.; Sanchez, A.; Usera, F.

    2008-01-01

    The use of radiological material and/or equipment that generate ionizing radiation is widely extended in biological research. In every laboratory there are a large variety of methods, operations, techniques, equipment, radioisotopes and users related to the work with ionizing radiation. In order to control the radioactive material, users and the whole facility a large number of documents, databases and information is necessary to be created by the manager of the Radioactivity Facility. This kind of information is characterized by a constant and persistent manipulation and includes information of great importance such as the general management of the radioactive material and waste management, exposed workers vigilance, controlled areas access, laboratory and equipment reservations, radiological inspections, etc. These activities are often complicated by the fact that the main manager of the radioactive facility is also in charge of bio-safety and working prevention issues so the documents to generate and manipulate and the procedures to develop are multiplied. A procedure to access and manage all these files is highly recommended in order to optimize the general management of the facility, avoiding loss of information, automating all the activities and allowing data necessary for control easily accessible. In this work we present a software application for a total management of the facility. This software has been developed by the collaboration of six of the most important research centers from Spain in coordination with the company 'Appize soluciones'. This is a flexible and versatile application that adapts to any specific need of every research center, providing the appropriate reports and checklist that speed up to general management and increase the ease of writing the official documents, including the Operations Book. (author)

  9. Design concept of radiation control system for the high intensity proton accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yukihiro; Ikeno, Koichi; Akiyama, Shigenori; Harada, Yasunori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    Description is given for the characteristic radiation environment for the High Intensity Proton Accelerator Facility and the design concept of the radiation control system of it. The facility is a large scale accelerator complex consisting of high energy proton accelerators carrying the highest beam intensity in the world and the related experimental facilities and therefore provides various issues relevant to the radiation environment. The present report describes the specifications for the radiation control system for the facility, determined in consideration of these characteristics. (author)

  10. Fire and earthquake counter measures in radiation handling facilities

    International Nuclear Information System (INIS)

    1985-01-01

    'Fire countermeasures in radiation handling facilities' published in 1961 is still widely utilized as a valuable guideline for those handling radiation through the revision in 1972. However, science and technology rapidly advanced, and the relevant laws were revised after the publication, and many points which do not conform to the present state have become to be found. Therefore, it was decided to rewrite this book, and the new book has been completed. The title was changed to 'Fire and earthquake countermeasures in radiation handling facilities', and the countermeasures to earthquakes were added. Moreover, consideration was given so that the book is sufficiently useful also for those concerned with fire fighting, not only for those handling radiation. In this book, the way of thinking about the countermeasures against fires and earthquakes, the countermeasures in normal state and when a fire or an earthquake occurred, the countermeasures when the warning declaration has been announced, and the data on fires, earthquakes, the risk of radioisotopes, fire fighting equipment, the earthquake counter measures for equipment, protectors and radiation measuring instruments, first aid, the example of emergency system in radiation handling facilities, the activities of fire fighters, the example of accidents and so on are described. (Kako, I.)

  11. Radiation protection program at an accelerator facility complex

    International Nuclear Information System (INIS)

    Ramanuja, Jaya

    2007-01-01

    Broad aspects of Radiation Protection Program at the Tyco Healthcare/Mallinckrodt Inc. will be presented with emphasis on Occupational dose, Public dose and ALARA program. Regulatory requirements, compliance and radio nuclides of concern for external exposure and internal contamination will be discussed. The facility is subject to in depth annual inspections by the Nuclear Regulatory Commission (NRC) to ensure compliance with regulations and operating license requirements. The facility is required to have an emergency contingency plan in place. A simulated emergency drill scenario is witnessed and graded by the NRC and state inspectors, with full participation by the fire department and the local hospital. Radiation Safety Officer (RSO) is in charge of all radiological aspects of the facility, and reports to the plant manager directly. The RSO or any of his staff has the authority to stop a job if there is a radiological concern. The Radiation protection organization interfaces with Production, QA and Engineering and ensures there is no conflict with Industrial Safety, OSHA and FDA requirements. Any employee has the right to call the regulatory officials if he/she has a concern. Operational aspects of Radiation protection program such as radiological survey, contamination control and limits, air sample survey, radio active waste processing and record retention requirements are per plant procedures and regulatory requirements. Shielding and administrative requirements for designing a modification to an existing design or a new lab/hot cell is subject to in-depth review and approval by Radiation Safety Committee. Each department has a Dose Reduction Subcommittee which meets periodically to discuss if any changes in procedures or facility can be made to decrease the dose. The subcommittee also trends the dose to ensure it is trending downward. Even though 99 Mo/ 99m TC generators are manufactured at the facility, majority of the dose is from cyclotron maintenance

  12. A-State-of-the-Art Report on Application of Radiation Technology to Environmental Pollution Control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Kwang; Lee, Myun Joo

    2004-06-15

    Radiation technology has been rapidly developed for decades and its applicability also enlarged to many fields such as environmental protection, medical care, manufacturing industry, agriculture, and bio technology. In this report, we focused on the present situation of the development of radiation facilities and state-of-the-art on application of radiation to environmental pollution control including purification of flue gas, waste water treatment, and recycling of biological waste. We especially discussed the radiation technology for environmental pollution control and described the capability of its application to the industrial plants in Korea.

  13. A comprehensive centralized control system for radiation waste treatment facility

    International Nuclear Information System (INIS)

    Kong Jinsong

    2014-01-01

    A comprehensive centralized control system is designed for the radiation waste treatment facility that lacking of coordinated operational mechanism for the radiation waste treatment. The centralized control and alarm linkage of various systems is implemented to ensure effectively the safety of nuclear facility and materials, improve the integral control ability through advanced informatization ways. (author)

  14. Remote machine engineering applications for nuclear facilities decommissioning

    International Nuclear Information System (INIS)

    Toto, G.; Wyle, H.R.

    1983-01-01

    Decontamination and decommissioning of a nuclear facility require the application of techniques that protect the worker and the enviroment from radiological contamination and radiation. Remotely operated portable robotic arms, machines, and devices can be applied. The use of advanced systems should enhance the productivity, safety, and cost facets of the efforts; remote automatic tooling and systems may be used on any job where job hazard and other factors justify application. Many problems based on costs, enviromental impact, health, waste generation, and political issues may be mitigated by use of remotely operated machines. The work that man can not do or should not do will have to be done by machines

  15. Application of radiation processing in Asia and the pacific region: focus on Malaysia

    International Nuclear Information System (INIS)

    Khairul Zaman, H.J.; Mohd Dahlan

    1995-01-01

    Applications of radiation processing in Malaysia and other developing countries in Asia and the Pacific region is increasing as the countries move toward industrialisation. At present, there are more than 85 gamma facilities and 334 electron accelerators in Asia and the Pacific region which are mainly in Japan, Rep. of Korea and China. The main applications which are in the interest of the region are radiation sterilisation of medical products; radiation crosslinking of wire and cable, heat shrinkable film and tube, and foam; radiation euring of surface coatings, printing inks and adhesive; radiation vulcanisation of natural rubber latex; radiation processing of agro-industrial waste; radiation treatment of sewage sludge and municipal waste; food irradiation; tissue grafts and radiation synthesis of bioactive materials. (author)

  16. Application of radiation processing in Asia and the Pacific region: focus on Malaysia

    International Nuclear Information System (INIS)

    Dahlan, K.Z.H.M.

    1995-01-01

    Applications of radiation processing in Malaysia and other developing countries in Asia and the Pacific region is increasing as the countries move toward industrialisation. At present, there are more than 85 gamma facilities and 334 electron accelerators in Asia and the Pacific region which are mainly in Japan, Rep. of Korea and China. The main applications which are in the interest of the region are radiation sterilisation of medical products; radiation crosslinking of wire and cable, heat shrinkable film and tube, and foam; radiation curing of surface coatings, printing inks and adhesive; radiation vulcanisation of natural rubber latex; radiation processing of agro-industrial waste; radiation treatment of sewage sludge and municipal waste; food irradiation; tissue grafts and radiation synthesis of bioactive materials. (author)

  17. Radioactive clearance discharge of effluent from nuclear and radiation facilities

    International Nuclear Information System (INIS)

    Liu Xinhua; Xu Chunyan

    2013-01-01

    On the basis of the basic concepts of radiation safety management system exemption, exclusion and clearance, we expound that the general industrial gaseous and liquid effluent discharges are exempted or excluded, gaseous and liquid effluent discharged from nuclear and radiation facilities are clearance, and non-radioactive. The main purpose of this paper is to clarify the concepts, reach a consensus that the gaseous and liquid effluent discharged from nuclear and radiation facilities are non-radioactive and have no hazard to human health and natural environment. (authors)

  18. Improving and extending performance at synchrotron radiation facilities

    International Nuclear Information System (INIS)

    Jackson, A.

    1997-05-01

    Synchrotron radiation facilities around the world have now matured through three generations. The latest facilities have all met or exceeded their design specifications and are learning how to cope with the ever more demanding requests of the user community, especially concerning beam stability. The older facilities remain competitive by extending the unique features of their design, and by developing novel insertion devices. In this paper we survey the beam characteristics achieved at third-generation sources and explore the improvements made at earlier generation facilities

  19. Radiation protection in medical applications

    International Nuclear Information System (INIS)

    Maldonado M, H.

    2008-12-01

    The justification of the practices is the fundamental principle on which rests the peaceful use of ionizing radiations. They actually contain as aspirations to improve the quality of people's lives, contributing to sustainable development through environmental protection, so that the sources security and the individuals protection will be conditions which are not and should can not be operated. For medical applications is a highly illustrative example of this, since both for the diagnosis and therapy, the goal is to achieve what is sought for the white tissue, secured the least possible damage to the neighboring tissues so that in turn reduce the negative effects for the patient. As a basis for achieving the above, it is essential to have qualified personnel in all areas incidents, for example users, workers, officials and staff members. There are a variety of specialists in the field of medical applications as, nuclear chemistry, nuclear engineering, radiation protection, medical physics, radiation physics and others. Among the human resource in the country must make up the majority are medical radiologists, highlighting gaps in the number of radiotherapy and nuclear medicine but specially in the medical physics, who is in some way from a special viewpoint of the formal school, new to the country. This is true for the number of facilities which are in the country. The radiation protection responsibilities in medical applications focus primarily on two figures: the radiology safety manager, who is primarily dedicated to the protection of occupationally exposed personnel and the public, and the medical physicist whose functions are geared towards the radiological protection of the patient. The principal legislation in the medical applications area has been enacted and is monitored by the Health Secretary and National Commission on Nuclear Safety and Safeguards, entities that have reached agreements to avoid overlap and over-regulation. Medical applications in the

  20. Radiation monitoring considerations for radiobiology facilities

    International Nuclear Information System (INIS)

    McClelland, T.W.; McFall, E.D.

    1976-01-01

    Battelle, Pacific Northwest Laboratories, conducts a wide variety of radiobiology and radioecology research in a number of facilities on the Hanford Reservation. Review of radiation monitoring problems associated with storage, plant and animal experiments, waste handling and sterile facilities shows that careful monitoring, strict procedural controls and innovative techniques are required to minimize occupational exposure and control contamination. Although a wide variety of radioactivity levels are involved, much of the work is with extremely low level materials. Monitoring low level work is mundane and often impractical but cannot be ignored in today's ever tightening controls

  1. Evaluation of safety, an unavoidable requirement in the applications of ionizing radiations

    International Nuclear Information System (INIS)

    Jova Sed, Luis Andres

    2013-01-01

    The safety assessments should be conducted as a means to evaluate compliance with safety requirements (and thus the application of fundamental safety principles) for all facilities and activities in order to determine the measures to be taken to ensure safety. It is an essential tool in decision making. For long time we have linked the safety assessment to nuclear facilities and not to all practices involving the use of ionizing radiation in daily life. However, the main purpose of the safety assessment is to determine if it has reached an appropriate level of safety for an installation or activity and if it has fulfilled the objectives of safety and basic safety criteria set by the designer, operating organization and the regulatory body under the protection and safety requirements set out in the International Basic safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. This paper presents some criteria and personal experiences with the new international recommendations on this subject and its practical application in the region and demonstrates the importance of this requirement. Reflects the need to train personnel of the operator and the regulatory body in the proportional application of this requirement in practice with ionizing radiation

  2. Nuclear safety and radiation protection report of Chinon nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 94 (irradiated materials workshop), 99 (fuel storage facility), 107 and 132 (NPPs in operation), 133, 153 and 161 (NPPs under deconstruction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  3. New radiation protection calibration facility at CERN.

    Science.gov (United States)

    Brugger, Markus; Carbonez, Pierre; Pozzi, Fabio; Silari, Marco; Vincke, Helmut

    2014-10-01

    The CERN radiation protection group has designed a new state-of-the-art calibration laboratory to replace the present facility, which is >20 y old. The new laboratory, presently under construction, will be equipped with neutron and gamma sources, as well as an X-ray generator and a beta irradiator. The present work describes the project to design the facility, including the facility placement criteria, the 'point-zero' measurements and the shielding study performed via FLUKA Monte Carlo simulations. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Facility - Radiation Source Features and User Applications

    International Nuclear Information System (INIS)

    Gover, A.; Abramovich, A.; Eichenbaum, A.L.; Kanter, M.; Sokolowski, J.; Yahalom, A.; Shiloh, J.; Schnitzer, I.; Pinhasi, Y.

    1999-01-01

    Recent measurements of the radiation characteristics of the tandem FEL prove .that the device operates as a high quality, tunable radiation source in the mm wave regime. Tuning range of 60% around a central frequency of 100 GHz was demonstrated by varying the tandem accelerator energy from 1 to 1.5 MeV with 1-1.5 Amp. Beam current. Fourier transform limited linewidth of Δ f/f -5 was measured in single-mode lasing operation. The FEL power in pulse operation (10μsec) was 10 kWatt. Operating the FEL at high repetition rate with 0.1 to 1 mSec pulses will make it possible to obtain high average power (1 kWatt) and narrow linewidth (10 -7 ). Based ,on these exceptional properties of the FEL as a high quality spectroscopic tool and as a source of high average power radiation, the FEL consortium, supported by a body of 10 radiation user groups from various universities and research institutes, embark on a new project for development of an Israeli FEL radiation user laboratory. The laboratory is presently in a design and building stage in the academic campus in Ariel. The FEL will be moved to this laboratory after completion of X-ray protection structure in the allocated building. In the first phase of development, the radiation user laboratory will consist of three user stations: a. Spectroscopic station (low average power). Material studies are planned in the fields of H.T.S.C., submicron semiconductor devices, gases. b. Material processing station (high average power). Experiments are planned in the fields of thin film ceramic sintering (including H.T.S.C.), functionally graded materials, surface treatment of metals, interaction with biological tissues. c. Atmospheric study station. Experiments are planned in the fields of aerosol, dust and clouds mapping, remote sensing of gases, wide-band mm wave communication The FEL experimental results and the user laboratory features will be described

  5. Synchrotron radiation facilities at DESY, a status report

    International Nuclear Information System (INIS)

    Koch, E.E.

    1979-12-01

    A short summary of the developments which have led to the present extensive use of Synchrotron Radiation at DESY is presented and a description of the Synchrotron Radiation facilities presently available and under development is given with emphasis on the new HASYLAB project at the storage ring DORIS. (orig.) 891 HSI/orig. 892 MKO

  6. Multi-MGy Radiation Hardened Camera for Nuclear Facilities

    International Nuclear Information System (INIS)

    Girard, Sylvain; Boukenter, Aziz; Ouerdane, Youcef; Goiffon, Vincent; Corbiere, Franck; Rolando, Sebastien; Molina, Romain; Estribeau, Magali; Avon, Barbara; Magnan, Pierre; Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Raine, Melanie

    2015-01-01

    There is an increasing interest in developing cameras for surveillance systems to monitor nuclear facilities or nuclear waste storages. Particularly, for today's and the next generation of nuclear facilities increasing safety requirements consecutive to Fukushima Daiichi's disaster have to be considered. For some applications, radiation tolerance needs to overcome doses in the MGy(SiO 2 ) range whereas the most tolerant commercial or prototypes products based on solid state image sensors withstand doses up to few kGy. The objective of this work is to present the radiation hardening strategy developed by our research groups to enhance the tolerance to ionizing radiations of the various subparts of these imaging systems by working simultaneously at the component and system design levels. Developing radiation-hardened camera implies to combine several radiation-hardening strategies. In our case, we decided not to use the simplest one, the shielding approach. This approach is efficient but limits the camera miniaturization and is not compatible with its future integration in remote-handling or robotic systems. Then, the hardening-by-component strategy appears mandatory to avoid the failure of one of the camera subparts at doses lower than the MGy. Concerning the image sensor itself, the used technology is a CMOS Image Sensor (CIS) designed by ISAE team with custom pixel designs used to mitigate the total ionizing dose (TID) effects that occur well below the MGy range in classical image sensors (e.g. Charge Coupled Devices (CCD), Charge Injection Devices (CID) and classical Active Pixel Sensors (APS)), such as the complete loss of functionality, the dark current increase and the gain drop. We'll present at the conference a comparative study between these radiation-hardened pixel radiation responses with respect to conventional ones, demonstrating the efficiency of the choices made. The targeted strategy to develop the complete radiation hard camera

  7. Multi-MGy Radiation Hardened Camera for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Sylvain; Boukenter, Aziz; Ouerdane, Youcef [Universite de Saint-Etienne, Lab. Hubert Curien, UMR-CNRS 5516, F-42000 Saint-Etienne (France); Goiffon, Vincent; Corbiere, Franck; Rolando, Sebastien; Molina, Romain; Estribeau, Magali; Avon, Barbara; Magnan, Pierre [ISAE, Universite de Toulouse, F-31055 Toulouse (France); Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Raine, Melanie [CEA, DAM, DIF, F-91297 Arpajon (France)

    2015-07-01

    There is an increasing interest in developing cameras for surveillance systems to monitor nuclear facilities or nuclear waste storages. Particularly, for today's and the next generation of nuclear facilities increasing safety requirements consecutive to Fukushima Daiichi's disaster have to be considered. For some applications, radiation tolerance needs to overcome doses in the MGy(SiO{sub 2}) range whereas the most tolerant commercial or prototypes products based on solid state image sensors withstand doses up to few kGy. The objective of this work is to present the radiation hardening strategy developed by our research groups to enhance the tolerance to ionizing radiations of the various subparts of these imaging systems by working simultaneously at the component and system design levels. Developing radiation-hardened camera implies to combine several radiation-hardening strategies. In our case, we decided not to use the simplest one, the shielding approach. This approach is efficient but limits the camera miniaturization and is not compatible with its future integration in remote-handling or robotic systems. Then, the hardening-by-component strategy appears mandatory to avoid the failure of one of the camera subparts at doses lower than the MGy. Concerning the image sensor itself, the used technology is a CMOS Image Sensor (CIS) designed by ISAE team with custom pixel designs used to mitigate the total ionizing dose (TID) effects that occur well below the MGy range in classical image sensors (e.g. Charge Coupled Devices (CCD), Charge Injection Devices (CID) and classical Active Pixel Sensors (APS)), such as the complete loss of functionality, the dark current increase and the gain drop. We'll present at the conference a comparative study between these radiation-hardened pixel radiation responses with respect to conventional ones, demonstrating the efficiency of the choices made. The targeted strategy to develop the complete radiation hard camera

  8. Radiation protection requirements for dental X-ray diagnostic facilities

    International Nuclear Information System (INIS)

    Taschner, P.; Koenig, W.; Andreas, M.; Trinius, W.

    1976-01-01

    On the basis of radiation protection regulations the planning of dental X-ray facilities is discussed considering organizational, technical and structural measures suitable for fulfilling protection requirements. Finally, instructions are given aimed at reducing radiation doses to personnel and patients. (author)

  9. Radiation protection requirements for dental X-ray diagnostic facilities

    Energy Technology Data Exchange (ETDEWEB)

    Taschner, P; Koenig, W [Staatliches Amt fuer Atomsicherheit und Strahlenschutz, Berlin (German Democratic Republic); Andreas, M [Karl-Marx-Universitaet, Leipzig (German Democratic Republic). Fachrichtung Stomatologie; Trinius, W [Karl-Marx-Universitaet, Leipzig (German Democratic Republic). Radiologische Klinik

    1976-03-01

    On the basis of radiation protection regulations the planning of dental X-ray facilities is discussed considering organizational, technical and structural measures suitable for fulfilling protection requirements. Finally, instructions are given aimed at reducing radiation doses to personnel and patients.

  10. Physics of nuclear radiations concepts, techniques and applications

    CERN Document Server

    Rangacharyulu, Chary

    2013-01-01

    Physics of Nuclear Radiations: Concepts, Techniques and Applications makes the physics of nuclear radiations accessible to students with a basic background in physics and mathematics. Rather than convince students one way or the other about the hazards of nuclear radiations, the text empowers them with tools to calculate and assess nuclear radiations and their impact. It discusses the meaning behind mathematical formulae as well as the areas in which the equations can be applied. After reviewing the physics preliminaries, the author addresses the growth and decay of nuclear radiations, the stability of nuclei or particles against radioactive transformations, and the behavior of heavy charged particles, electrons, photons, and neutrons. He then presents the nomenclature and physics reasoning of dosimetry, covers typical nuclear facilities (such as medical x-ray machines and particle accelerators), and describes the physics principles of diverse detectors. The book also discusses methods for measuring energy a...

  11. Design and development of semi-automatic radiation test and calibration facility

    International Nuclear Information System (INIS)

    Yadav, Ashok Kumar; Chouhan, V.K.; Narayan, Pradeep

    2008-01-01

    Semi-automatic gamma radiation test and calibration facility have been designed, developed and commissioned at Defence Laboratory Jodhpur (DLJ). The facility comprises of medium and high dose rate range setup using 30 Ci Cobalt-60 source, in a portable remotely operated Techops camera and a 15000 Ci 60 Co source in a Tele-therapy machine. The radiation instruments can be positioned at any desired position using a computer controlled positioner having three translational and one rotational motion. User friendly software helps in positioning the Device Under Test (DUT) at any desired dose rate or distance and acquire the data automatically. The servo and stepper motor controlled positioner helps in achieving the required precision and accuracy for the radiation calibration of the instruments. This paper describes the semi-automatic radiation test and calibration facility commissioned at DLJ. (author)

  12. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993

  13. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993.

  14. Radiation and physical protection challenges at advanced nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Pickett, Susan E.

    2008-01-01

    Full text: The purpose of this study is to examine challenges and opportunities for radiation protection in advanced nuclear reactors and fuel facilities proposed under the Generation IV (GEN IV) initiative which is examining and pursuing the exploration and development of advanced nuclear science and technology; and the Global Nuclear Energy Partnership (GNEP), which seeks to develop worldwide consensus on enabling expanded use of economical, carbon-free nuclear energy to meet growing energy demand. The International Energy Agency projects nuclear power to increase at a rate of 1.3 to 1.5 percent a year over the next 20 years, depending on economic growth. Much of this growth will be in Asia, which, as a whole, currently has plans for 40 new nuclear power plants. Given this increase in demand for new nuclear power facilities, ranging from light water reactors to advanced fuel processing and fabrication facilities, it is necessary for radiation protection and physical protection technologies to keep pace to ensure both worker and public health. This paper is based on a review of current initiatives and the proposed reactors and facilities, primarily the nuclear fuel cycle facilities proposed under the GEN IV and GNEP initiatives. Drawing on the Technology Road map developed under GEN IV, this work examines the potential radiation detection and protection challenges and issues at advanced reactors, including thermal neutron spectrum systems, fast neutron spectrum systems and nuclear fuel recycle facilities. The thermal neutron systems look to improve the efficiency of production of hydrogen or electricity, while the fast neutron systems aim to enable more effective management of actinides through recycling of most components in the discharged fuel. While there are components of these advanced systems that can draw on the current and well-developed radiation protection practices, there will inevitably be opportunities to improve the overall quality of radiation

  15. Radiation safety aspects of new X-ray free electron laser facility, SACLA

    International Nuclear Information System (INIS)

    Asano, Yoshihiro

    2013-01-01

    In the safety point of view, X-ray free electron laser facilities have some characteristics in comparison with 3 rd generation synchrotron radiation facilities. One is that the high energy electrons are always injected into the beam dump and the beamlines must be constructed in the direction of the movements of electrons, and another is that the total number of accelerated electrons of X-ray free electron laser facilities is much larger than that of synchrotron radiation facilities. In addition to the importance of safety interlock systems, therefore, it is important that high energy electrons never invade into X-ray free electron laser beamlines and the amount of accelerated electron beam losses must be reduced as much as possible. At SACLA, a safety permanent magnet was installed into the X-ray light beam axis, and a beam halo monitor and beam loss monitors were installed within and around the electron transport pipes, respectively. In comparison with the SPring-8 synchrotron radiation facility, shielding design of SACLA, outline of the radiation safety systems including the monitors will be presented

  16. Nuclear safety and radiation protection report of the Bugey nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 78, 89 (NPPs in operation), 465 (NPP under deconstruction), 102 (fuel storage facility), and 173 (radioactive waste conditioning and storage facility under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  17. Nuclear safety and radiation protection report of the Bugey nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 78, 89 (NPPs in operation), 465 (NPP under deconstruction), 102 (fuel storage facility), and 173 (radioactive waste conditioning and storage facility under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  18. Design and operation of radiation facilities

    International Nuclear Information System (INIS)

    Gay, H.G.

    1983-01-01

    The design, manufacture, and operation of Cobalt-60 Radiation Processing Facilities is a well established technology. However, the products requiring radiation processing are constantly increasing. Product and dose variations create different requirements in the irradiator design. Several basic design concepts which have been developed and installed by Atomic Energy of Canada Limited are discussed. Irradiators are most efficient when designed to handle a limited product density range at an established dose. Requirements for irradiators to process a multitude of different products at different doses leads to a reduction of irradiator efficiency with resultant increase in processing costs

  19. The European Synchrotron Radiation Facility - an overview of planned diffraction capability

    International Nuclear Information System (INIS)

    Kvick, A.

    1991-01-01

    The European Synchrotron Radiation Facility (ESRF) is a third generation synchrotron radiation facility presently being built as a joint venture between 12 European countries in Grenoble, France. The ESRF will be a low emittance 6 GeV storage ring aimed at producing high-brilliance synchrotron radiation from 29 insertion devices and from 27 bending magnet ports. The general user program will start in the middle of 1994 with seven ESRF beam-lines. By 1999, 30 facility beam-lines as well as beam-lines built and financed by Collaborating Research Groups are scheduled to be in operation. The guidelines for the first beam-lines to be constructed as well as a survey of the diffraction oriented beam-lines built by the ESRF are given in the article. (author)

  20. Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This document provides guidance in determining absorbed-dose distributions in products, materials or substances irradiated in gamma, X-ray (bremsstrahlung) and electron beam facilities. Note 1—For irradiation of food and the radiation sterilization of health care products, other specific ISO and ISO/ASTM standards containing dose mapping requirements exist. For food irradiation, see ISO/ASTM 51204, Practice for Dosimetry in Gamma Irradiation Facilities for Food Processing and ISO/ASTM 51431, Practice for Dosimetry in Electron and Bremsstrahlung Irradiation Facilities for Food Processing. For the radiation sterilization of health care products, see ISO 11137: 1995, Sterilization of Health Care Products Requirements for Validation and Routine Control Radiation Sterilization. In those areas covered by ISO 11137, that standard takes precedence. ISO/ASTM Practice 51608, ISO/ASTM Practice 51649, and ISO/ASTM Practice 51702 also contain dose mapping requirements. 1.2 Methods of analyzing the dose map data ar...

  1. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    International Nuclear Information System (INIS)

    Coenenberg, J.G.

    1997-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, 'operating' treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  2. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  3. Integration of radiation and physical safety in large radiator facilities

    International Nuclear Information System (INIS)

    Lima, P.P.M.; Benedito, A.M.; Lima, C.M.A.; Silva, F.C.A. da

    2017-01-01

    Growing international concern about radioactive sources after the Sept. 11, 2001 event has led to a strengthening of physical safety. There is evidence that the illicit use of radioactive sources is a real possibility and may result in harmful radiological consequences for the population and the environment. In Brazil there are about 2000 medical, industrial and research facilities with radioactive sources, of which 400 are Category 1 and 2 classified by the - International Atomic Energy Agency - AIEA, where large irradiators occupy a prominent position due to the very high cobalt-60 activities. The radiological safety is well established in these facilities, due to the intense work of the authorities in the Country. In the paper the main aspects on radiological and physical safety applied in the large radiators are presented, in order to integrate both concepts for the benefit of the safety as a whole. The research showed that the items related to radiation safety are well defined, for example, the tests on the access control devices to the irradiation room. On the other hand, items related to physical security, such as effective control of access to the company, use of safety cameras throughout the company, are not yet fully incorporated. Integration of radiation and physical safety is fundamental for total safety. The elaboration of a Brazilian regulation on the subject is of extreme importance

  4. Radiation protection studies for the SHiP facility

    CERN Document Server

    Strabel, Claudia Christina; Vincke, Helmut

    2015-01-01

    The enlarged scope of the recently proposed experiment to search for Heavy Neutral Leptons, SPSC-EOI-010, is a general purpose fixed target facility which in the initial phase is aimed at a general Search for Hidden Particles (SHiP) as well as tau neutrino physics. This report summarizes radiation protection considerations for the SHiP facility and the primary beam extraction for SHiP.

  5. Radiation monitoring in a synchrotron light source facility using magnetically levitated electrode ionization chambers

    International Nuclear Information System (INIS)

    Ichiki, Hirofumi; Kawaguchi, Toshirou; Utsunomiya, Yoshitomo; Ishibashi, Kenji; Ikeda, Nobuo; Korenaga, Kazuhito

    2009-01-01

    We developed a highly accurate differential-type automatic radiation dosimeter to measure very low radiation doses. The dosimeter had two ionization chambers, each of which had a magnetically levitated electrode and it was operated in a repetitive-time integration mode. We first installed the differential-type automatic radiation dosimeter with MALICs at a high-energy electron accelerator facility (Kyushu Synchrotron Light Research Center Facility) and measured the background and ionizing radiations in the facility as well as the gaseous radiation in air. In the background dose measurements, the accuracy of the repetitive-time integration-type dosimeter was three times better than that of a commercial ionization chamber. When the radiation dose increased momentarily at the electron injection from the linac to the operating storage ring, the dosimeter with repetitive-time integral mode gave a successful response to the actual dose variation. The gaseous radiation dose in the facility was at the same level as that in Fukuoka City. We confirmed that the dosimeter with magnetically levitated electrode ionization chambers was usable in the accelerator facility, in spite of its limited response when operated in the repetitive-time integration mode. (author)

  6. Nuclear safety and radiation protection report of Blayais nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 86 and 110). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  7. Nuclear safety and radiation protection report of Civaux nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  8. Nuclear safety and radiation protection report of Golfech nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 135 and 142). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  9. Nuclear safety and radiation protection report of Tricastin nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the Tricastin NPPs (INBs no. 87 and 88). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  10. Nuclear safety and radiation protection report of Penly nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 136 and 140). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  11. Nuclear safety and radiation protection report of Cattenom nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 124, 125, 126 and 137). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  12. Nuclear safety and radiation protection report of Chooz nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  13. Nuclear safety and radiation protection report of Flamanville nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 108, 109 and 167 (under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  14. Nuclear safety and radiation protection report of Fessenheim nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INB no. 75). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  15. Nuclear safety and radiation protection report of the nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if some, are reported as well as the effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  16. Present status of application of radiation and radioisotopes in Bangladesh

    International Nuclear Information System (INIS)

    Hossain, Anwar

    1984-01-01

    Bangladesh has proceeded with the atomic energy programme in three phases: (1) research and development using radiation and radioisotopes and application of the results, (2) building the infrastructure in nuclear technology and (3) production of electricity from nuclear sources and development of associated facilities. It has entered the second phase of the programme. The following main areas of research and application were referred to: agriculture, food preservation, medical sterilization and radiation biology, medicine, non-destructive testing, isotope hydrology, elemental analysis, particle-induced x-ray emission (PIXE) methods, radioisotope-induced x-ray fluorescence (RIXFA) methods, flame atomic absorption spectrophotometric (AAS) methods, molecular absorption and fluorescence spectroscopy, health physics, and future programme with research reactor. (Namekawa, K.)

  17. Construction and operation of an improved radiation calibration facility at Brookhaven National Laboratory. Environmental assessment

    International Nuclear Information System (INIS)

    1994-10-01

    Calibration of instruments used to detect and measure ionizing radiation has been conducted over the last 20 years at Brookhaven National Laboratory's (BNL) Radiation Calibration Facility, Building 348. Growth of research facilities, projects in progress, and more stringent Department of Energy (DOE) orders which involve exposure to nuclear radiation have placed substantial burdens on the existing radiation calibration facility. The facility currently does not meet the requirements of DOE Order 5480.4 or American National Standards Institute (ANSI) N323-1978, which establish calibration methods for portable radiation protection instruments used in the detection and measurement of levels of ionizing radiation fields or levels of radioactive surface contaminations. Failure to comply with this standard could mean instrumentation is not being calibrated to necessary levels of sensitivity. The Laboratory has also recently obtained a new neutron source and gamma beam irradiator which can not be made operational at existing facilities because of geometry and shielding inadequacies. These sources are needed to perform routine periodic calibrations of radiation detecting instruments used by scientific and technical personnel and to meet BNL's substantial increase in demand for radiation monitoring capabilities. To place these new sources into operation, it is proposed to construct an addition to the existing radiation calibration facility that would house all calibration sources and bring BNL calibration activities into compliance with DOE and ANSI standards. The purpose of this assessment is to identify potential significant environmental impacts associated with the construction and operation of an improved radiation calibration facility at BNL

  18. Nuclear safety and radiation protection report of the Chinon nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 94 (irradiated materials workshop), 99 (fuel storage facility), 107 and 132 (NPPs in operation), 133, 153 and 161 (NPPs under deconstruction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  19. Nuclear safety and radiation protection report of the Chinon nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 94 (irradiated materials workshop), 99 (fuel storage facility), 107 and 132 (NPPs in operation), 133, 153 and 161 (NPPs under deconstruction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  20. Environmental radiation monitoring around the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Woo

    2012-03-15

    Environmental Radiation Monitoring was carried out with measurement of environment. radiation and environmental radioactivity analysis on the sites of KAERI nuclear facilities and Seoul Research Reactors and their environments. The average level of environmental radiation dose measured by an ERM and the accumulated radiation dose by a TLD were almost same level compared with the previous years. The activity of gross {alpha} and gross {beta}, Tritium, Uranium and Strontium in environmental samples showed a environmental level. The {gamma}-radionuclides such as natural radionuclides 40K or 7Be were detected in pine needle and food. The nuclear radionuclides 134Cs, 137Cs or 131I were temporarily detected in the samples of air particulate and rain in April and of fall out in 2nd quarter from the effect of Fukusima accident.

  1. Practice for dosimetry in an X-ray (bremsstrahlung) facility for radiation processing. 2. ed.

    International Nuclear Information System (INIS)

    2002-01-01

    This practice covers dosimetric procedures to be followed in facility characterization, process qualification, and routine processing using X rays (bremsstrahlung) to ensure that the entire product has been treated within an acceptable range of absorbed doses. Other procedures related to facility characterization, process qualification, and routine processing that may influence absorbed dose in the product are also discussed. The establishment of effective or regulatory dose and X-ray energy limits are not within the scope of this practice. In contrast to monoenergetic gamma rays, the bremsstrahlung energy spectrum extends from low values up to the maximum energy of the electrons incident on the X-ray target (see Section 5 and Annex A1). Dosimetry is only one component of a total quality assurance program for an irradiation facility. Other controls besides dosimetry may be required for specific applications such as medical device sterilization and food preservation. For the irradiation of food and the radiation sterilization of health care products, other specific ISO standards exist. For food irradiation, see ISO/ASTM Practice 51431. For the radiation sterilization of health care products, see ISO 11137:1995. In those areas covered by ISO 11137, that standard takes precedence

  2. Experience in the Application of INES scale to events in the Spanish Radioactive facilities

    International Nuclear Information System (INIS)

    Ramirez, M. L.; Alvarez, C.

