WorldWideScience

Sample records for radiation embrittlement studies

  1. Radiation embrittlement of metals and alloys

    International Nuclear Information System (INIS)

    Wechsler, M.S.

    1975-01-01

    Three types of radiation embrittlement are identified: (1) radiation embrittlement in nominally ductile metals, (2) radiation embrittlement in metals that undergo a ductile-brittle transition, and (3) high-temperature grain boundary embrittlement. This paper deals with type (1) and, more briefly, type (2) radiation embrittlement. Radiation embrittlement in nominally ductile metals is characterized by the premature onset of plastic instability, which causes a sharp decrease in the macroscopic plastic strain that the material can sustain before necking (uniform strain) and breaking (fracture strain). Dislocation channeling seems to be largely responsible and experimental results are reviewed. The origin of dislocation channeling is discussed. Irradiated metals that exhibit a ductile-brittle transition show an increase in the transition temperature but the nature of the transition (shear to cleavage fracture) does not appear to be greatly altered. A key factor is the temperature dependence of yielding and how it is affected upon irradiation. Impurities exert an influence on the stability of radiation-produced defect clusters and thus can alter the amount of radiation embrittlement experienced upon irradiation at somewhat elevated temperatures. In general, radiation embrittlement appears to stem mostly from changes in plastic properties (particularly in the trend toward more dynamic and inhomogeneous plastic deformation) rather than from changes in the inherent fracture process. 63 references, 10 figures

  2. Radiation embrittlement of PWR vessel supports

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Robinson, G.C.; Pennell, W.E.; Nanstad, R.K.

    1989-01-01

    Several studies pertaining to radiation damage of PWR vessel supports were conducted between 1978 and 1987. During this period, apparently there was no reason to believe that low-temperature (<100 degree C) MTR embrittlement data were not appropriate for evaluating embrittlement of PWR vessel supports. However, late in 1986, data from the High Flux Isotope Reactor (HFIR) vessel surveillance program indicated that the embrittlement rates of the several HFIR vessel materials (A212-B, A350-LF3, A105-II) were substantially greater than anticipated on the basis of MTR data. Further evaluation of the HFIR data suggested that a fluence-rate effect was responsible for the apparent discrepancy, and shortly thereafter it became apparent that this rate effect was applicable to the evaluation of LWR vessel supports. As a result, the Nuclear Regulatory Commission (NRC) requested that the Oak Ridge National Laboratory (ORNL) evaluate the impact of the apparent embrittlement rate effect on the integrity of light-water-reactor (LWR) vessel supports. The purpose of the study was to provide an indication of whether the integrity of reactor vessel supports is likely to be challenged by radiation-induced embrittlement. The scope of the evaluation included correlation of the HFIR data for application to the evaluation of LWR vessel supports; a survey and cursory evaluation of all US LWR vessel support designs, selection of two plants for specific-plant evaluation, and a specific-plant evaluation of both plants to determine critical flaw sizes for their vessel supports. 19 refs., 8 figs., 2 tabs

  3. Cooperation modes of the radiation embrittlement

    International Nuclear Information System (INIS)

    Voevodin, V.N.; Laptev, I.N.; Neklyudov, I.M.; Ozhigov, L.S.; Bryk, V.V.; Parkhomenko, A.A.

    2012-01-01

    According to the results of experimental and theoretical studies of the structures and properties of irradiated deformed materials with different crystalline structure, the effect of irradiation on mechanisms of radiation embrittlement on all structure levels (from atomic to macrolevel) has been shown. The effects of structural localization, collectivization, long range effects, rotation modes development are described. It was shown that these effects are closely interrelated; they characterized the deformed irradiation material as open dissipative system subjected to the laws of such scientific approach as synergetic.

  4. Hydrogen embrittlement of steels: study and prevention

    International Nuclear Information System (INIS)

    Brass, A.M.; Chene, J.; Coudreuse, L.

    2000-01-01

    Hydrogen embrittlement of steels is one of the important reason of rupture of pieces in the industry (nuclear, of petroleum..). Indeed, there are a lot of situations which can lead to the phenomenon of hydrogen embrittlement: introduction of hydrogen in the material during the elaboration or during transformation or implementation processes (heat treatments, welding); use of steels when hydrogen or hydrogenated gaseous mixtures are present; hydrogen produced by electrolytic reactions (surface treatments, cathodic protection). The hydrogen embrittlement can appear in different forms which depend of a lot of parameters: material (state, composition, microstructure..); surrounding medium (gas, aqueous medium, temperature..); condition of mechanical solicitation (static, dynamic, cyclic..). The industrial phenomena which appear during cases of hydrogen embrittlement are more particularly described here. Several methods of steels studies are proposed as well as some possible ways for the prevention of hydrogen embrittlement risks. (O.M.)

  5. Progress in identification of radiation embrittlement mechanisms

    International Nuclear Information System (INIS)

    Hawthorne, J.R.

    1988-01-01

    This report outlines recent advances in the isolation and understanding of mechanisms behind known composition influences on he radiation embrittlement sensitivity of reactor pressure vessel steels at 288 deg. C. The advances are largely the product of joint investigations by Materials Engineering Associates (MEA) and other laboratories in the U.S. and overseas under cooperative and subcontract arrangements. Specific objectives were: confirmation of the suspect Cu mechanism, identification of the process for the Cu:Ni synergism, and isolation of the P mechanism in radiation sensitivity development. The investigations proceeded with MEA-supplied steels and iron alloys from 4-way split laboratory melts; research tools included Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Field Ion Microscopy (FIM), Small Angle Neutron Scattering (SANS), Positron Annihilation (PA) and Auger Electron Spectroscopy (AES). Experimental results show that P and Cu enhance the radiation elevation of yield strength and that the associated mechanisms are a radiation-induced precipitation of P or Cu-rich clusters which impede dislocation motion. With high Cu alloys, a Cu phosphide is formed in preference to P precipitates and the P contribution is greatly reduced. Effects of postirradiation annealing and reirradiation are also reported. (author)

  6. Radiation embrittlement of WWER-1000 reactor vessel steels

    International Nuclear Information System (INIS)

    Nikolaeva, A.V.; Nikolaev, Yu.A.; Kevorkyan, Yu.R.

    2001-01-01

    Results obtained on the blank samples of materials of the WWER-1000 vessels irradiated by low density neutron flux are discussed. Chemical composition of the materials is characterized by the low content of the impurities (copper and phosphorus) and high content of nickel. Dependence of the radiation embrittlement of the WWER-1000 vessel materials on metallurgic variables and damage dose is treated. The research showed that nickel largely enhanced the radiation embrittlement. New dependences for determination of the radiation embrittlement real rate of the WWER-1000 vessel materials and its conservative estimation were developed [ru

  7. Radiation hardening and embrittlement of some refractory metals and alloys

    International Nuclear Information System (INIS)

    Fabritsiev, S.; Pokrovskyb

    2007-01-01

    Tungsten is proposed for application in the ITER divertor and limiter as plasma facing material. The tungsten operation temperature in the ITER divertor is relatively high. Hence, the ductile properties of tungsten will be controlled by the low temperature radiation embrittlement. The mechanism of radiation hardening and embrittlement under neutron irradiation at low temperature is well studied for FCC metals, in particular for copper. At the same time, low-temperature radiation hardening of BCC materials, in particular for refractory metals, is less studied. This study presents the results of investigation into radiation hardening and embrittlement of pure metals: W, Mo and Nb, and W-Re and Ta-4W alloys. The materials were in the annealed conditions. The specimens were irradiated in the SM-2 reactor to doses of 10 -4 -10 -1 dpa at 80 C and then tested for tension at 80 C. The study of the stress-strain curves of unirradiated specimens revealed a yield drop for W, Mo, Nb, Ta-4W, W-Re. After the yield drop some metals (Mo,Nb) retain their capability for strain hardening and demonstrate a high elongation (20-50%). Radiation hardening is maximum in Mo (∝400MPa) and minimum in Nb (∝100 MPa). In this case the dependence slope for Nb is similar to that for pure copper irradiated in SM-2 under the same conditions. Ii and Ta-4W have a higher slope. Measurement of electrical resistivity of irradiated specimens showed that for all materials it is increased monotonously with an increase in the irradiation dose. A minimum gain in electrical resistivity with a dose was observed for Nb (∝3% at 0.1 dpa). As for Mo it was essentially higher, i.e. ∝ 30%. The gain was maximum for W-Re alloy. Comparison of radiation hardening dose dependencies obtained in this study with the data for FCC metals (Cu) showed that in spite of the quantitative difference the qualitative behavior of these two classes of metals is similar. (orig.)

  8. Radiation embrittlement of WWER 440 pressure vessel steel and of some improved steels by western producers

    International Nuclear Information System (INIS)

    Koutsky, J.; Vacek, M.; Stoces, B.; Pav, T.; Otruba, J.; Novosad, P.; Brumovsky, M.

    1982-01-01

    The resistance was studied of Cr-Mo-V type steel 15Kh2MFA to radiation embrittlement at an irradiation temperature of around 288 degC. Studied was the steel used for the manufacture of the pressure vessel of the Paks nuclear reactor in Hungary. The obtained results of radiation embrittlement and hardening of steel 15Kh2MFA were compared with similar values of Mn-Ni-Mo type steels A 533-B and A 508 manufactured by leading western manufacturers within the international research programme coordinated by the IAEA. It was found that the resistance of steel 15Kh2MFA to radiation embrittlement is comparable with steels A 533-B and A 508 by western manufacturers. (author)

  9. Low temperature radiation embrittlement for reactor vessel steels

    International Nuclear Information System (INIS)

    Ginding, I.A.; Chirkina, L.A.

    1978-01-01

    General conceptions of cold brittleness of bcc metals are in a review. Considered are experimental data and theoretical representations about the effect of irradiation conditions, chemical composition, phase and structural constitutions, grain size, mechanical and thermomechanical treatments on low-temperature irradiation embrittlement of reactor vessel steels. Presented are the methods for increasing radiation stability of metals (carbon and Cr-Mo steels) used in manufacturing reactor vessels

  10. Power reactor embrittlement data base (PR-EDB): Uses in evaluating radiation embrittlement of reactor vessels

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.; Wang, J.A.

    1992-01-01

    Investigations of regulatory issues such as vessel integrity over plant life, vessel failure, and sufficiency of current Codes, Standard Review Plans (SRPs), and Guides for license renewal can be greatly expedited by the use of a well-designed, computerized data base. Also, such a data is essential for the evaluation of embrittlement prediction models by researchers. The Power Reactor Embrittlement Data Base (PR-EDB) is such a comprehensive collection of data for US commercial nuclear reactors. The current compilation contains data from 92 reactors and consists of 175 data points for weld materials (79 different welds) and 395 data points for base materials (110 different base materials). The different types of data that are implemented or planned for this data base are discussed. ''User-friendly'' utility programs have been written to investigate a list of problems using this data base. The utility programs are also used to add and upgrade data, retrieve and select specific data, manipulate data, display data to the screen or printer, and to fit and plot Charpy impact data. The results of several studies investigated are presented in this paper

  11. Regulatory aspects of radiation embrittlement of reactor vessel steels

    International Nuclear Information System (INIS)

    Randall, P.N.

    1979-01-01

    One purpose of this conference, is to re-examine the conventional wisdom about neutron radiation embrittlement and the methods used to counteract embrittlement in reactor vessels. Perhaps, there have been sufficient advances in fracture mechanics, core physics, dosimetry, and physical metallurgy to permit a forward step in the quantitative treatment of the subject. Certainly this would be consistent with the position of the U.S. Nuclear Regulatory Commission (the NRC) in general. ''There has been a continued evolution toward increased specificity.'' This statement appeared in the response prepared by the staff to a request from the Commission to explain how the staff decides to apply a new requirement and to whom, i.e., to back-fit or forward-fit-only or whatever. Pressure for increased specificity, i.e., for fleshing out general design criteria, comes from ''technical surprises'' in the form of operating experiences or from research information, and from attempts to improve our confidence in the safety of plants, especially new plants. Our goal is to have anticipated and evaluated all possible modes of failure with sufficient quantitativeness that the probability of failure can be estimated with some accuracy. Failing this, regulators demand large margins of safety to cover our ignorance

  12. Role of radiation embrittlement in reactor vessel integrity assessment

    International Nuclear Information System (INIS)

    Marston, T.U.; Chexal, V.K.; Wyckoff, M.

    1982-01-01

    Reactor vessel integrity calculations are complex. The effect of radiation embrittlement on vessel material properties is a very important aspect of any vessel integrity evaluation. The importance of realistic (based on surveillance capsule results) rather than conservative estimates of the material properties (based on regulatory curves) cannot be overestimated. It is also important to make realistic thermal hydraulic and system operations assumptions. In addition, use of actual flaw sizes from in-service inspections (versus hypothetical flaw size selection) will promote realism. Important research results exist that need to be incorporated into the regulatory process. The authors believe results from current research and development efforts will demonstrate that, with reasonable assumptions and best estimate calculations, the safety of even the older reactor vessels with high copper content welds can be assured over their design lifetimes without the need for major fixes. The utilities, through EPRI and the vendors, have dedicated a significant effort to solving the pressurized thermal shock problem

  13. The strengthening of embrittled books using gamma radiation

    International Nuclear Information System (INIS)

    Egan, A.; Mardian, J.; Foot, M.; King, E.; Millington, A.; Nevin, M.; Butler, C.; Barker, J.; Fletcher, D.

    1995-01-01

    The embrittlement of papers, manufactured through processes introduced in the mid-19th century, has caused many millions of books to become fragile, even to the point of being unusable. During the 1980s the British Library funded a research programme, carried out at the University of Surrey, to develop a technology which could be used to treat brittle books on a large scale, with the goal of greatly extending their useful life. The process developed, known as graft co-polymerization, involves three stages: i) application of a cocktail of monomers to the book's pages; ii) equilibration of these monomers throughout the text block; and iii) a low, slow dose of γ-radiation to effect polymerization. In collaboration with the British Library, Nordion International has designed a full-scale book-strengthening plant capable of processing between 200,000 and 500,000 and 500,000 books per year, with estimated prices to customers in the region of 1 8-10 per volume (US $12-16). In order to test the equipment and procedures that would be involved in such a plant, pilot-scale equipment has been designed and assembled on the premises of Isotron plc, where use is made of a conventional irradiator. This paper gives details of the graft co-polymerization process, and some results of the pilot-scale work, in terms of both efficacy and controllability. It also discusses the technical and economic feasibility of building and running a full-scale plant. (author)

  14. Consequence evaluation of radiation embrittlement of Trojan reactor pressure vessel supports

    International Nuclear Information System (INIS)

    Lu, S.C.; Sommer, S.C.; Johnson, G.L.; Lambert, H.E.

    1990-10-01

    This report describes a consequence evaluation to address safety concerns raised by the radiation embrittlement of the reactor pressure vessel (RPV) supports for the Trojan nuclear power plant. The study comprises a structural evaluation and an effects evaluation and assumes that all four reactor vessel supports have completely lost the load carrying capability. By demonstrating that the ASME code requirements governing Level D service limits are satisfied, the structural evaluation concludes that the Trojan reactor coolant loop (RCL) piping is capable of transferring loads to the steam generator (SG) supports and the reactor coolant pump (RCP) supports. A subsequent design margins to accommodate additional loads transferred to them through the RCL piping. The effects evaluation, employing a systems analysis approach, investigates initiating events and the reliability of the engineered safeguard systems as the RPV is subject to movements caused by the RPV support failure. The evaluation identifies a number of areas of additional safety concerns, but further investigation of the above safety concerns, however, concludes that a hypothetical failure of the Trojan RPV supports due to radiation embrittlement will not result in consequences of significant safety concerns

  15. Study of intergranular embrittlement in Fe-12Mn alloys

    International Nuclear Information System (INIS)

    Lee, H.J.

    1982-06-01

    A high resolution scanning Auger microscopic study has been performed on the intergranular fracture surfaces of Fe-12Mn steels in the as-austenitized condition. Fracture mode below the ductile-brittle transition temperature was intergranular whenever the alloy was quenched from the austenite field. The intergranular fracture surface failed to reveal any consistent segregation of P, S, As, O, or N. The occasional appearance of S or O on the fracture surface was found to be due to a low density precipitation of MnS and MnO 2 along the prior austenite boundaries. An AES study with Ar + ion-sputtering showed no evidence of manganese enrichment along the prior austenite boundaries, but a slight segregation of carbon which does not appear to be implicated in the tendency toward intergranular fracture. Addition of 0.002% B with a 1000 0 C/1h/WQ treatment yielded a high Charpy impact energy at liquid nitrogen temperature, preventing the intergranular fracture. High resolution AES studies showed that 3 at. % B on the prior austenite grain boundaries is most effective in increasing the grain boundary cohesive strength in an Fe-12Mn alloy. Trace additions of Mg, Zr, or V had negligible effects on the intergranular embrittlement. A 450 0 C temper of the boron-modified alloys was found to cause tempered martensite embrittlement, leading to intergranular fracture. The embrittling treatment of the Fe-12Mn alloys with and without boron additions raised the ductile-brittle transition by 150 0 C. This tempered martensite embrittlement was found to be due to the Mn enrichment of the fracture surface to 32 at. % Mn in the boron-modified alloy and 38 at. % Mn in the unmodified alloy. The Mn-enriched region along the prior austenite grain boundaries upon further tempering is believed to cause nucleation of austenite and to change the chemistry of the intergranular fracture surfaces. 61 figures

  16. Fracture analysis of HFIR beam tube caused by radiation embrittlement

    International Nuclear Information System (INIS)

    Chang, S.J.

    1994-01-01

    With an attempt to estimate the neutron beam tube embrittlement condition for the Oak Ridge High Flux Isotope Reactor (HFIR), fracture mechanics calculations are carried out in this paper. The analysis provides some numerical result on how the tube has been structurally weakened. In this calculation, a lateral impact force is assumed. Numerical result is obtained on how much the critical crack size should be reduced if the beam tube has been subjected to an extended period of irradiation. It is also calculated that buckling strength of the tube is increased, not decreased, with irradiation

  17. Nondestructive characterization of embrittlement in reactor pressure vessel steels -- A feasibility study

    International Nuclear Information System (INIS)

    McHenry, H.I.; Alers, G.A.

    1998-01-01

    The Nuclear Regulatory Commission recently initiated a study by NIST to assess the feasibility of using physical-property measurements for evaluating radiation embrittlement in reactor pressure vessel (RPV) steels. Ultrasonic and magnetic measurements provide the most promising approaches for nondestructive characterization of RPV steels because elastic waves and magnetic fields can sense the microstructural changes that embrittle materials. The microstructural changes of particular interest are copper precipitation hardening, which is the likely cause of radiation embrittlement in RPV steels, and the loss of dislocation mobility that is an attribute of the ductile-to-brittle transition. Measurements were made on a 1% copper steel, ASTM grade A710, in the annealed, peak-aged and overaged conditions, and on an RPV steel, ASTM grade A533B. Nonlinear ultrasonic and micromagnetic techniques were the most promising measures of precipitation hardening. Ultrasonic velocity measurements and the magnetic properties associated with hysteresis-loop measurements were not particularly sensitive to either precipitation hardening or the ductile-to-brittle transition. Measurements of internal friction using trapped ultrasonic resonance modes detected energy losses due to the motion of pinned dislocations; however, the ultrasonic attenuation associated with these measurements was small compared to the attenuation caused by beam spreading that would occur in conventional ultrasonic testing of RPVs

  18. Status of reactor pressure vessel embrittlement study in Japan

    International Nuclear Information System (INIS)

    Sasajima, H.

    1997-01-01

    Since the construction of Japanese first commercial nuclear power plant in 1966, 52 nuclear power plants have been commissioned in Japan to commercial operation. Japanese first nuclear power plant has now been service for 30 years and the aging of nuclear power plants is steadily progressing in general. Under these circumstances, the Japan Power Engineering and Inspection Corporation (JAPEIC) is executing, under consignment by the Ministry of International Trade and Industry (MITI), the development and verification test programs for plant integrity evaluation technology by which nuclear power plant aging can be appropriately handled. This paper shows the outline of study dealing with embrittlement of RPV caused by neutron irradiation, as one of the activity of JAPEIC. The embrittlement of RPV caused by neutron irradiation is manifested as a shift of transition temperature and as a reduction in Upper Shelf Energy (USE). In JAPEIC, the study dealing with a shift of transition temperature was conducted in the ''Reactor Pressure Vessel Pressurized Thermal Shock Test Project (the PTS Project)'', and the study dealing with a reduction in USE has been conducted in the ''Nuclear Power Plant Life Management Technology (the PLIM Project)''. And the reconstitution technology of surveillance test specimen has been conducted in PLIM Project as one of the measures to improve monitoring above material characteristic changes. The integrity evaluation under the Pressurized Thermal Shock (PTS) events including the effect of neutron irradiation embrittlement was initiated in 1983 FY as the PTS Project and was completed in the 1991 FY. The study verified that plant integrity could be assured at not only the end of design life, but also an extended service life even when the severest PTS events were postulated. The PLIM Project, designed to develop and verify the integrity evaluation technology dealing with reduction of USE by neutron irradiation, was started in the 1996 FY as a 10

  19. Study on prediction model of irradiation embrittlement for reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Wang Rongshan; Xu Chaoliang; Huang Ping; Liu Xiangbing; Ren Ai; Chen Jun; Li Chengliang

    2014-01-01

    The study on prediction model of irradiation embrittlement for reactor pres- sure vessel (RPV) steel is an important method for long term operation. According to the deep analysis of the previous prediction models developed worldwide, the drawbacks of these models were given and a new irradiation embrittlement prediction model PMIE-2012 was developed. A corresponding reliability assessment was carried out by irradiation surveillance data. The assessment results show that the PMIE-2012 have a high reliability and accuracy on irradiation embrittlement prediction. (authors)

  20. Impact of radiation embrittlement on integrity of pressure vessel supports for two PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Cheverton, R.D.; Pennell, W.E.; Robinson, G.C.; Nanstad, R.K.

    1989-01-01

    Recent data from the HFIR vessel surveillance program indicate a substantial radiation embrittlement rate effect at low irradiation temperatures (/approximately/120/degree/F) for A212-B, A350-LF3, A105-II, and corresponding welds. PWR vessel supports are fabricated of similar materials and are subjected to the same low temperatures and fast neutron fluxes (10/sup 8/ to 10/sup 9/ neutrons/cm/sup 2//center dot/s, E > 1.0 MeV) as those in the HFIR vessel. Thus, the embrittlement rate of these structures may be greater than previously anticipated. A study sponsored by the NRC is under way at ORNL to determine the impact of the rate effect on PWR vessel-support life expectancy. The scope includes the interpretation and application of the HFIR data, a survey of all light-water-reactor vessel support designs, and a structural and fracture-mechanics analysis of the supports for two specific PWR plants of particular interest with regard to a potential for support failure as a result of propagation of flaws. Calculations performed thus far indicate best-estimate critical flaw sizes, corresponding to 32 EFPY, of /approximately/0.2 in. for one plant and /approximately/0.4 in. for the other. These flaw sizes are small enough to be of concern. However, it appears that low-cycle fatigue is not a viable mechanism for creation of flaws of this size, and thus, presumably, such flaws would have to exist at the time of fabrication. 59 refs., 128 figs., 49 tabs.

  1. Calculational results for radiation embrittlement of WWER pressure vessel at the Kozloduy NPP

    Energy Technology Data Exchange (ETDEWEB)

    Apostolov, T; Ilieva, K; Petrova, T [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika

    1996-12-31

    Determination of radiation impact on metal state in the case of WWER-440/230 is made only by calculation methods since a special sample-witness (SW) incorporation had not been implemented. In WWER-1000 reactors such SW are foreseen but their spots are high above the active core. This is why in both reactors the appliance of a calculational procedure for radiation embrittlement determination is compulsory. The authors propose such a procedure accounting for the change in critical temperature of neutron brittleness by the neutron fluence. The neutron fluence and the shift of critical embrittlement temperature have been calculated for the maximum overloaded location and for the weld metal of the Kozloduy-5 and Kozloduy-6 reactors (WWER-1000). The shift of critical temperature in weld 4 of the Units 1-4 (WWER-440) is plotted versus work cycles and compared to experimental values. 4 figs., 5 tabs.

  2. Consequence evaluation of radiation embrittlement of Trojan reactor pressure vessel supports

    International Nuclear Information System (INIS)

    Lu, S.C.

    1990-01-01

    The consequences evaluation of radiation embrittlement of reactor pressure vessel (RPV) supports of nuclear power plants offers a more direct and less controversial approach to the safety concerns addressed by Generic Safety Issue 15(GSI-15) identified by the U.S. Nuclear Regulatory Commission (NRC) because this approach depends on more conventional methodologies widely accepted by the engineering community. The success of this evaluation may permit a satisfactory resolution to GSI-15 by demonstrating that even under the most unfavorable circumstances, i.e., complete failure of all RPV supports, there is no undue risk to public safety. This evaluation is divided into two phases. Phase 1 is a pilot study on a selected nuclear power plant. Phase 2 is a parametric study undertaken in an attempt to generalize the conclusion of the pilot study to other nuclear power plants. The Trojan nuclear power plant was selected for the pilot study because its RPV supports are located in the high radiation zone and are subject to high tensile stresses. The pilot study comprises a structural evaluation and an effect evaluation and assumes that all four RPV supports have completely lost their load carrying capability. The current paper addresses Phase 1 results and conclusions

  3. Radiation embrittlement of Spanish nuclear reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Bros, J.; Ballesteros, A.; Lopez, A.

    1993-01-01

    Commercial pressurized water reactor (PWR) and boiling water reactor (BWR) nuclear power plants contain a series of pressure vessel steel surveillance capsules as the principal means of monitoring radiation effects on the pressure vessel. Changes in fracture toughness are more severe in surveillance capsules than in reactor vessel materials because of their proximity of the reactor core. Therefore, it is possible to predict changes in fracture toughness of the reactor vessel materials. This paper describes the status of the reactor vessel surveillance program relating to Spanish nuclear power plants. To date, twelve capsules have been removed and analyzed from seven of the nine Spanish reactors in operation. The results obtained from the analysis of these capsules are compared with the predictions of the Nuclear Regulatory Commission (NRC) Regulatory Guide 1.99, Rev. 2, by means of measured and expected increase of the nil-ductility transition reference temperature (RT NDT ). The comparison is made considering the different variables normally included in the studies of radiation response of reactor pressure vessel materials, such as copper content of steel, level of neutron fluence above 1 MeV, base metal or weld metal, and so forth. The surveillance data have been used for determining the adjusted reference temperatures and upper shelf energies at any time. The results have shown that the seven pressure vessels are in excellent condition to continue operating with safety against brittle fracture beyond the design life, without the need to recuperate the degraded properties of the materials by annealing of the vessel

  4. Mechanisms of radiation embrittlement of VVER-1000 RPV steel at irradiation temperatures of (50–400)°C

    Energy Technology Data Exchange (ETDEWEB)

    Kuleshova, E.A., E-mail: evgenia-orm@yandex.ru [National Research Center “Kurchatov Institute”, Kurchatov Sq. 1, Moscow 123182 (Russian Federation); National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute), Kashirskoe Highway 31, Moscow 115409 (Russian Federation); Gurovich, B.A.; Bukina, Z.V.; Frolov, A.S.; Maltsev, D.A.; Krikun, E.V.; Zhurko, D.A.; Zhuchkov, G.M. [National Research Center “Kurchatov Institute”, Kurchatov Sq. 1, Moscow 123182 (Russian Federation)

    2017-07-15

    This work summarizes and analyzes our recent research results on the effect of irradiation temperature within the range of (50–400)°C on microstructure and properties of 15Kh2NMFAA class 1 steel (VVER-1000 reactor pressure vessel (RPV) base metal). The paper considers the influence of accelerated irradiation with different temperature up to different fluences on the carbide and irradiation-induced phases, radiation defects, yield strength changes and critical brittleness temperature shift (ΔT{sub K}) as well as on changes of the fraction of brittle intergranular fracture and segregation processes in the steel. Low temperature irradiation resulted solely in formation of radiation defects – dislocation loops of high number density, the latter increased with increase in irradiation temperature while their size decreased. In this regard high embrittlement rate observed at low temperature irradiation is only due to the hardening mechanism of radiation embrittlement. Accelerated irradiation at VVER-1000 RPV operating temperature (∼300 °C) caused formation of radiation-induced precipitates and dislocation loops, as well as some increase in phosphorus grain boundary segregation. The observed ΔT{sub K} shift being within the regulatory curve for VVER-1000 RPV base metal is due to both hardening and non-hardening mechanisms of radiation embrittlement. Irradiation at elevated temperature caused more intense phosphorus grain boundary segregation, but no formation of radiation-induced precipitates or dislocation loops in contrast to irradiation at 300 °C. Carbide transformations observed only after irradiation at 400 °C caused increase in yield strength and, along with a contribution of the non-hardening mechanism, resulted in the lowest ΔT{sub K} shift in the studied range of irradiation temperature and fluence. - Highlights: •Structural elements in RPV steel are studied at different irradiation temperatures. •Highest number density dislocation loops are

  5. Status and task of the study on the hydrogen embrittlement of zirconium alloys

    International Nuclear Information System (INIS)

    Nagase, Fumihisa; Furuta, Teruo; Seino, Shun; Komatsu, Kazushi.

    1995-08-01

    As the burnup of the LWR fuel is extended, waterside corrosion and hydrogen pickup increase in the Zircaloy cladding. Hydrogen embrittlement of Zircaloy is one of the main factors which may limit the life of the fuel rod. This report presents a review on the hydrogen embrittlement of zirconium and its alloys including the irradiated materials. Research tasks for the reduction of ductility in the high burnup fuel cladding are also discussed. Many fundamental investigations have been performed on the hydrogen embrittlement of zirconium alloys. However, the embrittlement mechanism of the high burnup fuel cladding is complicated. Especially, a coupled effect of hydrides and radiation defects are expected to be pronounced with neutron dose increase. In order to evaluate the reduction of ductility of the higher burnup fuel cladding properly, it is necessary to investigate the coupled effect of these two factors by systematic examinations. (author) 64 refs

  6. Radiation embrittlement in pressure vessels of power reactors

    International Nuclear Information System (INIS)

    Kempf, Rodolfo; Fortis, Ana M.

    2007-01-01

    It is presented the project to study the effect of lead factors on the mechanical behavior of Reactor Pressure Vessel steels. It is described the facility designed to irradiate Charpy specimens with V notch of SA-508 type 3 steel at power reactor temperature, installed in the RA-1 reactor. The objective is to obtain the fracture behavior of irradiated specimens with different lead factors and to know their dependence with the diffusion of alloy elements. (author) [es

  7. A study on the irradiation embrittlement and recovery characteristics of light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Chi, Se Hwan; Hong, Jun Hwa; Lee, Bong Sang; Oh, Jong Myung; Song, Sook Hyang; Milan, Brumovsky

    1999-03-01

    The neutron irradiation embrittlement phenomenon of light water RPV steels greatly affects the life span for safe operation of a reactor. Reliable evaluation and prediction of the embrittlement of RPV steels, especially of aged reactors, are of importance to the safe operation of a reactor. In addition, the thermal recovery of embrittled RPV has been recognized as an option for life extension. This study aimed to tracer/refine available technologies for embrittlement characterization and prediction, to prepare relevant materials for several domestic RPV steels of the embrittlement and recovery, and to find out possible remedy for steel property betterment. Small specimen test techniques, magnetic measurement techniques, and the Meechan and Brinkmann's recovery curve analysis method were examined/applied as the evaluation techniques. Results revealed a high irradiation sensitivity in YG 3 RPV steel. Further extended study may be urgently needed. Both the small specimen test technique for the direct determination of fracture toughness, and the magnetic measurement technique for embrittlement evaluation appeared to be continued for the technical improvement and data base preparation. Manufacturing process relevant to the heat treatment appeared to be improved in lowering the irradiation sensitivity of the steel. Further study is needed especially in applying the present techniques to the new structural materials under new irradiation environment of advanced reactors. (author)

  8. A study on the irradiation embrittlement and recovery characteristics of light water reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Se Hwan; Hong, Jun Hwa; Lee, Bong Sang; Oh, Jong Myung; Song, Sook Hyang; Milan, Brumovsky [NRI Czech (Czech Republic)

    1999-03-01

    The neutron irradiation embrittlement phenomenon of light water RPV steels greatly affects the life span for safe operation of a reactor. Reliable evaluation and prediction of the embrittlement of RPV steels, especially of aged reactors, are of importance to the safe operation of a reactor. In addition, the thermal recovery of embrittled RPV has been recognized as an option for life extension. This study aimed to tracer/refine available technologies for embrittlement characterization and prediction, to prepare relevant materials for several domestic RPV steels of the embrittlement and recovery, and to find out possible remedy for steel property betterment. Small specimen test techniques, magnetic measurement techniques, and the Meechan and Brinkmann's recovery curve analysis method were examined/applied as the evaluation techniques. Results revealed a high irradiation sensitivity in YG 3 RPV steel. Further extended study may be urgently needed. Both the small specimen test technique for the direct determination of fracture toughness, and the magnetic measurement technique for embrittlement evaluation appeared to be continued for the technical improvement and data base preparation. Manufacturing process relevant to the heat treatment appeared to be improved in lowering the irradiation sensitivity of the steel. Further study is needed especially in applying the present techniques to the new structural materials under new irradiation environment of advanced reactors. (author)

  9. Surveillance as a complement to irradiation embrittlement studies: Status and needs

    International Nuclear Information System (INIS)

    Steele, L.E.

    1977-01-01

    The history of the study of radiation embrittlement of reactor pressure vessel steels has gone through three stages in the USA. 1) A scientific curiosity. 2) Empirical or laboratory evaluation of typical steels, and 3) Integration of the scientific and empirical to advance status and evolve standard techniques. The current stage is one in which surveillance data compliments the laboratory studies which characterized Stage 3. The early USA surveillance programs were generally analyzed by the same people who were the primary laboratory investigators. An effort must be made to continue this type of collaboration as a useful two-way learning procedure though it will become more and more difficult as nuclear power is broadly commercialized. The current status of both types of USA programs will be presented to encourage the most advantageous use of data from both sources. At this time about 25 USA nuclear power reactors have operated long enough to have provided initial surveillance or dosimetry results. An effort will be made to summarize the general status of these in order to: 1) Provide complimentary data to laboratory studies. 2) Assess directions in handling the problems of radiation embrittlement. 3) Note lessons learned for improving surveillance efforts in the future. 4) Identify possible research tasks for the future to support in-service surveillance and other measures. 5) Justify facts advancing surveillance requirements to status of national codes and standards. 6) Justify facts requiring changes in current national codes and standards. A plan will be presented along with an introduction of each member of the USA delegation for systematic presentation of the status of reactor vessel surveillance in the USA. (author)

  10. Review of recent studies on neutron irradiation embrittlement in light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Sudo, Akira; Miyazono, Shohachiro

    1983-06-01

    Recent studies in foreign countries (USA, France, FRG and UK) on neutron irradiation embrittlement have been reviewed. These studies are classified into four areas, such as 1) effect of chemical composition on irradiation embrittlement sensitivity, 2) postirradiation heat treatment for embrittlement relief, 3) fracture toughness evaluation of irradiated materials based on fracture mechanics analysis, and 4) effect of irradiation on fatigue crack propagation behavior. The first area mainly includes the studies related to the effects of copper, phosphorus impurities and nickel alloying and synergistic effect of these components, and furthermore, evaluation of Regulatory Guide 1.99 Rev.l. Studies in the second area show the effects of annealing condition (temperature and time) and metallugical condition on embrittlement relief, and evaluation of periodic annealing in the period of irradiation as a promising method for embrittlement control. Studies in the third area show the correlation between fracture toughness and Cv notch ductility changes with neutron irradiation, and J-R curves of irradiated materials based on the elasto-plastic fracture mechanics. In the forth area, most of studies are investigated in air condition but a few studies in reactor-grade water at high temperature and pressure. (author)

  11. Radiation embrittlement behavior of fine-grained molybdenum alloy with 0.2 wt%TiC addition

    Energy Technology Data Exchange (ETDEWEB)

    Kitsunai, Y. [Tohoku University (Japan); Kurishita, H. [International Research Center for Nuclear Materials Science, Institute for Materials research (IMR), Tohoku University, Oarai, Ibaraki 311-1313 (Japan)]. E-mail: kurishi@imr.tohoku.ac.jp; Kuwabara, T. [Tohoku University (Japan); Narui, M. [International Research Center for Nuclear Materials Science, Institute for Materials research (IMR), Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Hasegawa, M. [International Research Center for Nuclear Materials Science, Institute for Materials research (IMR), Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Takida, T. [A.L.M.T. TECH Inc., 2 Iwasekoshi-machi, Toyama 931-8543 (Japan); Takebe, K. [A.L.M.T. TECH Inc., 2 Iwasekoshi-machi, Toyama 931-8543 (Japan)

    2005-11-15

    In order to elucidate the effects of pre-irradiation microstructures and irradiation conditions on radiation embrittlement and radiation-induced ductilization (RIDU), fine-grained Mo-0.2 wt%TiC specimens with high and low reduction rates in plastic working, which are designated as MTC-02H and MTC-02L, respectively, were prepared by powder metallurgical methods. The specimens were neutron irradiated to 0.1-0.15 dpa with controlled 1-cycle and 4-cycle heating between 573 and 773 K, and 473 and 673 K, respectively, in JMTR. Vickers microhardness and three-point bending impact tests and TEM microstructural examinations were made. The degree of radiation embrittlement, assessed by DBTT shift due to irradiation, was strongly dependent on the reduction rate and cycle number. The 4-cycle irradiation suppressed the radiation embrittlement compared with the 1-cycle irradiation, and the suppression was much more significant in MTC-02L than in MTC-02H. The observed behavior is discussed in connection with RIDU and microstructural evolution caused by the 4-cycle irradiation.

  12. Study and prediction model on low temperature aging embrittlement in duplex stainless steels

    International Nuclear Information System (INIS)

    Sanchez, L.; Gutierrez-Solana, F.

    1997-01-01

    Within the framework of a general study on low temperature (280-400 degree centigree) aging embrittlement in duplex stainless steels, a relationship has been obtained between aging, measured from ferrite hardness evolution, and bulk materials embrittlement, determined from fracture toughness and fracture impact tests. The existing correlation between the increase in ferrite hardness and its percentage presence in the fracture path supports this relationship and results in the development of a prediction design model which provides the fracture resistance curves, for any aging level, based on the chemical composition and the steel's properties in an unaged state. (Author)

  13. Assessment of Radiation Embrittlement in Nuclear Reactor Pressure Vessel Surrogate Materials

    Science.gov (United States)

    Balzar, Davor

    2010-10-01

    The radiation-enhanced formation of small (1-2 nm) copper-rich precipitates (CRPs) is critical for the occurrence of embrittlement in nuclear-reactor pressure vessels. Small CRPs are coherent with the bcc matrix, which causes local matrix strain and interaction with the dislocation strain fields, thus impeding dislocation mobility. As CRPs grow, there is a critical size at which a phase transformation occurs, whereby the CRPs are no longer coherent with the matrix, and the strain is relieved. Diffraction-line-broadening analysis (DLBA) and small-angle neutron scattering (SANS) were used to characterize the precipitate formation in surrogate ferritic reactor-pressure vessel steels. The materials were aged for different times at elevated temperature to produce a series of specimens with different degrees of copper precipitation. SANS measurements showed that the precipitate size distribution broadens and shifts toward larger sizes as a function of ageing time. Mechanical hardness showed an increase with ageing time, followed by a decrease, which can be associated with the reduction in the number density as well as the loss of coherency at larger sizes. Inhomogeneous strain correlated with mechanical hardness.

  14. Status of pressure vessel embrittlement study in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Shigeki [Japan Power Engineering and Inspection Corp. (JAPEIC), Chiba (Japan)

    1997-09-01

    The number of nuclear power plants in service for more than 20 years is increasing in Japan. Subsequently, the aging of nuclear power plants will continue to increase and for this reason, the assurance of the safety and reliability of nuclear power plants is becoming more important. Under this circumstances, Japan Government issued a report: ``Specific Concepts in Dealing with Nuclear Power Plant High Aging`` in April, 1996. This report identified that continuous technology development efforts are important to deal with the issues of nuclear power plant aging, and the following items are extracted for important categories to be developed. (1) Aging phenomena evaluation technology. (2) Inspection/monitoring technology (3) Preventive maintenance/repair technology. Japan Power Engineering and Inspection Corporation (JAPEIC) have been implementing various verification test concerning the above items consigned by the Ministry of International Trade and Industry (MITI). This report outlines the Specific Concepts in Dealing with Nuclear Power Plant High Agency and the past achievements and future plans of various verification tests related to irradiation embrittlement of nuclear reactor pressure vessel, mainly related to Pressurized Thermal Shock (PTS). (author). 4 refs, 8 figs, 5 tabs.

  15. Comparative study for the estimation of To shift due to irradiation embrittlement

    International Nuclear Information System (INIS)

    Lee, Jin Ho; Park, Youn won; Choi, Young Hwan; Kim, Seok Hun; Revka, Volodymyr

    2002-01-01

    Recently, an approach called the 'Master Curve' method was proposed which has opened a new means to acquire a directly measured material-specific fracture toughness curve. For the entire application of the Master Curve method, several technical issues should be solved. One of them is to utilize existing Charpy impact test data in the evaluation of a fracture transition temperature shift due to irradiation damage. In the U.S. and most Western countries, the Charpy impact test data have been used to estimate the irradiation effects on fracture toughness changes of RPV materials. For the determination of the irradiation shift the indexing energy level of 41 joule is used irrespective of the material yield strength. The Russian Code also requires the Charpy impact test data to determine the extent of radiation embrittlement. Unlike the U.S. Code, however, the Russian approach uses the indexing energy level varying according to the material strength. The objective of this study is to determine a method by which the reference transition temperature shift (ΔT o ) due to irradiation can be estimated. By comparing the irradiation shift estimated according to the U.S. procedure (ΔT 41J ) with that estimated according to the Russian procedure (ΔT F ), it was found that one-to-one relation exists between ΔT o and ΔT F

  16. Overview of French activities on neutron radiation embrittlement of pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Brillaud, C [Electricite de France (EDF), 37 - Tours (France); Keroulas, F de [Electricite de France (EDF), 93 - Saint-Denis (France); Pichon, C [Electricite de France (EDF), 69 - Villeurbanne (France); Teissier, A [Electricite de France (EDF), 92 - Courbevoie (France). Service Etudes et Projets Thermiques et Nucleaires

    1994-12-31

    This paper describes recent developments in France`s pressure vessel surveillance program, particularly aimed at assessing the irradiation-caused embrittlement of EDF`s PWRs. The first part presents surveillance program results for base metal, weld metal and heat-affected zones for 74 capsules removed from 34 units. Fluence ranges from 0.3.10{sup 19} n.cm{sup -2} to 5.5.10{sup 19} n.cm{sup -2}. The second part considers research and development activities in this area: these include the metallurgical structure effects of segregated bands on mechanical properties and the embrittlement rate under irradiation, as well as the effect of irradiation parameters such as flux and neutron spectrum on irradiation embrittlement, and more especially to obtain the best damage assessment. (authors). 14 refs., 5 figs., 1 tab.

  17. Dosimetry, metallurgical and code needs of the U.S. utilities related to radiation embrittlement of nuclear pressure vessels

    International Nuclear Information System (INIS)

    Rahn, F.J.; Marston, T.U.; Ozer, O.; Stahlkopf, K.

    1980-01-01

    Codes and regulation guides in the U.S.A., on performance of pressure vessel are examined. Limiting factors in the analysis and prediction of radiation embrittlement in reactor pressure vessels are: accurate measurement of neutron flux and spectrum in-situ, irradiation rate dependence, environmental conditions influence of flaws annealing, analysis of mechanical tests. The establishment of a self-consistent set of irradiated materials properties data taken at realistic flux rates is required, in conjunction with a careful technique in measuring with a careful technique in measuring the fluence and spectrum at the pressure vessel wall and material test specimen positions

  18. Evaluation on the Effect of Composition on Radiation Hardening and Embrittlement in Model FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Briggs, Samuel A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Edmondson, Philip [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hu, Xunxiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Littrell, Kenneth C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parish, Chad M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    This report details the findings of post-radiation mechanical testing and microstructural characterization performed on a series of model and commercial FeCrAl alloys to assist with the development of a cladding technology with enhanced accident tolerance. The samples investigated include model alloys with simple ferritic grain structure and two commercial alloys with minor solute additions. These samples were irradiated in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to nominal doses of 7.0 dpa near or at Light Water Reactor (LWR) relevant temperatures (300-400 C). Characterization included a suite of techniques including small angle neutron scattering (SANS), atom probe tomography (APT), and transmission based electron microscopy techniques. Mechanical testing included tensile tests at room temperature on sub-sized tensile specimens. The goal of this work was to conduct detailed characterization and mechanical testing to begin establishing empirical and/or theoretical structure-property relationships for radiation-induced hardening and embrittlement in the FeCrAl alloy class. Development of such relationships will provide insight on the performance of FeCrAl alloys in an irradiation environment and will enable further development of the alloy class for applications within a LWR environment. A particular focus was made on establishing trends, including composition and radiation dose. The report highlights in detail the pertinent findings based on this work. This report shows that radiation hardening in the alloys is primarily composition dependent due to the phase separation in the high-Cr FeCrAl alloys. Other radiation induced/enhanced microstructural features were less dependent on composition and when observed at low number densities, were not a significant contributor to the observed mechanical responses. Pre-existing microstructure in the alloys was found to be important, with grain boundaries and pre-existing dislocation

  19. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  20. LYRA and other projects on RPV steel embrittlement study and mitigation of the AMES network

    International Nuclear Information System (INIS)

    Debarberis, L.; Estorff, U. von; Crutzen, S.; Beers, M.; Stamm, H.; Vries, M.I. de; Tjoa, G.L.

    1998-01-01

    Within the framework of the European Network AMES, Ageing Materials evaluation and Studies, a number of experimental works on RPV materials embrittlement are carried out at the Institute of Advanced Materials (AIM) of the Joint Research Centre (JRC) of the European Commission (EC). The objectives of AMES are mainly the understanding of the property degradation phenomena of RPV western reference steels like JRQ and HSST, eastern RPV steels like 15X2mFA and 15H2X15, and annealing possibilities. In order to conduct a very high quality irradiation rig, LYRA facility, has been designed and developed at the High Flux Reactor (HFR) Petten. An other dedicated rig, named LIMA, has been developed at the HFR Petten in order to irradiate RPV steels, internals and in-core materials under typical BWR/PWR conditions. The samples can be irradiated in pressurised water up to 160 bar, 320 deg. C, and the water chemistry fully controlled. For irradiation of standard or miniaturised LWR related materials samples, another group of well experienced irradiation devices with inert gas or liquid metals environment are employed. These devices are tailored to their various specific applications. This paper is intended to give information about the structure and the objectives of the existing European network AMES, and to present the various AMES main and spin-off projects, including a brief description on he modelling activities related to RPV materials embrittlement. (author)

  1. Survey of postirradiation heat treatment as a means to mitigate radiation embrittlement of reactor vessel steels

    International Nuclear Information System (INIS)

    Hawthorne, J.R.

    1979-01-01

    Nuclear-radiation service typically produces a progressive reduction in the notch ductility of low-alloy steels. The reduction is manifested by a decrease in Charpy-V (Csub(v)) upper-shelf energy level and by an elevation in temperature of the ductile-to-brittle transition. Post irradiation heat treatment (annealing) is being investigated as a method for the reversal of these detrimental radiation effects for reactor-vessel steels. This study was undertaken to analyze factors which could affect annealing response, report data available to qualify suspected influences on annealing, and summarize experimental results generated for many commercially produced reactor materials and companion materials produced in the laboratory

  2. Strategic Assessment of Causes, Impacts and Mitigation of Radiation Embrittlement of RPV steel in LWRs

    International Nuclear Information System (INIS)

    Shamim, Jubair Ahmed; Bhowmik, Palash Kumar; Gairola, Abhinav; Suh, Kune Y.

    2014-01-01

    Nuclear power has been emerged as a proven technology in the present day world to beget electricity after its first successful demonstration in 1942. Due to world's increasing concern over the augmented concentration of 'Greenhouse Gas' emissions primarily caused by burning of fossil fuel, it is not surprising that there will be a galloping demand for nuclear power in near future. As per data of World Nuclear Association, there are currently 435 operable civil nuclear power reactors around the world, with a further 71 under construction, among which the most common type is LWR. Pressure vessel of LWR is the most vital pressure boundary component of Nuclear Steam Supply System (NSSS) as it houses the core under elevated pressure and temperature. It also provides structural support to RPV internals and attempts to protect against possible rupture under all postulated transients that the NSSS may undergo. LWR pressure vessel experiences service at a temperature of 250-320 .deg. C and receives significant level of fast neutron fluence, ranging from about 5*10 22 to 3*10 24 n/m 2 depending on plant design. There are also differences in materials used for various designed reactors. Weldments also vary in type and impurity level. Accordingly, the assessment of degradation of major components such as RPV steel caused by aging and corrosion is a common objective for safe operation of all LWRs. The purpose of this paper is to assess how neutron irradiation contributes to the degradation of mechanical properties of RPV steel and how these effects can be minimized. Since RPV is the only irreplaceable component in NPPs, the degradation of mechanical properties of RPV is the life-limiting feature of LWR nuclear power plant operation. Although there are a number of ways (e.g. thermal neutrons, fast neutrons and gamma-ray irradiation) that may contribute to the displacement of atoms (hence RPV embrittlement and degradation of mechanical properties), most of the

  3. Strategic Assessment of Causes, Impacts and Mitigation of Radiation Embrittlement of RPV steel in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Shamim, Jubair Ahmed; Bhowmik, Palash Kumar; Gairola, Abhinav; Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-10-15

    Nuclear power has been emerged as a proven technology in the present day world to beget electricity after its first successful demonstration in 1942. Due to world's increasing concern over the augmented concentration of 'Greenhouse Gas' emissions primarily caused by burning of fossil fuel, it is not surprising that there will be a galloping demand for nuclear power in near future. As per data of World Nuclear Association, there are currently 435 operable civil nuclear power reactors around the world, with a further 71 under construction, among which the most common type is LWR. Pressure vessel of LWR is the most vital pressure boundary component of Nuclear Steam Supply System (NSSS) as it houses the core under elevated pressure and temperature. It also provides structural support to RPV internals and attempts to protect against possible rupture under all postulated transients that the NSSS may undergo. LWR pressure vessel experiences service at a temperature of 250-320 .deg. C and receives significant level of fast neutron fluence, ranging from about 5*10{sup 22} to 3*10{sup 24} n/m{sup 2} depending on plant design. There are also differences in materials used for various designed reactors. Weldments also vary in type and impurity level. Accordingly, the assessment of degradation of major components such as RPV steel caused by aging and corrosion is a common objective for safe operation of all LWRs. The purpose of this paper is to assess how neutron irradiation contributes to the degradation of mechanical properties of RPV steel and how these effects can be minimized. Since RPV is the only irreplaceable component in NPPs, the degradation of mechanical properties of RPV is the life-limiting feature of LWR nuclear power plant operation. Although there are a number of ways (e.g. thermal neutrons, fast neutrons and gamma-ray irradiation) that may contribute to the displacement of atoms (hence RPV embrittlement and degradation of mechanical properties

  4. Modeling of irradiation embrittlement and annealing/recovery in pressure vessel steels

    International Nuclear Information System (INIS)

    Lott, R.G.; Freyer, P.D.

    1996-01-01

    The results of reactor pressure vessel (RPV) annealing studies are interpreted in light of the current understanding of radiation embrittlement phenomena in RPV steels. An extensive RPV irradiation embrittlement and annealing database has been compiled and the data reveal that the majority of annealing studies completed to date have employed test reactor irradiated weldments. Although test reactor and power reactor irradiations result in similar embrittlement trends, subtle differences between these two damage states can become important in the interpretation of annealing results. Microstructural studies of irradiated steels suggest that there are several different irradiation-induced microstructural features that contribute to embrittlement. The amount of annealing recovery and the post-anneal re-embrittlement behavior of a steel are determined by the annealing response of these microstructural defects. The active embrittlement mechanisms are determined largely by the irradiation temperature and the material composition. Interpretation and thorough understanding of annealing results require a model that considers the underlying physical mechanisms of embrittlement. This paper presents a framework for the construction of a physically based mechanistic model of irradiation embrittlement and annealing behavior

  5. Evaluation of HFIR [High Flux Isotope Reactor] pressure-vessel integrity considering radiation embrittlement

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Merkle, J.G.; Nanstad, R.K.

    1988-04-01

    The High Flux Isotope Reactor (HFIR) pressure vessel has been in service for 20 years, and during this time, radiation damage was monitored with a vessel-material surveillance program. In mid-November 1986, data from this program indicated that the radiation-induced reduction in fracture toughness was greater than expected. As a result, a reevaluation of vessel integrity was undertaken. Updated methods of fracture-mechanics analysis were applied, and an accelerated irradiations program was conducted using the Oak Ridge Research Reactor. Results of these efforts indicate that (1) the vessel life can be extended 10 years if the reactor power level is reduced 15% and if the vessel is subjected to a hydrostatic proof test each year; (2) during the 10-year life extension, significant radiation damage will be limited to a rather small area around the beam tubes; and (3) the greater-than-expected damage rate is the result of the very low neutron flux in the HFIR vessel relative to that in samples of material irradiated in materials-testing reactors (a factor of ∼10 4 less), that is, a rate effect

  6. Study on the hydrogen embrittlement and corrosion of stainless steels used as NI/MHX battery containers

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, H.J.; Chan, S.L.I. [National Taiwan University, Taipei (China); Chen, S.Y. [Chung Shan Institute of Science and Technology, Lung-Tan (China)

    1998-07-01

    Stainless steels are used as the containers for Nickel-metal hydride (Ni/MHx) batteries. In this work stainless steel 304, 304L, 316, 316L, 17-4PH and 430 were selected to study their relative susceptibility to hydrogen embrittlement and alkaline corrosion under battery environments. Comparisons were made by immersion test under different hydrogen pressure over the electrolyte, U-bend tests and slow strain rate tensile test with cathodic H{sub 2} charging. The results showed that high strength 17-4PH suffered severe corrosion after long time immersion in the electrolyte solution and were sensitive to hydrogen embrittlement after hydrogen charging. Ferritic 430 performed better than 17-4PH during immersion test but lost its ductility after hydrogen charging. All the austenitic steels (304, 304L, 316, 316L) were found to be suitable as the materials for Ni/MHx battery container, and the present tests can not discriminate their relative resistance to the corrosion and hydrogen embrittlement in the electrolyte. 5 refs.

  7. An internal-friction study of reactor-pressure-vessel steel embrittlement

    International Nuclear Information System (INIS)

    Ouytsel, K. van; Fabry, A.; Batist, R. de; Schaller, R.

    1997-01-01

    Within an enhanced commercial surveillance strategy, the nuclear-research institute SCK.CEN in Mol, Belgium is investigating, by means of internal friction, the microstructural processes responsible for embrittlement of pressure-vessel steels. The experiments were carried out using a torsion pendulum at the Ecole Polytechnique Federale de Lausanne in Switzerland. Amplitude-independent internal-friction experiments teach us that neutron irradiation induces defects which interact with mobile dislocations. Thermal ageing of JRQ and Doel-IV steel does not cause major embrittlement effects. Amplitude-dependent internal-friction experiments allow us to determine a critical amplitude which corresponds to the yield stress of the material as obtained from static tensile tests. The results also correspond to a three-component model for the yield strength taking into account both hardening and non-hardening embrittlement. Investigations of Doel-I-II weld material in different conditions reveal that embrittlement due to irradiation or thermal ageing can be interpreted in terms of a fine interplay between long- and short-range phenomena. (author)

  8. Thermal embrittlement of reactor vessel steels

    International Nuclear Information System (INIS)

    Corwin, W.R.; Nanstad, R.K.; Alexander, D.J.; Stoller, R.E.; Wang, J.A.; Odette, G.R.

    1995-01-01

    As a result of observations of possible thermal embrittlement from recent studies with welds removed from retired steam generators of the Palisades Nuclear Plant (PNP), an assessment was made of thermal aging of reactor pressure vessel (RPV) steels under nominal reactor operating conditions. Discussions are presented on (1) data from the literature regarding relatively low-temperature thermal embrittlement of RPV steels; (2)relevant data from the US power reactor-embrittlement data base (PR-EDB); and (3)potential mechanisms of thermal embrittlement in low-alloy steels

  9. Embrittlement data base, version 1

    International Nuclear Information System (INIS)

    Wang, J.A.

    1997-08-01

    The aging and degradation of light-water-reactor (LWR) pressure vessels is of particular concern because of their relevance to plant integrity and the magnitude of the expected irradiation embrittlement. The radiation embrittlement of reactor pressure vessel (RPV) materials depends on many different factors such as flux, fluence, fluence spectrum, irradiation temperature, and preirradiation material history and chemical compositions. These factors must be considered to reliably predict pressure vessel embrittlement and to ensure the safe operation of the reactor. Based on embrittlement predictions, decisions must be made concerning operating parameters and issues such as low-leakage-fuel management, possible life extension, and the need for annealing the pressure vessel. Large amounts of data from surveillance capsules and test reactor experiments, comprising many different materials and different irradiation conditions, are needed to develop generally applicable damage prediction models that can be used for industry standards and regulatory guides. Version 1 of the Embrittlement Data Base (EDB) is such a comprehensive collection of data resulting from merging version 2 of the Power Reactor Embrittlement Data Base (PR-EDB). Fracture toughness data were also integrated into Version 1 of the EDB. For power reactor data, the current EDB lists the 1,029 Charpy transition-temperature shift data points, which include 321 from plates, 125 from forgoings, 115 from correlation monitor materials, 246 from welds, and 222 from heat-affected-zone (HAZ) materials that were irradiated in 271 capsules from 101 commercial power reactors. For test reactor data, information is available for 1,308 different irradiated sets (352 from plates, 186 from forgoings, 303 from correlation monitor materials, 396 from welds and 71 from HAZs) and 268 different irradiated plus annealed data sets

  10. A Study on the Small Punch Test for Fracture Strength Evaluation of CANDU Pressure Tube Embrittled by Hydrogen

    International Nuclear Information System (INIS)

    Nho, Seung Hwan; Ong, Jang Woo; Yu, Hyo Sun; Chung, Se Hi

    1996-01-01

    The purpose of this study is to investigate the usefulness of small punch(SP) test using miniaturized specimens as a method for fracture strength evaluation of CANDU pressure tube embrittled by hydrogen. According to the test results, the fracture strength evaluation as a function of hydrogen concentration at -196 .deg. C was much better than that at room temperature, as the difference of SP fracture energy(Esp) with hydrogen concentration was more significant at -196 .deg. C than at room temperature for the hydrogen concentration up to 300ppm-H. It was also observed that the peak of average AE energy, the cumulative average AE energy and the cumulative average AE energy per equivalent fracture, strain increased with the increase of hydrogen concentration. From the results of load-displacement behaviors, Esp behaviors, macro- and micro-SEM fractographs and AE test it has been concluded that the SP test method using miniaturized specimen(10mmx10mmx0.5mm) will be a useful test method to evaluate the fracture strength for CANDU pressure tube embrittled by hydrogen

  11. Impact of radiation embrittlement on integrity of pressure vessel supports for two PWR [pressurized-water-reactor] plants

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Pennell, W.E.; Robinson, G.C.; Nanstad, R.K.

    1988-01-01

    Recent pressure-vessel surveillance data from the High Flux Isotope Reactor (HFIR) indicate an embrittlement fluence-rate effect that is applicable to the evaluation of the integrity of light-water reactor (LWR) pressure vessel supports. A preliminary evaluation using the HFIR data indicated increases in the nil ductility transition temperature at 32 effective full-power years (EFPY) of 100 to 130/degree/C for pressurized-water-reactor (PWR) vessel supports located in the cavity at midheight of the core. This result indicated a potential problem with regard to life expectancy. However, an accurate assessment required a detailed, specific-plant, fracture-mechanics analysis. After a survey and cursory evaluation of all LWR plants, two PWR plants that appeared to have a potential problem were selected. Results of the analyses indicate minimum critical flaw sizes small enough to be of concern before 32 EFPY. 24 refs., 16 figs., 7 tabs

  12. Reactor pressure vessel embrittlement

    International Nuclear Information System (INIS)

    1992-07-01

    Within the framework of the IAEA extrabudgetary programme on the Safety of WWER-440/230 NPPs, a list of safety issues requiring broad studies of generic interest have been agreed upon by an Advisory Group who met in Vienna in September 1990. The list was later revised in the light of the programme findings. The information on the status of the issues, and on the amount of work already completed and under way in the various countries, needs to be compiled. Moreover, an evaluation of what further work is required to resolve each one of the issues is also necessary. In view of this, the IAEA has started the preparation of a series of status reports on the various issues. This report on the generic safety issue ''Reactor Pressure Vessel Embrittlement'' presents a comprehensive survey of technical information available in the field and identifies those aspects which require further investigation. 39 refs, 21 figs, 4 tabs

  13. Experimental study on the resistance to hydrogen embrittlement of NIFS-V4Cr4Ti alloy

    International Nuclear Information System (INIS)

    Chen Jiming; Xu Zengyu; Den Ying; Muroga, T.

    2002-01-01

    SWIP (Southwestern Institute of Physics) has joined an international collaboration on the hydrogen embrittlement resistance evaluation of the vanadium alloy. This paper presents some experiments on the tensile properties and Charpy impact properties of the NIFS-V4Cr4Ti alloy with high-level hydrogen concentration. The experiment results show different properties against hydrogen embrittlement in static tension and impact load. The critical hydrogen concentration required to embrittle the alloy was about 215 - 310 mg·kg -1 on static tension load, but less than 130 mg·kg -1 on impact loading

  14. Blistering and hydride embrittlement

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.

    1975-01-01

    The effects of hydrogen on the mechanical properties of metals have been categorized into several groups. Two of the groups, hydrogen blistering and hydride embrittlement, are reasonably well understood, and problems relating to their occurrence may be avoided if that understanding is used as a basis for selecting alloys for hydrogen service. Blistering and hydride embrittlement are described along with several techniques of materials selection and used to minimize their adverse effects. (U.S.)

  15. PR-EDB: Power Reactor Embrittlement Database Version 3

    International Nuclear Information System (INIS)

    Wang, Jy-An John; Subramani, Ranjit

    2008-01-01

    backend data storage, and Microsoft Excel for plotting graphs. This software package is compatible with Windows (98 or higher) and has been built with a highly versatile user interface. PR-EDB Version 3.0 also contains an 'Evaluated Residual File' utility for generating the evaluated processed files used for radiation embrittlement study

  16. PR-EDB: Power Reactor Embrittlement Database - Version 3

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Subramani, Ranjit [ORNL

    2008-03-01

    backend data storage, and Microsoft Excel for plotting graphs. This software package is compatible with Windows (98 or higher) and has been built with a highly versatile user interface. PR-EDB Version 3.0 also contains an "Evaluated Residual File" utility for generating the evaluated processed files used for radiation embrittlement study.

  17. Irradiation embrittlement of reactor vessel steels

    International Nuclear Information System (INIS)

    Bros, J.

    2000-01-01

    From the historical decision of closing the Yankee Rowe NPP because of the uncertainties on the level of reactor pressure vessel neutron embrittlement, this paper reviews the technical-scientist bases of the degradation phenomena, and refers to the evolution of reactor pressure vessel radiation surveillance programs. (Author)

  18. Embrittlement of the nuclear icebreaker Lenin reactor pressure vessel materials reconstruction

    International Nuclear Information System (INIS)

    Krasikov, E.A.; Nikolaenko, V.A.

    2008-01-01

    Paper deals with the results of the efforts to examine the radiation damage of the Lenin nuclear-powered ice-breaker decommissioned reactor pressure vessel on the basis of which one has determined the peculiar features of the metal radiation embrittlement. Under 10 10 -10 11 s -1 cm -2 low density neutron flux irradiation one notes the most intensive embrittlement of the metal. Then, as the noxious element content in the metal matrix grows smaller the embrittlement reduces up to the change of sign as to the normal curve plotted at the neutron flux density exceeding 10 13 s -1 cm -2 . One assumes that as a result of the low density neutron flux irradiation the reactor pressure vessel edge spaces at some operation stages may be damaged more severely in contrast to these near the reactor core. The neutron irradiation density is the factor affecting the reactor vessel material embrittlement, that is why, it is important to study the damage mechanism of the materials of the power reactor vessels under design characterized by the low radiation load. The mentioned is important, as well, to evaluate the efficiency of the efforts undertaken to mitigate the effect of the neutron radiation on the reactor vessel [ru

  19. Ni/boride interfaces and environmental embrittlement in Ni-based superalloys: A first-principles study

    International Nuclear Information System (INIS)

    Sanyal, Suchismita; Waghmare, Umesh V.; Hanlon, Timothy; Hall, Ernest L.

    2011-01-01

    Highlights: ► Fracture strengths of Ni/boride interfaces through first-principles calculations. ► Fracture strengths of Ni/boride interfaces are higher than Ni/Ni 3 Al and NiΣ5 grain boundaries. ► Ni/boride interfaces have higher resistance to O-embrittlement than Ni/Ni 3 Al and NiΣ5 grain boundaries. ► CrMo-borides are more effective than Cr-borides in resisting O-embrittlement. ► Electronegativity differences between alloying elements correlate with fracture strengths. - Abstract: Motivated by the vital role played by boride precipitates in Ni-based superalloys in improving mechanical properties such as creep rupture strength, fatigue crack growth rates and improved resistance towards environmental embrittlement , we estimate fracture strength of Ni/boride interfaces through determination of their work of separation using first-principles simulations. We find that the fracture strength of Ni/boride interfaces is higher than that of other commonly occurring interfaces in Ni-alloys, such as Ni Σ-5 grain boundaries and coherent Ni/Ni 3 Al interfaces, and is less susceptible to oxygen-induced embrittlement. Our calculations show how the presence of Mo in Ni/M 5 B 3 (M = Cr, Mo) interfaces leads to additional reduction in oxygen-induced embrittlement. Through Electron-Localization-Function based analyses, we identify the electronic origins of effects of alloying elements on fracture strengths of these interfaces and observe that chemical interactions stemming from electronegativity differences between different atomic species are responsible for the trends in calculated strengths. Our findings should be useful towards designing Ni-based alloys with higher interfacial strengths and reduced oxygen-induced embrittlement.

