WorldWideScience

Sample records for radiation dose-volume effects

  1. Radiation Dose-Volume Effects in the Brain

    International Nuclear Information System (INIS)

    Lawrence, Yaacov Richard; Li, X. Allen; El Naqa, Issam; Hahn, Carol A.; Marks, Lawrence B.; Merchant, Thomas E.; Dicker, Adam P.

    2010-01-01

    We have reviewed the published data regarding radiotherapy (RT)-induced brain injury. Radiation necrosis appears a median of 1-2 years after RT; however, cognitive decline develops over many years. The incidence and severity is dose and volume dependent and can also be increased by chemotherapy, age, diabetes, and spatial factors. For fractionated RT with a fraction size of 80 Gy. For large fraction sizes (≥2.5 Gy), the incidence and severity of toxicity is unpredictable. For single fraction radiosurgery, a clear correlation has been demonstrated between the target size and the risk of adverse events. Substantial variation among different centers' reported outcomes have prevented us from making toxicity-risk predictions. Cognitive dysfunction in children is largely seen for whole brain doses of ≥18 Gy. No substantial evidence has shown that RT induces irreversible cognitive decline in adults within 4 years of RT.

  2. A prospective evaluation of hippocampal radiation dose volume effects and memory deficits following cranial irradiation.

    Science.gov (United States)

    Ma, Ting Martin; Grimm, Jimm; McIntyre, Riley; Anderson-Keightly, Heather; Kleinberg, Lawrence R; Hales, Russell K; Moore, Joseph; Vannorsdall, Tracy; Redmond, Kristin J

    2017-11-01

    To prospectively evaluate hippocampal radiation dose volume effects and memory decline following cranial irradiation. Effects of hippocampal radiation over a wide range of doses were investigated by combining data from three prospective studies. In one, adults with small cell lung cancer received hippocampal-avoidance prophylactic cranial irradiation. In the other two, adults with glioblastoma multiforme received neural progenitor cell sparing radiation or no sparing with extra dose delivered to subventricular zone. Memory was measured by the Hopkins Verbal Learning Test-Revised Delayed Recall (HVLT-R DR) at 6 months after radiation. Dose-volume histograms were generated and dose-response data were fitted to a nonlinear model. Of 60 patients enrolled, 30 were analyzable based on HVLT-R DR testing completion status, baseline HVLT-R DR and intracranial metastasis/recurrence or prior hippocampal resection status. We observed a dose-response of radiation to the hippocampus with regard to decline in HVLT-R DR. D50% of the bilateral hippocampi of 22.1 Gy is associated with 20% risk of decline. This prospective study demonstrates an association between hippocampal dose volume effects and memory decline measured by HVLT-R DR over a wide dose range. These data support a potential benefit of hippocampal sparing and encourage continued trial enrollment. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Clinical evaluation of dose-volume-effect relationship in radiation injury of the brain

    International Nuclear Information System (INIS)

    Saito, Mari

    1990-01-01

    Radiation brain injury, including functional disturbances or morphological changes (brain atrophy, periventricular lucencies or ventricular dilatation), were studied by CT in patients with primary intracranial neoplasms who were followed-up for at least 5 months after receiving radiotherapy. Each of 33 patients with medulloblastoma, pinealregion tumor or malignant lymphoma received a total dose of 40-61 Gy by conventional fractionation using a whole brain irradiation field boosted by a localized field. Of these patients, 19 (58%) developed radiation brain injury. It was concluded that the volume-dose was one of the most important factors influencing the development of radiation brain injury. Age at the time of radiotherapy and time of follow-up after the treatment were also considered to be important factors. (author)

  4. Dose-volume considerations in stereotaxic brain radiation therapy

    International Nuclear Information System (INIS)

    Houdek, P.V.; Schwade, J.G.; Pisciotta, V.J.; Medina, A.J.; Lewin, A.A.; Abitbol, A.A.; Serago, C.F.

    1988-01-01

    Although brain radiation therapy experience suggests that a gain in the therapeutic ratio may be achieved by optimizing the dose-volume relationship, no practical system for quantitative assessment of dose-volume data has been developed. This presentation describes the rationale for using the integral dose function for this purpose and demonstrates that with the use of a conventional treatment planning computer and a series of computed tomographic scans, first-order optimization of the dose-volume function can be accomplished in two steps: first, high-dose volume is minimized by selecting an appropriate treatment technique and tumor margin, and then dosage is maximized by calculating the brain tolerance dose as a function of the irradiated volume

  5. Radiation tolerance of the cervical spinal cord: incidence and dose-volume relationship of symptomatic and asymptomatic late effects following high dose irradiation of paraspinal tumors

    International Nuclear Information System (INIS)

    Liu, Mitchell C.C.; Munzenrider, John E.; Finkelstein, Dianne; Liebsch, Norbert; Adams, Judy; Hug, Eugen B.