    2002-01-01

    In February 2001, the International Atomic Energy Agency (IAEA) and the Nuclear energy Agency of the OECD (NEA) published a new edition of the INES User's Manual for the classification of nuclear events. One of the new developments introduced with respect to the scope of the former Manual was the inclusion within the INES of any event associated with radioactive material and/or radiation. This would include events occurred in radioactive facilities so the INES would apply not only to events in nuclear facilities. During the publication process some doubts rose about the applicability of INES to other non nuclear types of events. The IAEA was open to the future development of more practical guidance for the application of the scale. Since the beginning of 2001 the Consejo de Seguridad Nuclear (CSN) has been using INES to test the applicability of the system to classify events in radioactive facilities. A total of 31 events occurred at Spanish radioactive facilities has been classified applying INES scale and a report was sent to IAEA to publish our experience. The objective of this presentation is to introduce the experience obtained by the application of the International Nuclear Events Scale (INES) to classify events in radioactive facilities in Spain and to present several issues raised during its application that may need further development in a practical guidance. (Author)

  3. Application of advanced remote systems technology to future waste handling facilities

    International Nuclear Information System (INIS)

    Kring, C.T.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) has been advancing the technology of remote handling and remote maintenance for in-cell systems planned for future nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor is directly applicable to the proposed in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The application of teleoperated, force-reflecting servomanipulators with television viewing could be a major step forward in waste handling facility design. Primary emphasis in the current program is the operation of a prototype remote handling and maintenance system, the advanced servomanipulator (ASM), which specifically addresses the requirements of fuel reprocessing and waste handling with emphasis on force reflection, remote maintainability, reliability, radiation tolerance, and corrosion resistance. Concurrent with the evolution of dexterous manipulators, concepts have also been developed that provide guidance for standardization of the design of the remotely operated and maintained equipment, the interface between the maintenance tools and the equipment, and the interface between the in-cell components and the facility

  4. Applications of microtron facility

    International Nuclear Information System (INIS)

    Sanjeev, Ganesh

    2013-01-01

    An 8 MeV Microtron accelerator installed and commissioned in Mangalore University to strengthen research activities in the area of Radiation Physics and allied sciences is also being used extensively for coordinated research programs in basic and applied areas of science and technology involving researchers from national laboratories and sister universities of the region. The electron accelerator with its versatile features extends energetic electrons, intense photons and neutrons of moderate flux to cater to the needs of the users of the facility. A brief view of this 'first of its kind' facility in the country and the R and D programs with some sample results is presented. (author)

  5. Radiation facilities and irradiation technology for food irradiation

    International Nuclear Information System (INIS)

    Sunaga, Hiromi

    2005-01-01

    Progress made during these 30 years in the field of radiation treatment of food is reviewed by describing features of the process including elementary processes, quality control of the products and the dosimetric techniques widely employed. The Co-60 gamma-ray irradiation facilities to be used for radiation-sterilization of medical supplies and food preservation are presented. For electron beam irradiation, accelerators for processing with the energy from 0.3 to 10 MeV are generally employed. The electron-guns, the method of acceleration such as rectification, types of acceleration as Cockcroft-Walton, dynamitron, or linear acceleration and X-ray producing facility, with various countermeasures for safety management, are briefly explained. The concepts of dose and traceability are given. The dosimeters including reference dosimeter and routine ones with validation are explained. (S. Ohno)

  6. Application of radiation in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Naiyyum Choudhury; Najmul Alam Chowdhury; Feroza Akhtar [Bangladesh Atomic Energy Commission, Dhaka (Bangladesh)

    2001-03-01

    Radiation technology offers a very wide scope for utilisation and commercial exploitation in various field. All over the world, this technology is being favourably considered for different applications like radiation sterilisation of medical products, preservation of food by controlling the physiological processes for extending shelf-life and eradication of microbial and insect pests, radiation processing of polymeric materials and treatment of sewage sludge. Bangladesh Atomic Energy Commission has taken radiation processing programmes in a big way right from its inception. This paper describes the studies carried out by various research groups in Bangladesh Atomic Energy Commission mainly using Cobalt-60 gamma radiation. The investigation covers medical sterilisation, food preservation and development and modification of polymeric materials by gamma radiation. Both food preservation and radiation sterilisation of medical products are now being commercially carried out in the Gammatech facility as a joint venture company of BAEC and a private entrepreneur. Bangladesh is soon going to establish a full-fledged Tissue Bank to cater the needs of various tissue allografts for surgical replacement. Recently Government of Bangladesh has allocated US$ 1.00 million for strengthening of the Tissue Banking Laboratory. BAEC has made quite a good research contribution on vulcanization of natural rubber latex, wood plastic composites, surface coating curing, polymer modification etc. As a result of successful achievement of R and D activities in all these projects, a pilot plant project involving about US$ 4.00 million is under implementation at the Atomic energy Research Establishment campus of BAEC. In addition a project on 'National Polymer Centre' at a cost of US$ 2.00 million has already been approved. It is expected that work on radiation processing including commercialization will be accelerated with the implementation of these projects. The impact of radiation

  7. Application of radiation in Bangladesh

    International Nuclear Information System (INIS)

    Naiyyum Choudhury; Najmul Alam Chowdhury; Feroza Akhtar

    2001-01-01

    Radiation technology offers a very wide scope for utilisation and commercial exploitation in various field. All over the world, this technology is being favourably considered for different applications like radiation sterilisation of medical products, preservation of food by controlling the physiological processes for extending shelf-life and eradication of microbial and insect pests, radiation processing of polymeric materials and treatment of sewage sludge. Bangladesh Atomic Energy Commission has taken radiation processing programmes in a big way right from its inception. This paper describes the studies carried out by various research groups in Bangladesh Atomic Energy Commission mainly using Cobalt-60 gamma radiation. The investigation covers medical sterilisation, food preservation and development and modification of polymeric materials by gamma radiation. Both food preservation and radiation sterilisation of medical products are now being commercially carried out in the Gammatech facility as a joint venture company of BAEC and a private entrepreneur. Bangladesh is soon going to establish a full-fledged Tissue Bank to cater the needs of various tissue allografts for surgical replacement. Recently Government of Bangladesh has allocated US$ 1.00 million for strengthening of the Tissue Banking Laboratory. BAEC has made quite a good research contribution on vulcanization of natural rubber latex, wood plastic composites, surface coating curing, polymer modification etc. As a result of successful achievement of R and D activities in all these projects, a pilot plant project involving about US$ 4.00 million is under implementation at the Atomic energy Research Establishment campus of BAEC. In addition a project on 'National Polymer Centre' at a cost of US$ 2.00 million has already been approved. It is expected that work on radiation processing including commercialization will be accelerated with the implementation of these projects. The impact of radiation processing

  8. Application of radiation in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Naiyyum; Chowdhury, Najmul Alam; Akhtar, Feroza [Bangladesh Atomic Energy Commission, Dhaka (Bangladesh)

    2001-03-01

    Radiation technology offers a very wide scope for utilisation and commercial exploitation in various field. All over the world, this technology is being favourably considered for different applications like radiation sterilisation of medical products, preservation of food by controlling the physiological processes for extending shelf-life and eradication of microbial and insect pests, radiation processing of polymeric materials and treatment of sewage sludge. Bangladesh Atomic Energy Commission has taken radiation processing programmes in a big way right from its inception. This paper describes the studies carried out by various research groups in Bangladesh Atomic Energy Commission mainly using Cobalt-60 gamma radiation. The investigation covers medical sterilisation, food preservation and development and modification of polymeric materials by gamma radiation. Both food preservation and radiation sterilisation of medical products are now being commercially carried out in the Gammatech facility as a joint venture company of BAEC and a private entrepreneur. Bangladesh is soon going to establish a full-fledged Tissue Bank to cater the needs of various tissue allografts for surgical replacement. Recently Government of Bangladesh has allocated US$ 1.00 million for strengthening of the Tissue Banking Laboratory. BAEC has made quite a good research contribution on vulcanization of natural rubber latex, wood plastic composites, surface coating curing, polymer modification etc. As a result of successful achievement of R and D activities in all these projects, a pilot plant project involving about US$ 4.00 million is under implementation at the Atomic energy Research Establishment campus of BAEC. In addition a project on 'National Polymer Centre' at a cost of US$ 2.00 million has already been approved. It is expected that work on radiation processing including commercialization will be accelerated with the implementation of these projects. The impact of radiation processing

  9. Radiation protection: Scientific fundamentals, legal regulations, practical applications. Compendium. 8. ed.

    International Nuclear Information System (INIS)

    Buchert, G.; Czarwinski, R.; Martini, E.; Ruehle, H.; Wust, P.

    2003-01-01

    In 2003, radiation effects and radiation risks were again a central issue, with new biokinetic and dosimetric models. Preliminary experience with new legal regulations on radiation protection was a central issue. Dosimetry and radiation protection metrology were gone into, as was radiation exposure in medicine, engineering, and the environment. New diagnostic methods in medicine were presented, and radiation exposures resulting from some of these techniques were analyzed. Industrial applications of ionising radiation and technical radiography were presented. Nuclear engineering was covered as well, e.g. how to maintain the current know-how after the agreed nuclear phase-out, the transport of spent fuel elements, and the safety of nuclear power stations in eastern Europe. As in the years before, detection limits in radiation measurement, calculations of radiation exposure, incidents in nuclear facilities, and radiation exposure assessment after safety-relevant incidents were among the issues discussed. (orig.)

  10. Radiation safety program in a high dose rate brachytherapy facility

    International Nuclear Information System (INIS)

    Rodriguez, L.V.; Hermoso, T.M.; Solis, R.C.

    2001-01-01

    The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. Several accidents, however, have been reported involving high dose-rate brachytherapy system. These events, together with the desire to address the concerns of radiation workers, and the anticipated adoption of the International Basic Safety Standards for Protection Against Ionizing Radiation (IAEA, 1996), led to the development of the radiation safety program at the Department of Radiotherapy, Jose R. Reyes Memorial Medical Center and at the Division of Radiation Oncology, St. Luke's Medical Center. The radiation safety program covers five major aspects: quality control/quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. Measures for evaluation of effectiveness of the program include decreased unnecessary exposures of patients and staff, improved accuracy in treatment delivery and increased department efficiency due to the development of staff vigilance and decreased anxiety. The success in the implementation required the participation and cooperation of all the personnel involved in the procedures and strong management support. This paper will discuss the radiation safety program for a high dose rate brachytherapy facility developed at these two institutes which may serve as a guideline for other hospitals intending to install a similar facility. (author)

  11. Modernization of safety system for the radiation facility for industrial sterilization

    International Nuclear Information System (INIS)

    Drndarevic, V.; Djuric, D.; Koturovic, A.; Arandjelovic, M.; Mikic, R.

    1995-01-01

    Modernization of the existing safety system of the radiation facility for industrial sterilization at the Vinca Institute of nuclear science is done. In order to improve radiation safety of the facility, the latest recommendations and requirements of IAEA have been implemented. Concept and design of the modernized system are presented. The new elements of the safety system are described and the improvements achieved by means of this modernization are pointed out. (author)

  12. Environmental Radiation Monitoring Around the Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Geun Sik; Lee, Chang Woo

    2008-05-15

    Environmental Radiation Monitoring was carried out with measurement of environment. radiation and environmental radioactivity analysis on the sites of KAERI nuclear facilities and Seoul Research Reactors and their environments. The average level of environmental radiation dose measured by an ERM and the accumulated radiation dose by a TLD were almost same level compared with the previous years. The activity of gross {alpha} and gross {beta}, Tritium, Uraniu and Strontium in environmental samples showed a environmental level. The radioactivities of most {gamma}-radionuclides in air particulate, surface water and ground water were less than MDA except {sup 40}K or {sup 7}Be which are natural radionuclides. However, not only {sup 40}K or {sup 7}Be but also {sup 137}Cs were detected at the background level in surface soil, discharge sediment and fallout or pine needle.

  13. Study on application of radiation and radioisotopes -Development of the radioisotope production facilities for the HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Bok; Woo, Jong Sub; Kang, Byung Woi; Baek, Sam Tae; Jeong, Un Soo; Park, Yong Chul; Jeon, Young Keon; Chang, Chun Ik; Lee, Bong Jae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-08-01

    Development and construction of the lead hot cell for radioisotope production and related facility. 1. Fabrication and installation of the lead H/C system. 2. Development and installation of the hydraulic transfer system. 3. Development of the radiation monitoring system. 4. Fabrication and installation of the fire extinguishing system in the H/C. 5. Fabrication and installation of the fume hood. 4 tabs.,10 figs. (Author).

  14. Occupational radiation Exposure at Agreement State-Licensed Materials Facilities, 1997-2010

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research

    2012-07-07

    The purpose of this report is to examine occupational radiation exposures received under Agreement State licensees. As such, this report reflects the occupational radiation exposure data contained in the Radiation Exposure Information and Reporting System (REIRS) database, for 1997 through 2010, from Agreement State-licensed materials facilities.

  15. [RADIATION SAFETY DURING REMEDIATION OF THE "SEVRAO" FACILITIES].

    Science.gov (United States)

    Shandala, N K; Kiselev, S M; Titov, A V; Simakov, A V; Seregin, V A; Kryuchkov, V P; Bogdanova, L S; Grachev, M I

    2015-01-01

    Within a framework of national program on elimination of nuclear legacy, State Corporation "Rosatom" is working on rehabilitation at the temporary waste storage facility at Andreeva Bay (Northwest Center for radioactive waste "SEVRAO"--the branch of "RosRAO"), located in the North-West of Russia. In the article there is presented an analysis of the current state of supervision for radiation safety of personnel and population in the context of readiness of the regulator to the implementation of an effective oversight of radiation safety in the process of radiation-hazardous work. Presented in the article results of radiation-hygienic monitoring are an informative indicator of the effectiveness of realized rehabilitation measures and characterize the radiation environment in the surveillance zone as a normal, without the tendency to its deterioration.

  16. Application of personal computer to development of entrance management system for radiating facilities

    International Nuclear Information System (INIS)

    Suzuki, Shogo; Hirai, Shouji

    1989-01-01

    The report describes a system for managing the entrance and exit of personnel to radiating facilities. A personal computer is applied to its development. Major features of the system is outlined first. The computer is connected to the gate and two magnetic card readers provided at the gate. The gate, which is installed at the entrance to a room under control, opens only for those who have a valid card. The entrance-exit management program developed is described next. The following three files are used: ID master file (random file of the magnetic card number, name, qualification, etc., of each card carrier), entrance-exit management file (random file of time of entrance/exit, etc., updated everyday), and entrance-exit record file (sequential file of card number, name, date, etc.), which are stored on floppy disks. A display is provided to show various lists including a list of workers currently in the room and a list of workers who left the room at earlier times of the day. This system is useful for entrance management of a relatively small facility. Though small in required cost, it requires only a few operators to perform effective personnel management. (N.K.)

  17. Effect of distance to radiation treatment facility on use of radiation therapy after mastectomy in elderly women

    International Nuclear Information System (INIS)

    Punglia, Rinaa S.; Weeks, Jane C.; Neville, Bridget A.; Earle, Craig C.

    2006-01-01

    Purpose: We sought to study the effect of distance to the nearest radiation treatment facility on the use of postmastectomy radiation therapy (PMRT) in elderly women. Methods and Materials: Using data from the linked Surveillance, Epidemiology, and End Results-Medicare (SEER-Medicare) database, we analyzed 19,787 women with Stage I or II breast cancer who received mastectomy as definitive surgery during 1991 to 1999. Multivariable logistic regression was used to investigate the association of distance with receipt of PMRT after adjusting for clinical and sociodemographic factors. Results: Overall 2,075 patients (10.5%) treated with mastectomy received PMRT. In addition to cancer and patient characteristics, in our primary analysis, increasing distance to the nearest radiation treatment facility was independently associated with a decreased likelihood of receiving PMRT (OR 0.996 per additional mile, p = 0.01). Secondary analyses revealed that the decline in PMRT use appeared at distances of more than 25 miles and was statistically significant for those patients living more than 75 miles from the nearest radiation facility (odds of receiving PMRT of 0.58 [95% CI 0.34-0.99] vs. living within 25 miles of such a facility). The effect of distance on PMRT appeared to be more pronounced with increasing patient age (>75 years). Variation in the effect of distance on radiation use between regions of the country and nodal status was also identified. Conclusions: Oncologists must be cognizant of the potential barrier to quality care that is posed by travel distance, especially for elderly patients; and policy makers should consider this fact in resource allocation decisions about radiation treatment centers

  18. Application technology for optical fiber in nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Jong Min; Kim, Chul Jung; Lee, Yong Bum; Kim, Woong Ki; Yoon, Tae Seob; Sohn, Surg Won; Kim, Chang Hoi; Hwang, Suk Yong; Baik, Sung Hum; Kwon, Seong Ouk

    1987-12-01

    Lately, the optical fiber increasingly used in such adverse environments as nuclear power plant, radiation facilities because of their endurant properties against heat, radiation, corrosion, etc. Moreover, the transmission of signal through optical fiber does not induce interference from the electromagnetic wave. Basic theory about the optical fiber technology was studied and the developed techniques for nuclear facilities were reviewed. Since the radiations change the characteristics of the optical fiber, the effects of γ-ray irradiation on single mode and multimode optical fiber were examined. The image transmission system through optical fiber bundle was designed, constructed, and tested. Its software system was also updated. It can be used for remote internal inspection in adverse environment. (Author)

  19. CERN IRRADIATION FACILITIES.

    Science.gov (United States)

    Pozzi, Fabio; Garcia Alia, Ruben; Brugger, Markus; Carbonez, Pierre; Danzeca, Salvatore; Gkotse, Blerina; Richard Jaekel, Martin; Ravotti, Federico; Silari, Marco; Tali, Maris

    2017-09-28

    CERN provides unique irradiation facilities for applications in dosimetry, metrology, intercomparison of radiation protection devices, benchmark of Monte Carlo codes and radiation damage studies to electronics. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 103, 104, 114 and 115). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  1. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 136 and 140). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  2. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 103, 104, 114 and 115). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  3. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  4. Nuclear safety and radiation protection report of Cruas-Meysse nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 111 and 112). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  5. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 136 and 140). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  6. Nuclear safety and radiation protection report of the Fessenheim nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INB no. 75). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  7. Nuclear safety and radiation protection report of the Golfech nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 135 and 142). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  8. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  9. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 108, 109 and 167 (under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  10. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  11. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 124, 125, 126 and 137). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  12. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  13. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 86 and 110). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  14. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 124, 125, 126 and 137). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  15. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 108, 109 and 167 (under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  16. MGR COMPLIANCE PROGRAM GUIDANCE PACKAGE FOR RADIATION PROTECTION EQUIPMENT, INSTRUMENTATION, AND FACILITIES

    International Nuclear Information System (INIS)

    2000-01-01

    This Compliance Program Guidance Package identifies the regulatory guidance and industry codes and standards addressing radiation protection equipment, instrumentation, and support facilities considered to be appropriate for radiation protection at the Monitored Geologic Repository (MGR). Included are considerations relevant to radiation monitoring instruments, calibration, contamination control and decontamination, respiratory protection equipment, and general radiation protection facilities. The scope of this Guidance Package does not include design guidance relevant to criticality monitoring, area radiation monitoring, effluent monitoring, and airborne radioactivity monitoring systems since they are considered to be the topics of specific design and construction requirements (i.e., ''fixed'' or ''built-in'' systems). This Guidance Package does not address radiation protection design issues; it addresses the selection and calibration of radiation monitoring instrumentation to the extent that the guidance is relevant to the operational radiation protection program. Radon and radon progeny monitoring instrumentation is not included in the Guidance Package since such naturally occurring radioactive materials do not fall within the NRC's jurisdiction at the MGR

  17. Radiation protection problems by the operation of the cyclotron facility

    International Nuclear Information System (INIS)

    Durcik, M.; Nikodemova, D.

    1998-01-01

    The Cyclotron Center in Bratislava will consist of two cyclotrons. First - cyclotron DC-72 with maximal energy of 72 MV for protons for making experiments, for teaching process, for radioisotope production as 123 I and for neutron and proton therapy. Second - compact cyclotron with maximal proton energy of 18 MeV will be used for radioisotopes production for medical diagnosis as 1 *F (fluorodeoxyglucose), 81 Rb/ 81 Kr generator. This paper deals with the radiation protection problems by the operation of tis cyclotron facility as radiation protection of workers, monitoring plan, ventilation, safety lock and limitation and radiation monitoring. For proposed and continuing practices at the accelerator facility, the following general principles have to be fulfilled: (1) practices should produce sufficient benefit to offset the radiation detriment they case (justification); (2) the magnitude of the individual doses should be kept as low as achievable (optimization of protection); (3) individual exposures are subject to dose limits and some control of risk from potential exposures (dose and risk limits)

  18. Technical critique on radiation test facilities for the CTR surface and materials program

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1975-02-01

    Major radiation test facilities will be necessary in the near-term (5 years) and long-term (greater than 10 years) future for the timely development and understanding of fusion confinement systems and of prototype fusion power reactors. The study includes the technical justifications and requirements for CTR Neutron and Plasma Radiation Test Facilities. The initial technical critique covers the feasibility and design problems: in upgrading the performance of the accelerator-rotating (solid TiT) target systems, and in transforming the accelerator-supersonic jet target concept into a radiation testing facility. A scoping assessment on the potential of a pulsed high-beta plasma device (dense plasma focus) is introduced to explore plasma concepts as near-term neutron and plasma radiation sources for the CTR Surface and Materials Program. (U.S.)

  19. Directory of gamma processing facilities in Member States

    International Nuclear Information System (INIS)

    2004-02-01

    Ionizing radiation can modify physical, chemical and biological properties of materials. This characteristic of radiation was recognised very soon after the discovery of radioactivity. At present, the principal applications concern sterilisation of health care products, food irradiation and materials modification for polymers. Besides naturally occurring radioactive isotopes, artificial ones were produced using cyclotrons. A significant impetus, however, was given to the radiation processing industry with the advent of nuclear reactors, which were used to produce radioisotopes. Gamma ray emitters like cobalt-60 became popular radiation sources for medical and industrial applications. Many gamma ray irradiators have been built and it is estimated that less than 200 are currently in operation all over the world. In recent times, the use of electron accelerators as a radiation source (sometimes equipped with X ray converter) is increasing. However, gamma irradiators are difficult to replace, especially in the case of non-uniform and high-density products. The International Atomic Energy Agency (IAEA) has several programmes related to industrial irradiation applications for processing of various products including those related to health care, pharmaceuticals, food and polymers, and applications associated with plant design, dosimetry and safety. Through the technical co-operation programme, the IAEA supports these activities in developing countries and helps them to build local capacity to implement various industrial applications of radiation processing. The IAEA also organises and conducts training courses and workshops, provides individual training to personnel, and sends experts to the radiation facilities in Member States where help is needed. All these activities can be carried out much more efficiently and effectively if there were a comprehensive directory of radiation facilities operating in Member States. Also, such a compilation would be a valuable tool for

  20. Regulatory aspects for nuclear and radiation applications

    International Nuclear Information System (INIS)

    Duraisamy, S.

    2014-01-01

    The Atomic Energy Regulatory Board (AERB) is the national authority for ensuring that the use of ionizing radiation and nuclear energy does not cause any undue risk to the health of workers, members of the public and to the environment. AERB was constituted on November 15, 1983 and derives its regulatory power from the rules and notifications promulgated under the Atomic Energy Act, 1962 and the Environment (Protection) Act, 1986. AERB is provided with the necessary powers and mandate to frame safety policies, lay down safety standards and requirements for monitoring and enforcing the safety provisions. AERB follows multi-tier system for its review and assessment, safety monitoring, surveillance and enforcement. While regulating various nuclear and radiation facilities, AERB adopts a graded approach taking into account the hazard potential associated with the facilities being regulated. The regulatory process has been continuous evolving to cater to the new developments in reactor and radiation technologies. The regulatory effectiveness and efficiency of AERB have grown over the last three decades to make it into a robust organization. The radiation protection infrastructure in the country is on a sound footing and is constantly being strengthened based on experience and continued research and development. As one of its mandates AERB prescribes radiation dose limits for the occupational workers and the public, in line with the IAEA Safety Standard and ICRP recommendations. The current dose limits and the radiation safety requirements are more stringent than past. To meet the current safety standards, it is important for the facilities to have state of art radiation monitoring system and programme in place. While recognizing the current system in place, this presentation also highlights certain key radiation protection challenges associated with the implementation of radiation protection standards in the nuclear and radiation facilities especially in the areas of

  1. Synchrotrons: biomedical applications of the most versatile radiation source of all

    International Nuclear Information System (INIS)

    Lewis, R.

    2003-01-01

    Synchrotrons are the brightest and most versatile sources of radiation that have ever been devised. The spectrum extends from the infra-red to hard X-rays and the application range is just as wide. Applications range from radiotherapy to archaeology and from genomics to mineral identification. For a property of particle accelerators that was for many years seen as a problem, the transformation has been remarkable. There are now more than 50 synchrotron facilities worldwide and the number is still growing rapidly. Some 25 years after the first dedicated machines came into operation, Australia is about to enter the field with a national facility being built at Monash University in Melbourne. The largest impact of synchrotrons has been in the X-ray region of the spectrum where the performance gain over conventional sources is many orders of magnitude. In fact synchrotrons are the only significant improvement in X-ray production since the rotating anode was first marketed in 1929. The possibilities opened up by the availability of monochromatic, tightly collimated beams of enormous intensity has impacted on practically every area of science. Following a brief overview of synchrotron radiation production, the various prominent techniques that synchrotron radiation has made possible will be reviewed. Particular emphasis will be placed on the biomedical applications which include; 1. advanced imaging techniques exploiting X-ray phase contrast 2. radiotherapy using microbeams 3. structural biology 4. elemental, chemical and molecular structure mapping of live wet samples

  2. Various applications using the SLOWPOKE-2 facility at RMC

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, L.G.I.; Nielsen, K.S. [Royal Military College of Canada, Kingston, ON (Canada)

    2011-07-01

    History will record that the reactor pool at the SLOWPOKE-2 Facility at RMC was one of the first SLOWPOKE pools to be constructed (mid 1970s), even though the reactor itself was the last SLOWPOKE reactor to be installed and commissioned (1985). The unique and very useful feature of the reactor pool is that it is uncovered, allowing for applications in addition to the NAA and radioisotope production applications initially advertised. Because the installation of a tangential neutron beam tube (NBT) had been planned from the beginning, an outer irradiation site inside the reactor container was replaced by a thermal column. Next, a positioning system was added to accept large objects such as flight control surfaces from DND's CF-18 fighter aircraft. Imaging of these surfaces using film is being phased out with the introduction of digital imaging. Very recently a tomography stage was designed and built and is now integrated into the neutron imaging system. Also in the open pool are three pulley and rope 'elevators', two of which allow for large samples to be exposed to various kinds of radiation directly outside of the reactor container. The third elevator is located against the west pool wall, which allows for sample exposure to radiation without any neutron contribution. At the time of negotiating the purchase of the reactor, a teaching package consisting of an in-pool borated ion chamber and an outlet thermocouple was ordered. Automatic irradiation and counting systems in the form of cyclic, pseudo-cyclic, and long counting options were added to the original manual irradiation option. This past summer (2010), a delayed neutron counting system (DNCS) was built and installed in the SLOWPOKE-2 Facility at RMC. Examples will be given for the above-mentioned applications.

  3. Various applications using the SLOWPOKE-2 facility at RMC

    International Nuclear Information System (INIS)

    Bennett, L.G.I.; Nielsen, K.S.

    2011-01-01

    History will record that the reactor pool at the SLOWPOKE-2 Facility at RMC was one of the first SLOWPOKE pools to be constructed (mid 1970s), even though the reactor itself was the last SLOWPOKE reactor to be installed and commissioned (1985). The unique and very useful feature of the reactor pool is that it is uncovered, allowing for applications in addition to the NAA and radioisotope production applications initially advertised. Because the installation of a tangential neutron beam tube (NBT) had been planned from the beginning, an outer irradiation site inside the reactor container was replaced by a thermal column. Next, a positioning system was added to accept large objects such as flight control surfaces from DND's CF-18 fighter aircraft. Imaging of these surfaces using film is being phased out with the introduction of digital imaging. Very recently a tomography stage was designed and built and is now integrated into the neutron imaging system. Also in the open pool are three pulley and rope 'elevators', two of which allow for large samples to be exposed to various kinds of radiation directly outside of the reactor container. The third elevator is located against the west pool wall, which allows for sample exposure to radiation without any neutron contribution. At the time of negotiating the purchase of the reactor, a teaching package consisting of an in-pool borated ion chamber and an outlet thermocouple was ordered. Automatic irradiation and counting systems in the form of cyclic, pseudo-cyclic, and long counting options were added to the original manual irradiation option. This past summer (2010), a delayed neutron counting system (DNCS) was built and installed in the SLOWPOKE-2 Facility at RMC. Examples will be given for the above-mentioned applications.

  4. Calibration and application of medical particle accelerators to space radiation experiments

    International Nuclear Information System (INIS)

    Ryu, Kwangsun; Park, Miyoung; Chae, Jangsoo; Yoon, Sangpil; Shin, Dongho

    2012-01-01

    In this paper, we introduce radioisotope facilities and medical particle accelerators that can be applied to space radiation experiments and the experimental conditions required by the space radiation experiments. Space radiation experiments on the ground are critical in determining the lifetimes of satellites and in choosing or preparing the appropriate electrical parts to assure the designated mission lifetime. Before the completion of building the 100-MeV proton linear accelerator in Gyeongju, or even after the completion, the currently existing proton accelerators for medical purposes could suggest an alternative plan. We have performed experiments to calibrate medical proton beam accelerators to investigate whether the beam conditions are suitable for applications to space radiation experiments. Based on the calibration results, we propose reference beam operation conditions for space radiation experiments.

  5. Radiation hygienic annual report 2012. General environmental radioactivity and radiation surveillance in the vicinity of nuclear facilities in Bavaria

    International Nuclear Information System (INIS)

    Pfau, T.; Bernkopf, J.; Klement, R.; Bayerisches Landesamt fuer Umwelt, Augsburg

    2013-01-01

    The radiation hygienic annual report 2012 includes the following issues: (1) Introduction: Legal aspects of the surveillance, implementation of the radiation protection law, nuclear facility sites in Bavaria, interim storage facilities in Bavaria. (2) Natural radioactivity surveillance: measured data for the exposure paths air, water, food chain land, food chain water, residuals and waste. (3) Radiation surveillance in the vicinity of nuclear facilities in Bavaria: measures for air, precipitation, soils, plants, food chain land, milk and milk products, surface water, food chain water, drinking and ground water; measured data in the vicinity of NNP Isar 1 bd Isar 2 (KKI1/KKI2), NPP Gundremmingen (KGG), NPP Grafenrheinfeld (KKG), research neutron source Muenchen FRM II; emissions, meteorological conditions, spreading calculations.

  6. Planning Tools For Estimating Radiation Exposure At The National Ignition Facility

    International Nuclear Information System (INIS)

    Verbeke, J.; Young, M.; Brereton, S.; Dauffy, L.; Hall, J.; Hansen, L.; Khater, H.; Kim, S.; Pohl, B.; Sitaraman, S.

    2010-01-01

    A set of computational tools was developed to help estimate and minimize potential radiation exposure to workers from material activation in the National Ignition Facility (NIF). AAMI (Automated ALARA-MCNP Interface) provides an efficient, automated mechanism to perform the series of calculations required to create dose rate maps for the entire facility with minimal manual user input. NEET (NIF Exposure Estimation Tool) is a web application that combines the information computed by AAMI with a given shot schedule to compute and display the dose rate maps as a function of time. AAMI and NEET are currently used as work planning tools to determine stay-out times for workers following a given shot or set of shots, and to help in estimating integrated doses associated with performing various maintenance activities inside the target bay. Dose rate maps of the target bay were generated following a low-yield 10 16 D-T shot and will be presented in this paper.

  7. Introduction to symposium 'radiation protection at nuclear facilities'

    International Nuclear Information System (INIS)

    Stricker, L.

    1996-01-01

    An introduction to the symposium 'radiation protection of nuclear facilities' on Wednesday, April 17, 1996 in Vienna has been given. The number of operating reactors and the total collective dose per reactor in OECD countries has been discussed. The evolution of the total collective dose associated with the replacement of steam generators at nuclear power reactors from 1979 to 1995 is presented. The background and culture of radiation protection, regulatory aspects, strategic formulation, plan management policy and organization responsibilities are discussed generally. (Suda)

  8. Materials for advanced reactor facilities: development and application. Materials of School-Conference for young scientists and specialists

    International Nuclear Information System (INIS)

    2012-01-01

    In the collection of works there are the texts, summaries and presentations of lectures delivered by the leading specialists of the branch as well as the abstracts of the students of school-conference for young scientists and specialists Materials for advanced reactor facilities: development and application, which took place on October, 29 - November, 2, 2012 in Zvenigorod. In the materials presented different aspects of development and application of materials of reactor cores and vessels of advanced reactors, computerized simulation of properties of radiation-resistant materials and simulation investigations of material radiation hardness are considered [ru

  9. Final Report. Hydrodynamics by high-energy-density plasma flow and hydrodynamics and radiative hydrodynamics with astrophysical application

    International Nuclear Information System (INIS)

    R Paul Drake

    2004-01-01

    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves

  10. Occupational radiation exposure in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: This symposium forms an essential part of the continuing tradition of subjecting nuclear energy to periodic review to assess the adequacy of radiation protection practices and experiences and to identify those areas needing further study and development. Specifically, the symposium focused on a review of statistical data on radiation exposure experience to workers in the nuclear fuel cycle through 1978. The technical sessions were concerned with occupational exposures: experienced in Member States; in research and development facilities; in nuclear power plants; in nuclear Fuel reprocessing facilities; in waste management facilities; and techniques to minimize doses. A critical review was made of internal and external exposures to the following occupational groups: uranium miners; mill workers; fuel fabricators; research personnel, reactor workers; maintenance staff; hot cell workers; reprocessing plant personnel; waste management personnel. In particular, attention was devoted to the work activities causing the highest radiation exposures and successful techniques which have been used to minimize individual and collective doses. Also there was an exchange of information on the trends of occupational exposure over the lifespan of individual nuclear power plants and other facilities in the nuclear fuel cycle. During the last session there was a detailed panel discussion on the conclusions and future needs highlighted during the symposium. While past symposia on nuclear power and its fuel cycle have presented data on occupational dose statistics, this symposium was the first to focus attention on the experience and trends of occupational exposure in recent years. The papers presented an authoritative account of the status of the levels and trends of the average annual individual dose as well as the annual collective dose for occupational workers in most of the world up to 1979. From the data presented it became evident that considerable progress has been

  11. Permanent radiation and weather monitoring systems at the Posiva nuclear waste facilities

    International Nuclear Information System (INIS)

    Laukkanen, J.; Palomaeki, M.; Viitanen, P.; Kumpula, L.

    2012-12-01

    Posiva Oy is planning to build a complex of two nuclear waste facilities in Olkiluoto. The facilities will encapsulate and dispose the spent nuclear fuel from the nuclear power plants operated by Posiva's owners into Olkiluoto bedrock. The spent fuel is strongly radioactive, so the radiation safety of the facilities and their processes for its users and the environment must be ensured. This paper deals with of the stationary radiation and weather measurement systems designed for the monitoring of Posiva's nuclear waste facilities and their processes. The systems are used for monitoring the encapsulation and disposal facilities and processes, as well as the emissions to the environment. The document collects also the system design basis and other requirements to be considered in the design of these systems at this early stage. (orig.)

  12. Progress report of the Radiation Technology and Industrial Applications Section, Isotope Group for the period ending August 1977

    International Nuclear Information System (INIS)

    Naik, A.D.; Roy, A.N.; Majali, A.B.

    1977-01-01

    The activities of the Radiation Technology and Industrial Applications Section of the Bhabha Atomic Research Centre, Bombay, for the period ending August 1977 are reported. Major highlights are: (1) completion of studies and design engineering for an economic scale cobalt-60 based irradiator for the radiation sterilisation of medical products, (2) taking up the work of setting up the cobalt-60 irradiation facilities for sources up to 300,000 Ci level, (3) development of radiation processed wood-polymer composite and practical demonstration of its superiority for application in industries - a cobalt-60 facility specifically for this purpose is being installed, (4) development of a commercially viable design of a smoke alarm system based on radioisotopes and (5) production and supply of irradiation units such as gamma chambers, radiography cameras, etc. (M.G.B.)

  13. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1989

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1992-04-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC 1 licensees during the years 1969 through 1989. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC 1 licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1989 annual reports submitted by about 448 licensees indicated that approximately 216,294 individuals were monitored 111,000 of whom were monitored by nuclear power facilities. They incurred an average individual does of 0.18 rem (cSv) and an average measurable dose of 0.36 (cSv). Termination radiation exposure reports were analyzed to reveal that about 113,535 individuals completed their employment with one or more of the 448 covered licensees during 1989. Some 76,561 of these individuals terminated from power reactor facilities, and about 10, 344 of them were considered to be transient workers who received an average dose of 0.64 rem (cSv)

  14. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1988

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1991-07-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1988. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1988 annual reports submitted by about 429 licensees indicated that approximately 220,048 individuals were monitored, 113,00 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.20 rem (cSv) and an average measurable dose of 0.41 (cSv). Termination radiation exposure reports were analyzed to reveal that about 113,072 individuals completed their employment with one or more of the 429 covered licensees during 1988. Some 80,211 of these individuals terminated from power reactor facilities, and about 8,760 of them were considered to be transient workers who received an average dose of 0.27 rem (cSv). 17 refs., 11 figs., 29 tabs

  15. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1991

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1993-07-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1991. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1991 annual reports submitted by about 436 licensees indicated that approximately 206,732 individuals were monitored, 182,334 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.15 rem (cSv) and an average measurable dose of about 0.31 (cSv). Termination radiation exposure reports were analyzed to reveal that about 96,231 individuals completed their employment with one or more of the 436 covered licensees during 1991. Some 68,115 of these individuals terminated from power reactor facilities, and about 7,763 of them were considered to be transient workers who received an average dose of 0.52 rem (cSv)

  16. Nuclear safety and radiation protection report of the Fessenheim nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Fessenheim nuclear power plant (INB 75, Haut-Rhin, 68 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  17. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  18. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Penly nuclear power plant (INB 136 and 140, Seine-Maritime, 76 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  19. Nuclear safety and radiation protection report of the Fessenheim nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Fessenheim nuclear power plant (INB 75, Haut-Rhin, 68 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  20. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Blayais nuclear power plant (INB 86 and 110, Gironde (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  1. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  2. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  3. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Penly nuclear power plant (INB 136 and 140, Seine-Maritime, 76 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  4. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  5. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  6. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Civaux nuclear power plant (INB 158 and 159, Vienne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  7. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Blayais nuclear power plant (INB 86 and 110, Gironde (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  8. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Civaux nuclear power plant (INB 158 and 159, Vienne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  9. Planning study for advanced national synchrotron-radiation facilities

    International Nuclear Information System (INIS)

    1984-01-01

    A new generation of synchrotron-radiation sources based on insertion devices offers gains in photon-beam brilliance as large as the gains that present-day synchrotron sources provided over conventional sources. This revolution in synchrotron capability and its impact on science and technology will be as significant as the original introduction of synchrotron radiation. This report recommends that insertion-device technology be pursued as our highest priority, both through the full development of insertion-device potential on existing machines and through the building of new facilities

  10. Electron beam irradiation facility for low to high dose irradiation applications

    International Nuclear Information System (INIS)

    Petwal, V.C.; Wanmode, Yashwant; Verma, Vijay Pal; Bhisikar, Abhay; Dwivedi, Jishnu; Shrivastava, P.; Gupta, P.D.

    2013-01-01

    Electron beam based irradiation facilities are becoming more and more popular over the conventional irradiator facilities due to many inherent advantages such as tunability of beam energy, availability of radiation both in electron mode and X-ray mode, wide range of the dose rate, control of radiation from a ON-OFF switch and other safety related merits. A prototype experimental facility based on electron accelerator has been set-up at RRCAT to meet the low-dose, medium dose and high-dose requirements for radiation processing of food, agricultural and medical products. The facility can be operated in the energy range from 7-10 MeV at variable power level from 0.05-3 kW to meet the dose rate requirement of 100 Gy to kGy. The facility is also equipped with a Bremsstrahlung converter optimized for X-ray irradiation at 7.5 MV. Availability of dose delivery in wide range with precision control and measurement has made the facility an excellent tool for researchers interested in electron/X-ray beam irradiation. A precision dosimetry lab based on alanine EPR and radiochromic film dosimetry system have been established to characterize the radiation field and precise dose measurements. Electron beam scattering technique has been developed to achieve low dose requirement for EB irradiation of various seeds such as groundnut, wheat, soybeans, moong beans, black gram etc. for mutation related studies. This paper describes various features of the facility together with the dosimetric measurements carried out for qualification of the facility and recent irradiation experiments carried out using this facility. (author)

  11. Stanford Synchrotron Radiation Laboratory 1991 activity report. Facility developments January 1991--March 1992

    International Nuclear Information System (INIS)

    Cantwell, K.; St. Pierre, M.