  20. Study of susceptibility to hydrogen embrittlement of welded joints of large WWER reactor vessels at different temperatures

    International Nuclear Information System (INIS)

    Mazel', R.E.; Kuznetsova, T.P.; Grinenko, V.G.; Sapronova, M.N.

    1977-01-01

    The effect is studied of hydrogen and a coolant of WWER on the susceptibility to brittle fracture of welded joints from steels 15Kh2MFA and 15Kh2NMFA obtained by automatic submerged arc welding with the use of the welding materials of different purity. The effect of hydrogen (concentration range 0.5-7.5 cm 3 /100 g, testing temperatures 20, 70 and 325 deg C) and the coolant (pressures up to 120 atm, temperatures 20-350 deg C) have been estimated by the fracture work during static bending tests. It is shown that the purification of the welding materials enhances the fracture properties by about a factor of 2. Hydrogenation results in a sharp drop (by about a factor of 3) of the fracture work. The increased testing temperature (up to 325 deg C) is accompanied by disappearance of the effect of hydrogen embrittlement, which is explained by an increase in the diffusion mobility of atomic hydrogen. Under the action of the coolant the fracture work shows a two-fold decrease, while the pressure being increased up to 100 atm leads to greater fracture work decrease

  1. A study of the mechanical property changes of irradiation embrittled pressure vessel steels and their response to annealing treatments

    International Nuclear Information System (INIS)

    Tipping, P.; Waeber, W.B.; Mercier, O.

    1991-01-01

    Isochronal and isothermal heat treatments have been used to study the recovery of hardness of a neutron irradiated pressure vessel steel forging for the purposes of planning and realizing IAR (Irradiated-Annealed-Reirradiated) experiments. Charpy V notch tests have been performed to assess the toughness of the material irradiated to various fluences up to a maximum of 5 x 10 19 n/cm 2 , E>1 MeV at 290 o C with and without an intermediate annealing treatment at 450 o C x 168 h. The effect of the intermediate annealing was evident. The recovery of the upper shelf energies was strongly enhanced by a thermal ageing effect due to the annealing treatment for all fluence levels investigated compared to the irradiated condition. The transition temperature shifts exhibited a less straightforward behaviour due to the mentioned ageing effect which opposed the recovery process for this property leading to a net shift increase at lower and to a net recovery benefit at higher fluence levels. A phenomenological model description for the IAR embrittlement-recovery path is suggested. For this material and these irradiation conditions a plant life extension (PLEX) may be brought about if a specific annealing treatment is applied at a fluence level that is half the anticipated target fluence F for PLEX. In this case it was found that F>1.6 x 10 19 n/cm 2 . (author)

  2. Irradiation embrittlement mitigation

    International Nuclear Information System (INIS)

    Torronen, K.; Pelli, R.; Planman, T.; Valo, M.

    1993-01-01

    Mitigation methods for reducing the irradiation damage on pressure vessel materials are reviewed: load leakage loading schemes are commonly used in PWRs to mitigate reactor pressure vessel embrittlement; dummy assemblies have been applied in WWER 440-type and in some old western power plants, when exceptional fast embrittlement has been encountered; shielding of the pressure vessel has been developed, but is not in common use; pre-stressing the pressure vessel has been proposed for preventing PTS failures, but its applicability is not yet demonstrated. The large number of successful annealing treatments performed in WWER 440 type reactors as well as research on the effects of annealing treatments suggest applications for western PWRs. The emergency core cooling systems have been modified in WWER 440-type reactors in connection with other mitigation measures. (authors). 37 refs., 18 figs., 2 tabs

  3. Irradiation embrittlement mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Torronen, K; Pelli, R; Planman, T; Valo, M [Technical Research Centre of Finland, Jyvaeskylae (Finland). Combustion and Thermal Engineering Lab.

    1994-12-31

    Mitigation methods for reducing the irradiation damage on pressure vessel materials are reviewed: load leakage loading schemes are commonly used in PWRs to mitigate reactor pressure vessel embrittlement; dummy assemblies have been applied in WWER 440-type and in some old western power plants, when exceptional fast embrittlement has been encountered; shielding of the pressure vessel has been developed, but is not in common use; pre-stressing the pressure vessel has been proposed for preventing PTS failures, but its applicability is not yet demonstrated. The large number of successful annealing treatments performed in WWER 440 type reactors as well as research on the effects of annealing treatments suggest applications for western PWRs. The emergency core cooling systems have been modified in WWER 440-type reactors in connection with other mitigation measures. (authors). 37 refs., 18 figs., 2 tabs.

  4. Neutron doze distribution in capsules for surveillance of radiation embrittlement of pressure vessel in Krsko nuclear power plant; Porazdelitev nevtronske doze v sondah za kontrolo povecanja krhkosri tlacne posode JE Krsko

    Energy Technology Data Exchange (ETDEWEB)

    Najzer, M; Remec, I; Kodeli, I [Institut Jozef Stefan, Ljubljana (Yugoslavia)

    1984-07-01

    Calculation of neutron fluence and spectrum distribution in the capsule with samples for radiation embrittlement of PWR pressure vessel surveillance program of Krsko nuclear power plant is presented. Two dimensional computer code DOT 3 has been used and neutron cross sections were taken from DLC-2D library. result is that fluence magnitude in the capsules changes for up to 70%, so when evaluating results of mechanical tests of samples it is necessary to take into account actual position of samples within the capsule. (author)

  5. Study on aging embrittlement of 17-4PH martensite stainless steel at 350 degree C

    International Nuclear Information System (INIS)

    Wang Jun; Shen Baoluo

    2005-01-01

    The transformation of microstructure and hardness with the extension of aging time on the 17-4PH Martensite stainless steel at 350 degree C is studied, and the change of dynamic fracture toughness and fractography of the stainless steel for various holding time at this temperature are also studied by instrumental impact test and scanning electron microscope. The results indicate that the crack initiation energy (E i ), crack propagation energy (E p ), absorbed-in-fracture energy (E t ) and dynamic fracture toughness (K 1d ) of this type of alloy Charpy v-notch sample is decreased with the continuation of time at 350 degree C. It means that the toughness of the alloy is degraded, and the hardness of the steel is ascended when aging time is expanded and reaches the maximum at 9000 h. The fractography of this steel changes from dimple fracture into cleavage fracture and inter-granular rapture. (authors)

  6. U.S. NRC Embrittlement Data Base (EDB)

    International Nuclear Information System (INIS)

    Pace, J.V.; Rosseel, T.M.; Wang, J.A.

    1999-01-01

    Large amounts of data obtained from surveillance capsules and test reactor experiments are needed, comprising many different materials and different irradiation conditions, to develop generally applicable damage prediction models that can be used for industry standards and regulatory guides. Version 1 of the Embrittlement Data Base (EDB) [I] is such a comprehensive collection of such data resulting from the merging of the Power Reactor Embrittlement Data Base (PR-EDB) [2] and the Test Reactor Embrittlement Data Base (TR-EDB) [3]. Fracture toughness data were also integrated into Version 1 of the EDB. The EDB data files are in dBASE format and can be accessed with a personal computer using the DOS or WINDOWS operating system. A utility program has been written to investigate radiation embrittlement using this data base. The utility program is used to retrieve and select specific data, manipulate data, display data to the screen or printer, and to tit and plot Charpy impact data

  7. Recrystallization and embrittlement of sintered tungsten

    International Nuclear Information System (INIS)

    Bega, N.D.; Babak, A.V.; Uskov, E.I.

    1982-01-01

    The recrystallization of sintered tungsten with a cellular structure of deformation is studied as related to its embrittlement. It is stated that in case of preliminary recrystallization the sintered tungsten crack resistance does not depend on the testing temperature. The tungsten crack resistance is shown to lower with an increase of the structure tendency to primary recrystallization [ru

  8. Lifetime embrittlement of reactor core materials

    International Nuclear Information System (INIS)

    Kreyns, P.H..; Bourgeois, W.F.; Charpentier, P.L.; Kammenzind, B.F.; Franklin, D.G.; White, C.J.

    1994-08-01

    Over a core lifetime, the reactor materials Zircaloy-2, Zircaloy-4, and hafnium may become embrittled due to the absorption of corrosion- generated hydrogen and to neutron irradiation damage. Results are presented on the effects of fast fluence on the fracture toughness of wrought Zircaloy-2, Zircaloy-4, and hafnium; Zircaloy-4 to hafnium butt welds; and hydrogen precharged beta treated and weld metal Zircaloy-4 for fluences up to a maximum of approximately 150 x 10 24 n/M 2 (> 1 Mev). While Zircaloy-4 did not exhibit a decrement in K IC due to irradiation, hafnium and butt welds between hafnium and Zircaloy-4 are susceptible to embrittlement with irradiation. The embrittlement can be attributed to irradiation strengthening, which promotes cleavage fracture in hafnium and hafnium-Zircaloy welds, and, in part, to the lower chemical potential of hydrogen in Zircaloy-4 compared to hafnium, which causes hydrogen, over time, to drift from the hafnium end toward the Zircaloy-4 end and to precipitate at the interface between the weld and base-metal interface. Neutron radiation apparently affects the fracture toughness of Zircaloy-2, Zircaloy-4, and hafnium in different ways. Possible explanations for these differences are suggested. It was found that Zircaloy-4 is preferred over Zircaloy-2 in hafnium-to- Zircaloy butt-weld applications due to its absence of a radiation- induced reduction in K IC plus its lower hydrogen absorption characteristics compared with Zircaloy-2

  9. Embrittlement of MISSE 5 Polymers After 13 Months of Space Exposure

    Science.gov (United States)

    Guo, Aobo; Yi, Grace T.; Ashmead, Claire C.; Mitchell, Gianna G.; deGroh, Kim K.

    2012-01-01

    Understanding space environment induced degradation of spacecraft materials is essential when designing durable and stable spacecraft components. As a result of space radiation, debris impacts, atomic oxygen interaction, and thermal cycling, the outer surfaces of space materials degrade when exposed to low Earth orbit (LEO). The objective of this study was to measure the embrittlement of 37 thin film polymers after LEO space exposure. The polymers were flown aboard the International Space Station and exposed to the LEO space environment as part of the Materials International Space Station Experiment 5 (MISSE 5). The samples were flown in a nadir-facing position for 13 months and were exposed to thermal cycling along with low doses of atomic oxygen, direct solar radiation and omnidirectional charged particle radiation. The samples were analyzed for space-induced embrittlement using a bend-test procedure in which the strain necessary to induce surface cracking was determined. Bend-testing was conducted using successively smaller mandrels to apply a surface strain to samples placed on a semi-suspended pliable platform. A pristine sample was also tested for each flight sample. Eighteen of the 37 flight samples experienced some degree of surface cracking during bend-testing, while none of the pristine samples experienced any degree of cracking. The results indicate that 49 percent of the MISSE 5 thin film polymers became embrittled in the space environment even though they were exposed to low doses (approx.2.75 krad (Si) dose through 127 mm Kapton) of ionizing radiation.

  10. Heavy-Section Steel Irradiation Program: Embrittlement issues

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1991-01-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents and the potential for major contamination releases. It is imperative to understand and predict the capabilities and limitations of its integrity. It is particularly vital to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance which occurs during service, since without that radiation damage it is virtually impossible to postulate a realistic scenario which would result in RPV failure. The Heavy-Section Steel Irradiation (HSSI) Program has been established by the US Nuclear Regulatory Commission (USNRC) to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, and in particular the fracture toughness properties, of typical pressure vessel steels as they relate to light-water reactor pressure-vessel integrity. Results from HSSI studies provide information needed to aid in resolving major regulatory issues facing the USNRC which involve RPV irradiation embrittlement such as pressurized-thermal shock, operating pressure-temperature limits, low-temperature overpressurization, and the specialized problems associated with low upper-shelf (LUS) welds. Taken together the results of these studies also provide guidance and bases for evaluating both the aging behavior and the potential for plant life extension of light-water RPVs. The principal materials examined within the HSSI program are high-copper welds since their postirradiation properties are most frequently limiting in the continued safe operation of commercial RPVs. Embrittlement modeling studies have shown that the time or dose required for the point defect concentrations, which ultimately contribute to irradiation embrittlement, to reach their steady state values can be comparable to the component lifetime or to the duration of an irradiation experiment

  11. Hydrogen environment embrittlement

    International Nuclear Information System (INIS)

    Donovan, J.A.

    1975-01-01

    Exposure of many metals to gaseous hydrogen causes losses in elongation, reduction of area, and fracture toughness, and causes increases in slow crack growth rate or fatigue life compared with values obtained in air or vacuum. Hydrogen pressure, temperature, and purity significantly influence deleterious effects. The strength and structural characteristics of the metal influence the degradation of its properties by hydrogen. Several theories have been proposed to explain the loss of properties in hydrogen, but none has gained wide acceptance. The embrittlement mechanism and the role of diffusion are, therefore, open questions and need more quantitative experimental data both to test the proposed theories and to allow the development of realistic preventive measures. (U.S.)

  12. Reactor pressure vessel embrittlement: Insights from neural network modelling

    Science.gov (United States)

    Mathew, J.; Parfitt, D.; Wilford, K.; Riddle, N.; Alamaniotis, M.; Chroneos, A.; Fitzpatrick, M. E.

    2018-04-01

    Irradiation embrittlement of steel pressure vessels is an important consideration for the operation of current and future light water nuclear reactors. In this study we employ an ensemble of artificial neural networks in order to provide predictions of the embrittlement using two literature datasets, one based on US surveillance data and the second from the IVAR experiment. We use these networks to examine trends with input variables and to assess various literature models including compositional effects and the role of flux and temperature. Overall, the networks agree with the existing literature models and we comment on their more general use in predicting irradiation embrittlement.

  13. Different approaches to estimation of reactor pressure vessel material embrittlement

    Directory of Open Access Journals (Sweden)

    V. M. Revka

    2013-03-01

    Full Text Available The surveillance test data for the nuclear power plant which is under operation in Ukraine have been used to estimate WWER-1000 reactor pressure vessel (RPV material embrittlement. The beltline materials (base and weld metal were characterized using Charpy impact and fracture toughness test methods. The fracture toughness test data were analyzed according to the standard ASTM 1921-05. The pre-cracked Charpy specimens were tested to estimate a shift of reference temperature T0 due to neutron irradiation. The maximum shift of reference temperature T0 is 84 °C. A radiation embrittlement rate AF for the RPV material was estimated using fracture toughness test data. In addition the AF factor based on the Charpy curve shift (ΔTF has been evaluated. A comparison of the AF values estimated according to different approaches has shown there is a good agreement between the radiation shift of Charpy impact and fracture toughness curves for weld metal with high nickel content (1,88 % wt. Therefore Charpy impact test data can be successfully applied to estimate the fracture toughness curve shift and therefore embrittlement rate. Furthermore it was revealed that radiation embrittlement rate for weld metal is higher than predicted by a design relationship. The enhanced embrittlement is most probably related to simultaneously high nickel and high manganese content in weld metal.

  14. Neutron embrittlement of the Kozloduy NPP unit 1 reactor

    International Nuclear Information System (INIS)

    Vodenicharov, S.; Kamenova, Tz.

    1996-01-01

    Activities made in the period 1989-1996 according to the Program for metal state monitoring of the Kozloduy NPP Unit 1 are described. Data on P and Cu content in the welded joint 4 are reported. Determination is made by wet chemical analysis of shavings taken out from the inner side of the wall, direct spectral analysis of the vessel itself and spectroscopy of the inner and outer side of 6 templates. The results obtained from 4 different study teams showed a good agreement. The real average P content is 0.046% and tends to diminish in depth. Microstructural investigation does not show any expressed inter-crystalline mechanism of brittle failure at low temperatures. The data on real P and Cu content, as well as the experimental values of the initial critical temperature of embrittlement (Tk o ), the residual part of temperature shift (Tk r ) and the re-embrittlement temperature after annealing at 475 o (Tk) allow to predict the change in Tk o of the joint 4 during the next refueling cycles. The measured low value of Tk after 18-th refueling cycle is considerably lower than that forecasted by lateral re-embrittlement law. This means that the forecasting of Tk for the next cycles is made with big enough conservatisms, and that a second annealing of the vessel until 26-th cycle is not necessary. So according to the most conservative estimate, the Unit 1 can operate safely until the end of the 26-th refueling cycle. It is also concluded, that in terms of radiation degradation of the vessel metal the operation life time of the Unit 1 can reach and exceed the designed one. 2 tab., 7 ref

  15. Estimation of RPV material embrittlement for Ukrainian NPP based on surveillance test data

    International Nuclear Information System (INIS)

    Revka, V.; Chyrko, L.; Chaikovsky, Yu.; Gulchuk, Yu.

    2012-01-01

    The WWER-1000 RPV material embrittlement has been evaluated using the surveillance test data for the nuclear power plant which is under operation in Ukraine. The RPV materials after the neutron (E > 0,5 MeV) irradiation up to fluence of 22,9.10 22 m -2 have been studied. Fracture toughness tests were performed using pre-cracked Charpy specimens for the beltline materials (base and weld metal). The maximum shift of T 0 reference temperature is equal to 44 o C. A radiation embrittlement rate, A F , for the RPV materials was estimated using the standard and reconstituted specimens. A comparison of the A F values has shown a good agreement between the specimen sets before and after reconstitution both for base and weld metal. Furthermore it has been revealed there is no nickel effect for the studied materials. In spite of the high nickel content the radiation embrittlement rate for weld metal is not higher than for base metal with low nickel content. Fracture toughness analysis has shown the Master curve shape describes well a temperature dependence of K Jc values. However a higher scatter of K Jc values is observed in comparison to 95 % tolerance bounds. (author)

  16. R and D Developments. Research Programs on Irradiation Embrittlement of Reactor Vessel Steels

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Lapena, J.; Serrano, M.; Perosanz, F.

    2000-01-01

    Irradiation embrittlement of pressure vessel steels is a degradation mechanism time dependent that can lead to operational restrictions with adverse effects in the efficiency and life of a plant. For the last year, several research programs have been devoted to study thye evaluation of neutronic radiation effect on mechanical properties of pressure vessel steels. However, at the present, there is a growing interest on the development of new methodologies to optimize the surveillance program information, and the understanding of the irradiation damage mechanism. This paper give an overview of international research programs, and on the R+D activities carried out by the Structural Materials Project on irradiation embrittlement on pressure vessel steels. (Author)

  17. Nanocrystalline Steels’ Resistance to Hydrogen Embrittlement

    Directory of Open Access Journals (Sweden)

    Skołek E.

    2015-04-01

    Full Text Available The aim of this study is to determine the susceptibility to hydrogen embrittlement in X37CrMoV5-1 steel with two different microstructures: a nanocrystalline carbide-free bainite and tempered martensite. The nanobainitic structure was obtained by austempering at the bainitic transformation zone. It was found, that after hydrogen charging, both kinds of microstructure exhibit increased yield strength and strong decrease in ductility. It has been however shown that the resistance to hydrogen embrittlement of X37CrMoV5-1 steel with nanobainitic structure is higher as compared to the tempered martensite. After hydrogen charging the ductility of austempered steel is slightly higher than in case of quenched and tempered (Q&T steel. This effect was interpreted as a result of phase composition formed after different heat treatments.

  18. Limets 2: a hot-cell test set-up for Liquid Metal Embrittlement (LME) studies in liquid lead alloys

    International Nuclear Information System (INIS)

    Van den Bosch, J.; Bosch, R.W.; Al Mazouzi, A.

    2008-01-01

    Full text of publication follows. In the nuclear energy sector one of the main candidate designs for the accelerator driven system (ADS) uses liquid lead or lead bismuth eutectic both as a coolant and as spallation target. In the fusion community liquid lead lithium eutectic is considered as a possible coolant for the blanket and as a tritium source. Therefore the candidate materials for such structural components should not only comply with the operating conditions but in addition need to guarantee chemical and physical integrity when coming into contact with the lead alloys. The latter phenomena can be manifested in terms of erosion/corrosion. and/or of the so called liquid metal embrittlement (LME). Thus the susceptibility to LME of the structural materials under consideration to be used in such applications should be investigated in contact with the various lead alloys. LME, if occurring in any solid metal/liquid meta] couple, is likely to increase with irradiation hardening as localised stresses and crack initiations can promote it. To investigate the mechanical response of irradiated materials in contact with a liquid metal under representative conditions, a dedicated testing facility has recently been developed and built at our centre. It consists of an instrumented hot cell. equipped with a testing machine that allows mechanical testing of active materials in contact with active liquid lead lithium and liquid lead bismuth under well controlled chemistry conditions. The specificity of the installation is to handle highly activated and contaminated samples. Also a dedicated dismantling set-up has been developed that allows to retrieve the samples from the irradiation rig without any supplementary damage. In this presentation we will focus on the technical design of this new installation, its special features that have been developed to allow testing in a hot environment and the modifications and actions that have been taken to allow testing in liquid lead

  19. The study of the irradiation-induced embrittlement of reactor pressure vessels. Analysis of surveillance test specimens of a commercial nuclear reactor pressure vessel studied by three-dimensional atom probe and positron annihilation

    International Nuclear Information System (INIS)

    Nagai, Yasuyoshi; Toyama, Takeshi; Hasegawa, Masayuki

    2007-01-01

    The study of embrittlement of nuclear power reactor pressure vessels (RPVs) is of critical importance for the safety assessment in the nuclear industry. Some origins of embrittlement are attributed to fine Cu precipitates, matrix defects, grain boundary segregation of P and late blooming phase. This review article described nanostructural observation by three-dimensional atom probe (3DAP) and positron annihilation spectroscopy (PAS). The density and sizes of Cu-rich nanoprecipitates and grain boundary segregation are sensitively detected by 3DAP, and vacancies are probed by PAS. Element analysis around vacancies and fine microstructural Cu precipitates not containing vacancies are successfully observed by a coincidence doppler broadening method. The nanostructural evolution of irradiation-induced Cu-rich nanoprecipitates (CRNPs) and vacancy clusters in surveillance test specimens of commercial nuclear reactor pressure vessel steel welds of Doel-2 in Belgium were revealed by combining 3DAP and PAS. In both medium (0.13 wt%) and high (0.30 wt%) Cu welds, the CRNPs were found to form readily at the very beginning of the reactor lifetime. On the other hand, small vacancy clusters start appearing after the initial Cu precipitates and accumulate steadily with increasing neutron dose. The CRNPs were also observed at very low dose rate of neutrons in the test specimen of Calder Hall Reactor of Japan Atomic Power Company. The significant enhancement of these Cu precipitates results in the embrittlement in practical RPVs. At very high dose of 2.2x10 18 n/cm 2 by JMTR, the Cu precipitates were scarcely observed, and the irradiation-induced embrittlement was primarily caused from vacancy-impurity complexes and dislocation loops. (author)

  20. Liquid and Solid Metal Embrittlement.

    Science.gov (United States)

    1981-09-05

    example, embrittlement of AISI 4140 steel begins at T/T, - 0.75 for cadmium, and 0.85 for lead and tin environments (2). In a few cases, e.g. zinc...has recently proposed, however, that liquid zinc can penetrate to very near the tip of a sharp crack in 4140 steel, based upon both direct observation...long could be detected, was observed in delayed failure experi- ments on unnotched 4140 steel, in the quenched and tempered condi- tion, embrittled by

  1. Power reactor embrittlement data base

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.; Wang, J.A.

    1989-01-01

    Regulatory and research evaluations of embrittlement prediction models and of vessel integrity under load can be greatly expedited by the use of a well-designed, computerized embrittlement data base. The Power Reactor Embrittlement Data Base (PR-EDB) is a comprehensive collection of data from surveillance reports and other published reports of commercial nuclear reactors. The uses of the data base require that as many different data as available are collected from as many sources as possible with complete references and that subsets of relevant data can be easily retrieved and processed. The objectives of this NRC-sponsored program are the following: to compile and to verify the quality of the PR-EDB; to provide user-friendly software to access and process the data; to explore or confirm embrittlement prediction models; and to interact with standards organizations to provide the technical bases for voluntary consensus standards that can be used in regulatory guides, standard review plans, and codes. 9 figs

  2. Microstructure and embrittlement of VVER 440 reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Hennion, A.

    1999-03-01

    27 VVER 440 pressurised water reactors operate in former Soviet Union and in Eastern Europe. The pressure vessel, is made of Cr-Mo-V steel. It contains a circumferential arc weld in front of the nuclear core. This weld undergoes a high neutron flux and contains large amounts of copper and phosphorus, elements well known for their embrittlement potency under irradiation. The embrittlement kinetic of the steel is accelerated, reducing the lifetime of the reactor. In order to get informations on the microstructure and mechanical properties of these steels, base metals, HAZ, and weld metals have been characterized. The high amount of phosphorus in weld metals promotes the reverse temper embrittlement that occurs during post-weld heat treatment. The radiation damage structure has been identified by small angle neutron scattering, atomic probe, and transmission electron microscopy. Nanometer-sized clusters of solute atoms, rich in copper with almost the same characteristics as in western pressure vessels steels, and an evolution of the size distribution of vanadium carbides, which are present on dislocation structure, are observed. These defects disappear during post-irradiation tempering. As in western steels, the embrittlement is due to both hardening and reduction of interphase cohesion. The radiation damage specificity of VVER steels arises from their high amount of phosphorus and from their significant density of fine vanadium carbides. (author)

  3. Power Reactor Embrittlement Data Base

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.; Wang, J.A.

    1990-01-01

    Regulatory and research evaluations of embrittlement predication models and of pressure vessel integrity can be greatly expedited by the use of a well-designed, computerized data base. The Power Reactor Embrittlement Data Base (PR-EDB) is such a comprehensive collection of data for US commercial nuclear reactors. The Nuclear Regulatory Commission (NRC) has provided financial support, and the Electric Power Research Institute (EPRI) has provided technical assistance in the quality assurance (QA) of the data to establish an industry-wide data base that will be maintained and updated on a long-term basis. Successful applications of the data base to several of NRC's evaluations have received favorable response and support for its continuation. The future direction of the data base has been designed to include the test reactor and other types of data of interest to the regulators and the researchers. 1 ref

  4. Investigations of low-temperature neutron embrittlement of ferritic steels

    International Nuclear Information System (INIS)

    Farrell, K.; Mahmood, S.T.; Stoller, R.E.; Mansur, L.K.

    1992-01-01

    Investigations were made into reasons for accelerated embrittlement of surveillance specimens of ferritic steels irradiated at 50C at the High Flux Isotope Reactor (HFIR) pressure vessel. Major suspects for the precocious embrittlement were a highly thermalized neutron spectrum,a low displacement rate, and the impurities boron and copper. None of these were found guilty. A dosimetry measurement shows that the spectrum at a major surveillance site is not thermalized. A new model of matrix hardening due to point defect clusters indicates little effect of displacement rate at low irradiation temperature. Boron levels are measured at 1 wt ppM or less, inadequate for embrittlement. Copper at 0.3 wt % and nickel at 0.7 wt % are shown to promote radiation strengthening in iron binary alloys irradiated at 50 to 60C, but no dependence on copper and nickel was found in steels with 0.05 to 0.22% Cu and 0.07 to 3.3% Ni. It is argued that copper impurity is not responsible for the accelerated embrittlement of the HFIR surveillance specimens. The dosimetry experiment has revealed the possibility that the fast fluence for the surveillance specimens may be underestimated because the stainless steel monitors in the surveillance packages do not record an unexpected component of neutrons in the spectrum at energies just below their measurement thresholds of 2 to 3 MeV

  5. The Test Reactor Embrittlement Data Base (TR-EDB)

    International Nuclear Information System (INIS)

    Stallmann, F.W.; Kam, F.B.K.; Wang, J.A.

    1993-01-01

    The Test Reactor Embrittlement Data Base (TR-EDB) is part of an ongoing program to collect test data from materials irradiations to aid in the research and evaluation of embrittlement prediction models that are used to assure the safety of pressure vessels in power reactors. This program is being funded by the US Nuclear Regulatory Commission (NRC) and has resulted in the publication of the Power Reactor Embrittlement Data Base (PR-EDB) whose second version is currently being released. The TR-EDB is a compatible collection of data from experiments in materials test reactors. These data contain information that is not obtainable from surveillance results, especially, about the effects of annealing after irradiation. Other information that is only available from test reactors is the influence of fluence rates and irradiation temperatures on radiation embrittlement. The first version of the TR-EDB will be released in fall of 1993 and contains published results from laboratories in many countries. Data collection will continue and further updates will be published

  6. Power Reactor Embrittlement Data Base

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.; Wang, J.A.

    1990-01-01

    Regulatory and research evaluations of embrittlement prediction models and of vessel integrity under load can be greatly expedited by the use of a well designed, computerized embrittlement data base. The Power Reactor Embrittlement Data Base (PR-EDB) is a comprehensive collection of data from surveillance reports and other published reports of commercial nuclear reactors. The uses of the data base require that as many different data as available are collected from as many sources as possible with complete references and that subsets of relevant data can be easily retrieved and processed. The objectives of this NRC-sponsored program are the following: (1) to compile and to verify the quality of the PR-EDB; (2) to provide user-friendly software to access and process the data; (3) to explore or confirm embrittlement prediction models; and (4) to interact with standards organizations to provide the technical bases for voluntary consensus standards that can be used in regulatory guides, standard review plans, and codes. To achieve these goals, the data base architecture was designed after much discussion and planning with prospective users, namely, material scientists and members of the research staff. The current compilation of the PR-EDB (Version 1) contains results from surveillance capsule reports of 78 reactors with 381 data points for 110 different irradiated base materials and 161 data points for 79 different welds. Results from heat-affected zone materials are also listed. The time and effort required to process and evaluate different types of data in the PR-EDB have been drastically reduced from previous data bases. The Electric Power Research Institute (EPRI), reactor vendors, and utilities are in the process of providing back-up quality assurance checks of PR-EDB and will be supplementing the data base with additional data and documentation

  7. Grain boundary embrittlement and cohesion enhancement in copper

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Anthony; Lozovoi, Alexander [Atomistic Simulation Centre, Queen' s University Belfast, BT7 1NN (United Kingdom); Schweinfest, Rainer [Science+Computing ag, Hagellocher Weg 71-5, 720270 T ubingen (Germany); Finnis, Michael [Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2008-07-01

    There has been a long standing debate surrounding the mechanism of grain boundary embrittlement and cohesion enhancement in metals. Embrittlement can lead to catastrophic failure such as happened in the Hinkley Point disaster, or indeed in the case of the Titanic. This kind of embrittlement is caused by segregation of low solubility impurities to grain boundaries. While the accepted wisdom is that this is a phenomenon driven by electronic or chemical factors, using language such as charge transfer and electronegativity difference; we believe that in copper, at least, both cohesion enhancement and reduction are caused by a simple size effect. We have developed a theory that allows us to separate unambiguously, if not uniquely, chemical and structural factors. We have studied a large number of solutes in copper using first principles atomistic simulation to support this argument, and the results of these calculations are presented here.

  8. Low temperature hydrogen embrittlement of niobium. II. Microscopic observations

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Birnbaum, H.K.

    1977-01-01

    The detailed, microscopic processes which occur during the hydrogen embrittlement of pure Nb are examined using in situ SEM crack propagation studies, SEM fractography, electron diffraction and ion probe methods. These results show that the fracture process occurs in a stress induced NbH hydride phase which forms in front of the propagating crack. The experimental results are in good agreement with the stress induced hydride embrittlement mechanism which is discussed. The thermodynamics of precipitation of hydrides under external stress is discussed and calculations are presented for the stress effects on the α-β solvus temperatures. These are related to the embrittlement process and evidence is presented to support the calculated stress effects on the solvus temperature

  9. Current limitations of trend curve analysis for the prediction of reactor PV embrittlement

    International Nuclear Information System (INIS)

    Gold, R.; McElroy, W.N.

    1986-02-01

    In operating light water reactor (LWR) commercial power plants, neutron radiation induces embrittlement of the pressure vessel (PV) and its support structures. As a consequence, LWR-PV integrity is a primary safety consideration. LWR-PV integrity is a significant economic consideration since the PV and its support structures are nonreplaceable power plant components and embrittlement of these components can therefore limit the effective operating lifetime of the plant

  10. Hardening Embrittlement and Non-Hardening Embrittlement of Welding-Heat-Affected Zones in a Cr-Mo Low Alloy Steel

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2018-06-01

    Full Text Available The embrittlement of heat affected zones (HAZs resulting from the welding of a P-doped 2.25Cr-1Mo steel was studied by the analysis of the fracture appearance transition temperatures (FATTs of the HAZs simulated under a heat input of 45 kJ/cm with different peak temperatures. The FATTs of the HAZs both with and without tempering increased with the rise of the peak temperature. However, the FATTs were apparently lower for the tempered HAZs. For the as-welded (untempered HAZs, the FATTs were mainly affected by residual stress, martensite/austenite (M/A islands, and bainite morphology. The observed embrittlement is a hardening embrittlement. On the other hand, the FATTs of the tempered HAZs were mainly affected by phosphorus grain boundary segregation, thereby causing a non-hardening embrittlement. The results demonstrate that the hardening embrittlement of the as-welded HAZs was more severe than the non-hardening embrittlement of the tempered HAZs. Consequently, a post-weld heat treatment should be carried out if possible so as to eliminate the hardening embrittlement.

  11. The liquid metal embrittlement of iron and ferritic steels in sodium

    International Nuclear Information System (INIS)

    Hilditch, J.P.; Hurley, J.R.; Tice, D.R.; Skeldon, P.

    1995-01-01

    The liquid metal embrittlement of iron and A508 III, 21/4Cr-1Mo and 15Mo3 steels in sodium at 200-400 o C has been studied, using dynamic straining at 10 -6 s -1 , in order to investigate the roles of microstructure and composition. The steels comprised bainitic, martensitic, tempered martensitic and ferritic/pearlitic microstructures. All materials were embrittled by sodium, the embrittlement being associated generally with quasicleavage on fracture surfaces. Intergranular cracking was also found with martensitic and ferritic/pearlitic microstructures. The susceptibility to embrittlement was greater in higher strength materials and at higher temperatures. The embrittlement was similar to that encountered previously in 9Cr steel, which depends upon the presence of non-metallic impurities in the sodium. (author)

  12. Estimation of embrittlement damage risk at neutron embrittled vessel constructions

    International Nuclear Information System (INIS)

    Staevski, K.; Madzharov, D.; Detistov, P.; Petrova, T.

    1998-01-01

    In this work a methodology based on Damage mechanics criteria is proposed. This methodology serves for probability assessment of the brittle damage risk for the neutron embrittled vessel elements. The developed methodology is realised in RISK code and has been verified on the base of tough reliability of the pressure vessel, 'Kozloduy' NPP Unit 2. This investigation has been carried out at the given parameters of the possible defects on the vessel's weld 4 taking into account requirements of the western and Russian standards. The obtained values for ductile to brittle transition temperatures, defining the equipment life-time in the presence of maximal defect, are in good consistence with the experimentally determined ones. The analyses of results show that the pressure vessel of 'Kozloduy' NPP Unit 2 has got a high level of reliability from brittle damage risk point of view and that the western standards give more conservative evaluation. On the bases of the results a conclusion is made that the developed methodology enables analysing the influence of possible defects in the neutron embrittled elements on their to reliability and their remained life-time

  13. Neutron irradiation embrittlement of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Steele, L.E.

    1975-01-01

    The reliability of nuclear power plants depends on the proper functioning of complex components over the whole life on the plant. Particular concern for reliability is directed to the primary pressure boundary. This report focuses on the portion of the primary system exposed to and significantly affected by neutron radiation. Experimental evidence from research programmes and from reactor surveillance programmes has indicated radiation embrittlement of a magnitude sufficient to raise doubts about reactor pressure vessel integrity. The crucial nature of the primary vessel function heightens the need to be alert to this problem, to which, fortunately, there are positive aspects: for example, steels have been developed which are relatively immune to radiation embrittlement. Further, awareness of such embrittlement has led to designs which can accomodate this factor. The nature of nuclear reactors, of the steels used in their construction, and of the procedures for interpreting embrittlement and minimizing the effects are reviewed with reference to the reactors that are expected to play a major role in electric power production from now to about the turn of the century. The report is intended as a manual or guidebook; the aim has been to make each chapter or major sub-division sufficiently comprehensive and self-contained for it to be understood and read independently of the rest of the book. At the same time, it is hoped that the whole is unified enough to make a complete reading useful and interesting to the several classes of reader that are involved with only specific aspects of the topic

  14. Specificity in liquid metal induced embrittlement

    CSIR Research Space (South Africa)

    Fernandes, PJL

    1996-12-01

    Full Text Available One of the most intriguing features of liquid metal induced embrittlement (LMIE) is the observation that some liquid metal-solid metal couples are susceptible to embrittlement, while others appear to be immune. This is referred to as the specificity...

  15. Thermal annealing of an embrittled reactor pressure vessel

    International Nuclear Information System (INIS)

    Mager, T.R.; Dragunov, Y.G.; Leitz, C.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. Chapter 11 deals with thermal annealing of an embrittled reactor pressure vessel. Anneal procedures for vessels from both the US and the former USSR are mentioned schematically, wet anneals at lower temperature and dry anneals above RPV design temperatures are investigated. It is shown that heat treatment is a means of recovering mechanical properties which were degraded by neutron radiation exposure, thus assuring reactor pressure vessel compliance with regulatory requirements

  16. Radiation Studies, Vol.10

    International Nuclear Information System (INIS)

    Nadareishvili, K.; Tsitskishvili, M.; Chankseliani, Z.; Gelashvili, K.; Mtskhoetadze, A.; Oniani, T.; Todua, F.; Vepkhoadze, N.; Zaalishvili, T.

    2002-01-01

    'Radiation studies' - is a periodical edition of Scientific Research Center of Radiobiology and Radiation Ecology of Georgian Academy of Sciences, Problem Council of Radiobiology of Georgian Academy of Sciences and Georgian Academy of Ecological Sciences. The 10th volume of 'Radiation studies' reflects activities of above-mentioned institutions during previous two years and contains 26 articles, from which 17 are within the scope of INIS

  17. Guidelines for prediction of irradiation embrittlement of operating WWER-440 reactor pressure vessels

    International Nuclear Information System (INIS)

    2005-06-01

    This TECDOC has been developed under an International Atomic Energy Agency Coordinated Research Project (CRP) entitled Evaluation of Radiation Damage of WWER Reactor Pressure Vessels (RPV) using Database on RPV Materials to develop the guidelines for prediction of radiation damage to WWER-440 PRVs. The WWER-440 RPV was designed by OKB Gidropress, Russian Federation, the general designer. Prediction of irradiation embrittlement of RPV materials is usually done in accordance with relevant codes and standards that are based on the large amounts of information from surveillance and research programmes. The existing Russian code (standard for strength calculations of components and piping in NPPs - PNAE G 7-002-86) for the WWER RPV irradiation embrittlement assessment was approved more than twenty years ago and based mostly on the experimental data obtained in research reactors with accelerated irradiation. Nevertheless, it is still in use and generally consistent with new data. The present publication presents the analyses using all available data required for more precise prediction of radiation embrittlement of WWER-440 RPV materials. Based on the fact that it contains a large amount of data from surveillance programmes as well as research programmes, the IAEA International Database on RPV Materials (IDRPVM) is used for the detailed analysis of irradiation embrittlement of WWER RPV materials. Using IDRPVM, the guideline is developed for assessment of irradiation embrittlement of RPV ferritic materials as a result of degradation during operation. Two approaches, i.e. transition temperatures based on Charpy impact notch toughness, as well as based on static fracture toughness tests, are used in RPV integrity evaluation. The objectives of the TECDOC are the analysis of irradiation embrittlement data for WWER- 440 RPV materials using IDRPVM database, evaluation of predictive formulae depending on chemical composition of the material, neutron fluence, flux, and

  18. TR-EDB: Test Reactor Embrittlement Data Base, Version 1

    Energy Technology Data Exchange (ETDEWEB)

    Stallmann, F.W.; Wang, J.A.; Kam, F.B.K. [Oak Ridge National Lab., TN (United States)

    1994-01-01

    The Test Reactor Embrittlement Data Base (TR-EDB) is a collection of results from irradiation in materials test reactors. It complements the Power Reactor Embrittlement Data Base (PR-EDB), whose data are restricted to the results from the analysis of surveillance capsules in commercial power reactors. The rationale behind their restriction was the assumption that the results of test reactor experiments may not be applicable to power reactors and could, therefore, be challenged if such data were included. For this very reason the embrittlement predictions in the Reg. Guide 1.99, Rev. 2, were based exclusively on power reactor data. However, test reactor experiments are able to cover a much wider range of materials and irradiation conditions that are needed to explore more fully a variety of models for the prediction of irradiation embrittlement. These data are also needed for the study of effects of annealing for life extension of reactor pressure vessels that are difficult to obtain from surveillance capsule results.

  19. TR-EDB: Test Reactor Embrittlement Data Base, Version 1

    International Nuclear Information System (INIS)

    Stallmann, F.W.; Wang, J.A.; Kam, F.B.K.

    1994-01-01

    The Test Reactor Embrittlement Data Base (TR-EDB) is a collection of results from irradiation in materials test reactors. It complements the Power Reactor Embrittlement Data Base (PR-EDB), whose data are restricted to the results from the analysis of surveillance capsules in commercial power reactors. The rationale behind their restriction was the assumption that the results of test reactor experiments may not be applicable to power reactors and could, therefore, be challenged if such data were included. For this very reason the embrittlement predictions in the Reg. Guide 1.99, Rev. 2, were based exclusively on power reactor data. However, test reactor experiments are able to cover a much wider range of materials and irradiation conditions that are needed to explore more fully a variety of models for the prediction of irradiation embrittlement. These data are also needed for the study of effects of annealing for life extension of reactor pressure vessels that are difficult to obtain from surveillance capsule results

  20. Development of neutron irradiation embrittlement correlation of reactor pressure vessel materials of light water reactors

    International Nuclear Information System (INIS)

    Soneda, Naoki; Dohi, Kenji; Nomoto, Akiyoshi; Nishida, Kenji; Ishino, Shiori

    2007-01-01

    A large amount of surveillance data of the RPV embrittlement of the Japanese light water reactors have been compiled since the current Japanese embrittlement correlation has been issued in 1991. Understanding on the mechanisms of the embrittlement has also been greatly improved based on both experimental and theoretical studies. CRIEPI and the Japanese electric power utilities have started research project to develop a new embrittlement correlation method, where extensive study of the microstructural analyses of the surveillance specimens irradiated in the Japanese commercial reactors has been conducted. The new findings obtained from the experimental study are that the formation of solute-atom clusters with little or no copper is responsible for the embrittlement in low-copper materials, and that the flux effect exists especially in high-copper materials and this is supported by the difference in the microstructure of the high-copper materials irradiated at different fluxes. Based on these new findings, a new embrittlement correlation method is formulated using rate equations. The new methods has higher prediction capability than the current Japanese embrittlement correlation in terms of smaller standard deviation as well as smaller mean value of the prediction error. (author)

  1. Gamma-radiation effect on diamond and steel during their irradiation in WWER type reactors

    International Nuclear Information System (INIS)

    Nikolaenko, V.A.; Karpukhin, V.I.; Amaev, A.D.; Vikhrov, V.I.; Korolev, Yu.N.; Krasikov, E.A.

    1996-01-01

    A study is made into the influence of reactor gamma radiation on expansion of crystal lattice in diamond. The data obtained are compared to those on radiation embrittlement of reactor vessel steels. The necessity of taking into consideration gamma radiation effects on WWER reactor vessel radiation resistance during long-term operation is shown [ru

  2. A review of formulas for predicting irradiation embrittlement of reactors vessel materials

    International Nuclear Information System (INIS)

    Petrequin, P.

    1995-01-01

    Formulas developed in different countries for predicting irradiation embrittlement of reactors vessel materials are presented. Results of predictions were compared with different data sets, from surveillance programmes or studies in test reactors, with different residual elements contents. Figs

  3. The low-temperature aging embrittlement in a 2205 duplex stainless steel

    International Nuclear Information System (INIS)

    Weng, K.L.; Chen, H.R.; Yang, J.R.

    2004-01-01

    The effect of isothermal treatment (at temperatures ranging between 400 and 500 deg. C) on the embrittlement of a 2205 duplex stainless steel (with 45 ferrite-55 austenite, vol.%) has been investigated. The impact toughness and hardness of the aged specimens were measured, while the corresponding fractography was studied. The results show that the steel is susceptible to severe embrittlement when exposed at 475 deg. C; this aging embrittlement is analogous with that of the ferritic stainless steels, which is ascribed to the degenerated ferrite phase. High-resolution transmission electron microscopy reveals that an isotropic spinodal decomposition occurred during aging at 475 deg. C in the steel studied; the original δ-ferrite decomposed into a nanometer-scaled modulated structure with a complex interconnected network, which contained an iron-rich BCC phase (α) and a chromium-enriched BCC phase (α'). It is suggested that the locking of dislocations in the modulated structure leads to the severe embrittlement

  4. Radiation carcinogenesis, laboratory studies

    International Nuclear Information System (INIS)

    Shellabarger, C.J.

    1974-01-01

    Laboratory studies on radioinduced carcinogenesis are reviewed. Some topics discussed are: radioinduced neoplasia in relation to life shortening; dose-response relationships; induction of skin tumors in rats by alpha particles and electrons; effects of hormones on tumor response; effects of low LET radiations delivered at low dose-rates; effects of fractionated neutron radiation; interaction of RBE and dose rate effects; and estimates of risks for humans from animal data. (U.S.)

  5. Hydrogen embrittlement of titanium tested with fracture mechanics specimens

    International Nuclear Information System (INIS)

    Aho-Mantila, I.; Rahko, P.

    1990-11-01

    Titanium is one of the possible canister materials for spent nuclear fuel. The aim of this study is to determine whether the hydrogen embrittlement of titanium could be a possible deterioration mechanism of titanium canisters. This experimental study was preceded by a literature review and an experimental study on crack nucleation. Tests in this study were carried out with hydrogen charged fracture mechanics specimens. The studied hydrogen contents were as received, 100 ppm, 200 ppm, 500 ppm and 700 ppm and the types of the studied titanium were ASTM Grades 2 and 12. Test methods were slow tensile test (0.027 mm/h) and fatigue test (stress ratio 0.7 or 0.8 and frequency 5 Hz). According to the literature titanium may be embrittled by hydrogen at slow strain rates and cracking may occur under sustained load. In this study no evidence of hydrogen embrittlement was noticed in slow strain rate tension with bulk hydrogen contents up to 700 ppm. The fatigue tests of titanium Grades 2 and 12 containing 700 ppm hydrogen showed even slower crack growth compared to the as received condition. Very high hydrogen contents well in eccess of 700 ppm on the surface of titanium can, however, facilitate surface crack nucleation and crack growth, as shown in the previous study

  6. Environmental embrittlement of intermetallic compounds in Fe-Al alloys

    Institute of Scientific and Technical Information of China (English)

    张建民; 张瑞林; S.H.YU; 余瑞璜

    1996-01-01

    First,it is proposed that hydrogen atoms occupy the interstitial sites in Fe3Al and FeAl.Then the environmental embrittlement of intermetallic compounds in Fe-Al alloys is studied in the light of calculated valence electron structures and bond energy of Fe3Al and FeAl containing hydrogen atoms.From the analyses it is found that the states of metal atoms will change,in which more lattice electrons will become covalent electrons to bond with hydrogen atoms when the atomic hydrogen diffuses into the intermetallic compounds in Fe-Al alloys,which will result in the decrease of local metallicity in Fe3Al and FeAl.Meanwhile,it is found that the crystal will easily cleave since solute hydrogen bonds with metal atoms and severely anisotropic bonds form.As a conclusion,these factors result in the environmental embrittlement of Fe3Al and FeAl.

  7. Hydride embrittlement in zircaloy components

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Raquel M.; Andrade, Arnaldo H.P.; Castagnet, Mariano, E-mail: rmlobo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Zirconium alloys are used in nuclear reactor cores under high-temperature water environment. During service, hydrogen is generated by corrosion processes, and it is readily absorbed by these materials. When hydrogen concentration exceeds the terminal solid solubility, the excess hydrogen precipitates as zirconium hydride (ZrH{sub 2}) platelets or needles. Zirconium alloys components can fail by hydride cracking if they contain large flaws and are highly stressed. Zirconium alloys are susceptible to a mechanism for crack initiation and propagation termed delayed hydride cracking (DHC). The presence of brittle hydrides, with a K{sub Ic} fracture toughness of only a few MPa{radical}m, results in a severe loss in ductility and toughness when platelet normal is oriented parallel to the applied stress. In plate or tubing, hydrides tend to form perpendicular to the thickness direction due to the texture developed during fabrication. Hydrides in this orientation do not generally cause structural problems because applied stresses in the through-thickness direction are very low. However, the high mobility of hydrogen in a zirconium lattice enables redistribution of hydrides normal to the applied stress direction, which can result in localized embrittlement. When a platelet reaches a critical length it ruptures. If the tensile stress is sufficiently great, crack initiation starts at some of these hydrides. Crack propagation occurs by repeating the same process at the crack tip. Delayed hydride cracking can degrade the structural integrity of zirconium alloys during reactor service. The paper focuses on the fracture mechanics and fractographic aspects of hydride material. (author)

  8. Embrittlement and anodic process in stress corrosion cracking: study of the influent micro-mechanical parameters; Fragilisation et processus anodiques en corrosion sous contrainte: etude des parametres micro-mecaniques influents

    Energy Technology Data Exchange (ETDEWEB)

    Tinnes, J.Ph

    2006-11-15

    We study the influence of local mechanical parameters on crack propagation in Stress Corrosion Cracking, at the scale of the microstructure. Two systems are compared: the CuAl{sub 9}Ni{sub 3}Fe{sub 2} copper-aluminium alloy in synthetic sea water under cathodic polarization, where the crack propagation mechanism is related to strain-assisted anodic dissolution, and the 316L austenitic stainless steel in MgCl{sub 2} solution, where embrittlement mechanisms related to hydrogen effects prevail. We use micro-notched tensile specimen that allow to study isolated short cracks. These experiments are modelled by means of finite elements calculations, and further characterized by Electron Back scattered Diffraction (EBSD) in the case of the 316L alloy. In terms of the local mechanical parameters that control propagation, fundamental differences are outlined between the two systems. They are discussed from the viewpoint of the available models of Stress Corrosion Cracking. (author)

  9. Approach for estimating post-annual reirradiation embrittlement of reactor vessel steels

    International Nuclear Information System (INIS)

    Server, W.L.; Taboada, A.

    1985-01-01

    Thermal annealing of a commercial nuclear reactor pressure vessel is a possible solution for extending lifetime in situations where excessive radiation embrittlement has taken place or when the original design life is approached. Two difficult facets of thermal annealing are the degree of toughness recovery after annealing and the post-anneal reirradiation embrittlement behavior. These aspects of annealing are evaluated in this paper by using simple models and translation of the initial irradiation damage curve either vertically or laterally at the point of residual shift after annealing. Results using this methodology are compared to limited actual weld metal measurements of annealing behavior. A forthcoming ASTM Guide on in-place annealing uses this methodology to assess annealing recovery and re-embrittlement response

  10. Irradiation embrittlement of pressure vessel steels

    International Nuclear Information System (INIS)

    Brumovsky, M.; Vacek, M.

    1975-01-01

    A Standard Research Programme on Irradiation Embrittlement of Pressure Vessel Steels was approved by the Coordinating Meeting on the 12th May 1972 at the Working Group on Engineering Aspects of Irradiation Embrittlement of Pressure Vessel Steels. This Working Group was set up by the International Atomic Energy Agency in Vienna. Seven countries with their research institutes agreed on doing irradiation experiments according to the approved programme on steel A533 B from the U.S. HSST Programme. The Czechoslovak contribution covering tensile and impact testing of non-irradiated steel and steel irradiated at 280degC to 1.3 x 10 23 n/m 2 (E above 1 MeV) is presented in this report. As an additional part the same set of experiments was carried out on two additional steels - A 542 and A 543, made in SKODA Works for comparison of their irradiation embrittlement and hardening with A533 B steel. (author)

  11. Influence of a cyclic load on the embrittlement kinetics of alloys by the example of the 475 C embrittlement of duplex steel and the dynamic embrittlement of a nickel base alloy; Einfluss einer zyklischen Belastung auf die Versproedungskinetik von Legierungen am Beispiel der 475 C-Versproedung von Duplexstahl und der dynamischen Versproedung einer Nickelbasislegierung

    Energy Technology Data Exchange (ETDEWEB)

    Wackermann, Ken

    2015-07-07

    The objective of this study was to investigate the dependence of high temperature embrittlement mechanisms on high temperature fatigue and vice versa. As model embrittlement mechanisms the 475 C Embrittlement of ferritic austenitic duplex stainless steel (1.4462) and the Dynamic Embrittlement of nickel-based superalloys (IN718) were selected. The 475 C Embrittlement is a thermally activated decomposition of the ferritic phase which hardens the material. In contrast to this a cyclic plastic deformation weakens the steel by a deformation-induced dissolution of the decomposition. Fatigue tests with different frequencies, loading amplitudes at room temperature and at 475 C with Duplex Stainless Steel in different states of embrittlement show that the ongoing 475 C Embrittlement and the deformation-induced dissolution are competing mechanisms. It depends on the frequency, the loading amplitude and the temperature which mechanism is dominant. Applying the model of the yield stress distribution function to the hysteresis branches of the fatigue tests allows an analysis of the fatigue behaviour of each phase individually. This analysis shows that the global fatigue behaviour for the test conditions applied in this study is mainly controlled by the ferritic phase. According to the existing understanding of Dynamic Embrittlement it is an oxygen grain boundary diffusion arising by tensile stress at elevated temperatures with the result of a fast intercrystalline crack propagation. In reference tests under vacuum conditions without oxygen grain boundary diffusion, a slow transcrystalline fracture appears. To analyse the Dynamic Embrittlement, the crack propagation was tested at 650 C with different frequencies and superimposed hold times in the fatigue cycle at maximum stress. The results shows that the existing model of Dynamic Embrittlement needs to be adapted to the effects of cyclic plastic deformation. In hold times, the oxygen grain boundary diffusion in front of the

  12. Precipitation hardening and hydrogen embrittlement of aluminum ...

    Indian Academy of Sciences (India)

    Hydrogen susceptibility of alloy AA7020 was evaluated by slow strain-rate tensile ... high pressures because of the embrittling effect of hydrogen. ... The higher the total Zn + Mg content,. ∗ .... dislocations, leading to a local softening of the slip plane, and thus to ... A Vickers hardness testing machine was used to measure the.

  13. Oak Ridge National Laboratory Embrittlement Data Base (EDB) and Dosimetry Evaluation (DE) program

    International Nuclear Information System (INIS)

    Pace, J.V. III; Remec, I.; Wang, J.A.; White, J.E.

    1996-01-01

    The objective of this program is to develop, maintain, and upgrade computerized data bases, calculational procedures, and standards relating to reactor pressure vessel fluence spectra determinations and embrittlement assessments. As part of this program, the information from radiation embrittlement research on nuclear reactor pressure vessel steels and from power reactor surveillance reports is maintained in a data base published on a periodic basis. The Embrittlement Data Base (EDB) effort consists of verifying the quality of the EDB, providing user-friendly software to access and process the data, and exploring and assessing embrittlement prediction models. The Dosimetry Evaluation effort consists of maintaining and upgrading validated neutron and gamma radiation transport procedures, maintaining cross-section libraries with the latest evaluated nuclear data, and maintaining and updating validated dosimetry procedures and data bases. The information available from this program provides data for assisting the Office of Nuclear Reactor Regulation, with support from the Office of Nuclear Regulatory Research, to effectively monitor current procedures and data bases used by vendors, utilities, and service laboratories in the pressure vessel irradiation surveillance program

  14. An holistic approach to the problem of reactor ageing. [Pressure vessel embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Phythian, W.; McElroy, R.; Druce, S.; Kovan, D. (AEA Reactor Services, Harwell (United Kingdom))

    1992-12-01

    Understanding the process of ageing in reactors is essential to extending their lives beyond original design. To present a sound case -particularly regarding the level of embrittlement in reactor vessels due to radiation damage - an integrated approach using advanced assessment tools is needed. The techniques developed for the purpose involve, on the microscopic level, advanced neutron dosimetry and high resolution measurement techniques (eg advanced electron beam techniques and small angle neutron scattering) with which an analysis can be done of the radiation damage and the microstructural state of the steel test procedures (tensile, fracture toughness and Charpy impact) on standard and sub-sized specimens, the extent of radiation degradation can be characterised. finally, it is possible to predict how the degradation will evolve using physically-based models of embrittlement. (Author).

  15. Florida statewide radiation study

    International Nuclear Information System (INIS)

    Nagda, N.L.; Koontz, M.D.; Fortmann, R.C.; Schoenborn, W.A.; Mehegan, L.L.

    1987-01-01

    Florida phosphate deposits contain higher levels of uranium than most other soils and rocks, thus exposing the population to higher-than-desirable levels of radon and its short-lived daughters. The Florida Legislature ordered a survey of significant land areas where an environmental radiation standard should be applied. Among other things, the study assessed indoor radon in 6,000 homes, soil radon at 3,000 residences, and all data existing prior to the study. The report explains the purpose of the study, how it was designed and conducted, and its results. It concludes with a discussion of radon/radon decay product equilibrium factor, correlation between indoor and soil radon, and preliminary attempts to develop a safe threshold for soil radon below which few elevated indoor levels would be anticipated

  16. The influences of impurity content, tensile strength, and grain size on in-service temper embrittlement of CrMoV steels

    International Nuclear Information System (INIS)

    Cheruvu, N.S.; Seth, B.B.

    1989-01-01

    The influences of impurity levels, grain size, and tensile strength on in-service temper embrittlement of CrMoV steels have been investigated. The samples for this study were taken from steam turbine CrMoV rotors which had operated for 15 to 26 years. The effects of grain size and tensile strength on embrittlement susceptibility were separated by evaluating the embrittlement behavior of two rotor forgings made from the same ingot after an extended step-cooling treatment. Among the residual elements in the steels, only P produces a significant embrittlement. The variation of P and tensile strength has no effect on in-service temper embrittlement susceptibility, as measured by the shift in fracture appearance transition temperature (FATT). However, the prior austenite grain size plays a major role in service embrittlement. The fine grain steels with a grain size of ASTM No. 9 or higher are virtually immune to in-service embrittlement. In steels having duplex grain sizes, embrittlement susceptibility is controlled by the size of coarser grains. For a given steel chemistry, the coarse grain steel is more susceptible to in-service embrittlement, and a decrease in ASTM grain size number from 4 to 0/1 increases the shift in FATT by 61 degrees C (10/10 degrees F). It is demonstrated that long-term service embrittlement can be simulated, except in very coarse grain steels, by using the extended step-cooling treatment. The results of step-cooling studies show that the coarse grain rotor steels take longer time during service to reach a fully embrittled state than the fine grain rotor steels

  17. Metal induced embrittlement. Annual report, [March 1, 1987--February 29, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Hoagland, R.G.

    1988-11-01

    This program is investigating the causes of embrittlement that occur in certain solid metals when exposed to liquid metals. The degree of embrittlement varies enormously among different solid/liquid pairs as witness, for example, the modest loss of load carrying, ability induced in carbon steels by Pb or the profound embrittlment of aluminum (particularly high strength) alloys by Hg and Ga. The structure of this study involves two types of activities: an experimental fracture mechanics study of the behavior of certain solid metals in liquid metals, and a theoretical study on an atomic scale of the crack tip deformation and extension behavior by means of atomistic simulation. This research, which began March 1, 1987, has completed its 20 month. A brief synopsis is given of performance in each of the areas of activity during the past year.

  18. Mechanisms of liquid-metal embrittlement

    International Nuclear Information System (INIS)

    Popovich, V.V.

    1979-01-01

    The mechanism of the embrittlement of metals and alloys during deformation in contact with liquid metals are discussed. With 20Kh13 steel in a Pb-Sn melt and polycrystalline Al in the presence of various mercury solutions a.s examples, considered are the three main processes - adsorption, corrosion (dissolution), formation of new phases which cause the disintegration of materials under the action of liquid-metallic media. Presented are data on plastic ductile and strength properties of the above materials in the presence of liquid-metallic media. A model is described that takes into account the effect of the medium upon the plastic deformation and the part the medium plays in liquid-metallic embrittlement

  19. Embrittling effects of residual elements on steels

    International Nuclear Information System (INIS)

    Brear, J.M.; King, B.L.

    1979-01-01

    In a review of work related to reheat cracking in nuclear pressure vessel steels, Dhooge et al referred to work of the authors on the relative embrittling parameter for SA533B steels. The poor agreement when these parameters were applied to creep ductility data for SA508 class 2 lead the reviewers to conclude that the relative importance of impurity elements is a function of base alloy composition. The authors briefly describe some of their more recent work which demonstrates that when various mechanical, and other, effects are taken into consideration, the relative effects of the principal residual elements are similar, despite differing base compositions, and that the embrittling parameters derived correlate well with the data for SA Class 2 steel. (U.K.)

  20. Effects of metallurgical variables on hydrgen embrittlement in types 316, 321, and 347 stainless steels

    International Nuclear Information System (INIS)

    Rozenak, P.; Eliezer, D.

    1984-01-01

    Hydrogen embrittlement of 316, 321 and 347 types austenitic stainless steels has been studied by charging thin tensile specimens with hydrogen through cathodic polarization. Throughout this study we have compared solution annealed samples having various prior austenitic grain-size with samples given the additional sensitization treatment. The results show that refined grains improves the resistance to hydrogen cracking regardless of the failure mode. The sensitized specimens were predominantly intergranular, while the annealed specimens show massive regions of microvoid coalescence producing ductile rupture. 347 type stainless steel is much more susceptible to hydrogen embrittlement than 321 type steel, and 316 type is the most resistant to hydrogen embrittlement. the practical implication of the experimental conclusions are discussed

  1. Severe embrittlement of neutron irradiated austenitic steels arising from high void swelling

    Energy Technology Data Exchange (ETDEWEB)

    Neustroev, V.S. [FSUE ' SSC RF Research Institute of Atomic Reactors' , Dimitrovgrad (Russian Federation)], E-mail: neustroev@niiar.ru; Garner, F.A. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2009-04-30

    Data are presented from BOR-60 irradiations showing that significant radiation-induced swelling causes severe embrittlement in austenitic stainless steels, reducing the service life of structural components and introducing limitations on low temperature handling especially. It is shown that the degradation is actually a form of quasi-embrittlement arising from intense flow localization with high levels of localized ductility involving micropore coalescence and void-to-void cracking. Voids initially serve as hardening components whose effect is overwhelmed by the void-induced reduction in shear and Young's moduli at high swelling levels. Thus the alloy appears to soften even as the ductility plunges toward zero on a macroscopic level although a large amount of deformation occurs microscopically at the failure site. Thus the failure is better characterized as 'quasi-embrittlement' which is a suppression of uniform deformation. This case should be differentiated from that of real embrittlement which involves the complete suppression of the material's capability for plastic deformation.

  2. Irreversible traps, their influence on the embrittlement of high strength steel

    International Nuclear Information System (INIS)

    Mariano, I; Mansilla, G

    2012-01-01

    Hydrogen (H) can be trapped in lattice defects such as vacancies, dislocations, grain boundaries and interfaces between the matrix and precipitates. The effect on the mechanical properties depends on factors inherent in materials such as the activation energy of irreversible traps (H trapped in Network Places) and its sensitivity to embrittlement. Differential scanning calorimetry (DSC) allows the study of those processes in which enthalpy variation occurs. The purpose is to record the difference in enthalpy change that occurs in the sample as a function of temperature or time. This work represents a study of H embrittlement of high strength steel resulfurized

  3. Damage dosimetry and embrittlement monitoring of nuclear pressure vessels in real time by magnetic properties measurement. Final report

    International Nuclear Information System (INIS)

    Ougouag, A.M.; Stubbins, J.F.; Williams, J.F.; Shong, Wei-Ja.

    1995-04-01

    This program developed a nondestructive technique for gauging the progress of embrittlement of nuclear pressure vessel steels (PVS) by means of monitoring radiation-induced changes in magnetic properties. The technique was developed by running a series of experiments in reactor on typical nuclear pressure vessel steels and weldment material. Following irradiation, changes in magnetic properties were measured and correlated with irradiation dose and with mechanical properties changes, where possible. The changes in magnetic properties were unique to the irradiation environment, and were much larger than those produce by thermal aging in the absence of irradiation. Special techniques for magnetic properties change measurement were developed and complimented by more standard magnetic properties measurement techniques including SQUID measurements. The results of the experiments revealed that magnetic properties were very sensitive to irradiation. Changes in microstructurally-related magnetic properties of as much as 40% were noted after irradiation exposure of as little as 10 17 n/cm 2 (E > 0.1 MeV). The magnetic properties changes plateaued out after doses of around as 10 18 n/cm 2 (E > 0.1 MeV). It is unclear whether further changes would be noted at higher doses which would also be useful for tracking the embrittlement phenomenon. This is recommended for further study. The work supported here resulted in several publications in the open scientific literature

  4. Embrittlement of the alloy U 7.5 Nb 2.5 Zr by gaseous oxygen and hydrogen

    International Nuclear Information System (INIS)

    Lepoutre, D.; Nomine, A.M.; Miannay, D.

    1981-04-01

    Embrittlement of the alloy uranium 7.5 niobium 2.5 zirconium in gaseous oxygen and hydrogen versus stress intensity, temperature and pressure is studied using rupture mechanics. Cracking speed is determined. In oxygen, only cracks are produced and embrittlement is due to oxidation. In hydrogen at high pressure an hydride is formed and at low pressure cracks are produced but the mechanism is not identified [fr

  5. Low Temperature Irradiation Embrittlement of Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    The embrittlement trend curve development project for HFIR reactor pressure vessel (RPV) steels was carried out with three major tasks. Which are (1) data collection to match that used in HFIR steel embrittlement trend published in 1994 Journal Nuclear Material by Remec et. al, (2) new embrittlement data of A212B steel that are not included in earlier HFIR RPV trend curve, and (3) the adjustment of nil-ductility-transition temperature (NDTT) shift data with the consideration of the irradiation temperature effect. An updated HFIR RPV steel embrittlement trend curve was developed, as described below. NDTT( C) = 23.85 log(x) + 203.3 log (x) + 434.7, with 2- uncertainty of 34.6 C, where parameter x is referred to total dpa. The developed update HFIR RPV embrittlement trend curve has higher embrittlement rate compared to that of the trend curve developed in 1994.

  6. Hydrogen embrittlement of high strength steel electroplated with zincâ  cobalt allo

    OpenAIRE

    Hillier, Elizabeth M. K.; Robinson, M. J.

    2004-01-01

    Slow strain rate tests were performed on quenched and tempered AISI 4340 steel to measure the extent of hydrogen embrittlement caused by electroplating with zincâ  cobalt alloys. The effects of bath composition and pH were studied and compared with results for electrodeposited cadmium and zincâ  10%nickel. It was found that zincâ  1%cobalt alloy coatings caused serious hydrogen embrittlement (EI 0.63); almost as severe as that of cadmium (EI 0.78). Baking cadmium plate...

  7. Hydrogen embrittlement of Zr-2.5Nb PT with temperature

    International Nuclear Information System (INIS)

    Oh, Dong Joon; Ahn, Sang Bok; Kim, Young Suk

    2003-01-01

    The aim of this study is to investigate the effect of hydrogen embrittlement of Zr-2.5Nb CANDU pressure tube. The tests were performed at three hydrogen contents for transverse tensile and CCT specimens while the test temperatures were changed (RT to 300 .deg. C). The specimens were directly machined from the tube retaining original curvature using electric discharge machine. Both the transverse tensile and the fracture toughness tests showed the hydrogen embrittlement clearly at RT but this phenomenon was disappeared while the test temperature arrived over 250 .deg. C

  8. The effects of composition on the environmental embrittlement of Fe{sub 3}Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Alven, D.A.; Stoloff, N.S. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1997-12-01

    This paper reviews recent research on embrittlement of iron aluminides at room temperature brought about by exposure to moisture or hydrogen. The tensile and fatigue crack growth behavior of several Fe-28Al-5Cr alloys with small additions of Zr and C are described. It will be shown that fatigue crack growth behavior is dependent on composition, environment, humidity level, and frequency. Environments studied include vacuum, oxygen, hydrogen gas, and moist air. All cases of embrittlement are ultimately traceable to the interaction of hydrogen with the crack tip.

  9. Reduction of helium embrittlement in stainless steel by finely dispersed TiC precipitates

    International Nuclear Information System (INIS)

    Kesternich, W.; Rothaut, J.

    1982-01-01

    The He embrittlement effects in two candidate stainless steels for first wall of fusion reactors were studied in creep tests at 700 0 C simulating the He production by He implantation. Creep rupture life before He implantation and reduction of rupture life due to He were superior by orders of magnitude in 1.4970 steel after pertinent pretreatment compared to 316 steel. The high strength and the low He embrittlement result from a fine dispersion of TiC precipitates in the grain interiors. From microstructural investigations a mechanism explaining the high sink efficiency of TiC for He atom accumulation is suggested. (orig.)

  10. Hydrogen embrittlement and galvanic corrosion of titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Jeong Ryong; Jeong, Y. H.; Choi, B. K.; Baek, J. H.; Hwang, D. Y.; Choi, B. S.; Lee, D. J

    2000-06-01

    The material properties including the fracture behavior of titanium alloys used as a steam generator tube in SMART can be degraded de to the hydrogen embrittlement and the galvanic corrosion occurring as a result of other materials in contact with titanium alloys in a conducting corrosive environment. In this report the general concepts and trends of hydrogen embrittlement are qualitatively described to adequately understand and expect the fracture behavior from hydrogen within the bulk of materials and under hydrogen containing environments because hydrogen embrittlement may be very complicated process. And the characteristics of galvanic corrosion closely related to hydrogen embrittlement is qualitatively based on wimple electrochemical theory.

  11. Hydrogen embrittlement and galvanic corrosion of titanium alloys

    International Nuclear Information System (INIS)

    Soh, Jeong Ryong; Jeong, Y. H.; Choi, B. K.; Baek, J. H.; Hwang, D. Y.; Choi, B. S.; Lee, D. J.

    2000-06-01

    The material properties including the fracture behavior of titanium alloys used as a steam generator tube in SMART can be degraded de to the hydrogen embrittlement and the galvanic corrosion occurring as a result of other materials in contact with titanium alloys in a conducting corrosive environment. In this report the general concepts and trends of hydrogen embrittlement are qualitatively described to adequately understand and expect the fracture behavior from hydrogen within the bulk of materials and under hydrogen containing environments because hydrogen embrittlement may be very complicated process. And the characteristics of galvanic corrosion closely related to hydrogen embrittlement is qualitatively based on wimple electrochemical theory

  12. Significance of rate of work hardening in tempered martensite embrittlement

    International Nuclear Information System (INIS)

    Pietikainen, J.

    1995-01-01

    The main explanations for tempered martensite embrittlement are based on the effects of impurities and cementite precipitation on the prior austenite grain boundaries. There are some studies where the rate of work hardening is proposed as a potential reason for the brittleness. One steel was studied by means of a specially developed precision torsional testing device. The test steel had a high Si and Ni content so ε carbide and Fe 3 C appear in quite different tempering temperature ranges. The M S temperature is low enough so that self tempering does not occur. With the testing device it was possible to obtain the true stress - true strain curves to very high deformations. The minimum toughness was always associated with the minimum of rate of work hardening. The change of deformed steel volume before the loss of mechanical stability is proposed as at least one reason for tempered martensite embrittlement. The reasons for the minimum of the rate of work hardening are considered. (orig.)

  13. Role of vanadium carbide traps in reducing the hydrogen embrittlement susceptibility of high strength alloy steels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, G.L.; Duquette, D.J.

    1998-08-01

    High strength alloy steels typically used for gun steel were investigated to determine their susceptibility to hydrogen embrittlement. Although AISI grade 4340 was quite susceptible to hydrogen embrittlement, ASTM A723 steel, which has identical mechanical properties but slightly different chemistries, was not susceptible to hydrogen embrittlement when exposed to the same conditions. The degree of embrittlement was determined by conducting notched tensile testing on uncharged and cathodically charged specimens. Chemical composition was modified to isolate the effect of alloying elements on hydrogen embrittlement susceptibility. Two steels-Modified A723 (C increased from 0.32% to 0.40%) and Modified 4340 (V increased from 0 to O.12%) were tested. X-ray diffraction identified the presence of vanadium carbide, V{sub 4}C{sub 3}, in A-23 steels, and subsequent hydrogen extraction studies evaluated the trapping effect of vanadium carbide. Based on these tests, it was determined that adding vanadium carbide to 4340 significantly decreased hydrogen embrittlement susceptibility because vanadium carbide traps ties up diffusible hydrogen. The effectiveness of these traps is examined and discussed in this paper.

  14. Embrittlement of the Shippingport reactor shield tank

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.

    1989-01-01

    Surveillance specimens from the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory showed an unexpectedly high degree of embrittlement relative to the data obtained on similar materials in Materials Testing Reactors (MTRs). The results suggest a possible negative flux effect and raise the issue of embrittlement of the pressure vessel support structures of commercial light water reactors. To help resolve this issues, a program was initiated to characterize the irradiation embrittlement of the neutron shield tank (NST) from the decommissioned Shippingport reactor. The Shippingport NST operated at 55 degree C (130 degree F) and was fabricated from A212 Grade B steel, similar to the vessel material in HFIR. The inner wall of the NST was exposed to a total maximum fluence of ∼ 6 x 10 17 n/cm 2 (E > 1 MeV) over a life of 9.25 effective full power years. This corresponds to a fast flux of 2.1 x 10 9 n/cm 2 x s and is comparable to the conditions for the HFIR surveillance specimens. The results indicate that irradiation increases the 15 ft x lb Charpy transition temperature (CTT) by ∼25 degree C (45 degree F) and decreases the upper shelf energy. The shift in CTT is not as severe as that observed in the HFIR surveillance specimens and is consistent with that expected from the MTR data base. However, the actual value of CTT is high, and the toughness at service temperature is low, even when compared with the HFIR data. The increase in yield stress is ∼50 MPa, which is comparable to the HFIR data. The results also indicate a lower impact strength and higher transition temperature for the TL orientation than that for the LT orientation. Some effects of the location across the thickness of the wall are also observed for the LT specimens; CTT is slightly greater for the specimens from the inner region of the wall

  15. Helium embrittlement model and program plan for weldability of ITER materials

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Kanne, W.R. Jr.; Tosten, M.H.; Rankin, D.T.; Cross, B.J.

    1997-02-01

    This report presents a refined model of how helium embrittles irradiated stainless steel during welding. The model was developed based on experimental observations drawn from experience at the Savannah River Site and from an extensive literature search. The model shows how helium content, stress, and temperature interact to produce embrittlement. The model takes into account defect structure, time, and gradients in stress, temperature and composition. The report also proposes an experimental program based on the refined helium embrittlement model. A parametric study of the effect of initial defect density on the resulting helium bubble distribution and weldability of tritium aged material is proposed to demonstrate the roll that defects play in embrittlement. This study should include samples charged using vastly different aging times to obtain equivalent helium contents. Additionally, studies to establish the minimal sample thickness and size are needed for extrapolation to real structural materials. The results of these studies should provide a technical basis for the use of tritium aged materials to predict the weldability of irradiated structures. Use of tritium charged and aged material would provide a cost effective approach to developing weld repair techniques for ITER components

  16. Radiation stability and recovery of WWER-440 materials

    International Nuclear Information System (INIS)

    Amaev, A.; Kryukov, A.; Levit, V.; Platonov, P.; Sokolov, M.

    1993-01-01

    The main results of a complex investigation of radiation embrittlement of WWER-440 reactor vessel materials, carried out in Russia, are presented. The effect of the annealing temperature and annealing time, neutron fluence, and phosphorous and copper impurity contents on the recovery of the ductile-to-brittle transition temperature are studied. It is shown that the recovery of the transition temperature depends mainly on the annealing temperature. At an annealing temperature of 420 and 460 C, residual post-annealing embrittlement does not depend on neutron fluence. 14 figs., 3 tabs

  17. Radiation stability and recovery of WWER-440 materials

    Energy Technology Data Exchange (ETDEWEB)

    Amaev, A; Kryukov, A; Levit, V; Platonov, P; Sokolov, M

    1994-12-31

    The main results of a complex investigation of radiation embrittlement of WWER-440 reactor vessel materials, carried out in Russia, are presented. The effect of the annealing temperature and annealing time, neutron fluence, and phosphorous and copper impurity contents on the recovery of the ductile-to-brittle transition temperature are studied. It is shown that the recovery of the transition temperature depends mainly on the annealing temperature. At an annealing temperature of 420 and 460 C, residual post-annealing embrittlement does not depend on neutron fluence. 14 figs., 3 tabs.

  18. Studying uses of radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1969-07-01

    Among the events this year which have demonstrated the efforts of the Agency and the Food and Agriculture Organization of the United Nations to increase the knowledge of nuclear techniques have been two six-week courses held in association with national atomic energy organizations. In Italy the use of radiation to induce beneficial mutations in plans was the subject, and in India stress was on ways of preserving food, in addition to the sterilization of biomedical products. (author)

  19. Effect of trapping and temperature on the hydrogen embrittlement susceptibility of alloy 718

    Energy Technology Data Exchange (ETDEWEB)

    Galliano, Florian; Andrieu, Eric; Blanc, Christine; Cloue, Jean-Marc; Connetable, Damien; Odemer, Gregory, E-mail: gregory.odemer@ensiacet.fr

    2014-08-12

    Ni-based alloy 718 is widely used to manufacture structural components in the aeronautic and nuclear industries. Numerous studies have shown that alloy 718 may be sensitive to hydrogen embrittlement. In the present study, the susceptibilities of three distinct metallurgical states of alloy 718 to hydrogen embrittlement were investigated to identify both the effect of hydrogen trapping on hydrogen embrittlement and the role of temperature in the hydrogen-trapping mechanism. Cathodic charging in a molten salt bath was used to saturate the different hydrogen traps of each metallurgical state. Tensile tests at different temperatures and different strain rates were carried out to study the effect of hydrogen on mechanical properties and failure modes, in combination with hydrogen content measurements. The results demonstrated that Ni-based superalloy 718 was strongly susceptible to hydrogen embrittlement between 25 °C and 300 °C, and highlighted the dominant roles played by the hydrogen solubility and the hydrogen trapping on mechanical behavior and fracture modes.

  20. High temperature embrittlement of metals by helium

    International Nuclear Information System (INIS)

    Schroeder, H.

    1983-01-01

    The present knowledge of the influence of helium on the high temperature mechanical properties of metals to be used as structural materials in fast fission and in future fusion reactors is reviewed. A wealth of experimental data has been obtained by many different experimental techniques, on many different alloys, and on different properties. This review is mostly concentrated on the behaviour of austenitic alloys -especially austenitic stainless steels, for which the data base is by far the largest - and gives only a few examples of special bcc alloys. The effect of the helium embrittlement on the different properties - tensile, fatigue and, with special emphasis, creep - is demonstrated by representative results. A comparison between data obtained from in-pile (-beam) experiments and from post-irradiation (-implantation) experiments, respectively, is presented. Theoretical models to describe the observed phenomena are briefly outlined and some suggestions are made for future work to resolve uncertainties and differences between our experimental knowledge and theoretical understanding of high temperature helium embrittlement. (author)

  1. Current understanding of the effects of enviromental and irradiation variables on RPV embrittlement

    International Nuclear Information System (INIS)

    Odette, G.R.; Lucas, G.E.; Wirth, B.; Liu, C.L.

    1997-01-01

    Radiation enhanced diffusion at RPV operating temperatures around 290 degrees C leads to the formation of various ultrafine scale hardening phases, including copper-rich and copper-catalyzed manganese-nickel rich precipitates. In addition, defect cluster or cluster-solute complexes, manifesting a range of thermal stability, develop under irradiation. These features contribute directly to hardening which in turn is related to embrittlement, manifested as shifts in Charpy V-notch transition temperature. Models based on the thermodynamics, kinetics and micromechanics of the embrittlement processes have been developed; these are broadly consistent with experiment and rationalize the highly synergistic effects of most important irradiation (temperature, flux, fluence) and metallurgical (copper, nickel, manganese, phosphorous and heat treatment) variables on both irradiation hardening and recovery during post-irradiation annealing. A number of open questions remain which can be addressed with a hierarchy of new theoretical and experimental tools

  2. Study on radiation hazard

    International Nuclear Information System (INIS)

    Yang, Rong-Chan

    1981-01-01

    A series of experiments were designed to know the influence of the teeth on the radiation hazard for mandible. The right mandible of adult dogs were irradiated by means of an x-radiation generator (total dose was 3000 R and 6000 R). Radiation hazards for the soft tissue revealed a significant difference between the dentulous and edentulous mandibles, macroscopically. The gingiva of irradiated dentulous mandible showed an ulceration after the irradiation. Necrosis of the alveolar mucosa, buccal mucosa and skin followed an ulceration, and eventually exposure of the alveolar bone of mandible occurred. The pathologic condition progressed rapidly and a loosening and an exfoliation of the teeth or a pathologic fracture of the mandible occurred eventually. In the edentulous mandible (6000 R irradiated group) an ulceration of the skin developed as the first disturbance. The tissue necrosis progressed from the skin to the buccal mucosa and gingiva. Eventually an exposure of the alveolar bone occurred but no pathologic fracture was seen in the edentulous mandible. No specific pathologic findings were seen in the 3000 R irradiated edentulous mandible. The early roentgenological findings in the irradiated dentulous mandible were resorption of the alveolar crest and widening of the periodontal membrane space. Another changes of bone were osteoporosis and cortical bone destruction. In the edentulous mandible (6000 R irradiated group) pathologic bone condition occurred later than in the dentulous mandible, and osteosclerosis and cortical bone destruction were also seen. Periosteal reaction was found roentgenologically in the 6000 R irradiated dentulous and edentulous mandibles. No roentgenological findings were seen in the 3000 R irradiated edentulous mandible. (J.P.N.)

  3. Effect of microstructure on the susceptibility of a 533 steel to temper embrittlement

    International Nuclear Information System (INIS)

    Raoul, S.; Marini, B.; Pineau, A.

    1998-01-01

    In ferritic steels, brittle fracture usually occurs at low temperature by cleavage. However the segregation of impurities (P, As, Sn etc..) along prior γ grain boundaries can change the brittle fracture mode from transgranular to intergranular. In quenched and tempered steels, this segregation is associated with what is called the temper-embrittlement phenomenon. The main objective of the present study is to investigate the influence of the as-quenched microstructure (lower bainite or martensite) on the susceptibility of a low alloy steel (A533 cl.1) to temper-embrittlement. Dilatometric tests were performed to determine the continous-cooling-transformation (CCT) diagram of the material and to measure the critical cooling rate (V c ) for a martensitic quench. Then subsized Charpy V-notched specimens were given various cooling rates from the austenitization temperature to obtain a wide range of as-quenched microstructures, including martensite and bainite. These specimens were subsequently given a heat treatment to develop temper embrittlement and tested to measure the V-notch fracture toughness at -50 C. The fracture surfaces were examined by SEM. It is shown that martensitic microstructures are more susceptible to intergranular embrittlement than bainitic microstructures. These observed microstructural influences are briefly discussed. (orig.)

  4. Effect of microstructure on the susceptibility of a 533 steel to temper embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Raoul, S.; Marini, B. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Service de Recherches Metallurgiques Appliquees; Pineau, A. [CNRS, Evry (France). Centre de Materiaux

    1998-11-01

    In ferritic steels, brittle fracture usually occurs at low temperature by cleavage. However the segregation of impurities (P, As, Sn etc..) along prior {gamma} grain boundaries can change the brittle fracture mode from transgranular to intergranular. In quenched and tempered steels, this segregation is associated with what is called the temper-embrittlement phenomenon. The main objective of the present study is to investigate the influence of the as-quenched microstructure (lower bainite or martensite) on the susceptibility of a low alloy steel (A533 cl.1) to temper-embrittlement. Dilatometric tests were performed to determine the continous-cooling-transformation (CCT) diagram of the material and to measure the critical cooling rate (V{sub c}) for a martensitic quench. Then subsized Charpy V-notched specimens were given various cooling rates from the austenitization temperature to obtain a wide range of as-quenched microstructures, including martensite and bainite. These specimens were subsequently given a heat treatment to develop temper embrittlement and tested to measure the V-notch fracture toughness at -50 C. The fracture surfaces were examined by SEM. It is shown that martensitic microstructures are more susceptible to intergranular embrittlement than bainitic microstructures. These observed microstructural influences are briefly discussed. (orig.) 11 refs.

  5. Low temperature thermal ageing embrittlement of austenitic stainless steel welds and its electrochemical assessment

    International Nuclear Information System (INIS)

    Chandra, K.; Kain, Vivekanand; Raja, V.S.; Tewari, R.; Dey, G.K.

    2012-01-01

    Highlights: ► Embrittlement study of austenitic stainless steel welds after ageing up to 20,000 h. ► Spinodal decomposition and G-phase precipitation in ferrite at 400 °C. ► Spinodal decomposition of ferrite at 335 and 365 °C. ► Large decrease in corrosion resistance due to G-phase precipitation. ► Good correlation between electrochemical properties and the degree of embrittlement. - Abstract: The low temperature thermal ageing embrittlement of austenitic stainless steel welds is investigated after ageing up to 20,000 h at 335, 365 and 400 °C. Spinodal decomposition and G-phase precipitation after thermal ageing were identified by transmission electron microscopy. Ageing led to increase in hardness of the ferrite phase while there was no change in the hardness of austenite. The degree of embrittlement was evaluated by non-destructive methods, e.g., double-loop and single-loop electrochemical potentiokinetic reactivation tests. A good correlation was obtained between the electrochemical properties and hardening of the ferrite phase of the aged materials.

  6. Effect of hydrogen and oxygen content on the embrittlement of Zr alloys

    International Nuclear Information System (INIS)

    Griger, A.; Hozer, Z.; Matus, L.; Vasaros, L.; Horvath, M.

    2001-01-01

    An experimental study is carried out in the KFKI Atomic Energy Research Institute in order to clear up the role of oxidation and hydrogen uptake in the embrittlement process. Russian E110 type Zr1%Nb and Zircaloy-4 claddings are used as test materials. The differences between the properties of two alloys are examined. The sample preparation covered the following cases: oxidation in Ar+O 2 atmosphere; hydrogen uptake of as received and pre-oxidised samples (in Ar+O 2 atmosphere); oxidation in steam. The oxidation in Ar+O 2 and the subsequent hydrogen uptake procedure make possible the production of samples with well-characterized hydrogen and oxygen content. Corrosion treated ring samples of 8 mm height are examined in ring compression tests. The force-deformation curves are recorded and the crushing force and deformation are determined. The relative deformation is used for the characterisation of embrittlement level. The results of experiments provide detailed information about the effect of hydrogen and oxygen content on the embrittlement of zirconium alloys. The conclusions are: 1) hydrogen seems to play a more important role in the embrittlement of zirconium alloys than oxygen; 2) the Zircaloy-4 alloy becomes brittle at lower hydrogen content than the Zr1%Nb; 3) under steam oxidation conditions the Zr1%Nb alloy takes up much more hydrogen and becomes more brittle than the Zircaloy-4

  7. Radiation stability of chromium low alloys

    International Nuclear Information System (INIS)

    Chakin, V.P.; Kazakov, V.A.

    1990-01-01

    Radiation effect on the behaviour of mechanical properties and structure of chromium low alloys such as VKh-2K, KhP-3, VKhM in the wide range of temperatures and neutron fluences is studied. Radiation stability of the alloys is shown to be limited by low-temperature radiation embrittlement (LTRE), caused by radiation hardening as a result of formation of radiation-induced defects such as dislocation loops and vacancy voids in the structure. The methods for prevention LTRE of chromium alloys are suggested. 8 refs.; 8 figs

  8. Hydrogen embrittlement and stress corrosion cracking in metals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-15

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the

  9. Hydrogen embrittlement and stress corrosion cracking in metals

    International Nuclear Information System (INIS)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-01

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the more

  10. Development of embrittlement prediction models for U.S. power reactors and the impact of the heat-affected zone to thermal annealing

    International Nuclear Information System (INIS)

    Wang, J.A.

    1998-05-01

    The NRC Regulatory Guide 1.99 Revision 2 was based on 177 surveillance data points and the EPRI data base, where 76% of 177 data points and 60% of EPRI data base were from Westinghouse's data. Therefore, other vendors' radiation environment may not be properly characterized by R.G. 1.99's prediction. To minimize scatter from the influences of the irradiation temperature, neutron energy spectrum, displacement rate, and plant operation procedures on embrittlement models, improved embrittlement models based on group data that have similar radiation environments and reactor design and operation criteria are examined. A total of 653 shift data points from the current FR-EDB, including 397 Westinghouse data, 93 B and W data, 37 CE data, and 106 GE data, are used. A nonlinear least squares fitting FORTRAN program, incorporating a Monte Carlo procedure with 35% and 10% uncertainty assigned to the fluence and shift data, respectively, was written for this study. In order to have the same adjusted fluence value for the weld and plate material in the same capsule, the Monte Carlo least squares fitting procedure has the ability to adjust the fluence values while running the weld and plate formula simultaneously. Six chemical components, namely, copper, nickel, phosphorus, sulfur, manganese, and molybdenum, were considered in the development of the new embrittlement models. The overall percentage of reduction of the 2-sigma margins per delta RTNDT predicted by the new embrittlement models, compared to that of R.G. 1.99, for weld and base materials are 42% and 36%, respectively. Currently, the need for thermal annealing is seriously being considered for several A302B type RPVs. From the macroscopic view point, even if base and weld materials were verified from mechanical tests to be fully recovered, the linking heat affected zone (HAZ) material has not been properly characterized. Thus the final overall recovery will still be unknown. The great data scatter of the HAZ metals may

  11. Investigation of moisture-induced embrittlement of iron aluminides. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alven, D.A.; Stoloff, N.S. [Rensselaer Polytechnic Inst., Troy, NY (United States). Materials Engineering Dept.

    1997-06-05

    Iron-aluminum alloys with 28 at.% Al and 5 at.% Cr were shown to be susceptible to hydrogen embrittlement by exposure to both gaseous hydrogen and water vapor. This study examined the effect of the addition of zirconium and carbon on the moisture-induced hydrogen embrittlement of an Fe{sub 3}Al,Cr alloy through the evaluation of tensile properties and fatigue crack growth resistance in hydrogen gas and moisture-bearing air. Susceptibility to embrittlement was found to vary with the zirconium content while the carbon addition was found to only affect the fracture toughness. Inherent fatigue crack growth resistance and fracture toughness, as measured in an inert environment, was found to increase with the addition of 0.5 at.% Zr. The combined addition of 0.5 at.% Zr and carbon only increased the fracture toughness. The addition of 1 at.% Zr and carbon was found to have no effect on the crack growth rate when compared to the base alloy. Susceptibility to embrittlement in moisture-bearing environments was found to decrease with the addition of 0.5 at.% Zr. In gaseous hydrogen, the threshold value of the Zr-containing alloys was found to increase above that found in the inert environment while the crack growth resistance was much lower. By varying the frequency of fatigue loading, it was shown that the corrosion fatigue component of the fatigue crack growth rate in an embrittling environment displays a frequency dependence. Hydrogen transport in iron aluminides was shown to occur primarily by a dislocation-assisted transport mechanism. This mechanism, in conjunction with fractography, indicates that the zirconium-containing precipitates act as traps for the hydrogen that is carried along by the dislocations through the lattice.

  12. Application of magnetomechanical hysteresis modeling to magnetic techniques for monitoring neutron embrittlement and biaxial stress

    International Nuclear Information System (INIS)

    Sablik, M.J.; Kwun, H.; Rollwitz, W.L.; Cadena, D.

    1992-01-01

    The objective is to investigate experimentally and theoretically the effects of neutron embrittlement and biaxial stress on magnetic properties in steels, using various magnetic measurement techniques. Interaction between experiment and modeling should suggest efficient magnetic measurement procedures for determining neutron embrittlement biaxial stress. This should ultimately assist in safety monitoring of nuclear power plants and of gas and oil pipelines. In the first six months of this first year study, magnetic measurements were made on steel surveillance specimens from the Indian Point 2 and D.C. Cook 2 reactors. The specimens previously had been characterized by Charpy tests after specified neutron fluences. Measurements now included: (1) hysteresis loop measurement of coercive force, permeability and remanence, (2) Barkhausen noise amplitude; and (3) higher order nonlinear harmonic analysis of a 1 Hz magnetic excitation. Very good correlation of magnetic parameters with fluence and embrittlement was found for specimens from the Indian Point 2 reactor. The D.C. Cook 2 specimens, however showed poor correlation. Possible contributing factors to this are: (1) metallurgical differences between D.C. Cook 2 and Indian Point 2 specimens; (2) statistical variations in embrittlement parameters for individual samples away from the stated men values; and (3) conversion of the D.C. Cook 2 reactor to a low leakage core configuration in the middle of the period of surveillance. Modeling using a magnetomechanical hysteresis model has begun. The modeling will first focus on why Barkhausen noise and nonlinear harmonic amplitudes appear to be better indicators of embrittlement than the hysteresis loop parameters

  13. Investigation of helium-induced embrittlement

    International Nuclear Information System (INIS)

    Sabelova, V.; Slugen, V.; Krsjak, V.

    2014-01-01

    In this work, the hardness of Fe-9%(wt.) Cr binary alloy implanted by helium ions up to 1000 nm was investigated. The implantations were performed using linear accelerator at temperatures below 80 grad C. Isochronal annealing up to 700 grad C with the step of 100 grad C was applied on the helium implanted samples in order to investigate helium induced embrittlement of material. Obtained results were compared with theoretical calculations of dpa profiles. Due to the results, the nano-hardness technique results to be an appropriate approach to the hardness determination of thin layers of implanted alloys. Both, experimental and theoretical calculation techniques (SRIM) show significant correlation of measured results of induced defects. (authors)

  14. Alloys having improved resistance to hydrogen embrittlement

    International Nuclear Information System (INIS)

    Kane, R.D.; Greer, J.B.; Jacobs, D.F.; Berkowitz, B.J.

    1983-01-01

    The invention involves a process of improving the hydrogen embrittlement resistance of a cold-worked high yield strength nickel/cobalt base alloy containing chromium, and molybdenum and/or tungsten and having individual elemental impurity concentrations as measured by Auger spectroscopy at the crystallographic boundaries of up to about 1 Atomic percent. These elemental impurities are capable of becoming active and mobile at a temperature less than the recrystallization temperature of the alloy. The process involves heat treating the alloy at a temperature above 1300 degrees F but below the temperature of recrystallization for a time of from 1/4 to 100 hours. This is sufficient to effect a reduction in the level of the elemental impurities at the crystallographic boundaries to the range of less than 0.5 Atomic percent without causing an appreciable decrease in yield strength

  15. Embrittlement of zircaloy cladding due to oxygen uptake (CBRTTL)

    International Nuclear Information System (INIS)

    Reymann, G.A.

    1979-02-01

    A model for embrittlement of zircaloy due to oxygen uptake at high temperatures is described. The model defines limits for oxygen content and temperature which, if exceeded, give rise to zircaloy cladding which is sufficiently embrittled to cause failure either on quenching or normal handling following a transient. A significant feature of this model is that the onset of embrittlement is dependent on the cooling rate. A distinction is made between slow and fast cooling, with the boundary at 100 K/s. The material property correlations and computer subcodes described in MATPRO are developed for use in Light Water Reactor (LWR) codes

  16. Modeling irradiation embrittlement in reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Odette, G.R.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. In chapter 10, numerical modeling of irradiation embrittlement in reactor vessel steels are introduced. Physically-based models are developed and their role in advancing the state-of-the-art of predicting irradiation embrittlement of RPV steels is stressed

  17. Diagnostic experimental results on the hydrogen embrittlement of austenitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Gavriljuk, V.G.; Shivanyuk, V.N.; Foct, J

    2003-03-14

    Three main available hypotheses of hydrogen embrittlement are analysed in relation to austenitic steels based on the studies of the hydrogen effect on the interatomic bonds, phase transformations and microplastic behaviour. It is shown that hydrogen increases the concentration of free electrons, i.e. enhances the metallic character of atomic interactions, although such a decrease in the interatomic bonding cannot be a reason for brittleness and rather assists an increased plasticity. The hypothesis of the critical role of the hydrogen-induced {epsilon} martensite was tested in the experiment with the hydrogen-charged Si-containing austenitic steel. Both the fraction of the {epsilon} martensite and resistance to hydrogen embrittlement were increased due to Si alloying, which is at variance with the pseudo-hydride hypothesis. The hydrogen-caused early start of the microplastic deformation and an increased mobility of dislocations, which are usually not observed in the common mechanical tests, are revealed by the measurements of the strain-dependent internal friction, which is consistent with the hypothesis of the hydrogen-enhanced localised plasticity. An influence of alloying elements on the enthalpy E{sub H} of hydrogen migration in austenitic steels is studied using the temperature-dependent internal friction and a correlation is found between the values of E{sub H} and hydrogen-caused decrease in plasticity. A mechanism for the transition from the hydrogen-caused microplasticity to the apparent macrobrittle fracture is proposed based on the similarity of the fracture of hydrogenated austenitic steels to that of high nitrogen steels.

  18. PR-EDB: Power Reactor Embrittlement Data Base, version 1: Program description

    International Nuclear Information System (INIS)

    Stallmann, F.W.; Kam, F.B.K.; Taylor, B.J.

    1990-06-01

    Data concerning radiation embrittlement of pressure vessel steels in commercial power reactors have been collected form available surveillance reports. The purpose of this NRC-sponsored program is to provide the technical bases for voluntary consensus standards, regulatory guides, standard review plans, and codes. The data can also be used for the exploration and verification of embrittlement prediction models. The data files are given in dBASE 3 Plus format and can be accessed with any personal computer using the DOS operating system. Menu-driven software is provided for easy access to the data including curve fitting and plotting facilities. This software has drastically reduced the time and effort for data processing and evaluation compared to previous data bases. The current compilation of the Power Reactor Embrittlement Data base (PR-EDB, version 1) contains results from surveillance capsule reports of 78 reactors with 381 data points from 110 different irradiated base materials (plates and forgings) and 161 data points from 79 different welds. Results from heat-affected-zone materials are also listed. Electric Power Research Institute (EPRI), reactor vendors, and utilities are in the process of providing back-up quality assurance checks of the PR-EDB and will be supplementing the data base with additional data and documentation. 2 figs., 28 tabs

  19. Embrittlement recovery due to annealing of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Eason, E.D.; Wright, J.E.; Nelson, E.E.; Odette, G.R.; Mader, E.V.

    1996-01-01

    Embrittlement of reactor pressure vessels (RPVs) can be reduced by thermal annealing at temperatures higher than the normal operating conditions. Although such an annealing process has not been applied to any commercial plants in the United States, one US Army reactor, the BR3 plant in Belgium, and several plants in eastern Europe have been successfully annealed. All available Charpy annealing data were collected and analyzed in this project to develop quantitative models for estimating the recovery in 30 ft-lb (41 J) Charpy transition temperature and Charpy upper shelf energy over a range of potential annealing conditions. Pattern recognition, transformation analysis, residual studies, and the current understanding of the mechanisms involved in the annealing process were used to guide the selection of the most sensitive variables and correlating parameters and to determine the optimal functional forms for fitting the data. The resulting models were fitted by nonlinear least squares. The use of advanced tools, the larger data base now available, and insight from surrogate hardness data produced improved models for quantitative evaluation of the effects of annealing. The quality of models fitted in this project was evaluated by considering both the Charpy annealing data used for fitting and the surrogate hardness data base. The standard errors of the resulting recovery models relative to calibration data are comparable to the uncertainty in unirradiated Charpy data. This work also demonstrates that microhardness recovery is a good surrogate for transition temperature shift recovery and that there is a high level of consistency between the observed annealing trends and fundamental models of embrittlement and recovery processes

  20. Hydrogen embrittlement of ASTM A 203 D nuclear structural steel

    International Nuclear Information System (INIS)

    Chakravartty, J.K.; Prasad, G.E.; Sinha, T.K.; Asundi, M.K.

    1986-01-01

    The influence of hydrogen on the mechanical properties of ASTM A 203 D nuclear structural steel has been studied by tension, bend and delayed-failure tests at room temperature. While the tension tests of hydrogen charged unnotched specimens reveal no change in ultimate strength and ductility, the effect of hydrogen is manifested in notched specimens (tensile and bend) as a decrease in ultimate strength (maximum load in bend test) and ductility; the effect increases with increasing hydrogen content. It is observed that for a given hydrogen concentration, the decrease in bend ductility is remarkably large compared to that in tensile ductility. Hydrogen charging does not cause any delayed-failure upto 200 h under an applied tensile stress, 0.85 times the notch tensile strength. However delayed failure occurs in hydrogen charged bend samples in less than 10 h under an applied bending load of about 0.80 times of the uncharged maximum load. Fractographs of hydrogen charged unnotched specimens show ductile dimple fracture, while those of notched tension and bend specimens under hydrogen-charged conditions show a mixture of ductile dimple and quasi-cleavage cracking. The proportion of quasi-cleavage cracking increases with increasing hydrogen content and this fracture mode is more predominant in bend specimens. The changes in tensile properties and fracture modes can reasonably be explained by existing theories of hydrogen embrittlement. An attempt is made to explain the significant difference in the embrittlement susceptibility of bend and tensile specimens in the light of difference in triaxiality and plastic zone size near the notch tip. (orig.)

  1. Experimental radiation carcinogenesis is studies at NIRS

    International Nuclear Information System (INIS)

    Sado, Toshihiko

    1992-01-01

    Experimental radiation carcinogenesis studies conducted during the past decade at NIRS are briefly reviewed. They include the following: 1) Age dependency of susceptibility to radiation carcinogenesis. 2) Radiation-induced myeloid leukemia. 3) Mechanism of fractionated X-irradiation (FX) induced thymic lymphomas. 4) Significance of radiation-induced immunosuppression in radiation carcinogenesis in vivo. 5) Other ongoing studies. (author)

  2. Immunohistological studies in radiation proctitis

    International Nuclear Information System (INIS)

    Honke, Yoshifumi; Katsuta, Shizutomo; Haruma, Ken

    1985-01-01

    Immunohistological studies of radiation proctitis were performed in comparison with those in control subjects, with special reference to the number of immunoglobulin bearing cells in the rectal mucosa. The results obtained were as follows: 1) The rates of distribution of immunoglobulin bearing cells were 16.9% in IgG, 71.7% in IgA, and 11.4% in IgM in control subjects. 2) The number of IgG bearing cells in acute and late radiation proctitis markedly decreased in comparison with those in control subjects. 3) The number of IgA bearing cells in the patients with acute radiation proctitis decreased slightly and recovere 1 in late phase. 4) The number of IgM bearing cells markedly decreased in 11 Gy to 30 Gy radiation group with acute phase. 5) No significant difference could be found in the number of immunoglobulin bearing cells in late radiation proctitis with and without rectal bleeding. 6) Serum immunoglobulin levels of patients with acute radiation proctitis decreased and were well correlated with change the number of immunoglobulin bearing cells. (author)

  3. Multiscale Modeling of Hydrogen Embrittlement for Multiphase Material

    KAUST Repository

    Al-Jabr, Khalid A.

    2014-01-01

    Hydrogen Embrittlement (HE) is a very common failure mechanism induced crack propagation in materials that are utilized in oil and gas industry structural components and equipment. Considering the prediction of HE behavior, which is suggested

  4. Surveillance of irradiation embrittlement of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Najzer, M.

    1982-01-01

    Surveillance of irradiation embrittlement of nuclear reactor pressure vessels is briefly discussed. The experimental techniques and computer programs available for this work at the J. Stefan Institute are described. (author)

  5. Effect of heat treatments on the hydrogen embrittlement ...

    Indian Academy of Sciences (India)

    pipe steel in as received (controlled rolled), normalized, and quenched and tempered conditions. The resistance to hydrogen embrittlement was found in the order of controlled rolled > quenched and tempered > normalized. The fracture mode ...

  6. Charles J. McMahon Interfacial Segregation and Embrittlement Symposium

    National Research Council Canada - National Science Library

    Vitek, Vaclav

    2003-01-01

    .... McMahon Interfacial Segregation and Embrittlement Symposium: Grain Boundary Segregation and Fracture in Steels was sponsored by ASM International, Materials Science Critical Technology Sector, Structural Materials Division, Materials Processing...

  7. Fluence-rate effects on irradiation embrittlement and composition and temperature effects on annealing/reirradiation sensitivity

    International Nuclear Information System (INIS)

    Hawthorne, J.R.; Hiser, A.L.

    1988-01-01

    Recent MEA investigation on the effect of neutron fluence rate on radiation-induced embrittlement accrual and the contributions of metallurgical variables to postirradiation annealing and re-irradiation behavior are reviewed. Studies of fluence-rate effects involved experiments in the UBR test reactor and separately, radiation sensitivity determinations for the decommissioned Gundremmingen (KRB-A) vessel material. Annealing-reirradiation studies employed 399 0 C and 454 0 C heat treatments. Material composition is shown to play a major role in postirradiation annealing recovery. Results illustrate effects of variable copper and variable nickel contents on recoveray of steel plate having low phosphorus levels. Composition effects on recovery were also observed for prototypic welds depicting high/low copper and high/low nickel contents and three flux types. The welds, in addition, indicate major differences in re-irradiation sensitivity. The UBR investigations revealed a significant difference in fluence rate sensitivity between the ASTM A 302-B reference plate and a submerged-arc (S/A) Linde 80 weld. Studies of the Gundremmingen reactor vessel, representing a joint USA-FRG-UK undertaking revealed an anomaly in strong vs. weak test orientation radiation sensitivity. (orig./HP)

  8. Re-examining reactor vessel embrittlement at Chooz A

    International Nuclear Information System (INIS)

    Guilleret, J.-C.

    1988-01-01

    The Chooz A PWR experienced an extended shutdown in 1987/88 following indications that the reactor vessel was embrittling more rapidly than expected. Discrepancies between the expected rate and estimates of the actual rate were not easily explained. The huge body of work done since then to establish safety margins and support restart of the plant should provide a model for the owners of other older PWRs grappling with the embrittlement issue. (author)

  9. Parametric studies on automotive radiators

    International Nuclear Information System (INIS)

    Oliet, C.; Oliva, A.; Castro, J.; Perez-Segarra, C.D.

    2007-01-01

    This paper presents a set of parametric studies performed on automotive radiators by means of a detailed rating and design heat exchanger model developed by the authors. This numerical tool has been previously verified and validated using a wide experimental data bank. A first part of the analysis focuses on the influence of working conditions on both fluids (mass flows, inlet temperatures) and the impact of the selected coolant fluid. Following these studies, the influence of some geometrical parameters is analysed (fin pitch, louver angle) as well as the importance of coolant flow lay-out on the radiator global performance. This work provides an overall behaviour report of automobile radiators working at usual range of operating conditions, while significant knowledge-based design conclusions have also been reported. The results show the utility of this numerical model as a rating and design tool for heat exchangers manufacturers, being a reasonable compromise between classic ε - NTU methods and CFD

  10. Embrittlement of irradiated ferritic/martensitic steels in the absence of irradiation hardening

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge Noational Laboratory, TN (United States); Shiba, K. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Sokolov, M. [Oak Ridge National Laboratory, Materials Science and Technology Div., TN (United States)

    2007-07-01

    Full text of publication follows: Neutron irradiation of 9-12% Cr ferritic/martensitic steels below 425-450 deg. C produces microstructural defects that cause an increase in yield stress and ultimate tensile strength. This irradiation hardening causes embrittlement, which is observed in Charpy impact and toughness tests as an increase in ductile-brittle transition temperature (DBTT). Based on observations that show little change in strength in these steels irradiated above 425-450 deg. C, the general conclusion has been that no embrittlement occurs above this irradiation-hardening temperature regime. In a recent study of F82H steel irradiated at 300, 380, and 500 deg. C, irradiation hardening-an increase in yield stress-was observed in tensile specimens irradiated at the two lower temperatures, but no change was observed for the specimens irradiated at 500 deg. C. As expected, an increase in DBTT occurred for the Charpy specimens irradiated at 300 and 380 deg. C. However, there was an unexpected increase in the DBTT of the specimens irradiated at 500 deg. C. The observed embrittlement was attributed to the irradiation-accelerated precipitation of Laves phase. This conclusion was based on results from a detailed thermal aging study of F82H, in which tensile and Charpy specimens were aged at 500, 550, 600, and 650 deg. C to 30,000 h. These studies indicated that there was a decrease in yield stress at the two highest temperatures and essentially no change at the two lowest temperatures. Despite the strength decrease or no change, the DBTT increased for Charpy specimens irradiated at all four temperatures. Precipitates were extracted from thermally aged specimens, and the amount of precipitate was correlated with the increase in transition temperature. Laves phase was identified in the extracted precipitates by X-ray diffraction. Earlier studies on conventional elevated-temperature steels also showed embrittlement effects above the irradiation-hardening temperature

  11. Updated embrittlement trend curve for reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Kirk, M.; Santos, C.; Eason, E.; Wright, J.; Odette, G.R.

    2003-01-01

    The reactor pressure vessels of commercial nuclear power plants are subject to embrittlement due to exposure to high energy neutrons from the core. Irradiation embrittlement of RPV belt-line materials is currently evaluated using US Regulatory Guide 1.99 Revision 2 (RG 1.99 Rev 2), which presents methods for estimating the Charpy transition temperature shift (ΔT30) at 30 ft-lb (41 J) and the drop in Charpy upper shelf energy (ΔUSE). A more recent embrittlement model, based on a broader database and more recent research results, is presented in NUREG/CR-6551. The objective of this paper is to describe the most recent update to the embrittlement model in NUREG/CR-6551, based upon additional data and increased understanding of embrittlement mechanisms. The updated ΔT30 and USE models include fluence, copper, nickel, phosphorous content, and product form; the ΔT30 model also includes coolant temperature, irradiation time (or flux), and a long-time term. The models were developed using multi-variable surface fitting techniques, understanding of the ΔT30 mechanisms, and engineering judgment. The updated ΔT30 model reduces scatter significantly relative to RG 1.99 Rev 2 on the currently available database for plates, forgings, and welds. This updated embrittlement trend curve will form the basis of revision 3 to Regulatory Guide 1.99. (author)

  12. The Role of Hydrogen-Enhanced Strain-Induced Lattice Defects on Hydrogen Embrittlement Susceptibility of X80 Pipeline Steel

    Science.gov (United States)

    Hattori, M.; Suzuki, H.; Seko, Y.; Takai, K.

    2017-08-01

    Studies to date have not completely determined the factors influencing hydrogen embrittlement of ferrite/bainite X80 pipeline steel. Hydrogen embrittlement susceptibility was evaluated based on fracture strain in tensile testing. We conducted a thermal desorption analysis to measure the amount of tracer hydrogen corresponding to that of lattice defects. Hydrogen embrittlement susceptibility and the amount of tracer hydrogen significantly increased with decreasing crosshead speed. Additionally, a significant increase in the formation of hydrogen-enhanced strain-induced lattice defects was observed immediately before the final fracture. In contrast to hydrogen-free specimens, the fracture surface of the hydrogen-charged specimens exhibited shallower dimples without nuclei, such as secondary phase particles. These findings indicate that the presence of hydrogen enhanced the formation of lattice defects, particularly just prior to the occurrence of final fracture. This in turn enhanced the formation of shallower dimples, thereby potentially causing premature fracture of X80 pipeline steel at lower crosshead speeds.

  13. Fabrication of poly(methyl methacrylate)-block-poly(methacrylic acid) diblock copolymer as a self-embrittling strippable coating for radioactive decontamination

    International Nuclear Information System (INIS)

    Liu Renlong; Zhang Huiyan; Li Yintao; Zhou Yuanlin; Zhang Quanping; Zheng Jian; Wang Shanqiang

    2016-01-01

    The poly(methyl methacrylate)-block-poly(methacrylic acid) diblock copolymer with different monomer compositions was synthesized via reversible addition-fragmentation chain transfer polymerization. Meanwhile, a novel self-embrittling strippable coating was prepared using the diblock copolymers, which is proposed to be used as radioactive decontamination agents without manual operation. Furthermore, the decontamination efficiencies of self-embrittling strippable coatings for radioactive contamination on glass, marble, and stainless steel surfaces were studied. (author)

  14. Evaluation of the current status of hydrogen embrittlement and stress-corrosion cracking in steels

    Energy Technology Data Exchange (ETDEWEB)

    Moody, N.R.

    1981-12-01

    A review of recent studies on hydrogen embrittlement and stress-corrosion cracking in steels shows there are several critical areas where data is either ambiguous, contradictory, or non-existent. A relationship exists between impurity segregation and hydrogen embrittlement effects but it is not known if the impurities sensitize a preferred crack path for hydrogen-induced failure or if impurity and hydrogen effects are additive. Furthermore, grain boundary impurities may enhance susceptibility through interactions with some environments. Some studies show that an increase in grain size increases susceptibility; at least one study shows an opposite effect. Recent work also shows that fracture initiates at different locations for external and internal hydrogen environments. How this influences susceptibility is unknown.

  15. Workstations studies and radiation protection

    International Nuclear Information System (INIS)

    Lahaye, T.; Donadille, L.; Rehel, J.L.; Paquet, F.; Beneli, C.; Cordoliani, Y.S.; Vrigneaud, J.M.; Gauron, C.; Petrequin, A.; Frison, D.; Jeannin, B.; Charles, D.; Carballeda, G.; Crouail, P.; Valot, C.

    2006-01-01

    This day on the workstations studies for the workers follow-up, was organised by the research and health section. Devoted to the company doctors, for the competent persons in radiation protection, for the engineers of safety, it presented examples of methodologies and applications in the medical, industrial domain and the research, so contributing to a better understanding and an application of regulatory measures. The analysis of the workstation has to allow a reduction of the exposures and the risks and lead to the optimization of the medical follow-up. The agenda of this day included the different subjects as follow: evolution of the regulation in matter of demarcation of the regulated zones where the measures of workers protection are strengthened; presentation of the I.R.S.N. guide of help to the realization of a workstation study; implementation of a workstation study: case of radiology; the workstation studies in the research area; Is it necessary to impose the operational dosimetry in the services of radiodiagnostic? The experience feedback of a competent person in radiation protection (P.C.R.) in a hospital environment; radiation protection: elaboration of a good practices guide in medical field; the activities file in nuclear power plant: an evaluation tool of risks for the prevention. Methodological presentation and examples; insulated workstation study; the experience feedback of a provider; Contribution of the ergonomics to the determiners characterization in the ionizing radiation exposure situations;The workstations studies for the internal contamination in the fuel cycle facilities and the consideration of the results in the medical follow-up; R.E.L.I.R. necessity of workstation studies; the consideration of the human factor. (N.C.)

  16. Intrinsic ductility and environmental embrittlement of binary Ni3Al

    International Nuclear Information System (INIS)

    George, E.P.; Liu, C.T.; Pope, D.P.

    1993-01-01

    Polycrystalline, B-free Ni 3 Al (23.4 at.% Al), produced by cold working and recrystallizing a single crystal, exhibits room temperature tensile ductilities of 3-5% in air and 13-16% in oxygen. These ductilities are considerably higher than anything previously reported, and demonstrate that the 'intrinsic' ductility of Ni 3 Al is much higher than previously thought. They also show that the moisture present in ordinary ambient air can severely embrittle Ni 3 Al (ductility decreasing from a high of 16% in oxygen to a low of 3% in air). Fracture is predominantly intergranular in both air and oxygen. This indicates that, while moisture can further embrittle the GBs in Ni 3 Al, they persist as weak links even in the absence of environmental embrittlement. However, they are not 'intrinsically brittle' as once thought, since they can withstand relatively large plastic deformations prior to fracture. Because B essentially eliminates environmental embrittlement in Ni 3 Al - and environmental embrittlement is a major cause of poor ductility in B-free Ni 3 Al - it is concluded that a significant portion of the so-called B effect must be related to suppression of moisture-induced environmental embrittlement. However, since B-doped Ni 3 Al fractures transgranularly, whereas B-free Ni 3 Al fractures predominantly intergranularly, B must have the added effect that it strengthens the GBs. A comparison with the earlier work on Zr-doped Ni 3 Al shows that Zr improves the ductility of Ni 3 Al, both in air and (and even more dramatically) in oxygen. While the exact mechanism of this ductility improvement is not clear at present, Zr appears to have more of an effect on (enhancing) GB strength than on (suppressing) environmental embrittlement

  17. Hydrogen Embrittlement Mechanism in Fatigue Behaviour of Austenitic and Martensitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Brück Sven

    2018-01-01

    Full Text Available In the present study, the influence of hydrogen on the fatigue behaviour of the high strength martensitic stainless steel X3CrNiMo13-4 and the metastable austenitic stainless steels X2Crni19-11 with various nickel contents was examined in the low and high cycle fatigue regime. The focus of the investigations was the changes in the mechanisms of short crack propagation. The aim of the ongoing investigation is to determine and quantitatively describe the predominant processes of hydrogen embrittlement and their influence on the short fatigue crack morphology and crack growth rate. In addition, simulations were carried out on the short fatigue crack growth, in order to develop a detailed insight into the hydrogen embrittlement mechanisms relevant for cyclic loading conditions.

  18. Zinc-induced embrittlement in nickel-base superalloys by simulation and experiment

    Science.gov (United States)

    Otis, Richard; Waje, Mahesh; Lindwall, Greta; Jefferson, Tiffany; Lange, Jeremy; Liu, Zi-Kui

    2017-09-01

    The high cost of Re has driven interest in processes for recovering Re from scrap superalloy parts. In this work thermodynamic modelling is used to study Zn-induced embrittlement of a superalloy and to direct experiments. Treating superalloy powder with Zn vapour reduces the average particle size after milling from approximately ?m to 0.5-10 ?m, vs. ?m for untreated powder. Simulations predict the required treatment time to increase with temperature. Agreement between predictions and experiments suggests that an embrittling liquid forms in less than an hour of Zn vapour treatment between 950-1000 ?C and partial pressures of Zn between 14-34 kPa (2-5 psi).

  19. Localization of electromagnetic field on the “Brouwer-island” and liquid metal embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Maksimenko, V.V.; Zagaynov, V.A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoe shosse, 115409 Moscow (Russian Federation); Karpov Institute of Physical Chemistry, Vorontsovo Pole, 10, 105064 Moscow (Russian Federation); Agranovski, I.E., E-mail: I.Agranovski@griffith.edu.au [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoe shosse, 115409 Moscow (Russian Federation); School of Engineering, Griffith University, Brisbane, 4111 QLD (Australia)

    2015-03-01

    Liquid metal embrittlement (LME) manifests itself as a sudden destruction of a metal sample if it is covered by a thin liquid film of eutectic mixture of specially selected metals. The proposed theoretical model of this phenomenon is based on an assumption related to the possibility of electromagnetic field localization in folds of interface between the phases or components of eutectic mixture filling cracks in solid metal surface (the typical example is In–Ga eutectic on Al-surface). Based on simultaneous presence of three different components in each space point of eutectic mixture (homogeneous In + Ga melt, solid In, and solid Ga), the system of interface folds could be simulated by the Brouwer surface – well known in topology. This surface separates three different components presented at each of its point. Such fractal surfaces posses by a finite volume. The volume occupied by the surface is defined as a difference between the eutectic mixture volume and the sum of volumes of its components. We investigate localization of external electromagnetic radiation in this system of folds. Due to very large magnitude of effective dielectric permeability of the considered system, at relative small volume change and fractal dimension of interface close to the value 3, the wave length of incident radiation inside the system is considerably decreased and multiscale folds are filled with localized photons. A probability of this process and the life time of the localized photons are calculated. The localized photons play crucial role in destruction of primary cracks in the metal surface. They are capable “to switch of” the Coulomb attraction of charge fluctuations on opposite “banks” of the crack filled with the eutectic. As a result, the crack could break down. - Highlights: • A new theoretical model of liquid metal embrittlement has been developed. • Light localization has a strong influence on liquid metal embrittlement. • Light is localized in folds at

  20. Localization of electromagnetic field on the “Brouwer-island” and liquid metal embrittlement

    International Nuclear Information System (INIS)

    Maksimenko, V.V.; Zagaynov, V.A.; Agranovski, I.E.

    2015-01-01

    Liquid metal embrittlement (LME) manifests itself as a sudden destruction of a metal sample if it is covered by a thin liquid film of eutectic mixture of specially selected metals. The proposed theoretical model of this phenomenon is based on an assumption related to the possibility of electromagnetic field localization in folds of interface between the phases or components of eutectic mixture filling cracks in solid metal surface (the typical example is In–Ga eutectic on Al-surface). Based on simultaneous presence of three different components in each space point of eutectic mixture (homogeneous In + Ga melt, solid In, and solid Ga), the system of interface folds could be simulated by the Brouwer surface – well known in topology. This surface separates three different components presented at each of its point. Such fractal surfaces posses by a finite volume. The volume occupied by the surface is defined as a difference between the eutectic mixture volume and the sum of volumes of its components. We investigate localization of external electromagnetic radiation in this system of folds. Due to very large magnitude of effective dielectric permeability of the considered system, at relative small volume change and fractal dimension of interface close to the value 3, the wave length of incident radiation inside the system is considerably decreased and multiscale folds are filled with localized photons. A probability of this process and the life time of the localized photons are calculated. The localized photons play crucial role in destruction of primary cracks in the metal surface. They are capable “to switch of” the Coulomb attraction of charge fluctuations on opposite “banks” of the crack filled with the eutectic. As a result, the crack could break down. - Highlights: • A new theoretical model of liquid metal embrittlement has been developed. • Light localization has a strong influence on liquid metal embrittlement. • Light is localized in folds at

  1. Embrittlement and life prediction of aged duplex stainless steel

    International Nuclear Information System (INIS)

    Kuwano, Hisashi

    1996-01-01

    The stainless steel, for which the durability for long term in high temperature corrosive environment is demanded, is a complex plural alloy. Cr heightens the oxidation resistance, Ni improves the ductility and impact characteristics, Si improves the fluidity of the melted alloy and heightens the resistance to stress corrosion cracking, and Mo suppresses the pitting due to chlorine ions. These alloy elements are in the state of nonequilibrium solid solution in Fe base at practical temperature, and cause aging phenomena such as segregation, concentration abnormality and precipitation during the use for long term. The characteristics of stainless steel deteriorate due to this. Two-phase stainless cast steel, the example of the embrittlement of the material for an actual machine, the accelerated test of embrittlement, the activation energy for embrittlement, and as the mechanism of aging embrittlement, the spinodal decomposition of ferrite, the precipitation of G phase and the precipitation of carbides and nitrides are described. Also in the welded parts of austenitic stainless steel, delta-ferrite is formed during cooling, therefore, the condition is nearly same as two-phase stainless steel, and the embrittlement due to long term aging occurs. (K.I.)

  2. Multiscale Modeling of Hydrogen Embrittlement for Multiphase Material

    KAUST Repository

    Al-Jabr, Khalid A.

    2014-05-01

    Hydrogen Embrittlement (HE) is a very common failure mechanism induced crack propagation in materials that are utilized in oil and gas industry structural components and equipment. Considering the prediction of HE behavior, which is suggested in this study, is one technique of monitoring HE of equipment in service. Therefore, multi-scale constitutive models that account for the failure in polycrystalline Body Centered Cubic (BCC) materials due to hydrogen embrittlement are developed. The polycrystalline material is modeled as two-phase materials consisting of a grain interior (GI) phase and a grain boundary (GB) phase. In the first part of this work, the hydrogen concentration in the GI (Cgi) and the GB (Cgb) as well as the hydrogen distribution in each phase, were calculated and modeled by using kinetic regime-A and C, respectively. In the second part of this work, this dissertation captures the adverse effects of hydrogen concentration, in each phase, in micro/meso and macro-scale models on the mechanical behavior of steel; e.g. tensile strength and critical porosity. The models predict the damage mechanisms and the reduction in the ultimate strength profile of a notched, round bar under tension for different hydrogen concentrations as observed in the experimental data available in the literature for steels. Moreover, the study outcomes are supported by the experimental data of the Fractography and HE indices investigation. In addition to the aforementioned continuum model, this work employs the Molecular Dynamics (MD) simulations to provide information regarding bond formulation and breaking. The MD analyses are conducted for both single grain and polycrystalline BCC iron with different amounts of hydrogen and different size of nano-voids. The simulations show that the hydrogen atoms could form the transmission in materials configuration from BCC to FCC (Face Centered Cubic) and HCP (Hexagonal Close Packed). They also suggest the preferred sites of hydrogen for

  3. Hydrogen Embrittlement Mechanism in Fatigue Behavior of Austenitic and Martensitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Sven Brück

    2018-05-01

    Full Text Available In the present study, the influence of hydrogen on the fatigue behavior of the high strength martensitic stainless steel X3CrNiMo13-4 and the metastable austenitic stainless steels X2Crni19-11 with various nickel contents was examined in the low and high cycle fatigue regime. The focus of the investigations were the changes in the mechanisms of short crack propagation. Experiments in laboratory air with uncharged and precharged specimen and uncharged specimen in pressurized hydrogen were carried out. The aim of the ongoing investigation was to determine and quantitatively describe the predominant processes of hydrogen embrittlement and their influence on the short fatigue crack morphology and crack growth rate. In addition, simulations were carried out on the short fatigue crack growth, in order to develop a detailed insight into the hydrogen embrittlement mechanisms relevant for cyclic loading conditions. It was found that a lower nickel content and a higher martensite content of the samples led to a higher susceptibility to hydrogen embrittlement. In addition, crack propagation and crack path could be simulated well with the simulation model.

  4. Hydrogen embrittlement susceptibility of laser-hardened 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Tsay, L.W.; Lin, Z.W. [Nat. Taiwan Ocean Univ., Keelung (Taiwan). Inst. of Mater. Eng.; Shiue, R.K. [Institute of Materials Sciences and Engineering, National Dong Hwa University, Hualien, Taiwan (Taiwan); Chen, C. [Institute of Materials Sciences and Engineering, National Taiwan University, Taipei, Taiwan (Taiwan)

    2000-10-15

    Slow strain rate tensile (SSRT) tests were performed to investigate the susceptibility to hydrogen embrittlement of laser-hardened AISI 4140 specimens in air, gaseous hydrogen and saturated H{sub 2}S solution. Experimental results indicated that round bar specimens with two parallel hardened bands on opposite sides along the loading axis (i.e. the PH specimens), exhibited a huge reduction in tensile ductility for all test environments. While circular-hardened (CH) specimens with 1 mm hardened depth and 6 mm wide within the gauge length were resistant to gaseous hydrogen embrittlement. However, fully hardened CH specimens became susceptible to hydrogen embrittlement for testing in air at a lower strain rate. The strength of CH specimens increased with decreasing the depth of hardened zones in a saturated H{sub 2}S solution. The premature failure of hardened zones in a susceptible environment caused the formation of brittle intergranular fracture and the decrease in tensile ductility. (orig.)

  5. The impact of mobile point defect clusters in a kinetic model of pressure vessel embrittlement

    International Nuclear Information System (INIS)

    Stoller, R.E.

    1998-05-01

    The results of recent molecular dynamics simulations of displacement cascades in iron indicate that small interstitial clusters may have a very low activation energy for migration, and that their migration is 1-dimensional, rather than 3-dimensional. The mobility of these clusters can have a significant impact on the predictions of radiation damage models, particularly at the relatively low temperatures typical of commercial, light water reactor pressure vessels (RPV) and other out-of-core components. A previously-developed kinetic model used to investigate RPV embrittlement has been modified to permit an evaluation of the mobile interstitial clusters. Sink strengths appropriate to both 1- and 3-dimensional motion of the clusters were evaluated. High cluster mobility leads to a reduction in the amount of predicted embrittlement due to interstitial clusters since they are lost to sinks rather than building up in the microstructure. The sensitivity of the predictions to displacement rate also increases. The magnitude of this effect is somewhat reduced if the migration is 1-dimensional since the corresponding sink strengths are lower than those for 3-dimensional diffusion. The cluster mobility can also affect the evolution of copper-rich precipitates in the model since the radiation-enhanced diffusion coefficient increases due to the lower interstitial cluster sink strength. The overall impact of the modifications to the model is discussed in terms of the major irradiation variables and material parameter uncertainties

  6. Effects of nickel on irradiation embrittlement of light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    2005-06-01

    This TECDOC was developed under the IAEA Coordinated Research Project (CRP) entitled Effects of Nickel on Irradiation Embrittlement of Light Water Reactor Pressure Vessel (RPV) Steels. This CRP is the sixth in a series of CRPs to determine the influence of the mechanism and quantify the influence of nickel content on the deterioration of irradiation embrittlement of reactor pressure vessel steels of the Ni-Cr-Mo-V or Mn-Ni-Cr-Mo types. The scientific scope of the programme includes procurement of materials, determination of mechanical properties, irradiation and testing of specimens in power and/or test reactors, and microstructural characterization. Eleven institutes from eight different countries and the European Union participated in this CRP and six institutes conducted the irradiation experiments of the CRP materials. In addition to the irradiation and testing of those materials, irradiation experiments of various national steels were also conducted. Moreover, some institutes performed microstructural investigations of both the CRP materials and national steels. This TECDOC presents and discusses all the results obtained and the analyses performed under the CRP. The results analysed are clear in showing the significantly higher radiation sensitivity of high nickel weld metal (1.7 wt%) compared with the lower nickel base metal (1.2 wt%). These results are supported by other similar results in the literature for both WWER-1000 RPV materials, pressurized water reactor (PWR) type materials, and model alloys. Regardless of the increased sensitivity of WWER-1000 high nickel weld metal (1.7 wt%), the transition temperature shift for the WWER-1000 RPV design fluence is still below the curve predicted by the Russian code (standard for strength calculations of components and piping in NPPs - PNAE G 7-002-86). For higher fluence, no data were available and the results should not be extrapolated. Although manganese content was not incorporated directly in this CRP

  7. Mercury embrittlement of Cu-Al alloys under cyclic loading

    Science.gov (United States)

    Regan, T. M.; Stoloff, N. S.

    1977-01-01

    The effect of mercury on the room temperature, high cycle fatigue properties of three alloys: Cu-5.5 pct Al, Cu-7.3 pct Al, and Cu-6.3 pct Al-2.5 pct Fe has been determined. Severe embrittlement under cyclic loading in mercury is associated with rapid crack propagation in the presence of the liquid metal. A pronounced grain size effect is noted under mercury, while fatigue properties in air are insensitive to grain size. The fatigue results are discussed in relation to theories of adsorption-induced liquid metal embrittlement.

  8. Radiation toxicity studies in dogs

    International Nuclear Information System (INIS)

    Fritz, T.E.; Carnes, B.A.; Duggal, K.

    1985-01-01

    These studies provide data that identify tissue sensitivities, target organs, disease processes, life shortening values, and mortality rates that result from continuous and terminated exposures to whole-body radiations and relate them to various total doses and dose rates. The data from protracted exposures given at rates between 3.8 and 26.3 cGys per day show that the life shortening and numbers of fatal tumors are determined by total dose when the irradiation is terminated at total doses between 450 and 3000 cGys. 4 refs

  9. Status on the selection and development of an embrittlement trend curve to use in ASTM standard guide E900

    International Nuclear Information System (INIS)

    Kirk, M.; Brian Hall, J.; Server, W.; Lucon, E.; Erickson, M.; Stoller, R.