    1992-01-01

    SSRL is a national facility supported primarily by the Department of Energy for the utilization of synchrotron radiation for basic and applied research in the natural sciences and engineering. It is a user-oriented facility which welcomes proposals for experiments from all researchers. The synchrotron radiation is produced by the 3.5 GeV storage ring, SPEAR, located at the Stanford Linear Accelerator Center (SLAC). SPEAR is a fully dedicated synchrotron radiation facility which operates for user experiments 7 to 9 months per year. SSRL currently has 24 experimental stations on the SPEAR storage ring. There are 145 active proposals for experimental work from 81 institutions involving approximately 500 scientists. There is normally no charge for use of beam time by experimenters. This report summarizes the activity at SSRL for the period January 1, 1991 to December 31, 1991 for research. Facility development through March 1992 is included

  12. Stanford Synchrotron Radiation Laboratory 1991 activity report. Facility developments January 1991--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cantwell, K.; St. Pierre, M. [eds.

    1992-12-31

    SSRL is a national facility supported primarily by the Department of Energy for the utilization of synchrotron radiation for basic and applied research in the natural sciences and engineering. It is a user-oriented facility which welcomes proposals for experiments from all researchers. The synchrotron radiation is produced by the 3.5 GeV storage ring, SPEAR, located at the Stanford Linear Accelerator Center (SLAC). SPEAR is a fully dedicated synchrotron radiation facility which operates for user experiments 7 to 9 months per year. SSRL currently has 24 experimental stations on the SPEAR storage ring. There are 145 active proposals for experimental work from 81 institutions involving approximately 500 scientists. There is normally no charge for use of beam time by experimenters. This report summarizes the activity at SSRL for the period January 1, 1991 to December 31, 1991 for research. Facility development through March 1992 is included.

  13. Nuclear safety and radiation protection report of the Bugey nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Bugey nuclear power plant (Ain (FR)): 4 PWR reactors in operation (INB 78 and 89), one partially dismantled graphite-gas reactor (INB 45), an inter-regional fuel storage facility (MIR, INB 102), and a radioactive waste storage and conditioning facility under construction (ICEDA, INB 173). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  14. Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C.; Rokni, Sayed H.; /SLAC; Vylet, Vaclav; /Jefferson Lab

    2009-12-11

    The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power ({approx} 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

  15. Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities

    International Nuclear Information System (INIS)

    Liu, James C.; Rokni, Sayed H.; Vylet, Vaclav

    2009-01-01

    The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power (∼ 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

  16. Audits of radiation sterilization facilities

    International Nuclear Information System (INIS)

    Kelkar, Prabhakar M.

    2001-01-01

    Johnson and Johnson is the world leader in sterilization science and technology. A special group of scientists and technologists are engaged in the development of new methods of sterilization, worldwide monitoring of sterilization processes, equipment and approvals for all types of sterilization processes. Kilmer Conference in the alternate year for the benefit of all those involved in improvement in sterilization science is held. Cobalt-60 gamma radiation for sterilization of medical products on commercial scale is used. This kind of mammoth task can only be achieved through systematic method of planning, auditing, expert review and approval of facilities

  17. Radiation risk and its estimation for nuclear facilities

    International Nuclear Information System (INIS)

    Krueger, F.W.

    1979-01-01

    The level of knowledge achieved in estimating risks due to the operation of nuclear facilities is discussed. In this connection it is analyzed to what extent risk estimates may be used for establishing requirements for facilities and measures of radiation protection and accident prevention. At present, estimates of risks are subject to great uncertainties. However, the results attainable already permit to discern the causes of possible accidents and to develop effective measures for preventing such accidents. For the time being (and maybe in principle) risk estimation is possible only with more or less arbitrary premises. Within the foreseeable future, cost-benefit comparisons cannot compensate for discretionary decisions in establishing requirements for measures of radiation protection and accident prevention. In preparing such decisions based on experience, expert opinions, political and socio-economic reflections and views, comparison of the risk of novel technologies with existing ones or accepted risks may be a useful means. (author)

  18. Radiation shielding design for a hot repair facility

    International Nuclear Information System (INIS)

    Courtney, J.C.; Dwight, C.C.

    1991-01-01

    A new repair and decontamination area is being built to support operations at the demonstration fuel cycle facility for the Integral Fast Reactor program at Argonne National Laboratory's site at the Idaho National Engineering Laboratory. Provisions are made for remote, glove wall, and contact maintenance on equipment removed from hot cells where spent fuel will be electrochemically processed and recycled to the Experimental Breeder Reactor-II. The source for the shielding design is contamination from a mix of fission and activation products present on items removed from the hot cells. The repair facility also serves as a transfer path for radioactive waste produced by processing operations. Radiation shields are designed to limit dose rates to no more than 5 microSv h-1 (0.5 mrem h-1) in normally occupied areas. Point kernel calculations with buildup factors have been used to design the shielding and to position radiation monitors within the area

  19. Atmospheric Radiation Measurement Program facilities newsletter, February 2001.; TOPICAL

    International Nuclear Information System (INIS)

    Holdridge, D. J.

    2001-01-01

    This newsletter consists of the following: (1) ARM Science Team Meeting Scheduled-The 11th Annual ARM Science Team meeting is scheduled for March 19-23, 2001, in Atlanta, Georgia. Members of the science team will exchange research results achieved by using ARM data. The science team is composed of working groups that investigate four topics: instantaneous radiative flux, cloud parameterizations and modeling, cloud properties, and aerosols. The annual meeting brings together the science team's 150 members to discuss issues related to ARM and its research. The members represent universities, government laboratories and research facilities, and independent research companies. (2) Communications to Extended Facilities Upgraded-New communications equipment has been installed at all of the SGP extended facilities. Shelters were installed to house the new equipment used to transfer data from instruments via the Internet to the site data system at the central facility. This upgrade has improved data availability from the extended facilities to 100% and reduced telephone costs greatly. (3) SGP Goes ''Buggy''-Steve Sekelsky, a researcher from the University of Massachusetts, is planning to bring a 95-GHz radar to the SGP central facility for deployment in March-October 2001. The radar will help to identify signals due to insects flying in the air. The ARM millimeter cloud radar, which operates at 35 GHz, is sensitive to such insect interference. Testing will also be performed by using a second 35-GHz radar with a polarized radar beam, which can differentiate signals from insects versus cloud droplets. (4) Winter Fog-Fog can add to hazards already associated with winter weather. Common types of fog formation include advection, radiation, and steam. Advection fog: An advection fog is a dense fog that forms when a warm, moist air mass moves into an area with cooler ground below. For example, fog can form in winter when warmer, water-saturated air from the south (associated with

  20. Geographic access to radiation therapy facilities and disparities of early-stage breast cancer treatment

    Directory of Open Access Journals (Sweden)

    Yan Lin

    2018-05-01

    Full Text Available Few studies of breast cancer treatment have focused on the Northern Plains of the United States, an area with a high mastectomy rate. This study examined the association between geographic access to radiation therapy facilities and receipt of breast cancer treatments among early-stage breast cancer patients in South Dakota. Based on 4,209 early-stage breast cancer patients diagnosed between 2001 and 2012 in South Dakota, the study measured geographic proximity to radiation therapy facilities using the shortest travel time for patients to the closest radiation therapy facility. Two-level logistic regression models were used to estimate for early stage cases i the odds of mastectomy versus breast conserving surgery (BCS; ii the odds of not receiving radiation therapy after BCS versus receiving follow-up radiation therapy. Covariates included race/ethnicity, age at diagnosis, tumour grade, tumour sequence, year of diagnosis, census tract-level poverty rate and urban/rural residence. The spatial scan statistic method was used to identify geographic areas with significantly higher likelihood of experiencing mastectomy. The study found that geographic accessibility to radiation therapy facilities was negatively associated with the likelihood of receiving mastectomy after adjustment for other covariates, but not associated with radiation therapy use among patients receiving BCS. Compared with patients travelling less than 30 minutes to a radiation therapy facility, patients travelling more than 90 minutes were about 1.5 times more likely to receive mastectomy (odds ratio, 1.51; 95% confidence interval, 1.08-2.11 and patients travelling more than 120 minutes were 1.7 times more likely to receive mastectomy (odds ratio, 1.70; 95% confidence interval, 1.19-2.42. The study also identified a statistically significant cluster of patients receiving mastectomy who were located in south-eastern South Dakota, after adjustment for other factors. Because

  1. Clinical application of radiation dosimetry on X-ray radiotherapy

    International Nuclear Information System (INIS)

    Mizutani, Takeo

    1995-01-01

    In the case of radiotherapy, it is important to give proper dose for a tumor, to be treated with the objective of therapy, and to evaluate the dose, considering dose for other organs at risk to a sufficient extent. To provide an exposure dose at the target volume of tumor parts, it should be required to get a good understanding of the correct dosimetric method and also to apply this to clinical application in practice. All over the country, so as not to produce any difference in the given dose, 'A practical code for the dosimetry of high energy X-rays in radiotherapy' was issued by the Japanese Associations of radiological physicists in 1972. In 1986, it was revised. At about 85% of therapeutic facilities in the country, radiation engineers perform dose measurements and controls. Therefore, I have explained the process of measurement and dose calculation, with the main objective directed at the engineers in charge of the radiotherapy so as to easily radiation dosimetry of X-ray with dosemeters and phantom used at each facility according to the 'practical code'. (author)

  2. Decommissioning an uranium and thorium facility: a radiation protection approach

    International Nuclear Information System (INIS)

    Feijo Vasques, Francisco Mario; Saburo Todo, Alberto; Mestre, Paulo Antonio

    2008-01-01

    Decommissioning means actions taken at the end of the useful life of a facility in retiring it from service with adequate regard for the health and safety of workers and members of the public. In the present work, we introduce a radiation protection approach for the removal of radioactive material to the extent that the facility or site becomes available for use without restriction. The facility to be decommissioned is a fuel cycle pilot plant that operated with natural uranium and thorium for almost two decades and then, kept inactive for about 10 years at the Nuclear and Energy Research Institute - IPEN. Even after this long period of inactivity, it has presented significant levels of radiation and contamination spread over the floor, walls, windows, doors and ceiling. The fuel cycle pilot plant was completely dismantled, remaining only the walls and the concrete structures. In this work we present the job done to restore the area. According to each step of dismantling a continuous monitoring of the contaminated surfaces was carried out including the survey of the deep material from the floor and walls. The material identified as radioactive waste was stored into appropriated metal drums. A radiation protection team guided this stage of the work, prescribing the tasks, and the amount of material that should be removed from floors, windows and ceiling. For this, repetitive surveys had to be done. The results of monitoring and contamination levels were analysed, thus guiding the next steps of the job. In this way radiation protection team took over the tasks, running the work with the purpose of achieving acceptable levels of radiation, restoring the area for unrestricted use. (author)

  3. Nuclear safety and radiation protection report of Belleville-Sur-Loire nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 127 and 128). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  4. Nuclear safety and radiation protection report of the Cruas-Meysse nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 111 and 112). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  5. Nuclear safety and radiation protection report of the nuclear facility of Brennilis - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Monts d'Arree (EL4-D or Brennilis) site (INB 162 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  6. Nuclear safety and radiation protection report of Dampierre-En-Burly nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 84 and 85). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  7. Nuclear safety and radiation protection report of Nogent-Sur-Seine nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 129 and 130). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  8. Nuclear safety and radiation protection report of the nuclear facilities of Brennilis - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Monts d'Arree (EL4-D or Brennilis) site (INB 162 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  9. Occupational radiation protection organisation, facility and design safety features

    International Nuclear Information System (INIS)

    Joshi, M.L.

    1998-01-01

    There is no absolute standard or excellence in radiation protection. The concept of excellence implies a continuous search for improvement in performance and full utilization of available resources. Radiation protection requires the commitment of all plant staff, including higher levels of executive management. The improvements in performance must therefore be based primarily on management rather than technical factors and must be aimed at more effective use of investments already made in plant facilities

  10. European synchrotron radiation facility at Risoe

    International Nuclear Information System (INIS)

    1981-07-01

    The results of the feasibility study on a potential European Synchrotron Radiation Facility site at Risoe, Denmark, can be summarized as follows: The site is located in a geologically stable area. The ground is fairly flat, free from vibrations and earth movements, and the foundation properties are considered generally good. The study is based upon the machine concept and main geometry as presented in the ESF feasibility study of May 1979. However, the proposed site could accomodate a larger machine (e.g. 900 m of circumference) or a multi-facility centre. The site is located in the vicinity of Risoe National Laboratory, a R and D establishment with 850 employees and a well-developed technical and scientific infrastructure, which can provide support to the ESRF during the plant construction and operation. In particular the possible combination of synchrotron radiation with the existing neutron scattering facilities in DR 3 is emphasized. The site is located 35 km west of Copenhagen with easy access to the scientific, technological and industrial organizations in the metropolitan area. The regional infrastructure ensures easy and fast communication between the ESRF and locations in the host country as well as abroad. The site is located 35 minutes drive from Copenhagen International Airport and on a main communication route out of Copenhagen. The estimated time duration for the design, construction and commissioning of ESRF phase 1 - taking into account national regulatory procedures - is consistent with that of the ESF feasibility study, i.e. approx. 6 years. The estimated captal costs associated with site-specific structures are consistent with those of the ESF feasibility study, taking into account price increase between 1979 and 1981. It should be emphasized that the study is based upon technical and scientific assessments only, and does not reflect any official position or approval from appropriate authorities. (author)

  11. An overview of the facilities of the Ionizing Radiation Laboratory, South Africa

    International Nuclear Information System (INIS)

    Mostert, J.C.

    2002-01-01

    The Ionising Radiation Laboratory (IRL) of the CSIR-National Metrology Laboratory (NML) in South Africa was recently accepted as a member of the IAEA SSDL network. This article gives a very brief overview of the services and facilities provided by this laboratory. The NML has the responsibility to realize and maintain the national measuring standards in South Africa. In the field of ionizing radiation, this function is performed by the IRL. The IRL provides traceability through its calibration and measurement services for regulatory authorities, institutions providing radiation therapy services such as hospitals and other oncology centres, radiation protection service providers such as the South African Bureau of Standards (SABS), the radiation protection industry in general and to companies providing industrial quality assurance services. These services also extend to a number of countries in the Southern African Development Community (SADC) which do not currently have metrology facilities of their own

  12. Obtaining laser safety at a synchrotron radiation user facility: The Advanced Light Source

    International Nuclear Information System (INIS)

    Barat, K.

    1996-01-01

    The Advanced Light Source (ALS) is a US national facility for scientific research and development located at the Lawrence Berkeley National Laboratory in California. The ALS delivers the world's brightest synchrotron radiation in the far ultraviolet and soft X-ray regions of the spectrum. As a user facility it is available to researchers from industry, academia, and laboratories from around the world. Subsequently, a wide range of safety concerns become involved. This article relates not only to synchrotron facilities but to any user facility. A growing number of US centers are attracting organizations and individuals to use the equipment on site, for a fee. This includes synchrotron radiation and/or free electron facilities, specialty research centers, and laser job shops. Personnel coming to such a facility bring with them a broad spectrum of safety cultures. Upon entering, the guests must accommodate to the host facility safety procedures. This article describes a successful method to deal with that responsibility

  13. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  14. Classification of Reactor Facility Operational State Using SPRT Methods with Radiation Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Aviles, Camila A. [ORNL; Rao, Nageswara S. [ORNL

    2018-01-01

    We consider the problem of inferring the operational state of a reactor facility by using measurements from a radiation sensor network, which is deployed around the facility’s ventilation stack. The radiation emissions from the stack decay with distance, and the corresponding measurements are inherently random with parameters determined by radiation intensity levels at the sensor locations. We fuse measurements from network sensors to estimate the intensity at the stack, and use this estimate in a one-sided Sequential Probability Ratio Test (SPRT) to infer the on/off state of the reactor facility. We demonstrate the superior performance of this method over conventional majority vote fusers and individual sensors using (i) test measurements from a network of NaI sensors, and (ii) emulated measurements using radioactive effluents collected at a reactor facility stack. We analytically quantify the performance improvements of individual sensors and their networks with adaptive thresholds over those with fixed ones, by using the packing number of the radiation intensity space.

  15. Hanford facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-01-01

    This document, Set 2, the Hanford Facility Dangerous Waste Part B Permit Application, consists of 15 chapters that address the content of the Part B checklists prepared by the Washington State Department of Ecology (Ecology 1987) and the US Environmental Protection Agency (40 CFR 270), with additional information requirements mandated by the Hazardous and Solid Waste Amendments of 1984 and revisions of WAC 173-303. For ease of reference, the Washington State Department of Ecology checklist section numbers, in brackets, follow the chapter headings and subheadings. This permit application contains ''umbrella- type'' documentation with overall application to the Hanford Facility. This documentation is broad in nature and applies to all TSD units that have final status under the Hanford Facility Permit

  16. Radiation dosimetry for commissioning Egypt's 'ega-gamma I' facility for radiation processing

    International Nuclear Information System (INIS)

    El-Behay, A.Z.; Rageh, S.I.; El-Assy, N.B.; Roushdy, H.

    1981-01-01

    The use of ionizing radiation for sterilization of medical products and biological tissues has become an alternative to autoclaving or gas treatment by ethylene oxide. Moreover, large radiation facilities are now increasing for processing many industrial products, such as rubber, textiles, plastics, coatings, films, wire and cable. For quality control of irradiated products released to the public, greater consideration is now being given to the use of physical radiation dosimetry, since it is simple, reliable, and reproducible. This work describes dosimetry for the new 60 Co irradiation plant, located at the National Center for Radiation Research and Technology of Egypt. Detailed measurements of absorbed dose extremes in product boxes processed in the plant were made using commercially supplied dyed plastic dosimeters (Red Acrylic and Red Perspex). These physical dosimeters were calibrated against the yield of cerous ion due to γ-ray irradiation of ceric sulphate solution as a standard chemical dosimeter. (author)

  17. Radiation exposures in reprocessing facilities at the Savannah River Plant

    International Nuclear Information System (INIS)

    Hayes, G.; Caldwell, R.D.; Hall, R.M.

    1979-01-01

    Two large reprocessing facilities have been operating at the Savannah River Plant since 1955. The plant, which is near Aiken, South Carolina, is operated for the U.S. Department of Energy by the Du Pont Company. The reprocessing facilities have a work force of approximately 1,800. The major processes in the facilities are chemical separations of irradiated material, plutonium finishing, and waste management. This paper presents the annual radiation exposure for the reprocessing work force, particularly during the period 1965 through 1978. It also presents the collective and average individual annual exposures for various occupations including operators, mechanics, electricians, control laboratory technicians, and health physicists. Periodic and repetitive work activities that result in the highest radiation exposures are also described. The assimilation of radionuclides, particularly plutonium, by the work force is reviewed. Methods that have been developed to minimize the exposure of reprocessing personnel are described. The success of these methods is illustrated by experience - there has been no individual worker exposure of greater than 3.1 rems per year and only one plutonium assimilation greater than the maximum permissible body burden during the 24 years of operation of the facilities

  18. Radiation exposures in reprocessing facilities at the Savannah River Plant

    International Nuclear Information System (INIS)

    Hayes, G.; Caldwell, R.D.; Hall, R.M.

    1979-06-01

    Two large reprocessing facilities have been operating at the Savannah River Plant since 1955. The plant, which is near Aiken, South Carolina, is operated for the US Department of Energy by the Du Pont Company. The reprocessing facilities have a work force of approximately 1,800. The major processes in the facilities are chemical separations of irradiated material, plutonium finishing, and waste management. This paper presents the annual radiation exposure for the reprocessing work force, particularly during the period 1965 through 1978. It also presents the collective and average individual annual exposures for various occupations including operators, mechanics, electricians, control laboratory technicians, and health physicists. Periodic and repetitive work activities that result in the highest radiation exposures are also described. The assimilation of radionuclides, particularly plutonium, by the work force is reviewed. Methods that have been developed to minimize the exposure of reprocessing personnel are described. The success of these methods is illustrated by experience - there has been no individual worker exposure of greater than 3.1 rems per year and only one plutonium assimilation greater than the maximum permissible body burden during the 24 years of operation of the facilities

  19. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chooz nuclear power plant (Ardennes (FR)): 2 PWR reactors in operation (Chooz B, INB 139 and 144) and one partially dismantled PWR reactor (Chooz A, INB 163). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary followed by the viewpoint of the Committees for health, safety and working conditions. (J.S.)

  20. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Paluel nuclear power plant (INB no. 103 - Paluel 1, no. 104 - Paluel 2, no. 114 - Paluel 3 and no. 115 - Paluel 4, Cany-Barville - Seine-Maritime (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document ends with a glossary and no recommendation from the Committees for health, safety and working conditions. (J.S.)

  1. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Paluel nuclear power plant (INB no. 103 - Paluel 1, no. 104 - Paluel 2, no. 114 - Paluel 3 and no. 115 - Paluel 4, Cany-Barville - Seine-Maritime (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  2. Nuclear safety and radiation protection report of the Golfech nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Golfech nuclear power plant (INB 135 and 142, Tarn-et-Garonne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  3. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cattenom nuclear power plant (INB 124, 125, 126 and 137, Moselle (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  4. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cattenom nuclear power plant (INB 124, 125, 126 and 137, Moselle (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  5. Nuclear safety and radiation protection report of the Golfech nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Golfech nuclear power plant (INB 135 and 142, Tarn-et-Garonne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  6. A novel facility for ageing materials with narrow-band ultraviolet radiation exposure

    International Nuclear Information System (INIS)

    Kaerhae, Petri; Ruokolainen, Kimmo; Heikkilae, Anu; Kaunismaa, Merja

    2011-01-01

    A facility for exploring wavelength dependencies in ultraviolet (UV) radiation induced degradation in materials has been designed and constructed. The device is essentially a spectrograph separating light from a lamp to spectrally resolved UV radiation. It is based on a 1 kW xenon lamp and a flat-field concave holographic grating 10 cm in diameter. Radiation at the wavelength range 250-500 nm is dispersed onto the sample plane of 1.5 cm in height and 21 cm in width. The optical performance of the device has been characterized by radiometric measurements. Using the facility, test samples prepared of regular newspaper have been irradiated from 1 to 8 h. Color changes on the different locations of the aged samples have been quantified by color measurements. Yellowness indices computed from the color measurements demonstrate the capability of the facility in revealing wavelength dependencies of the material property changes in reasonable time frames.

  7. The personnel protection system for a Synchrotron Radiation Accelerator Facility: Radiation safety perspective

    International Nuclear Information System (INIS)

    Liu, J.C.

    1993-05-01

    The Personnel Protection System (PPS) at the Stanford Synchrotron Radiation Laboratory is summarized and reviewed from the radiation safety point of view. The PPS, which is designed to protect people from radiation exposure to beam operation, consists of the Access Control System (ACS) and the Beam Containment System (BCS), The ACS prevents people from being exposed to the very high radiation level inside the shielding housing (also called a PPS area). The ACS for a PPS area consists of the shielding housing and a standard entry module at every entrance. The BCS prevents people from being exposed to the radiation outside a PPS area due to normal and abnormal beam losses. The BCS consists of the shielding (shielding housing and metal shielding in local areas), beam stoppers, active current limiting devices, and an active radiation monitor system. The system elements for the ACS and BCS and the associated interlock network are described. The policies and practices in setting up the PPS are compared with some requirements in the US Department of Energy draft Order of Safety of Accelerator Facilities

  8. Nuclear safety and radiation protection report of the Creys-Malville nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Creys-Malville nuclear power plant (also known as Superphenix power plant, INB no. 91, Creys-Mepieu - Isere (FR)) and the other fuel and waste storage facilities of the site (INB no. 141). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2012, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  9. Nuclear safety and radiation protection report of the Creys-Malville nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Creys-Malville nuclear power plant (also known as Superphenix power plant, INB no. 91, Creys-Mepieu - Isere (FR)) and the other fuel and waste storage facilities of the site (INB no. 141). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  10. Licensing review process of the European Spallation Source (ESS) research facility

    International Nuclear Information System (INIS)

    Brewitz, Erica

    2014-01-01

    On 3 January 2012 a license application under the Radiation Protection Act (SFS, 1988b) for the European Spallation Source research facility was submitted to the Swedish Radiation Safety Authority. The European Spallation Source research facility will be the site of a new and quite unusual kind of neutron source, based on a large proton accelerator that bombards a heavy material with protons. The Swedish Radiation Safety Authority is now reviewing the application. (authors)

  11. Nuclear safety and radiation protection report of the Chinon nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chinon nuclear power plant (Indre-et-Loire, 37 (FR)): 4 PWR reactors in operation (Chinon B, INB 107 and 132), 3 partially dismantled graphite-gas reactors (Chinon A, INB 133, 153 and 161), a workshop for irradiated materials (AMI, INB 94), and an inter-regional fuel storage facility (MIR, INB 99). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  12. Nuclear safety and radiation protection report of the Chinon nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chinon nuclear power plant (Indre-et-Loire, 37 (FR)): 4 PWR reactors in operation (Chinon B, INB 107 and 132), 3 partially dismantled graphite-gas reactors (Chinon A, INB 133, 153 and 161), a workshop for irradiated materials (AMI, INB 94), and an inter-regional fuel storage facility (MIR, INB 99). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  13. External radiation exposure control system in accelerator facilities

    International Nuclear Information System (INIS)

    Ogawa, Tatsuhiko; Iimoto, Takeshi; Kosako, Toshiso

    2011-01-01

    The external exposure control systems in KEK and CERN are discussed to find out good practices and unreasonableness of radiation control in accelerator facilities, which plays an important role in optimizing national and/or site specific radiological regulations, referring to relevant ICRP publications. Personal dose limits and radiation area classifications were analyzed and their reasonableness were explored. Good example of supervised areas, area classification based on realistic assumptions on working time etc are found. On the other hand, unreasonable systems, that are often attributed to the national regulation or ideas presented in the old publications are also found. (author)

  14. Concrete structures for nuclear facilities

    International Nuclear Information System (INIS)

    1996-01-01

    The detailed requirements for the design and fabrication of the concrete structures for nuclear facilities and for the documents to be submitted to the Finnish Centre for Radiation and Nuclear Safety (STUK) are given in the guide. It also sets the requirements for the inspection of concrete structures during the construction and operation of facilities. The requirements of the guide primarily apply to new construction. As regards the repair and modification of nuclear facilities built before its publication, the guide is followed to the extent appropriate. The regulatory activities of the Finnish Centre for Radiation and Nuclear Safety during a nuclear facility's licence application review and during the construction and operation of the facility are summarised in the guide YVL 1.1

  15. The development of application technology for image processing in nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Bum; Kim, Woog Ki; Sohn, Surg Won; Kim, Seung Ho; Hwang, Suk Yeoung; Kim, Byung Soo

    1991-01-01

    The object of this project is to develop application technology of image processing in nuclear facilities where image signal are used for reliability and safety enhancement of operation, radiation exposure reduce of operator, and automation of operation processing. We has studied such application technology for image processing in nuclear facilities as non-tactile measurement, remote and automatic inspection, remote control, and enhanced analysis of visual information. On these bases, automation system and real-time image processing system are developed. Nuclear power consists in over 50% share of electic power supply of our country nowdays. So, it is required of technological support for top-notch technology in nuclear industry and its related fields. Especially, it is indispensable for image processing technology to enhance the reliabilty and safety of operation, to automate the process in a place like a nuclear power plant and radioactive envionment. It is important that image processing technology is linked to a nuclear engineering, and enhance the reliability abd safety of nuclear operation, as well as decrease the dose rate. (Author)

  16. Nuclear safety and radiation protection report of the Tricastin nuclear facility (BCOT) - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, if some, are reported as well as the effluents discharge in the environment. Finally, the management of the radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  17. Atmospheric Radiation Measurement (ARM) Climate Research Facility Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mather, James [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    Mission and Vision Statements for the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mission The ARM Climate Research Facility, a DOE scientific user facility, provides the climate research community with strategically located in situ and remote-sensing observatories designed to improve the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their interactions and coupling with the Earth’s surface. Vision To provide a detailed and accurate description of the Earth atmosphere in diverse climate regimes to resolve the uncertainties in climate and Earth system models toward the development of sustainable solutions for the nation's energy and environmental challenges.

  18. Evaluation of pelletron accelerator facility to study radiation effects on semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, A. P. Gnana; Pushpa, N.; Praveen, K. C.; Naik, P. S.; Revannasiddaiah, D. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore-570006, Karnataka (India)

    2012-06-05

    In this paper we present the comprehensive results on the effects of different radiation on the electrical characteristics of different semiconductor devices like Si BJT, n-channel MOSFETs, 50 GHz and 200 GHz silicon-germanium heterojunction bipolar transistor (SiGe HBTs). The total dose effects of different radiation are compared in the same total dose ranging from 100 krad to 100 Mrad. We show that the irradiation time needed to reach very high total dose can be reduced by using Pelletron accelerator facilities instead of conventional irradiation facilities.

  19. Evaluation of pelletron accelerator facility to study radiation effects on semiconductor devices

    International Nuclear Information System (INIS)

    Prakash, A. P. Gnana; Pushpa, N.; Praveen, K. C.; Naik, P. S.; Revannasiddaiah, D.

    2012-01-01

    In this paper we present the comprehensive results on the effects of different radiation on the electrical characteristics of different semiconductor devices like Si BJT, n-channel MOSFETs, 50 GHz and 200 GHz silicon-germanium heterojunction bipolar transistor (SiGe HBTs). The total dose effects of different radiation are compared in the same total dose ranging from 100 krad to 100 Mrad. We show that the irradiation time needed to reach very high total dose can be reduced by using Pelletron accelerator facilities instead of conventional irradiation facilities.

  20. Radiation protection and environmental surveillance programme in and around Nuclear Fuel Cycle Facilities in India

    International Nuclear Information System (INIS)

    Tripathi, R.M.

    2018-01-01

    Radiation safety is an integral part of the operation of the Indian nuclear fuel cycle facilities and safety culture has been inculcated in all the spheres of its operation. Nuclear fuel cycle comprises of mineral exploration, mining, ore processing, fuel fabrication, power plants, reprocessing, waste management and accelerator facilities. Health Physics Division of BARC is entrusted with the responsibility of radiation protection and environmental surveillance in all the nuclear fuel cycle facilities

  1. Control of radiation in animal facilities

    International Nuclear Information System (INIS)

    Hightower, D.; Hood, D.M.; Neff, R.D.

    1977-01-01

    Use of radioactive materials in animals for research and clinical studies is on the increase. These studies may be undertaken with little or no disruption of normal facility operations if a few facts are considered. The primary factor of consideration is the radiopharmaceutical - its pharmacologic behavior and physical characteristics. The preferred radionuclide is one with the shortest half-life compatible with the variables to be measured. The fact that an animal is a source of radiation as well as a potential source of contamination must be kept in mind. Improper use of radiopharmaceuticals is inexcusable

  2. "Atmospheric Radiation Measurement (ARM) Research Facility at Oliktok Point Alaska"

    Science.gov (United States)

    Helsel, F.; Ivey, M.; Hardesty, J.; Roesler, E. L.; Dexheimer, D.

    2017-12-01

    Scientific Infrastructure To Support Atmospheric Science, Aerosol Science and UAS's for The Department Of Energy's Atmospheric Radiation Measurement Programs At The Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site designed to collect data and help determine the impact that clouds and aerosols have on solar radiation. AMF3 provides a scientific infrastructure to support instruments and collect arctic data for the international arctic research community. The infrastructure at AMF3/Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF3's present base line instruments include: scanning precipitation Radars, cloud Radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL) Along with all the standard metrological measurements. In addition AMF3 provides aerosol measurements with a Mobile Aerosol Observing System (MAOS). Ground support for Unmanned Aerial Systems (UAS) and tethered balloon flights. Data from these instruments and systems are placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments and systems are at the ARM Research Facility at Oliktok Point Alaska.

  3. The design of diagnostic medical facilities using ionizing radiation

    International Nuclear Information System (INIS)

    1988-03-01

    This Code, setting out the general principles of radiological protection as applied to diagnostic radiation facilities in hospitals and clinics, is intended as a guide to architects and to works departments concerned with their design and construction, and with the modification of existing units

  4. Radiation dose evaluation based on exposure scenario during the operation of radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Yoon, Jeong Hyoun; Kim Chang Lak; Choi, Heui Joo; Park, Joo Wan

    1999-01-01

    Radiation dose to worker in disposal facility was calculated by using point kernel MICROSHIELD V5.02 computer code based on exposure scenarios. An conceptual design model for disposal vaults in disposal facility was used for object of shielding calculation model. Selected radionuclides and their activities among radioactive wastes from nuclear power plants were assumed as radiation sources for the exposure calculation. Annual radiation doses to crane workers and to people working on disposal vaults were calculated according to exposure time and distance from the sources with conservative operation scenarios. The scenarios used for this study were based on assumption for representing disposal activities in a future Korean near surface disposal facility. Calculated exposure rates to worker during normal disposal work were very low comparing with annual allowable limit for radiation worker

  5. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Flamanville nuclear power plant (Manche (FR)): 2 PWR reactors in operation (INB 108 and 109), and 1 PWR under construction (Flamanville 3, INB 167). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, water consumption and waste management at Flamanville 3 construction site) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  6. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Flamanville nuclear power plant (Manche (FR)): 2 PWR reactors in operation (INB 108 and 109), and 1 PWR under construction (Flamanville 3, INB 167). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, water consumption and waste management at Flamanville 3 construction site) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  7. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chooz nuclear power plant (Ardennes (FR)): 2 PWR reactors in operation (Chooz B, INB 139 and 144) and one partially dismantled PWR reactor (Chooz A, INB 163). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  8. Radiation resistant, decontaminable and sealing jointing compounds for application in nuclear facilities

    International Nuclear Information System (INIS)

    Kunze, S.

    1991-09-01

    The sealing jointing compounds applied in practice and already examined for decontaminability will be presented here. Solvent-free sealing compounds, emulsifiable in water, with low molecular epoxy resins as binders, quite a number of curing versions, and little hygroscopic filler mixtures adapted in grain size have been tested with a view to ceramic tile jointing in nuclear facilities. The sealing compounds were examined before and after exposure to gamma irradiation (300 KGy energy dose) for decontaminability, color, gloss and resistance to decontaminants. Out of fourteeen compounds exhaustively investigated ten are very well decontaminable and four well decontaminable. After exposure to radiation no or only minor changes in color and gloss, respectively, were observed. Visible changes such as cracking, bubbles, etc. were not found and the resistance to decontaminants was neither affected. It has even been possible to replace in the well decontaminable sealing compounds developed until now part of the epoxy resin binder with elasticizing components such as Thiokol which is very important as a base material for sealing compounds in the construction industry, but difficult to decontaminate. (orig.) [de

  9. Application of pulsed multi-ion irradiations in radiation damage research: A stochastic cluster dynamics simulation study

    Science.gov (United States)

    Hoang, Tuan L.; Nazarov, Roman; Kang, Changwoo; Fan, Jiangyuan

    2018-07-01

    Under the multi-ion irradiation conditions present in accelerated material-testing facilities or fission/fusion nuclear reactors, the combined effects of atomic displacements with radiation products may induce complex synergies in the structural materials. However, limited access to multi-ion irradiation facilities and the lack of computational models capable of simulating the evolution of complex defects and their synergies make it difficult to understand the actual physical processes taking place in the materials under these extreme conditions. In this paper, we propose the application of pulsed single/dual-beam irradiation as replacements for the expensive steady triple-beam irradiation to study radiation damages in materials under multi-ion irradiation.

  10. Nuclear safety and radiation protection report of the Belleville-sur-Loire nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 127 and 128). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  11. Nuclear safety and radiation protection report of the Belleville-sur-Loire nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 127 and 128). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  12. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 84 and 85). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  13. Nuclear safety and radiation protection report of Saint-Alban Saint-Maurice nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 119 and 120). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  14. Nuclear safety and radiation protection report of the Nogent-sur-Seine nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 129 and 130). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  15. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 84 and 85). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  16. Benefits of explosive cutting for nuclear-facility applications

    International Nuclear Information System (INIS)

    Hazelton, R.F.; Lundgren, R.A.; Allen, R.P.

    1981-06-01

    The study discussed in this report was a cost/benefit analysis to determine: (1) whether explosive cutting is cost effective in comparison with alternative metal sectioning methods and (2) whether explosive cutting would reduce radiation exposure or provide other benefits. Two separate approaches were pursued. The first was to qualitatively assess cutting methods and factors involved in typical sectioning cases and then compare the results for the cutting methods. The second was to prepare estimates of work schedules and potential radiation exposures for candidate sectioning methods for two hypothetical, but typical, sectioning tasks. The analysis shows that explosive cutting would be cost effective and would also reduce radiation exposure when used for typical nuclear facility sectioning tasks. These results indicate that explosive cutting should be one of the principal cutting methods considered whenever steel or similar metal structures or equipment in a nuclear facility are to be sectioned for repair or decommissioning. 13 figures, 7 tables

  17. Accelerators for the advanced radiation technology project

    International Nuclear Information System (INIS)

    Maruyama, Michio

    1990-01-01

    Ion beam irradiation facilities are now under construction for the advanced radiation technology (ART) project in Takasaki Radiation Chemistry Research Establishment of (Japan Atomic Energy Research Institute) JAERI. The project is intended to make an effective use of ion beams, especially ion beams, in the research field of radiation application technology. The TIARA (Takasaki Ion Accelerators for Advanced Radiation Application) facilities include four ion accelerators to produce almost all kinds of energetic ions in the periodic table. The facilities are also provided with several advanced irradiation means and act as very powerful accelerator complex for material development. Specifically, this report presents an outline of the ART project, features of TIARA as accelerator facilities dedicated to material development, the AVF cyclotron under construction (Sumitomo Heavy Industries, Ltd., Model 930), tandem accelerator, microbeam, and experimental instruments used. (N.K.)

  18. Probabilistic safety assessment for food irradiation facility

    International Nuclear Information System (INIS)

    Solanki, R.B.; Prasad, M.; Sonawane, A.U.; Gupta, S.K.