    2015-01-01

    ASTM E900-07, Standard Guide for Predicting Radiation-Induced Transition Temperature Shift in Reactor Vessel Materials, includes an embrittlement trend curve. The trend curve can be used to predict the effect of neutron irradiation on the embrittlement of ferritic pressure vessel steels, as quantified by the shift in the Charpy V-Notch transition curve at 41 Joules of absorbed energy (ΔT 41J ). The current E900 trend curve was first adopted in the 2002 revision. In 2011 ASTM Subcommittee E10.02 undertook an extensive effort to evaluate the adequacy of the E900 trend curve for continued use. This paper summarizes the current status of this effort, which has produced a trend curve calibrated using a database of over 1800 ΔT 41J values from the light water reactor surveillance programs in thirteen countries. (authors)

  10. Study by dislocation dynamics simulations of radiation effects on the plasticity of ferrite at high temperature

    International Nuclear Information System (INIS)

    Shi, Xiangjun

    2014-01-01

    This study is a contribution to the multi-scale modeling of hardening and embrittlement of the vessel steel in Pressurized Water Reactors (PWR) under irradiation conditions. Dislocation Dynamics simulations (DD) were conducted to describe the plasticity of irradiated iron at grain scale. Quantitative information about the pinning strength of radiation-induced loops was extracted and can be transferred at crystal plasticity scale. Elementary interactions between an edge dislocation and different types of loops were first analyzed. A new model of DD was identified and validated, both qualitatively in terms of interaction mechanisms and quantitatively in terms of critical stress, using Molecular Dynamics results available in the literature. The influence of the size of the loops and of the strain rate was particularly studied. Elementary simulations involving a screw dislocation and the same radiation-induced defects were conducted and carefully compared to available MD results, extending the range of validity of our model. Finally, a set of massive simulations involving an edge dislocation and a large number of loops was performed and allowed a first estimation of the obstacle strength for this type of defects (α≅0.26). This value is in a good agreement with previous experimental and numerical studies, and gives us confidence in future work based on this new DD model. (author) [fr

  11. Controlling RPV embrittlement through wet annealing in support of life attainment and life extension decisions

    International Nuclear Information System (INIS)

    Krasikov, E. A.

    2012-01-01

    As a main barrier against radioactivity outlet reactor pressure vessel (RPV) is a key component in terms of Nuclear Power Plant (NPP) safety. Therefore present-day demands in RPV reliability enhance have to be met by all possible actions for RPV in-service embrittlement mitigation. Annealing treatment is known to be the effective measure to restore the RPV metal properties deteriorated by neutron irradiation. Low temperature 'wet' annealing at a maximum coolant temperature which can be obtained using the reactor core or primary circuit pumps, although it cannot be expected to produce complete recovery, is more attractive from the practical point of view especially in cases when the removal of the internals is impossible. As a rule there is no recovery effect up to annealing and irradiation temperature difference of 70 deg. C. It is known, however, that along with radiation embrittlement neutron irradiation may mitigate the radiation damage in metals. Therefore we have tried to test the possibility to use the effect of radiation-induced ductilization in 'wet' annealing technology by means of nuclear heat utilization as heat and neutron irradiation sources at once. In support of the above-mentioned conception the 3-year duration reactor experiment on 15Cr3NiMoV type steel with preliminary irradiation at operating Pressurized Water Reactor (PWR) at 270 deg. C and following extra irradiation (87 h at 330 deg. C) at IR-8 test reactor was fulfilled. In fact, embrittlement was partly suppressed up to value equivalent to 1,5 fold neutron fluence decrease. The degree of recovery in case of radiation enhanced annealing is equal to 27% whereas furnace annealing results in zero effect under existing conditions. Mechanism of the radiation-induced damage mitigation is proposed. It is hoped that 'wet' annealing technology will help provide a better management of the RPV degradation as a factor affecting the lifetime of nuclear power plants which, together with associated

  12. Controlling RPV embrittlement through wet annealing in support of life attainment and life extension decisions

    International Nuclear Information System (INIS)

    Krasikov, E.A.

    2012-01-01

    As a main barrier against radioactivity outlet reactor pressure vessel (RPV) is a key component in terms of Nuclear Power Plant (NPP) safety. Therefore present-day demands in RPV reliability enhance have to be met by all possible actions for RPV in-service embrittlement mitigation. Annealing treatment is known to be the effective measure to restore the RPV metal properties deteriorated by neutron irradiation. Low temperature annealing at a maximum coolant temperature which can be obtained using the reactor core or primary circuit pumps, although it cannot be expected to produce complete recovery, is more attractive from the practical point of view especially in cases when the removal of the internals is impossible. As a rule there is no recovery effect up to annealing and irradiation temperature difference of 70 o C. It is known, however, that along with radiation embrittlement neutron irradiation may mitigate the radiation damage in metals. Therefore we have tried to test the possibility to use the effect of radiation-induced ductilization in annealing technology by means of nuclear heat utilization as heat and neutron irradiation sources at once. In support of the above-mentioned conception the 3-year duration reactor experiment on 15Cr3NiMoV type steel with preliminary irradiation at operating Pressurized Water Reactor (PWR) at 270 o C and following extra irradiation (87 h at 330 o C) at IR-8 test reactor was fulfilled. In fact, embrittlement was partly suppressed up to value equivalent to 1,5 fold neutron fluence decrease. The degree of recovery in case of radiation enhanced annealing is equal to 27% whereas furnace annealing results in zero effect under existing conditions. Mechanism of the radiation-induced damage mitigation is proposed. It is hoped that annealing technology will help provide a better management of the RPV degradation as a factor affecting the lifetime of nuclear power plants which, together with associated management methods, will help

  13. Controlling RPV embrittlement through wet annealing in support of life attainment and life extension decisions

    Energy Technology Data Exchange (ETDEWEB)

    Krasikov, E. A. [National Research Centre Kurchatov Inst., 1, Kurchatov Sq., Moscow, 123182 (Russian Federation)

    2012-07-01

    As a main barrier against radioactivity outlet reactor pressure vessel (RPV) is a key component in terms of Nuclear Power Plant (NPP) safety. Therefore present-day demands in RPV reliability enhance have to be met by all possible actions for RPV in-service embrittlement mitigation. Annealing treatment is known to be the effective measure to restore the RPV metal properties deteriorated by neutron irradiation. Low temperature 'wet' annealing at a maximum coolant temperature which can be obtained using the reactor core or primary circuit pumps, although it cannot be expected to produce complete recovery, is more attractive from the practical point of view especially in cases when the removal of the internals is impossible. As a rule there is no recovery effect up to annealing and irradiation temperature difference of 70 deg. C. It is known, however, that along with radiation embrittlement neutron irradiation may mitigate the radiation damage in metals. Therefore we have tried to test the possibility to use the effect of radiation-induced ductilization in 'wet' annealing technology by means of nuclear heat utilization as heat and neutron irradiation sources at once. In support of the above-mentioned conception the 3-year duration reactor experiment on 15Cr3NiMoV type steel with preliminary irradiation at operating Pressurized Water Reactor (PWR) at 270 deg. C and following extra irradiation (87 h at 330 deg. C) at IR-8 test reactor was fulfilled. In fact, embrittlement was partly suppressed up to value equivalent to 1,5 fold neutron fluence decrease. The degree of recovery in case of radiation enhanced annealing is equal to 27% whereas furnace annealing results in zero effect under existing conditions. Mechanism of the radiation-induced damage mitigation is proposed. It is hoped that 'wet' annealing technology will help provide a better management of the RPV degradation as a factor affecting the lifetime of nuclear power plants which

  14. Design and use of the Embrittlement Data Base (EDB)

    International Nuclear Information System (INIS)

    Stallmann, F.W.

    1987-01-01

    The architecture of the Embrittlement Data Base (EDB) is described. This data base contains a comprehensive collection of experimental data related to irradiations of reactor pressure vessel steels in surveillance capsules and test reactors. Software is being developed for easy retrieval and analysis of the data. Data and software will be made available to interested parties on a cooperative basis

  15. Multiscale modelling and experimentation of hydrogen embrittlement in aerospace materials

    Science.gov (United States)

    Jothi, Sathiskumar

    Pulse plated nickel and nickel based superalloys have been used extensively in the Ariane 5 space launcher engines. Large structural Ariane 5 space launcher engine components such as combustion chambers with complex microstructures have usually been manufactured using electrodeposited nickel with advanced pulse plating techniques with smaller parts made of nickel based superalloys joined or welded to the structure to fabricate Ariane 5 space launcher engines. One of the major challenges in manufacturing these space launcher components using newly developed materials is a fundamental understanding of how different materials and microstructures react with hydrogen during welding which can lead to hydrogen induced cracking. The main objective of this research has been to examine and interpret the effects of microstructure on hydrogen diffusion and hydrogen embrittlement in (i) nickel based superalloy 718, (ii) established and (iii) newly developed grades of pulse plated nickel used in the Ariane 5 space launcher engine combustion chamber. Also, the effect of microstructures on hydrogen induced hot and cold cracking and weldability of three different grades of pulse plated nickel were investigated. Multiscale modelling and experimental methods have been used throughout. The effect of microstructure on hydrogen embrittlement was explored using an original multiscale numerical model (exploiting synthetic and real microstructures) and a wide range of material characterization techniques including scanning electron microscopy, 2D and 3D electron back scattering diffraction, in-situ and ex-situ hydrogen charged slow strain rate tests, thermal spectroscopy analysis and the Varestraint weldability test. This research shows that combined multiscale modelling and experimentation is required for a fundamental understanding of microstructural effects in hydrogen embrittlement in these materials. Methods to control the susceptibility to hydrogen induced hot and cold cracking and

  16. Study of biological effect of radiation

    International Nuclear Information System (INIS)

    Li Guisheng

    1992-01-01

    The some progress on the study of biological effect for protract exposure to low dose rate radiation is reported, and it is indicated that the potential risk of this exposure for the human health and the importance of the routine monitoring of radiation dose for various nuclear installations. The potential exposure to the low dose rate radiation would attract people's extra attention

  17. Radiation studies in the antiproton source

    International Nuclear Information System (INIS)

    Church, M.

    1990-01-01

    Experiment E760 has a lead glass (Pb-G) calorimeter situated in the antiproton source tunnel in the accumulator ring at location A50. This location is exposed to radiation from several sources during antiproton stacking operations. A series of radiation studies has been performed over the last two years to determine the sources of this radiation and as a result, some shielding has been installed in the antiproton source in order to protect the lead glass from radiation damage

  18. Experimental Study on radiation myelopathy

    International Nuclear Information System (INIS)

    Kaneko, Itsuo; Matsushima, Hideno; Yamada, Teruyo

    1979-01-01

    Experimental radiation myelopathy was carried out useing rats. This studies were done refering the effect to skin, the body weight, the status of the paralysis and the capillary densities of the cervical cords. The quadriplegia was seen on the animals which were irradiated over 4000 rad. The vacuoal degeneration was observed on the cervical cords which were irradiated over 4000 rad. The capillary densities of gray matter and white matter decreased finally in proportions to the irradiation dose. The vacuoal degeneration was recognized on the cervical cord in which the capillary density decreased to under 70 per cent of normal density. Decrease of the capillary density is seemed to be the one of the cause of the paralysis. (author)

  19. Cladding embrittlement during postulated loss-of-coolant accidents.

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.; Yan, Y.; Burtseva, T.; Daum, R.; Nuclear Engineering Division

    2008-07-31

    The effect of fuel burnup on the embrittlement of various cladding alloys was examined with laboratory tests conducted under conditions relevant to loss-of-coolant accidents (LOCAs). The cladding materials tested were Zircaloy-4, Zircaloy-2, ZIRLO, M5, and E110. Tests were performed with specimens sectioned from as-fabricated cladding, from prehydrided (surrogate for high-burnup) cladding, and from high-burnup fuel rods which had been irradiated in commercial reactors. The tests were designed to determine for each cladding material the ductile-to-brittle transition as a function of steam oxidation temperature, weight gain due to oxidation, hydrogen content, pre-transient cladding thickness, and pre-transient corrosion-layer thickness. For short, defueled cladding specimens oxidized at 1000-1200 C, ring compression tests were performed to determine post-quench ductility at {le} 135 C. The effect of breakaway oxidation on embrittlement was also examined for short specimens oxidized at 800-1000 C. Among other findings, embrittlement was found to be sensitive to fabrication processes--especially surface finish--but insensitive to alloy constituents for these dilute zirconium alloys used as cladding materials. It was also demonstrated that burnup effects on embrittlement are largely due to hydrogen that is absorbed in the cladding during normal operation. Some tests were also performed with longer, fueled-and-pressurized cladding segments subjected to LOCA-relevant heating and cooling rates. Recommendations are given for types of tests that would identify LOCA conditions under which embrittlement would occur.

  20. Microstructure and embrittlement of VVER 440 reactor pressure vessel steels; Microstructure et fragilisation des aciers de cuve des reacteurs nucleaires VVER 440

    Energy Technology Data Exchange (ETDEWEB)

    Hennion, A

    1999-03-15

    27 VVER 440 pressurised water reactors operate in former Soviet Union and in Eastern Europe. The pressure vessel, is made of Cr-Mo-V steel. It contains a circumferential arc weld in front of the nuclear core. This weld undergoes a high neutron flux and contains large amounts of copper and phosphorus, elements well known for their embrittlement potency under irradiation. The embrittlement kinetic of the steel is accelerated, reducing the lifetime of the reactor. In order to get informations on the microstructure and mechanical properties of these steels, base metals, HAZ, and weld metals have been characterized. The high amount of phosphorus in weld metals promotes the reverse temper embrittlement that occurs during post-weld heat treatment. The radiation damage structure has been identified by small angle neutron scattering, atomic probe, and transmission electron microscopy. Nanometer-sized clusters of solute atoms, rich in copper with almost the same characteristics as in western pressure vessels steels, and an evolution of the size distribution of vanadium carbides, which are present on dislocation structure, are observed. These defects disappear during post-irradiation tempering. As in western steels, the embrittlement is due to both hardening and reduction of interphase cohesion. The radiation damage specificity of VVER steels arises from their high amount of phosphorus and from their significant density of fine vanadium carbides. (author)

  1. The irradiation embrittlement of two pressure vessel steels -Contribution of local approach

    Energy Technology Data Exchange (ETDEWEB)

    Soulat, P; Marini, B [CEA Centre d` Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Service de Recherches Metallurgiques Appliquees; Miannay, D; Horowitz, H [CEA Centre d` Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Schill, R [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie

    1994-12-31

    Within the IAEA Coordinated Research Programme on ``Optimizing the Reactor Pressure Vessel Surveillance Programmes and their Analyses``, the French participation has been focused on the contribution of the local approach to the determination of the sensitivity to radiation embrittlement of two different pressure vessel steels: a low sensitive French forging steel (FFA) and a high sensitive ``monitor`` Japanese plate steel (JRQ) were irradiated to a fluence of 3.10{sup 19} n/cm{sup 2} at 290 C. The irradiation embrittlement of the two steels measured by the shift of Charpy V transition curves is in good agreement with the estimated shifts given by theoretical prediction. The fracture toughness properties were examined at low temperature with brittle fracture, and at service temperature (290 C), with ductile tearing. The values of K{sub 1C} or K{sub JC} for the brittle fracture and J{sub 1C} for the ductile fracture are compared to predictions established using the local approach of cleavage fracture (Weibull analysis) and the critical rate of void growth respectively. 8 refs., 14 figs., 10 tabs.

  2. Low-temperature embrittlement and fracture of metals with different crystal lattices – Dislocation mechanisms

    Directory of Open Access Journals (Sweden)

    V.M. Chernov

    2016-12-01

    Full Text Available The state of a low-temperature embrittlement (cold brittleness and dislocation mechanisms for formation of the temperature of a ductile-brittle transition and brittle fracture of metals (mono- and polycrystals with various crystal lattices (BCC, FCC, HCP are considered. The conditions for their formation connected with a stress-deformed state and strength (low temperature yield strength as well as the fracture breaking stress and mobility of dislocations in the top of a crack of the fractured metal are determined. These conditions can be met for BCC and some HCP metals in the initial state (without irradiation and after a low-temperature damaging (neutron irradiation. These conditions are not met for FCC and many HCP metals. In the process of the damaging (neutron irradiation such conditions are not met also and the state of low-temperature embrittlement of metals is absent (suppressed due to arising various radiation dynamic processes, which increase the mobility of dislocations and worsen the strength characteristics.

  3. Effect of Microstructure and Alloy Chemistry on Hydrogen Embrittlement of Precipitation-Hardened Ni-Based Alloys

    Science.gov (United States)

    Obasi, G. C.; Zhang, Z.; Sampath, D.; Morana, Roberto; Akid, R.; Preuss, M.

    2018-04-01

    The sensitivity to hydrogen embrittlement (HE) has been studied in respect of precipitation size distributions in two nickel-based superalloys: Alloy 718 (UNS N07718) and Alloy 945X (UNS N09946). Quantitative microstructure analysis was carried out by the combination of scanning and transmission electron microscopy and energy dispersive x-ray spectroscopy (EDS). While Alloy 718 is mainly strengthened by γ″, and therefore readily forms intergranular δ phase, Alloy 945X has been designed to avoid δ formation by reducing Nb levels providing high strength through a combination of γ' and γ″. Slow strain rate tensile tests were carried out for different microstructural conditions in air and after cathodic hydrogen (H) charging. HE sensitivity was determined based on loss of elongation due to the H uptake in comparison to elongation to failure in air. Results showed that both alloys exhibited an elevated sensitivity to HE. Fracture surfaces of the H precharged material showed quasi-cleavage and transgranular cracks in the H-affected region, while ductile failure was observed toward the center of the sample. The crack origins observed on the H precharged samples exhibited quasi-cleavage with slip traces at high magnification. The sensitivity is slightly reduced for Alloy 718, by coarsening γ″ and reducing the overall strength of the alloy. However, on further coarsening of γ″, which promotes continuous decoration of grain boundaries with δ phase, the embrittlement index rose again indicating a change of hydrogen embrittlement mechanism from hydrogen-enhanced local plasticity (HELP) to hydrogen-enhanced decohesion embrittlement (HEDE). In contrast, Alloy 945X displayed a strong correlation between strength, based on precipitation size and embrittlement index, due to the absence of any significant formation of δ phase for the investigated microstructures. For the given test parameters, Alloy 945X did not display any reduced sensitivity to HE compared with

  4. Hydrogen gas embrittlement of stainless steels mainly austenitic steels. Volumes 1 and 2

    International Nuclear Information System (INIS)

    Azou, P.

    1988-01-01

    Steel behavior in regard to hydrogen is examined especially austenitic steels. Gamma steels are studied particularly the series 300 with various stabilities and gamma steels with improved elasticity limit for intermetallic phase precipitation and nitrogen additions. A two-phase structure γ + α' is also studied. All the samples are tested for mechanical behavior in gaseous hydrogen. Influence of metallurgical effects and of testing conditions on hydrogen embrittlement are evidenced. Microstructure resulting from mechanical or heat treatments, dislocation motion during plastic deformation and influence of deformation rate are studied in detail [fr

  5. Studies on application of radiation and radioisotopes

    International Nuclear Information System (INIS)

    Kim, Jae Rok; Lee, Ji Bok; Lee, Yeong Iil; Jin, Joon Ha; Beon, Myeong Uh; Park, Kyeong Bae; Han, Heon Soo; Jeong, Yong Sam; Uh, Jong Seop; Kang, Kyeong Cheol; Cho, Han Ok; Song, Hui Seop; Yoon, Byeong Mok; Jeon, Byeong Jin; Park, Hong Sik; Kim, Jae Seong; Jeong, Un Soo; Baek, Sam Tae; Cho, Seong Won; Jeon, Yeong Keon; Kim, Joon Yeon; Kwon, Joong Ho; Kim, Ki Yeop; Yang, Jae Seung; No, Yeong Chang; Lee, Yeong Keun; Shin, Byeong Cheol; Park, Sang Joon; Hong, Kwang Pyo; Cho, Seung Yeon; Kang, Iil Joon; Cho, Seong Ki; Jeong, Yeong Joo; Park, Chun Deuk; Lee, Yeong Koo; Seo, Chun Ha; Han, Kwang Hui; Shin, Hyeon Young; Kim, Jong Kuk; Park, Soon Chul; Shin, In Cheol; Lee, Sang Jae; Lee, Ki Un; Lim, Yong Taek; Park, Eung Uh; Kim, Dong Soo; Jeon, Sang Soo

    1993-05-01

    With the completion of construction of KMRR, the facility and technology of radiation application will be greatly improved. This study was performed as follows; (1) Studies on the production and application of radioisotopes. (2) The development of radiation processing technology. (3) The application of Irradiation techniques for food preservation and process improvement. (4) Studies on the radiation application for the development of genetic resources (5) Development of the radioisotope (RI) production facilities for Korea Multipurpose Research Reactor (KMRR)

  6. Irradiation embrittlement and mitigation. V. 1. Working material. Proceedings of a specialists meeting held in Espoo, Finland 23-26 October 1995

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of the meeting was to provide an international forum for discussion on recent results in research and utility experience on radiation damage and its surveillance, annealing and re-embrittlement of PWR, WWER and BWR reactor pressure vessel materials. The scope included: mechanism of radiation damage; effects of operating parameters (flux, temperature, time, etc.); results from surveillance programmes and their analysis; fracture mechanics testing and evaluation; annealing and optimization of the process; re-embrittlement after annealing. Presentations were aimed at better understanding of radiation damage, annealing and re-irradiation behaviour of reactor pressure vessels materials, at providing guidance and recommendations for optimization of annealing and surveillance programmes and directions for further investigations. Refs, figs and tabs

  7. Irradiation embrittlement and mitigation. V. 1. Working material. Proceedings of a specialists meeting held in Espoo, Finland 23-26 October 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The purpose of the meeting was to provide an international forum for discussion on recent results in research and utility experience on radiation damage and its surveillance, annealing and re-embrittlement of PWR, WWER and BWR reactor pressure vessel materials. The scope included: mechanism of radiation damage; effects of operating parameters (flux, temperature, time, etc.); results from surveillance programmes and their analysis; fracture mechanics testing and evaluation; annealing and optimization of the process; re-embrittlement after annealing; Presentations were aimed at better understanding of radiation damage, annealing and re-irradiation behaviour of reactor pressure vessels materials, at providing guidance and recommendations for optimization of annealing and surveillance programmes and directions for further investigations. Refs, figs and tabs.

  8. Hydrogen embrittlement, revisited by in situ electrochemical nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Barnoush, Afrooz

    2007-07-01

    The fine scale mechanical probing capability of NI-AFM was used to examine hydrogen interaction with plasticity. To realize this, an electrochemical three electrode setup was incorporated into the NI-AFM. The developed ECNI-AFM is capable of performing nanoindentation as well as imaging surfaces inside electrolytes. The developed ECNI-AFM setup was used to examine the effect of cathodically charged hydrogen on dislocation nucleation in pure metals and alloys. It was shown that hydrogen reduces the pop-in load in all of the tested materials except Cu. The reduced pop-in load can be interpreted as the HELP mechanism. Classical dislocation theory was used to model the homogeneous dislocation nucleation and it was shown that H reduces the activation energy for dislocation nucleation in H sensitive metals which are not undergoing a phase transformation. The activation energy for dislocation nucleation is related to the material specific parameters; shear modulus {mu}, dislocation core radius {rho} and in the case of partial dislocation nucleation, stacking fault energy {gamma}. These material properties can be influenced by H resulting in a reduced activation energy for dislocation nucleation. The universality of cohesion in bulk metals relates the reduction of the shear modulus to the reduction of the cohesion, meaning HEDE mechanism. The increase in the core radius of a dislocation due to H is a direct evidence of decrease in dislocation line energy and H segregation on the dislocation line. In the case of partial dislocations, the H can segregate on to the stacking fault ribbon and decrease {gamma}. This inhibits the cross slip process and enhances the slip planarity. Thus, HELP and HEDE are the two sides of a coin resulting in H embrittlement. However depending on the experimental approach utilized to probe the H effect, either HELP or HEDE can be observed. In this study, however, by utilizing a proper experimental approach, it was possible to resolve the

  9. Liquid droplet radiator performance studies

    Science.gov (United States)

    Mattick, A. T.; Hertzberg, A.

    By making use of droplets rather than solid surfaces to radiate waste heat in space, the liquid droplet radiator (LDR) achieves a radiating area/mass much larger than that of conventional radiators which use fins or heat pipes. The lightweight potential of the LDR is shown to be limited primarily by the radiative properties of the droplets. The requirement that the LDR heat transfer fluid have a very low vapor pressure limits the choice of fluids to relatively few—several liquid metals and Dow 705 silicone fluid are the only suitable candidates so far identified. An experimental determination of the emittance of submillimeter droplets of Dow 705 fluid indicates than an LDR using this fluid at temperatures of 275-335 K would be ⋍ 10 times lighter than the lightest solid surface radiators. Although several liquid metals appear to offer excellent performance in LDR applications at temperatures between 200 K and 975 K, experimental determination of liquid metal emissivities is needed for a conclusive assessment.

  10. Accelerated aging embrittlement of cast duplex stainless steel: Activation energy for extrapolation

    International Nuclear Information System (INIS)

    Chung, H.M.; Chopra, O.K.

    1989-05-01

    Cast duplex stainless steels, used extensively in LWR systems for primary pressure boundary components such as primary coolant pipes, valves, and pumps, are susceptible to thermal aging embrittlement at reactor operating or higher temperatures. Since a realistic aging embrittlement for end-of-life or life-extension conditions (i.e., 32--50 yr of aging at 280--320 degree C) cannot be produced, it is customary to simulate the metallurgical structure by accelerated aging at ∼400 degree C. Over the past several years, extensive data on accelerated aging have been reported from a number of laboratories. The most important information from these studies is the activation energy, namely, the temperature dependence of the aging kinetics between 280 and 400 degree C, which is used to extrapolate the aging characteristics to reactor operating conditions. The activation energies (in the range of 18--50 kcal/mole) are, in general, sensitive to material grade, chemical composition, and fabrication process, and a few empirical correlations, obtained as a function of bulk chemical composition, have been reported. In this paper, a mechanistic understanding of the activation energy is described on the basis of the results of microstructural characterization of various heats of CF-3, -8, and -8M grades that were used in aging studies at different laboratories. The primary mechanism of aging embrittlement at temperatures between 280 and 400 degree C is the spinodal decomposition of the ferrite phase, and M 23 C 6 carbide precipitation on the ferrite/austenite boundaries is the secondary mechanism for high-carbon CF-8 grade. 20 refs., 10 figs., 3 tabs

  11. Role of hydrogen embrittlement in intergranular stress corrosion cracking of sensitized Type 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ruther, W.E.; Kassner, T.F.; Nichols, F.A.

    1985-06-01

    Fixed-load Mode I/Mode III comparative tests have been conducted on lightly sensitized (EPR = 2 C/cm/sup 2/) Type 304 SS specimens in 289/sup 0/C oxygenated water with other impurity additives. Substantial susceptibility to IGSCC was shown in Mode I but no conclusive evidence for SCC was found in Mode III. These results are consistent with a hydrogen embrittlement mechanism of crack advance, but electrochemical measurements seem to accord better with a slip-dissolution mechanism. Further studies are needed to clarify the operative mechanism(s).

  12. Role of hydrogen embrittlement in intergranular stress corrosion cracking of sensitized Type 304 stainless steel

    International Nuclear Information System (INIS)

    Ruther, W.E.; Kassner, T.F.; Nichols, F.A.

    1985-06-01

    Fixed-load Mode I/Mode III comparative tests have been conducted on lightly sensitized (EPR = 2 C/cm 2 ) Type 304 SS specimens in 289 0 C oxygenated water with other impurity additives. Substantial susceptibility to IGSCC was shown in Mode I but no conclusive evidence for SCC was found in Mode III. These results are consistent with a hydrogen embrittlement mechanism of crack advance, but electrochemical measurements seem to accord better with a slip-dissolution mechanism. Further studies are needed to clarify the operative mechanism(s)

  13. Hydrogen embrittlement due to hydrogen-inclusion interactions

    International Nuclear Information System (INIS)

    Yu, H.Y.; Li, J.C.M.

    1976-01-01

    Plastic flow around inclusions creates elastic misfit which attracts hydrogen towards the regions of positive dilatation. Upon decohesion of the inclusion-matrix interface, the excess hydrogen escapes into the void and can produce sufficient pressure to cause void growth by plastic deformation. This mechanism of hydrogen embrittlement can be used to understand the increase of ductility with temperature, the decrease of ductility with hydrogen content, and the increase of ductility with the ultimate strength of the matrix. An examination of the effect of the shape of spheroid inclusion reveals that rods are more susceptible to hydrogen embrittlement than disks. The size of the inclusion is unimportant while the volume fraction of inclusions plays the usual role

  14. Proposal of guideline for bonding to prevention of hydrogen embrittlement at Ta/Zr bond interface. Hydrogen embrittlement in SUS304ULC/Ta/Zr explosive bonded joint

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi; Fujimoto, Tetsuya; Nishimoto, Kazutoshi

    2010-01-01

    The occurrence condition of hydrogen embrittlement cracking at Ta/Zr bond interface was investigated with respect to the hydrogen content and applied stress in order to propose a guideline for the explosive bonding procedure to prevention of hydrogen embrittlement. Hydrogen charging test was conducted for SUS304ULC/Ta/Zr explosive bonded joints applied the different flexural strains. A hydrogen embrittlement crack occurred in the Zr substrate at Ta/Zr bond interface after hydrogen charging, and it was initiated at shorter charging times when the augmented strain was increased. The occurrence condition of hydrogen embrittlement cracking at Ta/Zr bond interface was shifted to lower stress and hydrogen content with an increase in the amount of explosive during bonding. It was suggested that hydrogen embrittlement in Ta/Zr explosive bonded joint could be inhibited by reducing the initial hydrogen content in Ta substrate less than approx. 5 ppm. (author)

  15. Present status of the disk pressure tests for hydrogen embrittlement

    International Nuclear Information System (INIS)

    Fidelle, J.P.

    1985-05-01

    The Disk Pressure Tests (DPT) have been developed considerably theoretically and experimentally for Internal Hydrogen Embrittlement (IHE) e.g. Co, Ti, U alloys, for Environment Embrittlement due to H 2 , hydrogenated media such as water vapor, alcohol, machining fluids or liquid NH 3 . The range has been expanded considerably for pressure up to 300 MPa and temperature (-160 0 C to 1000 0 C). Very low strain rate -longer than a month- tests have been able to evidence embrittlement of FFC alloys where H diffusivity is low. Conversely for very oxidation - sensitive metals (e.g. Nb and Ta) effects may appear only at somewhat high rates. The relationship between dynamic (increasing stress) tests, static (delayed failure) and low-cycle fatigue tests has been determined. In a number of instances, including SCC, other techniques and even fracture mechanics have been compared to the DPT and proved at best equivalent and several times, less sensitive than a well conducted DPT. At extreme they could not reproduce the field service phenomenon whereas the DPT did and could also be applied satisfactorily to low yield stress materials. The main rupture aspects have been analyzed mechanically and organized in a rational and comprehensive chart based on 12,000 + tests over 150 + materials in different conditions. From the tests on a large number of metal systems, a theory of HE has been derived which accounts for the behavior of metals and alloys either embrittled and or hydrited. Finally comparison of HGE tests and service behavior of a large variety of materials and industrial equipments has made possible to specify acceptance criteria for industrial service

  16. High temperature service embrittlement of EUROFER´97 steel

    Czech Academy of Sciences Publication Activity Database

    Stratil, Luděk; Hadraba, Hynek; Dlouhý, Ivo

    2010-01-01

    Roč. 1, č. 2 (2010), s. 142-145 ISSN 1335-1532. [Fraktografia 2009. Stará Lesná, 08.11.2009-11.11.2009] R&D Projects: GA ČR GA106/08/1397; GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : Eurofer´97 * isothermal ageing * embrittlement * impact properties Subject RIV: JL - Materials Fatigue, Friction Mechanics

  17. Review of the International Atomic Energy Agency International database on reactor pressure vessel materials and US Nuclear Regulatory Commission/Oak Ridge National Laboratory embrittlement data base

    International Nuclear Information System (INIS)

    Wang, J.A.; Kam, F.B.K.

    1998-02-01

    The International Atomic Energy Agency (IAEA) has supported neutron radiation effects information exchange through meetings and conferences since the mid-1960s. Through an International Working Group on Reliability of Reactor Pressure Components, information exchange and research activities were fostered through the Coordinated Research Program (CRP) sponsored by the IAEA. The final CRP meeting was held in November 1993, where it was recommended that the IAEA coordinate the development of an International Database on Reactor Pressure Vessel Material (IDRPVM) as the first step in generating an International Database on Aging Management. The purpose of this study was to provide special technical assistance to the NRC in monitoring and evaluating the IAEA activities in developing the IAEA IDRPVM, and to compare the IDRPVM with the Nuclear Regulatory Commission (NRC) - Oak Ridge National Laboratory (ORNL) Power Reactor Embrittlement Data Base (PR-EDB) and provide recommendations for improving the PR-EDB. A first test version of the IDRPVM was distributed at the First Meeting of Liaison Officers to the IAEA IDRPVM, in November 1996. No power reactor surveillance data were included in this version; the testing data were mainly from CRP Phase III data. Therefore, because of insufficient data and a lack of power reactor surveillance data received from the IAEA IDRPVM, the comparison is made based only on the structure of the IDRPVM. In general, the IDRPVM and the EDB have very similar data structure and data format. One anticipates that because the IDRPVM data will be collected from so many different sources, quality assurance of the data will be a difficult task. The consistency of experimental test results will be an important issue. A very wide spectrum of material characteristics of RPV steels and irradiation environments exists among the various countries. Hence the development of embrittlement prediction models will be a formidable task. 4 refs., 2 figs., 4 tabs

  18. Investigation of irradiation embrittlement and annealing behaviour of JRQ pressure vessel steel by instrumented impact tests

    Energy Technology Data Exchange (ETDEWEB)

    Valo, M; Rintamaa, R; Nevalainen, M; Wallin, K; Torronen, K [Technical Research Centre of Finland, Espoo (Finland); Tipping, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1994-12-31

    Seven series of A533-B type pressure vessel steel specimens irradiated as well as irradiated - annealed - re-irradiated to different fast neutron fluences (up to 5.10{sup 19}/cm{sup 2}) have been tested with a new type of instrumented impact test machine. The radiation embrittlement and the effect of the intermediate annealing was assessed by using the ductile and cleavage fracture initiation toughness. Although the ductile fracture initiation toughness exhibited scatter, the transition temperature shift corresponding to the dynamic cleavage fracture initiation agreed well with the 41 J Charpy-V shift. The results indicate that annealing is beneficial in restoring mechanical properties in an irradiated nuclear pressure vessel steel. (authors). 8 refs., 11 figs., 1 tab.

  19. Studies on education for radiation and courses of study (2009)

    International Nuclear Information System (INIS)

    Sakuraba, Kazuhiro; Nakamura, Hideo; Ukai, Mitsuko

    2009-01-01

    The Courses of Study are provided as the standards for educational courses in all schools in Japan. The new Courses of Study have been started this year. In this research, we revealed the ways how to teach radiation using the Courses of Study (2009). Education for radiation was first opened for the third grade of secondary school children. The contents in terms of radiation education in this Courses of Study (2009) are the characterization and application of radiation. To promote this new study courses, the knowledge about radiation of young man and woman were also studied. We concluded it is necessary to start radiation education from elementary school. Furthermore to apply the Courses of Study effectively, we need the comments on radiation education from the researcher of radiation. After the comments, teachers are able to make precise educational materials for their own children. (author)

  20. Embrittlement recovery due to annealing of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Eason, E.D.; Wright, J.E.; Nelson, E.E.; Odette, G.R.; Mader, E.V.

    1998-01-01

    The irradiation embrittlement of nuclear reactor pressure vessels (RPV) can be reduced by thermal annealing at temperatures higher than the normal operating conditions. The objective of this work was to analyze the pertinent data and develop quantitative models for estimating the recovery in 41 J (30 ft-lb) Charpy transition temperature (TT) and Charpy upper shelf energy (USE) due to annealing. An analysis data base was developed, reviewed for completeness and accuracy, and documented as part of this work. Models were developed based on a combination of statistical techniques, including pattern recognition and transformation analysis, and the current understanding of the mechanisms governing embrittlement and recovery. The quality of models fitted in this project was evaluated by considering both the Charpy annealing data used for fitting and a surrogate hardness data base. This work demonstrates that microhardness recovery is a good surrogate for shift recovery and that there is a high level of consistency between the observed annealing trends and fundamental models of embrittlement and recovery processes. (orig.)

  1. Comparison of embrittlement trend curves to high fluence surveillance results

    International Nuclear Information System (INIS)

    Bogaert, A.S.; Gerard, R.; Chaouadi, R.

    2011-01-01

    In the regulatory justification of the integrity of the reactor pressure vessels (RPV) for long term operation, use is made of predictive formulas (also called trend curves) to evaluate the RPV embrittlement (expressed in terms of RTNDT shifts) in function of fluence, chemical composition and in some cases temperature, neutron flux or product form. It has been shown recently that some of the existing or proposed trend curves tend to underpredict high dose embrittlement. Due to the scarcity of representative surveillance data at high dose, some test reactor results were used in these evaluations and raise the issue of representativeness of the accelerated test reactor irradiations (dose rate effects). In Belgium the surveillance capsules withdrawal schedule was modified in the nineties in order to obtain results corresponding to 60 years of operation or more with the initial surveillance program. Some of these results are already available and offer a good opportunity to test the validity of the predictive formulas at high dose. In addition, advanced surveillance methods are used in Belgium like the Master Curve, increased tensile tests, and microstructural investigations. These techniques made it possible to show the conservatism of the regulatory approach and to demonstrate increased margins, especially for the first generation units. In this paper the surveillance results are compared to different predictive formulas, as well as to an engineering hardening model developed at SCK.CEN. Generally accepted property-to-property correlations are critically revisited. Conclusions are made on the reliability and applicability of the embrittlement trend curves. (authors)

  2. Recent evaluation of 'wet' thermal annealing to resolve reactor pressure vessel embrittlement

    International Nuclear Information System (INIS)

    Server, W.L.; Biemiller, E.C.

    1993-01-01

    Prior to the decision to close the Yankee Rowe plant in 1992, a great deal of effort was expended in trying to resolve the degree of neutron embrittlement that the reactor pressure vessel had experienced after 30 years of operation. One mitigative measure that was examined in detail was the possibility of performing a relatively low temperature thermal anneal (at approximately 650 deg. F) to partially restore the original design level of mechanical properties of the reactor pressure vessel beltline region which were lost due to the neutron radiation exposure. This low temperature anneal was to involve heating of the primary coolant water using pump heat in a similar manner as that used to anneal the Belgian BR-3 reactor pressure vessel in the early 1980s. This 'wet' anneal was successful in recovering mechanical properties for the BR-3 vessel, but the extent of the recovery, as well as the rate of re-embrittlement after the anneal, were issues that were difficult to quantify since the exact reactor pressure vessel steels were not available for experimental verification. For the case of Yankee Rowe, material was available from past surveillance programs for at least one of the materials in the vessel, as well as materials obtained from various sources which could act as bounding surrogates. An irradiation /annealing/reirradiation program was developed to better quantify the degree of recovery and re-embrittlement for these materials, but this program was halted before significant test results were obtained. Prior to the initiation of the testing program, a review of past annealing data was performed and the data were scrutinized for direct relevance to the annealing response of the Yankee Rowe vessel. This paper discusses the results derived from this review. The results from the critical review of the past annealing data indicated that a 'wet' anneal of the Yankee Rowe vessel may have been successful in reducing the degree of embrittlement to the point that the

  3. Statistical trend of radiation chemical studies

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi

    1980-01-01

    In the field of radiation chemistry, over 1,000 reports are published year after year. Attempt has been made to review the trends in this field for more than five years, by looking through the lists of papers statistically. As for the period from 1974 to 1978, Annual Cumulation with Keyword and Author Indexes in the Biweekly List of Papers on Radiation Chemistry was referred to. For 1979, because of the unavailability of the Cumulation, Chemical Abstracts Search by Japan Information Center of Science and Technology was referred to. The contents are as follows: how far radiation chemistry is studied, what the trends of radiation chemistry is in recent years, who contributes to the advance of radiation chemistry, and where, the trend radiation chemistry takes in 1979. (J.P.N.)

  4. A wide-range embrittlement trend curve for western RPV steels

    International Nuclear Information System (INIS)

    Kirk, M.T.

    2011-01-01

    Embrittlement trend curves (ETCs) are used to estimate neutron irradiation embrittlement as a function of both exposure (fluence, flux, temperature, ...) and composition variables. ETCs provide information needed to assess the structural integrity of operating nuclear reactors, and to determine their suitability for continued safe operation. Past efforts on ETC development in the United States have used data drawn from domestic licensees. While this approach has addressed past needs well, future needs such as power up-rates, license extensions to 60 years and beyond, and the use of low copper materials in new reactors produce future operating conditions for the US reactor fleet that may differ from past experience, suggesting that data from sources other than licensee surveillance programs may be needed. In this paper we draw together embrittlement data expressed in terms of ΔT41J and ΔYS from a wide variety of data sources as a first step in examining future embrittlement trends. We develop a 'wide range' ETC based on a collection of over 2500 data. We assess how well this ETC models the whole database, as well as significant data subsets. Comparisons presented herein indicate that a single algebraic model, denoted WR-C(5), represents reasonably well both the trends evident in the data overall as well as trends exhibited by four special data subsets. The WR-C(5) model indicates the existence of trends in high fluence data (Φ > 2-3*10 19 n/cm 2 , E > 1 MeV) that are not as apparent in the US surveillance data due to the limited quantity of ΔT30 data measured at high fluence in this dataset. Additionally, WR-C(5) models well the trends in both test and power reactor data despite the fact it has not term to account for flux. It is suggested that one appropriate use of the WR-C(5) trend curve may include the design irradiation studies to validate or refute the findings presented herein. Additionally, WR-C(5) could be used, along with other information (e.g., other

  5. Epidemiological studies on radiation workers in Korea

    International Nuclear Information System (INIS)

    Soo Yong Choi; Hai Won Chung

    2007-01-01

    Complete text of publication follows. Objectives: The aim of this study is to analyze the occupational exposure for external radiation and to evaluate radiation effects on Korean radiation workers. Methods: The National Dose Registry contains radiation exposure records for all monitored radiation workers since its creation in 1983. We are carrying out epidemiological survey for radiation workers. The items of information included personal identification, employment and dose data. The frequencies of various types of chromosome aberrations in radiation workers were compared with controls. The data were analyzed according to year, sex, age, duration of occupation, exposure dose, etc. using SPSS statistical package(version 15.0). The goodness-of-fit test for Poisson assumption and dispersion test for detecting heterogeneity for Poisson distribution were done with chromosomal aberrations among study subjects. Results: The total number of workers registered from 1983 to 2005 was 61,610. The number of workers steadily increased and the accumulated dose somewhat increased. The collective annual dose of radiation workers was 345.823 man Sv and the mean annual dose was 1.34mSv. The frequencies of chromosome aberrations in 102 workers were compared with those in 42 controls. The frequencies of all types of chromosome aberrations in the exposed subjects were higher than those in the control group. Poisson regression analysis showed that there was significant association of chromosome aberrations with radiation dose, duration of work, age and alcohol intake. We started to survey radiation workers in order to evaluate radiation effects, collected epidemiological data for 9,157 workers at present and analyzed their lifetime radiation exposure doses. Follow-up is carrying out using the Korean Mortality Data, Cancer Registry and individual investigation. Among study patients, 11 of 38 deaths were identified with cancer. Conclusions: The data on occupational doses shows that

  6. Study of detectors in beta radiation fields

    International Nuclear Information System (INIS)

    Albuquerque, M. da P.P.; Xavier, M.; Caldas, L.V.E.

    1987-01-01

    Several commercial detectors used with gamma or X radiation are studied. Their sensibility and energetic dependence are analysed in exposures of beta radiation fields. A comparative evaluation with the reference detector (the extrapolation chamber) is presented. (M.A.C.) [pt

  7. Advance of investigation of irradiation embrittlement mechanism of nuclear reactor pressure vessel steels. History and future of irradiation embrittlement researches

    International Nuclear Information System (INIS)

    Ishino, Shiori

    2007-01-01

    The nuclear reactor pressure vessel is the most important component of LWR plants required to be safe. This paper describes contents of the title consisting of four chapters. The first chapter states the general theory of irradiation effects, irradiation embrittlement and decreasing of toughness, and some kinds of pressure vessel steels. The second chapter explains history of irradiation embrittlement investigations and the advance of research methods for experiments and calculation. The third chapter contains information of inner structure of irradiated materials and development of prediction equations, recent information of embrittlement mechanism and mechanism guided prediction method, USA model and Central Research Institute of Electric Power Industry (CRIEPI) model. The fourth chapter states recent problems from viewpoints of experimental and analytical approaches. Comparison of standards of LWR pressure vessel steels between Japan and USA, relation between the density of number of cluster and the copper content, effect of flux on clustering of copper atoms, and CRIEPI's way of approaching the prediction method are illustrated. (S.Y.)

  8. Magnetic Properties Studies on Thermal Aged Fe-Cu Alloys for the Simulation of Radiation Damage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. K.; Kishore, M.B.; Park, D. G. [KAERI, Daejeon (Korea, Republic of); Son, De Rac. [Hannam University, Daejeon (Korea, Republic of)

    2016-05-15

    We evaluated the changes in magnetic properties due to cold rolling and thermal ageing of a Fe-1%Cu model alloy in this study. Initially, the alloy was 10% cold rolled, and isothermally aged at 400 .deg. C for 1, 10, 100 and 1000 hr. The samples were prepared at various thermal aging conditions and all the conditions were interpreted. The hysteresis loops, Magnetic Barkhausen noise (BN). The change of magnetic properties can be interpreted in terms of the domain wall motion and dislocation dynamics associated with copper rich precipitates (CRPs).The results were interpreted in terms of ageing time dependence of the precipitates evolution such as the volume fraction and size distribution. In order to evaluate the radiation embrittlement of RPV steel, A Cold rolled Fe-Cu model Alloy was prepared, The prepared samples were thermally aged by annealing at 400 .deg. C for various times, the magnetic properties of the annealed samples were measured, The Barkhausen noise and BH Loop shows a considerable trend corresponding to the Ageing time. The magnetic properties were interpreted and correlated to the CRPs formed through annealing process.

  9. Epidemiological studies in high background radiation areas

    International Nuclear Information System (INIS)

    Akiba, Suminori

    2012-01-01

    Below the doses of 100-200 mSv of radiation exposure, no acute health effect is observed, and the late health effects such as cancer are yet unclear. The problems making the risk evaluation of low dose radiation exposure difficult are the fact that the magnitude of expected health effects are small even if the risk is assumed to increase in proportion to radiation doses. As a result, studies need to be large particular when dealing with rare disease such as cancer. In addition, the expected health effects are so small that they can easily be masked by lifestyles and environmental factors including smoking. This paper will discuss cancer risk possibly associated with low-dose and low-dose rate radiation exposure, describing epidemiological studies on the residents in the high-background radiation areas. (author)

  10. Radiation and environment - impact studies awareness

    International Nuclear Information System (INIS)

    Boniface Ekechukwu; Mohd. Zohadie Bardaie

    2005-01-01

    Radiation, which is simply defined as energy, that travels in the form of waves or particles has both positive and negative effects on humans. This has necessitated a careful study on how to create awareness on the 'two-edge sword'. Since radiation cannot be removed from our environment we, however, reduce our risks by controlling our exposure to it through various ways. Understanding radiation and radioactivity will help us make informed decisions about our exposure. Many difference types of radiation have range of energy that form electromagnetic spectrum. Their sources include nuclear power plants, nuclear weapons, and medicine. Others include, microwaves, radar, electrical power lines, cellular phones, and sunlight' and so on. However, the radiation used in nuclear power, nuclear weapons, and medicine has enough energy to break chemical bonds, and is referred to as 'ionizing radiation', which is dangerous to life. Because of this negative effect of radiation there is common fear and myths related to radiation, radioactivity, uranium mining and milling, and the nuclear industry. This radiation education and energy-environmental education attempt to dispel the common fears and myths relating to them in so far as there is perfect protection from harmful exposure and abuse. The design of an integrated unit of study radiation and environmental energy uses arts of language, life skills, skill designs, social studies and mathematical skills in creating understanding and abilities necessary to do scientific inquiry by the students without abuse or danger. The education unit is designed to assess materials for, factual information and appropriate language and identification of potential bias in environmental education materials and evaluate materials in perspective of cultural and ethnic upbringing. (author)

  11. Study of the gamma radiation of ionium

    Energy Technology Data Exchange (ETDEWEB)

    Curie, I

    1949-12-01

    A Geiger counter study has been made of the ..gamma.. radiation of ionium. Eleven quanta of the L radiation of radium were observed for every hundred ..cap alpha.. disintegrations, and three ..gamma.. rays were found with energies of 68, 140, and 240 keV at a rate of 0.85, 0.33, 0.05 quanta, respectively, for 100 disintegrations. It is noted that the radiation spectrum of ionium as a whole is difficult to interpret. In the course of this work, the author calculated the efficiency of a thin-walled aluminum counter, both for the L radiation of radium and for ..gamma.. rays of 68 keV. The author also measured, for soft radiation, the ratio between the efficiency of a thin-walled aluminum counter and that of a similar counter lined with 0.11 mm of lead.

  12. Parameters promoting liquid metal embrittlement of the T91 steel in lead-bismuth eutectic alloy

    International Nuclear Information System (INIS)

    Proriol Serre, I.; Ye, C.; Vogt, J.B.

    2015-01-01

    The use of liquid lead-bismuth eutectic (LBE) as a spallation target and a coolant in accelerator-driven systems raises the question of the reliability of structural materials, such as T91 martensitic steel in terms of liquid metal assisted damage and corrosion. In this study, the mechanical behaviour of the T91 martensitic steel was examined in liquid lead-bismuth eutectic (LBE) and in inert atmosphere. Several conditions showed the most sensitive embrittlement factor. The Small Punch Test technique was employed using smooth specimens. In this standard heat treatment, T91 appeared in general as a ductile material, and became brittle in the considered conditions if the test was performed in LBE. It turns out that the loading rate appeared as a critical parameter for the occurrence of liquid metal embrittlement (LME) of the T91 steel in LBE. Loading the T91 very slowly instead of rapidly in oxygen saturated LBE resulted in brittle fracture. Furthermore, low-oxygen content in LBE and an increase in temperature promote LME. (authors)

  13. PR-EDB: Power Reactor Embrittlement Data Base, Version 2. Revision 2, Program description

    Energy Technology Data Exchange (ETDEWEB)

    Stallmann, F.W.; Wang, J.A.; Kam, F.B.K.; Taylor, B.J. [Oak Ridge National Lab., TN (United States)

    1994-01-01

    Investigations of regulatory issues such as vessel integrity over plant life, vessel failure, and sufficiency of current codes Standard Review Plans (SRP`s) and Guides for license renewal can be greatly expedited by the use of a well-designed computerized data base. Also, such a data base is essential for the validation of embrittlement prediction models by researchers. The Power Reactor Embrittlement Data Base (PR-EDB) is such a comprehensive collection of data for US commercial nuclear reactors. The current version of the PR-EDB contains the Charpy test data that were irradiated in 252 capsules of 96 reactors and consists of 207 data points for heat-affected-zone (HAZ) materials (98 different HAZ), 227 data points for weld materials (105 different welds), 524 data points for base materials (136 different base materials), including 297 plate data points (85 different plates), 119 forging data points (31) different forging), and 108 correlation monitor materials data points (3 different plates). The data files are given in dBASE format and can be accessed with any computer using the DOS operating system. ``User-friendly`` utility programs are used to retrieve and select specific data, manipulate data, display data to the screen or printer, and to fit and plot Charpy impact data. The results of several studies investigated are presented in Appendix D.

  14. Effect of lead factors on the embrittlement of RPV SA-508 cl 3 steel

    Energy Technology Data Exchange (ETDEWEB)

    Kempf, Rodolfo, E-mail: kempf@cnea.gov.ar [CNEA, Unidad Actividad Combustibles Nucleares, División Caracterización, Avda. Gral Paz 1499, C.P.B1650KNA, San Martín, Buenos Aires (Argentina); Troiani, Horacio, E-mail: troiani@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA) e Instituto Balseiro (UNCU), CONICET, Av. Bustillo 9500, CP 8400, Rio Negro (Argentina); Fortis, Ana Maria, E-mail: fortis@cnea.gov.ar [CNEA, Departamento Estructura y Comportamiento, UNSAM, Avda. Gral Paz 1499, C.P.B1650KNA, San Martín, Buenos Aires (Argentina)

    2013-03-15

    This paper presents a project to study the effect of lead factors on the mechanical behaviour of the SA-508 type 3 Reactor Pressure Vessel (RPV) steel used in the reactor under construction Atucha II in Argentina. Charpy-V notch specimens of this steel were irradiated at the RA1 experimental reactor at a temperature of 275 °C with two lead factors (186 and 93). The neutron flux was 3.71 × 10{sup 15} n m{sup −2} s{sup −1} and 1.85 × 10{sup 15} n m{sup −2} s{sup −1} (E > 1 MeV) respectively. In both cases, the fluence was 6.6 × 10{sup 21} n m{sup −2}, which is equivalent to that received by the PHWR Atucha II RPV in 10 years of full power irradiation. The results of Charpy tests revealed significant embrittlement both in the ΔT = 14 °C and ΔT = 21 °C shifts of the ductile–brittle transition temperatures (DBTT) and in the reduction of the maximum energy absorbed. This result shows that the shift of the DBTT with a lead factor of 93 is larger than that obtained with a lead factor of 186. Then, the results of irradiation in experimental reactors (MTR) with high lead factors may not be conservative with respect to the actual RPV embrittlement.

  15. Liquid Zn assisted embrittlement of advanced high strength steels with different microstructures

    Science.gov (United States)

    Jung, Geunsu; Woo, In Soo; Suh, Dong Woo; Kim, Sung-Joon

    2016-03-01

    In the present study, liquid metal embrittlement (LME) phenomenon during high temperature deformation was investigated for 3 grades of Zn-coated high strength automotive steel sheets consisting of different phases. Hot tensile tests were conducted for each alloy to compare their LME sensitivities at temperature ranges between 600 and 900 °C with different strain rates. The results suggest that Zn embrittles all the Fe-alloy system regardless of constituent phases of the steel. As hot tensile temperature and strain rate increase, LME sensitivity increases in every alloy. Furthermore, it is observed that the critical strain, which is experimentally thought to be 0.4% of strain at temperatures over 700 °C, is needed for LME to occur. It is observed via TEM work that Zn diffuses along grain boundaries of the substrate alloy when the specimen is strained at high temperatures. When the specimen is exposed to the strain more than 0.4% at over 700 °C, the segregation level of Zn at grain boundaries seems to become critical, leading to occurrence of LME cracks.

  16. Dissolution of alpha-prime precipitates in thermally embrittled S2205-duplex steels during reversion-heat treatment

    Directory of Open Access Journals (Sweden)

    V. Shamanth

    2015-01-01

    Full Text Available Duplex stainless steels offer an attractive combination of strength, corrosion resistance and cost. In annealed condition duplex steels will be in thermodynamically metastable condition but when they are subjected to intermediate homologous temperature of ∼475 °C and below significant embrittlement occurs, which is one of the key material degradation properties that limits its upper service temperature in many applications. Hence the present study is aimed to study the effect of reversion heat treatment and its time on mechanical properties of the thermally embrittled steel. The results showed that 60 min reversion heat treated samples were able to recover the mechanical properties which were very close to annealed properties because when the embrittled samples were reversion heat treated at an elevated temperature of 550 °C which is above the (α + α′ miscibility gap, the ferritic phase was homogenized again. In other words, Fe-rich α and Cr-rich α′ prime precipitates which were formed during ageing become thermodynamically unstable and dissolve inside the ferritic phase.

  17. Severe Embrittlement of Neutron Irradiated Austenitic Steels Arising from High Void Swelling

    International Nuclear Information System (INIS)

    Neustroev, V.S.; Garner, F.

    2007-01-01

    Full text of publication follows: Data are presented from BOR-60 irradiations showing that significant radiation-induced swelling causes severe embrittlement in austenitic stainless steels, reducing the service life of structural components. Similar loss of ductility is expected when swelling arises in fusion and light water reactor environments. Above 7-16% swelling there is complete loss of ductility, with the onset of ductility loss beginning at lower swelling in ring-pull tensile tests than for flat tensile specimens. For steels that develop extensive precipitation during irradiation, the critical swelling level is even lower. A model is presented to demonstrate the effect of voids acting alone to produce the embrittlement. Although voids are not very effective hardeners, they are very effective to generate stress concentrations between voids. The stress concentration ratio increases strongly when the void diameter exceeds ∼40% of the void-to-void separation distance. When the volume fraction of voids is rather high (about 16 % and higher), a geometric situation develops where it is possible to create an intense field of deformation glide planes residing at an angle of 45 deg. to the void-to-void axis. Significant localized flow then proceeds on these planes for specimen stress levels that are significantly lower than the yield stress. Voids also segregate nickel to their surfaces such that flow localization occurs in the low-nickel inter-void regions to produce strain-induced martensite, which is further accelerated by stress concentrations at the advancing crack tip, leading to catastrophic failure. (authors)

  18. Occupational radiation exposure and mortality study

    International Nuclear Information System (INIS)

    Coppock, E.; Dobson, D.; Fair, M.

    1992-06-01

    An epidemiological cohort study of some 300,000 Canadians enrolled in the National Dose Registry (NDR) is being undertaken to determine if there is excess cancer or other causes of mortality among those workers who are occupationally exposed to low levels of ionizing radiation. The results of this study may provide better understanding of the dose-response relationship for low doses of ionizing radiation and aid in the verification of risk estimates for radiation-induced cancer mortality. The Department of National Health and Welfare (DNHW) is responsible for the Registry; this study is being carried out by the Bureau of Radiation and Medical Devices (BRMD) with financial assistance and co-operation of various agencies including Statistics Canada and the Atomic Energy Control Board

  19. Fractography of hydrogen-embrittled iron-chromium-nickel alloys

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1980-01-01

    Tensile specimens of iron-chromium-nickel base alloys were broken in either a hydrogen environment or in air following thermal charging with hydrogen. Fracture surfaces were examined by scanning electron microscopy. Fracture morphology of hydrogen-embrittled specimens was characterized by: changed dimple size, twin-boundary parting, transgranular cleavage, and intergranular separation. The nature and extent of the fracture mode changes induced by hydrogen varied systematically with alloy composition and test temperature. Initial microstructure developed during deformation processing and heat treating had a secondary influence on fracture mode

  20. Hydrogen embrittlement of titanium and its alloys - a literature review

    International Nuclear Information System (INIS)

    Aho-Mantila, I.; Haemaelaeinen, H.

    1986-05-01

    Hydrogen embrittlement data of titanium and its alloys is reviewed. Especially the results obtained in spent nuclear fuel repository conditions with commercially pure titanium and TiCode-12 alloy are examined. The results show that the mechanical properties of titanium are not much affected by hydrogen when tested by smooth specimens. Much greater effects can be expected with notched fracture mechanics specimens. However, only limeted data is available. Hydrogen distribution in titanium is affected by stress, alloy composition and temperature gradients. In order to model the hydrogen-induced crack growth in titanium much more mechanistic work is needed especially to understand the behaviour of hydrogen in crack tip stress field. (author)

  1. Mecanical Properties Degradation by Hydrogen Embrittlement

    International Nuclear Information System (INIS)

    Bertolino, G; Meyer, G; Perez Ipina J

    2001-01-01

    The presence of hydrogen-rich media during nuclear plant operation motivates the study of the zirconium alloys degradation of their mechanical properties influenced by hydrogen content and temperature.In this work we study samples with a microstructure of equiaxial grains resulted from hot-rolled, and with different homogeneous hydrogen content obtained by electrochemical charge and a thermal treatment.The influence of hydrogen content and temperature was analyzed from the results of fracture-mechanical tests on CT (compact test) probes using the J-criteria

  2. Study on external beam radiation therapy

    International Nuclear Information System (INIS)

    Kim, Mi Sook; Yoo, Seoung Yul; Yoo, Hyung Jun; Ji, Young Hoon; Lee, Dong Han; Lee, Dong Hoon; Choi, Mun Sik; Yoo, Dae Heon; Lee, Hyo Nam; Kim, Kyeoung Jung

    1999-04-01

    To develop the therapy technique which promote accuracy and convenience in external radiation therapy, to obtain the development of clinical treatment methods for the global competition. The contents of the R and D were 1. structure, process and outcome analysis in radiation therapy department. 2. Development of multimodality treatment in radiation therapy 3. Development of computation using networking techniques 4. Development of quality assurance (QA) system in radiation therapy 5. Development of radiotherapy tools 6. Development of intraoperative radiation therapy (IORT) tools. The results of the R and D were 1. completion of survey and analysis about Korea radiation therapy status 2. Performing QA analysis about ICR on cervix cancer 3. Trial of multicenter randomized study on lung cancers 4. Setting up inter-departmental LAN using MS NT server and Notes program 5. Development of ionization chamber and dose-rate meter for QA in linear accelerator 6. Development on optimized radiation distribution algorithm for multiple slice 7. Implementation on 3 dimensional volume surface algorithm and 8. Implementation on adaptor and cone for IORT

  3. Study on external beam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Sook; Yoo, Seoung Yul; Yoo, Hyung Jun; Ji, Young Hoon; Lee, Dong Han; Lee, Dong Hoon; Choi, Mun Sik; Yoo, Dae Heon; Lee, Hyo Nam; Kim, Kyeoung Jung

    1999-04-01

    To develop the therapy technique which promote accuracy and convenience in external radiation therapy, to obtain the development of clinical treatment methods for the global competition. The contents of the R and D were 1. structure, process and outcome analysis in radiation therapy department. 2. Development of multimodality treatment in radiation therapy 3. Development of computation using networking techniques 4. Development of quality assurance (QA) system in radiation therapy 5. Development of radiotherapy tools 6. Development of intraoperative radiation therapy (IORT) tools. The results of the R and D were 1. completion of survey and analysis about Korea radiation therapy status 2. Performing QA analysis about ICR on cervix cancer 3. Trial of multicenter randomized study on lung cancers 4. Setting up inter-departmental LAN using MS NT server and Notes program 5. Development of ionization chamber and dose-rate meter for QA in linear accelerator 6. Development on optimized radiation distribution algorithm for multiple slice 7. Implementation on 3 dimensional volume surface algorithm and 8. Implementation on adaptor and cone for IORT.

  4. Modeling copper precipitation hardening and embrittlement in a dilute Fe-0.3at.%Cu alloy under neutron irradiation

    Science.gov (United States)

    Bai, Xian-Ming; Ke, Huibin; Zhang, Yongfeng; Spencer, Benjamin W.

    2017-11-01

    Neutron irradiation in light water reactors can induce precipitation of nanometer sized Cu clusters in reactor pressure vessel steels. The Cu precipitates impede dislocation gliding, leading to an increase in yield strength (hardening) and an upward shift of ductile-to-brittle transition temperature (embrittlement). In this work, cluster dynamics modeling is used to model the entire Cu precipitation process (nucleation, growth, and coarsening) in a Fe-0.3at.%Cu alloy under neutron irradiation at 300°C based on the homogenous nucleation mechanism. The evolution of the Cu cluster number density and mean radius predicted by the modeling agrees well with experimental data reported in literature for the same alloy under the same irradiation conditions. The predicted precipitation kinetics is used as input for a dispersed barrier hardening model to correlate the microstructural evolution with the radiation hardening and embrittlement in this alloy. The predicted radiation hardening agrees well with the mechanical test results in the literature. Limitations of the model and areas for future improvement are also discussed in this work.

  5. A radiation measurement study on cellular phone

    International Nuclear Information System (INIS)

    Mohd Yusof Mohd Ali; Rozaimah Abd Rahim; Roha Tukimin; Khairol Nizam Mohamed; Mohd Amirul Nizam Mohamad Thari; Ahmad Fadzli Ahmad Sanusi

    2007-01-01

    This paper will explain the radiation level produced by various selected cellular phone from various models and brands available in the market. The result obtained from this study will also recommend whether a cellular phone is safe for public usage or it might cause any effect on public health. Finally, a database of radiation measurement level produced by selected various cellular phone will also be developed and exhibited in this paper. (Author)

  6. Irradiation embrittlement and optimisation of annealing

    International Nuclear Information System (INIS)

    1993-01-01

    This conference is composed of 30 papers grouped in 6 sessions related to the following themes: neutron irradiation effects in pressure vessel steels and weldments used in PWR, WWER and BWR nuclear plants; results from surveillance programmes (irradiation induced damage and annealing processes); studies on the influence of variations in irradiation conditions and mechanisms, and modelling; mitigation of irradiation effects, especially through thermal annealing; mechanical test procedures and specimen size effects

  7. Irradiation embrittlement and optimisation of annealing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This conference is composed of 30 papers grouped in 6 sessions related to the following themes: neutron irradiation effects in pressure vessel steels and weldments used in PWR, WWER and BWR nuclear plants; results from surveillance programmes (irradiation induced damage and annealing processes); studies on the influence of variations in irradiation conditions and mechanisms, and modelling; mitigation of irradiation effects, especially through thermal annealing; mechanical test procedures and specimen size effects.

  8. Radiation transformation studies: are they relevant to radiation protection problems?

    International Nuclear Information System (INIS)

    Seymour, C.B.; Mothersill, C.

    1988-01-01

    Because of the difficulties of studying radio-carcinogenesis in humans, several in vitro systems are utilised. These cell transformation systems are reviewed, with particular emphasis on their relevance to human radiological protection problems. Most available systems use rodent fibroblasts. These are discussed in detail. Attention is drawn to certain artefacts which can cause problems with interpretation of such data. The relevance of these systems is questionable because of species differences, particularly concerning life span and because most human tumours are derived from epithelial cells. New epithelial culture systems and three-dimensional tissue culture methods becoming available are discussed in the light of their potential for addressing radiation protection problems. (author)

  9. Internal Friction of Pressure Vessel Steel Embrittlement

    International Nuclear Information System (INIS)

    Van Ouytsel, K.

    2001-01-01

    The contribution consists of an abstract of a PhD thesis. The thesis contains a literature study, a description of the construction details of a new inverted torsion pendulum. This device was designed to investigate pressure-vessel steels at high amplitudes (10 -4 to 10 -2 ) and over a wide temperature range (90-700K) at approximately 1 Hz in the irradiated condition. Results of measurements on a variety of reactor pressure vessel steels by means of the torsion penduli are reported and interpreted

  10. Simulation of He embrittlement at grain boundaries in bcc transition metals

    International Nuclear Information System (INIS)

    Suzudo, Tomoaki; Yamaguchi, Masatake

    2015-01-01

    To investigate what atomic properties largely determine vulnerability to He embrittlement at grain boundaries (GB) of bcc metals, we introduce a computational model composed of first principles density functional theory and a He segregation rate theory model. Predictive calculations of He embrittlement at the first wall of the future DEMO fusion concept reactor indicate that variation in the He embrittlement originated not only from He production rate related to neutron irradiation, but also from the He segregation energy at the GB that has a systematic trend in the periodic table. - Highlights: • We modeled He grain boundary (GB) segregation of bcc transition metals using first-principles-based rate theory. • We established the quantitative relation between He embrittlement and He segregation using GB cohesive energy. • He embrittlement was strongly dependent on He segregation energy at the GB that has a systematic trend in the periodic table.

  11. Simulation of He embrittlement at grain boundaries in bcc transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Suzudo, Tomoaki, E-mail: suzudo.tomoaki@jaea.go.jp; Yamaguchi, Masatake

    2015-10-15

    To investigate what atomic properties largely determine vulnerability to He embrittlement at grain boundaries (GB) of bcc metals, we introduce a computational model composed of first principles density functional theory and a He segregation rate theory model. Predictive calculations of He embrittlement at the first wall of the future DEMO fusion concept reactor indicate that variation in the He embrittlement originated not only from He production rate related to neutron irradiation, but also from the He segregation energy at the GB that has a systematic trend in the periodic table. - Highlights: • We modeled He grain boundary (GB) segregation of bcc transition metals using first-principles-based rate theory. • We established the quantitative relation between He embrittlement and He segregation using GB cohesive energy. • He embrittlement was strongly dependent on He segregation energy at the GB that has a systematic trend in the periodic table.

  12. Embrittlement by hydrogen in zircaloy-4

    International Nuclear Information System (INIS)

    Almendariz M, M.C.

    1981-01-01

    The brittleness study of zircaloy-4 (nuclear quality) by hydrogen in the lattice was carried out with the purpose to watch the alterations at mechanic properties and fracture appearance for different thermal treatments. We used a statistical experimental method to watch both alterations. Fracture toughness property was evaluated in a semiquantitative way, and this property was calculated by integral J method but at a modified version, this modification lies in the area calculation under the curve of load versus head displacement plot; we used Instron machine to evaluate it. Three points bending proof was carried out in accordance with the device that specify A.S.T.M. standards. The samples were treated with hydrogen by means of catodic charged method and subsequently mechanic proof was realized. We used statistical analysis to get information of experimental results, and the watched general behaviour was a great disminution of the fracture toughness (in relation to not treated hydrogen sample), always that the hydrogen is present in the lattice, likewise we did watch that hydrogen does not influence at fracture appearance change, further there is a threshold hydrogen concentration at wich it starts to brittle and prior not influence it. We did conclude of results analysis that the fracture toughness is reduced by hydrogen and threshold concentration is subject to thermal treatment. Experimental results can be considered as semiquantitatives, but they gave us an explicit idea of hydrogen effect in zircaloy-4. (author)

  13. The modelling of irradiation embrittlement in submerged-arc welds

    International Nuclear Information System (INIS)

    Bolton, C.J.; Buswell, J.T.; Jones, R.B.; Moskovic, R.; Priest, R.H.

    1996-01-01

    Until very recently, the irradiation embrittlement behavior of submerged-arc welds has been interpreted in terms of two mechanisms, namely a matrix damage component and an additional component due to the irradiation-enhanced production of copper-rich precipitates. However, some of the weld specimens from a recent accelerated re-irradiation experiment have shown high Charpy shifts which exceeded the values expected from the measured shift in yield stress. Microstructural examination has revealed the occurrence of intergranular fracture (IGF) in these specimens, accompanied by grain boundary segregation of phosphorus. Theoretical models were developed to predict the parametric dependence of irradiation-enhanced phosphorus segregation on experimental variables. Using these parametric forms, along with the concept of a critical level of segregation for the onset of IGF instead of cleavage, a three mechanism trend curve has been developed. The form of this trend curve, taking into account IGF as well as matrix and copper embrittlement, is thus mechanistically based. The constants in the equation, however, are obtained by a statistical fit to the actual Charpy shift database

  14. Radiation: Rational use of diagnostic imaging studies in pediatrics

    International Nuclear Information System (INIS)

    Gentile, Fernando

    2008-01-01

    The objectives of this paper are to recognize the biological effects of radiation; explain the action of ionizing radiation on the cell; list the main sources of ionizing radiation; to indicate imaging studies considering the danger of radiation; select the method of imaging saving radiation; rational use of imaging studies without repeating exams. [es

  15. Study on radiation-inducible genes

    International Nuclear Information System (INIS)

    Lim, Sang Yong; Kim, Dong Ho; Joe, Min Ho; Song, Hyu Npa

    2012-01-01

    Transcription of previously identified radiation-inducible genes, uscA and cyoA, was examined responding to radiation. The putative promoter regions of both genes were cloned into pRS415 vector containing lacZ, and the core promoter region necessary for radiation response were determined through promoter deletion method. To investigate the role of uscA, which is assumed to be small RNA related with radiation response, a deletion mutant strain of uscA was constructed. However, uscA deletion did not affect bacterial survival against radiation exposure. The use of bacteria as anticancer agents has attracted interest. In this study, we tried to develop tumor targeting bacteria in which the radiation-inducible promoter activate a transgene encoding a cytotoxic protein. For outward secretion of anticancer protein produced inside bacteria, the N-terminal 140 amino acid of SspH1 was found to function as a secretion signal peptide. To create an attenuated tumor-targeting bacteria, Salmonella ptsI mutant strain was constructed, and we found that its virulence decreased. Finally, the tumor-targeting ability of ptsI mutant was verified by the use of in-vivo imaging analysis

  16. Study on radiation-inducible genes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Yong; Kim, Dong Ho; Joe, Min Ho; Song, Hyu Npa

    2012-01-15

    Transcription of previously identified radiation-inducible genes, uscA and cyoA, was examined responding to radiation. The putative promoter regions of both genes were cloned into pRS415 vector containing lacZ, and the core promoter region necessary for radiation response were determined through promoter deletion method. To investigate the role of uscA, which is assumed to be small RNA related with radiation response, a deletion mutant strain of uscA was constructed. However, uscA deletion did not affect bacterial survival against radiation exposure. The use of bacteria as anticancer agents has attracted interest. In this study, we tried to develop tumor targeting bacteria in which the radiation-inducible promoter activate a transgene encoding a cytotoxic protein. For outward secretion of anticancer protein produced inside bacteria, the N-terminal 140 amino acid of SspH1 was found to function as a secretion signal peptide. To create an attenuated tumor-targeting bacteria, Salmonella ptsI mutant strain was constructed, and we found that its virulence decreased. Finally, the tumor-targeting ability of ptsI mutant was verified by the use of in-vivo imaging analysis.

  17. TAREG 2.01/00 Project, ''Validation of neutron embrittlement for VVER 1000 and 440/213 RPVs, with emphasis on integrity assessment''

    International Nuclear Information System (INIS)

    Ahlstrand, R.; Margolin, B.; Kostylev, V.; Yurchenko, E.; Akbashev, I.; Piminov, V.; Nikolaev, Y.; Koshkin, V.; Kharshenko, V.; Chyrko, L.; Bukhanov, V.; Comsa, O.

    2012-01-01

    The irradiation embrittlement and integrity of the VVER reactors has been an important issue in many EC supported TACIS and PHARE projects since 1990. In the EC annual program 2000 two TACIS projects (TAREG 2.01/00 and 2.01/03) were approved on the issue in order to improve the neutron irradiation embrittlement databases, elaborate new trend curves for the embrittlement and to assess the integrity of the RPVs (Reactor Pressure Vessel) by analysing PTS transients (Pressurized Thermal Shock) for some selected Russian and Ukrainian VVER 1000 and 440/213 NPPs. In this paper the TAREG 2.01/00 project is briefly described with some details from the twin project 2.01/03, which served as a materials testing project, providing inputs for the 1st project. As a result of the project new trend curves for neutron irradiation embrittlement were elaborated, based on upgraded and more reliable surveillance results databases. The PTS study shows that the integrity of the selected VVER RPVs can be ensured to the end of RPV design life. (author)

  18. Radiation-induced heart injury. Radiopathological study

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y; Niibe, H [Gunma Univ., Maebashi (Japan). School of Medicine

    1975-11-01

    In order to identify radiation-induced heart injury and to differentiate it from heart disease, an attempt was made to clarify post-irradiation heart injury by investigating the histological changes which occur during the interval between the irradiation and the time of demonstrable histological changes. A study was made of 83 autopsies in which most of the primary neoplasms were breast cancers, lung cancers and mediastinal tumors. In 43 of these autopsies the heart had been irradiated. Sixty eight dd-strain mice were also used for microautoradiographic study. Histological changes in the heart were observed in 27 of the 43 cases receiving irradiation. The limit of the tolerance dose to the heart for indicating histological changes was 1220 ret in humans. The latent period without histological changes was 2.7 months after initiation of radiation therapy. Greater heart injury was observed after re-irradiation or after the combined therapy of radiation and chemotherapy especially mitomycin (MMC). The histological findings after treatment with MMC were similar to those of radiation-induced heart injury. Results of the study indicate that the damage is secondary to radiation-induced changes of the vascula connective tissue.

  19. Clinical and experimental studies on radiation proctitis

    International Nuclear Information System (INIS)

    Honke, Yoshifumi

    1988-01-01

    Clinical and experimental studies were performed to clarify the mechanism of developing radiation proctitis. The results were as follows; (1) In the clinical study with 38 uterine cervix cancer patients, who received radiotherapy, diarrhea was observed in 44.7% at the acute stage, while rectal bleeding in 36.7% about 1 year after radiation. However, no clinical correlation was observed between diarrhea and rectal bleeding. (2) Colon fiberscopic examination revealed little change at the acute stage. However, erosion, ulcer and remarkable redness were found at the late stage. By the magnified fiberscope, unit degeneration was found in 72.8% at the acute stage. (3) Concerning the histopathological changes, edema and inflammatory change were observed immediately after irradiation. Fibrosis was observed in 83.3% at the late stage. (4) The number of the immunoglobulin containing cells decreased by radiation. However, its recovered as time passed after radiation. (5) In experimental study with rats by microangiography, there were ramarkable changes of the small vessels, such as bending, tortuosity and capillary hyperplasia at the acute stage. However, these changes returned to normal soon. At the late stage, decreased number of blood vessels were observed. The above results indicated that rectal bleeding after exposure to radiation are developed by secondary circulation abnormality caused by fibrosis of the perivascular tissues. (author) 52 refs

  20. Embrittlement and annealing of reactor pressure vessel steels: comparison of BR3 surveillance and vessel plates to the surrogate plates representative of the Yankee Rowe vessel

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A.; Chaouadi, T.; Puzzolante, J.L.; Van de Velde, J. [Centre de l``Etude de l``Energie Nucleaire, Mol (Belgium); Biemiller, E.C. [Yankee Atomic Electric Company, Bolton (United States); Rossinski, S.T.; Carter, R.G. [Electric Power Research Institute, Charlotte (United States)

    1996-07-01

    The sister pressure vessels at the BR3 and Rowe Yankee PWR plants were operated at a lower-than-usual temperature (260 degrees Celsius) and their plates were austenitized at higher-than-usual temperature (970 degrees Celsius). A heat tratemement leading to a coarser microstructure than typical for the fine grain plates that are considered in development of USNRC Regulatory guide 1.99. This material displayed outlier behaviour charackterized by a 41J CVN-shift significantly larger than predicted by Regulatory Guide 1.99. Because lower radiation temperature and nickell alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rowe plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements enbodied in the PTS screening criterion. This paper compares three complementary studies undertaken to clarify these uncertainties: 1) the accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63% (A533-B) and YA9, 0.19% (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively, 2) the BR3 surveillance and vessel testing program: this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, ANCL was trepanned in early 1995, 3) the accelerated irradiations in the Belgian BR2 test reactor of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is shown that the PTS screening criterion was never attained by the BR3 and Rowe plates, and that the BR3 vessel anneal was neither necessary nor sufficient. Finally, the sensitivity of embrittlement, annealing and post-annealing reembrittlement to irradiation

  1. Embrittlement and annealing of reactor pressure vessel steels: comparison of BR3 surveillance and vessel plates to the surrogate plates representative of the Yankee Rowe vessel

    International Nuclear Information System (INIS)

    Fabry, A.; Chaouadi, T.; Puzzolante, J.L.; Van de Velde, J.; Biemiller, E.C.; Rossinski, S.T.; Carter, R.G.

    1996-07-01

    The sister pressure vessels at the BR3 and Rowe Yankee PWR plants were operated at a lower-than-usual temperature (260 degrees Celsius) and their plates were austenitized at higher-than-usual temperature (970 degrees Celsius). A heat tratemement leading to a coarser microstructure than typical for the fine grain plates that are considered in development of USNRC Regulatory guide 1.99. This material displayed outlier behaviour charackterized by a 41J CVN-shift significantly larger than predicted by Regulatory Guide 1.99. Because lower radiation temperature and nickell alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rowe plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements enbodied in the PTS screening criterion. This paper compares three complementary studies undertaken to clarify these uncertainties: 1) the accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63% (A533-B) and YA9, 0.19% (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively, 2) the BR3 surveillance and vessel testing program: this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, ANCL was trepanned in early 1995, 3) the accelerated irradiations in the Belgian BR2 test reactor of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is shown that the PTS screening criterion was never attained by the BR3 and Rowe plates, and that the BR3 vessel anneal was neither necessary nor sufficient. Finally, the sensitivity of embrittlement, annealing and post-annealing reembrittlement to irradiation

  2. Cobalt-60 radiation leukemogenesis studies

    International Nuclear Information System (INIS)

    Kawakami, T.G.; Cain, G.R.; Taylor, N.J.; Shifrine, M.; Goldman, M.

    1985-01-01

    Canine myeloblastic leukemia cells are not metabolically a homogeneous population. Isotopic ( 3 H-thymidine) and immunofluorescent labelling of blastic leukemia cells for DNA synthesis indicated that active DNA synthesis occurred in small populations (10-30%) while the remaining cells were at maturation arrest. This characteristic of reduced DNA synthesis is common to granulocytic, monocytic and megakaryoblastic leukemia. Based on allo-transplantation studies, malignancy of leukemic cells is a constitutive property of the cells. A protein factor produced by the leukemic cell is responsible for maturation arrest. Based on SDS-polyacrylamide gel electrophoresis, the maturation arrest factor consist of several peptides. Long-term cultures of leukemic cells have been established. Molecular studies for malignant transformation are now underway. 3 figures, 2 tables

  3. Study on radiation-inducible genes

    International Nuclear Information System (INIS)

    Lim, Sang Yong; Kim, Dong Ho; Joe, Min Ho; Park, Hae Jun; Song, Hyu Npa

    2012-01-01

    Radiation-inducible genes of E. coli, which is a model strain for bacterial study, and Salmonella, which is a typical strain for pathogenic bacteria were compared through omic analysis. Heat shock response genes and prophage genes were induced by radiation in Salmonella, not in E. coli. Among prophage genes tested, STM2628 showed the highest activation by radiation, and approximately 1 kb promoter region was turned out to be necessary for radiation response. To screen an artificial promoter showing activation by 2 Gy, the high-throughput screening method using fluorescent MUG substrate was established. The use of bacteria as anticancer agents has attracted interest. In this study, we tried to develop tumor targeting bacteria in which the radiation-inducible promoter activate a transgene encoding a cytotoxic protein. To do this, a tumor-targeting hfq Salmonella mutant strain was constructed, and we found that its virulence decreased. For outward secretion of anticancer protein produced inside bacteria, the signal peptide of SspH1 was determined and the signal peptide was proven to be able to secrete an anticancer protein. Tumor xenograft mouse model was secured, which can be used for efficiency evaluation of bacterial tumor therapy

  4. Study on radiation-inducible genes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Yong; Kim, Dong Ho; Joe, Min Ho; Park, Hae Jun; Song, Hyu Npa

    2012-01-15

    Radiation-inducible genes of E. coli, which is a model strain for bacterial study, and Salmonella, which is a typical strain for pathogenic bacteria were compared through omic analysis. Heat shock response genes and prophage genes were induced by radiation in Salmonella, not in E. coli. Among prophage genes tested, STM2628 showed the highest activation by radiation, and approximately 1 kb promoter region was turned out to be necessary for radiation response. To screen an artificial promoter showing activation by 2 Gy, the high-throughput screening method using fluorescent MUG substrate was established. The use of bacteria as anticancer agents has attracted interest. In this study, we tried to develop tumor targeting bacteria in which the radiation-inducible promoter activate a transgene encoding a cytotoxic protein. To do this, a tumor-targeting hfq Salmonella mutant strain was constructed, and we found that its virulence decreased. For outward secretion of anticancer protein produced inside bacteria, the signal peptide of SspH1 was determined and the signal peptide was proven to be able to secrete an anticancer protein. Tumor xenograft mouse model was secured, which can be used for efficiency evaluation of bacterial tumor therapy.

  5. The flow effect in the irradiation embrittlement in pressure vessel steels of nuclear power plants

    International Nuclear Information System (INIS)

    Kempf, Rodolfo A.; Cativa Tolosa, Sebastian; Fortis, Ana M.

    2009-01-01

    This paper deals with the advances in the study of the mechanical behavior of the Reactor Pressure Vessel steels under accelerate irradiations. The objective is to study the effect of lead factors on the interpretation of the mechanisms that induced the embrittlement of the RPV, like those of the reactors Atucha II and CAREM. It is described a device designed to irradiate Charpy specimens with V notch of SA-508 type 3 steel at power reactor temperature, installed in the RA-1 reactor. It is presented also an automatic digital image processing technique for partitioning Charpy fracture surface into regions with a clear physical meaning and appropriate for the work in hot cells. The aim is to obtain the fracture behavior of irradiated specimens with different lead factors in the range of high fluencies and to know the dependence with the composition of the alloy and with the diffusion of other alloy elements. (author)

  6. Prompt radiation activation analysis, (1) Theoretical study

    International Nuclear Information System (INIS)

    EL Barouni, A. M.; Araddad, S. Y.; Mosbah, D. S.; Elfakhri, S. M.; Rateb, J. M.; Benghzail, M. A.

    2004-01-01

    The measurement of the prompt γ following neutron capture in the reaction has been extensively developed. In this method the gamma-ray intensity is depended only upon the radiative capture cross-section and not upon the half-life of the product nucleus. The prompt gamma-ray activation analysis method stems from the radiative capture process which results in the decay of the compound nucleus by the emission of characteristic gamma radiation, either as a single photon with kinetic energy equal to the excitation energy less the recoil energy or, more likely, by a cascade of two or more photons with the same energy. The equations and the computer program required to calculate the yield, the intensity and the K χ emission probability per disintegration, are given in this study.(author)

  7. Radiation damage studies of nuclear structural materials

    International Nuclear Information System (INIS)

    Barat, P.

    2012-01-01

    Maximum utilization of fuel in nuclear reactors is one of the important aspects for operating them economically. The main hindrance to achieve this higher burnups of nuclear fuel for the nuclear reactors is the possibility of the failure of the metallic core components during their operation. Thus, the study of the cause of the possibility of failure of these metallic structural materials of nuclear reactors during full power operation due to radiation damage, suffered inside the reactor core, is an important field of studies bearing the basic to industrial scientific views.The variation of the microstructure of the metallic core components of the nuclear reactors due to radiation damage causes enormous variation in the structure and mechanical properties. A firm understanding of this variation of the mechanical properties with the variation of microstructure will serve as a guide for creating new, more radiation-tolerant materials. In our centre we have irradiated structural materials of Indian nuclear reactors by charged particles from accelerator to generate radiation damage and studied the some aspects of the variation of microstructure by X-ray diffraction studies. Results achieved in this regards, will be presented. (author)

  8. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Pritam [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Biner, Suleyman Bulent [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Spencer, Benjamin Whiting [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-07-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures the effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.

  9. Lessons Learned From Developing Reactor Pressure Vessel Steel Embrittlement Database

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL

    2010-08-01

    Materials behaviors caused by neutron irradiation under fission and/or fusion environments can be little understood without practical examination. Easily accessible material information system with large material database using effective computers is necessary for design of nuclear materials and analyses or simulations of the phenomena. The developed Embrittlement Data Base (EDB) at ORNL is this comprehensive collection of data. EDB database contains power reactor pressure vessel surveillance data, the material test reactor data, foreign reactor data (through bilateral agreements authorized by NRC), and the fracture toughness data. The lessons learned from building EDB program and the associated database management activity regarding Material Database Design Methodology, Architecture and the Embedded QA Protocol are described in this report. The development of IAEA International Database on Reactor Pressure Vessel Materials (IDRPVM) and the comparison of EDB database and IAEA IDRPVM database are provided in the report. The recommended database QA protocol and database infrastructure are also stated in the report.

  10. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    International Nuclear Information System (INIS)

    Chakraborty, Pritam; Biner, Suleyman Bulent; Zhang, Yongfeng; Spencer, Benjamin Whiting

    2015-01-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures the effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.

  11. Present status of the disk pressure tests for hydrogen embrittlements

    International Nuclear Information System (INIS)

    Fidelle, J.P.

    1988-01-01

    The Disk Pressure Tests (DPT) have been developed considerably. Theoretically: a finite elements mechanical analysis shows the build up of a triaxial stress state already at the beginning of the test, which, with other reasons accounts for the very high sensitivity. Experimentally: for Internal Hydrogen Embrittlement (IHE) e.g. Co, Ti, U alloys, for environment embrittlement due to H 2 hydrogenated media such as water vapor, alcohol, machining fluids or liquid NH 3 . The range has been expanded considerably: up to 300 MPa and up to 1000 0 C. Very low strain rate - longer than a month - tests have been able to evidence HGE; of FCC alloys where H diffusivity is low for very oxidation -sensitive metals such as Nb and Ta, effects may appear only at somewhat high rates. The relationship between dynamic tests, static and low-cycle fatigue tests has been determined. In a number of instances, including SCC, other techniques and even fracture mechanics have been compared to the DPT and proved at best equivalent and several times, less sensitive than a well conducted DPT. At extreme they could not reproduce the field service phenomenon whereas the DPT did and could also be applied satisfactorily to low yield stress materials. The main rupture aspects have been analysed mechanically and organized in a rational and comprehensive chart based on 12,000 + tests over 15O + materials in different conditions. Comparison of HGE tests and service behaviour of a large variety of materials and industrial equipments has made possible to specify acceptance criteria for industrial service, which, provided the shape of the stress strain curves is not significantly affected, can be expanded to IHE, HE by other fluids than H 2 , 36 refs

  12. Survey of irradiation embrittlement effects on the mechanical properties of alloyed steels

    International Nuclear Information System (INIS)

    Gillemot, F.

    1992-01-01

    In the everyday engineering practice the neutron irradiation embrittlement of the PWR wall materials is measured by empirical methods like Charpy impact testing. New developments in fracture mechanics are given better material characteristics. The use of Absorbed Specific Fracture Energy Measured on tensile bars is a promising way to solve the problem. On the other hand the IAEA runs coordinated research program to correlate the chemical analysis with the rate of the neutron embrittlement. Better understanding of the physics of neutron embrittlement should help the life time management of the PWR vessels

  13. Correlation methodology for predicting in-service irradiation embrittlement of reactor pressure vessels

    International Nuclear Information System (INIS)

    Odette, G.R.

    1980-01-01

    Irradiation embrittlement of reactor pressure steels is the consequence of altered microstructure due to both irradiation and time-at-temperature. Relatively poor characterisation of the initial microstructure and chemistry, and inaccurate dosimetry and temperature control, as well as failure properly to correlate these variables, have all contributed to a very large scatter in the experimental embrittlement data base. This has made improvement of the basic understanding of embrittlement very difficult. Therefore, it is necessary to develop a more realistic approach to utilising the data base. This is discussed, and proposals are made. (author)

  14. Dosimetry studies during breast cancer radiation treatment

    International Nuclear Information System (INIS)

    Ahmed, M. O. M.

    2005-06-01

    Previous studies indicated that breast cancer is wildly spread especially in women as compared to men. It is increased after an age of thirty five years in women so it is important to study the effect of exposure to the radiation on the intact breast during the treatment of the breast suffering from cancer. In this work the scattered doses for the intact breast during the treatment of the breast suffering from cancer were measured and also the probability of inducing cancer in it is also discussed. The study was performed for a group of patients composed of twenty five females. Also the backscattered doses to the intact breast were measured for thirteen female patients. During the treatment using gamma rays from Co-60 source the two tangential fields (lateral and medial) were selected for the measurements. The results of exposure to gamma radiation for the lateral and medial fields showed that the mean scattered and backscattered doses to the intact breast were (241.26 cGY,47.49 cGY) and (371.6 cGY,385.4 cGY), respectively. Beside that the somatic risk of induced cancer to the intact breast was found to be (6 .1X10 -3 ,1.2X10 -3 ) and (9.29X10 -3 , 9.63X10 -3 ), respectively. From the results obtained it was concluded that the intact breast received small amounts of radiation doses which may lead to breast cancer for the healthy breast. The recommendations from the present study are to take care of radiation protection to the patient, and also to take care of the patient treatment conditions like temperature, pressure and humidity during the radiation exposure.(Author)

  15. High Fluency Low Flux Embrittlement Models of LWR Reactor Pressure Vessel Embrittlement and a Supporting Database from the UCSB ATR-2 Irradiation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G. Robert [Univ. of California, Santa Barbara, CA (United States)

    2017-01-24

    Reactor pressure vessel embrittlement may limit the lifetime of light water reactors (LWR). Embrittlement is primarily caused by formation of nano-scale precipitates, which cause hardening and a subsequent increase in the ductile-to-brittle transition temperature of the steel. While the effect of Cu has historically been the largest research focus of RPV embrittlement, there is increasing evidence that Mn, Ni and Si are likely to have a large effect at higher fluence, where Mn-Ni-Si precipitates can form, even in the absence of Cu. Therefore, extending RPV lifetimes will require a thorough understanding of both precipitation and embrittlement at higher fluences than have ever been observed in a power reactor. To address this issue, test reactors that irradiate materials at higher neutron fluxes than power reactors are used. These experiments at high neutron flux can reach extended life neutron fluences in only months or several years. The drawback of these test irradiations is that they add additional complexity to interpreting the data, as the irradiation flux also plays a role into both precipitate formation and irradiation hardening and embrittlement. This report focuses on developing a database of both microstructure and mechanical property data to better understand the effect of flux. In addition, a previously developed model that enables the comparison of data taken over a range of neutron flux is discussed.

  16. European studies on occupational radiation exposure - ESOREX

    International Nuclear Information System (INIS)

    Petrova, K.; Frasch, G.

    2005-01-01

    Full text: The ESOREX project was initiated by the European Commission in 1997. The objectives of this European study are: to provide the European Commission and the national competent radiation protection authorities with reliable information on how personal radiation monitoring, reporting and recording of dosimetric results is organized in European countries; to collect reliable and directly comparable data on individual and collective radiation exposure in all occupational sectors where radiation workers are employed. The information about the monitoring of occupational radiation exposure, the levels of individual personal doses of workers in the different work sectors, the changes and trends of these doses over a period of several years and the international comparison of these data are useful information for many stakeholders. The survey consists of two parts. Part I surveys how radiation protection monitoring, recording and reporting is arranged within each of the 30 European countries. Part II collects doses from occupational exposure of classified workers in the participating countries. For each country, information is provided on the number of workers in defined work categories and how annual individual personal doses are distributed. The summary and the conclusions provide tentative recommendations for harmonizing modifications of some of the national monitoring, reporting and recording arrangements. In all ESOREX studies a beneficial, effective and extensive information base about thirty European states has been created. The studies resulted in country reports describing the legislative, administrative, organizational and technical aspects of the national dose monitoring and recording systems for occupationally radiation exposed workers. These reports are standardized, i.e. they have as far as possible an internationally comparable structure. The dose distributions of the radiation workers and the annual average and collective doses in the various work

  17. Study on radiation-responsive epigenomes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hong; Chung, Byung Yeop; Lee, Seung Sik; Moon, Yu Ran; Lee, Min Hee; Kim, Ji Hong [KAERI, Daejeon (Korea, Republic of)

    2011-01-15

    The purpose of this project is development of world-class headspring techniques of biological science for application of plant genomes/epigenomes through study on radiation- responsive epigenomes and improvement of the national competitiveness in the field of fundamental technology for biological science and industry. Research scope includes 1) Investigation of radiation-responsive epigenomes and elucidation of their relation with phenotypes, 2) Elucidation of interaction and transcription control of epigenomes and epigenetic regulators using ionizing radiation (IR), 3) Investigation of epigenome-mediated traits in plant development, differentiation and antioxidant defense using IR, and 4) Development of application techniques of radiation-responsive epigenomes for eco-monitoring and molecular breeding. Main results are as follow: Setup of conditions for chromatin immunoprecipitation in irradiated plants: investigation of aberrations in DNA methylation after treatment with different IR: elucidation of responses of epigenetic regulators to gamma rays (GR): investigation of aberrations in GR-responsive epigenetic regulators at different developmental stages: elucidation of interactive aberrations of epigenomes and epigenetic regulators after treatment of GR: comparison of functional genomes after treatment of GR or H{sub 2}O{sub 2}: elucidation of relation of epigenomes with GR-induced delay in senescence: elucidation of relation of epigenomes with GR-induced aberrations in pigment metabolism: comparison of antioxidant defense in epigenetic mutants: investigation of senescence-associated changes in epigenomes: investigation of senescence-associated changes in epigenetic regulators: comparison of aberrations in epigenomes at different dose of GR for mutation.

  18. Study on radiation-responsive epigenomes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hong; Lee, Seung Sik; Bae, Hyung Woo; Kim, Ji Hong; Kim, Ji Eun; Cho, Eun Ju; Lee, Min Hee; Moon, Yu Ran [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    The purpose of this project is development of world-class headspring techniques of biological science for application of plant genomes/epigenomes through study on radiation- responsive epigenomes and improvement of the national competitiveness in the field of fundamental technology for biological science and industry. Research scope includes 1) Investigation of radiation-responsive epigenomes and elucidation of their relation with phenotypes, 2) Elucidation of interaction and transcription control of epigenomes and epigenetic regulators using IR, 3) Investigation of epigenome-mediated traits in plant development, differentiation and antioxidant defense using IR, and 4) Development of application techniques of radiation-responsive epigenomes for eco-monitoring and molecular breeding. Main results are as follow: practical application of ChIP in GR-treated Arabidopsis using anti-histone antibodies: mapping of DNA methylomes associated with GR-responsive transcriptomes: setup of methylated DNA quantification using HPLC: elucidation of aberrations in epigenetic regulation induced by low-dose GR using gamma phytotron: comparison of gene expression of histone-modifying enzymes after treatment of GR: elucidation of transcriptomes and physiological alterations associated with delayed senescence of drd1-6 mutant: comparison of gene expression of DNA methylation-related enzymes in GR-treated rice callus and Arabidopsis: investigation of germination capacity, low-temperature, salinity and drought stress-resistance in drd1-6 epigenetic mutant: investigation of aberrations in DNA methylation depending on dose rates of gamma radiation

  19. Study on radiation-responsive epigenomes

    International Nuclear Information System (INIS)

    Kim, Jin Hong; Lee, Seung Sik; Bae, Hyung Woo; Kim, Ji Hong; Kim, Ji Eun; Cho, Eun Ju; Lee, Min Hee; Moon, Yu Ran

    2012-01-01

    The purpose of this project is development of world-class headspring techniques of biological science for application of plant genomes/epigenomes through study on radiation- responsive epigenomes and improvement of the national competitiveness in the field of fundamental technology for biological science and industry. Research scope includes 1) Investigation of radiation-responsive epigenomes and elucidation of their relation with phenotypes, 2) Elucidation of interaction and transcription control of epigenomes and epigenetic regulators using IR, 3) Investigation of epigenome-mediated traits in plant development, differentiation and antioxidant defense using IR, and 4) Development of application techniques of radiation-responsive epigenomes for eco-monitoring and molecular breeding. Main results are as follow: practical application of ChIP in GR-treated Arabidopsis using anti-histone antibodies: mapping of DNA methylomes associated with GR-responsive transcriptomes: setup of methylated DNA quantification using HPLC: elucidation of aberrations in epigenetic regulation induced by low-dose GR using gamma phytotron: comparison of gene expression of histone-modifying enzymes after treatment of GR: elucidation of transcriptomes and physiological alterations associated with delayed senescence of drd1-6 mutant: comparison of gene expression of DNA methylation-related enzymes in GR-treated rice callus and Arabidopsis: investigation of germination capacity, low-temperature, salinity and drought stress-resistance in drd1-6 epigenetic mutant: investigation of aberrations in DNA methylation depending on dose rates of gamma radiation

  20. Study on radiation-responsive epigenomes

    International Nuclear Information System (INIS)

    Kim, Jin Hong; Chung, Byung Yeop; Lee, Seung Sik; Moon, Yu Ran; Lee, Min Hee; Kim, Ji Hong

    2011-01-01

    The purpose of this project is development of world-class headspring techniques of biological science for application of plant genomes/epigenomes through study on radiation- responsive epigenomes and improvement of the national competitiveness in the field of fundamental technology for biological science and industry. Research scope includes 1) Investigation of radiation-responsive epigenomes and elucidation of their relation with phenotypes, 2) Elucidation of interaction and transcription control of epigenomes and epigenetic regulators using ionizing radiation (IR), 3) Investigation of epigenome-mediated traits in plant development, differentiation and antioxidant defense using IR, and 4) Development of application techniques of radiation-responsive epigenomes for eco-monitoring and molecular breeding. Main results are as follow: Setup of conditions for chromatin immunoprecipitation in irradiated plants: investigation of aberrations in DNA methylation after treatment with different IR: elucidation of responses of epigenetic regulators to gamma rays (GR): investigation of aberrations in GR-responsive epigenetic regulators at different developmental stages: elucidation of interactive aberrations of epigenomes and epigenetic regulators after treatment of GR: comparison of functional genomes after treatment of GR or H 2 O 2 : elucidation of relation of epigenomes with GR-induced delay in senescence: elucidation of relation of epigenomes with GR-induced aberrations in pigment metabolism: comparison of antioxidant defense in epigenetic mutants: investigation of senescence-associated changes in epigenomes: investigation of senescence-associated changes in epigenetic regulators: comparison of aberrations in epigenomes at different dose of GR for mutation

  1. Study of radiation damage of steels for light water pressure vessels at UJV

    International Nuclear Information System (INIS)

    Vacek, N.; Stoces, B.

    1980-01-01

    Preoperational determination of radiation resistance of pressure vessel steels is performed at accelerated neutron exposure in a test or materials research reactor. The results obtained at accelerated and operating exposure are not fully identical and surveillance bodies are therefore used manufactured from the pressure vessel material. Currently, the following steels are used for the manufacture of light water reactor pressure vessels: Mn-Mo-Ni (ASTM-A533-B, ASTM-A508), Cr-Mo-V (15Kh2M1FA). At UJV Rez, for irradiation Chanca-M probes imported from France are used featuring electric temperature control. Almost identical radiation embrittlement was measured for all three steels after irradiation with a neutron fluence of 3x10 23 n.m -2 at a temperature of 290 degC. (H.S.)

  2. Hydrogen embrittlement of metals. A bibliography with abstracts. Search period covered: 1964--August 1975

    International Nuclear Information System (INIS)

    Smith, M.F.

    1975-10-01

    The research covers the hydrogen embrittlement of both ferrous and nonferrous metals and alloys and includes nuclear technology, aircraft metallurgy, mechanical properties, testing, electroplating, fatigue, corrosion and fracture. Contains 230 abstracts

  3. The role of point defect clusters in reactor pressure vessel embrittlement

    International Nuclear Information System (INIS)

    Stoller, R.E.

    1993-01-01

    Radiation-induced point defect clusters (PDC) are a plausible source of matrix hardening in reactor pressure vessel (RPV) steels in addition to copper-rich precipitates. These PDCs can be of either interstitial or vacancy type, and could exist in either 2 or 3-D shapes, e.g. small loops, voids, or stacking fault tetrahedra. Formation and evolution of PDCs are primarily determined by displacement damage rate and irradiation temperature. There is experimental evidence that size distributions of these clusters are also influenced by impurities such as copper. A theoretical model has been developed to investigate potential role of PDCs in RPV embrittlement. The model includes a detailed description of interstitial cluster population; vacancy clusters are treated in a more approximate fashion. The model has been used to examine a broad range of irradiation and material parameters. Results indicate that magnitude of hardening increment due to these clusters can be comparable to that attributed to copper precipitates. Both interstitial and vacancy type defects contribute to this hardening, with their relative importance determined by the specific irradiation conditions

  4. Studies on radiation-induced graft polymerization

    International Nuclear Information System (INIS)

    Omichi, Hideki

    1978-09-01

    Radiation-induced graft polymerization is used extensively to improve physical properties of polymers, but few processes are now commercialized. The reason for this is partly inadequate basic research on the reaction and partly the difficulty in developing the grafting process with large radiation source. Firstly, new techniques are proposed of studying kinetics of the graft polymerization in heterogeneous system. Based on the grafting yield, the molecular weight of graft chains, and the amount of radicals given by ESR and activation analysis, kinetic parameters are obtained and the reaction mechanism of grafting process is discussed. Secondly, the development of grafting process of poly (vinyl chloride)-butadiene is described. By study of the reaction, process design, construction and operation of the pilot plant, and economic analysis of the process, this process with 60 Co gamma ray sources is shown to be industrially promising. (author)

  5. A radiopharmacological study without human radiation exposure

    International Nuclear Information System (INIS)

    Loew, D.; Graul, E.H.; Kunkel, R.

    1984-01-01

    The development, study and control of new drugs today is hardly conceivable without nuclear medicine studies. Nuclear physicians on ethical commissions bear great responsibility in the planning and execution of such studies. In order to protect subjects and patients those nuclear techniques are therefore to be welcome which do not include exposure to radiation. Nuclear techniques used in in-vitro diagnostics (RIA) and the determination of naturally occurring nuclides incorporated in the human body belong to this category. With the aid of a clinico-pharmacological study of a new combination of diuretics it is shown that both methods supply valuable pharmacodynamic evidence. (orig.) [de

  6. Temper embrittlement, irradiation induced phosphorus segregation and implications for post-irradiation annealing of reactor pressure vessels

    International Nuclear Information System (INIS)

    McElroy, R.J.; English, C.A.; Foreman, A.J.; Gage, G.; Hyde, J.M.; Ray, P.H.N.; Vatter, I.A.

    1999-01-01

    Three steels designated JPB, JPC and JPG from the IAEA Phase 3 Programme containing two copper and phosphorus levels were pre- and post-irradiation Charpy and hardness tested in the as-received (AR), 1200 C/0.5h heat treated (HT) and heat treated and 450 C/2000h aged (HTA) conditions. The HT condition was designed to simulate coarse grained heat-affected zones (HAZ's) and showed a marked sensitivity to thermal ageing in all three alloys. Embrittlement after thermal ageing was greater in the higher phosphorus alloys JPB and JPG. Charpy shifts due to thermal ageing of between 118 and 209 C were observed and accompanied by pronounced intergranular fracture, due to phosphorus segregation. The irradiation embrittlement response was complex. The low copper alloys, JPC and JPB, in the HT and HTA condition exhibited significant irradiation induced Charpy shift but very low or even negative hardness changes indicating non-hardening embrittlement. The higher copper alloy, JPG, also exhibited irradiation hardening in line with its copper content. Fractographic and microchemical studies indicated irradiation induced phosphorus segregation and a transition from cleavage to intergranular failure at grain boundary phosphorus concentrations above a critical level. The enhanced grain boundary phosphorus level increased with dose in agreement with a kinetic segregation model developed at Harwell. The relevance of the thermal ageing studies to RPV Annealing for Plant-Life Extension was identified early in the program. It is of concern that annealing of RPV's has been performed, or is proposed, at temperatures in the range 425--475 C for periods of about 1 week (168h). Much attention has been given to the use of in-situ hardness measurements and machining miniature Charpy and tensile specimens from belt-line plate and weld materials. However, HAZ's, often containing higher phosphorus levels than the present materials, have largely been ignored. A post-irradiation annealing (PIA

  7. Rate of fatigue crack growth in residual stress fields of welded titanium joints with different contents of embrittling impurities

    International Nuclear Information System (INIS)

    Troshchenko, V.T.; Pokrovskij, V.V.; Yarusevich, V.L.; Mikhajlov, V.I.; Sher, V.A.

    1990-01-01

    Resistance to fatigue crack growth (FCG) has been studied in welded joints of structural titanium alloys contaminated by embrittling impurities. Besides, effect of crack closing has been taken into account what makes it possible to determine the effective coefficient of the stress intensity. The rate of fatigue crack growth is proved to considerably depend on the value and direction of residual stresses. The rate dependence of FCG in welded joints of structural titanium alloys on the swing of effective coefficient of stress intensity is invariant to the value and direction of weld residual stresses

  8. Study of radiation-destroyed wood

    International Nuclear Information System (INIS)

    Klimentov, A.S.; Shakhanova, R.K.; Stepanova, I.N.; Vysotskaya, I.F.

    1986-01-01

    The change in carbohydrate composition of aspen wood exposed to electron beam radiation (0.5 MeV, dose rates of 0-0.56 MGy) is studied. It has been found that the water-soluble polysaccharide content grows from 0.47 up to 8.54 %, and that of the non-hydrolyzed polysaccharides decreases from 49.4 down to 36.1 %. The polysaccharide total content of aspen wood goes down from 61.28 to 56.82 % with the radiation dose increasing. Consequently, the xylose, arabinose, and ramnose percentage of wood hydrolyzates increases correspondingly from 11.9 up to 15.44, from 0.66 up to 0.90, and from 0.21 up to 0.38

  9. A synchrotron radiation study of strontium titanate

    International Nuclear Information System (INIS)

    Maslen, E.N.; Spadaccini, N.; Ito, T.; Marumo, F.; Satow, Y.

    1995-01-01

    Electron deformation densities Δρ for SrTiO 3 have been determined from diffraction data measured using focused synchrotron radiation with λ = 0.7000 (2) A at the Photon Factory, KEK, Japan. Corrections for secondary extinction were estimated from the variation of diffraction intensity with path length, and checked from the λ-dependence of the strong intensities indicated by measurements using a weaker parallel beam with λ = 0.5000 (2) A. The 0.7 A study is more precise than earlier analyses with Mo Kα radiation. The difference density near the Ti nucleus is mildly anisotropic, and the Δρ topography is similar to those for closed-shell atoms in related perovskite structures. (orig.)

  10. Studies on chronic effect on radiation

    International Nuclear Information System (INIS)

    Yun, T.K.; Kang, T.U.; Yun, Y.S.; Chung, I.Y.; Koh, J. W.; Kim, J.W.; Ryu, Y.W.

    1983-01-01

    This experiment was carried out to evaluate the chronic harzard of Co-60 low dose irradiation on ICR mice. There is now considerable evidence from human studies that age, both at exposure to radiation and at observation for risk, can be a major determinant of radiation induced cancer risk. For this reason, ICR mice at different ages as specified below were exposed to 60 m rads/week, 500 m rads/biweek of whole body Co-60 radiation at a dose rate of 3.6 rads/min. ICR mice were irradiated during pregnant period and each period from the 1st week to the 3rd week to the 52nd week, from the 6th week to the 52nd week and from the 22nd week to the 52nd week after the birth. All the experimental mice were autopsied immediately after sacrificed at the 52nd week. And all of their major organs were examined grossly and weighed. After fixation histo-pathological preparations were made for microscopical study. Blood cells-W.B.C., R.B.C., Hb-from eye's vein were counted by hemocytometer and hemometer. (Author)

  11. Epidemiological studies of radiation workers: preliminary communication

    International Nuclear Information System (INIS)

    Schofield, G.B.

    1982-01-01

    British Nuclear Fuels Limited has embarked on a study of the mortality data among those of its workforce who were employed prior to 1 January 1976. The study covers a total population of about 41000 current and ex-employees, but is initially concerned with a radiation worker cohort of 7500 at the Sellafield establishment where the highest radiation doses are received. Tracing of the health status of ex-employees has been undertaken using the services provided by the Office of Population Censuses and Surveys (OPCS) and the Department of Health and Social Security (DHSS) and it is expected that ultimately the level of trace will be better than 97%. Mortality data not specifically related to radiation workers are included and relate to male deaths among serving staff and pensioners during the years 1962-1978. Those observed deaths (O) are compared on an age standardized basis with those expected (E) from the general population, the ratio O/E being about 1 for all cancers and less than 1 for non-cancer deaths. This pattern is consistent with the well known 'healthy worker' effect seen in industry. (author)

  12. Studying Radiation Tolerant ICs for LHC

    CERN Multimedia

    Faccio, F; Snoeys, W; Campbell, M; Casas-cubillos, J; Gomes, P

    2002-01-01

    %title\\\\ \\\\In the recent years, intensive work has been carried out on the development of custom ICs for the readout electronics for LHC experiments. As far as radiation hardness is concerned, attention has been focussed on high total dose applications, mainly for the tracker systems. The dose foreseen in this inner region is estimated to be higher than 1~Mrad/year. In the framework of R&D projects (RD-9 and RD-20) and in the ATLAS and CMS experiments, the study of different radiation hard processes has been pursued and good contacts with the manufacturers have been established. The results of these studies have been discussed during the Microelectronics User Group (MUG) rad-hard meetings, and now some HEP groups are working to develop radiation hard ICs for the LHC experiments on some of the available rad-hard processes.\\\\ \\\\In addition, a lot of the standard commercial electronic components and ASICs which are planned to be installed near the LHC machine and in the detectors will receive total doses in ...

  13. Light source for synchrotron radiation x-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL)

    International Nuclear Information System (INIS)

    Zhao Jiyong; Jiang Jianhua; Tian Yulian

    1992-01-01

    Characteristics of the synchrotron radiation source for X-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL) is described, local geometrical resolution of topographies is discussed, and the diffracting intensities of white beam topography is given

  14. Physiological and genetics studies of highly radiation-resistant bacteria

    International Nuclear Information System (INIS)

    Keller, L.C.

    1981-01-01

    The phenomenon of radiation resistance was studied using micrococci and Moraxella-Acinetobacter capable of surviving very high doses of gamma radiation which were isolated from foods. Physiological age, or growth phase, was found to be an important factor in making comparisons of radiation-resistance among different bacteria and their mutants. Radiation-resistant bacteria were highly resistant to the lethal effect of nitrosoguanidine used for mutagenesis. Studies of relative resistance of radiation-resistant bacteria, radiation-sensitive mutants, and nonradiation-resistant bacteria to killing by different chemical mutagens did not reveal a correlation between the traits of radiation resistance and mutagen resistance among different strains. Comparisons of plasmid profiles of radiation-resistant bacteria and selected radiation-sensitive mutants suggested the possibility that plasmids may carry genes involved in radiation resistance

  15. Gaseous hydrogen embrittlement of an API X80 ferrito-pearlitic steel; Fragilisation par l'hydrogene gazeux d'un acier ferrito-perlitique de grade API X80

    Energy Technology Data Exchange (ETDEWEB)

    Moro, I.

    2009-11-15

    This work deals with hydrogen embrittlement, at ambient temperature and under a high pressure gaseous way, of an API X80 high elasticity limit steel used for pipelines construction, and with the understanding of the associated physical mechanisms of the embrittlement. At first has been described a bibliographic study of the adsorption, absorption, diffusion, transport and trapping of hydrogen in the steels. Then has been carried out an experimental and numerical study concerning the implantation in the finite element code CASTEM3M of a hydrogen diffusion model coupled to mechanical fields. The hydrogen influence on the mechanical characteristics of the X80 steel, of a ferrito-pearlitic microstructure has been studied with tensile tests under 300 bar of hydrogen and at ambient temperature. The sensitivity of the X80 steel to hydrogen embrittlement has been analyzed by tensile tests at different deformation velocities and under different hydrogen pressures on axisymmetrical notched test specimens. These studies show that the effect of the hydrogen embrittlement vary effectively with the experimental conditions. Moreover, correlated with the results of the tests simulations, it has been shown too that in these experimental conditions and for that steel, the hydrogen embrittlement is induced by three different hydrogen populations: the hydrogen trapped at the ferrite/perlite interfaces, the hydrogen adsorbed on surface and the reticular hydrogen trapped in the material volume. At last, the tensile and rupture tests of specimens, during which atmosphere changes have been carried out, have shown a strong reversibility of the hydrogen embrittlement, associated with its initiation as soon as hydrogen is introduced in the atmosphere. At last, three hydrogen mechanisms, depending of the different hydrogen populations are presented and discussed. (O.M.)

  16. Effect of the 718 alloy metallurgical status on hydrogen embrittlement; Effet de l'etat metallurgique de l'alliage 718 sur la fragilisation par l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Galvano, F.; Andrieu, E.; Blanc, Ch.; Odemer, G.; Ter-Ovanessian, B.; Cocheteau, N.; Holstein, A.; Reboul, Ch. [Universite de Toulouse, CIRIMAT, UPS/CNRS/INPT, 31 - Toulouse (France); Clouez, J.M. [AREVA NP 69 - Lyon (France)

    2010-03-15

    The Inconel 718 is a nickel superalloy which is widely used in the nuclear industry, but is sensitive to hydrogen embrittlement induced by corrosion and stress corrosion cracking phenomena, and by the presence of dissolved hydrogen in pressurized water reactor environments. As this alloy is hardened by precipitation of different intermetallic phases, it appeared that the presence of these precipitates has a strong influence on the hydrogen embrittlement. The authors report the study of the nature and effect of the different traps (intermetallic phases, carbides or their interfaces) on the hydrogen embrittlement susceptibility of the 718 alloy, and more particularly on the observed failure modes. Experiments are performed on tensile samples in which hydrogen content can be measured. The type and grain size of the observed microstructures are given with respect with the thermal treatment, as well as the mechanical properties with or without hydrogen loading

  17. Study on radiation-responsive epigenomes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Sik; Lee, Seung Sik; Chung, Byung Yeoup; and others

    2013-01-15

    The purpose of this project is development of world-class head spring techniques of biological science for application of plant genomes/epigenomes through study on radiation-responsive epigenomes and improvement of the national competitiveness in the field of fundamental technology for biological science and industry. Research scope includes 1) Investigation of radiation-responsive epigenomes and elucidation of their relation with phenotypes, 2) Elucidation of interaction and transcription control of epigenomes and epigenetic regulators using IR, 3) Investigation of epigenome-mediated traits in plant development, differentiation and antioxidant defense using IR, and 4) Development of application techniques of radiation-responsive epigenomes for eco-monitoring and molecular breeding. Main results are as follow: investigation of the expression level of histone-modifying enzymes by IR; elucidation of the structural and functional changes of chaperone protein by IR; development of transgenic plant (DRD1-6); investigation of transcription control of epigenetic regulators by IR; investigation of relevance between DNA methylation and miRNA; comparison of gene expression in wild type and cmt mutant from Arabidopsis using gene chip; investigation control of epigenetic regulators in drd1-6 mutant by drought stress; development of transgenic plant using epigenetic regulators.

  18. Cell kinetic studies on radiation induced leukemogenesis

    International Nuclear Information System (INIS)

    Nakao, Isamu; Suzuki, Gen; Imai, Yasufumi; Kawase, Yoshiko; Nose, Masako; Hirashima, Kunitake; Bessho, Masami

    1989-01-01

    The purpose of this study was threefold: (1) to determine the clonal origin of radiation-induced thymic lymphoma in mice with cellular mosaicism for phosphoglycerate kinase; (2) to determine the incidence and latent period of myeloid leukemia and thymic lymphoma induced by whole-body exposure to median doses (3.0 Gy or less) in RFM/MsNrs-2 mice; and (3) to examine the influence of human recombinant interleukin-2 (hrIL-2). Thymic lymphoma was of a single cell origin. The incidence of radiation-induced myeloid leukemia and thymic lymphoma in RFM mice increased in a dose dependent fashion. Mean latent periods of both myeloid leukemia and thymic lymphoma after irradiation became shorter in proportion to radiation doses. When hrIL-2 was injected to RFM mice receiving 3.0 Gy, mean survivals were shorter in thymoma-bearing mice than the control mice. This suggested that hrIL-2 shortens the promotion step of thymoma. Administration of hrIL-2 failed to alter the incidence of myeloid leukemia or the mean survival of mice having myeloid leukemia, indicating that the protocol of hrIL-2 administration was not so sufficient as to alter the myeloid leukemogenesis. (Namekawa, K)

  19. Viscometric studies of chitosan radiation degradation

    International Nuclear Information System (INIS)

    Rapado, M.; Ceausoglu, I.; Hunkeler, D.

    2001-01-01

    The paper presents the preliminary results, related to the viscometric studies on chitosan gamma radiation degradation. To follow the effects on the processes of chitosan transformations caused by irradiation in vacuum irradiated solutions changes of viscosity, and viscosity average molecular weight were measured The influence of absorbed dose on the chitosan molecular weight was studied using the Mark-Houwink-Sakurada equation. Various relationships for the for the determination of the intrinsic viscosity were made vias the Huggins, Kramer and Schulz- Blaschke models. The distinct decrease of intrinsic viscosity indicates that the main change scission was the dominating process

  20. Practical illustration of the traditional vers. alternative LOCA embrittlement criteria

    International Nuclear Information System (INIS)

    Vrtilkova, V.; Novotny, L.; Hamouz, V.; Doucha, R.; Tinka, I.; Macek, J.; Lahovsky, F.

    2005-01-01

    Evaluation of LOCA time behaviour is usually based on traditional embrittlement criterion, represented by the equivalent cladding reacted (ECR) limit 17 % (18 %) at the peak cladding temperature below 1204 0 C (1200 0 C). From different existing correlations for evaluation the ECR, the correlations of Baker-Just, Cathcart and VNIINM (Bibilashvili) are discussed here. Results, obtained by these correlations, are illustrated for typical and atypical LOCA courses analysed for the WWER 440 plant. An approach to assess these correlations from the viewpoint of violation of the observed criterion is presented. This approach is based on determination of the temperature vers. time of exposition, when the criterion limit is reached. Reasons leading to necessity of alternative criterion proposal are summarised. This criterion for LOCA events evaluation, including corresponding correlation, is proposed on the basis of the long-term experimental research of cladding materials at UJP Praha. The computational results, obtained according to this alternative criterion, are illustrated for the same courses of LOCA events as for traditional criteria and traditional correlations. Proposed criterion is also confronted with the other discussed criteria in accordance with mentioned approach presented in this paper. The characteristic experimental results and key findings are summarised. They substantiate and support the proposed alternative criterion. An advantage of the criterion is its independence on ECR, on hydrogen and oxygen content and on oxidation history, and its applicability to current Zr-based alloy cladding materials as well. This applicability is kept while preserving the simplicity of the criterion using. (author)

  1. Internal hydrogen embrittlement of gamma-stabilized uranium alloys

    International Nuclear Information System (INIS)

    Powell, G.L.; Koger, J.W.; Bennett, R.K.; Williamson, A.L.; Hemperly, V.C.

    1976-01-01

    Relationships between the tensile ductility and fracture characteristics of as-quenched, gamma-stabilized uranium alloys (uranium--10 wt percent molybdenum, uranium--8.5 wt percent niobium, uranium--10 wt percent niobium, and uranium--7.5 wt percent niobium--2.5 wt percent zirconium), the hydrogen content of the tensile specimens, and the hydrogen gas pressure during the annealing at 850 0 C of the tensile test blanks prior to quenching were established. For these alloys, the tensile ductility decreases only slightly with increasing hydrogen content up to a critical hydrogen concentration above which the tensile ductility drops to nearly zero. The only alloy not displaying this sharp drop in tensile ductility was U--7.5 Nb--2.5 Zr, probably because sufficiently high hydrogen contents could not be achieved under our experimental arrangements. The critical hydrogen content for ductility loss increased with increasing hydrogen solubility in the alloy. Fracture surfaces produced by internal hydrogen embrittlement do not resemble those produced by stress corrosion cracking (SCC) in aqueous environments containing chloride ions. 8 figs

  2. Multiscale modelling of hydrogen embrittlement in zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Majevadia, Jassel; Wenman, Mark; Balint, Daniel; Sutton, Adrian [Imperial College London (United Kingdom); Nazarov, Roman [MPIE, Dusseldorf (Germany)

    2013-07-01

    Delayed Hydride Cracking (DHC) is a commonly occurring embrittlement phenomenon in zirconium alloy fuel cladding within Pressurized Water Reactors (PWRs). DHC is caused by the accumulation of hydrogen atoms taken up by the metal, and the formation of brittle hydrides in the vicinity of crack tips. The rate of crack growth is limited by the rate of hydrogen diffusion to the crack, which can be modelled by solving a stress driven diffusion equation that incorporates the elastic interaction between defects. This of interest in the present work. The elastic interaction is calculated by combining defect forces determined through Density Functional Theory (DFT) simulations, and an exact solution for the anisotropic elastic field of an edge dislocation in Zr. making it possible to determine the interaction energy without the need to simulate directly a hydrogen atom in the presence of a crack or dislocation, which is computationally prohibitive with DFT. The result of the elastic interaction energy calculations can be utilised to determine the segregation of hydrogen to a crack tip for varying crack tip geometries, and in the presence of other crystal defects. This is done by implementing a diffusion equation for hydrogen within a discrete dislocation dynamics simulation. In the present work a model has been developed to demonstrate the effect of a single dislocation on hydrogen diffusion to create a Cottrell atmosphere.

  3. Relationship between irradiation hardening and embrittlement of pressure vessel steels

    International Nuclear Information System (INIS)

    Odette, G.R.; Lombrozo, P.M.; Wullaert, R.A.

    1984-01-01

    Based on a large body of test and power reactor data, empirical relationships between irradiation strengthening and embrittlement are derived. It is shown that the Charpy V-notch (C /SUB v/ ) 41-J indexed transition temperature increases and the upper-shelf energy decreases systematically with increases in the yield stress. The transition temperature shifts are related to two mechanisms: increases in the maximum temperature of elastic-cleavage fracture, and decreases in the slope of the C, energy versus test temperature curve associated with reductions in the upper-shelf energy. The cleavage shift contribution, which is usually dominant, can be predicted from the initial temperature of fracture at general yield and the change in ambient temperature static yield stress. In developing this simplified cleavage fracture model, it is shown that: (a) yield stress changes are independent of temperature and strain rate; (b) the increase in yield stress with decreasing temperature is independent of the strain rate, irradiation, and metallurgical state; and (c) the microcleavage fracture stress is independent of irradiation and temperature. A semi-empirical procedure for estimating the shift contribution due to upper-shelf energy decreases and the total temperature shift at 41 J, based on the observation of an approximately constant temperature interval of the transition regime, is proposed, along with a method for forecasting the entire irradiated C, curve

  4. Radiation dose measurement in gastrointestinal studies

    International Nuclear Information System (INIS)

    Sulieman, A.; Elzaki, M.; Kappas, C.; Theodorou, K.

    2011-01-01

    Barium studies investigations (barium swallow, barium meal and barium enema) are the basic routine radiological examination, where barium sulphate suspension is introduced to enhance image contrast of gastrointestinal tracts. The aim of this study was to quantify the patients' radiation doses during barium studies and to estimate the organ equivalent dose and effective dose with those procedures. A total of 33 investigations of barium studies were measured by using thermoluminescence dosemeters. The result showed that the patient entrance surface doses were 12.6±10, 44.5±49 and 35.7±50 mGy for barium swallow, barium meal, follow through and enema, respectively. Effective doses were 0.2, 0.35 and 1.4 mSv per procedure for barium swallow, meal and enema respectively. Radiation doses were comparable with the previous studies. A written protocol for each procedure will reduce the inter-operator variations and will help to reduce unnecessary exposure. (authors)

  5. Methodologic assessment of radiation epidemiology studies

    International Nuclear Information System (INIS)

    Beebe, G.W.

    1983-01-01

    Epidemiologic studies of the late effects of ionizing radiation have utilized the entire spectrum of situations in which man has been exposed. These studies have provided insights into the dependence of human effects upon not only dose to target tissues but also other dimensions of exposure, host characteristics, and time following exposure. Over the past three decades studies have progressed from the mere identification of effects to their measurement. Because investigators of human effects have no control over the exposure situation, validity must be sought in the consistency of findings among independent studies and with accepted biologic principles. Because exposure may be confounded with factors that are hidden from view, bias may enter into any study of human exposure. Avoidance of bias and attainment of sufficient power to detect relationships that are real are methodologic challenges. Many methodologic issues, e.g., those associated with the definition and measurement of specific end-points, or with the selection of appropriate controls, permeate epidemiologic work in all fields. Others, especially those concerned with the measurement of exposure, the patterning of events in time after exposure, and the prediction of events beyond the scope of existing observations give radiation epidemiology its distinctive character

  6. SCK-CEN Contribution to the IAEA Round Robin Exercise on WWER-440 RPV Weld Metal Irradiation Embrittlement, annealing and Re-Embrittlement. Second Progress Report

    International Nuclear Information System (INIS)

    Van Walle, E.; Chaouadi, R.; Scibetta, M.; Lucon, E.; Weber, M.

    1999-07-01

    The report gives the actual status of the contribution of the Belgian Nuclear Research Centre SCK-CEN to the IAEA Round Robin Exercise on WWER-440 RPV Weld Material Irradiation, Annealing and Re-Embrittlement. Results from the reference testing of unirradiated material as well as the results of the CHIVAS-7 experiment are discussed

  7. Study of the radiative pion decay

    International Nuclear Information System (INIS)

    Chen, Chuan-Hung; Geng, Chao-Qiang; Lih, Chong-Chung

    2011-01-01

    We study the radiative pion decay of π + →e + ν e γ in the light-front quark model. We also summarize the result in the chiral perturbation theory. The vector and axial-vector hadronic form factors (F V,A ) for the π→γ transition are evaluated in the whole allowed momentum transfer. In terms of these momentum dependent form factors, we calculate the decay branching ratio and compare our results with the experimental data and other theoretical predictions in the literature. We also constrain the possible size of the tensor interaction in the light-front quark model.

  8. The BNFL radiation-mortality study

    International Nuclear Information System (INIS)

    Clough, E.A.; Schofield, G.B.

    1982-01-01

    An overview of an epidemiological study of BNFL employees and pensioners is presented. Overall, mortality patterns are similar to those in the general population. Non-cancer deaths among serving staff are significantly below those expected from national statistics due to the healthy worker effect; pensioners are more comparable to the national population. A similar pattern is found for lung malignancy. Observed deaths due to other cancers among serving staff and pensioners approximate closely to expectation; most are due to leukaemia but there is no evidence of any increased incidence at Sellafield where radiation exposures are higher than at other BNFL sites. (U.K.)

  9. Neutron radiation damage studies on silicon detectors

    International Nuclear Information System (INIS)

    Li, Zheng; Chen, W.; Kraner, H.W.

    1990-10-01

    Effects of neutron radiation on electrical properties of Si detectors have been studied. At high neutron fluence (Φ n ≥ 10 12 n/cm 2 ), C-V characteristics of detectors with high resistivities (ρ ≥ 1 kΩ-cm) become frequency dependent. A two-trap level model describing this frequency dependent effect is proposed. Room temperature anneal of neutron damaged (at LN 2 temperature) detectors shows three anneal stages, while only two anneal stages were observed in elevated temperature anneal. 19 refs., 14 figs

  10. Study of radiation detectors response in standard X, gamma and beta radiation standard beams

    International Nuclear Information System (INIS)

    Nonato, Fernanda Beatrice Conceicao

    2010-01-01

    The response of 76 Geiger-Mueller detectors, 4 semiconductor detectors and 34 ionization chambers were studied. Many of them were calibrated with gamma radiation beams ( 37 Cs and 60 Co), and some of them were tested in beta radiation ( 90 Sr+ 9' 0Y e 204 Tl) and X radiation (N-60, N-80, N-100, N-150) beams. For all three types of radiation, the calibration factors of the instruments were obtained, and the energy and angular dependences were studied. For beta and gamma radiation, the angular dependence was studied for incident radiation angles of 0 deg and +- 45 deg. The curves of the response of the instruments were obtained over an angle interval of 0 deg to +- 90 deg, for gamma, beta and X radiations. The calibration factors obtained for beta radiation were compared to those obtained for gamma radiation. For gamma radiation, 24 of the 66 tested Geiger-Mueller detectors presented results for the energy dependence according to international recommendation of ISO 4037-2 and 56 were in accordance with the Brazilian ABNT 10011 recommendation. The ionization chambers and semiconductors were in accordance to national and international recommendations. All instruments showed angular dependence less than 40%. For beta radiation, the instruments showed unsatisfactory results for the energy dependence and angular dependence. For X radiation, the ionization chambers presented results for energy dependence according to the national recommendation, and the angular dependence was less than 40%. (author)

  11. Models for embrittlement recovery due to annealing of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Eason, E.D.; Wright, J.E.; Nelson, E.E.; Odette, G.R.; Mader, E.V.

    1995-05-01

    The reactor pressure vessel (RPV) surrounding the core of a commercial nuclear power plant is subject to embrittlement due to exposure to high energy neutrons. The effects of irradiation embrittlement can be reduced by thermal annealing at temperatures higher than the normal operating conditions. However, a means of quantitatively assessing the effectiveness of annealing for embrittlement recovery is needed. The objective of this work was to analyze the pertinent data on this issue and develop quantitative models for estimating the recovery in 30 ft-lb (41 J) Charpy transition temperature and Charpy upper shelf energy due to annealing. Data were gathered from the Test Reactor Embrittlement Data Base and from various annealing reports. An analysis data base was developed, reviewed for completeness and accuracy, and documented as part of this work. Independent variables considered in the analysis included material chemistries, annealing time and temperature, irradiation time and temperature, fluence, and flux. To identify important variables and functional forms for predicting embrittlement recovery, advanced statistical techniques, including pattern recognition and transformation analysis, were applied together with current understanding of the mechanisms governing embrittlement and recovery. Models were calibrated using multivariable surface-fitting techniques. Several iterations of model calibration, evaluation with respect to mechanistic and statistical considerations, and comparison with the trends in hardness data produced correlation models for estimating Charpy upper shelf energy and transition temperature after irradiation and annealing. This work provides a clear demonstration that (1) microhardness recovery is generally a very good surrogate for shift recovery, and (2) there is a high level of consistency between the observed annealing trends and fundamental models of embrittlement and recovery processes

  12. Study on Earth Radiation Budget mission scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Dlhopolsky, R; Hollmann, R; Mueller, J; Stuhlmann, R [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1998-12-31

    The goal of this study is to study optimized satellite configurations for observation of the radiation balance of the earth. We present a literature survey of earth radiation budget missions and instruments. We develop a parametric tool to simulate realistic multiple satellite mission scenarios. This tool is a modular computer program which models satellite orbits and scanning operation. We use Meteosat data sampled at three hour intervals as a database to simulate atmospheric scenes. Input variables are satellite equatorial crossing time and instrument characteristics. Regional, zonal and global monthly averages of shortwave and longwave fluxes for an ideal observing system and several realistic satellite scenarios are produced. Comparisons show that the three satellite combinations which have equatorial crossing times at midmorning, noon and midafternoon provide the best shortwave monitoring. Crossing times near sunrise and sunset should be avoided for the shortwave. Longwave diurnal models are necessary over and surfaces and cloudy regions, if there are only two measurements made during daylight hours. We have found in the shortwave inversion comparison that at least 15% of the monthly regional errors can be attributed to the shortwave anisotropic models used. (orig.) 68 refs.