    2012-01-01

    Highlights: ► Different considerations are required in PSA for Non-Reactor Nuclear Facilities. ► We carried out PSA for food irradiation facility as a part of safety evaluation. ► The results indicate that the fatal exposure risk is below the ‘acceptable risk’. ► Adequate operator training and observing good safety culture would reduce the risk. - Abstract: Probabilistic safety assessment (PSA) is widely used for safety evaluation of Nuclear Power Plants (NPPs) worldwide. The approaches and methodologies are matured and general consensus exists on using these approaches in PSA applications. However, PSA applications for safety evaluation for non-reactor facilities are limited. Due to differences in the processes in nuclear reactor facilities and non-reactor facilities, the considerations are different in application of PSA to these facilities. The food irradiation facilities utilize gamma irradiation sources, X-ray machines and electron accelerators for the purpose of radiation processing of variety of food items. This is categorized as Non-Reactor Nuclear Facility. In this paper, the application of PSA to safety evaluation of food irradiation facility is presented considering the ‘fatality due to radiation overexposure’ as a risk measure. The results indicate that the frequency of the fatal exposure is below the numerical acceptance guidance for the risk to the individual. Further, it is found that the overall risk to the over exposure can be reduced by providing the adequate operator training and observing good safety culture.

  19. Radiation protection of the operation of accelerator facilities. On high energy proton and electron accelerators

    International Nuclear Information System (INIS)

    Kondo, Kenjiro

    1997-01-01

    Problems in the radiation protection raised by accelerated particles with energy higher than several hundreds MeV in strong accelerator facilities were discussed in comparison with those with lower energy in middle- and small-scale facilities. The characteristics in the protection in such strong accelerator facilities are derived from the qualitative changes in the interaction between the high energy particles and materials and from quantitative one due to the beam strength. In the former which is dependent on the emitting mechanism of the radiation, neutron with broad energy spectrum and muon are important in the protection, and in the latter, levels of radiation and radioactivity which are proportional to the beam strength are important. The author described details of the interaction between high energy particles and materials: leading to the conclusion that in the electron accelerator facilities, shielding against high energy-blemsstrahlung radiation and -neutron is important and in the proton acceleration, shielding against neutron is important. The characteristics of the radiation field in the strong accelerator facilities: among neutron, ionized particles and electromagnetic wave, neutron is most important in shielding since it has small cross sections relative to other two. Considerations for neutron are necessary in the management of exposure. Multiplicity of radionuclides produced: which is a result of nuclear spallation reaction due to high energy particles, especially to proton. Radioactivation of the accelerator equipment is a serious problem. Other problems: the interlock systems, radiation protection for experimenters and maintenance of the equipment by remote systems. (K.H.). 11 refs

  20. Industrial applications of radiation technology

    International Nuclear Information System (INIS)

    Sarma, K.S.S.

    2012-01-01

    During the past one decade, Radiation Technology applications utilizing gamma radiation and high energy electrons have made a big way into the Indian industry bringing quality and value-added products in a more environment-friendly way. While radiation sterilization of health care products, hygienization of food materials, modification of polymer materials etc. are established as successful processes world wide including India, new applications are emerging especially in the field of environmental remediation. Two types of installations viz. gamma irradiators and high energy electron accelerators are in use right now to carry out such applications. The aim of the talk is to put forward before the audience about the potential applications developed in India and abroad, role of Department of Atomic Energy and current status of radiation processing for industrial utilization

  1. Status of radiation applications in developing countries

    International Nuclear Information System (INIS)

    Roushdy, H.M.

    1979-01-01

    A summary is given of the following applications: radiotherapy; sterilization of medical products and biological tissues; inactivation of virus; food preservation; insect control and eradication; improvement in field crops; treatment of waste waters and sewage sludge. In industry, irradiation technology has contributed to the manufacturing industries for new product developments in the plastics, textiles, wood, rubber, petroleum, concrete and chemical industries. Irradiation technology offers a fascinating outlet for developing countries for improving their condition of medical care, upgrading of their natural materials, stimulating their industrial development, decreasing their food losses and increasing their crop production. These lines would certainly contribute to their national economy and would result in an enhanced rate of development. However, transfer of radiation technology to developing countries should be undertaken in view of the actual national and regional needs and supported by an overall well studied national and regional planning for trained manpower development. The choice of a radiation source for a potential application should be based on the demand of the process, compromise between desirability and cost and quantitative data on installation, operation and maintenance conditions, and costs. The program developed and implemented by Egypt is herein presented. Facilities, organization, personnel, current and past activities, and future plans are described. (author)

  2. Analysis of characteristics and radiation safety situation of uranium mining and metallurgy facilities in north area of China

    International Nuclear Information System (INIS)

    Liu Ruilan; Li Jianhui; Wang Xiaoqing; Huang Mingquan

    2014-01-01

    According to the radiation safety management of uranium mining and metallurgy facilities in north area of China, features and radiation safety conditions of uranium mining and metallurgy facilities in north area of China were analyzed based on summarizing the inspection data for 2011-2013. So the main problems of radiation environment security on uranium mine were studied. The relevant management measures and recommendations were put forward, and the basis for environmental radiation safety management decision making of uranium mining and metallurgy facilities in future was provided. (authors)

  3. Development of dose monitoring system applicable to various radiations with wide energy ranges

    International Nuclear Information System (INIS)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira

    2006-01-01

    A new radiation dose monitor, designated as DARWIN (Dose monitoring system Applicable to various Radiations with WIde energy raNges), has been developed for real-time monitoring of doses in workspaces and surrounding environments of high energy accelerator facilities. DARWIN is composed of a phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with 6 Li, and a data acquisition system based on a Digital-Storage-Oscilloscope. DARWIN has the following features: (1) capable of monitoring doses from neutrons, photons and muons with energies from thermal energy to 1 GeV, 150 keV to 100 MeV, and 1 MeV to 100 GeV, respectively, (2) highly sensitive with precision, and (3) easy to operate with a simple graphical user-interface. The performance of DARWIN was examined experimentally in several radiation fields. The results of the experiments indicated the accuracy and rapid response of DARWIN for measuring dose rates from neutrons, photons and muons with wide energies. With these properties, we conclude that DARWIN will be able to play a very important role for improving radiation safety in high energy accelerator facilities. (author)

  4. Radiation-driven hydrodynamics of long pulse hohlraums on the National Ignition Facility

    International Nuclear Information System (INIS)

    Dewald, D L; Landen, O L; Suter, L J; Schein, J; Holder, J.; Campbell, K.; Glenzer, S H.; McDonald, J W.; Niemann, C.; Mackinnon, A J.; Schneider, M S.; Haynam, C.; Hinkel, D.; Hammel, B.A.

    2005-01-01

    The first hohlraum experiments on the National Ignition Facility (NIF) using the first four laser beams have activated the indirect drive experimental capabilities and tested radiation temperature limits imposed by hohlraum plasma filling. Vacuum hohlraums have been irradiated with laser powers up to 6 TW, 1 ns to 9 ns long square pulses and energies of up to 17 kJ to activate several diagnostics, to study the hohlraum radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. Furthermore, for a variety of hohlraum sizes and pulse lengths, the measured x-ray flux shows signatures of plasma filling that coincide with hard x-ray emission from plasma streaming out of the hohlraum. These observations agree with hydrodynamic simulations and with analytical modeling that includes hydrodynamic and coronal radiative losses. The modeling predicts radiation temperature limits on full NIF (1.8 MJ) that are significantly greater than required for ignition hohlraums

  5. Nuclear safety and radiation protection report of the Cruas-Meysse nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cruas-Meysse nuclear power plant (INB 111 and 112, Ardeche (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  6. Nuclear safety and radiation protection report of the Cruas-Meysse nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cruas-Meysse nuclear power plant (INB 111 and 112, Ardeche (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  7. Radiation safety of gamma and electron irradiation facilities

    International Nuclear Information System (INIS)

    1992-01-01

    There are currently some 160 gamma irradiation facilities and over 600 electron beam facilities in operation throughout virtually all Member States of the IAEA. The most widespread uses of these facilities are for the sterilization of medical and pharmaceutical products, the preservation of foodstuffs, polymer synthesis and modification, and the eradication of insect infestation. The safety record of this industry has been very good. Nevertheless, there is a potential for accidents with serious consequences. Gamma and electron beam facilities produce very high dose rates during irradiation, so that a person accidentally present in the irradiation chamber can receive a lethal dose within minutes or seconds. Precautions against uncontrolled entry must therefore be taken. Furthermore, gamma irradiation facilities contain large amounts of radioactivity and if the mechanism for retracting the source is damaged, the source may remain exposed, inhibiting direct access to carry out remedial work. Contamination can result from corroded or damaged sources, and decontamination can be very expensive. These aspects clearly indicate the need to achieve a high degree of safety and reliability in the facilities. This can be accomplished by effective quality control together with careful design, manufacture, installation, operation and decommissioning. The guidance in this Safety Series publication is intended for competent authorities responsible for regulating the use of radiation sources as well as the manufacturers, suppliers, installers and users of gamma and electron beam facilities. 20 refs, 6 figs

  8. Radiation exposure monitoring and control in front-end fuel cycle facilities

    International Nuclear Information System (INIS)

    Khan, A.H.

    2003-01-01

    The front end nuclear fuel cycle facilities presently operational in India are the mining and processing of beach mineral sands along the southern coast of Kerala, Tamilnadu and Orissa, mining and processing of uranium ore in Singhbhum-East in Jharkhand and refining and fuel fabrication at Hyderabad and Trombay. Dedicated Health Physics Units set up at each site regularly carry out in-plant and personnel monitoring to ensure safe working conditions and evaluate radiation exposure of workers and advise appropriate control measures. External gamma radiation, radon, thoron, their progeny and airborne long-lived activity due to radioactive dust are monitored. Personal dosimeters are also issued to workers. The total radiation exposure of workers from external and internal sources is evaluated from the plant and personal monitoring data. Provision of adequate ventilation, control of dust and spillage of active solutions, prompt decontamination, use of personal protective appliances and worker education are the key factors in keeping the doses to the workers well within the regulatory limits. It has been observed that the total radiation dose to workers has been well below 20 mSv.y - 1 at all stages of operations. The monitoring methodologies and summary of radiation exposure data for different facilities during the last few years are presented in the paper. (author)

  9. Immunological monitoring of the personnel at radiation hazardous facilities

    International Nuclear Information System (INIS)

    Kiselev, S.M.; Sokolnikov, M.E.; Lyss, L.V.; Ilyina, N.I.

    2017-01-01

    The study of possible mechanisms resulting in changes in the immune system after exposure to ionizing radiation is an area that has not been thoroughly evaluated during recent years. This article presents an overview of immunological monitoring studies of personnel from the radiation-hazardous factories that took place over the past 20 years in Russia. The methodology of these studies is based on: (1) the preclinical evaluation of immune status of workers whose occupation involves potential exposure to ionizing radiation; (2) selecting at risk groups according to the nature of immune deficiency manifestation; and (3) studying the changes of immune status of employees with regard to the potential effects of radiation exposure. The principal aim of these studies is accumulation of new data on the impact of radiation exposure on the human immune system and search for the relationship between the clinical manifestations of immune disorders and laboratory parameters of immunity to improve the monitoring system of the health status of the professional workers involved in radiation-hazardous industrial environments and the population living close to these facilities. (authors)

  10. Startup of the Whiteshell irradiation facility

    International Nuclear Information System (INIS)

    Barnard, J.W.; Stanley, F.W.

    1989-01-01

    Recently, a 10-MeV, 1-kW electron linear accelerator was installed in a specially designed irradiation facility at the Whiteshell Nuclear Research Establishment. The facility was designed for radiation applications research in the development of new radiation processes up to the pilot scale level. The accelerator is of advanced design. Automatic startup via computer control makes it compatible with industrial processing. It has been operated successfully as a fully integrated electron irradiator for a number of applications including curing of plastics and composites, sterilization of medical disposables and animal feed irradiation. We report here on our experience during the first six months of operation. (orig.)

  11. Startup of the whiteshell irradiation facility

    Science.gov (United States)

    Barnard, J. W.; Stanley, F. W.

    1989-04-01

    Recently, a 10-MeV, 1-kW electron linear accelerator was installed in a specially designed irradiation facility at the Whiteshell Nuclear Research Establishment. The facility was designed for radiation applications research in the development of new radiation processes up to the pilot scale level. The accelerator is of advanced design. Automatic startup via computer control makes it compatible with industrial processing. It has been operated successfully as a fully integrated electron irradiator for a number of applications including curing of plastics and composites, sterilization of medical disposables and animal feed irradiation. We report here on our experience during the first six months of operation.

  12. Application of radiation nowadays

    International Nuclear Information System (INIS)

    Habibah Adnan

    2009-01-01

    Despite of scientist know about radiation since 1890, but they have successfully developed many of application to help human life. Now, we can see that radiation was applied in medical, academic, industrial, and generating electricity. Besides that, radiations also have other applications that can help in agriculture activities, archaeology, legislation, geology, space exploration and many more. In hospital, doctor use nuclear medicine to trace, monitor and save almost thousands of people every year. According to research, 7 out of 10 American citizens had already use this services at least once in their life. Universities, college, secondary school, research center also use nuclear material in their laboratory. For example, through research, radiation can help in plants study, agriculture technique, soils study and others. Industrial sector are one sector that applied radiation widely. For example, radiation can kill almost 80 % bacteria or dangerous microorganism in food or export products. Nowadays, radiation cannot be curtailed although it can give more benefit more than risk. It depends on how we manage it.

  13. Control of the radiation environment and the worker in high-energy facilities

    International Nuclear Information System (INIS)

    Stevenson, G.R.

    1993-01-01

    The philosophy behind the prediction, measurement, monitoring and limitation by access control of the radiation hazard in high-energy accelerator facilities is compared with that which could be employed for controlling similar hazards due to cosmic radiation in civil aircraft flights. Special mention is made of computer simulations of the radiation environment as a means of predicting necessary control measures, of the reliability and integration of radiation measuring devices into control procedures and of the relevance of different access control procedures. (author)

  14. Building 772 - CERN’s new calibration facility for radiation protection instruments is ready to go

    CERN Document Server

    2014-01-01

    Building 772 is becoming the new home of CERN’s calibration facility for radiation protection instrumentation. The new laboratory in Prévessin will be a state-of-the-art calibration facility and the first of its kind in both France and Switzerland, offering a wide range of possibilities with respect to radiation fields and instrumentation.   New four-axis calibration bench for radiation protection instruments.   Civil engineering work started in November 2013 in Prévessin and Building 772 is now finished and ready for inauguration. CERN’s calibration facility was previously located in Building 172 in Meyrin. Although still very accurate, the technology used was becoming obsolete and needed replacement. “Having considered different options, the decision was taken to build a new facility fully designed and conceived to meet all international safety and technical requirements of such a laboratory,” says Pie...

  15. Status and update of the National Ignition Facility radiation effects testing program

    International Nuclear Information System (INIS)

    Davis, J F; Serduke, F J; Wuest, C R.

    1998-01-01

    We are progressing in our efforts to make the National Ignition Facility (NIF) available to the nation as a radiation effects simulator to support the Services needs for nuclear hardness and survivability testing and validation. Details of our program were summarized in a paper presented at the 1998 HEART Conference [1]. This paper describes recent activities and updates plans for NIF radiation effects testing. research. Radiation Effects Testing

  16. Environmental radiation monitoring around the nuclear facilities

    International Nuclear Information System (INIS)

    Lee, H.D.; Lee, Y.B.; Lee, W.Y.; Park, D.W.; Chung, B.G.

    1980-01-01

    For the KAERI site, various environmental samples were collected three times a month, and the natural environmental radiation levels were also measured at each sampling point. Measurements for gross alpha and beta radioactivities of the samples were routinely measured for all samples. Strontium-90 concentrations were also analysed for the fallout and air samples collected daily basis on the roof of the main building. Accumulated exposure including the possibility of determination of low level environmental radiation field by employing thermoluminescent dosimeter, CaSO 4 : Dsub(y)-0.4 teflon disc type, at 6 posts in on-site of the KAERI. As for Kori site, at 19 points of ON, OFF-site, and at the same time the environmental radiation exposure rate at each sampling point were measured. Several environmental samples such as surface soil, pine needles, water samples, milk sample and pasture samples were collected and analysed on a quarterly basis. As a result of the survey it can be said that no significant release of radiation to the environment due to the operations of nuclear facilities including research reactor at the KAERI and power reactor at the Kori has been found during the period of the survey and monitoring. (author)

  17. Radiation management at the occurrence of accident and restoration works. Fire and explosion of asphalt solidification processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyabe, Kenjiro; Jin, K; Namiki, A; Mizutani, K; Horiuchi, N; Saruta, J [Power Reactor and Nuclear Fuel Development Corp., Health and Safety Division, Tokai, Ibaraki (Japan); Ninomiya, Kazushige [Power Reactor and Nuclear Fuel Development Corp., Tsuruga, Fukui (Japan). Monju Construction Office

    1998-06-01

    Fire and explosion accident in the cell of Asphalt Solidification Processing Facility(ASP) in PNC took placed at March 11 in 1997. Following to the alarm of many radiation monitoring system in the facility, some of workers inhale radioactive materials in their bodies. Indication values of an exhaust monitor installed in the first auxiliary exhaust stack increased suddenly. A large number of windows, doors, and shutters in the facility were raptured by the explosion. A lot of radioactive materials blew up and were released to the outside of the facility. Reinforcement of radiation surveillance function, nose smearing test for the workers and confirmation of contamination situation were implemented on the fire. Investigation of radiation situation, radiation management on the site, exposure management for the workers, surveillance of exhaustion, and restoration works of the damaged radiation management monitoring system were carried out after the explosion. The detailed data of radiation management measures taken during three months after the accident are described in the paper. (M. Suetake)

  18. The Design of Diagnostic Medical Facilities where Ionising Radiation is used

    International Nuclear Information System (INIS)

    Malone, J.; O'Reilly, G.; O'Connor, U.; Gallagher, A.; Sheahan, N.; Fennell, S.

    2009-06-01

    The original Code of Practice on The Design of Diagnostic Medical Facilities Using Ionising Radiation was first published by the Nuclear Energy Board in 1988. In the intervening years the 'Blue Book' as it became known has served the medical community well as the sector has expanded and modernised and the late Dr Noel Nowlan, then Chief Executive of the Nuclear Energy Board, deserves much credit for initiating this pioneering contribution to radiation safety in Ireland. There have been significant developments since its publication in terms of the underlying radiation protection legislation, regulatory practice as well as developments in new technologies that have given rise to the need for a revision of the Code. This revised Code is based on a comprehensive draft document produced by the Haughton Institute under contract to the RPII and was finalised following extensive consultations with the relevant stakeholders. The revised Code includes a brief review of the current legislative framework and its specific impact on the management of building projects (Chapters 1 and 2), a presentation of the main types of radiological (Chapter 3) and nuclear medicine (Chapter 4) facilities, a treatment of the technical aspects of shielding calculations (Chapter 5) and a discussion of the practical aspects of implementing shielding solutions in a building context (Chapter 6). The primary purpose of the Code is to assist in the design of diagnostic facilities to the highest radiation protection standards in order to ensure the safety of workers and members of the public and the delivery of a safe service to patients. Diagnostic radiology is a dynamic environment and the Code is intended to be used in consultation with the current literature, an experienced Radiation Protection Advisor and a multidisciplinary project team

  19. PSA Solar furnace: A facility for testing PV cells under concentrated solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Reche, J.; Canadas, I.; Sanchez, M.; Ballestrin, J.; Yebra, L.; Monterreal, R.; Rodriguez, J.; Garcia, G. [Concentration Solar Technologies, Plataforma Solar de Almeria-CIEMAT P.O. Box 22, Tabernas, E-04200 (Almeria) (Spain); Alonso, M.; Chenlo, F. [Photovoltaic Components and Systems, Renewable Energies Department-CIEMAT Avda. Complutense, 22, Madrid, E-28040 (Spain)

    2006-09-22

    The Plataforma Solar de Almeria (PSA), the largest centre for research, development and testing of concentration solar thermal technologies in Europe, has started to apply its knowledge, facilities and resources to development of the Concentration PV technology in an EU-funded project HiConPV. A facility for testing PV cells under solar radiation concentrated up to 2000x has recently been completed. The advantages of this facility are that, since it is illuminated by solar radiation, it is possible to obtain the appropriate cell spectral response directly, and the flash tests can be combined with prolonged PV-cell irradiation on large surfaces (up to 150cm{sup 2}), so the thermal response of the PV cell can be evaluated simultaneously. (author)

  20. Radiation shielding and dose rate evaluation at the interim storage facility for spent fuel from Cernavoda NPP

    International Nuclear Information System (INIS)

    Stanciu, Marcela; Mateescu, Silvia; Pantazi, Doina; Penescu, Maria

    2000-01-01

    At present studies necessary to license the Interim Storage Facility for the Spent Fuel (CANDU type) from Cernavoda NPP are developed in our country.The spent fuel from Cernavoda NPP is discharged into Spent Fuel Bay in Service Building of the plant, where it remains several years for cooling. After this period, the bundles of spent fuel are to be transferred to the Interim Storage Facility.The dry interim storage solution seems to be the most appropriate variant for Cernavoda NPP.The design of the Spent Fuel Interim Storage Facility must meet the applicable safety requirements in order to ensure radiological protection of the personnel, public and environment during all phases of the facility achievement. In this paper we intend to present the calculation of radiation shielding at the spent fuel interim storage facility for two technical solutions: - Concrete Monolithic Module and Concrete Storage Cask. In order to quantify the fuel composition after irradiation, the isotope generation and depletion code ORIGEN 2.1 has been used, taking into account a cooling time of 7 years and 9 years, respectively, for these two variants. The shielding calculations have been performed using the computer codes QAD-5K and MICROSHIELD-4. The evaluations refer only to gamma radiation because the resulting neutron source (from (α,n) reactions and spontaneous fission) is insignificant as compared to the gamma source. The final results consist in the minimum thickness of the shielding and the corresponding external dose rates, ensuring a design average dose rate based on national and international regulations. (authors)

  1. Synchrotron radiation applications in medical research

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1995-01-01

    The medical projects employing synchrotron radiation as discussed in this paper are, for the most part, still in their infancies and no one can predict the direction in which they will develop. Both the basic research and applied medical programs are sure to be advanced at the new facilities coming on line, especially the ESRF and Spring- 8. However, success is not guaranteed. There is a lot of competition from advances in conventional imaging with the development of digital angiography, computed tomography, functional magnetic resonance imaging and ultrasound. The synchrotron programs will have to provide significant advantages over these modalities in order to be accepted by the medical profession. Advances in image processing and potentially the development of compact sources will be required in order to move the synchrotron developed imaging technologies into the clinical world. In any event, it can be expected that the images produced by the synchrotron technologies will establish ''gold standards'' to be targeted by conventional modalities. A lot more work needs to be done in order to bring synchrotron radiation therapy and surgery to the level of human studies and, subsequently, to clinical applications

  2. Facility Activity Inference Using Radiation Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Nageswara S. [ORNL; Ramirez Aviles, Camila A. [ORNL

    2017-11-01

    We consider the problem of inferring the operational status of a reactor facility using measurements from a radiation sensor network deployed around the facility’s ventilation off-gas stack. The intensity of stack emissions decays with distance, and the sensor counts or measurements are inherently random with parameters determined by the intensity at the sensor’s location. We utilize the measurements to estimate the intensity at the stack, and use it in a one-sided Sequential Probability Ratio Test (SPRT) to infer on/off status of the reactor. We demonstrate the superior performance of this method over conventional majority fusers and individual sensors using (i) test measurements from a network of 21 NaI detectors, and (ii) effluence measurements collected at the stack of a reactor facility. We also analytically establish the superior detection performance of the network over individual sensors with fixed and adaptive thresholds by utilizing the Poisson distribution of the counts. We quantify the performance improvements of the network detection over individual sensors using the packing number of the intensity space.

  3. Nuclear safety and radiation protection report of the Saint-Alban Saint-Maurice nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 119 and 120). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  4. Nuclear safety and radiation protection report of the Saint-Laurent-Des-Eaux nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 46, 74 and 100). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures carried out in 2013. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process) as well as the other pollutions. The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  5. Nuclear safety and radiation protection report of the Saint-Laurent-Des-Eaux nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 46, 74 and 100). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures carried out in 2014. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process) as well as the other pollutions. The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  6. Nuclear safety and radiation protection report of the Saint-Alban Saint-Maurice nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 119 and 120). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  7. Nuclear safety and radiation protection report of the Tricastin operational hot base nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if some, are reported as well as the effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  8. Measures to reduce occupational radiation exposure in PET facilities from nurses' point of view

    International Nuclear Information System (INIS)

    Miyazawa, Keiko; Takahashi, Juri; Mochiduki, Yoshikazu

    2006-01-01

    In parallel with the increase in the number of institutions having PET facilities, the number of nurse working in these facilities has also increased, and the issue of occupational radiation exposure has assumed ever greater importance. In our clinic, since nurses have started to administer FDG intravenous injections, their annual radiation exposure has amounted to 4.8 - 7.1 mSv. To reduce their annual radiation exposure to less than 5 mSv, we identified sources of increased exposure and considered countermeasures based on this information. By implementing countermeasures such as improvements in daily working conditions and ways to avoid various troubles, it was possible to reduce the annual radiation exposure of all nurses to less than 5 mSv. Our experience demonstrates that to provide a working environment with a minimum of occupational radiation exposure, educational training and enhancement of knowledge and technical skills are vital. (author)

  9. Engineered and Administrative Safety Systems for the Control of Prompt Radiation Hazards at Accelerator Facilities

    International Nuclear Information System (INIS)

    Liu, James C.; SLAC; Vylet, Vashek; Walker, Lawrence S.

    2007-01-01

    The ANSI N43.1 Standard, currently in revision (ANSI 2007), sets forth the requirements for accelerator facilities to provide adequate protection for the workers, the public and the environment from the hazards of ionizing radiation produced during and from accelerator operations. The Standard also recommends good practices that, when followed, provide a level of radiation protection consistent with those established for the accelerator communities. The N43.1 Standard is suitable for all accelerator facilities (using electron, positron, proton, or ion particle beams) capable of producing radiation, subject to federal or state regulations. The requirements (see word 'shall') and recommended practices (see word 'should') are prescribed in a graded approach that are commensurate with the complexity and hazard levels of the accelerator facility. Chapters 4, 5 and 6 of the N43.1 Standard address specially the Radiation Safety System (RSS), both engineered and administrative systems, to mitigate and control the prompt radiation hazards from accelerator operations. The RSS includes the Access Control System (ACS) and Radiation Control System (RCS). The main requirements and recommendations of the N43.1 Standard regarding the management, technical and operational aspects of the RSS are described and condensed in this report. Clearly some aspects of the RSS policies and practices at different facilities may differ in order to meet the practical needs for field implementation. A previous report (Liu et al. 2001a), which reviews and summarizes the RSS at five North American high-energy accelerator facilities, as well as the RSS references for the 5 labs (Drozdoff 2001; Gallegos 1996; Ipe and Liu 1992; Liu 1999; Liu 2001b; Rokni 1996; TJNAF 1994; Yotam et al. 1991), can be consulted for the actual RSS implementation at various laboratories. A comprehensive report describing the RSS at the Stanford Linear Accelerator Center (SLAC 2006) can also serve as a reference

  10. A novel DC Magnetron sputtering facility for space research and synchrotron radiation optics

    DEFF Research Database (Denmark)

    Hussain, A.M.; Christensen, Finn Erland; Pareschi, G.

    1998-01-01

    A new DC magnetron sputtering facility has been build up at the Danish Space Research Institute (DSRI), specially designed to enable uniform coatings of large area curved optics, such as Wolter-I mirror optics used in space telescopes and curved optics used in synchrotron radiation facilities...

  11. Radiation processing in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, Keizo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Economic scale of radiation application in the field of industry, agriculture and medicine in Japan in 1997 was investigated to compare its economic impacts with that of nuclear energy industry. Total production value of radiation application accounted for 54% of nuclear industry including nuclear energy industry and radiation applications in three fields above. Industrial radiation applications were further divided into five groups, namely nondestructive test, RI instruments, radiation facilities, radiation processing and ion beam processing. More than 70% of the total production value was brought about by ion beam processing for use with IC and semiconductors. Future economic prospect of radiation processing of polymers, for example cross-linking, EB curing, graft polymerization and degradation, is reviewed. Particular attention was paid to radiation vulcanization of natural rubber latex and also to degradation of natural polymers. (S. Ohno)

  12. Radiation processing in Japan

    International Nuclear Information System (INIS)

    Makuuchi, Keizo

    2001-01-01

    Economic scale of radiation application in the field of industry, agriculture and medicine in Japan in 1997 was investigated to compare its economic impacts with that of nuclear energy industry. Total production value of radiation application accounted for 54% of nuclear industry including nuclear energy industry and radiation applications in three fields above. Industrial radiation applications were further divided into five groups, namely nondestructive test, RI instruments, radiation facilities, radiation processing and ion beam processing. More than 70% of the total production value was brought about by ion beam processing for use with IC and semiconductors. Future economic prospect of radiation processing of polymers, for example cross-linking, EB curing, graft polymerization and degradation, is reviewed. Particular attention was paid to radiation vulcanization of natural rubber latex and also to degradation of natural polymers. (S. Ohno)

  13. Regulations on allocating the sums of money regarding of development of radiation exposure reduction technology for nuclear power facilities

    International Nuclear Information System (INIS)

    1984-01-01

    The regulations provide for the sums of money regarding research and development of radiation exposure reduction technology for nuclear power facilities and evaluation of the results. Expenses cover the purchase of equipment, personnel expenditures, travelling expenses, communication, etc. The contents are as follows: the application for subsidy allocations, determination of subsidy allocations, withdrawal of applications, a report on the work proceedings, a report on the results, approval of alterations in the plans, withdrawal of the decision for a subsidy allocation, patent rights, utilization etc. of the results, management of the properties, etc. (Mori, K.)

  14. Application of the INS facility as a high-flux benchmark for neutron dosimetry and for radiation damage studies in D--T fusion spectra

    International Nuclear Information System (INIS)

    Dierckx, R.; Emigh, C.R.

    1977-01-01

    An Intense Neutron Source facility (INS), is presently under construction at the Los Alamos Scientific Laboratory. This facility is being built by the Energy Research and Development Administration for the radiation damage program in magnetic fusion energy. The facility will contain two D-T neutron sources, both producing about 10 15 primary 14-MeV neutrons per second on a continuous basis. One source will be used to produce a ''pure'' 14-MeV spectrum while the other will be surrounded by a multiplying blanket converter to produce a fusion-like spectrum with a total of about 10 16 neutrons per second

  15. Current status of facilities dedicated to the production of synchrotron radiation

    International Nuclear Information System (INIS)

    1983-01-01

    The use of synchrotron radiation has undergone a rapid growth in many areas of science during the past five years. Unforeseen fields have emerged, creating new opplortunities. In addition, there is a growing impact on many technological areas that will increase further on the emergence of new sources and experimental stations. The growth in the use of synchrotron radition has been so great that all existing experimental stations will be fully utilized when all current facilities in the United States begin full-time operation for users. Development of te remaining potential experimental stations at existing facilities will satisfy predicted demand until 1985. Insertion devices (wigglers and undulators) provide orders-of-magnitude brighter sources of radiation than bending magnets and are making possible new experiments not feasible, or even conceived, a few years ago

  16. IKNO, a user facility for coherent terahertz and UV synchrotron radiation

    International Nuclear Information System (INIS)

    Sannibale, Fernando; Marcelli, Augusto; Innocenzi, Plinio

    2008-01-01

    IKNO (Innovation and KNOwledge) is a proposal for a multi-user facility based on an electron storage ring optimized for the generation of coherent synchrotron radiation (CSR) in the terahertz frequency range, and of broadband incoherent synchrotron radiation (SR) ranging from the IR to the VUV. IKNO can be operated in an ultra-stable CSR mode with photon flux in the terahertz frequency region up to nine orders of magnitude higher than in existing 3rd generation light sources. Simultaneously to the CSR operation, broadband incoherent SR up to VUV frequencies is available at the beamline ports. The main characteristics of the IKNO storage and its performance in terms of CSR and incoherent SR are described in this paper. The proposed location for the infrastructure facility is in Sardinia, Italy

  17. Strategy for assessing occupational radiation monitoring data from many facilities for use in epidemiologic studies

    International Nuclear Information System (INIS)

    Strom, D.J.

    1984-01-01

    The process of transforming occupational radiation monitoring data into a form useful for epidemiology is called dose assessment. A review of previous dose assessment activities is done as a background for development of standard dose assessment procedures for use at many facilities. The scientific issues identified include the accuracy, precision, and comparability of doses over time and across facilities, the use of internal monitoring results; neutron quality factors; minimum detection limits; the quality and validity of data; and the impact of uncertainty in the exposure variable on misclassification of workers with respect to that variable. The standard dose assessment procedures developed address these issues, and include a method for determining what data are available and what form they are in, illustrated by application to 36 facilities in the US Department of Energy 5-Rem Study. The standard procedures are illustrated and tested on external and uranium monitoring results from the Y-12 Plant in Oak Ridge, Tennessee, where data permitted inferences of doses and variances to total body, skin, and lung, but not bone or kidney

  18. Darwin: Dose monitoring system applicable to various radiations with wide energy ranges

    International Nuclear Information System (INIS)

    Sato, T.; Satoh, D.; Endo, A.; Yamaguchi, Y.

    2007-01-01

    A new radiation dose monitor, designated as DARWIN (Dose monitoring system Applicable to various Radiations with Wide energy ranges), has been developed for real-time monitoring of doses in workspaces and surrounding environments of high-energy accelerator facilities. DARWIN is composed of a Phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with 6 Li, and a data acquisition system based on a Digital-Storage-Oscilloscope. DARWIN has the following features: (1) capable of monitoring doses from neutrons, photons and muons with energies from thermal energy to 1 GeV, 150 keV to 100 MeV and 1 MeV to 100 GeV, respectively, (2) highly sensitive with precision and (3) easy to operate with a simple graphical user-interface. The performance of DARWIN was examined experimentally in several radiation fields. The results of the experiments indicated the accuracy and wide response range of DARWIN for measuring dose rates from neutrons, photons and muons with wide energies. It was also found from the experiments that DARWIN enables us to monitor small fluctuations of neutron dose rates near the background level because of its high sensitivity. With these properties, DARWIN will be able to play a very important role for improving radiation safety in high-energy accelerator facilities. (authors)

  19. High technology for radiation application

    International Nuclear Information System (INIS)

    Iida, Toshiyuki

    2005-03-01

    Fundamentals of radiations, radioactivity, and their applications in recent industrial, medical, agricultural and various research fields are reviewed. The book begins with historical description regarding to discovery of radiation at the end of 19th century and the exploration into the inside of an atom utilizing the radiation discovered, discovery of the neutron which finally leaded to nuclear energy liberation. Developments of radiation sources, including nuclear reactors, and charged-particle accelerators follow with simultaneous description on radiation measurement or detection technology. In medical fields, X-ray diagnosis, interventional radiology (IVR), nuclear medicine (PET and others), and radiation therapy are introduced. In pharmaceutical field, synthesis of labeled compounds and tracer techniques are explained. In industrial application, radiation-reinforced wires and heat-resistant cables whose economic effect can be estimated to amount to more than 10 12 yen, radiation mutation, food irradiation, and applied accelerators such as polymer modifications, decomposition of environmentally harmful substances, and ion-implantations important in semiconductor device fabrication. Finally, problems relating to general public such as radiation education and safety concept are also discussed. (S. Ohno)

  20. Nuclear safety and radiation protection report of the Nogent-sur-Seine nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Nogent-sur-Seine nuclear power plant (INB 129 and 130, Aube (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  1. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Dampierre-en-Burly nuclear power plant (INB 84 and 85, Loiret, 45 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  2. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Dampierre-en-Burly nuclear power plant (INB 84 and 85, Loiret, 45 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  3. Nuclear safety and radiation protection report of the Nogent-sur-Seine nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Nogent-sur-Seine nuclear power plant (INB 129 and 130, Aube (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  4. Nuclear safety and radiation protection report of the Belleville-sur-Loire nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Belleville-sur-Loire nuclear power plant (INB no. 127 - Belleville 1 and no. 128 - Belleville 2, Belleville-sur-Loire and Sury-pres-Lere - Cher (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  5. Calibration services for medical applications of radiation

    Energy Technology Data Exchange (ETDEWEB)

    DeWerd, L.A.

    1993-12-31

    Calibration services for the medical community applications of radiation involve measuring radiation precisely and having traceability to the National Institute of Standards and Technology (NIST). Radiation therapy applications involve the use of ionization chambers and electrometers for external beams and well-type ionization chamber systems as well as radioactive sources for brachytherapy. Diagnostic x-ray applications involve ionization chamber systems and devices to measure other parameters of the x-ray machine, such as non-invasive kVp meters. Calibration laboratories have been established to provide radiation calibration services while maintaining traceability to NIST. New radiation applications of the medical community spur investigation to provide the future calibration needs.

  6. Calibration services for medical applications of radiation

    International Nuclear Information System (INIS)

    DeWerd, L.A.

    1993-01-01

    Calibration services for the medical community applications of radiation involve measuring radiation precisely and having traceability to the National Institute of Standards and Technology (NIST). Radiation therapy applications involve the use of ionization chambers and electrometers for external beams and well-type ionization chamber systems as well as radioactive sources for brachytherapy. Diagnostic x-ray applications involve ionization chamber systems and devices to measure other parameters of the x-ray machine, such as non-invasive kVp meters. Calibration laboratories have been established to provide radiation calibration services while maintaining traceability to NIST. New radiation applications of the medical community spur investigation to provide the future calibration needs

  7. Status Report of Simulated Space Radiation Environment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-15

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety.