  13. Study on Earth Radiation Budget mission scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Dlhopolsky, R.; Hollmann, R.; Mueller, J.; Stuhlmann, R. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1997-12-31

    The goal of this study is to study optimized satellite configurations for observation of the radiation balance of the earth. We present a literature survey of earth radiation budget missions and instruments. We develop a parametric tool to simulate realistic multiple satellite mission scenarios. This tool is a modular computer program which models satellite orbits and scanning operation. We use Meteosat data sampled at three hour intervals as a database to simulate atmospheric scenes. Input variables are satellite equatorial crossing time and instrument characteristics. Regional, zonal and global monthly averages of shortwave and longwave fluxes for an ideal observing system and several realistic satellite scenarios are produced. Comparisons show that the three satellite combinations which have equatorial crossing times at midmorning, noon and midafternoon provide the best shortwave monitoring. Crossing times near sunrise and sunset should be avoided for the shortwave. Longwave diurnal models are necessary over and surfaces and cloudy regions, if there are only two measurements made during daylight hours. We have found in the shortwave inversion comparison that at least 15% of the monthly regional errors can be attributed to the shortwave anisotropic models used. (orig.) 68 refs.

  14. Metal-nanotube composites as radiation resistant materials

    Energy Technology Data Exchange (ETDEWEB)

    González, Rafael I.; Valencia, Felipe; Mella, José; Kiwi, Miguel, E-mail: m.kiwi.t@gmail.com [Departamento de Física, Facultad de Ciencias, CEDENNA, Universidad de Chile, Casilla 653, Santiago 7800024 (Chile); Duin, Adri C. T. van [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); So, Kang Pyo; Li, Ju [Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bringa, Eduardo M. [CONICET and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500 (Argentina)

    2016-07-18

    The improvement of radiation resistance in nanocomposite materials is investigated by means of classical reactive molecular dynamics simulations. In particular, we study the influence of carbon nanotubes (CNTs) in an Ni matrix on the trapping and possible outgassing of He. When CNTs are defect-free, He atoms diffuse alongside CNT walls and, although there is He accumulation at the metal-CNT interface, no He trespassing of the CNT wall is observed, which is consistent with the lack of permeability of a perfect graphene sheet. However, when vacancies are introduced to mimic radiation-induced defects, He atoms penetrate CNTs, which play the role of nano-chimneys, allowing He atoms to escape the damaged zone and reduce bubble formation in the matrix. Consequently, composites made of CNTs inside metals are likely to display improved radiation resistance, particularly when radiation damage is related to swelling and He-induced embrittlement.

  15. Metal-nanotube composites as radiation resistant materials

    International Nuclear Information System (INIS)

    González, Rafael I.; Valencia, Felipe; Mella, José; Kiwi, Miguel; Duin, Adri C. T. van; So, Kang Pyo; Li, Ju; Bringa, Eduardo M.

    2016-01-01

    The improvement of radiation resistance in nanocomposite materials is investigated by means of classical reactive molecular dynamics simulations. In particular, we study the influence of carbon nanotubes (CNTs) in an Ni matrix on the trapping and possible outgassing of He. When CNTs are defect-free, He atoms diffuse alongside CNT walls and, although there is He accumulation at the metal-CNT interface, no He trespassing of the CNT wall is observed, which is consistent with the lack of permeability of a perfect graphene sheet. However, when vacancies are introduced to mimic radiation-induced defects, He atoms penetrate CNTs, which play the role of nano-chimneys, allowing He atoms to escape the damaged zone and reduce bubble formation in the matrix. Consequently, composites made of CNTs inside metals are likely to display improved radiation resistance, particularly when radiation damage is related to swelling and He-induced embrittlement.

  16. Study of catalytic phenomena in radiation chemistry

    International Nuclear Information System (INIS)

    Dran, J.C.

    1965-01-01

    Two phenomena have been studied: the action of γ rays from radio-cobalt on the adsorption and catalytic properties of ZnO and NiO in. relationship with the heterogeneous oxidation of CO, and the homogeneous catalysis by OsO 4 of the oxidation of various aqueous phase solutes by the same radiation. The prior irradiation of ZnO and of NiO does not modify their catalytic activity but generally increases the adsorption energy of -the gases CO and O 2 . The influence of the radiations appears to be connected with the presence of traces of water on ZnO and of an excess of oxygen on NiO. Osmium tetroxide which is not degraded by irradiation in acid solution, accelerates the radiolytic oxidation of certain compounds (Te IV , Pt 11 , As 111 ) in the presence of oxygen, as a result of its sensitizing effect on the oxidation by H 2 O 2 . In the case of phosphites on the other hand, OsO 4 has a protecting action under certain conditions of acidity and may suppress entirely the chain reaction which characterizes the oxidation of this solute byγ rays. A general mechanism is proposed for these phenomena. The rate constant for the OsO 4 + HO 2 reaction is calculated to be 5.7 x 10 5 l.mol -1 . sec -1 . (author) [fr

  17. Studies on radiation injury of the kidney

    International Nuclear Information System (INIS)

    Kamiya, Akio

    1982-01-01

    According to many experimental reports on the radiation renal injuries, the influences of irradiation were observed not only in the irradiated kidney, but also in the contralateral kidney. However, its mechanism has not yet been demonstrated clearly. In order to clarify the mechanism of development of pathophysiological changes seen on the kidney of non-irradiated side, a study was made of function and pathological condition of a remaining kidney after the enucleation of ir radiated side kidney after irradiation. Twenty-eitht rabbits were divided into 4 groups. A: 14 rabbits were irradiated on their left kidney with 60 Co- gamma ray 50 Gy doses. B: 6 rabbits were nephrectomized of their left kidney on the first day after 50 Gy irradiation. C: 4 rabbits were nephrectomized of their left kidney on the eighth day after 50 Gy irradiation. D: 4 rabbits were simple nephrectomized. The results suggest that changes on the irradiated side of kidney bring about effect to the contra-lateral kidney at an early stage after the irradiation. (J.P.N.)

  18. Influence of sulfur, phosphorus, and antimony segregation on the intergranular hydrogen embrittlement of nickel

    International Nuclear Information System (INIS)

    Bruemmer, S.M.; Baer, D.R.; Jones, R.H.; Thomas, M.T.

    1983-01-01

    The effectiveness of sulfur, phosphorus, and antimony in promoting the intergranular embrittlement of nickel was investigated using straining electrode tests in 1N H 2 SO 4 at cathodic potentials. Sulfur was found to be the critical grain boundary segregant due to its large enrichment at grain boundaries (10 4 to 10 5 times the bulk content) and the direct relationship between sulfur coverage and hydrogeninduced intergranular failure. Phosphorus was shown to be significantly less effective than sulfur or antimony in inducing the intergranular hydrogen embrittlement of nickel. The addition of phosphoru to nickel reduced the tendency for intergranular fracture and improved ductility because phosphoru segregated strongly to grain interfaces and limited sulfur enrichment. The hydrogen embrittling potency of antimony was also less than that of sulfur while its segregation propensity was considerably less. It was found that the effectiveness of segregated phosphorus and antimony in prompting inter granular embrittlement vs that of sulfur could be expressed in terms of an equivalent grain boundary sulfur coverage. The relative hydrogen embrittling potencies of sulfur, phosphorus, and antimony are discussed in reference to general mechanisms for the effect of impurity segregation on hydrogeninduced intergranular fracture

  19. Reactor pressure vessel embrittlement of NPP borssele: Design lifetime and lifetime extension

    International Nuclear Information System (INIS)

    Blom, F.J.

    2007-01-01

    Embrittlement of the reactor pressure vessel of the Borssele nuclear power plant has been investigated taking account of the design lifetime of 40 years and considering 20 years subsequent lifetime extension. The paper presents the current licensing status based on considerations of material test data and of US nuclear regulatory standards. Embrittlement status is also evaluated against German and French nuclear safety standards. Results from previous fracture toughness and Charpy tests are investigated by means of the Master curve toughness transition approach. Finally, state of the art insights are investigated by means of literature research. Regarding the embrittlement status of the reactor pressure vessel of Borssele nuclear power plant it is concluded that there is a profound basis for the current license up to the original end of the design life in 2013. The embrittlement temperature changes only slightly with respect to the acceptance criterion adopted postulating further operation up to 2033. Continued safe operation and further lifetime extension are therefore not restricted by reactor pressure vessel embrittlement

  20. Epidemiological studies of radiation risks (NRPB Association)

    International Nuclear Information System (INIS)

    Muirhead, C.R.; Kellerer, A.M.; Chmelevsky, D.

    1993-01-01

    Objectives of project are: to analyse data on populations exposed to high doses of radiation, such as the Japanese atomic bomb survivors and groups of uranium miners; to examine data on populations exposed at low doses and methods for analysing such data; to perform preparatory work for the compilation of 'probability of causation' tables that are specific to EC countries and that also cover radon daughter exposures; to study the incidence and mortality from thyroid cancer in a cohort with medical exposures to 131 I; to study cancer incidence and mortality among Swedish patients given radiotherapy for skin haemangioma in childhood; and to examine the incidence of second tumours among Italian patients given radiotherapy for cancer of the head, neck, breast, endometrium, uterine cervix or thyroid. Results of the six contributions for the reporting period are presented. (R.P.) 4 refs

  1. Time-dependent temper embrittlement of reactor pressure vessel steel: Correlation between microstructural evolution and mechanical properties during tempering at 650 °C

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuanwei; Han, Lizhan; Yan, Guanghua; Liu, Qingdong; Luo, Xiaomeng; Gu, Jianfeng, E-mail: gujf@sjtu.edu.cn

    2016-11-15

    The microstructural evolution of reactor pressure vessel (RPV) steel and its effect on the mechanical properties during tempering at 650 °C were studied to reveal the time-dependent toughness and temper embrittlement. The results show that the toughening of the material should be attributed to the decomposition of the martensite/austenite constituents and uniform distribution of carbides. When the tempering duration was 5 h, the strength of the investigated steel decreased to strike a balance with the material impact toughness that reached a plateau. As the tempering duration was further increased, the material strength was slightly reduced but the material impact toughness deteriorated drastically. This time-dependent temper embrittlement is different from traditional temper embrittlement, and it can be partly attributed to the softening of the matrix and the broadening of the ferrite laths. Moreover, the dimensions and distribution of the grain carbides are the most important factors of the impact toughness. - Highlights: • The fracture mechanism of reactor pressure vessel (RPV) steels under impact load was investigated. • The Charpy V-notch impact test and the hinge model were employed for the study. • Grain boundary carbides play a key role in the impact toughness and fracture toughness. • The dependence of the deterioration of impact toughness on tempering time was analyzed for the first time.

  2. Neutron-irradiation + helium hardening and embrittlement modeling of 9% Cr-steels in an engineering perspective (HELENA)

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, Rachid

    2008-07-01

    This report provides a physically-based engineering model to estimate the radiation hardening of 9%Cr-steels under both displacement damage (dpa) and helium. The model is essentially based on the dispersed barrier hardening theory and the dynamic re-solution of helium under displacement cascades. However, a number of assumptions and simplifications were considered to obtain a simple description of irradiation hardening and embrittlement primarily relying on the available experimental data. As a result, two components were basically identified, the dpa component that can be associated with black dots and small loops and the He-component accounting for helium bubbles. The dpa component is strongly dependent on the irradiation temperature and its dependence law was based on a first-order annealing kinetics. The damage accumulation law was also modified to take saturation into account. Finally, the global kinetics of the damage accumulation kept defined, its amplitude is fitted to one experimental condition. The model was rationalized on an experimental database that mainly consists of {proportional_to}9%Cr-steels irradiated in the technologically important temperature range of 50 to 600 C up do 50 dpa and with a He-content up to {proportional_to}5000 appm, including neutron and proton irradiation as well as implantation. The test temperature effect is taken into account through a normalization procedure based on the change of the Young's modulus and the anelastic deformation that occurs at high temperature. Finally, the hardening-to-embrittlement correlation is obtained using the load diagram approach. Despite the large experimental scatter, inherent to the variety of the materials and irradiation as well as testing conditions, the obtained results are very promising. Improvement of the model performance is still possible by including He-hardening saturation and high temperature softening but unfortunately, at this stage, a number of conflicting experimental data

  3. Neutron-irradiation + helium hardening and embrittlement modeling of 9% Cr-steels in an engineering perspective (HELENA)

    International Nuclear Information System (INIS)

    Chaouadi, Rachid

    2008-01-01

    This report provides a physically-based engineering model to estimate the radiation hardening of 9%Cr-steels under both displacement damage (dpa) and helium. The model is essentially based on the dispersed barrier hardening theory and the dynamic re-solution of helium under displacement cascades. However, a number of assumptions and simplifications were considered to obtain a simple description of irradiation hardening and embrittlement primarily relying on the available experimental data. As a result, two components were basically identified, the dpa component that can be associated with black dots and small loops and the He-component accounting for helium bubbles. The dpa component is strongly dependent on the irradiation temperature and its dependence law was based on a first-order annealing kinetics. The damage accumulation law was also modified to take saturation into account. Finally, the global kinetics of the damage accumulation kept defined, its amplitude is fitted to one experimental condition. The model was rationalized on an experimental database that mainly consists of ∝9%Cr-steels irradiated in the technologically important temperature range of 50 to 600 C up do 50 dpa and with a He-content up to ∝5000 appm, including neutron and proton irradiation as well as implantation. The test temperature effect is taken into account through a normalization procedure based on the change of the Young's modulus and the anelastic deformation that occurs at high temperature. Finally, the hardening-to-embrittlement correlation is obtained using the load diagram approach. Despite the large experimental scatter, inherent to the variety of the materials and irradiation as well as testing conditions, the obtained results are very promising. Improvement of the model performance is still possible by including He-hardening saturation and high temperature softening but unfortunately, at this stage, a number of conflicting experimental data reported in literature should

  4. Radiation chemical studies on the treatment of waste water

    International Nuclear Information System (INIS)

    Sakumoto, Akihisa; Miyata, Teijiro; Arai, Michimasa; Arai, Hidehiko

    1982-10-01

    The radiation induced reaction in aqueous solution was studied to develope the radiation treatment as a new technique for waste water and to elevate the effectiveness of radiation. The effectiveness of radiation was enhanced by combination of radiation induced reaction with conventional methods such as biological treatment and coagulation treatment. The synergistic effect of radiation and ozone was studied by using phenol and ethylene glycol. The chain reaction was observed in the radiation induced oxidation. The combination of radiation and ozone is considered to be one of the most useful method. In this report, the mechanism of each reaction and the applicability of the reaction to the treatment of waste water are discussed. (author)

  5. Background radiation study of Offa industrial area of Kwara State ...

    African Journals Online (AJOL)

    A study of the external background radiation in Offa industrial area of Kwara State is hereby reported. An in-situ measurement using two Digilert radiation monitors at five different stations were carried out. A mean exposure rate of 0.0132mR/hr, which represents 20% elevation from the standard background radiation, was ...

  6. Various aspects of lyoluminescence studies in radiation research

    International Nuclear Information System (INIS)

    Kundu, H.K.

    1992-01-01

    Lyoluminescence is the emission of light during the dissolution of irradiated organic and inorganic solids in suitable solvents. This phenomenon has attracted interdisciplinary research involving radiation physics, radiation chemistry and physical chemistry. This paper presents an overall view of the various aspects of lyoluminescence studies in the field of radiation research. (author). 14 refs

  7. Studies of radiation and chemical toxicity. Progress report

    International Nuclear Information System (INIS)

    1986-01-01

    Annual report for the Studies of Radiation and Chemical Toxicity Program at the University of Rochester is presented. Progress is reported on four projects: Neurobehavorial Toxicity of Organometallic Fuel Additives, Mechanisms of Permanent and Delayed Pathologic Effects of Ionizing Radiation, Solid State Radiation Chemistry of the DNA Backbone, and Pulmonary Biochemistry

  8. Radiation Chemistry Studies on Chemotherapeutic Agents

    DEFF Research Database (Denmark)

    Gohn, M.; Getoff, N.; Bjergbakke, Erling

    1977-01-01

    Adrenalin has been studied as a model radiation protective agent by means of pulse radiolysis in aqueous solutions. The rate constants for the reactions of adrenalin with e–aq and OH were determined : k(e–aq+ adr—NH+2)= 7.5 × 108 dm3 mol–1 s–1, k(e–aq+ adr—NH)= 2.5 × 108 dm3 mol–1 s–1, and k......(OH + adr)= 2.2 × 1010 dm3 mol–1 s–1(pH = 9.2). e–aq attacks the amino group by splitting off methylamine, whereas OH and O–aq lead to the formation of the corresponding adducts of the cyclohexadienyl type. OH radicals can also abstract an electron from an O– group at pH > 8....

  9. Radiation chemistry studies on chemotherapeutic agents

    International Nuclear Information System (INIS)

    Gohn, M.; Getoff, N.; Bjergbakke, E.

    1977-01-01

    Adrenalin has been studied as a model radiation protective agent by means of pulse radiolysis in aqueous solutions. The rate constants for the reactions of adrenalin with e - sub(aq) and OH were determined: k(e - sub(aq) + adr -NH + 2 ) = 7.5 x 10 8 dm 3 mol -1 s -1 , k(e - sub(aq) + adr - NH) = 2.5 x 10 8 dm 3 mol -1 s -1 , and k(OH + adr) = 2.2 x 10 -10 dm 3 mol -1 s -1 (pH = 9.2). e - sub(aq) attacks the amino group by splitting off methylamine, whereas OH and O - sub(aq) lead to the formation of the corresponding adducts of the cyclohexadienyl type. OH radicals can also abstract an electron from an 0 - group at pH > 8. (author)

  10. Postgraduate studies in radiation biology in Europe

    International Nuclear Information System (INIS)

    Trott, K.R.; Lohmann, P.H.M.; Zeeland, A.A. van; Natarajan, A.T.; Schibilla, H.; Chadwick, K.; Kellerer, A.M.; Steinhaeusler, F.

    1998-01-01

    The present system of radiobiological research in universities and research centres is no longer able to train radiobiologists who have a comprehensive understanding of the entire field of radiation biology including both 'classical' and molecular radiation biology. However, such experts are needed in view of the role radiation protection plays in our societies. No single institution in Europe could now run a 1-year, full-time course which covers all aspects of the radiobiological basis of radiation protection. Therefore, a cooperative action of several universities from different EU member states has been developed and is described herein. (orig.)

  11. Probabilistic approaches applied to damage and embrittlement of structural materials in nuclear power plants

    International Nuclear Information System (INIS)

    Vincent, L.

    2012-01-01

    The present study deals with the long-term mechanical behaviour and damage of structural materials in nuclear power plants. An experimental way is first followed to study the thermal fatigue of austenitic stainless steels with a focus on the effects of mean stress and bi-axiality. Furthermore, the measurement of displacement fields by Digital Image Correlation techniques has been successfully used to detect early crack initiation during high cycle fatigue tests. A probabilistic model based on the shielding zones surrounding existing cracks is proposed to describe the development of crack networks. A more numeric way is then followed to study the embrittlement consequences of the irradiation hardening of the bainitic steel constitutive of nuclear pressure vessels. A crystalline plasticity law, developed in agreement with lower scale results (Dislocation Dynamics), is introduced in a Finite Element code in order to run simulations on aggregates and obtain the distributions of the maximum principal stress inside a Representative Volume Element. These distributions are then used to improve the classical Local Approach to Fracture which estimates the probability for a microstructural defect to be loaded up to a critical level. (author) [fr

  12. Irradiation embrittlement of reactor pressure vessel steels: Considerations for thermal annealing

    International Nuclear Information System (INIS)

    Burke, M.G.; Freyer, P.D.; Mager, T.R.

    1993-01-01

    In this paper, an overview of the irradiation embrittlement phenomenon is presented from a structure-properties viewpoint. Effects of irradiation conditions on embrittlement are first reviewed: irradiation temperature, fluence, flux, and steel or alloy composition. Then, the techniques for identifying/characterizing the irradiation-induced microstructural features are described: TEM/STEM (electron microscopy), small angle neutron scattering, atom probe field-ion microscopy, positron annihilation lifetime spectroscopy. Mechanisms of hardening and embrittlement generally consist of a ''precipitation-type'' and a ''damage-type'' component and the potential of annealing treatments for restoring the most of the original pressure vessel material toughness is examined; its conditions and mechanisms involved are discussed. Feasibility and economic evaluation of annealing costs is also carried out. 90 refs., 4 figs

  13. Evaluation of temper embrittlement of martensitic and ferritic-martensitic steels by acoustic emission

    International Nuclear Information System (INIS)

    Lu, Yusho; Takahashi, Hideaki; Shoji, Tetsuo

    1987-01-01

    Martensitic (HT-9) and ferritic-martensitic steels (9Cr-2Mo) are considered as fusion first wall materials. In this investigation in order to understand the sensitivity of temper embrittlement in these steels under actual service condition, fracture toughness testing was made by use of acoustic emission technique. The temper embrittlement was characterized in terms of fracture toughness. The fracture toughness of these steels under 500 deg C, 100 hrs, and 1000 hrs heat treatment was decreased and their changes in micro-fracture process have been observed. The fracture toughness changes by temper embrittlement was discussed by the characteristic of AE, AE spectrum analysis and fractographic investigation. The relation between micro-fracture processes and AE has been clarified. (author)

  14. Embrittlement of nickel-, cobalt-, and iron-base superalloys by exposure to hydrogen

    Science.gov (United States)

    Gray, H. R.

    1975-01-01

    Five nickel-base alloys (Inconel 718, Udimet 700, Rene 41, Hastelloy X, and TD-NiCr), one cobalt-base alloy (L-605), and an iron-base alloy (A-286) were exposed in hydrogen at 0.1 MN/sq m (15 psi) at several temperatures in the range from 430 to 980 C for as long as 1000 hours. These alloys were embrittled to varying degrees by such exposures in hydrogen. Embrittlement was found to be: (1) sensitive to strain rate, (2) reversible, (3) caused by large concentrations of absorbed hydrogen, and (4) not associated with any detectable microstructural changes in the alloys. These observations are consistent with a mechanism of internal reversible hydrogen embrittlement.

  15. Microstructural design of PCA austenitic stainless steel for improved resistance to helium embrittlement under HFIR irradiation

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Braski, D.N.

    1983-01-01

    Several variants of Prime Candidate Alloy (PCA) with different preirradiation thermal-mechanical treatments were irradiated in HFIR and were evaluated for embrittlement resistance via disk-bend tensile testing. Comparison tests were made on two heats of 20%-cold-worked type 316 stainless steel. None of the alloys were brittle after irradiation at 300 to 400 0 C to approx. 44 dpa and helium levels of 3000 to approx.3600 at. ppm. However, all were quite brittle after similar exposure at 600 0 C. Embrittlement varied with alloy and pretreatment for irradiation to 44 dpa at 500 0 C and to 22 dpa at 600 0 C. Better relative embrittlement resistance among PCA variants was found in alloys which contained prior grain boundary MC carbide particles that remained stable under irradiation

  16. Irradiation embrittlement of reactor pressure vessel steels: Considerations for thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M G; Freyer, P D; Mager, T R

    1994-12-31

    In this paper, an overview of the irradiation embrittlement phenomenon is presented from a structure-properties viewpoint. Effects of irradiation conditions on embrittlement are first reviewed: irradiation temperature, fluence, flux, and steel or alloy composition. Then, the techniques for identifying/characterizing the irradiation-induced microstructural features are described: TEM/STEM (electron microscopy), small angle neutron scattering, atom probe field-ion microscopy, positron annihilation lifetime spectroscopy. Mechanisms of hardening and embrittlement generally consist of a ``precipitation-type`` and a ``damage-type`` component and the potential of annealing treatments for restoring the most of the original pressure vessel material toughness is examined; its conditions and mechanisms involved are discussed. Feasibility and economic evaluation of annealing costs is also carried out. 90 refs., 4 figs.

  17. Statistical analysis using the Bayesian nonparametric method for irradiation embrittlement of reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Takamizawa, Hisashi, E-mail: takamizawa.hisashi@jaea.go.jp; Itoh, Hiroto, E-mail: ito.hiroto@jaea.go.jp; Nishiyama, Yutaka, E-mail: nishiyama.yutaka93@jaea.go.jp

    2016-10-15

    In order to understand neutron irradiation embrittlement in high fluence regions, statistical analysis using the Bayesian nonparametric (BNP) method was performed for the Japanese surveillance and material test reactor irradiation database. The BNP method is essentially expressed as an infinite summation of normal distributions, with input data being subdivided into clusters with identical statistical parameters, such as mean and standard deviation, for each cluster to estimate shifts in ductile-to-brittle transition temperature (DBTT). The clusters typically depend on chemical compositions, irradiation conditions, and the irradiation embrittlement. Specific variables contributing to the irradiation embrittlement include the content of Cu, Ni, P, Si, and Mn in the pressure vessel steels, neutron flux, neutron fluence, and irradiation temperatures. It was found that the measured shifts of DBTT correlated well with the calculated ones. Data associated with the same materials were subdivided into the same clusters even if neutron fluences were increased.

  18. Study of the environmental radiation in Zacatecas City

    International Nuclear Information System (INIS)

    Quirino, L.L.; Mireles, F.; Davila, J.I.; Rios, C.; Lugo, J.F.; Pinedo, J.L.; Lopez, H.; Garcia, M.L.; Soriano, J.M.

    2000-01-01

    A study of detection of environmental radiation in the inner of an office is presented and a comparison of the results is made when the facilities are closed or aired. The used method is based on radiation detection by means of Geiger-Mueller RM 60 and RM 70 detectors with the aid of a personal computer which provides a detection method of radiation in real time. The used method in this study is suggested to detect the variation of radiation in closed or aired environments and as a surveillance system of radiation levels. The obtained results are discussed and they are compared with those obtained in another places. (Author)

  19. Size effect in radiation damage

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1979-01-01

    Radiation embrittlement of nuclear reactor pressure vessel steels is mostly measured using small standard specimens in dynamic bend tests. Their dimensions are much smaller than those of the reactor. The increase in the critical temperature (transition temperature from the brittle-to-ductile fracture) is normally measured using standard Charpy-V type specimens or small CT-type specimens. This increase is then used as the main parameter for the pressure vessel safety evaluation. The philosophy of experiments is discussed used for the nonirradiated and irradiated pressure vessel steels. A comparison of the increase in the transition temperature measured in different types of specimens using various testing methods (static and dynamic bend tests with notch or crack) is also made. The results of this comparison and another study showed a relatively good agreement. (author)

  20. Study of material properties using channeling radiation

    International Nuclear Information System (INIS)

    Pantell, R.H.; Kephart, J.O.; Klein, R.K.; Park, H.; Berman, B.L.; Datz, S.

    1986-01-01

    A possible application for channeling radiation is for investigating the properties of crystals in which the channeling occurs. In this paper we present some general considerations concerning channeling radiation as a measurement technique, and then we proceed to describe several specific examples

  1. Gaseous oxygen and hydrogen embrittlements of the uranium-10 weight % molybdenum alloy

    International Nuclear Information System (INIS)

    Corcos, Jean.

    1979-07-01

    The stress corrosion of an Uranium-10 weight % Molybdenum alloy in high purity gaseous oxygen and hydrogen was studied. Tests were performed with fracture-mechanic specimens, fatigue precracked and carried out in tension with a constant sustained load. The experimental procedure enabled to determine the S.C. morphology during the test, and its kinetics. Tests in gaseous oxygen were performed with p02=0.15 MPa from 0 0 C to 100 0 C, and at 20 0 C for p02=0.15, 0.15.10 -2 and 0.15.10 -4 MPa. Two kinetic laws are proposed. Cracking is transgranular with a quasi-clivage type, and occurs on the (1 1 1) planes of the matrix. Tests in gaseous hydrogen were performed with pH2=0.15 MPa from - 50 0 C to + 135 0 C; for all the tests, even those under no exterior load, there is a failure by S.C. and macroscopic hydruration occurs. We propose a kinetic law, which may display that the hydruration phenomenon rules the S.C. propagation. We have performed the identification of the hydride, as well as the study of the precipitation. These phenomena don't occur with pH2=0.15.10 -2 MPa. The embrittlement is thought to be due to a formation-failure cycle of an hydride precipitate at the crack tip [fr

  2. Deep space test bed for radiation studies

    International Nuclear Information System (INIS)

    Adams, James H.; Adcock, Leonard; Apple, Jeffery; Christl, Mark; Cleveand, William; Cox, Mark; Dietz, Kurt; Ferguson, Cynthia; Fountain, Walt; Ghita, Bogdan; Kuznetsov, Evgeny; Milton, Martha; Myers, Jeremy; O'Brien, Sue; Seaquist, Jim; Smith, Edward A.; Smith, Guy; Warden, Lance; Watts, John

    2007-01-01

    The Deep Space Test-Bed (DSTB) Facility is designed to investigate the effects of galactic cosmic rays on crews and systems during missions to the Moon or Mars. To gain access to the interplanetary ionizing radiation environment the DSTB uses high-altitude polar balloon flights. The DSTB provides a platform for measurements to validate the radiation transport codes that are used by NASA to calculate the radiation environment within crewed space systems. It is also designed to support other exploration related investigations such as measuring the shielding effectiveness of candidate spacecraft and habitat materials, testing new radiation monitoring instrumentation, flight avionics and investigating the biological effects of deep space radiation. We describe the work completed thus far in the development of the DSTB and its current status

  3. Studies on application of radiation and radioisotope. Studies on radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Young Chang; Jin, J. H.; Kim, K. Y.; Lee, Y. K.; Lee, M. Z.; Jung, S. H.; Park, S. C.; Na, B. Z.; Kim, J. H.; Park, J. S.; Kwon, O. H.

    1997-09-01

    An attempt was made to synthesize adsorbent by radiation grafting of monomers onto polypropylene fabric, and then introducing functional groups such as cation-exchange and anion-exchange. The capacities of the synthesized adsorbents having the cationic and anionic exchange groups were evaluated by determining the degree to adsorb the basic and acidic gas, respectively. Software for RTD analysis was made to analyze data from radiotracer experiments. A pilot plant for practicing tracer experiments was designed and constructed, and experimental procedures for several tracer techniques were established. Radiation source holder, detector collimator, driver unit and software to control them were designed and constructed for column scanning technique. Basic studies for sea sand movement were performed and some tracer experiments were executed to support local industry as well as to gain field experiences. Cellulosic agricultural waste was observed by SEM for structural changes and analysed by thermal gravity analysis and water holding capacity test for the physical characteristics as a function of radiation dose. The number and kind of microorganisms in cellulosic agricultural waste were determined and sterilized by the reasonable radiation dose. The optimal fermentable microorganism is evaluated by the fermentation experiments of various useful strains. (author). 20 refs., 4 tabs., 39 figs.

  4. Studies on application of radiation and radioisotope. Studies on radiation processing

    International Nuclear Information System (INIS)

    Nho, Young Chang; Jin, J. H.; Kim, K. Y.; Lee, Y. K.; Lee, M. Z.; Jung, S. H.; Park, S. C.; Na, B. Z.; Kim, J. H.; Park, J. S.; Kwon, O. H.

    1997-09-01

    An attempt was made to synthesize adsorbent by radiation grafting of monomers onto polypropylene fabric, and then introducing functional groups such as cation-exchange and anion-exchange. The capacities of the synthesized adsorbents having the cationic and anionic exchange groups were evaluated by determining the degree to adsorb the basic and acidic gas, respectively. Software for RTD analysis was made to analyze data from radiotracer experiments. A pilot plant for practicing tracer experiments was designed and constructed, and experimental procedures for several tracer techniques were established. Radiation source holder, detector collimator, driver unit and software to control them were designed and constructed for column scanning technique. Basic studies for sea sand movement were performed and some tracer experiments were executed to support local industry as well as to gain field experiences. Cellulosic agricultural waste was observed by SEM for structural changes and analysed by thermal gravity analysis and water holding capacity test for the physical characteristics as a function of radiation dose. The number and kind of microorganisms in cellulosic agricultural waste were determined and sterilized by the reasonable radiation dose. The optimal fermentable microorganism is evaluated by the fermentation experiments of various useful strains. (author). 20 refs., 4 tabs., 39 figs

  5. Al and Si Influences on Hydrogen Embrittlement of Carbide-Free Bainitic Steel

    Directory of Open Access Journals (Sweden)

    Yanguo Li

    2013-01-01

    Full Text Available A first-principle method based on the density functional theory was applied to investigate the Al and Si influences on the hydrogen embrittlement of carbide-free bainitic steel. The hydrogen preference site, binding energy, diffusion behaviour, and electronic structure were calculated. The results showed that hydrogen preferred to be at the tetrahedral site. The binding energy of the cell with Si was the highest and it was decreased to be the worst by adding hydrogen. The diffusion barrier of hydrogen in the cell containing Al was the highest, so it was difficult for hydrogen to diffuse. Thus, hydrogen embrittlement can be reduced by Al rather than Si.

  6. Evaluation on thermal aging embrittlement of cast stainless steel components in domestic PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bong Sang; Hwa, Hong Jun; Chi, Se Hwan; Ryu, Woo Seog; Kuk, Il Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    This report reviewed the R and D states of thermal aging embrittlement of cast stainless steel components in PWRs. Cast stainless steel is being widely used in PWRs including primary piping. This material shows the reduction of fracture toughness during operating life due to high temperature. Micromechanisms and kinetics are summarized to improve the materials properties. The reduction of toughness due to thermal embrittlement in domestic reactors are predicted based on each chemical composition until the end of plant life time. Substantial degradation was predicted in some components during plant life time. (Author) 26 refs., 19 figs., 11 tabs.

  7. Origin of intergranular embrittlement of Al alloys induced by Na and Ca segregation: Grain boundary weakening

    International Nuclear Information System (INIS)

    Lu Guanghong; Zhang Ying; Deng Shenghua; Wang Tianmin; Kohyama, Masanori; Yamamoto, Ryoichi; Liu Feng; Horikawa, Keitaro; Kanno, Motohiro

    2006-01-01

    Using a first-principles computational tensile test, we show that the ideal tensile strength of an Al grain boundary (GB) is reduced with both Na and Ca GB segregation. We demonstrate that the fracture occurs in the GB interface, dominated by the break of the interfacial bonds. Experimentally, we further show that the presence of Na or Ca impurity, which causes intergranular fracture, reduces the ultimate tensile strength when embrittlement occurs. These results suggest that the Na/Ca-induced intergranular embrittlement of an Al alloy originates mainly from the GB weakening due to the Na/Ca segregation

  8. Hydrogen embrittlement considerations in niobium-base alloys for application in the ITER divertor

    International Nuclear Information System (INIS)

    Peterson, D.T.; Hull, A.B.; Loomis, B.A.

    1991-01-01

    The ITER divertor will be subjected to hydrogen from aqueous corrosion by the coolant and by transfer from the plasma. Global hydrogen concentrations are one factor in assessing hydrogen embrittlement but local concentrations affected by source fluxes and thermotransport in thermal gradients are more important considerations. Global hydrogen concentrations is some corrosion- tested alloys will be presented and interpreted. The degradation of mechanical properties of Nb-base alloys due to hydrogen is a complex function of temperature, hydrogen concentration, stresses and alloy composition. The known tendencies for embrittlement and hydride formation in Nb alloys are reviewed

  9. On the tempered martensite embrittlement in AISI 4140 low alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, F.A. (Dept. of Materials Science and Metallurgy, Catholic Univ., Rio de Janeiro, RJ (Brazil)); Pereira, L.C.; Gatts, C. (Dept. of Metallurgy and Materials Engineering, Federal Univ., Rio de Janeiro, RJ (Brazil)); Graca, M.L. (Materials Div., Technical Aerospace Center, Sao Jose dos Campos, SP (Brazil))

    1991-02-01

    In the present investigation the Auger electron spectroscopy (AES) technique was used to determine local carbon and phosphorus concentrations on the fracture surfaces of as-quenched and quenched-and-tempered (at 350deg C) AISI 4140 steel specimens austenitized at low and high temperatures. The AES results were rationalized to conclude that, although carbide growth as well as phosphorus segregation are expected to contribute to tempered martensite embrittlement, carbide precipitation on prior austenite grain boundaries during tempering is seen to be the microstructural change directly responsible for the occurrence of the referred embrittlement phenomenon. (orig.).

  10. Study of solar radiation prediction and modeling of relationships between solar radiation and meteorological variables

    International Nuclear Information System (INIS)

    Sun, Huaiwei; Zhao, Na; Zeng, Xiaofan; Yan, Dong

    2015-01-01

    Highlights: • We investigate relationships between solar radiation and meteorological variables. • A strong relationship exists between solar radiation and sunshine duration. • Daily global radiation can be estimated accurately with ARMAX–GARCH models. • MGARCH model was applied to investigate time-varying relationships. - Abstract: The traditional approaches that employ the correlations between solar radiation and other measured meteorological variables are commonly utilized in studies. It is important to investigate the time-varying relationships between meteorological variables and solar radiation to determine which variables have the strongest correlations with solar radiation. In this study, the nonlinear autoregressive moving average with exogenous variable–generalized autoregressive conditional heteroscedasticity (ARMAX–GARCH) and multivariate GARCH (MGARCH) time-series approaches were applied to investigate the associations between solar radiation and several meteorological variables. For these investigations, the long-term daily global solar radiation series measured at three stations from January 1, 2004 until December 31, 2007 were used in this study. Stronger relationships were observed to exist between global solar radiation and sunshine duration than between solar radiation and temperature difference. The results show that 82–88% of the temporal variations of the global solar radiation were captured by the sunshine-duration-based ARMAX–GARCH models and 55–68% of daily variations were captured by the temperature-difference-based ARMAX–GARCH models. The advantages of the ARMAX–GARCH models were also confirmed by comparison of Auto-Regressive and Moving Average (ARMA) and neutral network (ANN) models in the estimation of daily global solar radiation. The strong heteroscedastic persistency of the global solar radiation series was revealed by the AutoRegressive Conditional Heteroscedasticity (ARCH) and Generalized Auto

  11. Evaluation of liquid metal embrittlement of stainless steel 304 by cadmium and cadmium-aluminum solutions

    International Nuclear Information System (INIS)

    Iyer, N.C.; Peacock, H.B.; Thomas, J.K.; Begley, J.A.

    1994-01-01

    The susceptibility of stainless steel 304 (SS304) to liquid metal embrittlement (LME) by cadmium (Cd) and cadmium-aluminum (Cd-Al) solutions was examined as part of a failure evaluation for SS304-clad cadmium reactor safety rods which had been exposed to elevated temperatures. The safety rod test data and destructive examination of the specimens indicated that LME was not the failure mode. The available literature data also suggest that austenitic stainless steels are not particularly susceptible to LME by Cd or Cd-Al solutions. However, the literature data is not conclusive and an experimental study was therefore conducted to examine the susceptibility of SS304 to LME by Cd and Cd-Al solutions. Temperatures from 325 to 600 C and strain rates from 1x10 -6 to 5x10 -5 s -1 were of interest in this evaluation. Tensile tests carried out in molten Cd-Al and Cd solutions over these temperatures and strain rates with both smooth bar and notched specimens showed no evidence of LME. U-bend tests conducted in liquid Cd at 500 and 600 C also showed no evidence of LME. It is concluded that SS304 is not subject to LME by Cd or Cd-Al solutions over the range of temperatures and strain rates of interest. ((orig.))

  12. Crack path in liquid metal embrittlement: experiments with steels and modeling

    Directory of Open Access Journals (Sweden)

    T. Auger

    2016-01-01

    Full Text Available We review the recent experimental clarification of the fracture path in Liquid Metal Embrittlement with austenitic and martensitic steels. Using state of the art characterization tools (Focused Ion Beam and Transmission Electron Microscopy a clear understanding of crack path is emerging for these systems where a classical fractographic analysis fails to provide useful information. The main finding is that most of the cracking process takes place at grain boundaries, lath or mechanical twin boundaries while cleavage or plastic flow localization is rarely the observed fracture mode. Based on these experimental insights, we sketch an on-going modeling strategy for LME crack initiation and propagation at mesoscopic scale. At the microstructural scale, crystal plasticity constitutive equations are used to model the plastic deformation in metals and alloys. The microstructure used is either extracted from experimental measurements by 3D-EBSD (Electron Back Scattering Diffraction or simulated starting from a Voronoï approach. The presence of a crackwithin the polycrystalline aggregate is taken into account in order to study the surrounding plastic dissipation and the crack path. One key piece of information that can be extracted is the typical order of magnitude of the stress-strain state at GB in order to constrain crack initiation models. The challenges of building predictive LME cracking models are outlined.

  13. Radiation

    International Nuclear Information System (INIS)

    Winther, J.F.; Ulbak, K.; Dreyer, L.; Pukkala, E.; Oesterlind, A.

    1997-01-01

    Exposure to solar and ionizing radiation increases the risk for cancer in humans. Some 5% of solar radiation is within the ultraviolet spectrum and may cause both malignant melanoma and non-melanocytic skin cancer; the latter is regarded as a benign disease and is accordingly not included in our estimation of avoidable cancers. Under the assumption that the rate of occurrence of malignant melanoma of the buttocks of both men and women and of the scalp of women would apply to all parts of the body in people completely unexposed to solar radiation, it was estimated that approximately 95% of all malignant melanomas arising in the Nordic populations around the year 2000 will be due to exposure to natural ultraviolet radiation, equivalent to an annual number of about 4700 cases, with 2100 in men and 2600 in women, or some 4% of all cancers notified. Exposure to ionizing radiation in the Nordic countries occurs at an average effective dose per capita per year of about 3 mSv (Iceland, 1.1 mSv) from natural sources, and about 1 mSv from man-made sources. While the natural sources are primarily radon in indoor air, natural radionuclides in food, cosmic radiation and gamma radiation from soil and building materials, the man-made sources are dominated by the diagnostic and therapeutic use of ionizing radiation. On the basis of measured levels of radon in Nordic dwellings and associated risk estimates for lung cancer derived from well-conducted epidemiological studies, we estimated that about 180 cases of lung cancer (1% of all lung cancer cases) per year could be avoided in the Nordic countries around the year 2000 if indoor exposure to radon were eliminated, and that an additional 720 cases (6%) could be avoided annually if either radon or tobacco smoking were eliminated. Similarly, it was estimated that the exposure of the Nordic populations to natural sources of ionizing radiation other than radon and to medical sources will each give rise to an annual total of 2120

  14. Recent studies on UV radiation in Brazil

    Science.gov (United States)

    Correa, M. P.; Ceballos, J. C.; Moregula, A.; Okuno, E.; Fausto, A.; Mol, A.; Santos, J. C.

    2009-04-01

    This presentation shows a summary of UV index measurements performed in the last years in Southeastern (SE) and Northeastern (NE) Brazilian regions. Brazil has an area of 8.5 million km2 distributed between latitudes 5˚ N and 35˚ S and longitudes 5˚ W and 75˚ W. SE is the most important economic pole of South America and the NE coast is an important tourist region. This large area has a great diversity of climatic, atmospheric and geographical conditions in addition to very diverse social and cultural habits. Non-melanoma skin cancer (NMSC) is an epidemiological health problem with more than 120,000 new cases each year. The most of these cases are found in the South and Southeast regions, with about 70 new NMSC per 100,000 inhabitants. Solar Light UV501 biometers are installed in the SE cities of São Paulo (23.6˚ S, 46.7˚ W, 865 m ASL), Itajubá/Minas Gerais (22.4˚ S; 45.5˚ W, 846 m ASL) and the NE city of Ilhéus/Bahia (14.8˚ S; 39.3˚ W; 54 m ASL). First measurements began in 2005 in São Paulo city, while Itajubá and Ilhéus have regular measurements from the beginning of 2008. Other studies related to the UV radiation modeling and interactions with atmosphere components, as ozone, aerosols and clouds, have also been performed. For example: a) UVI modelling calculations performed by a multiple-scattering spectral models; b) studies on the aerosol radiative properties based on satellite (MODIS/Terra-Aqua) and ground-based (Aeronet) observation; c) ozone content variability from satellite (OMI/Aura) and ground-based (Microtops ozonometer) measurements; d) behavioral profile of the population, as regarding habits of solar exposure and sun protection measures. Results show that more than 75% of the measurements conducted in the summer (outside noon) can be classified as upper than high UVI according to World Health Organization (WHO) recommended categories: Low (UVI UV radiation levels to have a population very exposed during its

  15. Radiation

    International Nuclear Information System (INIS)

    2013-01-01

    The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter

  16. Studies on the strategies of minimizing radiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hee Yong; Sohn, Young Sook

    1998-04-01

    We studied on the strategies of minimizing radiation damage in animal system. To this end we studied following areas of research (1) mechanisms involved in bone marrow damage after total body irradiation, (2) extraction of components that are useful in protecting hematopoietic system from radiation damage, (3) cell therapy approach in restoring the damaged tissue, (4) development of radioprotective chemical reagent, and (5) epidemiological study on the population that had been exposed to radiation.

  17. Studies on the strategies of minimizing radiation damage

    International Nuclear Information System (INIS)

    Chung, Hee Yong; Sohn, Young Sook

    1998-04-01

    We studied on the strategies of minimizing radiation damage in animal system. To this end we studied following areas of research 1) mechanisms involved in bone marrow damage after total body irradiation, 2) extraction of components that are useful in protecting hematopoietic system from radiation damage, 3) cell therapy approach in restoring the damaged tissue, 4) development of radioprotective chemical reagent, and 5) epidemiological study on the population that had been exposed to radiation

  18. Radiation protection in well logging: case studies in the Sudan

    International Nuclear Information System (INIS)

    Eltayeb, B. A.

    2010-12-01

    This study is performed to improve radiation protection level in well logging include tow case studies in Sudan (Lost or misplaced sources). General review of radiation and radiation protection basic concept is highlighted discussed. Also preview of well logging practice and source of radiation use in well logging, safety of radiation sources, storage and manage of not use sources (weak sources) and protection of worker and potential exposure for public and worker, investigations in cause of lost or misplaced sources in well. Assessment was made in well logging using checklist prepared in accordance with the International Atomic Energy Agency IAEA basic safety standard, International Committee for Radiological Protection ICRP and safety in transport of radiation sources. The checklist includes all requirement of radiation protection. It is found that all requirement was present except the delay of calibration of radiation detectors, the movement of radiation sources form storage to base of manipulated area need adequate care for shielding and safe transport and personal monitoring service must be provide in Sudan. Investigation was made in cause of lose of nine radiation source in well it is found that all those sources were loss in different depth in the well and with deferent location and there was no risk because there was no contamination of fluids which caused by damage of loss sources. Some recommendations were stated that, if implemented could improve the status of radiation protection in well logging. (Author)

  19. Core Flight Executive Software Radiation Mitigation Study

    Data.gov (United States)

    National Aeronautics and Space Administration — The reliability of SmallSat / CubeSat missions may be increased by using software radiation mitigation for single event upsets (SEUs). Implementing protection in...

  20. Molecular photoemission studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Truesdale, C.M.

    1983-04-01

    The angular distributions of photoelectrons and Auger electrons were measured by electron spectroscopy using synchrotron radiation. The experimental results are compared with theoretical calculations to interpret the electronic behavior of photoionization for molecular systems

  1. Study of prochlorperazine (Stemetil) in radiation sickness

    International Nuclear Information System (INIS)

    Dutta, A.K.

    1976-01-01

    The incidence of radiation sickness and the efficacy of prochlorperazine in alleviating it among the patients under radiotherapy have been investigated. 116 patients from those under radiotherapy were randomly chosen. 38% of this sample developed radiation sickness symptoms (nausea and vomiting). The onset of symptoms occurred in the earlier periods of radiotherapy. The younger and older group were more susceptible to side effects of radiation. Prochlorperazine was administered immediately after the onset of symptoms of radiation sickness in the dose schedule of 10 mg twice daily for adults and was continued for 5 to 10 days after the alleviation of the symptoms. This was found to be effective in all patients. (M.G.B.)

  2. Simulation study of transverse optical klystron radiation

    International Nuclear Information System (INIS)

    Xu Hongliang; Diao Caozheng; Liu Jinying; He Duohui; Jia Qika; Wang Xiangqi

    1997-01-01

    The radiation from a transverse optical klystron (TOK) is calculated by far field approximation equation and numerical integration, in which the effects of electron-beam emittance and energy spread are considered. Accurate electron-beam profiles have been experimentally determined and modeled by the Monte Carlo method. The calculated spectra illustrate the emittance of Hefei storage ring imposes on the spontaneous radiation of TOK

  3. Study of radiation-induced chromosomal aberrations

    International Nuclear Information System (INIS)

    Wolfring, E.

    2004-06-01

    A method for determining chromosomal aberrations was established for the purpose of examining the relative biological effectiveness (RBE) of photon radiation with respect to mammary epithelium cells. Cells were exposed to 25 kV X-radiation and to 200 kV X-radiation for comparison and the resulting concentrations of chromosomal aberrations were compared. The RBE M value for radiation-induced fragmentation was found to be 4.2 ± 2.4, while the RBE M value for radiation-induced generation of dicentric chromosomes was found to be 0.5 ± 0.5. In addition to the evaluation of chromosomal aberrations the number of cell cycles undergone by the cells was monitored by means of BrDU staining. As expected, the proportion of cells which underwent more than one cell cycle following exposure to 5 Gy was very low in both cases, amounting to 1.9% (25 kV) and 3.2 (200 kV). Non-radiated cells yielded control values of 26.0% and 12.6%, suggesting variations in external conditions from day to day

  4. Studies on application of radiation and radioisotopes -Studies on radiation processing-

    International Nuclear Information System (INIS)

    Jin, Joon Hah; Yoon, Byung Mok; Kim, Kee Yub; Noh, Yung Chang; Lee, Yung Keun; Lee, Myun Joo; Park, Soon Chul; Nah, Bong Joo; Kim, Jae Hoh; Byun, Hyung Jik

    1995-07-01

    Using γ-ray and electron beam, acrylic acid was grafted on polyethylene film in the presence of additives such as acid and metallic salts. The effect of metal salts and acid on the graft yield was evaluated. The graft mechanism and the physical property of grafted films were also examined. Radiation sensitivities of pathogenic microbes in waste sludges were determined to get theoretical radiation dose for disinfection. Experimental radiation dose for disinfection was investigated using real activated and digestive sludge. Feasibility of the method was studied from the experimental results. Virgin, waste and regenerated activated carbon were irradiated with electron beam with and without steam. Micropore distribution, BET surface area and sorption capacity were measured before and after irradiation. The residence time distributions of flue gas in the irradiation chamber of an electron beam flue gas treatment plant to study the effect of baffles were measured. The flow rates of gaseous material in the propylene production plant were measured to identify the origin of it's malfunction. The equipment for column scanning were designed for production. 45 figs, 10 tabs, 30 refs. (Author)

  5. Studies on application of radiation and radioisotopes -Studies on radiation processing-

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Joon Hah; Yoon, Byung Mok; Kim, Kee Yub; Noh, Yung Chang; Lee, Yung Keun; Lee, Myun Joo; Park, Soon Chul; Nah, Bong Joo; Kim, Jae Hoh; Byun, Hyung Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Using {gamma}-ray and electron beam, acrylic acid was grafted on polyethylene film in the presence of additives such as acid and metallic salts. The effect of metal salts and acid on the graft yield was evaluated. The graft mechanism and the physical property of grafted films were also examined. Radiation sensitivities of pathogenic microbes in waste sludges were determined to get theoretical radiation dose for disinfection. Experimental radiation dose for disinfection was investigated using real activated and digestive sludge. Feasibility of the method was studied from the experimental results. Virgin, waste and regenerated activated carbon were irradiated with electron beam with and without steam. Micropore distribution, BET surface area and sorption capacity were measured before and after irradiation. The residence time distributions of flue gas in the irradiation chamber of an electron beam flue gas treatment plant to study the effect of baffles were measured. The flow rates of gaseous material in the propylene production plant were measured to identify the origin of it`s malfunction. The equipment for column scanning were designed for production. 45 figs, 10 tabs, 30 refs. (Author).

  6. Radiation studies on the microflora in a High-level radiation environment

    International Nuclear Information System (INIS)

    Zahiera, T.S.

    1988-01-01

    Radiation sensitivities of microflora in the air environment of the irradiation room of the 60 CO industrial irradiation facility of NCRRT was studied. The isolated microflora was identified to be the Gram positive micrococci, and the gram positive bacilli: coagulans and laterosporous. The study of the dose-survival counts dependence of the colonies showed the existance of the combination of at least two groups of micro-organisms with different sensitivities to radiation. The value of the radiation resistant group was found to be 2.2 10kGy. A method is presented to estimate the amount of each group in the initial culture. A study of the dependence of radiation lethality on the dose rate of radiation on the aerobic dry microbes showed no significant effect in the dose-rate range from 330 down to 44 Gy.min

  7. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1981-05-01

    The current knowledge of the carcinogenic effect of radiation in man is considered. The discussion is restricted to dose-incidence data in humans, particularly to certain of those epidemiological studies of human populations that are used most frequently for risk estimation for low-dose radiation carcinogenesis in man. Emphasis is placed solely on those surveys concerned with nuclear explosions and medical exposures

  8. Effect of solute interaction on interfacial and grain boundary embrittlement in binary alloys

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel

    2013-01-01

    Roč. 48, č. 6 (2013), 2574-2580 ISSN 0022-2461 R&D Projects: GA ČR GAP108/12/0144 Institutional research plan: CEZ:AV0Z10100520 Keywords : interfacial segregation * grain boundary embrittlement * binary interaction * modeling * thermodynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.305, year: 2013

  9. Role of twinning and transformation in hydrogen embrittlement of austenitic stainless steels

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1977-01-01

    Internal hydrogen embrittlement may be viewed as an extreme form of environmental embrittlement that arises following prolonged exposure to a source of hydrogen. Smooth bar tensile specimens of three stainless steels saturated with deuterium (approximately 200 mol D 2 /m 3 ) were pulled to failure in air at 200 to 400 0 K or in liquid nitrogen at 78 0 K. In Type 304L stainless steel and Tenelon ductility losses are a maximum around 200 to 273 0 K; Type 310 stainless steel is not embrittled at this hydrogen concentration. A distinct change in fracture mode accompanies hydrogen embrittlement, with fracture proceeding along coherent boundaries of pre-existing annealing twins. This fracture path is observed in Tenelon at 78 0 K even when hydrogen is absent. There is also a change in fracture appearance in specimens with no prior exposure to hydrogen if they are pulled to failure in high-pressure hydrogen. The fracture path is not identifiable, however. Magnetic response measurements and changes in the stress-strain curves show that hydrogen suppresses formation of strain-induced α'-martensite at 198 0 K in both Type 304L stainless steel and Tenelon, but there is little effect in Type 304L stainless at 273 0 K

  10. Long-term embrittlement of cast duplex stainless steels in LWR systems

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1990-08-01

    This progress report summarizes work performed by Argonne National Laboratory on long-term embrittlement of cast duplex stainless steels in LWR systems during the six months from April to September 1988. Characteristics of the primary mechanism of aging embrittlement (i.e., spinodal decomposition of ferrite) and synergistic effects of alloying and impurity elements that influence the kinetics of the primary mechanism are discussed. Several secondary metallurgical processes of embrittlement, strongly dependent on the C, N, Ni, Mo, and Si content of various heats, are identified. Information on kinetics and data on impact properties are analyzed and correlated with microstructural characteristics to provide a unified method of extrapolating accelerated-aging data to reactor operating conditions. Fracture toughness data are presented for several heats of cast stainless steel aged at temperatures between 320 and 450 degrees C for times up to 10,000 h. Mechanical property data are analyzed to develop the procedure and correlations or predicting the kinetics and extent of embrittlement of reactor components from known material parameters. The method and examples of estimating the impact strength and fracture toughness of cast components during reactor service are described. The lower-bound values of impact strength and fracture toughness for cast stainless steels at LWR operating temperatures are defined. 42 refs., 14 figs., 6 tabs

  11. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy

    International Nuclear Information System (INIS)

    Song, R.G.; Dietzel, W.; Zhang, B.J.; Liu, W.J.; Tseng, M.K.; Atrens, A.

    2004-01-01

    The age hardening, stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of an Al-Zn-Mg-Cu 7175 alloy were investigated experimentally. There were two peak-aged states during ageing. For ageing at 413 K, the strength of the second peak-aged state was slightly higher than that of the first one, whereas the SCC susceptibility was lower, indicating that it is possible to heat treat 7175 to high strength and simultaneously to have high SCC resistance. The SCC susceptibility increased with increasing Mg segregation at the grain boundaries. Hydrogen embrittlement (HE) increased with increased hydrogen charging and decreased with increasing ageing time for the same hydrogen charging conditions. Computer simulations were carried out of (a) the Mg grain boundary segregation using the embedded atom method and (b) the effect of Mg and H segregation on the grain boundary strength using a quasi-chemical approach. The simulations showed that (a) Mg grain boundary segregation in Al-Zn-Mg-Cu alloys is spontaneous, (b) Mg segregation decreases the grain boundary strength, and (c) H embrittles the grain boundary more seriously than does Mg. Therefore, the SCC mechanism of Al-Zn-Mg-Cu alloys is attributed to the combination of HE and Mg segregation induced grain boundary embrittlement

  12. Imitation and reactor studies of irradiation effect on material mechanic properties

    International Nuclear Information System (INIS)

    Ozhigov, L.S.

    1999-01-01

    Processes of low- and high-temperature radiation embrittlement, radiation creeping and their influence on reactor material properties are considered. Role of imitation experiments in these processes is analysed

  13. Studies on radiation stability of polymers

    International Nuclear Information System (INIS)

    Jiazhen Sun; Xiaoguang Zhong

    1999-01-01

    Fluoropolyimide (FPI) is crosslinked by gamma-irradiation at high temperature. After crosslinking, the glass transition temperature is increased with increasing dose. High temperature tensile strength is also increased with increasing dose. The high temperature water resistance property is improved markedly. XPS results show that the fluoro-atom in the CF 3 group is decreased during radiation crosslinking of PFI, so the crosslinking reaction of PFI is thought to proceed through defluorination. Likewise, certain common polyolefins, such as polytetrafluoroethylene, which undergo primarily chain scission when irradiated at room temperature, can be crosslinked by irradiation at high temperature. This dramatically improves their subsequent radiation resistance. We have also been able to achieve improved radiation resistance by irradiation of certain blends of a predominantly scissioning polymer with a predominantly crosslinking polymer. (author)

  14. Studies and Development of Radiation Processed Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, Lalit; Sabharwal, Sunil; Francis, Sanju; Biswal, Jayashree [Radiation Technology Development Section, Bhabha Atomic Research Centre, Mumbai (India)

    2009-07-01

    Nanotechnology is the emerging technology that deals with processing, manipulating and manufacturing devices and products at the microscopic scale of molecules or atoms with structures smaller than 100 nanometers. Realizing its potential, Government of India spending on R&D in nanotechnology has gone up by an order of magnitude in last 5 years through various national and international programs. High energy gamma radiation and electron beams could be a useful tool to create innovative and newer nano-materials for various applications in medical field for treatment and detection purposes. Considering its certain advantage for producing nano-materials, radiation technology will play a crucial role in development of such materials. Research and development in the area of nano--particles on polymer films, hydrogels, silica particles and their nano-clusters using radiation technology could be a possible route for development of new functional nano-materials. (author)

  15. Studies and Development of Radiation Processed Nanomaterials

    International Nuclear Information System (INIS)

    Varshney, Lalit; Sabharwal, Sunil; Francis, Sanju; Biswal, Jayashree

    2009-01-01

    Nanotechnology is the emerging technology that deals with processing, manipulating and manufacturing devices and products at the microscopic scale of molecules or atoms with structures smaller than 100 nanometers. Realizing its potential, Government of India spending on R&D in nanotechnology has gone up by an order of magnitude in last 5 years through various national and international programs. High energy gamma radiation and electron beams could be a useful tool to create innovative and newer nano-materials for various applications in medical field for treatment and detection purposes. Considering its certain advantage for producing nano-materials, radiation technology will play a crucial role in development of such materials. Research and development in the area of nano--particles on polymer films, hydrogels, silica particles and their nano-clusters using radiation technology could be a possible route for development of new functional nano-materials. (author)

  16. A study of Monte Carlo radiative transfer through fractal clouds

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, C.; Lavallec, D.; O`Hirok, W.; Ricchiazzi, P. [Univ. of California, Santa Barbara, CA (United States)] [and others

    1996-04-01

    An understanding of radiation transport (RT) through clouds is fundamental to studies of the earth`s radiation budget and climate dynamics. The transmission through horizontally homogeneous clouds has been studied thoroughly using accurate, discreet ordinates radiative transfer models. However, the applicability of these results to general problems of global radiation budget is limited by the plane parallel assumption and the fact that real clouds fields show variability, both vertically and horizontally, on all size scales. To understand how radiation interacts with realistic clouds, we have used a Monte Carlo radiative transfer model to compute the details of the photon-cloud interaction on synthetic cloud fields. Synthetic cloud fields, generated by a cascade model, reproduce the scaling behavior, as well as the cloud variability observed and estimated from cloud satellite data.

  17. Studies on the genetic effects of radiation

    International Nuclear Information System (INIS)

    Cheong, Kyu Hoi; Cheong, Hae Won; Cheon, Kwi Cheong; Kim, Chae Sung

    1985-01-01

    To investigate genetic damage of radiation in mammalian male germ cell, sperm head counts, frequency of sperm with abnormal head shape, fertility, activity of LDH-X, and the induction of unscheduled DNA synthesis in testis were measured periodically after irradiation. Sperm head counts and activities of LDH-X in testes were gradually reduced by increased radiation dose and with the passing of the time after irradiation. Frequency occurrence of sperm of abnormal head shape, sterile period, and the induction of unscheduled DNA synthesis were increased. (Author)

  18. Pilot study for natural radiation survey

    International Nuclear Information System (INIS)

    Brown, L.; Driscoll, C.M.H.; Green, B.M.R.; Miles, J.C.H.

    1983-01-01

    NRPB's national survey of natural radiation exposure in homes commenced in 1982 and will run until 1984. A pilot survey was undertaken in over 100 homes for one year, using passive thermoluminescent dosemeters to measure external radiation from terrestrial and cosmic sources and passive radon dosemeters to measure the radon-222 gas concentration. A preliminary analysis of the results obtained from the pilot survey is given. The main value of the pilot survey was in providing experience and various administrative and scientific procedures have been simplified or automated for the national survey. (U.K.)

  19. Quantitative evaluation of rejuvenators to restore embrittlement temperatures in oxidized asphalt mixtures using acoustic emission

    Science.gov (United States)

    Sun, Zhe; Farace, Nicholas; Arnold, Jacob; Behnia, Behzad; Buttlar, William G.; Reis, Henrique

    2015-03-01

    Towards developing a method capable to assess the efficiency of rejuvenators to restore embrittlement temperatures of oxidized asphalt binders towards their original, i.e., unaged values, three gyratory compacted specimens were manufactured with mixtures oven-aged for 36 hours at 135 °C. In addition, one gyratory compacted specimen manufactured using a short-term oven-aged mixture for two hours at 155 °C was used for control to simulate aging during plant production. Each of these four gyratory compacted specimens was then cut into two cylindrical specimen 5 cm thick for a total of six 36-hour oven-aged specimens and two short term aging specimens. Two specimens aged for 36 hours and the two short-term specimens were then tested using an acoustic emission approach to obtain base acoustic emission response of short-term and severely-aged specimens. The remaining four specimens oven-aged for 36 hours were then treated by spreading their top surface with rejuvenator in the amount of 10% of the binder by weight. These four specimens were then tested using the same acoustic emission approach after two, four, six, and eight weeks of dwell time. It was observed that the embrittlement temperatures of the short-term aged and severely oven-aged specimens were -25 °C and - 15 °C, respectively. It was also observed that after four weeks of dwell time, the rejuvenator-treated samples had recuperated the original embrittlement temperatures. In addition, it was also observed that the rejuvenator kept acting upon the binder after four weeks of dwell time; at eight weeks of dwell time, the specimens had an embrittlement temperature about one grade cooler than the embrittlement temperature corresponding to the short-term aged specimen.

  20. Mechanistic studies of neoplastic cell transformation by ionizing radiation

    International Nuclear Information System (INIS)

    Yang, T.C.; Craise, L.M.; Tobias, C.A.

    1982-01-01

    As part of the Biology and Medicine heavy-ion radiation program, we are systematically investigating the potential carcinogenic and mutagenic effects of high- and low-linear energy transfer (LET) radiation at the cellular level. From these studies, we anticipate additional insight into the molecular and cellular mechanisms of radiation carcinogenesis. Such results should provide quantitative information useful for assessing the undesirable biological effects of cosmic rays in space. Some of our recent experimental results are presented here

  1. Atomic photoelectron-spectroscopy studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobrin, P.H.

    1983-02-01

    Photoelectron spectroscopy combined with tunable synchrotron radiation has been used to study the photoionization process in several atomic systems. The time structure of the synchrotron radiation source at the Stanford Synchrotron Radiation Laboratory (SSRL) was used to record time-of-flight (TOF) photoelectron spectra of gaseous Cd, Hg, Ne, Ar, Ba, and Mn. The use of two TOF analyzers made possible the measurement of photoelectron angular distributions as well as branching ratios and partial cross sections

  2. Effect of pre-strain on susceptibility of Indian Reduced Activation Ferritic Martensitic Steel to hydrogen embrittlement

    International Nuclear Information System (INIS)

    Sonak, Sagar; Tiwari, Abhishek; Jain, Uttam; Keskar, Nachiket; Kumar, Sanjay; Singh, Ram N.; Dey, Gautam K.

    2015-01-01

    The role of pre-strain on hydrogen embrittlement susceptibility of Indian Reduced Activation Ferritic Martensitic Steel was investigated using constant nominal strain-rate tension test. The samples were pre-strained to different levels of plastic strain and their mechanical behavior and mode of fracture under the influence of hydrogen was studied. The effect of plastic pre-strain in the range of 0.5–2% on the ductility of the samples was prominent. Compared to samples without any pre-straining, effect of hydrogen was more pronounced on pre-strained samples. Prior deformation reduced the material ductility under the influence of hydrogen. Up to 35% reduction in the total strain was observed under the influence of hydrogen in pre-strained samples. Hydrogen charging resulted in increased occurrence of brittle zones on the fracture surface. Hydrogen Enhanced Decohesion (HEDE) was found to be the dominant mechanism of fracture.

  3. Effect of post weld heat treatments on the resistance to the hydrogen embrittlement of soft martensitic stainless steel

    International Nuclear Information System (INIS)

    Hazarabedian, Alfredo; Ovejero Garcia, Jose; Bilmes, P.; Llorente, C.

    2003-01-01

    The effect of external hydrogen on the tensile properties of an all weld sample of a soft martensitic stainless steel was studied. The material was tested in the as weld condition and after tempered conditions modifying the austenite content, and changing the quantity, type and distribution of precipitates. Hydrogen was introduced by cathodic charge or by immersion in an acid brine saturated whit 1 atm hydrogen sulphide, during the mechanical test. The as weld condition showed a good resistance in the hydrogen sulphide, were the tempered samples were embrittled. Under cathodic charge, all samples were susceptible to hydrogen damage. The embritting mechanisms were the same in both environments. When the austenite content, was below 10% the crack path is on the primary austenite grain boundary. At higher austenite content, the crack is transgranular. (author)

  4. An experimental study on radiation hepatitis

    International Nuclear Information System (INIS)

    Kang, Ik Won; Park, Charn Il; Kim, Chu Wan

    1981-01-01

    The effect of radiation on the liver should be of unusual interest in as much as there are two highly specialized kinds of epithelium besides an important endothelial system and vascular and fibrous elements to compare. But there are several difficulties in the way of a knowledge of the sensitivity and reaction of the liver to radiation. Perhaps the most important is the regenerative ability of the liver cells. It has been assumed that the liver as an organ is relatively resistant to radiation injury. Yet there are reports of necorsis of the liver in man resulting from doses of radiation which have not caused a skin reaction or any demonstrable effect on the stomach. The author made an experiment to elucidate more clearly the changes in serum enzymes and histopathology of rat's liver following irradiation to the liver with a single dose of 2,000 rads. The results obtained are as follows: 1. Serum SGOT activities were significantly elevated, 1 and 2 weeks after irradiation, and normalized after 4 weeks. 2. Serum SGPT activities were significantly elevated 2 weeks after irradiation, and normalized after 4 weeks. 3. Alakline phosphatase activity were significantly elevated 1, 2 and 4 weeks after irradiation, and normalized after 8 weeks. 4. Histopathologic changes were focal necrosis, inflammatory cell infiltrations, loss of intracytoplasmic glycogen particles, and vacuolar degenerations of hepatocytes. It appeared marked 2 weeks after irradiation, restored after 4 weeks, and normalized after 8 weeks

  5. Treatment of radiation enteritis: a comparison study

    International Nuclear Information System (INIS)

    Loiudice, T.A.; Lang, J.A.

    1983-01-01

    Twenty-four patients with severe radiation injury to the small bowel seen over a 4-year period were randomized to four treatment groups: 1) methylprednisolone 80 mg intravenously plus Vivonex-HN, 2 L/day po, 2) methylprednisolone 80 mg intravenously plus total parenteral nutrition, 2.5 L/day, 3) total parenteral nutrition, 2.5 L/day, and 4) Vivonex-HN, 2 L/day po. Patients received nothing by mouth except water in groups II and III, and only Vivonex-HN in groups I and IV. Patients were treated for 8-wk periods. Improvement was gauged by overall nutritional assessment measurements, nitrogen balance data and by radiological and clinical parameters. No significant difference between groups I, II, III, and IV could be found for age, sex, mean radiation dosage, time of onset after radiation therapy, or initial nutritional assessment data. Differences statistically could be found between groups II and III and I and IV regarding nutritional assessment data, nitrogen balance, radiographic and clinical parameters after therapy, with marked improvement noted in groups II and III. We conclude that a treatment regimen consisting of total parenteral nutrition and bowel rest is beneficial in the treatment of radiation enteritis. Methylprednisolone appears to enhance this effect and indeed, may be responsible for a longer lasting response

  6. An experimental study on radiation hepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ik Won; Park, Charn Il; Kim, Chu Wan [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    1981-09-15

    The effect of radiation on the liver should be of unusual interest in as much as there are two highly specialized kinds of epithelium besides an important endothelial system and vascular and fibrous elements to compare. But there are several difficulties in the way of a knowledge of the sensitivity and reaction of the liver to radiation. Perhaps the most important is the regenerative ability of the liver cells. It has been assumed that the liver as an organ is relatively resistant to radiation injury. Yet there are reports of necorsis of the liver in man resulting from doses of radiation which have not caused a skin reaction or any demonstrable effect on the stomach. The author made an experiment to elucidate more clearly the changes in serum enzymes and histopathology of rat's liver following irradiation to the liver with a single dose of 2,000 rads. The results obtained are as follows: 1. Serum SGOT activities were significantly elevated, 1 and 2 weeks after irradiation, and normalized after 4 weeks. 2. Serum SGPT activities were significantly elevated 2 weeks after irradiation, and normalized after 4 weeks. 3. Alakline phosphatase activity were significantly elevated 1, 2 and 4 weeks after irradiation, and normalized after 8 weeks. 4. Histopathologic changes were focal necrosis, inflammatory cell infiltrations, loss of intracytoplasmic glycogen particles, and vacuolar degenerations of hepatocytes. It appeared marked 2 weeks after irradiation, restored after 4 weeks, and normalized after 8 weeks.

  7. Safety of natural radiation exposure. A meta-analysis of epidemiological studies on natural radiation

    International Nuclear Information System (INIS)

    Osaki, S.

    2000-01-01

    People have been exposed every time and everywhere to natural radiation and ''intuitively'' know the safety of this radiation exposure. On the other hand the theory of no threshold value on radiological carcinogenesis is known widely, and many people feel danger with even a smallest dose of radiation exposure. The safety of natural radiation exposure can be used for the risk communication with the public. For this communication, the safety of natural radiation exposure should be proved ''scientifically''. Safety is often discussed scientifically as the risks of the mortality from many practices, and the absolute risks of safe practices on the public are 1E-5 to 1E-6. The risks based on the difference of natural radiation exposure on carcinogenesis have been analyzed by epidemiological studies. Much of the epidemiological studies have been focused on the relationship between radiation doses and cancer mortalities, and their results have been described as relative risks or correlation factors. In respect to the safety, however, absolute risks are necessary for the discussion. Cancer mortalities depend not only on radiation exposure, but also on ethnic groups, sexes, ages, social classes, foods, smoking, environmental chemicals, medical radiation, etc. In order to control these confounding factors, the data are collected from restricted groups or/and localities, but any these ecological studies can not perfectly compensate the confounding factors. So positive or negative values of relative risks or the meaningful correlation factors can not be confirmed that their values are derived originally from the difference of their exposure doses. The absolute risks on these epidemiological studies are also affected by many factors containing radiation exposure. The absolute risk or the upper value of the confidence limit obtained from the epidemiological study which is well regulated confounding factors is possible to be a maximum risk on the difference of the exposure doses

  8. Study of the response of radiation protection monitors in terms of H*(10) in X radiation

    International Nuclear Information System (INIS)

    Nonato, Fernanda B.C.; Carvalho, Valdir S.; Vivolo, Vitor; Caldas, Linda V.E.

    2009-01-01

    The ambient dose equivalent, H * (10), is an operational quantity recommended by the International Commission of radiation Units and Measurements Report 39 for measurements in area monitoring. However, most of the monitoring instruments used in radiation protection in Brazil still use the old quantities exposure rate and absorbed dose rate. Therefore, it is necessary to study how to change the operational quantity to H * (10). In this work, the response of radiation protection monitoring detectors was studied in terms of H * (10) for different energies using standard X-rays (narrow beams) at the Calibration Laboratory of IPEN. (author)

  9. Effects of radiation on photographic film. A study

    International Nuclear Information System (INIS)

    Dutton, D.M.

    1971-01-01

    This study of the effects of radiation on photographic film is related to the Nevada Test Site's underground nuclear testing program, which has been active since implementation of the Limited Test Ban Treaty of 1963. Residual radioactivity, which has accidentally been released on several tests, adversely affects the photographic film used in test data acquisition. The report defines this problem in terms of radiation-caused image degradation, radiation/matter interactions, types of radiation released by accidental venting, and the photographic effects of gamma and x radiation. Techniques and experimental findings are documented that may be useful in recovering information from radiation-fogged film. Techniques discussed include processing methods, shielding, image enhancement techniques, and operational handling of potentially irradiated film. (U.S.)

  10. Radiation disinfestation studies on sun dried fish

    International Nuclear Information System (INIS)

    Ahmed, M.; Bhuiya, A.D.; Alam, M.S.; Huda, S.M.S.

    1989-01-01

    A large quantity of dried fish is lost in Bangladesh due to infestation by earwigs, hide beetles and copra beetles in storage godowns. The most destructive pest is the hide beetle, Dermestes maculatus Deg. Earwigs of different developmental stages were exposed to 0.10, 0.20 or 0.30 kGy of gamma rays for disinfestation. There was apparent damage to the control but all treated samples were in good condition and no live insect was observed 3 weeks after starting the experiment. Disinfestation studies of dried mackerel showed that eggs, larval and pupal stages of hide beetles could be inactivated at a dose of 0.20 kGy. A dose of 0.30 kGy killed all adults 2 weeks after irradiation. In the packaging studies, dried mackerel was packed in polythene pouches of different thicknesses. Two controls were maintained, i.e. dried fish with no treatment, control, and dried fish disinfested with heat at 60 deg. C, disinfested control. In experiments with 50 μm thick polythene pouches, the dried fish of irradiation treatments with 0.10 to 1.0 kGy doses and the controls had around 20% moisture content with the exception of disinfested controls which had 13% moisture content. All irradiated samples were free from insect damage. There was heavy damage in the controls due to insects. However, all these treated fish had heavy fungal growth with the exception of the disinfested control. Similar results were obtained with pouches made of 75 μm thick polythene irradiated at doses of 0.50, 1.0, 2.0 and 4.0 kGy. In the final experiments pouches were made of 50, 75 and 100 μm thick polythene and exposed to similar radiation as in the previous experiment. In all the treatments, moisture content was reduced to 13%. heavy insect damage was observed in the control, while all the treated samples were in excellent condition after 5 months of storage. (author). 20 refs, 2 figs, 5 tabs

  11. The applications of microdosimetry in radiation biology study

    International Nuclear Information System (INIS)

    Kim, Eunhee

    2002-01-01

    To understand the mechanisms by which the ionizing radiation causes these damages, the spatial patterns of interaction and energy deposition by radiations should be explained in cellular level. All the descriptions of the physical process of radiation interaction and energy transfer in cellular or microscopic scale constitute the field of microdosimetry. The underlying motivations of microdosimetry study range from the efficient control of the radiation protection measures to the improvement of the diagnostic and therapeutic effectiveness in medical applications of radiation. The major quantity in the conventional radiation dosimetry or the macroscopic dosimetry is the 'absorbed dose' defined as the mean value of the possible energy depositions per unit mass of the target. With the microscopic targets such as cells and subcellular organelles, the average quantity can not represent the radiation actions on the targets any more because of the inhomogeneous and stochastic nature in radiation interaction with matter. The essence of microdosimetry is to study the fluctuation of energy deposition in a microscopic volume and its deviation from the mean value attributed to the inherent randomness of radiation interactions with matter

  12. The study of the radiation protection of propolis to the radiation effects in mice

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Y.H.; Suzuki, Ikukatsu; Hasegawa, Takeo; Muto, H. [Suzuka Univ. of Medical Science, Mie (Japan); Yanagisawa, Takaharu; Iwasa, Toshihiro; Bamen, K.

    2000-05-01

    The profit which radiation brought to the Homo sapiens is very big. But, radiation has even harmful parameter for the human besides one case. After effect on man to the radiation is thought about, the individual of which sensibility is the highest is a fetus. Therefore, even an effects to this fetus is grasped precisely, and protection criterion and resource are decided from the viewpoint of the protection of radiation as well. If it does so, a child and maturitas aren't so difficult as in the protection of radiation and the managerial side. It was examined about control group, propolis administration chisels for medical use group, 1.5 Gy independent exposure group and propolis pluse 1.5 Gy group in this study. It was examined about the protection of radiation of propolis which to malformation, fetal death, arrested development, and so on in the organogenesis (8 days post conception) being done when sensibility is the highest against the teratogenesis. Preimplantation death rate was compared with the control group and the sham control group, and statistical significant difference wasn't recognized by a 1.5 Gy radiation independent exposure group, propolis administration 1.5 Gy radiation exposure group. As for the embryonic death rate, propolis was administered, and obviously embryonic death rate was poorer than the 1.5 Gy independent exposure group, and significant difference was recognized by a 1.5 Gy radiation exposure group (p<0.001). It has a 1.5 Gy radiation exposure group made clear by this research fetal death rate propolis administer more only 1.5 Gy exposure fetal death rate development low (p<0.001). Fetal death rate wasn't recognized by propolis administration group (Sham control). As for the teratogenesis rate, propolis was administered, and the teratogenesis rate of the 1.5 Gy radiation exposure group was higher than the 1.5 Gy radiation independent exposure group. But, this is thought anamorphosis appear by propolis administration so

  13. The study of the radiation protection of propolis to the radiation effects in mice

    International Nuclear Information System (INIS)

    Gu, Y.H.; Suzuki, Ikukatsu; Hasegawa, Takeo; Muto, H.; Yanagisawa, Takaharu; Iwasa, Toshihiro; Bamen, K.

    2000-01-01

    The profit which radiation brought to the Homo sapiens is very big. But, radiation has even harmful parameter for the human besides one case. After effect on man to the radiation is thought about, the individual of which sensibility is the highest is a fetus. Therefore, even an effects to this fetus is grasped precisely, and protection criterion and resource are decided from the viewpoint of the protection of radiation as well. If it does so, a child and maturitas aren't so difficult as in the protection of radiation and the managerial side. It was examined about control group, propolis administration chisels for medical use group, 1.5 Gy independent exposure group and propolis pluse 1.5 Gy group in this study. It was examined about the protection of radiation of propolis which to malformation, fetal death, arrested development, and so on in the organogenesis (8 days post conception) being done when sensibility is the highest against the teratogenesis. Preimplantation death rate was compared with the control group and the sham control group, and statistical significant difference wasn't recognized by a 1.5 Gy radiation independent exposure group, propolis administration 1.5 Gy radiation exposure group. As for the embryonic death rate, propolis was administered, and obviously embryonic death rate was poorer than the 1.5 Gy independent exposure group, and significant difference was recognized by a 1.5 Gy radiation exposure group (p<0.001). It has a 1.5 Gy radiation exposure group made clear by this research fetal death rate propolis administer more only 1.5 Gy exposure fetal death rate development low (p<0.001). Fetal death rate wasn't recognized by propolis administration group (Sham control). As for the teratogenesis rate, propolis was administered, and the teratogenesis rate of the 1.5 Gy radiation exposure group was higher than the 1.5 Gy radiation independent exposure group. But, this is thought anamorphosis appear by propolis administration so long as there was

  14. Studies on chemical protectors against radiation, 31

    International Nuclear Information System (INIS)

    Sato, Yushi; Ohta, Setsuko; Shinoda, Masato

    1990-01-01

    Protective effects of Aloe arborescens (AA) on mouse skin injury induced by soft X-irradiation were examined. The mechanisms on radiation protection by measuring scavenge activity of activated oxygen, protective effects of nucleic acid, induction of antioxidative protein and so on were further investigated. Consequently a significant protective effect of skin injury was observed in AA S6-3-b. As the mechanisms of radiation protection in AA, the following matters were found. AA S6-3-b showed scavenge activity of hydroxyl radicals generated by Haber-Weiss reaction. AA S6-3-b suppressed the changes of activity in superoxide dismutase and gluthathione peroxidase at 7d after soft X-irradiation. Metallothionein was induced in the skin and liver against normal mice at 24 h after administration of AA S6-3-b. (author)

  15. Gamma radiation in ceramic capacitors: a study for space missions

    Science.gov (United States)

    dos Santos Ferreira, Eduardo; Sarango Souza, Juliana

    2017-10-01

    We studied the real time effects of the gamma radiation in ceramic capacitors, in order to evaluate the effects of cosmic radiation on these devices. Space missions have electronic circuits with various types of devices, many studies have been done on semiconductor devices exposed to gamma radiation, but almost no studies for passive components, in particular ceramic capacitors. Commercially sold ceramic capacitors were exposed to gamma radiation, and the capacitance was measured before and after exposure. The results clearly show that the capacitance decreases with exposure to gamma radiation. We confirmed this observation in a real time capacitance measurement, obtained using a data logging system developed by us using the open source Arduino platform.

  16. Study of effects of radiation on silicone prostheses

    International Nuclear Information System (INIS)

    Shedbalkar, A.R.; Devata, A.; Padanilam, T.

    1980-01-01

    Radiation effects on silicone gel and dose distribution of radiation through mammary prostheses were studied. Silicone gel behaves like tissue. Half value thickness for silicone gel and water are almost the same. Linear absorption coefficient for silicone gel and water are comparable

  17. Study of genomic instability induced by low dose ionizing radiation

    International Nuclear Information System (INIS)

    Seoane, A.; Crudeli, C.; Dulout, F.

    2006-01-01

    The crews of commercial flights and services staff of radiology and radiotherapy from hospitals are exposed to low doses of ionizing radiation. Genomic instability includes those adverse effects observed in cells, several generations after the exposure occurred. The purpose of this study was to analyze the occurrence of genomic instability by very low doses of ionizing radiation [es

  18. Studies on chemical protectors against radiation, 18

    International Nuclear Information System (INIS)

    Shinoda, Masato; Ohta, Setsuko; Hayase, Yukitoshi

    1978-01-01

    Radiation protective effect of S,2-aminomethylisothiuronium bromide hydrobromide and 2-mercaptoethylamine hydrochloride was tested on mice irradiated with soft x-ray of 70 kVp, using life-prolongation effect as an index. These compounds showed a marked effect on mice irradiated with 11000--13000 R, using a 10 mm acrylate filter. This method seemed to be usable as a potency testing for chemical radioprotectors. (auth.)

  19. Rethinking the Zircaloy Embrittlement Criteria and Its Impact on Safety Margin

    Energy Technology Data Exchange (ETDEWEB)

    Lee, You Ho; Kim, Bo Kyung; No, Hee Cheon [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    These fuel rod failure modes include integral thermal shock fracture, and impact tests. It is quite remarkable to see that the proposed Zircaloy embrittlemt criteria attained from ring compression tests, in general, successfully assure structural integrity of fuel rods subject to relevant failure modes in accidents. This fact demonstrates that ductility of Zircaloy is the key metric to structural integrity of fuel rods. However, the Zircaloy embrittlement criteria set in 1970s inevitably pose limitations that have become increasingly important for today's nuclear fuel and reactor operations. In particular, the criteria do not take into account the steady-state hydrogen embrittlement with burnup. This may be understandable considering the markedly lower discharge burnup in 1970s compared to that of today. The revision of the rule has been already conducted by the U.S NRC to account for high burnup effects on ECR while the temperature limit remains unchanged. The newly proposed rule of the U.S NRC stick to the similar ring compression tests conducted in the early 1970s. In the monumental experimental investigation of Hobson and Rittenhouse in 1972 and 1973, the experimental evidence for the current 1204oC was first addressed. The study found a reasonably accurate correlation between zero ductility temperature and the sum of alpha and oxide layer thickness for the specimens oxidized below 2200oF (1204 .deg. C). However, in spite of the similar oxidation degree, specimens oxidized at 2400 .deg. F (1315 deg. C) were markedly more brittle than specimens oxidized at 2200 .deg. F (1204 .deg. C). The study explained this by the increase in solid-solution hardening due to a higher oxygen solubility at a higher temperature. Such a nice experimental correlation attained between the nil ductility temperature and the remaining beta layer thickness fraction below 1204 .deg. C has become a critical basis for the current temperature limit; at 1315 .deg. C- thecorrelation

  20. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1981-01-01

    The present review provides an understanding of our current knowledge of the carcinogenic effect of low-dose radiation in man, and surveys the epidemiological studies of human populations exposed to nuclear explosions and medical radiation. Discussion centers on the contributions of quantitative epidemiology to present knowledge, the reliability of the dose-incidence data, and those relevant epidemiological studies that provide the most useful information for risk estimation of cancer induction in man. Reference is made to dose-incidence relationships from laboratory animal experiments where they may obtain, for problems and difficulties in extrapolation from data obtained at high doses to low doses, and from animal data to the human situation. The paper describes the methods of application of such epidemiological data for estimation of excess risk of radiation-induced cancer in exposed human populations and discusses the strengths and limitations of epidemiology in guiding radiation protection philosophy and public health policy

  1. Study of the initial processes of radiation effects using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobayashi, Katsumi

    1990-01-01

    Necessity for the research of production mechanisms of molecular damages in biological system and usefulness of monochromatic soft X-ray in these studies are described. Synchrotron radiation are introduced as a strong light source with continuous spectrum. Practically, it is the only light source in soft X-ray and vacuum UV region. Development of irradiation apparatus for radiation biology and recent results using various biological systems are reviewed. (author)

  2. A cohesive zone model to simulate the hydrogen embrittlement effect on a high-strength steel

    Directory of Open Access Journals (Sweden)

    G. Gobbi

    2016-01-01

    Full Text Available The present work aims to model the fracture mechanical behavior of a high-strength low carbon steel, AISI 4130 operating in hydrogen contaminated environment. The study deals with the development of 2D finite element cohesive zone model (CZM reproducing a toughness test. Along the symmetry plane over the crack path of a C(T specimen a zero thickness layer of cohesive elements are implemented in order to simulate the crack propagation. The main feature of this kind of model is the definition of a traction-separation law (TSL that reproduces the constitutive response of the material inside to the cohesive elements. Starting from a TSL calibrated on hydrogen non-contaminated material, the embrittlement effect is simulated by reducing the cohesive energy according to the total hydrogen content including the lattice sites (NILS and the trapped amount. In this perspective, the proposed model consists of three steps of simulations. First step evaluates the hydrostatic pressure. It drives the initial hydrogen concentration assigned in the second step, a mass diffusion analysis, defining in this way the contribution of hydrogen moving across the interstitial lattice sites. The final stress analysis, allows getting the total hydrogen content, including the trapped amount, and evaluating the new crack initiation and propagation due to the hydrogen presence. The model is implemented in both plane strain and plane stress configurations; results are compared in the discussion. From the analyses, it resulted that hydrogen is located only into lattice sites and not in traps, and that the considered steel experiences a high hydrogen susceptibility. By the proposed procedure, the developed numerical model seems a reliable and quick tool able to estimate the mechanical behavior of steels in presence of hydrogen.

  3. Photoionization studies of atoms and molecules using synchrotron radiation

    International Nuclear Information System (INIS)

    Lindle, D.W.

    1988-01-01

    Photoionization studies of free atoms and molecules have undergone considerable development in the past decade, in large part due to the use of synchrotron radiation. The tunability of synchrotron radiation has permitted the study of photoionization processes near valence-and core-level ionization thresholds for atoms and molecules throught the Periodic Table. A general illustration of these types of study will be presented, with emphasis on a few of the more promising new directions in atomic and molecular physics being pursued with synchrotron radiation. (author) [pt

  4. Oxidation-induced embrittlement and structural changes of Zircaloy-4 tubing in steam at 700-1000 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A E; Huessein, A G; El-Sayed, A A; El Banna, O A [Atomic Energy Authority, Cairo (Egypt); El Raghy, S M [Cairo Univ. (Egypt). Faculty of Engineering

    1997-02-01

    The oxidation-induced embrittlement and structural changes of Zircaloy-4 (KWU-Type) tubing was investigated under light water reactors (LWR) Loss-of-Coolant. Accident conditions (LOCA) in temperature range 700-1000 deg. C. The effect of hydrogen addition to steam was also investigated in the temperature range 800-1000 deg. C. The oxidation-induced embrittlement was found to be a function of both temperature and time. Fractography investigation of oxidized tubing showed a typical brittle fracture in the stabilized-alpha zone. The microhardness measurements revealed that the alpha-Zr is harder than that near the mid-wall position. The oxidation-induced embrittlement at 900 deg. C was found to be higher than at 1000 deg. C. The results also indicated that the addition of 5% by volume hydrogen to steam resulted in an increase in the degree of embrittlement. (author). 22 refs, 9 figs, 3 tabs.

  5. ANL/WSU radiation damage studies

    International Nuclear Information System (INIS)

    Jankowski, D.; Lopiano, D.; Proudfoot, J.; Underwood, D.; Miles, L.; Neidiger, J.; Tripard, G.

    1993-01-01

    We report preliminary results for the radiation hardness of (polystryrene) plastic scintillator stacks using a spectrum of energy hardened neutrons from a MARK-III TRIGA reactor. The total dose ranged from 100 KRad to 3MRad. The corresponding fluence was 3.8 x 10 13 to 3.8 x 10 14 (n/cm/cm) with the gamma contribution on the order 2--3% (of fluence). The measurements used Li-6, Li-7 Thermo-luminescence dosimeters. Radiochromic/GaF- Chromic film, and activated foils simultaneously allowing an inter-comparison of these various methods of dosimetry

  6. Study of radiation effects on semiconductor devices

    International Nuclear Information System (INIS)

    Kuboyama, Satoshi; Shindou, Hiroyuki; Ikeda, Naomi; Iwata, Yoshiyuki; Murakami, Takeshi

    2004-01-01

    Fine structure of the recent semiconductor devices has made them more sensitive to the space radiation environment with trapped high-energy protons and heavy ions. A new failure mode caused by bulk damage had been reported on such devices with small structure, and its effect on commercial synchronous dynamic random access memory (SDRAMs) was analyzed from the irradiation test results performed at Heavy ion Medical Accelerator in Chiba (HIMAC). Single event upset (SEU) data of static random access memory (SRAMs) were also collected to establish the method of estimating the proton-induced SEU rate from the results of heavy ion irradiation tests. (authors)

  7. Nuclear and radiation studies and environmental concerns

    International Nuclear Information System (INIS)

    McEwan, A.C.

    1998-01-01

    Over the three days 22-24 September 1998 a Science Forum was convened under the general heading of 'Nuclear technology in relation to water resources and the aquatic environment' at the International Atomic Energy Agency, Vienna. Some points of interest, or points of more particular relevance to radiation protection, are noted from the five sessions of the Forum: Session 1: water resources; Session 2: sea transport of radioactive and nuclear materials; Session 3: monitoring radioactivity in the aquatic environment; Session 4: nuclear technology in relation to waste resources and the aquatic environment, Session 5: impact assessment. (author)

  8. View of environmental radiation effects from the study of radiation biology in C. elegans

    International Nuclear Information System (INIS)

    Sakashita, Tetsuya

    2011-01-01

    Caenorhabditis (C.) elegans is a non-parasitic soil nematode and is well-known as a unique model organism, because of its complete cell-lineage, nervous network and genome sequences. Also, C. elegans can be easily manipulated in the laboratory. These advantages make C. elegans as a good in vivo model system in the field of radiation biology. Radiation effects in C. elegans have been studied for three decades. Here, I briefly review the current knowledge of the biological effects of ionizing irradiation in C. elegans with a scope of environmental radiation effects. Firstly, basic information of C. elegans as a model organism is described. Secondly, historical view is reported on the study of radiation biology in C. elegans. Thirdly, our research on learning behavior is presented. Finally, an opinion of the use of C. elegans for environmental radiation protection is referred. I believe that C. elegans may be a good promising in vivo model system in the field of environmental radiation biology. (author)

  9. Study on technology for minimizing radiation risk

    International Nuclear Information System (INIS)

    Lee, Jeong Ho; Kim, In Gyu; Kim, Jin Kyu; Lee, Kang Suk; Kim, Kug Chan; Chun, Ki Chung.

    1997-01-01

    Apoptosis, also called programmed cell death to discriminate it from necrosis, is characterized by : chromatin condensation, apoptotic body formation, fragmentation of DNA into oligonucleosome sized pieces, swelling and progressive cell degradation. We examined morphological and biochemical changes of T-lymphocytes following gamma irradiation exposure. The results are followings. 1) Murine lymphocytes have several characteristics : The irradiated cells undergo morphological and biochemical changes characteristic of apoptosis, causing growth delay. (0.01, 0.1, 1.0 Gy) 2) The onset of DNA fragmentation in cells occurs after one more cell divisions. 3) DNA fragmentation in cells occurs in all irradiated group (0.1, 1.0, 2.0, 4.0 Gy, 24 hours following gamma radiation exposure) 4) Apoptotic bodies were detected by confocal microscope with ease when compared with electron microscope. For the developing technology for minimizing radiation damage, the following experimental works have been done. 1) Establishment of experimental system for pre-screening of radioprotectants - Screening of protective substances using TSH bioindicator - Efficacy test of some radioprotective materials 2) TSH bioindicator system can make a scientific role in screening unknown materials for their possible radioprotective effect. (author). 42 refs., 3 tabs., 9 figs

  10. Study on technology for minimizing radiation risk

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Ho; Kim, In Gyu; Kim, Jin Kyu; Lee, Kang Suk; Kim, Kug Chan; Chun, Ki Chung

    1997-01-01

    Apoptosis, also called programmed cell death to discriminate it from necrosis, is characterized by : chromatin condensation, apoptotic body formation, fragmentation of DNA into oligonucleosome sized pieces, swelling and progressive cell degradation. We examined morphological and biochemical changes of T-lymphocytes following gamma irradiation exposure. The results are followings. (1) Murine lymphocytes have several characteristics : The irradiated cells undergo morphological and biochemical changes characteristic of apoptosis, causing growth delay. (0.01, 0.1, 1.0 Gy) (2) The onset of DNA fragmentation in cells occurs after one more cell divisions. (3) DNA fragmentation in cells occurs in all irradiated group (0.1, 1.0, 2.0, 4.0 Gy, 24 hours following gamma radiation exposure) (4) Apoptotic bodies were detected by confocal microscope with ease when compared with electron microscope. For the developing technology for minimizing radiation damage, the following experimental works have been done. (1) Establishment of experimental system for pre-screening of radioprotectants - Screening of protective substances using TSH bioindicator - Efficacy test of some radioprotective materials (2) TSH bioindicator system can make a scientific role in screening unknown materials for their possible radioprotective effect. (author). 42 refs., 3 tabs., 9 figs.

  11. [The study of transpiration influence on plant infrared radiation character].

    Science.gov (United States)

    Ling, Jun; Zhang, Shuan-Qin; Pan, Jia-Liang; Lian, Chang-Chun; Yang, Hui

    2012-07-01

    Studying vegetation infrared radiation character is the base of developing infrared camouflage and concealment technology of ground military target. Accurate fusion of target and background can be achieved by simulating formation mechanism of vegetation infrared radiation character. Leaf transpiration is characteristic physiological mechanism of vegetation and one of the main factors that influence its infrared radiation character. In the present paper, physical model of leaf energy balance is set up. Based on this model the influence of plant transpiration on leaf temperature is analyzed and calculated. The daily periodic variation of transpiration, leaf temperature and infrared radiation character of typical plants such as camphor tree and holly is actually measured with porometer and infrared thermal imaging system. By contrasting plant leaf with dryness leaf, experimental data indicates that plant transpiration can regulate leaf energy balance effectively and control leaf temperature in a reasonable range and suppress deep range variation of leaf infrared radiation character.

  12. Study of electromagnetic radiation pollution in Jalandhar city, India

    Science.gov (United States)

    Basandrai, D.; Dhami, A. K.; Bedi, R. K.; Khan, S. A.

    2017-07-01

    Environment pollution from electromagnetic radiations emitted from cell phone towers is a new kind of health hazard, which has increase the public concern regarding the health implications of electromagnetic radiations on humans and animals. Long term consequences of these radiations are still unknown. So it become important to measure and maps the electromagnetic radiation level to analyze potential risk. The present study has been taken to estimate the RF pollution by measuring radiation power densities level near school, hospitals and old age home of Jalandhar City, India. The radiation exposure was measured using a handheld portable electrosmog meter. Results were compared with the safety guidelines issued by ICNIRP (International commission on non ionizing radiation protection) and Bio-initiative report, 2012. It has been found that the radiation exposure level in terms of power densities and corresponding specific absorption rate (SAR) are much below than ICNIRP guidelines for all schools, hospitals and old age home. But in the case of 3 schools, the results are quite alarming where the power density and SAR was found to be 79.6% and 4%, respectively higher in comparisons with safe biological limit.

  13. A basic study of intraoperative radiation on the stomach

    International Nuclear Information System (INIS)

    Aoki, Tetsuya

    1978-01-01

    In a basic study of intraoperative radiation on the stomach, adult dogs were laparotomized, and radiated on the stomach and gastroduodenal anastomosed part with an electron beam to 1,000 - 4,000 rads to observed its effects on hematologic and histologic findings. 1) No leukopenia occurred with the radiation, but secondary effects such as anemia and hypoproteinemia were noted. 2) On the gastric wall, the mucosa was most severely effected by the radiation, presenting such changes as erosion, atrophy, disappearance of glandular tissue, and fibrosis with the lapse of time. 3) The radiation on the stomach to 3,000 rads was followed by ulceration in one month, by the start of repair of the ulceration in three months, and by its healing in eight months. Histologic examination disclosed no evident damages to the blood vessels by the radiation. 4) Delayed healing of the anastomosed part was noted as an effect of the radiation on this part. 5) The findings in this experiment appear to suggest that the single tolerable dose of electron beam radiation on the stomach and the gastroduodenal anastomosed part should be 3,000 rads. (author)

  14. Difference in Understanding of the Need for Using Radiation in Various Fields between Students Majoring in Radiation and Non-Radiation Related Studies

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Ok [Dept. of Radiological Tecknology, Daegu Health College, Daegu (Korea, Republic of)

    2011-12-15

    As a way of improving social receptivity of using radiation, this study looked into the difference of understanding the need of using radiation in various fields between students majoring in radiation and non-radiation related studies, who will influence public opinion in the long term. This study also provides data needed for developing efficient strategies for projects promoting the public's awareness of using radiation. Of the students in the 79 schools sampled, 24%(177) were in 4 year colleges and 146 were junior colleges in educational statistics service (http://cesi.kedi.re.kr) In November 2010 1,945 students were selected as a sample, and they were given surveys on the need of using radiation in different fields. As a result, both between students majoring in radiation and non-radiation related studies showed a high level of understanding the need for radiation in the medical field and showed a low level of understanding of the need for radiation in the agricultural field. In all 6 fields of radiation use, students majoring in radiation related studies showed higher levels of understanding for the need to use radiation than students majoring in radiation and non-radiation related studies. In each field, male students and those who have experience medical radiation and relevant education had higher level of understanding. This shows we need to improve the understanding of the cases of female students and those who have not had experiences with medical radiation and to provide relevant education through various kinds of information. The characteristics of the groups that are shown in the results of this study are considered to be helpful for efficiently for project promoting the public's awareness of using radiation.

  15. Difference in Understanding of the Need for Using Radiation in Various Fields between Students Majoring in Radiation and Non-Radiation Related Studies

    International Nuclear Information System (INIS)

    Han, Eun Ok

    2011-01-01

    As a way of improving social receptivity of using radiation, this study looked into the difference of understanding the need of using radiation in various fields between students majoring in radiation and non-radiation related studies, who will influence public opinion in the long term. This study also provides data needed for developing efficient strategies for projects promoting the public's awareness of using radiation. Of the students in the 79 schools sampled, 24%(177) were in 4 year colleges and 146 were junior colleges in educational statistics service (http://cesi.kedi.re.kr) In November 2010 1,945 students were selected as a sample, and they were given surveys on the need of using radiation in different fields. As a result, both between students majoring in radiation and non-radiation related studies showed a high level of understanding the need for radiation in the medical field and showed a low level of understanding of the need for radiation in the agricultural field. In all 6 fields of radiation use, students majoring in radiation related studies showed higher levels of understanding for the need to use radiation than students majoring in radiation and non-radiation related studies. In each field, male students and those who have experience medical radiation and relevant education had higher level of understanding. This shows we need to improve the understanding of the cases of female students and those who have not had experiences with medical radiation and to provide relevant education through various kinds of information. The characteristics of the groups that are shown in the results of this study are considered to be helpful for efficiently for project promoting the public's awareness of using radiation.

  16. Techno-economic benefits of radiation curing: a comparison studies

    Energy Technology Data Exchange (ETDEWEB)

    French, D [Universal Wood Inc., Lousville (United States)

    1994-12-31

    In comparing radiation cure versus conventional heat cure systems, the factors are considered in this studies i.e. environmental laws - includes the future regulations concerning volatile organic emissions and waste disposal may weigh heavily in the decision.

  17. Positron annihilation and perturbed angular correlation studies of radiation damage

    International Nuclear Information System (INIS)

    Zhu Jiazheng; Li Anli; Xu Yongjun; Wang Zhiqiang; Zhou Dongmei; Zheng Yongnan; Zhu Shengyun; Iwata, T.

    2002-01-01

    The positron annihilation and perturbed angular correlation techniques have been employed to study radiation damage in Si and Nb. The results obtained by the positron annihilation are consistent with those given by the perturbed angular correlation

  18. Investigation of Liquid Metal Embrittlement of Materials for use in Fusion Reactors

    Science.gov (United States)

    Kennedy, Daniel; Jaworski, Michael

    2014-10-01

    Liquid metals can provide a continually replenished material for the first wall and extraction blankets of fusion reactors. However, research has shown that solid metal surfaces will experience embrittlement when exposed to liquid metals under stress. Therefore, it is important to understand the changes in structural strength of the solid metal materials and test different surface treatments that can limit embrittlement. Research was conducted to design and build an apparatus for exposing solid metal samples to liquid metal under high stress and temperature. The apparatus design, results of tensile testing, and surface imaging of fractured samples will be presented. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

  19. Influence of TiC precipitation in austenitic stainless steel on strength, ductility and helium embrittlement

    International Nuclear Information System (INIS)

    Kesternich, W.; Matta, M.K.; Rothaut, J.

    1984-01-01

    Creep experiments were performed on 1.4970 (German DIN standard) and 316 (AISI standard) type austenitic steels after various thermomechanical pretreatments and after α-implantation. The microstructure introduced by the pretreatments was characterized by transmission electron microscopy and the behaviour of strength and ductility is correlated to the dislocation and precipitate distributions. He embrittlement can be suppressed in these simulation experiments when dispersive TiC precipitate distributions are produced by the proper pretreatments or are allowed to form during creep testing. It is shown that adequate pretreatment results in a significantly superior behaviour of the 1.4970 steel as compared to the 316 type steel in all three investigated properties, i.e. strength, ductility and resistance to He embrittlement. (orig.)

  20. Evaluation of liquid metal embrittlement of SS304 by Cd and Cd-Al solutions

    International Nuclear Information System (INIS)

    Thomas, J.K.; Iyer, N.C.; Begley, J.A.

    1992-01-01

    The susceptibility of stainless steel 304 to liquid metal embrittlement (LME) by cadmium (Cd) and cadmium-aluminum (Cd-Al) solutions was examined as part of a failure evaluation for SS304-clad cadmium reactor safety rods which had been exposed to elevated temperatures. The active, or cadmium (Cd) bearing, portion of the safety rod consists of a 0.756 in. diameter aluminum allow (Al-6061) core, a 0.05 in. thick Cd layer, and a 0.042 in. thick Type 304 stainless steel cladding. The safety rod thermal tests were conducted as part of a program to define the response of reactor core components to a hypothetical LOCA for the Savannah River Site (SRS) production reactor. LME was considered as a potential failure mechanism based on the nature of the failure and susceptibility of austenitic stainless steels to embrittlement by other liquid metals

  1. Epidemiological studies of some populations exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Weeks, J.L.

    1985-08-01

    During 1984 September 19 and 20, a meeting was held at the Whiteshell Nuclear Research Establishment, Pinawa, Manitoba to discuss current epidemiological studies of populations exposed to low levels of ionizing radiation. Twelve representatives from three countries attended the meeting and eleven papers were extensively discussed. The majority of these papers described studies of populations occupationally exposed to radiation. The report contains summaries of the papers presented and of the discussions that took place

  2. Studies on five cases of radiation enterocolitis

    Energy Technology Data Exchange (ETDEWEB)

    Yasunaga, Akira; Shibata, Okihiko; Kubo, Hironobu; Tomonari, Kazuhide; Hadama, Tetsuo; Uchida, Yuzou; Shirabe, Joji (Oita Medical Coll. (Japan))

    1990-05-01

    Five patients with radiation enterocolitis who were surgically treated are reported. The 5 patients had received irradiation therapy more than 5,000 rad for ginecologic malignancies. The period for the onset of symptoms of irradiation enteritis ranged from 8 months to 20 years however, 3 of them developed the symptoms within one year after irradiation therapy. Emergency surgery was carried out for bowel obstruction in 3 cases and for intestinal perforation in 2 cases. Bowel resection and primary anastomosis were performed by a one-step approach in 4 of them. Transient colostomy as preventive measure was added in 2 cases. It is very important for the one-step approach to resect the intestine at the healthy part far from the lesion of irradiation enteritis and to add a transient colostomy to prevent anastomolic insufficiency. Furthermore, suture material should be used less tissue reactive one. (author).

  3. Studies on five cases of radiation enterocolitis

    International Nuclear Information System (INIS)

    Yasunaga, Akira; Shibata, Okihiko; Kubo, Hironobu; Tomonari, Kazuhide; Hadama, Tetsuo; Uchida, Yuzou; Shirabe, Joji

    1990-01-01

    Five patients with radiation enterocolitis who were surgically treated are reported. The 5 patients had received irradiation therapy more than 5,000 rad for ginecologic malignancies. The period for the onset of symptoms of irradiation enteritis ranged from 8 months to 20 years however, 3 of them developed the symptoms within one year after irradiation therapy. Emergency surgery was carried out for bowel obstruction in 3 cases and for intestinal perforation in 2 cases. Bowel resection and primary anastomosis were performed by a one-step approach in 4 of them. Transient colostomy as preventive measure was added in 2 cases. It is very important for the one-step approach to resect the intestine at the healthy part far from the lesion of irradiation enteritis and to add a transient colostomy to prevent anastomolic insufficiency. Furthermore, suture material should be used less tissue reactive one. (author)

  4. A study on the radiation and environmental safety -Development of radiation protection and measurement technology-

    Energy Technology Data Exchange (ETDEWEB)

    Jang, See Yung; Lee, Tae Yung; Lee, Hyung Sub; Kim, Jan Ryul; Kim, Chang Kyung; Kim, Bong Hwan; Yoon, Kyung Soo; Jung, Kyung Kee; Jung, Duk Yun; Lee, Bong Jae; Chul, Yoon Suk; Lee, Kee Chang; Yoon, Yu Chang; Jung, Rae Ik; Lee, Sang Yoon; Han, Yung Dae; Kim, Jong Soo, I; Kim, Jong Soo, II; Suh, Kyung Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, Jong Kyung [Han Yang Univ., Seoul (Korea, Republic of)

    1995-07-01

    Reference X- and neutron radiation fields have been established and evaluated to support the national radiation protection programme under which performance evaluation test for domestic personal dosimetry will be implemented by the ministerial ordinance 1992-15, and to provide a basic technical support in radiation protection dosimetry. Personal dose evaluation algorithm has been developed with the KAERI reference radiation fields which comply well with those in the new ANSI N13.11(1993) to evaluate accurate personal dose equivalents. A personal internal dosimetry algorithm which can estimate the intakes of radionuclides from the results of whole body direct bioassay and the resulting internal doses has been also developed and evaluated to be equally excellent compared with those being used in foreign countries. A BOMAB phantom for precise WBC calibration has also designed, fabricated and test-evaluated. A principal method for estimating the cost for radiation protection which is important in performing a cost-benefit analysis for the radiation protection optimization study based on the ALARA principle has been preliminarily investigated and suggested. 49 figs, 67 tabs, 50 refs. (Author).

  5. Flux effect on neutron irradiation embrittlement of reactor pressure vessel steels irradiated to high fluences

    International Nuclear Information System (INIS)

    Soneda, N.; Dohi, K.; Nishida, K.; Nomoto, A.; Iwasaki, M.; Tsuno, S.; Akiyama, T.; Watanabe, S.; Ohta, T.

    2011-01-01

    Neutron irradiation embrittlement of reactor pressure vessel (RPV) steels is of great concern for the long term operation of light water reactors. In particular, the embrittlement of the RPV steels of pressurized water reactors (PWRs) at very high fluences beyond 6*10 19 n/cm 2 , E > 1 MeV, needs to be understood in more depth because materials irradiated in material test reactors (MTRs) to such high fluences show larger shifts than predicted by current embrittlement correlation equations available worldwide. The primary difference between the irradiation conditions of MTRs and surveillance capsules is the neutron flux. The neutron flux of MTR is typically more than one order of magnitude higher than that of surveillance capsule, but it is not necessarily clear if this difference in neutron flux causes difference in mechanical properties of RPV. In this paper, we perform direct comparison, in terms of mechanical property and microstructure, between the materials irradiated in surveillance capsules and MTRs to clarify the effect of flux at very high fluences and fluxes. We irradiate the archive materials of some of the commercial reactors in Japan in the MTR, LVR-15, of NRI Rez, Czech Republic. Charpy impact test results of the MTR-irradiated materials are compared with the data from surveillance tests. The comparison of the results of microstructural analyses by means of atom probe tomography is also described to demonstrate the similarity / differences in surveillance and MTR-irradiated materials in terms of solute atom behavior. It appears that high Cu material irradiated in a MTR presents larger shifts than those of surveillance data, while low Cu materials present similar embrittlement. The microstructural changes caused by MTR irradiation and surveillance irradiation are clearly different

  6. Beryllium irradiation embrittlement test programme. Material and specimen specification, manufacture and qualification

    International Nuclear Information System (INIS)

    Harries, D.R.; Dalle Donne, M.

    1996-06-01

    The report presents the specification, manufacture and qualification of the beryllium specimens to be irradiated in the BR2 reactor in Mol to investigate the effect of the neutron irradiation on the embrittlement as a function of temperature and beryllium oxide content. This work was been performed in the framework of the Nuclear Fusion Project of the Forschungszentrum Karlsruhe and is supported by the European Union within the European Fusion Technology Program. (orig.)

  7. Effect of ternary solute interaction on interfacial segregation and grain boundary embrittlement

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel

    2013-01-01

    Roč. 48, č. 14 (2013), 4965-4972 ISSN 0022-2461 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GAP108/12/0144 Institutional research plan: CEZ:AV0Z10100520 Keywords : interfacial segregation * intergranular embrittlement * solute interaction * modeling * thermodynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.305, year: 2013

  8. Effect of hydrogen on the behavior of metals II - Hydrogen embrittlement of titanium alloy TV13CA - effect of oxygen - comparison with non-alloyed titanium

    International Nuclear Information System (INIS)

    Arditty, Jean-Pierre

    1973-01-01

    The effect of oxygen on the hydrogen embrittlement of non-alloyed titanium and the metastable β titanium alloy, TV13 CA, was studied during dynamic mechanical tests, the concentrations considered varying from 1000 to 5000 ppm (oxygen) and from 0 to 5000 ppm (hydrogen) respectively. TV13 CA alloy has a very high solubility for hydrogen. The establishment of a temperature range and a rate of deformation region in which the embrittlement of the alloy is maximum leads to the conclusion that an embrittlement mechanism occurs involving the dragging and accumulation of hydrogen by dislocations. This is the case for all annealings effected in the medium temperature range, which, by favoring the re-establishment of the stable two-phase α + β state of the alloy, produce hardening. The same is true for oxygen which, in addition to hardening the alloy by the solid solution effect, tends to increase its instability and, in consequence, favors the decomposition of the β phase. Nevertheless oxygen concentrations of up to 1500 ppm contribute to increasing the mechanical resistance without catastrophically reducing the deformation capacity. In the case of non-alloyed titanium, the hardening effect also leads to an increase in E 0.2p c and R, and to a reduction in the deformation capacity. Nevertheless, hydrogen is only very slightly soluble at room temperature and a distribution of the hydride phase linked to the thermal history of the sample predominates. Thus a fine acicular structure obtained from the β phase by quenching, enables an alloy having a good mechanical resistance to be conserved even when large quantities of hydrogen are present; the deformation capacity remains small. On the other hand, when the hydride phase separates the metallic phase into large grains, a very small elongation leads to a breakdown in mechanical resistance. (author) [fr

  9. Acute radiation proctitis. A clinical, histopathological and histochemical study

    International Nuclear Information System (INIS)

    Hovdenak, Nils

    2004-01-01

    The aim of the study is: 1) A sequential description of the clinical course of acute radiation proctitis during pelvic RT. 2) A sequential description of the rectal mucosal histopathology during pelvic RT as a possible substrate for clinical toxicity. 3) To assess the mucosal protease activity during RT as a possible explanation of the observed tissue changes. 4) To assess the efficacy of prophylactic sucralfate in acute radiation proctitis a randomised study was initiated and carried out together with a meta-analysis of previously available data. 5) Most studies on clinical acute toxicity in pelvic RT use either the RTOG/EORTC score system or focus on diarrhoea/stool frequency. A more differentiated and sensitive recording was developed and tested to pick up symptoms escaping the commonly used scores. 6) Study the relation between histopathological findings and the clinical picture. 4 papers presenting various studies are included. The titles are: 1) Acute radiation proctitis: a sequential clinicopathologic study during pelvic radiotherapy. 2) Clinical significance of increased gelatinolytic activity in the rectal mucosa during external beam radiation therapy of prostate cancer. 3) Profiles and time course of acute radiation toxicity symptoms during conformal radiotherapy for cancer of the prostate. 4) Sucralfate does not ameliorate acute radiation proctitis. Some future prospects are discussed

  10. Acute radiation proctitis. A clinical, histopathological and histochemical study

    Energy Technology Data Exchange (ETDEWEB)

    Hovdenak, Nils

    2004-07-01

    The aim of the study is: 1) A sequential description of the clinical course of acute radiation proctitis during pelvic RT. 2) A sequential description of the rectal mucosal histopathology during pelvic RT as a possible substrate for clinical toxicity. 3) To assess the mucosal protease activity during RT as a possible explanation of the observed tissue changes. 4) To assess the efficacy of prophylactic sucralfate in acute radiation proctitis a randomised study was initiated and carried out together with a meta-analysis of previously available data. 5) Most studies on clinical acute toxicity in pelvic RT use either the RTOG/EORTC score system or focus on diarrhoea/stool frequency. A more differentiated and sensitive recording was developed and tested to pick up symptoms escaping the commonly used scores. 6) Study the relation between histopathological findings and the clinical picture. 4 papers presenting various studies are included. The titles are: 1) Acute radiation proctitis: a sequential clinicopathologic study during pelvic radiotherapy. 2) Clinical significance of increased gelatinolytic activity in the rectal mucosa during external beam radiation therapy of prostate cancer. 3) Profiles and time course of acute radiation toxicity symptoms during conformal radiotherapy for cancer of the prostate. 4) Sucralfate does not ameliorate acute radiation proctitis. Some future prospects are discussed.

  11. Transition temperature of embrittlement of steel 11 474.1 welded joint

    International Nuclear Information System (INIS)

    Petrikova, A.; Cocher, M.

    1987-01-01

    The results are presented of tests of notch toughness in dependence on temperature for steel 11 474.1 used for the manufacture of steam separators, in the area of a joint welded using an automatic submerged-arc welding machine with pre-heating at 200 to 250 degC. After welding, the welded joints were annealed for reduced stress for 160 minutes at a temperature of 600 to 650 degC and left to cool off in the furnace. The obtained results show that: (1) critical embrittlement temperature for the welded joint and the given welding technology ranges within -20 and -13 degC; (2) critical embrittlement temperature following heat ageing is shifted to positive temperature values; (3) pressure tests of the steam separator jacket made of steel 11 474.1 may in the process of production be carried out at a minimal wall temperature of 17 degC; (4) in case a pressure test has to be made after the equipment has been in operation for a certain period of time the test will probably have to be made at temperatures higher than 20 degC; (5) further tests will have to be made at temperatures higher than 20 degC in order to determine critical embrittlement temperatures after ageing. (J.B.). 7 figs., 2 tabs., 5 refs

  12. Long-term aging embrittlement of cast duplex stainless steels in LWR systems

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1991-01-01

    The primary objectives of this program are to investigate the significance of in-service embrittlement of cast duplex stainless steels in light water reactor (LWR) systems and to evaluate possible remedies for the embrittlement problem in existing and future plants. The scope of the investigation includes three goals: (1) develop a methodology and correlations for predicting the toughness loss suffered by cast stainless steel components during normal and extended life of LWRs, (2) validate the simulation of in-reactor degradation by accelerated aging, and (3) establish the effects of key compositional and metallurgical variables on the kinetics and extent of embrittlement. The emphasis during the current year was on developing a procedure and correlations for predicting fracture toughness J-R curves of aged cast stainless steels from known material information. The present analysis has focused on developing correlations for the fracture properties in terms of material information that can be determined from the certified material test record (CMTR) and on ensuring that the correlations are adequately conservative for structurally weak materials

  13. High-temperature helium embrittlement (T>=0,45Tsub(M)) of metals

    International Nuclear Information System (INIS)

    Batfalsky, P.

    1984-06-01

    High temperature helium embrittlement, swelling and irradiation creep are the main technical problem of fusion reactor materials. The expected helium production will be very high. The helium produced by (n,α)-processes precipitates into helium bubbles because its solubility in solid metals is very low. Under continuous helium production at high temperature and stress the helium bubbles grow and lead to intergranular early failure. Solution annealed foil specimens of austenitic stainless steel AISI 316 were implanted with α-particles: 1. during creep tests at 1023 K (''in-beam'' test) 2. before the creep tests at high temperature (1023 K). The creep tests have been performed within large ranges of test parameter, e.g. applied stress, temperature, helium implantation rate and helium concentration. After the creep tests the microstructure was investigated using scanning (SEM) and transmission (TEM) electron microscopy. All the helium implanted specimens showed high temperature helium embrittlement, i.e. reduction of rupture time tsub(R) and ductility epsilonsub(R) and evidence of intergranular brittle fracture. The ''in-beam'' creep tests showed greater reduction of rupture time tsub(R) and ductility than the preimplanted creep tests. The comparison of this experimentally obtained data with various theoretical models of high temperature helium embrittlement showed that within the investigated parameter ranges the mechanism controlling the life time of the samples is probably the gas driven stable growth of the helium bubbles within the grain boundaries. (orig.)

  14. Comparison of hydrogen gas embrittlement of austenitic and ferritic stainless steels

    Science.gov (United States)

    Perng, T. P.; Altstetter, C. J.

    1987-01-01

    Hydrogen-induced slow crack growth (SCG) was compared in austenitic and ferritic stainless steels at 0 to 125 °Cand 11 to 216 kPa of hydrogen gas. No SCG was observed for AISI 310, while AISI 301 was more susceptible to hydrogen embrittlement and had higher cracking velocity than AL 29-4-2 under the same test conditions. The kinetics of crack propagation was modeled in terms of the hydrogen transport in these alloys. This is a function of temperature, microstructure, and stress state in the embrittlement region. The relatively high cracking velocity of AISI 301 was shown to be controlled by the fast transport of hydrogen through the stress-induced α' martensite at the crack tip and low escape rate of hydrogen through the γ phase in the surrounding region. Faster accumulation rates of hydrogen in the embrittlement region were expected for AISI 301, which led to higher cracking velocities. The mechanism of hydrogen-induced SCG was discussed based upon the concept of hydrogen-enhanced plasticity.

  15. Non-destructive evaluation of thermal aging embrittlement of duplex stainless steels

    International Nuclear Information System (INIS)

    Yi, Y.S.; Tomobe, T.; Watanabe, Y.; Shoji, T.

    1993-01-01

    The non-destructive evaluation procedure for detecting thermal aging embrittlement of cast duplex stainless steels has been investigated. As a novel measurement technique for the thermal aging embrittlement, an electrochemical method was used and anodic polarization behaviors were measured on new, service exposed, and laboratory aged materials and then were compared with the results of the mechanical tests and microstructural changes. During the polarization experiments performed in potassium hydroxide solution (KOH), M 23 C 6 carbides on phase boundary were preferentially dissolved, which was comfirmed by the SEM after polarization measurements. The preferential dissolution of M 23 C 6 carbides were obtained. Also, the non-destructive measurement and evaluation method of spinodal decomposition, which has been known as the primary mechanism of embrittlement inferrite phase, was reviewed. When the materials, where spinodal decomposition occurred, were polarized in an acetic acid solution (CH 3 COOH), larger critical anodic current densities were observed than those observed on new materials, and these results were consistent with the result of the microhardness measurement. Concerning these polarization results, a critical electric charge, which was required for stable passive films in passive metals, was defined and the relationship between the microstructural changes and this charge amount was reviewed under various polarization conditions in order to verify the polarization mechanism of the spinodally decomposed ferrite phase

  16. Fracture toughness prediction for RPV Steels with various degree of embrittlement

    International Nuclear Information System (INIS)

    Margolin, B.; Gulenko, A.; Shvetsova, V.

    2003-01-01

    In the present report, predictions of the temperature dependence of cleavage fracture toughness are performed on the basis of the Master Curve approach and a probabilistic model named now the Prometey model. These predictions are performed for reactor pressure vessel steels in different states, the initial (as-produced), irradiated state with moderate degree of embrittlement and in the highly embrittled state. Calculations of the K IC (T) curves may be performed with both approaches on the basis of fracture toughness test results from pre-cracked Charpy specimens at some (one) temperature. The calculated curves are compared with test results. It is shown that the K IC (T) curves for the initial state calculated with the Master Curve approach and the probabilistic model show good agreement. At the same time, for highly embrittled RPV steel, the K IC (T) curve predicted with the Master Curve approach is not an adequate fit to the experimental data, whereas the agreement of the test results and the K IC (T) curve calculated with the probabilistic model is good. An analysis is performed for a possible variation of the K IC (T) curve shape and the scatter in K IC results. (author)

  17. Embrittlement phenomenon of Ag core MP35N cable as lead conductor in medical device.

    Science.gov (United States)

    Wang, Ling; Li, Bernie; Zhang, Haitao

    2013-02-01

    Ag core MP35N (Ag/MP35N) wire has been used in lead electric conductor wires in the medical device industry for many years. Recently it was noticed that the combination of silver and MP35N restricts its wire drawing process. The annealing temperature in Ag/MP35N has to be lower than the melting temperature of pure Ag (960 °C), which cannot fully anneal MP35N. The lower annealing temperature results in a highly cold worked MP35N, which significantly reduces Ag/MP35N ductility. The embrittlement phenomenon of Ag/MP35N cable was observed in tension and bending deformation. The effect of the embrittlement on the wire flex fatigue life was evaluated using a newly developed flex fatigue testing method. The Ag/MP35N cable fatigue results was analyzed with a Coffin-Manson approach and compared to the MP35N cable fatigue results. The root causes of the Ag/Mp35N embrittlement phenomenon are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. A Monte Carlo study of radiation trapping effects

    International Nuclear Information System (INIS)

    Wang, J.B.; Williams, J.F.; Carter, C.J.

    1997-01-01

    A Monte Carlo simulation of radiative transfer in an atomic beam is carried out to investigate the effects of radiation trapping on electron-atom collision experiments. The collisionally excited atom is represented by a simple electric dipole, for which the emission intensity distribution is well known. The spatial distribution, frequency and free path of this and the sequential dipoles were determined by a computer random generator according to the probabilities given by quantum theory. By altering the atomic number density at the target site, the pressure dependence of the observed atomic lifetime, the angular intensity distribution and polarisation of the radiation field is studied. 7 refs., 5 figs

  19. Monochromatization of synchrotron radiation for studies in photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Murty, P.S.

    1981-01-01

    Synchrotron radiation provides a tunable photon source which bridges the wavelength gap between HeI and AlKsub(α) radiation sources in photoelectron spectroscopy. The essential component for using synchrotron radiation is a monochromator. Some design features of the monochromators fabricated at Stanford, U.S.A., and Orsay, France, are described. The Stanford monochromator is a silicon crystal monochromator yielding 8 keV X-ray beam and is used with SPEAR storage ring facility, while the Orsay monochromator is a grazing incidence grating monochromator used for UPS studies. (M.G.B.)

  20. The first symposium of Research Center for Radiation Safety, NIRS. Perspective of future studies of radiation safety

    International Nuclear Information System (INIS)

    Shimo, Michikuni

    2002-03-01

    This paper summarizes presentations given in the title symposium, held at the Conference Room of National Institute of Radiological Sciences (NIRS) on November 29 and 30, 2001. Contained are Introductory remarks: Basic presentations concerning exposure dose in man; Environmental levels of radiation and radioactivity, environmental radon level and exposure dose, and radiation levels in the specific environment (like in the aircraft): Special lecture (biological effects given by space environment) concerning various needs for studies of radiation safety; Requirement for open investigations, from the view of utilization, research and development of atomic energy, from the clinical aspect, and from the epidemiological aspect: Special lecture (safety in utilization of atomic energy and radiation-Activities of Nuclear Safety Commission of Japan) concerning present state and perspective of studies of radiation safety; Safety of radiation and studies of biological effects of radiation-perspective, and radiation protection and radiation safety studies: Studies in the Research Center for Radiation Safety; Summary of studies in the center, studies of the biological effects of neutron beam, carcinogenesis by radiation and living environmental factors-complicated effects, and studies of hereditary effects: Panel discussion (future direction of studies of radiation safety for the purpose of the center's direction): and concluding remarks. (N.I.)

  1. Kozloduy NPP WWER-440/230 reactor pressure vessel radiation lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Vodenicharov, S [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. po Metaloznanie i Tekhnologiya na Metalite; Kamenova, Tz [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. po Metaloznanie i Tekhnologiya na Metalite; Tzokov, P; Videnov, A [Kombinat Atomna Energetika, Kozloduj (Bulgaria); Pekov, B [Committee on the Use of Atomic Energy for Peaceful Purposes, Sofia (Bulgaria)

    1996-12-31

    The processes of metal embrittlement induced by neutron irradiation embrittlement (NIE) and neutron re-irradiation embrittlement (NRE) of the rector pressure vessel (RPV) are investigated. Radiation lifetime is calculated using two approaches for re-embrittlement: a conservative law and a lateral shift of the critical transition temperature curve after neutron irradiation. In order to prevent NIE the following measures have been taken at the Kozloduy NPP: loading of dummy elements into core periphery; heating the water for emergency core cooling to 55{sup o} C; fast acting valves in the main steam piping, etc. The critical embrittlement temperature, the residual part of temperature shift and the radiation lifetime have been calculated for units 1 - 4 using the two approaches and updated information on P and Cu impurities content. It is concluded that if the lateral re-embrittlement law is adopted and the P content does not exceed 0.05%, all RPV should reach their design lifetime. The NIE in WWER-440/230 is related to C and P content in the weld 4 and is negligible for the Unit 4 in particular, which has low impurities content. In order to reach the design lifetime of the Units 1 - 3 it is necessary to install MSIV. A verification of chemical composition of the Unit 1 RPV weld 4 metal is recommended. 7 refs., 3 figs., 6 tabs.

  2. Kozloduy NPP WWER-440/230 reactor pressure vessel radiation lifetime

    International Nuclear Information System (INIS)

    Vodenicharov, S.; Pekov, B.

    1995-01-01

    The processes of metal embrittlement induced by neutron irradiation embrittlement (NIE) and neutron re-irradiation embrittlement (NRE) of the rector pressure vessel (RPV) are investigated. Radiation lifetime is calculated using two approaches for re-embrittlement: a conservative law and a lateral shift of the critical transition temperature curve after neutron irradiation. In order to prevent NIE the following measures have been taken at the Kozloduy NPP: loading of dummy elements into core periphery; heating the water for emergency core cooling to 55 o C; fast acting valves in the main steam piping, etc. The critical embrittlement temperature, the residual part of temperature shift and the radiation lifetime have been calculated for units 1 - 4 using the two approaches and updated information on P and Cu impurities content. It is concluded that if the lateral re-embrittlement law is adopted and the P content does not exceed 0.05%, all RPV should reach their design lifetime. The NIE in WWER-440/230 is related to C and P content in the weld 4 and is negligible for the Unit 4 in particular, which has low impurities content. In order to reach the design lifetime of the Units 1 - 3 it is necessary to install MSIV. A verification of chemical composition of the Unit 1 RPV weld 4 metal is recommended. 7 refs., 3 figs., 6 tabs

  3. Binomial vs poisson statistics in radiation studies

    International Nuclear Information System (INIS)

    Foster, J.; Kouris, K.; Spyrou, N.M.; Matthews, I.P.; Welsh National School of Medicine, Cardiff

    1983-01-01

    The processes of radioactive decay, decay and growth of radioactive species in a radioactive chain, prompt emission(s) from nuclear reactions, conventional activation and cyclic activation are discussed with respect to their underlying statistical density function. By considering the transformation(s) that each nucleus may undergo it is shown that all these processes are fundamentally binomial. Formally, when the number of experiments N is large and the probability of success p is close to zero, the binomial is closely approximated by the Poisson density function. In radiation and nuclear physics, N is always large: each experiment can be conceived of as the observation of the fate of each of the N nuclei initially present. Whether p, the probability that a given nucleus undergoes a prescribed transformation, is close to zero depends on the process and nuclide(s) concerned. Hence, although a binomial description is always valid, the Poisson approximation is not always adequate. Therefore further clarification is provided as to when the binomial distribution must be used in the statistical treatment of detected events. (orig.)

  4. Radiation Damage Studies of Silicon Photomultipliers

    CERN Document Server

    Bohn, P; Hazen, E.; Heering, A.; Rohlf, J.; Freeman, J.; Los, Sergey V.; Cascio, E.; Kuleshov, S.; Musienko, Y.; Piemonte, C.