  8. Status Report of Simulated Space Radiation Environment Facility

    International Nuclear Information System (INIS)

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-01

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety

  9. Radiation processing facilities and services in Malaysia

    International Nuclear Information System (INIS)

    Zulkafli Ghazali

    2007-01-01

    It is envisaged that radiation processing will continue to play an important role towards the progress and development of industry in Malaysia. Malaysian Government will continue to play an active role to support R and D in this field by providing the necessary infrastructure, facility, trained manpower and research funds. Additional e-beam accelerator is planned to be installed at Nuclear Malaysia in 2007. The medium energy electron beam accelerator (1 MeV, 50 mA) will be mainly use to evaluate the commercial viability for treating aqueous products such as wastewater. (author)

  10. Supervision of radiation environment management of nuclear facilities

    International Nuclear Information System (INIS)

    Luo Mingyan

    2013-01-01

    Through literature and documents, the basis, content and implementation of the supervision of radiation environment management of nuclear facilities were defined. Such supervision was extensive and complicated with various tasks and overlapping duties, and had large social impact. Therefore, it was recommend to make further research on this supervision should be done, clarify and specify responsibilities of the executor of the supervision so as to achieve institutionalization, standardization and routinization of the supervision. (author)

  11. Radiation chemistry and its application

    International Nuclear Information System (INIS)

    Majima, Tetsuro

    2013-01-01

    Effects of radiation to human body have been seriously discussed nowadays. These are important issues for the realization of sustainable society. It should be emphasized that various reactive intermediates generated by radiation play important roles in each cases. Radiation chemical studies will provide various reaction-mechanistic aspects on these important issues. Our research group has continuously carried out reaction-mechanistic studies using radiation chemical methods. From these studies, we have obtained a variety of results on basic molecular systems, reactions, materials that are close to practical application, biological systems and so on. Reactive species are generated from the radiation reactions in solution, and can be used as one-electron oxidative and reductive reagent to give selectively radical cation and anion of solute molecules such as various organic and inorganic molecules. Therefore, the radiation chemistry has contributed significantly to chemistry in which one-electron oxidation and reduction play the important role. The kinetics of such redox processes and the following reduction play the important role. The kinetics of such redox processes and the following reactions can be studied in real time with the transition absorption measurement by the pulse radiolysis technique. Even though the target compounds cannot be oxidized and reduced in chemical or electrochemical oxidation and reduction, their one-electron redox can be performed by the electron beam radiation. Therefore, radiation chemistry is very useful technique for basic science. Moreover, application potentials of radiation chemistry are so high for various research subjects. Moreover, application potentials of radiation chemistry are so high for various research subjects

  12. Industrial applications of radiation technology

    International Nuclear Information System (INIS)

    Sabharwal, Sunil

    2005-01-01

    In recent years, radiation processing has emerged as an alternative to conventional technologies such as thermal and chemical processing for many industrial applications. The industry is expanding at a fast rate all over the world. The actual industrial benefits on commercial basis, however, depends on the need of the individual society and may vary from country to country. In India, the applications of radiation technology have been found in areas of health care, agriculture, food preservation, industry and environment. Both gamma radiation and electron beam accelerators are being utilized for this purpose. Presently, 6 commercial gamma irradiators housing about 1.5 million curie 60 Co and an annual turnover of over US$ 2 million and 3 commercial electron beam (EB) accelerators with installed capacity of 185 kW are commercially operating in India. The new areas being explored include use of electron beam irradiation for surface treatment, radiation processed membranes for a variety of applications and radiation processing of natural polymers. In the present paper, the current status of this program, especially the recent developments and future direction of radiation processing technology is reviewed. (author)

  13. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    LR Roeder

    2007-12-01

    This annual report describes the purpose and structure of the program, and presents key accomplishments in 2007. Notable achievements include: • Successful review of the ACRF as a user facility by the DOE Biological and Environmental Research Advisory Committee. The subcommittee reinforced the importance of the scientific impacts of this facility, and its value for the international research community. • Leadership of the Cloud Land Surface Interaction Campaign. This multi-agency, interdisciplinary field campaign involved enhanced surface instrumentation at the ACRF Southern Great Plains site and, in concert with the Cumulus Humilis Aerosol Processing Study sponsored by the DOE Atmospheric Science Program, coordination of nine aircraft through the ARM Aerial Vehicles Program. • Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors to the site. • Key advancements in the representation of radiative transfer in weather forecast models from the European Centre for Medium-Range Weather Forecasts. • Development of several new enhanced data sets, ranging from best estimate surface radiation measurements from multiple sensors at all ACRF sites to the extension of time-height cloud occurrence profiles to Niamey, Niger, Africa. • Publication of three research papers in a single issue (February 2007) of the Bulletin of the American Meteorological Society.

  14. Report of preliminary investigations on the next-generation large-scale synchrotron radiation facility projects

    International Nuclear Information System (INIS)

    1990-01-01

    The Special Committee for Future Project of the Japanese Society for Synchrotron Radiation Research investigated the construction-projects of the large-scaled synchrotron radiation facilities which are presently in progress in Japan. As a result, the following both projects are considered the very valuable research-project which will carry the development of Japan's next-generation synchrotron radiation science: 1. the 8 GeV synchrotron radiation facilities (SPring-8) projected to be constructed by Japan Atomic Energy Research Institute and the Institute of Physical and Chemical Research under the sponsorship of Science Technology Agency at Harima Science Park City, Hyogo Pref., Japan. 2. The project to utilize the Tristan Main Ring (MR) of the National Laboratory for High Energy Physics as the radiation source. Both projects are unique in research theme and technological approach, and complemental each other. Therefore it has been concluded that both projects should be aided and ratified by the Society. (M.T.)

  15. Activities of RADA in promotion of radiation applications

    International Nuclear Information System (INIS)

    Tanase, M.; Funayama, Y.; Tanaka, O.

    2007-01-01

    Radiation Application Development Association (RADA) was established to promote the applications of radiation in 1968. Among the activities of RADA, we have five works directly to promote the application of radiation to the public. One of them is to publish a quarterly journal 'Radiation and Industries' which carries comprehensive articles on timely topics of radiation-based applications, patent information etc. And also RADA organizes the Radiation Process Symposium, which has been held every other year strictly, for exchange of information on radiation applications. The symposium started in 1985, where researchers and engineers in various and wide fields have been discussed on the radiation applications to industries. As the third, RADA distributes beautiful ornaments, which were produced by gamma-ray irradiation of crystals, glass and pearls, to promote better understanding of radiation. We also have taken charge of two businesses contracted with the Ministry of Education, Culture, Sports, Science and Technology (MEXT). One is to hold seminars on radiation and nuclear energy for teachers of primary, junior high and senior high schools to enhance their understanding about radiation and nuclear energy, and to facilitate the use in their classrooms of such knowledge concerning energy, environment and their effects on our lives. The other is to facilitate the transfer of technologies of radiation application in the realms of industry, agriculture, medical treatment, etc. through dispatching of experts, releasing data on radiation applications, and organizing technical seminars. Recently, we arranged an opportunity to use neutrons from research reactors through trial experiments for transferring the technology to industries. (author)

  16. Radiation biodosimetry: Applications for spaceflight

    Science.gov (United States)

    Blakely, W. F.; Miller, A. C.; Grace, M. B.; McLeland, C. B.; Luo, L.; Muderhwa, J. M.; Miner, V. L.; Prasanna, P. G. S.

    The multiparametric dosimetry system that we are developing for medical radiological defense applications could be adapted for spaceflight environments. The system complements the internationally accepted personnel dosimeters and cytogenetic analysis of chromosome aberrations, considered the best means of documenting radiation doses for health records. Our system consists of a portable hematology analyzer, molecular biodosimetry using nucleic acid and antigen-based diagnostic equipment, and a dose assessment management software application. A dry-capillary tube reagent-based centrifuge blood cell counter (QBC Autoread Plus, Beckon Dickinson Bioscience) measures peripheral blood lymphocytes and monocytes, which could determine radiation dose based on the kinetics of blood cell depletion. Molecular biomarkers for ionizing radiation exposure (gene expression changes, blood proteins) can be measured in real time using such diagnostic detection technologies as miniaturized nucleic acid sequences and antigen-based biosensors, but they require validation of dose-dependent targets and development of optimized protocols and analysis systems. The Biodosimetry Assessment Tool, a software application, calculates radiation dose based on a patient's physical signs and symptoms and blood cell count analysis. It also annotates location of personnel dosimeters, displays a summary of a patient's dosimetric information to healthcare professionals, and archives the data for further use. These radiation assessment diagnostic technologies can have dual-use applications supporting general medical-related care.

  17. Applications of EPR in radiation research

    CERN Document Server

    Lund, Anders

    2014-01-01

    Applications of EPR in Radiation Research is a multi-author contributed volume presented in eight themes: I. Elementary radiation processes (in situ and low temperature radiolysis, quantum solids); II: Solid state radiation chemistry (crystalline, amorphous and heterogeneous systems); III: Biochemistry, biophysics and biology applications (radicals in biomaterials, spin trapping, free-radical-induced DNA damage); IV: Materials science (polymeric and electronic materials, materials for treatment of nuclear waste, irradiated food); V: Radiation metrology (EPR-dosimetry, retrospective and medical

  18. Nuclear safety and radiation protection report of the Saint-Laurent-Des-Eaux nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 46, 74 and 100). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures carried out in 2012. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process) as well as the other pollutions. The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  19. Nuclear safety and radiation protection report of the CNPE EDF nuclear facilities of Tricastin - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Tricastin nuclear power plant (INB 87 and 88, Saint-Paul-Trois-Chateaux, Drome (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  20. Nuclear safety and radiation protection report of the Saint-Alban-Saint-Maurice nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Saint-Alban-Saint-Maurice nuclear power plant (INB 119 and 120, Isere (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  1. Nuclear safety and radiation protection report of the Saint-Alban-Saint-Maurice nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Saint-Alban-Saint-Maurice nuclear power plant (INB 119 and 120, Isere (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  2. WIPP radiation dosimetry program

    International Nuclear Information System (INIS)

    Wu, C.F.

    1991-01-01

    Radiation dosimetry is the process by which various measurement results and procedures are applied to quantify the radiation exposure of an individual. Accurate and precise determination of radiation dose is a key factor to the success of a radiation protection program. The Waste Isolation Pilot Plant (WIPP), a Department of Energy (DOE) facility designed for permanent repository of transuranic wastes in a 2000-foot-thick salt bed 2150 feet underground, has established a dosimetry program developed to meet the requirements of DOE Order 5480.11, ''Radiation Protection for Occupational Workers''; ANSI/ASME NQA-1, ''Quality Assurance Program Requirements for Nuclear Facilities''; DOE Order 5484.1, ''Environmental Protection, Safety, and Health Protection Information Reporting Requirements''; and other applicable regulations

  3. Security of radioactive sources in radiation facilities

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and safety standards are formulated on the basis of internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides and guidelines elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Board before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. In India, radiation sources are being widely used for societal benefits in industry, medical practices, research, training and agriculture. It has been reported from all over the world that unsecured radioactive sources caused serious radiological accidents involving radiation injuries and fatalities. Particular concern was expressed regarding radioactive sources that have become orphaned (not under regulatory control) or vulnerable (under weak regulatory control and about to be orphaned). There is a concern about safety and security of radioactive sources and hence the need of stringent regulatory control over the handling of the sources and their security. In view of this, this guide is prepared which gives provisions necessary to safeguard radiation installations against theft of radioactive sources and other malevolent acts that may result in radiological consequences. It is, therefore, required that the radiation sources are used safely and managed securely by only authorised personnel. This guide is intended to be used by users of radiation sources in developing the necessary security plan for

  4. Scattered radiation from applicators in clinical electron beams

    International Nuclear Information System (INIS)

    Battum, L J van; Zee, W van der; Huizenga, H

    2003-01-01

    In radiotherapy with high-energy (4-25 MeV) electron beams, scattered radiation from the electron applicator influences the dose distribution in the patient. In most currently available treatment planning systems for radiotherapy this component is not explicitly included and handled only by a slight change of the intensity of the primary beam. The scattered radiation from an applicator changes with the field size and distance from the applicator. The amount of scattered radiation is dependent on the applicator design and on the formation of the electron beam in the treatment head. Electron applicators currently applied in most treatment machines are essentially a set of diaphragms, but still do produce scattered radiation. This paper investigates the present level of scattered dose from electron applicators, and as such provides an extensive set of measured data. The data provided could for instance serve as example input data or benchmark data for advanced treatment planning algorithms which employ a parametrized initial phase space to characterize the clinical electron beam. Central axis depth dose curves of the electron beams have been measured with and without applicators in place, for various applicator sizes and energies, for a Siemens Primus, a Varian 2300 C/D and an Elekta SLi accelerator. Scattered radiation generated by the applicator has been found by subtraction of the central axis depth dose curves, obtained with and without applicator. Scattered radiation from Siemens, Varian and Elekta electron applicators is still significant and cannot be neglected in advanced treatment planning. Scattered radiation at the surface of a water phantom can be as high as 12%. Scattered radiation decreases almost linearly with depth. Scattered radiation from Varian applicators shows clear dependence on beam energy. The Elekta applicators produce less scattered radiation than those of Varian and Siemens, but feature a higher effective angular variance. The scattered

  5. Application of maximum radiation exposure values and monitoring of radiation exposure

    International Nuclear Information System (INIS)

    1993-01-01

    According to the Section 32 of the Radiation Act (592/91) the Finnish Centre for Radiation and Nuclear Safety gives instructions concerning the monitoring of the radiation exposure and the application of the dose limits in Finland. The principles to be applied to calculating the equivalent and the effective doses are presented in the guide. Also the detailed instructions on the application of the maximum exposure values for the radiation work and for the natural radiation as well as the instructions on the monitoring of the exposures are given. Quantities and units for assessing radiation exposure are presented in the appendix of the guide

  6. Dosimeter calibration facilities and methods at the Radiation Measurement Laboratory of the Centre d'etudes nucleaires, Grenoble

    International Nuclear Information System (INIS)

    Choudens, H. de; Herbaut, Y.; Haddad, A.; Giroux, J.; Rouillon, J.; CEA Centre d'Etudes Nucleaires de Grenoble, 38

    1975-01-01

    At the Centre d'etudes nucleaires, Grenoble, the Radiation Measurement Laboratory, which forms part of the Environmental Protection and Research Department, serves the entire Centre for purposes of dosimetry and the calibration of dose meters. The needs of radiation protection are such that one must have facilities for checking periodically the calibration of radiation-monitoring instruments and developing special dosimetry techniques. It was thought a good idea to arrange for the dosimetry and radiation protection team to assist other groups working at the Centre - in particular, the staff of the biology and radiobiology laboratories - and also bodies outside the framework of the French Commissariat a l'energie atomique. Thus, technical collaboration has been established with, for example, Grenoble's Centre hospitalier universitaire (university clinic), which makes use of the facilities and skills available at the Radiation Measurement Laboratory for solving special dosimetry problems. With the Laboratory's facilities it is possible to calibrate dose meters for gamma, beta and neutron measurements

  7. 75 FR 41877 - Insured Healthcare Facilities 232 Loan Application

    Science.gov (United States)

    2010-07-19

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5376-N-65] Insured Healthcare Facilities 232 Loan Application AGENCY: Office of the Chief Information Officer, HUD. ACTION: Notice. SUMMARY... Proposal: Insured Healthcare Facilities 232 Loan Application. OMB Approval Number: 2502-New. Form Numbers...

  8. 75 FR 16821 - Insured Healthcare Facilities 232 Loan Application

    Science.gov (United States)

    2010-04-02

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5376-N-23] Insured Healthcare Facilities 232 Loan Application AGENCY: Office of the Chief Information Officer, HUD. ACTION: Notice. SUMMARY...: Title of Proposal: Insured Healthcare Facilities 232 Loan Application. OMB Approval Number: 2502-New...

  9. Semiconductor radiation detectors technology and applications

    CERN Document Server

    2018-01-01

    The aim of this book is to educate the reader on radiation detectors, from sensor to read-out electronics to application. Relatively new detector materials, such as CdZTe and Cr compensated GaAs, are introduced, along with emerging applications of radiation detectors. This X-ray technology has practical applications in medical, industrial, and security applications. It identifies materials based on their molecular composition, not densities as the traditional transmission equipment does. With chapters written by an international selection of authors from both academia and industry, the book covers a wide range of topics on radiation detectors, which will satisfy the needs of both beginners and experts in the field.

  10. Application of the management system for facilities and activities. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Guide supports the Safety Requirements publication on The Management System for Facilities and Activities. It provides generic guidance to aid in establishing, implementing, assessing and continually improving a management system that complies with the requirements established. In addition to this Safety Guide, there are a number of Safety Guides for specific technical areas. Together these provide all the guidance necessary for implementing these requirements. This publication supersedes Safety Series No. 50-SG-Q1-Q7 (1996). The guidance provided here may be used by organizations in the following ways: - To assist in the development of the management systems of organizations directly responsible for operating facilities and activities and providing services for: Nuclear facilities; Activities using sources of ionizing radiation; Radioactive waste management; The transport of radioactive material; Radiation protection activities; Any other practices or circumstances in which people may be exposed to radiation from naturally occurring or artificial sources; The regulation of such facilities and activities; - To assist in the development of the management systems of the relevant regulatory bodies; - By the operator, to specify to a supplier, via contractual documentation, any guidance of this Safety Guide that should be included in the supplier's management system for the supply and delivery of products

  11. Synchrotron radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    van Steenbergen, A.

    1979-01-01

    As a result of the exponential growth of the utilization of synchrotron radiation for research in the domain of the material sciences, atomic and molecular physics, biology and technology, a major construction activity has been generated towards new dedicated electron storage rings, designed optimally for synchrotron radiation applications, also, expansion programs are underway at the existing facilities, such as DORIS, SPEAR, and VEPP. In this report the basic properties of synchrotron radiation will be discussed, a short overview will be given of the existing and new facilities, some aspects of the optimization of a structure for a synchrotron radiation source will be discussed and the addition of wigglers and undulators for spectrum enhancement will be described. Finally, some parameters of an optimized synchrotron radiation source will be given.

  12. Studies on the production and application of radioisotopes -Studies on application of radiation and radioisotopes-

    International Nuclear Information System (INIS)

    Kim, Jae Rok; Park, Kyung Bae; Chung, Yong Sam; Chung, Young Ju; Bang, Hong Sik; Han, Hyun Soo; Shin, Byung Chul; Park, Choon Deuk; Han, Kwang Hee; Shin, Hun Young; Park, Woong Woo; Kim, Dong Soo; Kim, Jin Kyung; Kim, Seung Jun

    1994-07-01

    To increase the production of RI and labelled compounds utilizing the Korea Multipurpose Research Reactor (KMRR), development of P-32 production process, devices and tools of neutron irradiation use, GMP facilities of radiopharmaceuticals, Dy-165/Ho-166 macroaggregate of radiation synovectomy use for rheumatoid archritis have been carried out, respectively. To utilize NAA in analysis of environmental samples, experimental studies on air borne samples have also been carried out. An efficient P-32 production process obtaining high recovery of >98% with sufficiently high radionuclidic purity of >99% has been established through reaction 32 S(n,p) 32 P and subsequent reduced pressure distillation purification. Various capsules, loading/unloading device for capsule/rigs, cole-welder for capsules, checking instrument for capsule sealing, working table/tools, transfer cask for the irradiated targets, etc. have been developed. To maintain cleanliness inside of hot cells, a modification has been proposed, and a two door type autoclave usable in GMP facility has been prepared. An efficient way of preparation of the Dy-165/Ho-166 macroaggregate of radiation synovectomy use as well as its clinical application scheme has been developed. A suitable process of environmental sample analyses has been established by carrying out NAA of standard/reference samples as well as airborne dust samples. (Author)

  13. Comparison of a Commonwealth-initiated regional radiation oncology facility in Toowoomba with a Queensland Health facility

    International Nuclear Information System (INIS)

    Poulsen, M.; Ramsay, R.; Gogna, K.; Middleton, M.; Martin, J.; Khoo, E.; Wong, W.; McQuitty, S.; Walpole, E.; Fairweather, R.

    2010-01-01

    The aim was to compare a private Commonwealth-initiated regional radiation oncology facility in Toowoomba with a Queensland Health facility (QHF) in Brisbane. The comparison concentrated on staffing, case mix and operational budgets, but was not able to look at changes in access to services. Data were collected from the two facilities from January 2008 to June 2008 inclusive. A number of factors were compared, including case mix, staffing levels, delay times for treatment, research, training and treatment costs. The case mix between the two areas was similar with curative treatments making up just over half the work load in both centres and two-thirds the work being made up of cancers of breast and prostate. Staffing levels were leaner in Toowoomba, especially in the areas of nursing, administration and trial coordinators. Research activity was slightly higher in Toowoomba. The average medicare cost per treatment course was similar in both centres ($5000 per course). Total costs of an average treatment including patient, State and Commonwealth costs, showed a 30% difference in costing favouring Toowoomba. This regional radiation oncology centre has provided state-of-the-art cancer care that is close to home for patients living in the Darling Downs region. Both public and private patients have been treated with modest costs to the patient and significant savings to QH. The case mix is similar to the QHF, and there has been significant activity in clinical research. A paperless working environment is one factor that has allowed staffing levels to be reduced. Ongoing support from Governments are required if private facilities are to participate in important ongoing staff training.

  14. Economical scale of radiation applications in Japan

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Kume, Tamikazu; Makuuchi, Keizo; Takeshita, Hidefumi

    2000-01-01

    As a scale to quantify actual state of a thing, person, material and money are used in general, and money or economical scale has been frequently investigated on radiation application. As some investigations on annual sales (economical scale) of tire for car and germination protection of tomato had been tried to estimate in Japan, they were carried out only partially but not in general. On the other hand, in U.S.A. some general investigations were carried out, to report 421 billion dollars for nuclear energy application where its 80% was occupied by radiation application and remained 20 % was energy application (electricity). Therefore, JAERI established a special group (radiation frontier research group) aiming to investigate economical scale of radiation application in Japan to industrial, agricultural and medical field in general under cooperation of universities and private companies by receiving trust of the Science and Technology Agency. Here were described on basic concept on the investigation, its results, and total image on economical scale of radiation application and its comparison with that of energy application. (G.K.)

  15. Radiation Monitoring in a Newly Established Nuclear Medicine Facility

    International Nuclear Information System (INIS)

    Afroj, Kamila; Anwar-Ul-Azim, Md.; Nath, Khokon Kumar; Khan, Md. Rezaul Karim

    2010-05-01

    A study of area monitoring in a nuclear medicine department's new physical facility was performed for 3 months to ascertain the level of radiation protection of the staff working in nuclear medicine and that of the patients and patient's attendants. Exposure to nuclear medicine personnel is considered as occupational exposure, while exposure to patients is considered medical exposure and exposure to patients' attendants is considered public exposure. The areas for the sources of radiation considered were the hot laboratory, where unsealed isotopes, radionuclides, generators are stored and dosages are prepared, the patients' waiting room, where the radioactive nuclides are administered orally and intravenously for diagnosis and treatment and the SPECT rooms, where the patients' acquisition are taken. The monitoring process was performed using the TLD supplied and measured by the Health Physics Division of Bangladesh Atomic Energy Commission. The result shows no over-exposure of radiation from any of the working areas. The environment of the department is safe for work and free from unnecessary radiation exposure risk. (author)

  16. Environmental radioactivity and radiation exposure

    International Nuclear Information System (INIS)

    1980-01-01

    In 1977 population exposure in the Federal Republic of Germany has not changed as compared to the previous years. The main share of the total exposure, nearly two thirds, is attributed to natural radioactive substances and cosmic radiation. The largest part (around 85%) of the artificial radiation exposure is caused by X-ray diagnostics. In comparison to this, radiation exposure from application of ionizing radiation in medical therapy, use of radioactive material in research and technology, or from nuclear facilities is small. As in the years before, population exposure caused by nuclear power plants and other nuclear facilities is distinctly less than 1% of the natural radiation exposure. This is also true for the average radiation exposure within a radius of 3 km around nuclear facilities. On the whole, the report makes clear that the total amount of artificial population exposure will substantially decrease only if one succeeds in reducing the high contribution to the radiation exposure caused by medical measures. (orig.) [de

  17. Grout Treatment Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) is an existing treatment, storage, and/or disposal (TSD) unit located in the 200 East Area and the adjacent 600 Area of the Hanford Site. The GTF mixes dry cementitious solids with liquid mixed waste (containing both dangerous and radioactive constituents) produced by Hanford Site operations. The GTF consists of the following: The 241-AP-02D and 241-AP-04D waste pump pits and transfer piping; Dry Materials Facility (DMF); Grout Disposal Facility (GDF), consisting of the disposal vault and support and monitoring equipment; and Grout Processing Facility (GPF) and Westinghouse Hanford Company on the draft Hanford Facility Dangerous Waste Permit and may not be read to conflict with those comments. The Grout Treatment Facility Dangerous Waste Permit Application consists of both a Part A and a Part B permit application. An explanation of the Part A revisions associated with this TSD unit, including the current revision, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B checklist prepared by the Washington State Department of Ecology (Ecology 1987). For ease of reference, the checklist section numbers, in brackets, follow chapter headings and subheadings

  18. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    Energy Technology Data Exchange (ETDEWEB)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P

    2006-09-15

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO{sub 2} into U-metal. For demonstration of this process, {alpha}-{gamma} type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for {gamma}-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration.

  19. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P.

    2006-09-01

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO 2 into U-metal. For demonstration of this process, α-γ type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for γ-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration

  20. Regulations on the allocating of subsidies to promote the development of radiation exposure reduction technology for nuclear power facilities

    International Nuclear Information System (INIS)

    1984-01-01

    The regulations provide for subsidies for the research and development of radiation exposure reduction technology for nuclear power facilities and evaluation of the results. The subsidies are for purchase of equipment, materials, etc. and other expendures approved. The contents are as follows: applications for subsidies, determination of subsidy allocations, withdrawal of applications, a report on the work proceedings, a report on the results, confirmation on the sum of the subsidies, payment of subsidies, approval of alterations in the plans, withdrawal of the decision for subsidies, patent rights, payment of the earnings, management of the properties, etc. (Mori, K.)

  1. Radiation protection training for personnel employed in medical facilities

    International Nuclear Information System (INIS)

    McElroy, N.L.; Brodsky, A.

    1985-05-01

    This report provides information useful for planning and conducting radiation safety training in medical facilities to keep exposures as low as reasonably achievable, and to meet other regulatory, safety and loss prevention requirements in today's hospitals. A brief discussion of the elements and basic considerations of radation safety training programs is followed by a short bibliography of selected references and sample lecture (or session) outlines for various job categories. This information is intended for use by a professional who is thoroughly acquainted with the science and practice of radiation protection as well as the specific procedures and circumstances of the particular hospital's operations. Topics can be added or substracted, amplified or condensed as appropriate. 8 refs

  2. Measurements of the ionising radiation level at a nuclear medicine facility performing PET/CT examinations

    International Nuclear Information System (INIS)

    Tulik, P.; Kowalska, M.; Golnik, N.; Budzynska, A.; Dziuk, M.

    2017-01-01

    This paper presents the results of radiation level measurements at workplaces in a nuclear medicine facility performing PET/ CT examinations. This study meticulously determines the staff radiation exposure in a PET/CT facility by tracking the path of patient movement. The measurements of the instantaneous radiation exposure were performed using an electronic radiometer with a proportional counter that was equipped with the option of recording the results on line. The measurements allowed for visualisation of the staff's instantaneous exposure caused by a patient walking through the department after the administration of "1"8F-FDG. An estimation of low doses associated with each working step and the exposure during a routine day in the department was possible. The measurements were completed by determining the average radiation level using highly sensitive thermoluminescent detectors. (authors)

  3. Regulatory system for control of nuclear facilities in Bangladesh

    International Nuclear Information System (INIS)

    Mollah, A.S.

    2005-01-01

    All human activities have associated risks. Nuclear programme is no exception. The Bangladesh Atomic Energy Commission (BAEC), constituted in February 1973 through the promulgation of the Presidential order 15 of 1973. Functions of BAEC include research and development in peaceful application of atomic energy, generation of electricity and promotion of international relations congenial to implementation of its programmes and projects. In 1993 the Government of Bangladesh promulgated the law on Nuclear Safety and Radiation Control. Considering the human resources, expertise and facilities needed for implementation of the provisions of the NSRC law, BAEC was entrusted with the responsibility to enforce it. The responsibilities of the BAEC cover nuclear and radiological safety within the installations of BAEC and radiological safety in the manifold applications of radioisotopes and radiation sources within the country. An adequate and competent infrastructure has been built to cater to the diverse nuclear and radiation protection requirements of all nuclear facilities in Bangladesh, arising at different stages from site selection to day-to-day operation. In addition, periodic inspections of the nuclear facilities are carried out. The licensing and regulatory inspection systems for controlling of nuclear installations and radiation sources are established. The paper describes the legal provisions, responsibilities and organization of BAEC with special emphasis on nuclear safety and radiation protection of nuclear facilities in Bangladesh. (author)

  4. An assessment of research opportunities and the need for synchrotron radiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The workshop focused on six topics, all of which are areas of active research: (1) speciation, reactivity and mobility of contaminants in aqueous systems, (2) the role of surfaces and interfaces in molecular environmental science, (3) the role of solid phases in molecular environmental science, (4) molecular biological processes affecting speciation, reactivity, and mobility of contaminants in the environment, (5) molecular constraints on macroscopic- and field-scale processes, and (6) synchrotron radiation facilities and molecular environmental sciences. These topics span a range of important issues in molecular environmental science. They focus on the basic knowledge required for understanding contaminant transport and fate and for the development of science-based remediation and waste management technologies. Each topic was assigned to a working group charged with discussing recent research accomplishments, significant research opportunities, methods required for obtaining molecular-scale information on environmental contaminants and processes, and the value of synchrotron x-ray methods relative to other methods in providing this information. A special working group on synchrotron radiation facilities was convened to provide technical information about experimental facilities at the four DOE-supported synchrotron radiation sources in the US (NSLS, SSRL, AS and UPS) and synchrotron- based methods available for molecular environmental science research. Similar information on the NSF-funded Cornell High Energy synchrotron Source (CHESS) was obtained after the workshop was held.

  5. An assessment of research opportunities and the need for synchrotron radiation facilities

    International Nuclear Information System (INIS)

    1995-01-01

    The workshop focused on six topics, all of which are areas of active research: (1) speciation, reactivity and mobility of contaminants in aqueous systems, (2) the role of surfaces and interfaces in molecular environmental science, (3) the role of solid phases in molecular environmental science, (4) molecular biological processes affecting speciation, reactivity, and mobility of contaminants in the environment, (5) molecular constraints on macroscopic- and field-scale processes, and (6) synchrotron radiation facilities and molecular environmental sciences. These topics span a range of important issues in molecular environmental science. They focus on the basic knowledge required for understanding contaminant transport and fate and for the development of science-based remediation and waste management technologies. Each topic was assigned to a working group charged with discussing recent research accomplishments, significant research opportunities, methods required for obtaining molecular-scale information on environmental contaminants and processes, and the value of synchrotron x-ray methods relative to other methods in providing this information. A special working group on synchrotron radiation facilities was convened to provide technical information about experimental facilities at the four DOE-supported synchrotron radiation sources in the US (NSLS, SSRL, AS and UPS) and synchrotron- based methods available for molecular environmental science research. Similar information on the NSF-funded Cornell High Energy synchrotron Source (CHESS) was obtained after the workshop was held

  6. RADIATION CONTROL DURING THE CONSTRUCTION OF THE OLYMPIC FACILITIES IN SOCHI CITY

    Directory of Open Access Journals (Sweden)

    I. K. Romanovich

    2015-01-01

    Full Text Available This paper presents data on the organization and results of the provision of the radiation safety in the period of preparation for the Winter Olympic and Paralympic games in Sochi, 2014. The following topics are overviewed in the paper: allocation of land plots for construction of the Olympic facilities; organization of the sanitary surveillance of the imported equipment, construction materials and designs for the construction of the Olympic facilities; putting the Olympic venues into operation. Dose rate of gamma radiation at all land plots, which were allocated for the construction of the Olympic facilities, conformed to the requirements of sanitary regulations. The average dose rate of gamma radiation was 0.11 μSv h-1 in the Coastal cluster and 0.14 μSv h-1 in the Mountain cluster. The radon fluence rate from the ground surface exceeded the prescribed limit of 80 mBq m-2 s-1 only at the land plot allocated for construction of the «House of receiving official delegations «Achipse» and the «House of receiving official delegations «Psekhako» in the Mountain cluster. The maximal value of 188 mBq m-2 s -1 was registered here. The buildings projects for this area included using radon protection measures, which were implemented during the construction.

  7. The proposed irradiation facility and applications

    International Nuclear Information System (INIS)

    Singson, C.C.; Navarro, Q.O.

    As early as 1972, the Philippine Atomic Energy Commission proposed the setting up of a radiation facility for the sterilization of medical products. A result of a market survey with the assistance of an IAEA expert was conducted to determine the market potential for such venture. With the Food Terminal, Inc. (FTI) a government agro-industrial fair which explored the economic benefits of project, encouraging results have been obtained with finances from FAO and IAEA. The proposed pilot plant will serve as a multi purpose facility for the sterilization of medical and laboratory products, irradiation of food and agricultural produce and manufacture of wood plastic compositions for the textile and furniture industries. With the benefits derived from the said project, it is hoped that its early installation be pushed through. (author)

  8. A localized navigation algorithm for radiation evasion for nuclear facilities: Optimizing the “Radiation Evasion” criterion: Part I

    International Nuclear Information System (INIS)

    Khasawneh, Mohammed A.; Al-Shboul, Zeina Aman M.; Jaradat, Mohammad A.

    2013-01-01

    Highlights: ► A new navigation algorithm for radiation evasion around nuclear facilities. ► An optimization criteria minimized under algorithm operation. ► A man-borne device guiding the occupational worker towards paths that warrant least radiation × time products. ► Benefits of using localized navigation as opposed to global navigation schemas. ► A path discrimination function for finding the navigational paths exhibiting the least amounts of radiation. -- Abstract: In this paper, we introduce a navigation algorithm having general utility for occupational workers at nuclear facilities and places where radiation poses serious health hazards. This novel algorithm leverages the use of localized information for its operation. Therefore, the need for central processing and decision resources is avoided, since information processing and the ensuing decision-making are done aboard a man-borne device. To acquire the information needed for path planning in radiation avoidance, a well-designed and distributed wireless sensory infrastructure is needed. This will automatically benefit from the most recent trends in technology developments in both sensor networks and wireless communication. When used to navigate based on local radiation information, the algorithm will behave more reliably when accidents happen, since no long-haul communication links are required for information exchange. In essence, the proposed algorithm is designed to leverage nearest neighbor information coming in through the sensory network overhead, to compute successful navigational paths from one point to another. The proposed algorithm is tested under the “Radiation Evasion” criterion. It is also tested for the case when more information, beyond nearest neighbors, is made available; here, we test its operation for different numbers of step look-ahead. We verify algorithm performance by means of simulations, whereby navigational paths are calculated for different radiation fields

  9. A localized navigation algorithm for radiation evasion for nuclear facilities: Optimizing the “Radiation Evasion” criterion: Part I

    Energy Technology Data Exchange (ETDEWEB)

    Khasawneh, Mohammed A., E-mail: mkha@ieee.org [Department of Electrical Engineering, Jordan University of Science and Technology, Irbid 221 10 (Jordan); Al-Shboul, Zeina Aman M., E-mail: xeinaaman@gmail.com [Department of Electrical Engineering, Jordan University of Science and Technology, Irbid 221 10 (Jordan); Jaradat, Mohammad A., E-mail: majaradat@just.edu.jo [Department of Mechanical Engineering, Jordan University of Science and Technology, Irbid 221 10 (Jordan)

    2013-06-15

    Highlights: ► A new navigation algorithm for radiation evasion around nuclear facilities. ► An optimization criteria minimized under algorithm operation. ► A man-borne device guiding the occupational worker towards paths that warrant least radiation × time products. ► Benefits of using localized navigation as opposed to global navigation schemas. ► A path discrimination function for finding the navigational paths exhibiting the least amounts of radiation. -- Abstract: In this paper, we introduce a navigation algorithm having general utility for occupational workers at nuclear facilities and places where radiation poses serious health hazards. This novel algorithm leverages the use of localized information for its operation. Therefore, the need for central processing and decision resources is avoided, since information processing and the ensuing decision-making are done aboard a man-borne device. To acquire the information needed for path planning in radiation avoidance, a well-designed and distributed wireless sensory infrastructure is needed. This will automatically benefit from the most recent trends in technology developments in both sensor networks and wireless communication. When used to navigate based on local radiation information, the algorithm will behave more reliably when accidents happen, since no long-haul communication links are required for information exchange. In essence, the proposed algorithm is designed to leverage nearest neighbor information coming in through the sensory network overhead, to compute successful navigational paths from one point to another. The proposed algorithm is tested under the “Radiation Evasion” criterion. It is also tested for the case when more information, beyond nearest neighbors, is made available; here, we test its operation for different numbers of step look-ahead. We verify algorithm performance by means of simulations, whereby navigational paths are calculated for different radiation fields.

  10. Industrial potential for application of radiation curing in Pakistan

    International Nuclear Information System (INIS)

    Ahmed, S.

    1991-01-01

    Potential applications of radiation curing of coating are in the field of wood and wood products, drying of printing inks, ceramics (roof and floor tiles) and textiles. Pakistan a 'timber deficit' country needs to improve her wood, plywood, hardboard and particle board to make for shortage of quality wood. Imports of wood and wood products are in excess of 3000 million rupees. Radiation curing can be applied and itexcels over heat treatment. Whereas costs of high energy units (500 KeV) with scanning type are rather high, low energy (100-175 KeV) flat beam self-shielded units costing 200,000 US$ are available. For developing countries ultraviolet (UV) curing is ideally suited because of its low price, flexibility and simplicity in handling. Alternately, multipurpose bunker type facility such as 500 KeV current mA can be utilized in carrying out heat-shrinkables production, irradiation of cable and wire and curing of coatings on wood and wood products. (author)

  11. Radiologic safety program for ionizing radiation facilities in Parana, Brazil

    International Nuclear Information System (INIS)

    Schmidt, M.F.S.; Tilly Junior, J.G.

    1997-01-01

    A radiologic safety program for inspection, licensing and control of the use of ionizing radiation in medical, industrial and research facilities in Parana, Brazil is presented. The program includes stages such as: 1- division into implementation phases considering the activity development for each area; 2-use of the existing structure to implement and to improve services. The development of the program will permit to evaluate the improvement reached and to correct operational strategic. As a result, a quality enhancement at the services performed, a reduction for radiation dose exposure and a faster response for emergency situations will be expected

  12. Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities

    CERN Document Server

    Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernàndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

    2006-01-01

    This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

  13. Medical applications with synchrotron radiation in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, T.; Itai, Y. [Univ. of Tsukuba, Inst. of Clinical Medicine, Tsukuba (Japan); Hyodo, K.; Ando, M. [KEK, Tsukuba (Japan); Akatsuka, T. [Yamagata Univ., Faculty of Engineering, Yamagata (Japan); Uyama, C. [National Cardiovascular Centre, Suita (Japan)

    1998-05-01

    In Japan, various medical applications of synchrotron X-ray imaging, such as angiography, monochromatic X-ray computed tomography (CT), radiography and radiation therapy, are being developed. In particular, coronary arteriography (CAG) is quite an important clinical application of synchrotron radiation. Using a two-dimensional imaging method, the first human intravenous CAG was carried out at KEK in May 1996; however, further improvements of image quality are required in clinical practice. On the other hand, two-dimensional aortographic CAG revealed canine coronary arteries as clearly as those on selective CAG, and coronary arteries less than 0.2 mm in diameter. Among applications of synchrotron radiation to X-ray CT, phase-contrast X-ray CT and fluorescent X-ray CT are expected to be very interesting future applications of synchrotron radiation. For actual clinical applications of synchrotron radiation, a medical beamline and a laboratory are now being constructed at SPring-8 in Harima. 55 refs.

  14. New sources of radiation

    International Nuclear Information System (INIS)

    Schimmerling, W.

    1979-09-01

    An attempt is made to select examples of radiation sources whose application may make new or unconventional demands on radiation protection and dosimetry. A substantial body of knowledge about high energy facilities exists and, partly for this reason, the great high energy accelerators are mentioned only briefly

  15. Industrial applications of radiations

    International Nuclear Information System (INIS)

    Gallien, C.L.

    1988-01-01

    Radiation processing refers to the use of ionizing radiation to initiate chemical or biological changes in various materials as a substitute for conventional thermal or chemical processes. The method was inroduced in the industrial field 30 years ago and is now being widely used for numerous applications, among which industrial radiography, polymer modification, sterilization or decontamination, and food preservation. Both electron beam accelerators and gamma sources can be used, depending mainly of the amount of radiation and the penetration required. Radiation processing presents an increasing economical importance; in 1986 the market volume of ionized products ranged 3 billion $ [fr

  16. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1990: Twenty-third annual report

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1993-01-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1990. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1990 annual reports submitted by about 443 licensees indicated that approximately 214,568 individuals were monitored, 110,204 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.19 rem (cSv) and an average measurable dose of about 0.36 (cSv). Termination radiation exposure reports were analyzed to reveal that about 113,361 individuals completed their employment with one or more of the 443 covered licensees during 1990. Some 77,633 of these individuals terminated from power reactor facilities, and about 11,083 of them were considered to be transient workers who received an average dose of 0.67 rem (cSv)

  17. Clearance and recycling - how can radiation protection and application of the waste hierarchy be optimised?

    International Nuclear Information System (INIS)

    Efraimsson, Henrik; Wiebert, Anders; Carroll, Simon

    2014-01-01

    In this paper, the principles behind the current Swedish regulations for clearance of materials and for application of the waste hierarchy on radioactive waste are described and discussed. As a background, the applicable legislation for radiation protection and nuclear safety is briefly described and compared with the environmental legislation for waste management. The possibilities for a simultaneous optimisation of radiation protection, waste management and sustainability are analysed. As part of this, different factors to be considered in the optimisation of waste management in the context of clearance and recycling are presented and discussed. Examples of such factors are: possibilities of waste segregation, availability and acceptability of routes for recycling or disposal, availability of methods for radiological characterisation, predicted or potential radiation doses to members of the public, predicted or potential spread of radioactive substances in the environment, costs and material value. As an illustration, some examples on the use of the clearance option in the Swedish nuclear industry are presented, both from operation and decommissioning of nuclear facilities. Concluding remarks are made from a radiation protection regulatory perspective. (authors)

  18. Design of plutonium processing facilities

    International Nuclear Information System (INIS)

    Derbyshire, W.; Sills, R.J.

    1982-01-01

    Five considerations for the design of plutonium processing facilities are identified. These are: Toxicity, Radiation, Criticality, Containment and Remote Operation. They are examined with reference to reprocessing spent nuclear fuel and application is detailed both for liquid and dry processes. (author)

  19. Radiation analysis for a generic centralized interim storage facility

    International Nuclear Information System (INIS)

    Gillespie, S.G.; Lopez, P.; Eble, R.G.

    1997-01-01

    This paper documents the radiation analysis performed for the storage area of a generic Centralized Interim Storage Facility (CISF) for commercial spent nuclear fuel (SNF). The purpose of the analysis is to establish the CISF Protected Area and Restricted Area boundaries by modeling a representative SNF storage array, calculating the radiation dose at selected locations outside the storage area, and comparing the results with regulatory radiation dose limits. The particular challenge for this analysis is to adequately model a large (6000 cask) storage array with a reasonable amount of analysis time and effort. Previous analyses of SNF storage systems for Independent Spent Fuel Storage Installations at nuclear plant sites (for example in References 5.1 and 5.2) had only considered small arrays of storage casks. For such analyses, the dose contribution from each storage cask can be modeled individually. Since the large number of casks in the CISF storage array make such an approach unrealistic, a simplified model is required

  20. Simulation of Thermal, Neutronic and Radiation Characteristics in Spent Nuclear Fuel and Radwaste Facilities

    International Nuclear Information System (INIS)

    Poskas, P.; Bartkus, G.

    1999-01-01

    The overview of the activities in the Division of Thermo hydro-mechanics related with the assessment of thermal, neutronic and radiation characteristics in spent nuclear fuel and radwaste facilities are performed. Also some new data about radiation characteristics of the RBMK-1500 spent nuclear fuel are presented. (author)

  1. Potential applications of advanced remote handling and maintenance technology to future waste handling facilities

    International Nuclear Information System (INIS)

    Kring, C.T.; Herndon, J.N.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been advancing the technology in remote handling and remote maintenance of in-cell systems planned for future US nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor are directly applicable to the in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The ORNL developments are based on the application of teleoperated force-reflecting servomanipulators controlled by an operator completely removed from the hazardous environment. These developments address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in a waste handling facility. Employing technological advancements in dexterous manipulators, as well as basic design guidelines that have been developed for remotely maintained equipment and processes, can increase operation and maintenance system capabilities, thereby allowing the attainment of two Federal Waste Management System major objectives: decreasing plant personnel radiation exposure and increasing plant availability by decreasing the mean-time-to-repair in-cell maintenance and process equipment

  2. Potential applications of advanced remote handling and maintenance technology to future waste handling facilities

    International Nuclear Information System (INIS)

    Kring, C.T.; Herndon, J.N.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been advancing the technology in remote handling and remote maintenance of in-cell systems planned for future U.S. nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor are directly applicable to the in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The ORNL developments are based on the application of teleoperated force-reflecting servomanipulators controlled by an operator completely removed from the hazardous environment. These developments address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in a waste handling facility. Employing technological advancements in dexterous manipulators, as well as basic design guidelines that have been developed for remotely maintained equipment and processes, can increase operation and maintenance system capabilities, thereby allowing the attainment of two Federal Waste Management System major objectives: decreasing plant personnel radiation exposure and increasing plant availability by decreasing the mean-time-to-repair in-cell maintenance and process equipment

  3. Safety issues in the handling of radiation sources in category IV gamma radiation facilities

    International Nuclear Information System (INIS)

    Kohli, A.K.

    2002-01-01

    There is potential for incidents/accidents related to handling of radiation sources. This is increasing due to the fact that more number of plants that too with much larger levels of activity are now coming up. Such facilities produce very high levels of exposure rates during irradiation. A person accidentally present in the irradiation cell can receive a lethal dose within a very short time. Apart from safety requirements during operation and maintenance of these facilities, safety during loading and unloading of sources is important. Category IV type irradiators are the most common. Doubly encapsulated Co-60 slugs are employed to form the source pencils. These irradiators employ a water pool for safely storing the source pencils when irradiation of the products is not going on or when human access is needed into the irradiation cell for some maintenance or source loading/unloading operations. Safety during loading/unloading operations of source pencils is important. In design itself care needs to be taken such that all such operations are convenient and any incident will not lead to a situation where it becomes difficult to come out. Different situations, which can arise during handling of radiation sources and suggested designs to obviate such tight situations, are discussed. (Author)

  4. Radiation safety management system in a radioactive facility

    International Nuclear Information System (INIS)

    Amador, Zayda H.

    2008-01-01

    Full text: This paper illustrates the Cuban experience in implementing and promoting an effective radiation safety system for the Centre of Isotopes, the biggest radioactive facility of our country. Current management practice demands that an organization inculcate culture of safety in preventing radiation hazard. The aforementioned objectives of radiation protection can only be met when it is implemented and evaluated continuously. Commitment from the workforce to treat safety as a priority and the ability to turn a requirement into a practical language is also important to implement radiation safety policy efficiently. Maintaining and improving safety culture is a continuous process. There is a need to establish a program to measure, review and audit health and safety performance against predetermined standards. All those areas of the radiation protection program are considered (e.g. licensing and training of the staff, occupational exposure, authorization of the practices, control of the radioactive material, radiological occurrences, monitoring equipment, radioactive waste management, public exposure due to airborne effluents, audits and safety costs). A set of indicators designed to monitor key aspects of operational safety performance are used. Their trends over a period of time are analyzed with the modern information technologies, because this can provide an early warning to plant management for searching causes behind the observed changes. In addition to analyze the changes and trends, these indicators are compared against identified targets and goals to evaluate performance strengths and weaknesses. A structured and proper radiation self-auditing system is seen as a basic requirement to meet the current and future needs in sustainability of radiation safety. The integrated safety management system establishment has been identified as a goal and way for the continuous improvement. (author)

  5. Design considerations and analysis of potential applications of a high power ultraviolet FEL at the TESLA test facility at DESY

    International Nuclear Information System (INIS)

    Pagani, C.; Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1999-01-01

    A possibility of constructing a high power ultraviolet free electron laser at the TESLA test facility at DESY is discussed. The proposed facility consists of a tunable master oscillator (P av ∼10 mW, P peak ∼10 kW, λ≅200-350 nm) and an FEL amplifier with a tapered undulator. The average and peak radiation power at the exit of the FEL amplifier is about 7 kW and 220 GW, respectively. Installation of such a facility can significantly extend scientific potential of the TESLA test facility. The UV free electron laser can be used to construct a polarized, monochromatic gamma-source with the ultimate yield up to 10 12 gamma-quanta per second and the maximal energy of about 100 MeV. An intensive gamma-source can also form the base for constructing the test facility for the TESLA positron generation system. Another accelerator application of the proposed facility is verification of the main technical solutions for the laser and the optical system to be used in the gamma-gamma option of the TESLA collider. A high average power UV laser is also promising for industrial applications

  6. Industrial application of radiation curing

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Takashi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1994-12-31

    The contents are advantages of radiation processes - a solvent-free system, less energy consumative, higher production rate, processability at ambient temperature; electron beams vs. ultraviolet curing; applications -broad spectrum of markets use radiation curable materials.

  7. Industrial application of radiation curing

    International Nuclear Information System (INIS)

    Takashi Sasaki

    1993-01-01

    The contents are advantages of radiation processes - a solvent-free system, less energy consumative, higher production rate, processability at ambient temperature; electron beams vs. ultraviolet curing; applications -broad spectrum of markets use radiation curable materials

  8. Microtron for radiation applications

    International Nuclear Information System (INIS)

    Soni, H.C.; Ramamurthi, S.S.

    1993-01-01

    The electron accelerator called microtron is a powerful tool for research, medical and industrial applications which need electron beam in energy range of few tens of MeV. Either electron beam from microtron is directly used for radiation applications or electron beam is utilized to produce x-rays or neutrons which are eventually used for radiation applications. After considering the vast potential, lower cost, simpler construction and excellent quality of electron beam from microtron, it was decided to develop this machine at Centre for Advanced Technology (CAT). The microtrons in two standard models have been developed which will cover all the above mentioned applications except free electron lasers. The microtron of model 1 provides electron beam of 20 MeV, 15/30 mA and that of model 2 provides electron beam of 8/12 MeV, 50/30 mA. (author). 2 figs., 1 tab

  9. Safety measures to address the year 2000 issue at medical facilities which use radiation generators and radioactive materials

    International Nuclear Information System (INIS)

    1999-03-01

    In resolution GC(42)/RES/11 on 'Measures to Address the Year 2000 (Y2K) Issue', adopted on 25 September 1998, the General Conference of the International Atomic Energy Agency (IAEA) - inter alia - urged Member States 'to share information with the Secretariat regarding diagnostic and corrective actions being planned or implemented by operating and regulatory organizations at their ... medical facilities which use radioactive materials to make those facilities Year 2000 ready', encouraged the Secretariat 'within existing resources to act as a clearing-house and central point of contact for Member States to exchange information regarding diagnostic and remediation actions being taken at ... medical facilities which use radioactive materials to make these facilities Year 2000 ready', urged the Secretariat 'to handle the information provided by Member States carefully' and requested the Director General to report to it at its next (1999) regular session on the implementation of that resolution. The IAEA Secretariat convened a group of consultants who met in Vienna from 14 to 18 December 1998 and produced this report. The consultants decided that the report should cover not just 'medical facilities which use radioactive materials' but also medical facilities which, while perhaps not using radioactive materials, use ionizing radiation produced by radiation generators such as accelerators. The reports issued together are: Achieving Year 2000 Readiness: Basic Processes; Safety Measures to Address the Year 2000 Issue at Medical Facilities Which Use Radiation Generators and Radioactive Materials; and Safety Measures to Address the Year 2000 Issue at Radioactive Waste Management Facilities. This report addresses means of dealing with the Y2K problem at medical facilities which use radiation generators and radioactive materials

  10. Nuclear safety and radiation protection report of EdF's Tricastin operational hot base nuclear facilities (BCOT) - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, if some, are reported as well as the effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  11. Development of dose monitoring system applicable to various radiations with wide energy ranges

    International Nuclear Information System (INIS)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira; Yamaguchi, Yasuhiro

    2005-01-01

    A new inventive radiation dose monitor, designated as DARWIN (Dose monitoring system Applicable to various Radiations with WIde energy raNges), has been developed for monitoring doses in workspaces and surrounding environments of high energy accelerator facilities. DARWIN is composed of a phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with 6 Li, and a data acquisition system based on a Digital-Storage-Oscilloscope. Scintillations from the detector induced by thermal and fast neutrons, photons and muons were discriminated by analyzing their waveforms, and their light outputs were directly converted into the corresponding doses by applying the G-function method. Characteristics of DARWIN were studied by both calculation and experiment. The calculated results indicate that DARWIN gives reasonable estimations of doses in most radiation fields. It was found from the experiment that DARWIN has an excellent property of measuring doses from all particles that significantly contribute to the doses in surrounding environments of accelerator facilities - neutron, photon and muon with wide energy ranges. The experimental results also suggested that DARWIN enables us to monitor small fluctuation of neutron dose rates near the background-level owing to its high sensitivity. (author)

  12. Preliminary study on X-ray phase contrast imaging using synchrotron radiation facility

    International Nuclear Information System (INIS)

    Xiong Zhuang; Wang Jianhua; Yu Yongqiang; Jiang Shiping; Chen Yang; Tian Yulian

    2006-01-01

    Objective: To study the methodology of X-ray phase contrast imaging using synchrotron radiation, and evaluate the quality of phase contrast images. Methods: Several experiments to obtain phase contrast images and absorption contrast images of various biological samples were conducted in Beijing Synchrotron Radiation Facility (BSRF), and then these images were interpreted to find out the difference between the two kinds of imaging methods. Results: Satisfactory phase contrast images of these various samples were obtained, and the quality of these images was superior to that obtained with absorption contrast imaging. The phase contrast formation is based on the phenomenon of fresnel diffraction which transforms phase shifts into intensity variations upon a simple act of free-space propagation, so it requires highly coherent X-rays and appropriate distance between sample and detector. This method of imaging is very useful in imaging of low-absorption objects or objects with little absorption variation, and its resolution is far higher than that of the conventional X-ray imaging. The photographs obtained showed very fine inner microstructure of the biological samples, and the smallest microstructure to be distinguished is within 30-40 μm. There is no doubt that phase contrast imaging has a practical applicability in medicine. Moreover, it improves greatly the efficiency and the resolution of the existing X-ray diagnostic techniques. Conclusions: X-ray phase contrast imaging can be performed with synchrotron radiation source and has some advantages over the conventional absorption contrast imaging. (authors)

  13. A study on radiation shield design of storage facility for low and intermediate level radioactive waste in Bangladesh

    International Nuclear Information System (INIS)

    Khan, JJahirul Haque

    2005-02-01

    Bangladesh has no nuclear power reactor but has only one 3 MW TRIGA Mark-II Research Reactor. The Bangladesh Atomic Energy commission (BAEC) operates a 3 MW TRIGA Mark-II Research Reactor and maintains not only the nuclear facilities at its Atomic Energy Research Establishment (AERE) at Savar (near Dhaka) but also the related radiation facilities the whole country. The main sources of radioactive wastes result from the use of sealed and unsealed radiation sources in medicine industry, research, agriculture, etc as well as from operation and maintenance of the nuclear facilities the whole country. As a result radioactive wastes are increasing day by day and these wastes are classified as low and intermediate level radioactive waste (LILW) following the radiation safety philosophy of IAEA recommendations in Bangladesh. Radioactive waste is very sensitive issue to public and environment from the hazardous standpoint of ionizing radiation. Therefore, storage facility of LILW is very essential for safe radioactive waste management in Bangladesh and in parallel: this study is of a great importance due to new installation of this storage facility in future. The basic objective of this study is to recommend the radiation shield design parameters of the installation of storage facility for low and intermediate level radioactive waste from the points of view of radiation safety and sensitivity analysis. The shield design of this installation has been carried out with the Monte Carlo Code MCNP4C and the point Kernel Code Micro Shield 5.05 respectively considering the ICRP-60 (1990) recommendations for occupational exposure limit (10 μ Sv/hr). For more safety purpose every equivalent dose rate at different positions of this installation is considered below 9 μ Sv/hr in this study. The radiation shield design parameters are recommended based on MCNP4C calculated results than those of Micro Shield due to more credible results and these parameters are: (I) 51 cm thickness of

  14. Calculation of shielding and radiation doses for PET/CT nuclear medicine facility

    International Nuclear Information System (INIS)

    Mollah, A.S.; Muraduzzaman, S.M.

    2011-01-01

    Positron emission tomography (PET) is a new modality that is gaining use in nuclear medicine. The use of PET and computed tomography (CT) has grown dramatically. Because of the high energy of the annihilation radiation (511 keV), shielding requirements are an important consideration in the design of a PET or PET/CT imaging facility. The goal of nuclear medicine and PET facility shielding design is to keep doses to workers and the public as low as reasonably achievable (ALARA). Design involves: 1. Calculation of doses to occupants of the facility and adjacent regions based on projected layouts, protocols and workflows, and 2. Reduction of doses to ALARA through adjustment of the aforementioned parameters. The radiological evaluation of a PET/CT facility consists of the assessment of the annual effective dose both to workers occupationally exposed, and to members of the public. This assessment takes into account the radionuclides involved, the facility features, the working procedures, the expected number of patients per year, and so on. The objective of the study was to evaluate shielding requirements for a PET/CT to be installed in the department of nuclear medicine of Bangladesh Atomic Energy Commission (BAEC). Minimizing shielding would result in a possible reduction of structural as well as financial burden. Formulas and attenuation coefficients following the basic AAPM guidelines were used to calculate un-attenuated radiation through shielding materials. Doses to all points on the floor plan are calculated based primarily on the AAPM guidelines and include consideration of broad beam attenuation and radionuclide energy and decay. The analysis presented is useful for both, facility designers and regulators. (author)

  15. Organizing the promotion of radiation processing at Multipurpose Irradiation Facility IRASM

    International Nuclear Information System (INIS)

    Ponta, C.C.; Moise, I.V.

    1999-01-01

    IRASM will be the first Romanian industrial irradiation facility. International Atomic Energy Agency - Vienna supports the project financing the main equipment and a 100 kCi Co-60 demonstration source. The facility will be commissioned in March 2000. Construction and commissioning of this important nuclear objective are difficult tasks. Promotion of radiation processing in Romanian industry is even more difficult. The Project IRASM is a complex contest for IFIN-HH. The management took into consideration all aspects of the project promotion: technical, legal, R and D. The institute identified the need for an appropriate internal structure. For this reason a Radiation Processing Team (GRIT) was nominated and charged to co-ordinate the internal activity and to co-operate with the external partner. Investment Department and Quality Assurance Department strengthened. The operation team was chosen, instructed and engaged in covering the main directions of the management plans: project correlation, construction supervising, commissioning, promotion of the appropriate legal frame, public acceptance and R and D for the association of the industry to the radiation processing technologies. R and D engaged many researchers from different IFIN-HH departments. This paper presents the management of the project and details the steps already undertaken onto each particular direction. (authors)

  16. Radiation exposure doses of employees in reactor facilities for test and research and under research and development stages, and in facilities for nuclear fuel refining, fabrication, reprocessing and usage

    International Nuclear Information System (INIS)

    1980-01-01

    (1) Radiation exposure doses in reactor facilities. The owners of reactor facilities are obliged by law to control the radiation exposure doses of the employees below the permissible levels. The data based on the reports made in this connection are given in tables for the fiscal year 1978 (from April 1978 to March 1979). It was revealed that the radiation exposure doses of the employees were far below the permissible levels. The distributions of exposure doses in Japan Atomic Energy Research Institute, Power Reactor and Nuclear Fuel Development Corporation and so on are presented for the whole year and the respective quarters. (2) Radiation exposure doses in facilities for nuclear fuel. The owners are similarly obliged to control radiation exposure. The data in this connection are given, and the doses were far below the permissible levels. The distributions in the private enterprises and so on are presented for the whole year. (J.P.N.)

  17. Operation of radiation monitoring system in radwaste form test facility

    International Nuclear Information System (INIS)

    Ryu, Young Gerl; Kim, Ki Hong; Lee, Jae Won; Kwac, Koung Kil

    1998-08-01

    RWFTF (RadWaste Form Test Facility) must have a secure radiation monitoring system (RMS) because of having a hot-cell capable of handling high radioactive materials. And then in controlled radiation zone, which is hot-cell and its maintenance and operation / control room, area dose rate, radioactivities in air-bone particulates and stack, and surface contamination are monitored continuously. For the effective management such as higher utilization, maintenance and repair, the status of this radiation monitoring system, the operation and characteristics of all kinds of detectors and other parts of composing this system, and signal treatment and its evaluation were described in this technical report. And to obtain the accuracy detection results and its higher confidence level, the procedure such as maintenance, functional check and system calibration were established and appended to help the operation of RMS. (author). 6 tabs., 30 figs

  18. Applications of Radiation Processing in Industry

    International Nuclear Information System (INIS)

    Abad, Lucille V.

    2015-01-01

    Radiation processing has long been known as commercially viable technology that can be beneficially used to enhance the characteristics of many materials. Several gamma irradiators and electron beam accelerators are operating worldwide which are utilized for various established industrial applications. These could be used for the following processes: a) radiation crosslinking e.g. crosslinking of wires and cables, heat shrinkable film and tube productions, manufacture of plastic bags and tubings for medical products, pre-curing of automobile tire components, curing of polymeric coatings, etc. b) radiation degradation e.g. Scrap Teflon (Polytetraflouroethylene) to form powders, disinfestations and pasteurization of agricultural products, sterilization of medical products, etc.; and c) radiation grafting e.g. grafted non-woven fabrics for metal adsorbent. Emerging applications for radiation processing include grafted membranes for fuel cell, electrodes, cell sheet for tissue engineering, nanoparticle production, polymer composite synthesis, and fibrous catalyst for biodiesel production. Current researches at the Philippine Nuclear Research Institute consist of crosslinking of natural and synthetic polymers for medical application e.g. wound dressing, hemostats, and bioimplants for vesicouretal reflux (VUR); grafting of natural and synthetic fabrics for metal adsorbents; and radiation degradation of carrageenan as plant growth promoter. (author)

  19. Evaluation of the effectiveness of lamination for preventing discoloration and fading of radiation warning signs posted on the exterior of radiation facilities

    International Nuclear Information System (INIS)

    Hiroi, Tomoko; Ootaki, Masanori; Nawa, Yukino; Kuwabara, Rie; Tatsunami, Shinobu; Matsui, Hiroaki; Kumazawa, Yutaka; Yamamoto, Takio

    2014-01-01

    Radiation warning signs posted on the exterior of radiation facilities become faded and discolored with time. There are various types of commercially available laminating films for protecting signs from ultraviolet light. We examined the protection effect of polyvinyl chloride (PVC), acrylic resin and fluororesin films applied to the surface of radiation warning signs. The laminated signs were exposed to direct sunlight on the wall of an air filter chamber of a radiation facility for 1200 days. Simultaneously, another set of laminated signs was exposed to light from a xenon-arc weatherometer for 1200 hours. After exposure, the colors on the surface of each sign were evaluated digitally by using a spectrum colorimeter. The results indicated that lamination with a film that blocks ultraviolet light is effective for protecting the signs from fading and discoloration. For long-term protection under direct sunlight, PVC was the most effective among the three materials tested. (author)

  20. Laser peening applications for next generation of nuclear power facilities

    International Nuclear Information System (INIS)

    Rankin, J.; Truong, C.; Walter, M.; Chen, H.-L.; Hackel, L.

    2008-01-01

    Generation of electricity by nuclear power can assist in achieving goals of reduced greenhouse gas emissions. Increased safety and reliability are necessary attributes of any new nuclear power plants. High pressure, hot water and radiation contribute to operating environments where Stress Corrosion Cracking (SCC) and hydrogen embrittlement can lead to potential component failures. Desire for improved steam conversion efficiency pushes the fatigue stress limits of turbine blades and other rotating equipment. For nuclear reactor facilities now being designed and built and for the next generations of designs, laser peening could be incorporated to provide significant performance life to critical subsystems and components making them less susceptible to fatigue, SCC and radiation induced embrittlement. These types of components include steam turbine blades, hubs and bearings as well as reactor components including cladding material, housings, welded assemblies, fittings, pipes, flanges, vessel penetrations, nuclear waste storage canisters. Laser peening has proven to be a commercial success in aerospace applications and has recently been put into use for gas and steam turbine generators and light water reactors. An expanded role for this technology for the broader nuclear power industry would be a beneficial extension. (author)

  1. Nuclear safety and radiation protection report of the Saint-Laurent-des-Eaux nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Saint-Laurent-des-Eaux nuclear power plant (Saint-Laurent-Nouan (FR)): 2 partially dismantled graphite-gas reactors and a graphite sleeves storage silo (INB 46 and 74), and 2 PWR reactors in operation (INB 100). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  2. Nuclear safety and radiation protection report of the Saint-Laurent-des-Eaux nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Saint-Laurent-des-Eaux nuclear power plant (Saint-Laurent-Nouan (FR)): 2 partially dismantled graphite-gas reactors and a graphite sleeves storage silo (INB 46 and 74), and 2 PWR reactors in operation (INB 100). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  3. Basic knowledge from legal provisions of radiation protection for staff members in radiological facilities

    International Nuclear Information System (INIS)

    Poulheim, K.F.

    1987-01-01

    Based on ICRP recommendations the GDR legislation of radiation protection is performed by the National Board of Nuclear Safety and Radiation Protection of the GDR. The legal regulations of radiation protection in biomedical radiography and radiotherapy are specified. The main content of the atomic energy law and of the regulation on guarantee of nuclear safety and radiation protection is outlined. Basic principles such as radiation workers, operating personnel of nuclear facilities and the categories of their working conditions, areas of radiation protection and unusual events are defined. Responsibility, tasks of responsive staff members, measures of control by state and plant, guarantee of radiation protection, limitation of radiation doses and last not least regulations of sentences and fines, resp., are specified

  4. Highlights of IAEA activities in the field of radiation application

    International Nuclear Information System (INIS)

    Machi, S.

    1994-01-01

    In IAEA's major programme of Nuclear Applications, the activities performed are divided into four areas: food and agriculture, industry and earth science, human health, and physical and chemical sciences. These activities involve co-operation with FAO, WHO, UNIDO and UNEP, and have close link with the technical assistance programme. About 60% of the technical assistance projects are implemented in the field of nuclear applications. The purpose of the nuclear application programme is to develop technologies useful for environmental protection and sustainable development, to support R and D programmes of developing countries, to develop new applications of nuclear techniques. Major activities in food and agriculture are the application of radiation and isotopes, controling insects, preserving food, soil fertility and crop production, and improving animal production and the use of radiation with biotechnology for plant mutation breeding aiming at environmentally friendly and sustainable food production. In the human health programme emphasis is given to nuclear medicine, cancer therapy and nutrition. Today, only 35% of all developing countries have radiotherapy facilities. Activities, therefore, focus on strengthening clinical radiotherapy in such countries. In the field of industry and earth science, flue gas cleaning by electron beams, pollution monitoring using nuclear analytical techniques, nucleonic control systems for industries, and water resource exploration are major projects assisting developing countries. As of 1994 the IAEA will launch 12 new and promising Model Projects for developing Member States which will be of benefit to their economies and raising of their standard of living. In this paper the highlights of the above mentioned IAEA activities are presented. (author)

  5. A suite of standards for radiation monitors and their revisions

    International Nuclear Information System (INIS)

    Noda, Kimio

    1991-01-01

    A suite of standards for radiation monitors applied in nuclear facilities in Japan was compiled mainly by Health Physicists in Power Reactor and Nuclear Fuel Development (PNC) and Japan Atomic Energy Research Institute (JAERI), and issued in 1971 as 'The Standard for Radiation Monitors'. PNC facilities such as Reprocessing Plant and Plutonium Fuel Fabrication Facility, as well as other nuclear industries have applied the standard, and contributed improvement of practical maintenability and availability of the radiation monitors. Meanwhile, the radiation monitors have remarkably progressed in its application and size of the monitors is growing. Furthermore, manufacturing techniques have significantly progressed especially in the field of system concepts and electronics elements. These progresses require revision of the standards. 'The Standard for Radiation Monitors' has been revised considering the problems in practical application and data processing capability. Considerations are given to keep compatibility of old and new modules. (author)

  6. A status report on the SURF II synchrotron radiation facility at NBS

    International Nuclear Information System (INIS)

    Madden, R.P.

    1980-01-01

    Recent work to upgrade the SURF II (Synchrotron Ultraviolet Radiation Facility) storage ring is described, resulting in reliable operation up to 252 MeV at currents in the range 10-20 mA. A wide variety of experiments is now in progress at the facility, encompassing solid state physics, atomic and molecular physics and molecular biology, as well as the all-important radiometric standards work. The instrumentation used for these experiments is described; brief details of the experiments themselves are also given. (orig.)

  7. Industrial applications of radiation chemistry

    International Nuclear Information System (INIS)

    Puig, Jean Rene

    1959-01-01

    The status of industrial applications of radiation chemistry as it stands 6 months after the second Geneva international conference is described. The main features of the interaction of ionizing radiations with matter are briefly stated and a review is made of the best studied and the more promising systems of radiation chemistry. The fields of organics, plastics, heterogeneous catalysis are emphasized. Economies of radiation production and utilization are discussed. Reprint of a paper published in Industries atomiques - no. 5-6, 1959

  8. Biomedical applications of ionizing radiation

    International Nuclear Information System (INIS)

    Rosiak, J.M.; Pietrzak, M.

    1997-01-01

    Application of ionizing radiation for sterilization of medical devices, hygienization of cosmetics products as well as formation of biomaterials have been discussed. The advantages of radiation sterilization over the conventional methods have been indicated. The properties of modern biomaterials, hydrogels as well as some ways of their formation and modification under action of ionizing radiation were presented. Some commercial biomaterials of this kind produced in accordance with original Polish methods by means of radiation technique have been pointed out. (author)

  9. Radiation shielding at interim storage facility for CANDU-type nuclear spent fuel

    International Nuclear Information System (INIS)

    Mateescu, S.; Radu, M. Pantazi D.; Stanciu, M.

    1997-01-01

    Technical measures in radiological protection are taken in the interim storage facility design to ensure that, during normal operation, exposures of workers and members of public to ionizing radiation are limited to levels lower than regulatory limits. The spent fuel storage design provides for radiation exposure to be as low as reasonable achievable (ALARA principles). The evaluation of radiation shields includes the most conservative provisions: - all locations which may contain spent fuel are full; - the spent fuel has reached the maximum burnup; - the post irradiation cooling period should be the minimum reasonable; - equipment for handling contains the maximum amount of spent fuel. Radiation shields should ensure that external radiation fields do not exceed limits accepted by the Regulatory Body Module. The evaluation has been performed with two computer codes, QAD-5K and MICROSHIELD-4. (authors)

  10. Practical applications of coherent transition radiation

    International Nuclear Information System (INIS)

    Moran, M.J.

    1987-01-01

    The predictable nature of transition radiation (TR) emissions has been demonstrated under a wide variety of experimental conditions. The reliable character of TR allows the design of specific practical applications that use emissions from the optical to the x-ray spectral regions. Applications often can be enhanced by the spatial coherence of TR, and some have become highly developed. New applications may be developed through the use of other related radiation mechanisms. 20 refs., 3 figs

  11. Background suppression by the DRAGON radiative capture facility at TRIUMF/ISAC

    International Nuclear Information System (INIS)

    Hutcheon, D.; Buchmann, L.; Chen, A.A.; D'Auria, J.M.; Davis, C.A.; Greife, U.; Hussein, A.; Ottewell, D.F.; Ouellet, C.V.; Parikh, A.; Parker, P.; Pearson, J.; Ruiz, C.; Ruprecht, G.; Trinczek, M.; Vockenhuber, C.

    2008-01-01

    The DRAGON facility at TRIUMF/ISAC detects reaction products following radiative capture of a hydrogen or helium target nucleus by an accelerated heavy ion. Capture reactions of interest in nuclear astrophysics may have reaction rates 10-14 orders of magnitude lower than the intensity of the incident beam: as well as efficiently transporting the heavy reaction product from the target to a suitable particle detector, the separator must provide most of the suppression of unreacted beam. We describe the features of beam background encountered in a range of proton- and alpha-capture experiments at the DRAGON facility.

  12. Feasibility study on utilization of radiation from spent fuel in storage facility

    International Nuclear Information System (INIS)

    Wataru, Masumi; Sakamoto, Kazuaki; Saegusa, Toshiari; Sakaya, Tadatsugu; Fujiwara, Hiroaki.

    1997-01-01

    Spent fuels of nuclear power plant are stored safely until reprocessing because they are radioactive in addition to energy resources. It is foreseen that the amount of the stored spent fuel increases in the long term. Therefore, in the government, discussion on the storage away from reactor is in progress as well as one at reactor. Spent fuel emits a radioactive ray for a long time. In the storage facility, radiation is shielded not to have a detrimental influence upon the health and environment. If radioactive ray is incorrectly handled, it is hazardous for the health and the environment. But, it is very useful if it is properly utilized under a careful management. In the industry, radioactive ray by isotopes (e.g. Co-60) is used widely. In a view of the effective utilization of energy, the promotion of the siting, the regional development and the creation of employment opportunities of local inhabitants, it is preferable to make use of radiation from the spent fuel. In this study, feasibility of utilization of radiation energy from the spent fuel in a storage facility was evaluated. (author)

  13. Medical and industrial application of radiation

    International Nuclear Information System (INIS)

    Ajayi, I.R.

    1999-01-01

    While dosimetry is not a radiation application, accurate dosage of radiation of utmost importance for all radiation applications. For both therapeutic and industrial applications it can be matter of life and death. For this reason, great efforts have been made to ensure that radiation dosages given to patients and used in all industrial applications are as near as possible to those prescribed. The World Health Organization (WHO) and the IAEA, together with many National Standard Laboratories and with the International Bureau of Weight and Measures, have been very active and successful during the last 20 years in ascertaining that normal cobalt-60 therapy unit. For this purpose, 63 Secondary Standard Dosimetry Laboratories have been established of which more than half are in developing countries. FRPS houses one of the Secondary Standard Dosimetry Laboratories. As accurate dosimetry is a prerequisite in radiotherapy, so it is in industrial exposures and all laboratories responsible for dosimetry have to make frequent intercomparisons with one of the Primary Standard Dosimetry Laboratories. The SSDL at FRPS hopes to commence this as soon as our new Harshaw 6600 TLD reader arrives. This has already been approved by the IAEA. Much high doses of radiation are used for some industrial applications, as discussed in a previous lecture, such as sterilization of rubber, and food preservation and newly developed techniques are being used for the assurance of the prescribed dose. IAEA provides assistance in this area also through the secondary standard dosimetry laboratories. The IAEA has a broad programme of assistance which includes the calibration of all instruments in the laboratories of the participants, be it for radiation protection, or high dose measurements

  14. Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2A

    International Nuclear Information System (INIS)

    Bowman, R.C.

    1994-04-01

    This permit application for the 616 Nonradioactive Dangerous Waste Storage Facility consists for 15 chapters. Topics of discussion include the following: facility description and general provisions; waste characteristics; process information; personnel training; reporting and record keeping; and certification

  15. ELF radiation from the Tromsoe super heater facility

    International Nuclear Information System (INIS)

    Barr, R.; Stubbe, P.