    2008-01-01

    We report on the measurement of the radiation hardness of silicon photomultipliers (SiPMs) manufactured by Fondazione Bruno Kessler in Italy (1 mm$^2$ and 6.2 mm$^2$), Center of Perspective Technology and Apparatus in Russia (1 mm$^2$ and 4.4 mm$^2$), and Hamamatsu Corporation in Japan (1 mm$^2$). The SiPMs were irradiated using a beam of 212 MeV protons at Massachusetts General Hospital, receiving fluences of up to $3 \\times 10^{10}$ protons per cm$^2$ with the SiPMs at operating voltage. Leakage currents were read continuously during the irradiation. The delivery of the protons was paused periodically to record scope traces in response to calibrated light pulses to monitor the gains, photon detection efficiencies, and dark counts of the SiPMs. The leakage current and dark noise are found to increase with fluence. Te leakage current is found to be proportional to the mean square deviation of the noise distribution, indicating the dark counts are due to increased random individual pixel activation, while SiPM...

  5. Carbon nano tubes -Buckypaper- radiation studies for medical physics application

    Energy Technology Data Exchange (ETDEWEB)

    Alanazi, A.; Alkhorayef, M.; Dalton, A.; Bradley, D. A. [University of Surrey, Department of Physics, College for Nuclear and Radiation Physics, Guildford, Surrey GR2 7XH (United Kingdom); Alzimami, K. [King Saud University, Department of Radiological Sciences, P. O. Box 10219, Riyadh 11433 (Saudi Arabia); Abuhadi, N., E-mail: a.alanazi@surrey.ac.uk [Jazan University, Faculty of Medical Applied Sciences, Diagnostic Radiology Department, P. O. Box 114, Jazan (Saudi Arabia)

    2015-10-15

    Radiation dosimetry underpins safe and effective clinical applications of radiation. Many materials have been used to measure the radiation dose deposited in human tissue, their radiation response requiring the application of correction factors to account for various influencing factors, including sensitivity to dose and energy dependence. In regard to the latter, account needs to be taken of difference from the effective atomic number of human tissue, soft or calcified. Graphite ion chambers and semiconductor diode detectors have been used to make measurements in phantoms but these active devices represent a clear disadvantage when considered for in vivo dosimetry. In both circumstances, dosimeters with atomic number similar to human tissue are needed. Carbon nano tubes have properties that potentially meet the demand, requiring low voltage in active devices and an atomic number similar to adipose tissue. In this study, single-wall carbon nano tubes buckypaper has been used to measure the beta particle dose deposited from a strontium-90 source, the medium displaying thermoluminescence at potentially useful sensitivity. As an example, the samples show a clear response for a dose of 2 Gy. This finding suggests that carbon nano tubes can be used as a passive dosimeter specifically for the high levels of radiation exposures used in radiation therapy. Furthermore, the finding points towards further potential applications such as for space radiation measurements, not least because the medium satisfies a demand for light but strong materials of minimal capacitance. (Author)

  6. Carbon nano tubes -Buckypaper- radiation studies for medical physics application

    International Nuclear Information System (INIS)

    Alanazi, A.; Alkhorayef, M.; Dalton, A.; Bradley, D. A.; Alzimami, K.; Abuhadi, N.

    2015-10-01

    Radiation dosimetry underpins safe and effective clinical applications of radiation. Many materials have been used to measure the radiation dose deposited in human tissue, their radiation response requiring the application of correction factors to account for various influencing factors, including sensitivity to dose and energy dependence. In regard to the latter, account needs to be taken of difference from the effective atomic number of human tissue, soft or calcified. Graphite ion chambers and semiconductor diode detectors have been used to make measurements in phantoms but these active devices represent a clear disadvantage when considered for in vivo dosimetry. In both circumstances, dosimeters with atomic number similar to human tissue are needed. Carbon nano tubes have properties that potentially meet the demand, requiring low voltage in active devices and an atomic number similar to adipose tissue. In this study, single-wall carbon nano tubes buckypaper has been used to measure the beta particle dose deposited from a strontium-90 source, the medium displaying thermoluminescence at potentially useful sensitivity. As an example, the samples show a clear response for a dose of 2 Gy. This finding suggests that carbon nano tubes can be used as a passive dosimeter specifically for the high levels of radiation exposures used in radiation therapy. Furthermore, the finding points towards further potential applications such as for space radiation measurements, not least because the medium satisfies a demand for light but strong materials of minimal capacitance. (Author)

  7. Radiation physics in medicine and veterinary medicine studies

    International Nuclear Information System (INIS)

    Popovic, D.; Djuric, G.

    2000-01-01

    Medical and veterinary medicine staff and specialists represent an important decision making group in national administration and institutions dealing with radiation protection and environmental protection matters in general. Still, their education in physics, especially in radiation physics is fragmentary and loose, both from technical and theoretical point of view. Within medicine and veterinary medicine studies as well as within other biomedical sciences (biology, pharmacology, biotechnology) radiation physics is usually incorporated in the first year curricula as a part of general physics or biophysics course. Some segments of radiation physics mainly as a technical base for different instrumentation methods and techniques could be also found within different graduate and post-graduate courses of radiology, physical therapy, radiation hygiene, environmental protection, etc. But the traditional approach in presenting the matter and inflexibility of the educational system strongly confront the growing public concern for the environmental problems dealing with radiation and demands for better informing and technical education for those involved in informing and administration. This paper considers some of these problems presenting a new approach in education in radiation physics for medical and veterinary medicine students based on education through student projects and work in the field, as well as on the strong collaboration among administration, universities and professional societies on the national and international level. (author)

  8. The Study of External Radiation Dose for Radiation Worker at PRSG-BATAN Serpong

    International Nuclear Information System (INIS)

    Sunarningsih; Mashudi; A Lilik W; Yosep S

    2012-01-01

    The study of External radiation dose for radiation worker at PRSG-BATAN Serpong has been carried out. The sample is taken from the System Reactor division (BSR), Operation Reactor division, (BOR) Safety division UPN, UJM and head of PRSG by setting Thermoluminescence Dosemeter (TLD) on the chest, then is detected by a tool TLD reader model 6600. The aim of this study is to evaluate the occupational exposure dose that has been accepted by the radiation worker for the last five years. The result in average doses at BSR is 0,99 mSv, BOR is 3,27 mSv, at BK is 0,69 mSv and UPN + UJM + head of PRSG is 0,03 mSv. The result highest doses at BSR is 6,58 mSv, BOR is 28,94 mSv, BK is 4,24 mSv, and UPN UJM Head of PRSG is 0,52 mSv. Dose interval radiation worker at PRSG BATAN ttd - 28,98 mSv. To overall the external personal dose acceptant for radiation worker at PRSG BATAN one below maximum permissible dose acceptant that allowed by BAPETEN, that is 20 mSv in average every year during five years. (author)

  9. Development of radiation protection and measurement technology -A study on the radiation and environmental safety-

    International Nuclear Information System (INIS)

    Chang, Si Young; Seo, Kyeong Won; Yoon, Seok Cheol; Lee, Tae Yeong; Kim, Bong Hwan; Chung, Deok Yeon; Lee, Ki Chang; Kim, Jong Soo; Yoon, Yeo Chang; Kim, Jang Ryeol; Lee, Sang Yoon

    1994-07-01

    Reference radiation fields which can meet the national and international standard and criteria such as the ANSI N13.11 have been designed, produced and evaluated to maintain the national traceability and reliability of the radiation measurement and to provide precise calibration of the various radiation measuring instruments as well as standard irradiation of the personal dosimeters for the performance evaluation. Existing dose calculation algorithm has been improved to correctly evaluate the shallow dose from the β(Ti-204) + γ(Cs-137) mixed radiation exposure by applying the TLD response correction function newly derived in this study. A mathematical algorithm to calculate the internal dose from inhalation of the uranium isotopes has been developed on the basis of the ICRP-30 respiratory tract model. Detailed performance analysis of the KAERI lung counter has been carried out to participate in the intercomparison of lung dosimetry. A preliminary and basic study on the quantitative method of optimal dose reduction based on the ALARA concept has been performed to technically support and strengthen the national radiation protection infrastructure. (Author)

  10. Radiation-induced cancers in the rat, an experimental study

    International Nuclear Information System (INIS)

    Morin, M.; Lafuma, J.

    1990-01-01

    Radiation carcinogenesis at low doses raises a major radiological protection problem; we have attempted to deal with it through animal investigations involving over 3,000 rats. For various radiation types, dose-effect relationships as well as possible synergies with endogenous or exogenous chemical factors were studied. The chief problem being the possibility of extrapolation to man, a comparison was made between man and rat with the only human data available from radon inhalation in uranium miners [fr

  11. Studies on flame retardancy of radiation crosslinked PE foam

    International Nuclear Information System (INIS)

    Yang Huili; Yao Zhanhai; Xu Jun

    1996-01-01

    CPE, DBDPO and Sb 2 O 3 were used as flame-retardant of PE foam. Effect of CPE on PE foam under radiation and it's flame-retardancy were studied. The result showed that CPE can enhance radiation cross-linking of PE, and trinary of addition being made of CPE, DBDPO and Sb 2 O 3 made oxygen index of PE foam achieve over 30, and self-extinguish, it did not influence manufacture and mechanical properties of PE foam

  12. Radiation-induced cancers in the rat, an experimental study

    International Nuclear Information System (INIS)

    Morin, M.; Lafuma, J.

    1988-09-01

    Radiation carcinogenesis at low doses raises a major radiological protection problem; we have attempted to deal with it through animal investigations involving over 3,000 rats. For various radiation types, dose-effect relationships as well as possible synergies with endogenous or exogenous chemical factors were studied. The chief problem being the possibility of extrapolation to man, a comparison was made between man and rat with the only human data available from radon inhalation in uranium miners [fr

  13. Heavy-section steel irradiation program: Embrittlement issues

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1991-01-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents and the potential for major contamination releases. The RPV is one of only two major safety- related components of the plant for which a duplicate or redundant backup system does not exist. In particular, it is vital to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance which occurs during service, since without that radiation damage it is virtually impossible to postulate a realistic scenario which would result in RPV failure. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established by the US Nuclear Regulatory Commission (USNRC) to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, and in particular the fracture toughness properties, of typical pressure vessel steels as they relate to light-water reactor pressure-vessel integrity. Effects of specimen size, material chemistry, product form and microstructure, irradiation fluence, flux, temperature and spectrum, and postirradiation annealing are being examined on a wide range of fracture properties including fracture toughness crack arrest toughness ductile tearing resistance Charpy V-notch impact energy, dropweight nil-ductility temperature and tensile properties. Models based on observations of radiation-induced microstructural changes using the field on microprobe and the high resolution transmission electron microscopy provide improved bases for extrapolating the measured changes in fracture properties to wider ranges of irradiation conditions. The principal materials examined within the HSSI program are high-copper welds since their postirradiation properties are most frequently limiting in the continued safe operation of commercial RPVs

  14. Radiation dose to the patient in radionuclide studies

    International Nuclear Information System (INIS)

    Roedler, H.D.

    1981-01-01

    In medical radionuclide studies, the radiation risk has to be considered in addition to the general risk of administering a pharmaceutical. As radiation exposure is an essential factor in radiation risk estimation, some aspects of internal dose calculation, including radiation risk assessments, are treated. The formalism of current internal dose calculation is presented. The input data, especially the residence time and the absorbed dose per transformation, their origin and accuracy are discussed. Results of internal dose calculations for the ten most frequently used radionuclide studies are presented as somatically effective dose equivalents. The accuracy of internal dose calculation is treated in detail by considering the biokinetics of the radiopharmaceutical, the phantoms used for dose calculations, the absorbed dose per transformation, the administered activity, and the transfer of the dose, calculated for a phantom, to the patient. The internal dose calculated for a reference phantom may be assumed to be in accordance with the actual patient dose within a range described by a factor of about two to three. Finally, risk estimates for nuclear medicine procedures are quantified, being generally of sixth order. The radiation risk from the radioiodine test is comparably higher, but probably lower than calculated according to the UNSCEAR risk coefficients. However, further studies are needed to confirm these preliminary results and to improve the quantification of the radiation risk from the medical use of radionuclides. (author)

  15. Radiation sensitization studies by silymarin on HCT-15 cells

    International Nuclear Information System (INIS)

    Lal, Mitu; Gupta, Damodar; Arora, R.

    2014-01-01

    Radiotherapy has been widely used for treatment of human cancers. However, cancer cells develop radioresistant phenotypes following multiple exposures to the treatment agent that decrease the efficacy of radiotherapy. Here it was investigated that the radiation sensitization effects of silymarin found in colon cancer. The aim of this study was to investigate mechanisms involved in radiation sensitization growth inhibitory effect of silymarin in combination with radiation, in Human colon carcinoma (HCT-15). The human colon carcinoma was utilized and SRB-assay was performed to study anti-proliferative effect of silymarin in combination with gamma radiation (2 Gy) appropriate radiation dose was optimized and confirmed by clonogenic assay. Microscopic analysis was done by staining with Hoechst-33342, DAPI, Propidium iodide to confirm the presence of apoptosis. Nitric oxide production, changes in lipid peroxidation, Cell cycle analysis were carried out and mitochondrial membrane potential was measured by uptake of cationic dye JC-1 by using flow cytometer. Silymarin in combination with radiation (2 Gy) inhibited 70% ± 5% population growth of HCT-15 cells in time and dose dependent manner. Pre treatment of cells with silymarin for 30 min before radiation was found to be most effective for radiation sensitization. There was 25% increase in levels of nitric oxide as compare to control, whereas 2.5 fold change in lipid peroxidation with respect to control. IR-induced apoptosis in HCT-15 cell line was significantly enhanced by silymarin, as reflected by viability, DNA fragmentation, and mitochondrial dysfunction. Additionally, silymarin in combination with IR is found to be effective in sensitization of HCT-15 cells. In vivo studies on development of tumor and sensitization aspects needs to done in future. (author)

  16. A study of copper precipitation in the thermally aged FeCu alloy using SANS

    Energy Technology Data Exchange (ETDEWEB)

    Park, D. G.; Kim, J. H.; Kwon, S. C.; Kim, W. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Lee, M. N.; Koo, Y. M. [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2005-07-01

    The continued operation or lifetime extension of a number of nuclear power plant around the world requires an understanding of the damage imparted to the reactor pressure vessel (RPV) steel by radiation. Irradiation embrittlement of nuclear reactor pressure vessel steels results from a high number of nanometer sized Cu rich precipitates (CRPs) and sub-nanometer defect-solute clusters. The copper precipitation leads to a distortion of the crystal lattice surrounding the copper precipitates and yields an internal micro-stress. In order to study the effect of copper precipitation on the steel embrittlement under neutron irradiation, the characteristics of nano size defects were investigated using small angle neutron scattering (SANS) in the thermal aged FeCu model alloys. The results on the precipitation composition, number density, size distribution and matrix composition obtained using a high resolution TEM and SANS are compared and contrasted.

  17. Studies of workers exposed to low doses of external radiation

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1991-04-01

    Currently, several epidemiologic studies of workers who have been exposed occupationally to low levels of radiation are being conducted, and include studies of workers in the United States, Great Britain, and Canada involved in the production of both defense materials and nuclear power. This paper focuses on studies that evaluate the possible adverse effects resulting from external exposure to radiation. The radiation risk estimates that have been used to establish radiation protection standards for workers and others have been obtained mainly from studies of persons exposed at high doses and dose rates. However, questions remain with regard to the extrapolation process that has been necessary for estimating low-level radiation risks. Occupational studies provide a direct assessment of risk based on data on persons exposed at the actual levels of interest. If current risk estimates are correct, these studies have very little chance of detecting risk, but can still be used to provide useful upper limits on risks. The studies are also adequate to detect serious underestimation of risks. 36 refs., 3 figs., 3 tabs

  18. Study of collagen metabolism after β radiation injury

    International Nuclear Information System (INIS)

    Zhou Yinghui; Xulan; Wu Shiliang; Zhang Xueguang; Chen Liesong

    2000-01-01

    Objective: To investigate the change of collagen metabolism and it's regulation after β radiation. Method: The animal model of β radiation injury was established by the β radiation produced by the linear accelerator; and irradiated NIH 3T3 cells were studied. In the experiment the contents of total collagen, collagen type I and type III were measured. The activity of MMPs-1 was tested. The contents of TGF-β 1 , IL-6 were also detected. Results: After exposure to β radiation, little change was found in the content of total collagen, but the content of collagen I decreased and the content of collagen III, MMPs-1 activity increased; the expression of TGF-β 1 , IL-6 increased. Conclusion: The changes in the metabolism of collagen play an important role in the irradiated injury of the skin; TGF-β 1 and IL-6 may be essential in the regulation of the collagen metabolism

  19. Studies on the multistage nature of radiation carcinogenesis

    International Nuclear Information System (INIS)

    Fry, R.J.M.; Ley, R.D.; Grube, D.; Staffeldt, E.

    1980-01-01

    With low dose levels of ionizing or ultraviolet radiation, the number of initiation events exceeds the number of tumors that grow to a detectable size. Ionizing radiation, which is a complete carcinogen, appears to be a more effective initiator than an enhancer or promoter. However, the initiation and promotion aspects of ionizing radiation have been studied in very few organ systems. In the case of UVR, with or without photosensitizers such as psoralens, the requirement of a relatively large number of exposures for carcinogenesis suggests that the expression of the initiated cells as frank tumors requires a number of events spread out over the time of the development of the tumor. Both ionizing and ultraviolet radiation are, perhaps, underutilized as tools for probing the mechanism of both initiation and promotion

  20. Contribution of radiation chemistry to the study of metal clusters.

    Science.gov (United States)

    Belloni, J

    1998-11-01

    Radiation chemistry dates from the discovery of radioactivity one century ago by H. Becquerel and P. and M. Curie. The complex phenomena induced by ionizing radiation have been explained progressively. At present, the methodology of radiation chemistry, particularly in the pulsed mode, provides a powerful means to study not only the early processes after the energy absorption, but more generally a broad diversity of chemical and biochemical reaction mechanisms. Among them, the new area of metal cluster chemistry illustrates how radiation chemistry contributed to this field in suggesting fruitful original concepts, in guiding and controlling specific syntheses, and in the detailed elaboration of the mechanisms of complex and long-unsolved processes, such as the dynamics of nucleation, electron transfer catalysis and photographic development.

  1. In vivo study of human skin using pulsed terahertz radiation

    International Nuclear Information System (INIS)

    Pickwell, E; Cole, B E; Fitzgerald, A J; Pepper, M; Wallace, V P

    2004-01-01

    Studies in terahertz (THz) imaging have revealed a significant difference between skin cancer (basal cell carcinoma) and healthy tissue. Since water has strong absorptions at THz frequencies and tumours tend to have different water content from normal tissue, a likely contrast mechanism is variation in water content. Thus, we have previously devised a finite difference time-domain (FDTD) model which is able to closely simulate the interaction of THz radiation with water. In this work we investigate the interaction of THz radiation with normal human skin on the forearm and palm of the hand in vivo. We conduct the first ever systematic in vivo study of the response of THz radiation to normal skin. We take in vivo reflection measurements of normal skin on the forearm and palm of the hand of 20 volunteers. We compare individual examples of THz responses with the mean response for the areas of skin under investigation. Using the in vivo data, we demonstrate that the FDTD model can be applied to biological tissue. In particular, we successfully simulate the interaction of THz radiation with the volar forearm. Understanding the interaction of THz radiation with normal skin will form a step towards developing improved imaging algorithms for diagnostic detection of skin cancer and other tissue disorders using THz radiation

  2. In vivo study of human skin using pulsed terahertz radiation

    Energy Technology Data Exchange (ETDEWEB)

    Pickwell, E [Semiconductor Physics Group, Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge CB3 0HE (United Kingdom); Cole, B E [TeraView Ltd, Unit 302/4 Cambridge Science Park, Cambridge CB4 0WG (United Kingdom); Fitzgerald, A J [TeraView Ltd, Unit 302/4 Cambridge Science Park, Cambridge CB4 0WG (United Kingdom); Pepper, M [Semiconductor Physics Group, Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge CB3 0HE (United Kingdom); Wallace, V P [TeraView Ltd, Unit 302/4 Cambridge Science Park, Cambridge CB4 0WG (United Kingdom)

    2004-05-07

    Studies in terahertz (THz) imaging have revealed a significant difference between skin cancer (basal cell carcinoma) and healthy tissue. Since water has strong absorptions at THz frequencies and tumours tend to have different water content from normal tissue, a likely contrast mechanism is variation in water content. Thus, we have previously devised a finite difference time-domain (FDTD) model which is able to closely simulate the interaction of THz radiation with water. In this work we investigate the interaction of THz radiation with normal human skin on the forearm and palm of the hand in vivo. We conduct the first ever systematic in vivo study of the response of THz radiation to normal skin. We take in vivo reflection measurements of normal skin on the forearm and palm of the hand of 20 volunteers. We compare individual examples of THz responses with the mean response for the areas of skin under investigation. Using the in vivo data, we demonstrate that the FDTD model can be applied to biological tissue. In particular, we successfully simulate the interaction of THz radiation with the volar forearm. Understanding the interaction of THz radiation with normal skin will form a step towards developing improved imaging algorithms for diagnostic detection of skin cancer and other tissue disorders using THz radiation.

  3. Case study on utilization of radiation in sludge treatment

    International Nuclear Information System (INIS)

    Kawakami, Waichiro

    1984-01-01

    The utilization of radiation to sludge treatment has been studied as a case study of the utilization of radiation to environmental protection by the society for the utilization of radiation in Japan Atomic Industrial Forum Inc., and the result is presented in this paper. The examined radiation sources to sterilize sludge were γ-ray and electron beam, and sludge was irradiated in the forms of slurry or cake. Four treatment conditions by the combination of the radiation sources and the sludge conditions were examined. From the examined results, it was estimated that in the case one (γ-ray and slurry), the output of 25 kW or 1.6 million curie was required for the sludge treatment capacity of 250 tons/day, in the case two (electron beam and slurry), an accelerator of 20 mA or 60 mA was required for the capacity of 250 or 750 tons/day, respectively, in the case three (γ-ray and cake), a radiation source of 0.6 million curie was required for the capacity of 50 tons/day, and in the case four (electron beam and cake), an accelerator of 4 mA or 12 mA was required for the capacity of 50 tons/day or 150 tons/day. (Yoshitake, I.)

  4. Basic study on radiation distribution sensing with normal optical fiber

    International Nuclear Information System (INIS)

    Naka, R.; Kawarabayashi, J.; Uritani, A.; Iguchi, T.; Kaneko, J.; Takeuchi, H.; Kakuta, T.

    2000-01-01

    Recently, some methods of radiation distribution sensing with optical fibers have been proposed. These methods employ scintillating fibers or scintillators with wavelength-shifting fibers. The positions of radiation interactions are detected by applying a time-of-flight (TOF) technique to the scintillation photon propagation. In the former method, the attenuation length for the scintillation photons in the scintillating fiber is relatively short, so that the operating length of the sensor is limited to several meters. In the latter method, a radiation distribution cannot continuously be obtained but discretely. To improve these shortcomings, a normal optical fiber made of polymethyl methacrylate (PMMA) is used in this study. Although the scintillation efficiency of PMMA is very low, several photons are emitted through interaction with a radiation. The fiber is transparent for the emitted photons to have a relatively long operating length. A radiation distribution can continuously be obtained. This paper describes a principle of the position sensing method based on the time of flight technique and preliminary results obtained for 90 Sr- 90 Y beta rays, 137 Cs gamma rays, and 14 MeV neutrons. The spatial resolutions for the above three kinds of radiations are 0.30 m, 0.37 m, 0.13 m, and the detection efficiencies are 1.1 x 10 -3 , 1.6 x 10 -7 , 5.4 x 10 -6 , respectively, with 10 m operation length. The results of a spectroscopic study on the optical property of the fiber are also described. (author)

  5. Experimental study of radiation losses on the JT-60 tokamak

    International Nuclear Information System (INIS)

    Nishitani, Takeo

    1990-06-01

    Bolometric measurement system and associated diagnostics, soft x-ray pulse-height-analyzer, soft x-ray intensity and Balmer α line measurement systems, were developed to investigate the radiation losses of the JT-60 plasmas. The bolometric measurement is the most important diagnostics in the radiation loss study. The soft x-ray pulse-height-analyzer is useful to estimate the metallic impurity concentration, and the soft x-ray intensity and Balmer α line measurements are monitors of radiation in x-ray region and particle recycling in the plasma edge, respectively. In JT-60, the marfe has been observed frequently in high-Ip and high density limited discharges with NB heating after the replacement of the first wall from TiC coated molybdenum tiles to graphite ones. The threshold electron density of the marfe onset increased with the NB power. The empirical scaling of the marfe onset taking account of the NB power was obtained. This scaling was useful to predict the marfe onset condition in NB heated discharges on JT-60. The marfe was modelled based on the radiative thermal instability. The simple model can explain the marfe onset condition. The radiated power from the plasma with marfe was about 90 % of the absorbed power. Both stored energy and central electron temperatures did not change by the marfe onset in spite of the such intense radiation loss. Finally, this study revealed that the most clean plasma was obtained in the metallic first wall with the divertor on JT-60. This fact is suggesting the capability of the metallic material for the first wall of next devices. Enhance radiation localized in the peripheral plasma such as marfe and IDC does not degrade the core plasma confinement or somewhat improves it, so that marfe and IDC are suitable operational regime in the high density region for future devices because they have strong remote-radiative-cooling-effect. (J.P.N.)

  6. American Society for Radiation Oncology (ASTRO) 2012 Workforce Study: The Radiation Oncologists' and Residents' Perspectives

    International Nuclear Information System (INIS)

    Pohar, Surjeet; Fung, Claire Y.; Hopkins, Shane; Miller, Robert; Azawi, Samar; Arnone, Anna; Patton, Caroline; Olsen, Christine

    2013-01-01

    Purpose: The American Society for Radiation Oncology (ASTRO) conducted the 2012 Radiation Oncology Workforce Survey to obtain an up-to-date picture of the workforce, assess its needs and concerns, and identify quality and safety improvement opportunities. The results pertaining to radiation oncologists (ROs) and residents (RORs) are presented here. Methods: The ASTRO Workforce Subcommittee, in collaboration with allied radiation oncology professional societies, conducted a survey study in early 2012. An online survey questionnaire was sent to all segments of the radiation oncology workforce. Respondents who were actively working were included in the analysis. This manuscript describes the data for ROs and RORs. Results: A total of 3618 ROs and 568 RORs were surveyed. The response rate for both groups was 29%, with 1047 RO and 165 ROR responses. Among ROs, the 2 most common racial groups were white (80%) and Asian (15%), and the male-to-female ratio was 2.85 (74% male). The median age of ROs was 51. ROs averaged 253.4 new patient consults in a year and 22.9 on-treatment patients. More than 86% of ROs reported being satisfied or very satisfied overall with their career. Close to half of ROs reported having burnout feelings. There was a trend toward more frequent burnout feelings with increasing numbers of new patient consults. ROs' top concerns were related to documentation, reimbursement, and patients' health insurance coverage. Ninety-five percent of ROs felt confident when implementing new technology. Fifty-one percent of ROs thought that the supply of ROs was balanced with demand, and 33% perceived an oversupply. Conclusions: This study provides a current snapshot of the 2012 radiation oncology physician workforce. There was a predominance of whites and men. Job satisfaction level was high. However a substantial fraction of ROs reported burnout feelings. Perceptions about supply and demand balance were mixed. ROs top concerns reflect areas of attention for the

  7. Study on quantities of radiation protection in medical X-rays radiation field with polyhedron phantom

    International Nuclear Information System (INIS)

    Yuan Shuyu; Dai Guangfu; Zhang Liangan

    1997-01-01

    The author have studied tissue-equivalent material with the elemental composition recommended by report No.44 of ICRU. Three different calibration phantoms in shape have been prepared with the tissue-equivalent material in order to study the influence of the angular dependence factor R(d,α) in the radiation field of X-rays on the calibration of individual dose equivalent Hp(d). The requirement of mono-genous radiation field to calibrate several dosimeters on one phantom at the same time can be met by application of dodecahedron phantom, which is difficult on ICRU sphere. Angular dependence factor R(d,α) of 0 degree∼90 degree and conversion coefficients between individual dose equivalent Hp(0.07, α) and the exposure of radiation of different energies and different angles have been established by taking advantage of the dodecahedron. Besides, the authors have studied the variation relation between the individual dose equivalent Hp (10,α) and Hp(0.07,α) in the medical X-rays radiation field

  8. A simple solar radiation index for wildlife habitat studies

    Science.gov (United States)

    Keating, Kim A.; Gogan, Peter J.; Vore, John N.; Irby, Lynn R.

    2007-01-01

    Solar radiation is a potentially important covariate in many wildlife habitat studies, but it is typically addressed only indirectly, using problematic surrogates like aspect or hillshade. We devised a simple solar radiation index (SRI) that combines readily available information about aspect, slope, and latitude. Our SRI is proportional to the amount of extraterrestrial solar radiation theoretically striking an arbitrarily oriented surface during the hour surrounding solar noon on the equinox. Because it derives from first geometric principles and is linearly distributed, SRI offers clear advantages over aspect-based surrogates. The SRI also is superior to hillshade, which we found to be sometimes imprecise and ill-behaved. To illustrate application of our SRI, we assessed niche separation among 3 ungulate species along a single environmental axis, solar radiation, on the northern Yellowstone winter range. We detected no difference between the niches occupied by bighorn sheep (Ovis canadensis) and elk (Cervus elaphus; P = 0.104), but found that mule deer (Odocoileus hemionus) tended to use areas receiving more solar radiation than either of the other species (P solar radiation component.

  9. Study on DNA damages induced by UV radiation

    International Nuclear Information System (INIS)

    Doan Hong Van; Dinh Ba Tuan; Tran Tuan Anh; Nguyen Thuy Ngan; Ta Bich Thuan; Vo Thi Thuong Lan; Tran Minh Quynh; Nguyen Thi Thom

    2015-01-01

    DNA damages in Escherichia coli (E. coli) exposed to UV radiation have been investigated. After 30 min of exposure to UV radiation of 5 mJ/cm"2, the growth of E. coli in LB broth medium was about only 10% in compared with non-irradiated one. This results suggested that the UV radiation caused the damages for E. coli genome resulted in reduction in its growth and survival, and those lesions can be somewhat recovered. For both solutions of plasmid DNAs and E. coli cells containing plasmid DNA, this dose also caused the breakage on single and double strands of DNA, shifted the morphology of DNA plasmid from supercoiled to circular and linear forms. The formation of pyrimidine dimers upon UV radiation significantly reduced when the DNA was irradiated in the presence of Ganoderma lucidum extract. Thus, studies on UV-induced DNA damage at molecular level are very essential to determine the UV radiation doses corresponding to the DNA damages, especially for creation and selection of useful radiation-induced mutants, as well as elucidation the protective effects of the specific compounds against UV light. (author)

  10. Study Regarding Electromagnetic Radiation Exposure Generated By Mobile Phone

    Science.gov (United States)

    Marica, Lucia; Moraru, Luminita

    2011-12-01

    Number of mobile phone users reached to 5 billion subscribers in 2010 [ABI Research, 2010]. A large number of studies illustrated the public concern about adverse effects of mobile phone radiation and possible health hazards. Position of mobile phone use in close proximity to the head leads the main radiation between the hand and the head. Many investigations studying the possible effects of mobile phone exposure, founded no measurable effects of short-term mobile phone radiation, and there was no evidence for the ability to perceive mobile phone EMF in the general population. In this study, field radiation measurements were performed on different brand and different models of mobile phones in active mode, using an EMF RF Radiation Field Strength Power Meter 1 MHz-8 GHz. The study was effectuated on both the 2G and 3G generations phones connected to the providers operating in the frequency range 450 MHz-1800 MHz. There were recorded values in outgoing call and SMS mode, incoming call and SMS mode. Results were compared with ICNIRP guidelines for exposure to general public.

  11. Study Regarding Electromagnetic Radiation Exposure Generated By Mobile Phone

    International Nuclear Information System (INIS)

    Marica, Lucia; Moraru, Luminita

    2011-01-01

    Number of mobile phone users reached to 5 billion subscribers in 2010 [ABI Research, 2010]. A large number of studies illustrated the public concern about adverse effects of mobile phone radiation and possible health hazards. Position of mobile phone use in close proximity to the head leads the main radiation between the hand and the head. Many investigations studying the possible effects of mobile phone exposure, founded no measurable effects of short-term mobile phone radiation, and there was no evidence for the ability to perceive mobile phone EMF in the general population. In this study, field radiation measurements were performed on different brand and different models of mobile phones in active mode, using an EMF RF Radiation Field Strength Power Meter 1 MHz-8 GHz. The study was effectuated on both the 2G and 3G generations phones connected to the providers operating in the frequency range 450 MHz-1800 MHz. There were recorded values in outgoing call and SMS mode, incoming call and SMS mode. Results were compared with ICNIRP guidelines for exposure to general public.

  12. Aging and Embrittlement of High Fluence Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Was, gary; Jiao, Zhijie; der ven, Anton Van; Bruemmer, Stephen; Edwards, Dan

    2012-12-31

    Irradiation of austenitic stainless steels results in the formation of dislocation loops, stacking fault tetrahedral, Ni-Si clusters and radiation-induced segregation (RIS). Of these features, it is the formation of precipitates which is most likely to impact the mechanical integrity at high dose. Unlike dislocation loops and RIS, precipitates exhibit an incubation period that can extend from 10 to 46 dpa, above which the cluster composition changes and a separate phase, (G-phase) forms. Both neutron and heavy ion irradiation showed that these clusters develop slowly and continue to evolve beyond 100 dpa. Overall, this work shows that the irradiated microstructure features produced by heavy ion irradiation are remarkably comparable in nature to those produced by neutron irradiation at much lower dose rates. The use of a temperature shift to account for the higher damage rate in heavy ion irradiation results in a fairly good match in the dislocation loop microstructure and the precipitate microstructure in austenitic stainless steels. Both irradiations also show segregation of the same elements and in the same directions, but to achieve comparable magnitudes, heavy ion irradiation must be conducted at a much higher temperature than that which produces a match with loops and precipitates. First-principles modeling has confirmed that the formation of Ni-Si precipitates under irradiation is likely caused by supersaturation of solute to defect sinks caused by highly correlated diffusion of Ni and Si. Thus, the formation and evolution of Ni-Si precipitates at high dose in austenitic stainless steels containing Si is inevitable.

  13. Apparent embrittlement saturation and radiation mechanisms of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Pachur, D.

    1981-01-01

    The irradiation and annealing results of three different reactor pressure vessel steels are reported. Steel A, a basic material according to ASTM A-533 B having 0.15 percent vanadium; and Steel C contained 3.2 percent nickel. The steels were irradiated at 150, 300, and 400 degree C with neutron fluxes of 6 multiplied by 10 11 and 3 multiplied by 10 13 neutrons (n)/cm 2 /s. An apparent saturation-in-irradiation effect was found within certain neutron fluence ranges. During the annealing, various recovery processes occur in different temperature ranges. These are characterized by various activation energies. The individual processes were determined by the different time dependencies at various temperatures. Two causes for the apparent saturation were discovered from the behavior of the annealing curves

  14. Radiation damage in nanostructured metallic films

    Science.gov (United States)

    Yu, Kaiyuan

    High energy neutron and charged particle radiation cause microstructural and mechanical degradation in structural metals and alloys, such as phase segregation, void swelling, embrittlement and creep. Radiation induced damages typically limit nuclear materials to a lifetime of about 40 years. Next generation nuclear reactors require materials that can sustain over 60 - 80 years. Therefore it is of great significance to explore new materials with better radiation resistance, to design metals with favorable microstructures and to investigate their response to radiation. The goals of this thesis are to study the radiation responses of several nanostructured metallic thin film systems, including Ag/Ni multilayers, nanotwinned Ag and nanocrystalline Fe. Such systems obtain high volume fraction of boundaries, which are considered sinks to radiation induced defects. From the viewpoint of nanomechanics, it is of interest to investigate the plastic deformation mechanisms of nanostructured films, which typically show strong size dependence. By controlling the feature size (layer thickness, twin spacing and grain size), it is applicable to picture a deformation mechanism map which also provides prerequisite information for subsequent radiation hardening study. And from the viewpoint of radiation effects, it is of interest to explore the fundamentals of radiation response, to examine the microstructural and mechanical variations of irradiated nanometals and to enrich the design database. More importantly, with the assistance of in situ techniques, it is appealing to examine the defect generation, evolution, annihilation, absorption and interaction with internal interfaces (layer interfaces, twin boundaries and grain boundaries). Moreover, well-designed nanostructures can also verify the speculation that radiation induced defect density and hardening show clear size dependence. The focus of this thesis lies in the radiation response of Ag/Ni multilayers and nanotwinned Ag

  15. Study of radiation induced structural changes in nitrile rubber

    International Nuclear Information System (INIS)

    Cardona, F.; Hill, D.J.T.; Pomery, P.J.; Whittaker, A.K.

    1996-01-01

    Full text: Copolymers of butadiene (BD) and acrylonitrile (AN) (NBR rubber), have become important commercial material. NBR rubbers are part of a larger classification of products often referred to as special-purpose rubbers. Oil resistance is the most important property of nitrile rubbers, and refer to the ability of the vulcanised product to retain its original physical properties such as modulus, tensile strength, abrasion resistance and dimensions, while in contact with oils and fuels. Despite these reported advantages very few studies have been conducted on the radiation yields and structural changes in nitrile rubbers during exposure to high energy radiation. In this study we are investigating the stability against gamma and UV radiation, to different doses in vacuum, of butadiene, acrylonitrile and NBR copolymers with different composition ratio BD/AN. The mechanism of radiation induced structural changes is being investigated using experimental techniques such as ESR, NMR (Solid-state), FT-IR, RAMAN and UV spectroscopy. Also is being investigated the effect of irradiation on the mechanical properties of stressed and unstressed samples by TGA, DSC, DMA, Instron and Creep Test measurements. So far the main effect have been a marked radiation-induced loss of unsaturation in the butadiene units, cis to trans isomerization and formation of crosslink structures (intermolecular and intramolecular). One of the main challenges in the studies of NBR polymers is to observe directly the crosslinks produces by the radiation induced chemical reactions. IR spectroscopy is unsuitable because of the low molar absorbity of the peaks related to intermolecular crosslinking and the overlapping of the peaks (1630-1670 cm-1) related to intramolecular crosslinking (cyclization), with conjugated and nonconjugated (-C=C-; -C=N-) double bonds. A. K. Whittaker has shown that crosslink structures in PBD can be detected and measured directly using solid-state 13 C NMR. This technique

  16. Nutritional and metabolic changes due the abdominal radiation: experimental study

    International Nuclear Information System (INIS)

    Mucerino, Donato R.; Waitzberg, Dan L.; Campos, Fabio G. de; Melo Auricchio, Maria T. de; Gama-Rodrigues, Joaquim J.; Lima-Goncalves, Ernesto L.

    1995-01-01

    In this study the effects on nutritional status and energetic metabolism due the abdominal irradiation were analysed. Adult male wistar rats (48), were divided in two groups Control (C) and radiated (R). The rats were maintained all time in metabolic cages. the study was done in two periods: period 1 begun at 0 day, were rats adapted to cages and oral diet, had food and water ad libitum. At the day four indirect calorimetric measurements were performed (calorimetry 1). At period 2, group R rats abdominal radiation at a 300 c Gy/day rate, for 5 consecutive days, and group C started a pair-feeding process linked individually to R rats and suffered application to simulated-irradiation. Two other calorimetric measurements (II,III) were performing during period 2. After radiation the last calorimetry was performed (IV). At sacrifice (day 14) blood was collected for determination of hemoglobin, hematocrit, albumin and transferrin. There were no statistical differences among groups C and R during period 1 (p < 0.05). Great reduction in food intake and weight variation were found in period 2, but weight loss was significantly higher in R rats. Nitrogen balance decrease in period 2, but without difference among the groups (p < 0.05). Serum albumin was significantly lower in R rats. Respiratory quotient decreased in both groups during period 2, but rats kept it lower (p < 0.05). The energy expenditure level decreased after radiation in group R. During period 2 total substrate oxidation decreased in R rats. Radiation decrease glucose and protein oxidation. In conclusion, in this study's conditions, radiation produced malnutrition by reducing food intake by bringing weight loss, hypoalbuminemia and decrease nitrogen balance. Radiation was also responsible for a reduction of metabolism, by promoting the fall of energy expenditure. These changes are not only due the anorexia, undoubtful a main factor. (author)

  17. Studies on radiation processing -Studies on application of radiation and radioisotopes-

    International Nuclear Information System (INIS)

    Jin, Joon Ha; Yoon, Byeong Mok; Kim, Ki Yeop; Nho, Yeong Chang; Lee, Yeong Keun; Park, Soon Cheol; Na, Bong Joo; Kim, Jae Ho

    1994-08-01

    Radiation-grafting of acrylic acid onto LDPE was carried out by both simultaneous irradiation and pre-irradiation techniques. The effects of metal salts, and sulfuric acid addition, and solvent effect on enhancement of grafting yield were evaluated. The dose distributions of the Co-60 gamma irradiation facility and electron beam accelerator were measured using chemical dosimeters and CTA film dosimeters, respectively. An appropriate base PP was selected, and the effects of addition of various additives on the radiation resistance of the polymer. An air distillation column was examined using a Co-60 source to identify the origin of the malfunction of the column. (Author)

  18. Informing the Swedish public about radiation. A case study

    International Nuclear Information System (INIS)

    Waahlberg, A. af

    1997-09-01

    The two Swedish state agencies handling radiation protection and nuclear safety are studied as to their information policies and documents, with special attention to Chernobyl. The principal aim is an assessment of policies and documents. A quantitative coding is made of the printed document's key features. The study is a part of a larger CEC-project, and similar studies are made in three other countries, according to common guidelines. The general radiation situation in Sweden and its historical background is described, generating a picture of a rather safe, tightly controlled and thoroughly researched issue. The agencies are very active in their information work, using just about every conceivable channel to disseminate radiation information. The intellectual range of the printed documents is great, as very different groups are targeted, from the general public to researchers and other state agency employees

  19. Studies of radiation effects on allopathic formulations for cancer management

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, L; Choughule, S V; Dodke, P B; Jothish, P K [International Standard Orthopedic Measurements Education and Development (ISOMED), Bhabha Atomic Research Centre, Mumbai (India)

    2005-07-01

    In the present study, two anticancer drugs, Cyclophosphamide and Doxorubucin Hydrochloride have been investigated. The results of various physico-chemical tests on unirradiated and irradiated drugs indicate possibility of use of lower radiation doses and cryo-irradiation in case of sterilization of Cyclophosphamide. Doxorubcin Hydrochloride could be sterilized at 25 kGy without any significant changes in its physico-chemical properties. HPLC studies reveal formation of several trace level degradation products in irradiated cyclophosphamide. HPLC/MS studies revealed that higher and lower molecular weight products of the original molecules are formed on irradiation. Although, no significant changes are observed in absolute purity values, a little discolouration and formation of degradation products in Cyclophosphamide are the main impediments in acceptability of radiation sterilization. On the other hand, orange-red coloured Doxorubicin Hydrochloride did not show any such changes and could be radiation sterilized at normal sterilization dose of 25 kGy. (author)

  20. Informing the Swedish public about radiation. A case study

    Energy Technology Data Exchange (ETDEWEB)

    Waahlberg, A. af

    1997-09-01

    The two Swedish state agencies handling radiation protection and nuclear safety are studied as to their information policies and documents, with special attention to Chernobyl. The principal aim is an assessment of policies and documents. A quantitative coding is made of the printed document`s key features. The study is a part of a larger CEC-project, and similar studies are made in three other countries, according to common guidelines. The general radiation situation in Sweden and its historical background is described, generating a picture of a rather safe, tightly controlled and thoroughly researched issue. The agencies are very active in their information work, using just about every conceivable channel to disseminate radiation information. The intellectual range of the printed documents is great, as very different groups are targeted, from the general public to researchers and other state agency employees

  1. Studies of radiation effects on allopathic formulations for cancer management

    International Nuclear Information System (INIS)

    Varshney, L.; Choughule, S.V.; Dodke, P.B.; Jothish, P.K.

    2005-01-01

    In the present study, two anticancer drugs, Cyclophosphamide and Doxorubucin Hydrochloride have been investigated. The results of various physico-chemical tests on unirradiated and irradiated drugs indicate possibility of use of lower radiation doses and cryo-irradiation in case of sterilization of Cyclophosphamide. Doxorubcin Hydrochloride could be sterilized at 25 kGy without any significant changes in its physico-chemical properties. HPLC studies reveal formation of several trace level degradation products in irradiated cyclophosphamide. HPLC/MS studies revealed that higher and lower molecular weight products of the original molecules are formed on irradiation. Although, no significant changes are observed in absolute purity values, a little discolouration and formation of degradation products in Cyclophosphamide are the main impediments in acceptability of radiation sterilization. On the other hand, orange-red coloured Doxorubicin Hydrochloride did not show any such changes and could be radiation sterilized at normal sterilization dose of 25 kGy. (author)

  2. Studying radiative B decays with the Atlas detector

    International Nuclear Information System (INIS)

    Viret, S.

    2004-09-01

    This thesis is dedicated to the study of radiative B decays with the ATLAS detector at the LHC (large hadron collider). Radiative decays belong to the rare decays family. Rare decays transitions involve flavor changing neutral currents (for example b → sγ), which are forbidden at the lowest order in the Standard Model. Therefore these processes occur only at the next order, thus involving penguin or box diagrams, which are very sensitive to 'new physics' contributions. The main goal of our study is to show that it would be possible to develop an online selection strategy for radiative B decays with the ATLAS detector. To this end, we have studied the treatment of low energy photons by the ATLAS electromagnetic calorimeter (ECal). Our analysis shows that ATLAS ECal will be efficient with these particles. This property is extensively used in the next section, where a selection strategy for radiative B decays is proposed. Indeed, we look for a low energy region of interest in the ECal as soon as the level 1 of the trigger. Then, photon identification cuts are performed in this region at level 2. However, a large part of the proposed selection scheme is also based on the inner detector, particularly at level 2. The final results show that large amounts of signal events could be collected in only one year by ATLAS. A preliminary significance (S/√B) estimation is also presented. Encouraging results concerning the observability of exclusive radiative B decays are obtained. (author)

  3. Fragilisation par le zinc liquide des aciers haute résistance pour l'automobile Liquid zinc embrittlement of high strength automotive steels

    Directory of Open Access Journals (Sweden)

    Frappier Renaud

    2013-11-01

    Full Text Available Cette étude présente les investigations menées sur la fragilisation par le zinc liquide d'un acier électro-zingué. La caractérisation mécanique par essais de traction à haute température montre un important puits de ductilité entre environ 700 ∘C et environ 950 ∘C. L'observation au MEB des éprouvettes de traction indique que, dans la gamme de température observée pour laquelle il y a fragilisation, on a mouillage intergranulaire des joints de grains de l'acier à l'interface acier/revêtement par des films de Zn. La corrélation entre mouillage intergranulaire thermiquement activé d'une part, et propagation de fissure lors du chargement d'autre part, est discutée. This study deals with liquid zinc embrittlement for electro-galvanized steel. Mechanical characterization by high temperature tensile tests shows a drastic loss of ductility between 700 ∘C and 950 ∘C. SEM investigations show that steel grain boundaries under the steel/coating interface are penetrated by a liquid Zn channel, only in the temperature range of embrittlement. A correlation can be drawn between i thermal activated-grain boundary wetting and ii crack propagation in presence of external stress.

  4. Studies on chemical protectors against radiation, 26

    International Nuclear Information System (INIS)

    Sato, Yushi; Ohta, Setsuko; Sakurai, Nobuko; Shinoda, Masato

    1989-01-01

    The protective potency against skin injury on mice induced by X-irradiation was studied by use of 72 extracts of crude drugs. The protective potency was determined according to the degrees of skin injury after irradiation of 1100 R, 30 kVp soft X-ray. As a result of this study, 16 kinds of crude drugs such as Rosae Fructus, Aloe arboresces (Herba), Citri Leiocarpae Exocarpium, Schizonepetae Spica, Evodiae Fructus, Bupleuri Radix, Corni Fructus, Perillae Herba, Anemarrhenae Rhizoma, Menthae Herba, Trapae Fructus, Angelicae Dahuricae Radix, Sinomeni Caulis et Rhizoma, Ephedrae Herba. Acer nikoense (Cortex), Forsythiae Fructus, revealed protective potencies on skin injury. (author)

  5. Initial assessment of the mechanisms and significance of low-temperature embrittlement of cast stainless steels in LWR systems

    International Nuclear Information System (INIS)

    Chopra, O.K.; Sather, A.

    1990-08-01

    This report summarizes work performed by Argonne National Laboratory on long-term embrittlement of cast duplex stainless steels in LWR systems. Metallurgical characterization and mechanical property data from Charpy-impact, tensile, and J-R curve tests are presented for several experimental and commercial heats, as well as for reactor-aged CF-3, CF-8, and CF-8M cast stainless steels. The effects of material variables on the embrittlement of cast stainless steels are evaluated. Chemical composition and ferrite morphology strongly affect the extent and kinetics of embrittlement. In general, the low-carbon CF-3 stainless steels are the most resistant and the molybdenum-containing high-carbon CF-8M stainless steels are most susceptible to embrittlement. The microstructural and mechanical-property data are analyzed to establish the mechanisms of embrittlement. The procedure and correlations for predicting the impact strength and fracture toughness of cast components during reactor service are described. The lower bound values of impact strength and fracture toughness for low-temperature-aged cast stainless steel are defined. 39 refs., 56 figs., 8 tabs

  6. Study warns of radiation risk in medical imaging

    Science.gov (United States)

    Gwynne, Peter

    2009-10-01

    A study of a million US patients suggests that some who undergo medical imaging could be exposed to more ionizing radiation than those who work with radioactive materials in nuclear power plants. The study, reported in The New England Journal of Medicine (361 849), implies that current exposure to radiation from conventional X-ray equipment as well as computed tomography (CT) and positron-emission tomography (PET) scanners could lead to tens of thousands of extra cases of cancer in the US alone.

  7. Award nomination for study of cell death in radiation sickness

    Energy Technology Data Exchange (ETDEWEB)

    Ivanitskiy, G

    1985-01-01

    The author discusses the importance of the work entitled Formulation of Theoretical Bases of the Phenomenon of Cell Death and Their Use in Explaining the Pathogenesis of Radiation Sickness, which has been nominated for the 1985 USSR State Prize. The author notes that the study of the nature and mechanisms of cell death from ionizing radiation consumed the efforts of researchers of various specialties for more than 20 years. The author observes that study of the molecular basis of the high radiosensitivity of lymphocytes became the key to understanding the general biological phenomenon of cell death.

  8. Experimental study on radiation resistant properties of seismic isolation elements

    International Nuclear Information System (INIS)

    Yoneda, G.; Nojima, O.; Aizawa, S.; Uchiyama, Y.; Ikenaga, M.; Yoshizawa, T.

    1991-01-01

    Recently, studies on the application of a seismic isolation system to a reactor building and or the equipment of a nuclear power plant has been carried out. This study aims at investigating the influence which is exerted upon the mechanical properties of the seismic isolation elements by radiation. The authors conducted irradiation tests, using γ rays, on natural rubber bearings (NRB), lead rubber bearings (LRB), high damping rubber bearings (HRB), and the viscous fluid used in viscous dampers. The maximum radiation intensity was 5 x 10 7 R (Roentgen). The comparison between the mechanical properties of each seismic isolation element before and after the irradiation test are reported in the following. (author)

  9. Gamma radiation stability studies of mercury fulminate

    International Nuclear Information System (INIS)

    Fondeur, F.F.

    2000-01-01

    Mercury fulminate completely decomposed in a gamma source (0.86 Mrad/h) after a dose of 208 Mrad. This exposure equates to approximately 2.4 years in Tank 15H and 4 years in Tank 12H, one of the vessels of concern. Since the tanks lost the supernatant cover layer more than a decade ago, this study suggests that any mercury fulminate or closely related energetic species decomposed long ago if ever formed

  10. Establishing a ultraviolet radiation observational network and enhancing the study on ultraviolet radiation

    Science.gov (United States)

    Bai, Jianhui; Wang, Gengchen

    2003-09-01

    On the basis of analyzing observational data on solar radiation, meteorological parameters, and total ozone amount for the period of January 1990 to December 1991 in the Beijing area, an empirical calculation method for ultraviolet radiation (UV) in clear sky is obtained. The results show that the calculated values agree well with the observed, with maximum relative bias of 6.2% and mean relative bias for 24 months of 1.9%. Good results are also obtained when this method is applied in Guangzhou and Mohe districts. The long-term variation of UV radiation in clear sky over the Beijing area from 1979 to 1998 is calculated, and the UV variation trends and causes are discussed: direct and indirect UV energy absorption by increasing pollutants in the troposphere may have caused the UV decrease in clear sky in the last 20 years. With the enhancement of people’s quality of life and awareness of health, it will be valuable and practical to provid UV forecasts for typical cities and rural areas. So, we should develop and enhance UV study in systematic monitoring, forecasting, and developing a good and feasible method for UV radiation reporting in China, especially for big cities.

  11. Studies on Radiation Protection Effect of the Beer

    International Nuclear Information System (INIS)

    Sohn, Jong Gi; Ha, Tae Young; Hwang, Chul; Hyan; Lee, Young Hwa

    2007-01-01

    In this study, it was investigated whether commercially produced beer is able to prevent a lymphocyte from radiation induced apoptosis. Whole blood samples were acquired from 5 healthy volunteers (male, 26-38 years old) and the lymphocyte were isolated by density gradient centrifugation. Radiation induced apoptosis of the lymphocyte were investigated by 0.5 Gy, 1.0 Gy, 2.0 Gy, 3.0 Gy to 5.0 Gy irradiation. In some experiments, the donor drunk beer and then blood samples were collected. In other experiments, melatonin or glycine betain was added to lymphocyte culture medium. Treated or untreated lymphocytes were cultured for 60 hours and radiation induced apoptosis of the lymphocyte was analyzed by annexin-V staining through flow cytometery. Relative radiation induced apoptosis ratio of the untreated lymphocytes is 1.22±1.1, 1.22±1.1, 1.38±1.0, 1.47±1.1, 1.50±1.2 by radiation dose of 0.5 Gy, 1.0 Gy, 2.0 Gy, 3.0 Gy and 5.0 Gy respectively. Relative radiation induced apoptosis ratio of lymphocytes is isolated from beer drunken donors is 0.971.0, 0.991.0, 1.11±0.9, 1.29±1.1, 1.15±1.1 by radiation doses respectively which are reduced 21.5% compared with untreated lymphocyte. Relative radiation induced apoptosis ratio of the lymphocytes is isolated from non-alcohol beer drunken donors is 1.22±1.1, 1.17±1.1, 1.13±1.3, 1.38±1.2, 1.32±1.1 by radiation dose of 0.5 Gy, 1.0 Gy, 2.0 Gy, 3.0 Gy and 5.0 Gy respectively which are reduced 10.8% compared with the untreated lymphocyte. As a result, it is suggested that beer may protect the lymphocyte from radiation damage and inhibit apoptosis.

  12. Studies on Radiation Protection Effect of the Beer

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jong Gi; Ha, Tae Young; Hwang, Chul; Hyan; Lee, Young Hwa [Dept. of Radiation Oncology, Busan National University Hospital, Busan (Korea, Republic of)

    2007-09-15

    In this study, it was investigated whether commercially produced beer is able to prevent a lymphocyte from radiation induced apoptosis. Whole blood samples were acquired from 5 healthy volunteers (male, 26-38 years old) and the lymphocyte were isolated by density gradient centrifugation. Radiation induced apoptosis of the lymphocyte were investigated by 0.5 Gy, 1.0 Gy, 2.0 Gy, 3.0 Gy to 5.0 Gy irradiation. In some experiments, the donor drunk beer and then blood samples were collected. In other experiments, melatonin or glycine betain was added to lymphocyte culture medium. Treated or untreated lymphocytes were cultured for 60 hours and radiation induced apoptosis of the lymphocyte was analyzed by annexin-V staining through flow cytometery. Relative radiation induced apoptosis ratio of the untreated lymphocytes is 1.22{+-}1.1, 1.22{+-}1.1, 1.38{+-}1.0, 1.47{+-}1.1, 1.50{+-}1.2 by radiation dose of 0.5 Gy, 1.0 Gy, 2.0 Gy, 3.0 Gy and 5.0 Gy respectively. Relative radiation induced apoptosis ratio of lymphocytes is isolated from beer drunken donors is 0.971.0, 0.991.0, 1.11{+-}0.9, 1.29{+-}1.1, 1.15{+-}1.1 by radiation doses respectively which are reduced 21.5% compared with untreated lymphocyte. Relative radiation induced apoptosis ratio of the lymphocytes is isolated from non-alcohol beer drunken donors is 1.22{+-}1.1, 1.17{+-}1.1, 1.13{+-}1.3, 1.38{+-}1.2, 1.32{+-}1.1 by radiation dose of 0.5 Gy, 1.0 Gy, 2.0 Gy, 3.0 Gy and 5.0 Gy respectively which are reduced 10.8% compared with the untreated lymphocyte. As a result, it is suggested that beer may protect the lymphocyte from radiation damage and inhibit apoptosis.

  13. Local dose enhancement in radiation therapy: Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Silva, Laura E. da; Nicolucci, Patricia

    2014-01-01

    The development of nanotechnology has boosted the use of nanoparticles in radiation therapy in order to achieve greater therapeutic ratio between tumor and healthy tissues. Gold has been shown to be most suitable to this task due to the high biocompatibility and high atomic number, which contributes to a better in vivo distribution and for the local energy deposition. As a result, this study proposes to study, nanoparticle in the tumor cell. At a range of 11 nm from the nanoparticle surface, results have shown an absorbed dose 141 times higher for the medium with the gold nanoparticle compared to the water for an incident energy spectrum with maximum photon energy of 50 keV. It was also noted that when only scattered radiation is interacting with the gold nanoparticles, the dose was 134 times higher compared to enhanced local dose that remained significant even for scattered radiation. (author)

  14. Study of radiation synovectomy using 188Re-sulfide

    International Nuclear Information System (INIS)

    Chen Gang; Li Peiyong; Jiang Xufeng; Zhang Liying; Wang Xuefeng; Sun Zhenming; Zhang Huan

    2002-01-01

    Objective: To study the radiation synovectomy with 188 Re-sulfide. Methods: Thirty cases were divided into 2 groups, the group with hemophilia and the group with rheumatoid arthritis (RA). Patients with joint synovitis were injected different doses of 188 Re-sulfide, 222 - 444 MBq intra-articular. MRI was taken before and 3 - 6 months after the radiation synovectomy to evaluate the treatment efficacy, and the symptoms were also evaluated. Results: MRI study showed that after the treatment the synovium became thiner and the edema was reduced in the lesioned joint. The symptoms were improved with the pain relieved and duration of intra-articular hemorrhage reduced. Conclusions: Radiation synovectomy using 188 Re-sulfide has effects on synovitis. It can be used clinically to improve the symptoms of joint synovitis and reduce the duration of intra-articular hemorrhage

  15. Influence of radiation exposure on our society and epidemiological study

    International Nuclear Information System (INIS)

    Yoshimoto, Yasuhiko

    1997-01-01

    A brief epidemiological review of risk assessment of radiation was discussed with respect to two periods; before and after the establishment of the United Nations Scientific Committee on the Effects of Atomic Radiation. Selected topics were the studies of atomic bomb survivors and people living in the contaminated areas due to Chernobyl nuclear power plant accident. An ethical view to ensure that potential social benefits of epidemiology are maximized was emphasized as well as a scientific view. On the other hand it should be recognized that there are the limitations of epidemiological studies on the basis of the observations on man in which the animal-experimental setting generally cannot be controlled over. Informing people about the professional confidence and caution of radiation exposure is needed to resolve social concern associated with low dose, low dose rate of radiation. Also there are guidelines for the investigation of clusters of adverse health events. In the future an appropriate strategy for decontamination might be expected to unusual radiation exposure as a consequence of a nuclear power plant accident. Justification for the implementations can be determined only through the assessment of the effects both on the environment and health of humans after the accident. (author)

  16. Additive Manufacturing Materials Study for Gaseous Radiation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Steer, C.A.; Durose, A.; Boakes, J. [AWE Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom)

    2015-07-01

    Additive manufacturing (AM) techniques may lead to improvements in many areas of radiation detector construction; notably the rapid manufacturing time allows for a reduced time between prototype iterations. The additive nature of the technique results in a granular microstructure which may be permeable to ingress by atmospheric gases and make it unsuitable for gaseous radiation detector development. In this study we consider the application of AM to the construction of enclosures and frames for wire-based gaseous radiation tracking detectors. We have focussed on oxygen impurity ingress as a measure of the permeability of the enclosure, and the gas charging and discharging curves of several simplistic enclosure shapes are reported. A prototype wire-frame is also presented to examine structural strength and positional accuracy of an AM produced frame. We lastly discuss the implications of this study for AM based radiation detection technology as a diagnostic tool for incident response scenarios, such as the interrogation of a suspect radiation-emitting package. (authors)

  17. Additive Manufacturing Materials Study for Gaseous Radiation Detection

    International Nuclear Information System (INIS)

    Steer, C.A.; Durose, A.; Boakes, J.

    2015-01-01

    Additive manufacturing (AM) techniques may lead to improvements in many areas of radiation detector construction; notably the rapid manufacturing time allows for a reduced time between prototype iterations. The additive nature of the technique results in a granular microstructure which may be permeable to ingress by atmospheric gases and make it unsuitable for gaseous radiation detector development. In this study we consider the application of AM to the construction of enclosures and frames for wire-based gaseous radiation tracking detectors. We have focussed on oxygen impurity ingress as a measure of the permeability of the enclosure, and the gas charging and discharging curves of several simplistic enclosure shapes are reported. A prototype wire-frame is also presented to examine structural strength and positional accuracy of an AM produced frame. We lastly discuss the implications of this study for AM based radiation detection technology as a diagnostic tool for incident response scenarios, such as the interrogation of a suspect radiation-emitting package. (authors)

  18. SP-100 radiator design trade study

    International Nuclear Information System (INIS)

    Ewell, R.

    1992-01-01

    This paper reports on a design trade study of the SP-100 heat rejection subsystem (HRSS) which was made. A system code was used to evaluate the sensitivity of the HRSS mass and performance to changes. Variations in heat pipe diameter and cross-section, fin length and thickness, armor thickness, and overall configuration and materials were evaluated. The analysis indicates that the minimum system mass occurs for the case with many small diameter heat pipes, with ducting that maximizes the fraction of the heat pipe evaporator perimeter in contract with it

  19. Effects of surface condition on aqueous corrosion and environmental embrittlement of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, R.L.; Buchanan, R.A. [Univ. of Tennessee, Knoxville, TN (United States)

    1996-08-01

    Effects of retained high-temperature surface oxides, produced during thermomechanical processing and/or heat treatment, on the aqueous-corrosion and environmental-embrittlement characteristics of Fe{sub 3}Al-based iron aluminides (FA-84, FA-129 and FAL-Mo), a FeAl-based iron aluminide (FA-385), and a disordered low-aluminum Fe-Al alloy (FAPY) were evaluated. All tests were conducted at room temperature in a mild acid-chloride solution. In cyclic-anodic-polarization testing for aqueous-corrosion behavior, the surface conditions examined were: as-received (i.e., with the retained high-temperature oxides), mechanically cleaned and chemically cleaned. For all materials, the polarization tests showed the critical pitting potentials to be significantly lower in the as-received condition than in the mechanically-cleaned and chemically-cleaned conditions. These results indicate detrimental effects of the retained high-temperature oxides in terms of increased susceptibilities to localized corrosion. In 200-hour U-bend stress-corrosion-cracking tests for environmental-embrittlement behavior, conducted at open-circuit corrosion potentials and at a hydrogen-charging potential of {minus}1500 mV (SHE), the above materials (except FA-385) were examined with retained oxides and with mechanically cleaned surfaces. At the open-circuit corrosion potentials, none of the materials in either surface condition underwent cracking. At the hydrogen-charging potential, none of the materials with retained oxides underwent cracking, but FA-84, FA-129 and FAL-Mo in the mechanically cleaned condition did undergo cracking. These results suggest beneficial effects of the retained high-temperature oxides in terms of increased resistance to environmental hydrogen embrittlement.

  20. Cloud and Radiation Studies during SAFARI 2000

    Science.gov (United States)

    Platnick, Steven; King, M. D.; Hobbs, P. V.; Osborne, S.; Piketh, S.; Bruintjes, R.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Though the emphasis of the Southern Africa Regional Science Initiative 2000 (SAFARI-2000) dry season campaign was largely on emission sources and transport, the assemblage of aircraft (including the high altitude NASA ER-2 remote sensing platform and the University of Washington CV-580, UK MRF C130, and South African Weather Bureau JRA in situ aircrafts) provided a unique opportunity for cloud studies. Therefore, as part of the SAFARI initiative, investigations were undertaken to assess regional aerosol-cloud interactions and cloud remote sensing algorithms. In particular, the latter part of the experiment concentrated on marine boundary layer stratocumulus clouds off the southwest coast of Africa. Associated with cold water upwelling along the Benguela current, the Namibian stratocumulus regime has received limited attention but appears to be unique for several reasons. During the dry season, outflow of continental fires and industrial pollution over this area can be extreme. From below, upwelling provides a rich nutrient source for phytoplankton (a source of atmospheric sulphur through DMS production as well as from decay processes). The impact of these natural and anthropogenic sources on the microphysical and optical properties of the stratocumulus is unknown. Continental and Indian Ocean cloud systems of opportunity were also studied during the campaign. Aircraft flights were coordinated with NASA Terra Satellite overpasses for synergy with the Moderate Resolution Imaging Spectroradiometer (MODIS) and other Terra instruments. An operational MODIS algorithm for the retrieval of cloud optical and physical properties (including optical thickness, effective particle radius, and water path) has been developed. Pixel-level MODIS retrievals (11 km spatial resolution at nadir) and gridded statistics of clouds in th SAFARI region will be presented. In addition, the MODIS Airborne Simulator flown on the ER-2 provided high spatial resolution retrievals (50 m at nadir