    1991-01-01

    Direct comparisons have been made of the ionospheric ELF radiation produced by the new (1 GW ERP) and old (250 MW ERP) antennas of the Tromsoe heater system, but no significant differences in the ELF signal strength have been detected. This initially surprising result is shown to require a value of unity for the index relating the received ELF signal strength to HF power input to the antenna. A series of experiments performed solely to derive more accurate values for this power index provided values ranging from 0.74 to 0.97, dependent on the ELF frequencies generated. It has been suggested that ELF radiation from the normal Tromsoe heater facility should be limited by saturation effects, even when operating well below the maximum HF power density (3mW/m 2 in the D-region). No evidence for such saturation effects has been found even at power densities greater than 10mW/m 2

  16. A Shared Compliance Control for Application in High Radiation Fields

    International Nuclear Information System (INIS)

    Ahn, Sung Ho; Jung, Hoan Sung; Lee, Kye Hong; Kim, Young Ki; Kim, Hark Rho

    2005-01-01

    Bilateral control systems present a technical alternative for intelligent robotic systems performing dexterous tasks in unstructured environments such as a nuclear facility, outer space and underwater. A shared compliance control scheme is proposed for application in high radiation fields in which the force sensor can not be installed because of a radiation effect. A position difference between the master system and the slave system is treated as an equivalent contact force and used for an input to the compliance controller. The compliance controller is implemented by a first order low pass filter and it modifies the position of the master to the reference position. Thus the compliance control task is shared by both the human operator's direct manual control and the autonomous compliance control of the slave system. Consequently, the position of a slave system tracks well the reference position and the compliance of the slave system is autonomously controlled in a contact condition. The simulation results show the excellence of the proposed scheme

  17. The regulations for delivery of subsidies to radiation monitoring

    International Nuclear Information System (INIS)

    1979-01-01

    The regulations are defined under the law concerning subsidies and the provisions of the order for execution of the law. Basic terms are explained, such as: nuclear power generating facilities; arrangement business of radiation monitoring facilities; pre-research business of radiation monitoring; radiation monitoring business; place of enterprise; and expected time of beginning of the use. The Director General of Science and Technology Agency delivers subsidies to those prefectures where nuclear power generating facilities are or are expected to be established, or their neighboring prefectures. Subsidies are paid for each place of enterprise to support all or a part of expenses necessary for arrangement, pre-research or radiation monitoring business. Limits of subsidies for a place of enterprise in a prefecture are 155.6 million yen for a term for arrangement business, 16 million yen for each fiscal year for pre-research and 16 million yen for each fiscal year for radiation monitoring. An application for subsidies shall be filed by a prefecture to the Director General with the business program and gists of nuclear power generating facilities according to the forms attached. Receiving the application, the Director General shall examine it and notify without delay to the applicant the decision of delivery and its conditions in writing, when such settlement is made. Terms and conditions of delivery and reports, etc. are prescribed respectively. (Okada, K.)

  18. Synchrotron radiation research facility conceptual design report

    International Nuclear Information System (INIS)

    1976-06-01

    A report is presented to define, in general outline, the extent and proportions, the type of construction, the schedule for accomplishment, and the estimated cost for a new Synchrotron Radiation Facility, as proposed to the Energy Research and Development Administration by the Brookhaven National Laboratory. The report is concerned only indirectly with the scientific and technological justification for undertaking this project; the latter is addressed explicitly in separate documents. The report does consider user requirements, however, in order to establish a basis for design development. Preliminary drawings, outline specifications, estimated cost data, and other descriptive material are included as supporting documentation on the current status of the project in this preconstruction phase

  19. Prospects for radiation processing in the Philippines

    International Nuclear Information System (INIS)

    Navarro, Q.O.

    1980-01-01

    A review of the status of current facilities and capabilities for radiation processing is presented together with industrial data from some selected industries. Due to limited accessibility of actual production/consumption data only tentative conclusions could be made regarding radiation technology applications for local industries. The order of priority, based on available information, appears to be medical sterilization, food irradiation, wood products modification, radiation polymerization, and rubber latex ''vulcanization.'' There is still a need for market survey and analyses, upgrading of radiation facilities, enactment of appropriate legislations, training of industrial technologies, and increased financial investment in order to make radiation technology a viable alternative to current local practices. (author)

  20. Optimization of radiation protection in gamma radiography facilities

    International Nuclear Information System (INIS)

    Antonio Filho, Joao

    1999-01-01

    To determine optimized dose limits for workers, a study of optimization of radiation protection was undertaken in gamma radiography facilities closed, using the Technique Multiple Attributes Utility Analysis. A total of 217 protection options, distributed in 34 irradiation scenarios for tree facility types ( fixed open, moveable and closed (bunker) were analyzed. In the determination of the optimized limit dose, the following attributes were considered; costs of the protection barriers, costs attributed to the biological detriment for different alpha (the reference value of unit collective dose), size of the isolation area, constrained limits dose of annual individual equivalent doses and collective dose. The variables studied in the evaluation included: effective work load, type and activity of the sources of radiation ( 192 Ir and 60 Co), source-operator distance related to the characteristic of the length of the command cable and the guide tube, type and thickness of the materials used in the protection barriers (concrete, barite, ceramic, lead, steel alloy and tungsten). The optimal analytic solutions obtained in the optimization process that resulted in the indication of the optimized dose limit were determined by means of a sensitivity analysis and by direct and logic evaluations, thus, independent of the values of the monetary coefficient attributed to the biological detriment, of the annual interest rate applied to the protection cost and of the type of installation studied, it was concluded that the primary limit of annual equivalent dose for workers (now 50 mSv) can be easily reduced to an optimized annual dose limit of 5 mSv. (author)

  1. The 88-Inch Cyclotron: A One-Stop Facility for Electronics Radiation and Detector Testing

    Energy Technology Data Exchange (ETDEWEB)

    Kireeff Covo, M.; Albright, R. A.; Ninemire, B. F.; Johnson, M. B.; Hodgkinson, A.; Loew, T.; Benitez, J. Y.; Todd, D. S.; Xie, D. Z.; Perry, T.; Phair, L.; Bernsteiny, L. A.; Bevins, J.; Brown, J. A.; Goldblum, B. L.; Harasty, M.; Harrig, K. P.; Laplace, T. A.; Matthews, E. F.; Bushmaker, A.; Walker, D.; Oklejas, V.; Hopkins, A. R.; Bleuel, D. L.; Chen, J.; Cronin, S. B.

    2017-10-01

    In outer space down to the altitudes routinely flown by larger aircrafts, radiation can pose serious issues for microelectronics circuits. The 88-Inch Cyclotron at Lawrence Berkeley National Laboratory is a sector-focused cyclotron and home of the Berkeley Accelerator Space Effects Facility, where the effects of energetic particles on sensitive microelectronics are studied with the goal of designing electronic systems for the space community. This paper describes the flexibility of the facility and its capabilities for testing the bombardment of electronics by heavy ions, light ions, and neutrons. Experimental capabilities for the generation of neutron beams from deuteron breakups and radiation testing of carbon nanotube field effect transistor will be discussed.

  2. Security culture for nuclear facilities

    Science.gov (United States)

    Gupta, Deeksha; Bajramovic, Edita

    2017-01-01

    Natural radioactive elements are part of our environment and radioactivity is a natural phenomenon. There are numerous beneficial applications of radioactive elements (radioisotopes) and radiation, starting from power generation to usages in medical, industrial and agriculture applications. But the risk of radiation exposure is always attached to operational workers, the public and the environment. Hence, this risk has to be assessed and controlled. The main goal of safety and security measures is to protect human life, health, and the environment. Currently, nuclear security considerations became essential along with nuclear safety as nuclear facilities are facing rapidly increase in cybersecurity risks. Therefore, prevention and adequate protection of nuclear facilities from cyberattacks is the major task. Historically, nuclear safety is well defined by IAEA guidelines while nuclear security is just gradually being addressed by some new guidance, especially the IAEA Nuclear Security Series (NSS), IEC 62645 and some national regulations. At the overall level, IAEA NSS 7 describes nuclear security as deterrence and detection of, and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear, other radioactive substances and their associated facilities. Nuclear security should be included throughout nuclear facilities. Proper implementation of a nuclear security culture leads to staff vigilance and a high level of security posture. Nuclear security also depends on policy makers, regulators, managers, individual employees and members of public. Therefore, proper education and security awareness are essential in keeping nuclear facilities safe and secure.

  3. Discussion of some issues in environmental impact reports of nuclear and radiation facilities

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1995-01-01

    The author discusses some issues in compilation and evaluation of environmental impact reports of nuclear and radiation facilities which should be noticeable. Some recommendations are made to improve the quality of the reports as well

  4. 224-T Transuranic Waste Storage and Assay Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-01-01

    Westinghouse Hanford Company is a major contractor to the US Department of Energy Richland Field Office and serves as cooperator of the 224-T Transuranic Waste Storage and Assay Facility, the storage unit addressed in this permit application. At the time of submission of this portion of the Hanford Facility. Dangerous Waste Permit Application covering the 224-T Transuranic Waste Storage and Assay Facility, many issues identified in comments to the draft Hanford Facility Dangerous Waste Permit remain unresolved. This permit application reflects the positions taken by the US Department of Energy, Company on the draft Hanford Facility Dangerous Waste Permit and may not be read to conflict with those comments. The 224-T Transuranic Waste Storage and Assay Facility Dangerous Waste Permit Application (Revision 0) consists of both a Part A and Part B permit application. An explanation of the Part A revisions associated with this unit, including the Part A revision currently in effect, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B Checklist prepared by the Washington State Department of Ecology (Ecology 1987). The 224-T Transuranic Waste Storage and Assay Facility Dangerous Waste Permit Application contains information current as of March 1, 1992

  5. Application of robotics in nuclear facilities

    International Nuclear Information System (INIS)

    Byrd, J.S.; Fisher, J.J.

    1986-01-01

    Industrial robots and other robotic systems have been successfully applied at the Savannah River nuclear site. These applications, new robotic systems presently under development, general techniques for the employment of robots in nuclear facilities, and future systems are discussed

  6. Teledosimetry and its application in radiation hygiene

    International Nuclear Information System (INIS)

    Hajek, J.

    1975-01-01

    The principle and application is dealt with of teledosimetry, a new method of telemetric transfer of data on the flux density of ionizing radiation. A teledosimetric apparatus is described consisting of a transmitter with a halogen GM tube and a receiver with an evaluation device. Two cases of the application of teledosimetry in radiation hygiene practice are reported. The new method makes possible the monitoring of personnel working with radiation, the testing of the efficiency of radiation protection, and a reduction of doses to personnel in the process studied. (author)

  7. NASA FACILITY FOR THE STUDY OF SPACE RADIATION EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, David R.

    1963-04-15

    Information on the energies andd fluxes of trapped electrons and protons in space is summarized, and the Space Radiation Effects Laboratory being constructed to simulate most of the space particulate-energy spectrum is described. A 600-Mev proton synchrocyclotron of variable energy and electron accelerators of 1 to 10 Mev will be included. The accelerator characteristics and the arrangement of the experimental and support buildings, particularly the beam facilities, are discussed; and the planned activities of the laboratory are given. (D.C.W.)

  8. Operating experience and radiation protection problems in the working of the radio-metallurgy hot cell facilities at BARC

    International Nuclear Information System (INIS)

    Janardhanan, S.; Watamwar, S.B.; Mehta, S.K.; Pillai, P.M.B.; John, Jacob; Kutty, K.N.

    1977-01-01

    The Bhabha Atomic Research Centre at Bombay has six hot cell facilities for radiometallurgical investigations of irradiated/failed fuel elements. The hot cell facilities have been provided with certain built-in safety features, a ventilation system, radiation monitoring instruments for various purposes, a centralised air monitoring system and a central panel for display of various alarms. Procedures adopted for radiation protection and contamination control include : (1) radiation leak test for cells and filter efficiency evaluation before cell activation, (2) practices to be followed by frog suit personnel while working in hot cell areas, (3) receipt and handling of irradiated fuel elements, (4) cell filter change operation, (5) checks on high level drains and (6) effluent discharge and waste shipments. Operating experience in the working of these facilities along with radiation accident incidents is described. Data regarding release of activity during normal cell operations, dose rates during various metallurgical operations and personnel exposures are presented. (M.G.B.)

  9. Design of a radiation facility for very small specimens used in radiobiology studies

    Science.gov (United States)

    Rodriguez, Manuel; Jeraj, Robert

    2008-06-01

    A design of a radiation facility for very small specimens used in radiobiology is presented. This micro-irradiator has been primarily designed to irradiate partial bodies in zebrafish embryos 3-4 mm in length. A miniature x-ray, 50 kV photon beam, is used as a radiation source. The source is inserted in a cylindrical brass collimator that has a pinhole of 1.0 mm in diameter along the central axis to produce a pencil photon beam. The collimator with the source is attached underneath a computer-controlled movable table which holds the specimens. Using a 45° tilted mirror, a digital camera, connected to the computer, takes pictures of the specimen and the pinhole collimator. From the image provided by the camera, the relative distance from the specimen to the pinhole axis is calculated and coordinates are sent to the movable table to properly position the samples in the beam path. Due to its monitoring system, characteristic of the radiation beam, accuracy and precision of specimen positioning, and automatic image-based specimen recognition, this radiation facility is a suitable tool to irradiate partial bodies in zebrafish embryos, cell cultures or any other small specimen used in radiobiology research.

  10. Survey of EPA facilities for solar thermal energy applications

    Science.gov (United States)

    Nelson, E. V.; Overly, P. T.; Bell, D. M.

    1980-01-01

    A study was done to assess the feasibility of applying solar thermal energy systems to EPA facilities. A survey was conducted to determine those EPA facilities where solar energy could best be used. These systems were optimized for each specific application and the system/facility combinations were ranked on the basis of greatest cost effectiveness.

  11. Data analysis for neutron monitoring in an enrichment facility

    International Nuclear Information System (INIS)

    Markin, J.T.; Stewart, J.E.; Goldman, A.S.

    1982-01-01

    Area monitoring of neutron radiation to detect high-enriched uranium production is a potential strategy for inspector verification of operations in the cascade area of a centrifuge enrichment facility. This paper discusses the application of statistical filtering and hypothesis testing procedures to experimental data taken in an enrichment facility. The results demonstrate that these data analysis methods can enhance detection of facility misoperation by neutron monitoring

  12. The national institute of radiation hygiene and the medical application of radiation

    International Nuclear Information System (INIS)

    Baarli, J.

    1988-01-01

    This paper gives a review of the rules and regulations concerning medical application of radiation in Norway. It discusses the intention of the regulations, the way in which the regulations is applied and how the National Institute of Radiation Hygiene as the competent authority assures the application of the regulations. The paper furthermore gives an indication of the areas of radiation application in medicine and the number of location of X-ray equipment, nuclear medical laboratories, radiation therapy equipment, etc. The number of X-ray examinations in Norway per year are also given, together with their distribution among the various types of examinations. Summary results of a quality assurance investigation of nuclear medical laboratories are given, as well as the results of inspections of the various types of equipment used in medical diagnostics

  13. Radiation in industrial processes;Applications reviewed at Warsaw Conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-10-15

    The uses of ionizing radiation can be divided into two broad categories. First, it can be used as a tool of investigation, measurement and testing, and secondly, it can be a direct agent in inducing chemical processes. For example, radiation can help in the detecting and locating of malignant tumours, and it can be employed also for the destruction of those tumours. Again, it can reveal intricate processes of plant growth and, at the same time, can initiate certain processes which result in the growth of new varieties of plants. Similarly in industry, radiation is both a tool of detection, testing and measurement and an active agent for the initiation of useful chemical reactions. The initiation of chemical reactions usually requires larger and more powerful sources of radiation. Such radiation can be provided by substances like cobalt 60 and caesium 137 or by machines which accelerate nuclear particles to very high energies. Of the particle-accelerating machines, the most useful in this field are those which accelerate electrons to energies considerably higher than those possessed by the electrons (beta particles) emitted by radioactive substances. These high-energy radiations produce interesting reactions both in organic life and in materials for industry. Several of the papers presented at the Warsaw conference were devoted to the application of ionizing radiation to polymerization and other useful reactions in the manufacture and treatment of plastics. The polymerization of the ethylene series of hydro-carbons was discussed from various angles and the technical characteristics and requirements were described. It was pointed out by some experts that the cross-linking effect of radiation resulted in a superior product, opening the way to new applications of polyethylene. Irradiated polyethylene film has been sold for several years, and electrical wire has been made with irradiated polyethylene as the insulating jacket. Other reactions discussed included the cross

  14. Computational methods for industrial radiation measurement applications

    International Nuclear Information System (INIS)

    Gardner, R.P.; Guo, P.; Ao, Q.

    1996-01-01

    Computational methods have been used with considerable success to complement radiation measurements in solving a wide range of industrial problems. The almost exponential growth of computer capability and applications in the last few years leads to a open-quotes black boxclose quotes mentality for radiation measurement applications. If a black box is defined as any radiation measurement device that is capable of measuring the parameters of interest when a wide range of operating and sample conditions may occur, then the development of computational methods for industrial radiation measurement applications should now be focused on the black box approach and the deduction of properties of interest from the response with acceptable accuracy and reasonable efficiency. Nowadays, increasingly better understanding of radiation physical processes, more accurate and complete fundamental physical data, and more advanced modeling and software/hardware techniques have made it possible to make giant strides in that direction with new ideas implemented with computer software. The Center for Engineering Applications of Radioisotopes (CEAR) at North Carolina State University has been working on a variety of projects in the area of radiation analyzers and gauges for accomplishing this for quite some time, and they are discussed here with emphasis on current accomplishments

  15. Optimization (ALARA) of radiation protection at Department of Energy facilities

    International Nuclear Information System (INIS)

    Weadock, A.A.; Jones, C.R.

    1992-01-01

    Maintaining worker and public exposures As Low As Reasonably Achievable (ALARA) is a key objective of the Department of Energy (DOE). Responsibility for occupational ALARA program policy and guidance resides within the DOE Office of Health. Current Office of Health initiatives related to ALARA include the development of additional regulatory guidance related to ALARA program implementation at DOE contractor facilities, the review of ALARA program status at various facilities and the production of technical reports summarizing this status, and the support of various mechanisms to improve communication among the DOE ALARA community. The Office of Health also monitors revisions to radiogenic risk estimates and radiation protection recommendations to evaluate adequacy of current DOE limits and impacts of potentially revised limits. (author)

  16. Track 8: health and radiological applications. Isotopes and radiation: general. 2. Radiation Pasteurization for Diverse Food Products

    International Nuclear Information System (INIS)

    Braby, L.A.; Whittaker, A.D.; McLellan, M.; Waltar, A.E.

    2001-01-01

    . Unfortunately, irradiation is still considered an additive by the U.S. Food and Drug Administration (FDA) (FDADocket No. 94F-0289; 62 FR 64107). As a result, government approval is obtained through an application that must demonstrate both the benefit and the safety of the treatment for the specific products that are covered. This results in approvals that are extremely specific in terms of the product, the environment during treatment, the radiation exposure, the packaging materials used, and the other ingredients such as seasonings. For example, irradiation of frozen raw ground beef is approved for the minimization of bacterial contamination. This product is currently available through selected retailers as preformed patties with a fixed number packaged as a unit. But, the market is limited because of the fixed size of the package. Almost all of the growth in the U.S. food industry is in prepared or partially prepared products-those that minimize the time required to serve a meal. Most of the research and development effort among food-processing companies is currently dedicated to developments in this area. Both the specific form of the product and the precise way it is packaged impact the market for such items. It is evident that the benefits of electronic pasteurization (irradiation) can add significant value, both as enhanced food safety for the customer and also enhanced profit as well as reduced risk for the processor. However, such products will require extensive testing, both to assure the producers that they can maintain a consistent product that will appeal to the customer and to support the applications for governmental approval of these products. Furthermore, the development of these new products will require the support of basic research on the interaction of food ingredients and the atmosphere during irradiation, the effects of dose rate and temperature on product quality and aesthetics, the optimization of packaging materials, heterogeneous product mixes

  17. Knowledge, skills, and abilities for key radiation protection positions at DOE facilities

    International Nuclear Information System (INIS)

    1997-01-01

    This document provides detailed qualification criteria for contractor key radiation protection personnel. Although federal key radiation protection positions are also identified, qualification standards for federal positions are provided in DOE O 360.1 and the DOE Technical Qualifications Program. Appendices B and D provide detailed listings for knowledge, skills, and abilities for contractor and DOE federal key radiation protection positions. This information may be used in developing position descriptions and individual development plans. Information provided in Appendix C may be useful in developing performance measures and assessing an individual's performance in his or her specific position. Additionally, Federal personnel may use this information to augment their Office/facility qualification standards under the Technical Qualifications Program

  18. The status of the first infrared beamline at Shanghai Synchrotron Radiation Facility

    International Nuclear Information System (INIS)

    Ji, Te; Tong, Yajun; Zhu, Huachun; Zhang, Zengyan; Peng, Weiwei; Chen, Min; Xiao, Tiqiao; Xu, Hongjie

    2015-01-01

    Construction of the first infrared beamline BL01B1 at Shanghai Synchrotron Radiation Facility (SSRF) was completed at the end of 2013. The IR beamline collects both edge radiation (ER) and bending magnet radiation (BMR) from a port, providing a solid angle of 40 mrad and 20 mrad in the horizontal and vertical directions, respectively. The optical layout of the infrared beamline and the design of the extraction mirror are described in this paper. A calculation of the beam propagation has been used to optimize the parameters of the optical components. The photon flux and spatial resolution have been measured at the end-station, and the experimental results are in good agreement with the theoretical calculation

  19. The status of the first infrared beamline at Shanghai Synchrotron Radiation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Te; Tong, Yajun; Zhu, Huachun; Zhang, Zengyan; Peng, Weiwei; Chen, Min, E-mail: chenmin@sinap.ac.cn; Xiao, Tiqiao; Xu, Hongjie

    2015-07-11

    Construction of the first infrared beamline BL01B1 at Shanghai Synchrotron Radiation Facility (SSRF) was completed at the end of 2013. The IR beamline collects both edge radiation (ER) and bending magnet radiation (BMR) from a port, providing a solid angle of 40 mrad and 20 mrad in the horizontal and vertical directions, respectively. The optical layout of the infrared beamline and the design of the extraction mirror are described in this paper. A calculation of the beam propagation has been used to optimize the parameters of the optical components. The photon flux and spatial resolution have been measured at the end-station, and the experimental results are in good agreement with the theoretical calculation.

  20. The status of the first infrared beamline at Shanghai Synchrotron Radiation Facility

    Science.gov (United States)

    Ji, Te; Tong, Yajun; Zhu, Huachun; Zhang, Zengyan; Peng, Weiwei; Chen, Min; Xiao, Tiqiao; Xu, Hongjie

    2015-07-01

    Construction of the first infrared beamline BL01B1 at Shanghai Synchrotron Radiation Facility (SSRF) was completed at the end of 2013. The IR beamline collects both edge radiation (ER) and bending magnet radiation (BMR) from a port, providing a solid angle of 40 mrad and 20 mrad in the horizontal and vertical directions, respectively. The optical layout of the infrared beamline and the design of the extraction mirror are described in this paper. A calculation of the beam propagation has been used to optimize the parameters of the optical components. The photon flux and spatial resolution have been measured at the end-station, and the experimental results are in good agreement with the theoretical calculation.

  1. A study for the fabulously of introducing an acceleration mass spectrometer facility (ABMs) for carbon-14 applications

    International Nuclear Information System (INIS)

    Aly, A.I.M.; Comsan, N.; Sadek, M.

    2004-01-01

    In this work a study was conducted to show the importance and feasibility of introducing an accelerating mass spectrometer facility for carbon-14 analysis in the environmental levels. The different applications of Carbon-14 (e.g. dating and identification of food additives of synthetic origin) are discussed. There are two methods for C- 14 measurements, beta decay counting and accelerator mass spectrometry (AMS). The beta decay method requires gram quantities of the sample carbon, compared to few milligram quantities in case of AMS method. The Central Lab. for Environmental Isotope Hydrology of the National Center for Nuclear Safety and Radiation Control has a Carbon-14 analysis facility based on beta decay counting using a liquid scintillation counter after sample preparation in the form of benzene through rather complicated chemical conversion steps. This strongly limits the capacity of the laboratory to about 100-150 samples per year. Also, the amount of sample required limits our expansion for some very important applications like dating of archaeological small samples and especially old bone samples which normally have a low concentration of organic compounds. These applications are only possible by using the AMS method. For some applications only AMS could be used e.g measuring C-14 in atmospheric gases such as methane and carbon dioxide is virtually impossible using decay counting but quite feasible with AMS. The importance of purchasing an AMS facility or upgrading the existing accelerator is discussed in view of the shortage of such a facility in Africa and the Middle East. Acquiring an AMS in Egypt will make it possible to accurately date the Egyptian antiquities and to act as a regional laboratory and to enter into new applications where the amount of sample is limiting

  2. A collaborative effort of medical and educational facilities for radiation safety training of nurses

    International Nuclear Information System (INIS)

    Matsuda, Naoki; Yoshida, Masahiro; Takao, Hideaki

    2005-01-01

    The proper understanding of radiation safety by nursing staffs in hospitals are essential not only for radiation protection of themselves against occupational radiation exposure but for quality nursing for patients who receive medical radiation exposure. The education program on radiation in nursing schools in Japan is, however, rather limited, and is insufficient for nurses to acquire basic knowledge of radiation safety and protection. Therefore, the radiation safety training of working nurses is quite important. A hospital-based training needs assignment of radiation technologists and radiologists as instructors, which may result in temporary shortage of these staffs for patients' services. Additionally, the equipments and facilities for radiation training in a hospital might not be satisfactory. In order to provide an effective education regarding radiation for working nurses, the radiation safety training course has been conducted for nurse of the university hospital by the collaboration of medical and educational staffs in Nagasaki University. This course was given for 6 hours in Radioisotope Research Center, a research and education facility for radiation workers using radioisotopes. The curriculum of this course included basics of radiation, effects of radiation on human health, procedures in clinical settings for radiation protection and practical training by using survey meters, which were mainly based on the radiation safety training for beginners according to the Japanese law concerning radiation safety with a modification to focus on medical radiation exposure. This course has been given to approximately 25 nurses in a time, and held 13 times in May 2000 through October 2003 for 317 nurse overall. The pre-instruction questionnaire revealed that 60% of nurses felt fears about radiation diagnosis or therapy, which reduced to less than 15% in the post-instruction surveillance. The course also motivated nurses to give an answer to patients' questions about

  3. Early test facilities and analytic methods for radiation shielding: Proceedings

    International Nuclear Information System (INIS)

    Ingersoll, D.T.; Ingersoll, J.K.

    1992-11-01

    This report represents a compilation of eight papers presented at the 1992 American Nuclear Society/European Nuclear Society International Meeting. The meeting is of special significance since it commemorates the fiftieth anniversary of the first controlled nuclear chain reaction. The papers contained in this report were presented in a special session organized by the Radiation Protection and Shielding Division in keeping with the historical theme of the meeting. The paper titles are good indicators of their content and are: (1) The origin of radiation shielding research: The Oak Ridge experience, (2) Shielding research at the hanford site, (3) Aircraft shielding experiments at General Dynamics Fort Worth, 1950-1962, (4) Where have the neutrons gone?, a history of the tower shielding facility, (5) History and evolution of buildup factors, (6) Early shielding research at Bettis atomic power laboratory, (7) UK reactor shielding: then and now, (8) A very personal view of the development of radiation shielding theory

  4. Overview of radiation protection programme in nuclear medicine facility for diagnostic procedures

    International Nuclear Information System (INIS)

    Ahmed, Ezzeldein Mohammed Nour Mohammed

    2015-02-01

    This project was conducted to review Radiation Protection Program in Nuclear Medicine facility for diagnostic procedures which will provide guide for meeting the standard and regulatory requirements in diagnostic nuclear medicine. The main objective of this project is to keep dose to staff, patient and public as low as reasonably achievable (ALARA). The specific objectives were to review the Radiation Protection Program (RPP) in diagnostic nuclear medicine and to make some recommendation for improving the level of radiation protection in diagnostic nuclear medicine that will help to control normal exposure and prevent or mitigate potential exposure. The methodology used is review of various documents. The review showed that if the Radiation Protection Program is inadequate it leads to unjustified exposure to radiation. Finally, this study stated some recommendations that if implemented could improve the level of radiation protection in nuclear medicine department. One of the most important recommendations is that a qualified Radiation Protection Officer (RPO) should be appointed to lay down and oversee a radiation protection in the nuclear medicine department. The RPO must be given the full authority and the adequate time to enable him to perform his duties effectively. (au)

  5. Application of maximum radiation exposure values and monitoring of radiation exposure

    International Nuclear Information System (INIS)

    1996-01-01

    The guide presents the principles to be applied in calculating the equivalent dose and the effective dose, instructions on application of the maximum values for radiation exposure, and instruction on monitoring of radiation exposure. In addition, the measurable quantities to be used in monitoring the radiation exposure are presented. (2 refs.)

  6. The regulations for delivery of subsidies to radiation monitoring

    International Nuclear Information System (INIS)

    1985-01-01

    The regulations provide for subsidies for equipment and operation of a radiation monitoring facility around a nuclear power generating facility. Subsidies are provided to the prefectures concerned for equipment, etc. required in radiation monitoring, pre-service radiation monitoring and in-service radiation monitoring conducted by a prefecture. The contents are as follows: terms of subsidy allocations, the sum of subsidy allocations, applications for subsidies, decisions on the allocation of subsidies, withdrawal of applications, conditions of the allocations, a report on the work proceedings, a report on the results, confirmation on the sum of the subsidies, withdrawal of the decision for subsidies, limitations for disposal of the properties, payment of the subsidy, accounting of the subsidy operations, and a record on the subsidy. (Kubozono, M.)

  7. The regulations for delivery of subsidies to radiation monitoring

    International Nuclear Information System (INIS)

    1984-01-01

    The regulations provide for subsidies for equipment and operation of a radiation monitoring facility around a nuclear power generating facility. Subsidies are provided to the prefectures concerned for equipment, etc. required in radiation monitoring, pre-service radiation monitoring and in-service radiation monitoring conducted by a prefecture. The contents are as follows: terms of subsidy allocations, the sum of subsidy allocations, applications for subsidies, decisions on the allocation of subsidies, withdrawal of applications, conditions of the allocations, a report on the work proceedings, a report on the results, confirmation on the sum of the subsidies, withdrawal of the decision for subsidies, limitations for disposal of the properties, payment of the subsidy, accounting of the subsidy operations, and a record on the subsidy. (Mori, K.)

  8. Radiation acoustics and its applications

    International Nuclear Information System (INIS)

    Lyamshev, L.M.

    1992-01-01

    Radiation acoustics is a new branch of acoustics, developing on the boundary of acoustics, nuclear physics, elementary particles and high-energy physics. Its fundamentals are laying in the research of acoustical effects due to the interaction of penetrating radiation with matter. The study of radiation-acoustical effects leads to the new opportunities in the penetration radiation research (acoustical detection, radiation-acoustical dosimetry), study of the physical parameters of matter, in a solution of some applied problems of nondestructive testing, and also for the radiation-acoustical influence on physical and chemical structure of the matter. Results of theoretical and experimental investigations are given. Different mechanisms of the sound generation by penetrating radiation of liquids and solids are considered. Some applications - the radiation acoustical microscopy and visualisation, the acoustical detection of high energy X-ray particles and possibility of using of high energy neutrino beams in geoacoustics - are discussed

  9. Applications of Radiative Heating for Space Exploration

    Science.gov (United States)

    Brandis, Aaron

    2017-01-01

    Vehicles entering planetary atmospheres at high speeds (6 - 12 kms) experience intense heating by flows with temperatures of the order 10 000K. The flow around the vehicle experiences significant dissociation and ionization and is characterized by thermal and chemical non-equilibrium near the shock front, relaxing toward equilibrium. Emission from the plasma is intense enough to impart a significant heat flux on the entering spacecraft, making it necessary to predict the magnitude of radiative heating. Shock tubes represent a unique method capable of characterizing these processes in a flight-similar environment. The Electric Arc Shock tube (EAST) facility is one of the only facilities in its class, able to produce hypersonic flows at speeds up to Mach 50. This talk will review the characterization of radiation measured in EAST with simulations by the codes DPLR and NEQAIR, and in particular, focus on the impact these analyses have on recent missions to explore the solar system.

  10. Dosimetric And Fluence Measurements At Hadron Facilities For LHC Radiation Damage Studies

    CERN Document Server

    León-Florián, E

    2001-01-01

    Dosimetry plays an essential role in experiments assessing radiation damage and hardness for the components of detectors to be operated at the future Large Hadron Collider (LHC), CERN (European Laboratory for Particle Physics), Geneva, Switzerland. Dosimetry is used both for calibration of the radiation fields and estimate of fluences and doses during the irradiation tests. The LHC environment will result in a complex radiation field composed of hadrons (mainly neutrons, pions and protons) and photons, each having an energy spectrum ranging from a few keV to several hundreds of MeV or several GeV, even. In this thesis, are exposed the results of measurements of particle fluences and doses at different hadron irradiation facilities: SARA, πE1-PSI and ZT7PS used for testing the radiation hardness of materials and equipment to be used in the future experiments at LHC. These measurements are applied to the evaluation of radiation damage inflicted to various semiconductors (such as silicon) and electronics ...

  11. Occupational radiation exposures at radioactive and nuclear facilities in Argentina

    International Nuclear Information System (INIS)

    Curti, A.; Pardo, G.; Melis, H.

    1998-01-01

    This paper presents an evaluation of occupational radiation exposures at relevant radioactive and nuclear facilities in Argentina, for 1996. The facilities send this information to the Nuclear Regulatory Authority due to the requirements included in their operation licenses and authorizations. Dose distributions of 1891 workers and their parameters are presented. The analysis is performed for each type of the following practices: nuclear power plants, research reactors, radioisotope production, fuel fabrication, industrial irradiation and research in the nuclear fuel cycle. Trends of occupational exposure in different practices are analysed and the highest doses have been identified. Following the 1990 recommendations of the International Commission on Radiological Protection (ICRP 60), the Nuclear Regulatory Authority of Argentina updated the dose limits for workers in 1995. The individual dose limits are 20 mSv per year averaged over five consecutive years (100 mSv in 5 years), not exceeding 50 mSv in a single year. To evaluate the occupational radiation exposure trend, without taking into account practices, an analysis of the distribution of individual doses accumulated in the period 1995/96, for all workers, is performed. Individual doses received during 1996 were all below 50 mSv and doses accumulated in the period 1995/96 were below 100 mSv. (author). 7 refs., 16 figs., 5 tabs

  12. The benefit of the European User Community from transnational access to national radiation facilities

    DEFF Research Database (Denmark)

    Barrier, Elise; Manuel Braz Fernandes, Francisco; Bujan, Maya

    2014-01-01

    Transnational access (TNA) to national radiation sources is presently provided via programmes of the European Commission by BIOSTRUCT-X and CALIPSO with a major benefit for scientists from European countries. Entirely based on scientific merit, TNA allows all European scientists to realise synchr...... development of the research infrastructure of photon science. Taking into account the present programme structure of HORIZON2020, the European Synchrotron User Organization (ESUO) sees considerable dangers for the continuation of this successful collaboration in the future....... synchrotron radiation experiments for addressing the Societal Challenges promoted in HORIZON2020. In addition, by TNA all European users directly take part in the development of the research infrastructure of facilities. The mutual interconnection of users and facilities is a strong prerequisite for future...

  13. Applications of synchrotron radiation in Biophysics

    International Nuclear Information System (INIS)

    Bemski, G.

    1983-01-01

    A short introduction to the generation of the synchrotron radiation is made. Following, the applications of such a radiation in biophysics with emphasis to the study of the hemoglobin molecule are presented. (L.C.) [pt

  14. Dosimetry at the Los Alamos Critical Experiments Facility: Past, present, and future

    International Nuclear Information System (INIS)

    Malenfant, R.E.

    1993-10-01

    Although the primary reason for the existence of the Los Alamos Critical Experiments Facility is to provide basic data on the physics of systems of fissile material, the physical arrangements and ability to provide sources of radiation have led to applications for all types of radiation dosimetry. In the broad definition of radiation phenomena, the facility has provided sources to evaluate biological effects, radiation shielding and transport, and measurements of basic parameters such as the evaluation of delayed neutron parameters. Within the last 15 years, many of the radiation measurements have been directed to calibration and intercomparison of dosimetry related to nuclear criticality safety. Future plans include (1) the new applications of Godiva IV, a bare-metal pulse assembly, for dosimetry (including an evaluation of neutron and gamma-ray room return); (2) a proposal to relocate the Health Physics Research Reactor from the Oak Ridge National Laboratory to Los Alamos, which will provide the opportunity to continue the application of a primary benchmark source to radiation dosimetry; and (3) a proposal to employ SHEBA, a low-enrichment solution assembly, for accident dosimetry and evaluation

  15. Occupational radiation exposure at commercial nuclear power reactors and other facilities 1992. Twenty-fifth annual report, Volume 14

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1993-12-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1992. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10CFR20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10CFR20.408. The 1992 annual reports submitted by about 364 licensees indicated that approximately 204,365 individuals were monitored, 183,927 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.16 rem (cSv) and an average measurable dose of about 0.30 (cSv). Termination radiation exposure reports were analyzed to reveal that about 74,566 individuals completed their employment with one or more of the 364 covered licensees during 1992. Some 71,846 of these individuals terminated from power reactor facilities, and about 9,724 of them were considered to be transient workers who received an average dose of 0.50 rem (cSv)

  16. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1993. Volume 15, Twenty-six annual report

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1995-01-01

    This report the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1993. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1993 annual reports submitted by about 360 licensees indicated that approximately 189,711 individuals were monitored, 169,872 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.16 rem (cSv) and an average measured dose of about 0.31 (cSv). Termination radiation exposure reports were analyzed to reveal that about 99,749 individuals completed their employment with one or more of the 360 covered licensees during 1993. Some 91,000 of these individuals terminated from power reactor facilities, and about 12,685 of them were considered to be transient workers who received an average dose of 0.49 rem (cSv)

  17. The new look for radiation regulation

    International Nuclear Information System (INIS)

    Loy, J.

    1999-01-01

    The Australian Radiation Protection and Nuclear Safety Act (1998) provides the CEO of the Australian Radiation Protection and Nuclear Safety Agency with responsibilities related to researching and advising on radiation protection and nuclear safety, and powers to regulate the Commonwealth's use of radiation and nuclear facilities. This regulation is new to Commonwealth departments and agencies. To support the CEO in meeting these responsibilities and exercising the regulatory powers, the Act also establishes a new advisory council and two advisory committees. Other novel aspects of the Act include a public consultation process for applications for licence related to nuclear facilities, and a regime of quarterly reporting by the CEO to Parliament, in addition to the usual requirements for annual reports

  18. Overview of the applications of cement-based immobilization technologies developed at US DOE facilities

    International Nuclear Information System (INIS)

    Dole, L.R.

    1985-01-01

    This paper briefly reviews seven cement-based waste form development programs at six of the US Department of Energy (DOE) sites. These sites have developed a variety of processes that range from producing 25-mm-(1-in.-) diam pellets in a glove box to producing 240-m-(800-ft-) diam grout sheets within the bedding planes of a deep shale formation. These successful applications of cement-based waste forms to the many radioactive waste streams from nuclear facilities bear witness to the flexibility and reliability of this class of immobilization materials. The US DOE sites and their programs are: (1) Oak Ridge National Laboratory (ORNL), Hydrofracture Grout; (2) Hanford, Transportable Grout Facility (TGF); (3) Savannah River Plant (SRP), Nitrate Saltcrete; (4) EG and G Idaho, Process Experimental Pilot Plant (PREPP); (5) Mound Laboratory (ML), Waste Pelletization Process; (6) ORNL, FUETAP Concretes, and (7) Rocky Flats Plant (RFP), Inert Carrier Concrete Process (ICCP). The major issues regarding the application of cement-based waste forms to radioactive waste management problems are also presented. These issues are (1) leachability, (2) radiation stability, (3) thermal stability, (4) phase complexity of the matrix, and (5) effects of the waste stream composition. A cursory review of current research in each of these areas is included along with a discussion of future trends in cement-based waste form developments and applications. 35 refs., 12 figs

  19. Applications of radiation technology and isotopes in industry

    Energy Technology Data Exchange (ETDEWEB)

    Machi, Sueo [International Atomic Energy Agency, Vienna (Austria)

    1994-12-31

    This paper reports the current status of applications of radiation technology and radioisotopes in industries, environmental conservation and medical products. The topics discussed are radiation processing - features and advantages, radiation sources, polymeric products, radiation cross-linking and grafting of polymers, radiation curing of surface coating, new developments; sterilization of medical products, applications for environmental protection i.e. cleaning the flue gases, disinfection of sewage and its recycling; nucleonic control system (NCS); major mechanisms of implementation of the Agency`s programme for technology transfer - research contract programme, model projects and technical cooperation projects.

  20. Applications of radiation technology and isotopes in industry

    International Nuclear Information System (INIS)

    Sueo Machi

    1994-01-01

    This paper reports the current status of applications of radiation technology and radioisotopes in industries, environmental conservation and medical products. The topics discussed are radiation processing - features and advantages, radiation sources, polymeric products, radiation cross-linking and grafting of polymers, radiation curing of surface coating, new developments; sterilization of medical products, applications for environmental protection i.e. cleaning the flue gases, disinfection of sewage and its recycling; nucleonic control system (NCS); major mechanisms of implementation of the Agency's programme for technology transfer - research contract programme, model projects and technical cooperation projects

  1. Radiation dose distribution monitoring at neutron radiography facility area, Nuclear Energy Unit, Malaysia

    International Nuclear Information System (INIS)

    Abdul Razak Daud

    1995-01-01

    One experiment was carried out to get the distribution of radiation doses at the neutron radiography facilities, Nuclear Energy Unit, Malaysia. The analysis was done to evaluate the safety level of the area. The analysis was used in neutron radiography work

  2. Studies on radiation processing -Studies on application of radiation and radioisotopes-

    International Nuclear Information System (INIS)

    Jin, Joon Ha; Yoon, Byeong Mok; Kim, Ki Yeop; Nho, Yeong Chang; Lee, Yeong Keun; Park, Soon Cheol; Na, Bong Joo; Kim, Jae Ho

    1994-08-01

    Radiation-grafting of acrylic acid onto LDPE was carried out by both simultaneous irradiation and pre-irradiation techniques. The effects of metal salts, and sulfuric acid addition, and solvent effect on enhancement of grafting yield were evaluated. The dose distributions of the Co-60 gamma irradiation facility and electron beam accelerator were measured using chemical dosimeters and CTA film dosimeters, respectively. An appropriate base PP was selected, and the effects of addition of various additives on the radiation resistance of the polymer. An air distillation column was examined using a Co-60 source to identify the origin of the malfunction of the column. (Author)

  3. Proceedings of 1991-workshops of the working group on 'Development and application of facilities for low temperature irradiation as well as controlled irradiation'

    International Nuclear Information System (INIS)

    Kuramoto, Eiichi; Okada, Moritami

    1992-09-01

    This is the proceedings of 1991-workshops of the working group on 'Development and Application of Facilities for Low Temperature Irradiation as well as Controlled Irradiation' held at the Research Reactor Institute of Kyoto University on July 25, 1991 and on February 28, 1992. In the present proceedings, it is emphasized that the study of radiation damages in various materials must be performed under carefully controlled irradiation conditions (irradiation temperature, neutron spectrum and so forth) during reactor irradiations. Especially, it is pointed out that a middle scale reactor such as KUR is suitable for the precise control of neutron spectra. Several remarkable results, which are made through experiments using the Low Temperature Irradiation Facility in KUR (KUR-LTL), are reported. Also, possible advanced research programs are discussed including the worldwide topics on the radiation damages in metals, semi-conductors and also insulators. Further, the present status of KUR-LTL is reported and the advanced plan of the facility is proposed. (author)

  4. Radiation-tolerant cable management systems for remote handling applications in the nuclear industry

    International Nuclear Information System (INIS)

    Cullen, S.; Thom, M.

    1993-01-01

    Experience has shown that one of the most vulnerable areas within remote handling equipment is the umbilical cable and termination system. Repairs of a damaged system can be very long due to poorly designed termination techniques. Over the past five years W.L. Gore has gained considerable experience in the design and manufacture of cable systems, utilising unique radiation tolerant materials and manufacturing processes. The cable systems manufactured at the W.L. Gore, Dunfermline, Scotland facility have proven to give excellent performance in the most demanding of remote handling applications. (author)

  5. Proton Radiation Therapy in the Hospital Environment: Conception, Development, and Operation of the Initial Hospital-Based Facility

    Science.gov (United States)

    Slater, James M.; Slater, Jerry D.; Wroe, Andrew J.

    The world's first hospital-based proton treatment center opened at Loma Linda University Medical Center in 1990, following two decades of development. Patients' needs were the driving force behind its conception, development, and execution; the primary needs were delivery of effective conformal doses of ionizing radiation and avoidance of normal tissue to the maximum extent possible. The facility includes a proton synchrotron and delivery system developed in collaboration with physicists and engineers at Fermi National Accelerator Laboratory and from other high-energy-physics laboratories worldwide. The system, operated and maintained by Loma Linda personnel, was designed to be safe, reliable, flexible in utilization, efficient in use, and upgradeable to meet demands of changing patient needs and advances in technology. Since the facility opened, nearly 14,000 adults and children have been treated for a wide range of cancers and other diseases. Ongoing research is expanding the applications of proton therapy, while reducing costs.

  6. Synchrotron radiation and prospects of its applications

    Energy Technology Data Exchange (ETDEWEB)

    Kulipanov, G; Skrinskii, A

    1981-04-01

    Current and prospective applications are described of synchrotron radiation resulting from the motion of high-energy electrons or positrons in a magnetic field and covering a wide spectral range from the infrared to X-ray. The advantages of the synchrotron radiation include a big source luminance, a small angular divergence, the possibility of calculating the absolute intensity and the spectral distribution of the radiation. Special storage rings are most suitable as a source. Synchrotron radiation is applied in X-ray microscopy, energy diffractometry, atomic and molecular spectroscopy, in the structural analysis of microcrystals, very rapid diffractometry of biological objects and crystals, and in Moessbauer spectroscopy. The prospective applications include uses in metrology, medicine, X-ray lithography, elemental analysis, molecular microsurgery, and in radiation technology.

  7. Nuclear safety and radiation protection report of the basic nuclear facilities of the Tricastin nuclear power plant - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Tricastin nuclear power plant (INB 87 and 88, Saint-Paul-Trois-Chateaux, Drome (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  8. Nonreactor nuclear facilities: standards and criteria guide

    International Nuclear Information System (INIS)

    Brynda, W.J.; Junker, L.; Karol, R.C.; Lobner, P.R.; Goldman, L.A.

    1981-09-01

    This guide is a source document that identifies standards, codes, and guides that address the nuclear safety considerations pertinent to nuclear facilities as defined in DOE Order 5480.1, Chapter V, Safety of Nuclear Facilities. The guidance and criteria provided are directed toward areas of safety usually addressed in a Safety Analysis Report. The areas of safety include, but are not limited to, siting, principal design criteria and safety system design guidelines, radiation protection, accident analysis, and quality assurance. The guide is divided into two sections: general guidelines and appendices. Those guidelines that are broadly applicable to most nuclear facilities are presented in the general guidelines. These general guidelines may have limited applicability to subsurface facilities such as waste repositories. Guidelines specific to the various types or categories of nuclear facilities are presented in the appendices. These facility-specific appendices provide guidelines and identify standards and criteria that should be considered in addition to, or in lieu of, the general guidelines

  9. Shielding of Medical Radiation Facilities - National Council on Radiation Protection and Measurements Reports No. 147 and No. 151

    International Nuclear Information System (INIS)

    KASE, K.R.

    2008-01-01

    The National Council on Radiation Protection and Measurements of the United States (NCRP) has issued two reports in the past 18 months that provide methods and data for designing shielding for diagnostic radiological imaging and radiation therapy facilities. These reports update previous publications on this subject with revised methods that take into account new technologies, results from measurements and new data that have been published in the last 30 years. This paper gives a brief summary of the contents of these reports, the methods recommended for determining the shielding required and the data provided to aid in the calculations

  10. Radiation safety aspects in the use of radiation sources in industrial and heath-care applications

    International Nuclear Information System (INIS)

    Venkat Raj, V.

    2001-01-01

    The principle underlying the philosophy of radiation protection and safety is to ensure that there exists an appropriate standard of protection and safety for humans, without unduly limiting the benefits of the practices giving rise to exposure or incurring disproportionate costs in interventions. To realise these objectives, the International Commission on Radiation Protection (ICRP-60) and IAEA's Safety Series (IAEA Safety Series 120, 1996) have enunciated the following criteria for the application and use of radiation: (1) justification of practices; (2) optimisation of protection; (3) dose limitation and (4) safety of sources. Though these criteria are the basic tenets of radiation protection, the radiation hazard potentials of individual applications vary and the methods to achieve the above mentioned objectives principles are different. This paper gives a brief overview of the various applications of radiation and radioactive sources in India, their radiation hazard perspective and the radiation safety measures provided to achieve the basic radiation protection philosophy. (author)

  11. Evolution of some important principles on decommissioning of nuclear and radiation facilities

    International Nuclear Information System (INIS)

    Zhao Yamin; Wu Hao

    2004-01-01

    The paper introduces the evolution of some important principles on decommissioning of nuclear and radiation facilities. Decommissioning issue should not be regarded just as an end phase of the facilities operation, but should be taken into consideration as a part of whole operation process. The decommissioning plan and management should be considered in all phases of siting, design, construction and operation. A new term 'Facilitating Decommissioning' is introduced. Three stages principle of decommissioning (storage with surveillance, restricted release and unrestricted release) is being faded. The decommissioning implementation and related regulatory body should pay attention to these principal changes

  12. Enhanced possibilities of section topography at a third-generation synchrotron radiation facility

    International Nuclear Information System (INIS)

    Medrano, C.; Rejmankova, P.; Ohler, M.; Matsouli, I.

    1997-01-01

    The authors show the new possibilities of section topography techniques at a third-generation synchrotron radiation facility, taking advantage of the high performances of this machine. Examples of the 1) so-called multiple sections, 2) visibility of weakly misoriented regions, 3) study of thick samples, 4) monochromatic and 5) realtime sections are presented

  13. Irradiation tests of radiation resistance optical fibers for fusion diagnostic application

    Science.gov (United States)

    Kakuta, Tsunemi; Shikama, Tatsuo; Nishitani, Takeo; Yamamoto, Shin; Nagata, Shinji; Tsuchiya, Bun; Toh, Kentaro; Hori, Junichi

    2002-11-01

    To promote development of radiation-resistant core optical fibers, the ITER-EDA (International Thermonuclear Experimental Reactor-Engineering Design Activity) recommended carrying out international round-robin irradiation tests of optical fibers to establish a reliable database for their applications in the ITER plasma diagnostics. Ten developed optical fibers were irradiation-tested in a Co-60 gamma cell, a Japan Materials Testing Reactor (JMTR). Also, some of them were irradiation tested in a fast neutron irradiation facility of FNS (Fast Neutron Source), especially to study temperature dependence of neutron-associated irradiation effects. Included were several Japanese fluorine doped fibers and one Japanese standard fiber (purified and undoped silica core), as well as seven Russian fibers. Some of Russian fibers were drawn by Japanese manufactures from Russian made pre-form rods to study effects of manufacturing processes to radiation resistant properties. The present paper will describe behaviors of growth of radiation-induced optical transmission loss in the wavelength range of 350-1750nm. Results indicate that role of displacement damages by fast neutrons are very important in introducing permanent optical transmission loss. Spectra of optical transmission loss in visible range will depend on irradiation temperatures and material parameters of optical fibers.

  14. Prerequisites concerning SSI:s review of applications for an encapsulation facility and a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Oehlen, Elisabeth

    2006-09-01

    The report outlines some fundamental prerequisites concerning SSI:s review of SKB coming applications for an encapsulation facility (according to the act on nuclear activities) and for the complete final disposal system (according to the act on nuclear activities and the environmental code). The report summarize how the SSI look at the decision making process considering radiation protection requirements according to SSI:s regulations and general advices and earlier standpoints regarding SKB:s RandD-programme. The report also describe the present reviewing capacity of SSI and constitute therefore the basis for the planning of SSI:s review organisation in the prospect of coming applications on nuclear waste facilities (encapsulation facility and a deep disposal repository). It should be noted that the report reflects the present situation. Due to a number of factors as for example changes in SKB:s coming RandD-programme, future governmental decisions, adjustments of SSI:s financial resources or new facts in the case, will of course have an effect on how SSI finally will organise the review work. SSI:s home page will continuously be updated with the latest information in this respect

  15. Emerging applications of radiation-modified carrageenans

    Energy Technology Data Exchange (ETDEWEB)

    Abad, Lucille V., E-mail: lvabad@pnri.dost.gov.ph; Aranilla, Charito T.; Relleve, Lorna S.; Dela Rosa, Alumanda M.

    2014-10-01

    The Philippines supplies almost half of the world’s processed carrageenan as ingredient for different applications. In order to maintain the country’s competitive advantage, R and D on radiation processed carrageenan with various potential applications had been undertaken. PVP-carrageenan hydrogels for wound dressing had been developed. A carrageenan-based radiation dose indicator can detect radiation dose of as low as 5 kGy. Irradiated carrageenan has also been tested as plant growth promoter. Irradiated carrageenans have been found have been found to contain some antioxidant properties which increase with increasing dose and concentration. Carboxymethyl carrageenans had also been developed that shows promising effect as super water absorbent for soil conditioner in plants.

  16. Radiation application contributing to welfare of the nation

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Tanaka, Ryuichi

    2005-01-01

    Ionizing radiation has been widely applied in the fields of industry, agriculture, and medicine. Now, radiation application offers great benefit to people in various ways improve quality of life, such as sterilization of disposable medical equipment, semiconductors, radiographic testing and radial tire in industry, food irradiation, sterile insect technique (SIT), mutation breeding (rice etc.) and radioisotope utilization in agriculture, diagnostic imaging, prostate cancer, FDG-PET, medical equipment, radioisotopes, radio pharmacy and contrast media in medicine. However, the benefit has not been so far estimated economically in Japan. In the present study, the concept of economic scale' was introduced as an economic measure indicating the magnitude of the market created by products manufactured by the utilization of radiation. The total economic scale of radiation application in Japan was evaluated 71b$(billion dollars, 1$=121yen) for the fiscal year of 1997. This quantification of the benefit of radiation applications will greatly contribute to radiation education and risk communication for general public. (author)

  17. Recent advances in radiation protection instrumentation

    International Nuclear Information System (INIS)

    Babu, D.A.R.

    2012-01-01

    Radiation protection instrumentation plays very important role in radiation protection and surveillance programme. Radiation detector, which appears at the frontal end of the instrument, is an essential component of these instruments. The instrumental requirement of protection level radiation monitoring is different from conventional radiation measuring instruments. Present paper discusses the new type of nuclear radiation detectors, new protection level instruments and associated electronic modules for various applications. Occupational exposure to ionizing radiation can occur in a range of industries, such as nuclear power plants; mining and milling; medical institutions; educational and research establishments; and nuclear fuel cycle facilities. Adequate radiation protection to workers is essential for the safe and acceptable use of radioactive materials for different applications. The radiation exposures to the individual radiation workers and records of their cumulative radiation doses need to be routinely monitored and recorded

  18. Berlin Electron Storage Ring BESSY: a dedicated XUV synchrotron radiation facility

    International Nuclear Information System (INIS)

    Muelhaupt, G.; Bradshaw, A.M.

    1985-01-01

    In response to national requirements in the fields of basic research, metrology and x-ray lithography it was decided in late 1977 to build a dedicated XUV synchrotron radiation source in Berlin. The history of the BESSY project, the user-oriented factors that determined the design parameters, the construction and commissioning of the facility as well as user operation and funding issues are reviewed

  19. Radiation protection procedures for the dismantling and decontamination of nuclear facility

    International Nuclear Information System (INIS)

    Almeida, C.C.; Garcia, R.H.L.; Cambises, P.B.S.; Silva, T.M. da; Paiva, J.E.; Carneiro, J.C.G.G.; Rodrigues, D.L.

    2013-01-01

    This work presents the operational procedures and conditions to ensure the required level of protection and safety during the dismantling and decontamination of a natural uranium purification facility at IPEN-CNEN/SP, Brazil. The facility was designed for chemical processing of natural uranium, aiming to obtain the uranyl nitrate, nuclear-grade. Afterwards, the installation operated in treatment and washing of thorium sulfate and thorium oxycarbonate dissolution, to get thorium nitrate as final product. A global evaluation of the potential exposure situation was carried out by radioprotection team in order to carry out the operations planned. For the facility dismantling, was established both measures to control the radiation exposure at workplace and individual monitoring of workers. A combination of physical, chemical and mechanical methods was used in the decontamination procedure applied in this unit. Concerning the internal operation procedures of IPEN-CNEN/SP, the radioactive waste control, the transport of the radioactive materials and authorization of use of decontaminated equipment were also subject of study. (author)

  20. Nuclear radiation applications in hydrological investigations

    International Nuclear Information System (INIS)

    Rao, S.M.

    1978-01-01

    The applications of radiation sources for the determination of water and soil properties in hydrological investigations are many and varied. These include snow gauging, soil moisture and density determinations, measurement of suspended sediment concentrations in natural streams and nuclear well logging for groundwater exploitation. Besides the above, many radiation physics aspects play an important role in the development of radiotracer techniques, particularly in sediment transport studies. The article reviews the above applications with reference to their limitations and advantages. (author)

  1. Science experiments via telepresence at a synchrotron radiation source facility

    International Nuclear Information System (INIS)

    Warren, J. E.; Diakun, G.; Bushnell-Wye, G.; Fisher, S.; Thalal, A.; Helliwell, M.; Helliwell, J. R.

    2008-01-01

    The application of a turnkey communication system for telepresence at station 9.8 of the Synchrotron Radiation Source, Daresbury, is described and demonstrated, including its use for inter-continental classroom instruction and user training. Station 9.8 is one of the most oversubscribed and high-throughput stations at the Synchrotron Radiation Source, Daresbury, whereby awarded experimental time is limited, data collections last normally no longer than an hour, user changeover is normally every 24 h, and familiarity with the station systems can be low. Therefore time lost owing to technical failures on the station has a dramatic impact on productivity. To provide 24 h support, the application of a turnkey communication system has been implemented, and is described along with additional applications including its use for inter-continental classroom instruction, user training and remote participation

  2. Ion chambers compliance results of Brazilian radiation therapy facilities.

    Science.gov (United States)

    Joana, G; Salata, C; Leal, P; Vasconcelos, R; Couto, N do; Teixeira, F C; Soares, A D; Santini, E S; Gonçalves, M

    2018-03-01

    The Brazilian Nuclear Energy Commission (cnen) has been making a constant effort to keep up to date with international standards and national needs to strengthen the status of radiological protection of the country. The guidelines related to radiation therapy facilities have been revised in the last five years in order to take into consideration the most relevant aspects of the growing technology as well as to mitigate the accidents or incidents observed in practice. Hence, clinical dosimeters have gained special importance in this matter. In the present work, we discuss the effectiveness of regulation and inspections to the enforcement of instrument calibration accuracy for the improvement of patient dosimetry and quality control. As a result, we observed that the number of calibrated instruments, mainly well chambers, is increasing each year. The same behavior is observed for instruments employed in technologically advanced radiation treatments such as intensity modulated radiotherapy, volumetric therapy and stereotatic radiosurgery. We ascribe this behavior to the new regulation.

  3. Operational experiences in radiation protection in fast reactor fuel reprocessing facility

    International Nuclear Information System (INIS)

    Meenakshisundaram, V.; Rajagopal, V.; Santhanam, R.; Baskar, S.; Madhusoodanan, U.; Chandrasekaran, S.; Balasundar, S.; Suresh, K.; Ajoy, K.C.; Dhanasekaran, A.; Akila, R.; Indira, R.

    2008-01-01

    The Compact Reprocessing facility for Advanced fuels in Lead cells (CORAL), situated at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam is a pilot plant to reprocess the mixed carbide fuel, for the first time in the world. Reprocessing of fuel with varying burn-ups up to 155 G Wd/t, irradiated at Fast Breeder Test Reactor (FBTR), has been successfully carried out at CORAL. Providing radiological surveillance in a fuel reprocessing facility itself is a challenging task, considering the dynamic status of the sources and the proximity of the operator with the radioactive material and it is more so in a fast reactor fuel reprocessing facility due to handling of higher burn-up fuels associated with radiation fields and elevated levels of fissile material content from the point of view of criticality hazard. A very detailed radiation protection program is in place at CORAL. This includes, among others, monitoring the release of 85 Kr and other fission products and actinides, if any, through stack on a continuous basis to comply with the regulatory limits and management of disposal of different types of radioactive wastes. Providing radiological surveillance during the operations such as fuel transport, chopping and dissolution and extraction cycle was without any major difficulty, as these were carried out in well-shielded and high integrity lead cells. Enforcement of exposure control assumes more importance during the analysis of process samples and re-conversion operations due to the presence of fission product impurities and also since the operations were done in glove boxes and fume hoods. Although the radiation fields encountered in process area were marginally higher, due to the enforcement of strict administrative controls, the annual exposure to the radiation workers was well within the regulatory limit. As the facility is being used as test bed for validation of prototype equipment, periodic inspection and maintenance of components such as centrifuge

  4. General overview and a review of storage rings, research facilities, and insertion devices

    International Nuclear Information System (INIS)

    Winick, H.

    1989-01-01

    Synchrotron radiation, the electromagnetic radiation given off by electrons in circular motion, is revolutionizing many branches of science and technology by offering beams of vacuum ultraviolet light and x rays of immense flux and brightness. In the past decade there has been an explosion of interest in these applications leading to increased exploitation of existing rings and activity to construct new research facilities based on advanced storage rings and insertion device sources. Applications include basic and applied research in biology, chemistry, medicine, and physics plus many areas of technology. In this article they present a general overview of the field of synchrotron radiation research, its history, the present status and future prospects of storage rings and research facilities, and the development of wiggler and undulator insertion devices as sources of synchrotron radiation. 66 references, 20 figures, 1 table

  5. Assessment of Gamma Radiation Resistance of Spores Isolated from the Spacecraft Assembly Facility During MSL Assembly

    Science.gov (United States)

    Chopra, Arsh; Ramirez, Gustavo A.; Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.

    2011-01-01

    Spore forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate extreme environmental conditions such as radiation, desiccation, and high temperatures. Since the Viking era (early 1970's), spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. There is a growing concern that desiccation and extreme radiation resistant spore forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequently proliferate on another solar body. Such forward contamination would certainly jeopardize future life detection or sample return technologies. It is important to recognize that different classes of organisms are critical while calculating the probability of contamination, and methods must be devised to estimate their abundances. Microorganisms can be categorized based on radiation sensitivity as Type A, B, C, and D. Type C represents spores resistant to radiation (10% or greater survival above 0.8 Mrad gamma radiation). To address these questions we have purified 96 spore formers, isolated during planetary protection efforts of Mars Science Laboratory assembly for gamma radiation resistance. The spores purified and stored will be used to generate data that can be used further to model and predict the probability of forward contamination.

  6. Systems Engineering and Safety Issues in Scientific Facilities Subject to Ionizing Radiations

    Directory of Open Access Journals (Sweden)

    Pierre Bonnal

    2013-10-01

    Full Text Available The conception and development of large-scale scientific facilities emitting ionizing radiations rely more on project management practices in use in the process industry than on systems engineering practices. This paper aims to highlight possible reasons for this present situation and to propose some ways to enhance systems engineering so that the specific radiation safety requirements are considered and integrated in the approach. To do so, we have reviewed lessons learned from the management of large-scale scientific projects and more specifically that of the Large Hadron Collider project at CERN. It is shown that project management and systems engineering practices are complementary and can beneficially be assembled in an integrated and lean managerial framework that grants the appropriate amount of focus to safety and radiation safety aspects.

  7. X-ray and nuclear radiation facilities: personnel safety features

    International Nuclear Information System (INIS)

    Mason, W.J.; Pipes, E.W.; Rucker, T.R.; Smith, D.N.; West, C.M.

    1976-10-01

    The Oak Ridge Y-12 Plant is a research and production installation. The nature and versatility of this work require the use of a large number and variety of x-ray and radiographic sources for nondestructive testing and material analyses. Presently, there are over 80 x-ray generators in the plant, which range in size from small, portable units which operate at a less than 50 kilovolts potential and 0.1 milliampere current to an electron linear accelerator which operates at 12-million electron volts and produces a radiation beam of such intensity that it could deliver a lethal dose to man in a fraction of a minute. There are also almost 50 gamma and neutron sources in use in the plant. These units range in size from a few millicuries to several hundred curies. Although the radiation safety at each of these facilities was considered adequate, the administrative and maintenance procedures became unduly complicated. Accordingly, engineering standards and uniform operating procedures were considered necessary to alleviate these complications and, in so doing, provide an improved measure of radiation safety. Development and implementation of these standards are described and the general philosophy and approach to these standards are outlined. Use of a matrix (type of installation versus radiation safety feature) to facilitate equipment classification and personnel safety feature requirements is presented. Included is a set of the standards showing formats, matrices, etc., and the detailed standards for each safety feature

  8. Hanford facility dangerous waste permit application, general information portion

    International Nuclear Information System (INIS)

    Hays, C.B.

    1998-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in this report)

  9. Safety of magnetic fusion facilities: Requirements

    International Nuclear Information System (INIS)

    1996-05-01

    This Standard identifies safety requirements for magnetic fusion facilities. Safety functions are used to define outcomes that must be achieved to ensure that exposures to radiation, hazardous materials, or other hazards are maintained within acceptable limits. Requirements applicable to magnetic fusion facilities have been derived from Federal law, policy, and other documents. In addition to specific safety requirements, broad direction is given in the form of safety principles that are to be implemented and within which safety can be achieved

  10. Application of solid dosimeter to radiation control

    International Nuclear Information System (INIS)

    Tsujimoto, Tadashi

    1988-01-01

    Individual exposure dose measuring devices are used to measure the dose of each person in facilities using radiations. Major devices of this type currently used in Japan include the film badge, thermoluminescence dosimeter, portable radiation dosimeter and fluorescent glass dosimeter. All of these devices except the portable radiation dosimeter are of a solid type. Various portable-type spatial dose rate measuring devices, generally called survey meters, are available to determine the spatial distribution of radiations. Major survey meters incorporates an ionization chamber, GM counter tube or scintillation counter, while BF 3 counting tubes are available for neutron measurement. Of these, the scintillation dosimeter is of a solid type. A new scintillation survey meter has recently been developed which incorporated a discrimination bias modulation circuit. Dosimeters incorporating an ionization chamber or a GM counter tube are generally used as portable alarms. Recently, a new solid-type alarm has been developed which incorporates a solicon radiation detector. Microcomputers are also used for self-diagnosis, data processing, automatic calibration, etc. (Nogami, K.)

  11. Storage ring design of the 8 GeV synchrotron radiation facility (SPring-8)

    International Nuclear Information System (INIS)

    Hara, M.; Bc, S.H.; Motonaga, S.

    1990-01-01

    In Japan, RIKEN (Institute of Physical and Chemical Research) and JAERI (Japan Atomic Energy Research Institute) have organized a joint design team and started a design study for an 8 GeV synchrotron radiation X-ray source. This paper outlines the status of the design study for the 8 GeV highly brilliant synchrotron radiation X-ray source ring named Super Photon Ring (SPring-8). The facility consists of a main storage ring, a full-energy injector booster synchrotron and a pre-injector 1 GeV linac. The injector linac and synchrotron are laid outside the storage ring because to permit the use of the linac and synchrotron not only as an injector but also as an electron or positron beam source. The purpose of the facility is to provide stable photon beams with high brilliance in the X-ray region. The energy of the stored electrons (positrons) is fixed at 8 GeV to fulfill the required condition using conventional type insertion devices. (N.K.)

  12. Radiation protection and dosimetry issues in the medical applications of ionizing radiation

    International Nuclear Information System (INIS)

    Vaz, Pedro

    2014-01-01

    The technological advances that occurred during the last few decades paved the way to the dissemination of CT-based procedures in radiology, to an increasing number of procedures in interventional radiology and cardiology as well as to new techniques and hybrid modalities in nuclear medicine and in radiotherapy. These technological advances encompass the exposure of patients and medical staff to unprecedentedly high dose values that are a cause for concern due to the potential detrimental effects of ionizing radiation to the human health. As a consequence, new issues and challenges in radiological protection and dosimetry in the medical applications of ionizing radiation have emerged. The scientific knowledge of the radiosensitivity of individuals as a function of age, gender and other factors has also contributed to raising the awareness of scientists, medical staff, regulators, decision makers and other stakeholders (including the patients and the public) for the need to correctly and accurately assess the radiation induced long-term health effects after medical exposure. Pediatric exposures and their late effects became a cause of great concern. The scientific communities of experts involved in the study of the biological effects of ionizing radiation have made a strong case about the need to undertake low dose radiation research and the International System of Radiological Protection is being challenged to address and incorporate issues such as the individual sensitivities, the shape of dose–response relationship and tissue sensitivity for cancer and non-cancer effects. Some of the answers to the radiation protection and dosimetry issues and challenges in the medical applications of ionizing radiation lie in computational studies using Monte Carlo or hybrid methods to model and simulate particle transport in the organs and tissues of the human body. The development of sophisticated Monte Carlo computer programs and voxel phantoms paves the way to an accurate

  13. The planning, construction, and operation of a radioactive waste storage facility for an Australian state radiation regulatory authority

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, J.D.; Kleinschmidt, R.; Veevers, P. [Radiation Health, Queensland (Australia)

    1995-12-31

    Radiation regulatory authorities have a responsibility for the management of radioactive waste. This, more often than not, includes the collection and safe storage of radioactive sources in disused radiation devices and devices seized by the regulatory authority following an accident, abandonment or unauthorised use. The public aversion to all things radioactive, regardless of the safety controls, together with the Not In My Back Yard (NIMBY) syndrome combine to make the establishment of a radioactive materials store a near impossible task, despite the fact that such a facility is a fundamental tool for regulatory authorities to provide for the radiation safety of the public. In Queensland the successful completion and operational use of such a storage facility has taken a total of 8 years of concerted effort by the staff of the regulatory authority, the expenditure of over $2 million (AUS) not including regulatory staff costs and the cost of construction of an earlier separate facility. This paper is a summary of the major developments in the planning, construction and eventual operation of the facility including technical and administrative details, together with the lessons learned from the perspective of the overall project.

  14. Radiation processing and sterilization

    International Nuclear Information System (INIS)

    Takehisa, M.; Machi, S.

    1987-01-01

    This growth of commercial radiation processing has been largely dependent on the achievement in production of reliable and less expensive radiation facilities as well as the research and development effort for new applications. Although world statistics of the growth are not available, Figure 20-1 shows steady growth in the number of EBAs installed in Japan for various purposes. Growth rate of Co-60 sources supplied by AECL (Atomic Energy of Canada Limited), which supplied approximately 80% of the world market, approximately 10% per year, including future growth estimates. Potential applications of radiation processing under development are in environmental conservation (e.g., treatment of sewage sludge, waste water, and exhaust gases) and bioengineering (e.g., immobilization of bioactive materials). The authors plan to introduce her the characteristics of radiation processing, examples of its industrial applications, the status of its research and development activities, and an economic analysis

  15. Two-faces stationary irradiation method and dosimetric considerations for radiation processing at the multipurpose gamma irradiation facility / IPEN-CNEN

    International Nuclear Information System (INIS)

    Santos, Paulo S.; Vasquez, Pablo A.S.

    2015-01-01

    Over the last ten years, the Multipurpose Gamma Irradiation Facility of the Nuclear and Energy Research Institute - IPEN/CNEN located inside the Sao Paulo University campus has been providing services on radiation processing, especially for sterilization of health care and disposable medical products as well as support to research studies on modification of physical, chemical and biological properties of several materials. Placed at the same campus operates an extremely important radiopharmaceutical production facility when almost all disposable supplies used to produce medical products as the technetium-99m are continuously sterilized by gamma radiation. Many university biomedical research laboratories specially those working with equipment for cell cultures and vaccine production also make use of the gamma sterilization. Animal feed and shavings used by certified bioteries are routinely disinfected. Alternative underwater irradiation methods were developed to meet the demand of gemstone color enhancement. Human tissues including bone, skin, amniotic membranes, tendons, and cartilage belonging to National Banks are usually irradiated too. Different kind of polymers, hydrogels, foods as well native fruits, have been irradiated in this facility. Cultural heritage objects as books, paintings and furniture are disinfected routinely by gamma radiation. The success of the implementation of radiation processing in this facility is due to research and development of irradiation and dosimetry methods suitable for each condition. In this work are presented some considerations about the distribution dose and the two-faces stationary irradiation method developed and validated for this facility. (author)

  16. Two-faces stationary irradiation method and dosimetric considerations for radiation processing at the multipurpose gamma irradiation facility / IPEN-CNEN

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Paulo S.; Vasquez, Pablo A.S., E-mail: psantos@ipen.br, E-mail: pavsalva@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Over the last ten years, the Multipurpose Gamma Irradiation Facility of the Nuclear and Energy Research Institute - IPEN/CNEN located inside the Sao Paulo University campus has been providing services on radiation processing, especially for sterilization of health care and disposable medical products as well as support to research studies on modification of physical, chemical and biological properties of several materials. Placed at the same campus operates an extremely important radiopharmaceutical production facility when almost all disposable supplies used to produce medical products as the technetium-99m are continuously sterilized by gamma radiation. Many university biomedical research laboratories specially those working with equipment for cell cultures and vaccine production also make use of the gamma sterilization. Animal feed and shavings used by certified bioteries are routinely disinfected. Alternative underwater irradiation methods were developed to meet the demand of gemstone color enhancement. Human tissues including bone, skin, amniotic membranes, tendons, and cartilage belonging to National Banks are usually irradiated too. Different kind of polymers, hydrogels, foods as well native fruits, have been irradiated in this facility. Cultural heritage objects as books, paintings and furniture are disinfected routinely by gamma radiation. The success of the implementation of radiation processing in this facility is due to research and development of irradiation and dosimetry methods suitable for each condition. In this work are presented some considerations about the distribution dose and the two-faces stationary irradiation method developed and validated for this facility. (author)

  17. The industrial applications of ionizing radiations

    International Nuclear Information System (INIS)

    1992-10-01

    This report presents all industrial applications of ionizing radiations in France, for food preservation, radiosterilization of drugs, medical materials and cosmetic products, for radiation chemistry of polymers. This report also describes the industrial plants of irradiation (electron, cobalt 60). Finally, it explains the legal and safety aspects

  18. State of art in radiation tolerant camera

    Energy Technology Data Exchange (ETDEWEB)

    Choi; Young Soo; Kim, Seong Ho; Cho, Jae Wan; Kim, Chang Hoi; Seo, Young Chil

    2002-02-01

    Working in radiation environment such as nuclear power plant, RI facility, nuclear fuel fabrication facility, medical center has to be considered radiation exposure, and we can implement these job by remote observation and operation. However the camera used for general industry is weakened at radiation, so radiation-tolerant camera is needed for radiation environment. The application of radiation-tolerant camera system is nuclear industry, radio-active medical, aerospace, and so on. Specially nuclear industry, the demand is continuous in the inspection of nuclear boiler, exchange of pellet, inspection of nuclear waste. In the nuclear developed countries have been an effort to develop radiation-tolerant cameras. Now they have many kinds of radiation-tolerant cameras which can tolerate to 10{sup 6}-10{sup 8} rad total dose. In this report, we examine into the state-of-art about radiation-tolerant cameras, and analyze these technology. We want to grow up the concern of developing radiation-tolerant camera by this paper, and upgrade the level of domestic technology.

  19. Application of information and communication technology facilities in ...

    African Journals Online (AJOL)

    Information Impact | Jorunal of Information and Knowledge Management

    Findings also revealed that inadequate training of staff on ICT application to technical services; poor electricity supply and insufficient fund were some of the challenges plaguing the application of ICT facilities to technical unit of the library. The study recommends that there should be adequate straining of staff, provision of ...

  20. Manual on radiation protection in hospitals and general practice. Basic protection requirements

    International Nuclear Information System (INIS)

    Braestrup, C.B.; Vikterloef, K.J.

    1974-01-01

    The manual as a whole deals with the radiation protection of patients, occupationally exposed persons, and the public. Volume 1, on basic protection requirements, is a general review common to all medical applications of ionizing radiation and radionuclides. Radiation protection is required for patients and staff, and with regard to medical research and chemical trials of new methods; radiation equipment and operating procedures are discussed in connection with diagnostic x-ray installations, x-ray beam therapy, gamma-ray installations for teletherapy, brachytherapy, unsealed sources for therapeutic use, and the diagnostic use of unsealed sources in nuclear medicine. In planning of radiation facilities, attention is paid to levels at which medical care is given, the centralization and decentralization of radiation facilities, diagnostic x-ray facilities and therapy facilities, and nuclear medicine and therapy with unsealed sources. Shielding design is discussed applicable to diagnostic radiology, radiotherapy, nuclear medicine and the therapeutic use of radionuclides. Assignment of responsibilities, legal responsibilities, safety checks, refresher courses and symposia are discussed in the context of organizing radiation protection. Radiation surveys are necessary, and such surveys are described for x-ray and gamma-ray beams, sealed radioactive sources and nuclear medicine. A whole section is devoted to personnel monitoring and health surveillance. An annex gives a list of commonly used radionuclides, another deals with the design of protective shielding