    1997-01-01

    Purpose: Low grade chordomas and chondrosarcomas require high radiation doses for effective, lasting tumor control. Fractionated, 3-D planned, conformal proton radiation therapy has been used for lesions along the base of skull and spine to deliver high target doses, while respecting constraints of critical, normal tissues. In this study, we sought to determine the incidence of myelopathy after high dose radiotherapy to the cervical spine and investigated the influence of various treatment parameters, including dose-volume relationship. Methods and Materials: Between December 1980 and March 1996, 78 patients were treated at the Massachusetts General Hospital and Harvard Cyclotron Laboratory for primary or recurrent chordomas and chondrosarcomas of the cervical spine using combined proton and photon radiation therapy. In general, the tumor dose given was between 64.5 to 79.2 CGE (Cobalt Gray Equivalent). The guidelines for maximum permissible doses to spinal cord were: ≤ 64 CGE to the spinal cord surface and ≤ 53 CGE to the spinal cord center. Dose volume histograms of the spinal cord were analyzed to investigate a possible dose and volume relationship. Results: With a mean follow-up period of 46.6 months (range: 3 - 157 months), 4 of 78 patients (5.1%) developed high-grade (RTOG Grade 3 and 4) late toxicity: 3 patients (3.8%) experienced sensory deficits without motor deficits, none had any limitations of daily activities. One patient (1.2%) developed motor deficit with loss of motor function of one upper extremity. The only patient, who developed permanent motor damage had received additional prior radiation treatment and therefore received a cumulative spinal cord dose higher than the treatment guidelines. No patient treated within the guidelines experienced any motor impairment. Six patients (7.7%) experienced transient Lhermitt's syndrome and 1 patient (1.2%) developed asymptomatic radiographic MR findings only. Time to onset of symptoms of radiographic

  6. Circumferential or sectored beam arrangements for stereotactic body radiation therapy (SBRT) of primary lung tumors: Effect on target and normal-structure dose-volume metrics

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Mara W. [Broad Institute of MIT and Harvard, Cambridge, MA (United States); Department of Physics, Brandeis University, Waltham, MA (United States); Kato, Catherine M. [Macalester College, St. Paul, MN (United States); Carson, Kelly M.P. [The University of North Carolina, Chapel Hill, NC (United States); Matsunaga, Nathan M. [Santa Clara University, Santa Clara, CA (United States); Arao, Robert F. [Department of Public Health and Preventive Medicine, Oregon Health and Science University, Portland, OR (United States); Doss, Emily J. [Department of Internal Medicine, Providence St. Vincent Medical Center, Portland, OR (United States); McCracken, Charles L. [Department of Radiation Medicine, Oregon Health and Science University, Portland, OR (United States); Meng, Lu Z. [Department of Radiation Oncology, University of California Davis Comprehensive Cancer Center, Sacramento, CA (United States); Chen, Yiyi [Department of Public Health and Preventive Medicine, Oregon Health and Science University, Portland, OR (United States); Laub, Wolfram U.; Fuss, Martin [Department of Radiation Medicine, Oregon Health and Science University, Portland, OR (United States); Department of Nuclear Engineering and Radiation Health Physics, Oregon State University, Corvallis, OR (United States); Tanyi, James A., E-mail: tanyij@ohsu.edu [Department of Radiation Medicine, Oregon Health and Science University, Portland, OR (United States); Department of Nuclear Engineering and Radiation Health Physics, Oregon State University, Corvallis, OR (United States)

    2013-01-01

    To compare 2 beam arrangements, sectored (beam entry over ipsilateral hemithorax) vs circumferential (beam entry over both ipsilateral and contralateral lungs), for static-gantry intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) delivery techniques with respect to target and organs-at-risk (OAR) dose-volume metrics, as well as treatment delivery efficiency. Data from 60 consecutive patients treated using stereotactic body radiation therapy (SBRT) for primary non–small-cell lung cancer (NSCLC) formed the basis of this study. Four treatment plans were generated per data set: IMRT/VMAT plans using sectored (-s) and circumferential (-c) configurations. The prescribed dose (PD) was 60 Gy in 5 fractions to 95% of the planning target volume (PTV) (maximum PTV dose ∼ 150% PD) for a 6-MV photon beam. Plan conformality, R{sub 50} (ratio of volume circumscribed by the 50% isodose line and the PTV), and D{sub 2} {sub cm} (D{sub max} at a distance ≥2 cm beyond the PTV) were evaluated. For lungs, mean doses (mean lung dose [MLD]) and percent V{sub 30}/V{sub 20}/V{sub 10}/V{sub 5} Gy were assessed. Spinal cord and esophagus D{sub max} and D{sub 5}/D{sub 50} were computed. Chest wall (CW) D{sub max} and absolute V{sub 30}/V{sub 20}/V{sub 10}/V{sub 5} {sub Gy} were reported. Sectored SBRT planning resulted in significant decrease in contralateral MLD and V{sub 10}/V{sub 5} {sub Gy}, as well as contralateral CW D{sub max} and V{sub 10}/V{sub 5} {sub Gy} (all p < 0.001). Nominal reductions of D{sub max} and D{sub 5}/D{sub 50} for the spinal cord with sectored planning did not reach statistical significance for static-gantry IMRT, although VMAT metrics did show a statistically significant decrease (all p < 0.001). The respective measures for esophageal doses were significantly lower with sectored planning (p < 0.001). Despite comparable dose conformality, irrespective of planning configuration, R{sub 50} significantly improved with IMRT

  7. Dose-Volume Analysis of Radiation Nephropathy in Children: Preliminary Report of the Risk Consortium

    International Nuclear Information System (INIS)

    Boelling, Tobias; Ernst, Iris; Pape, Hildegard; Martini, Carmen; Ruebe, Christian; Timmermann, Beate; Fischedick, Karin; Kortmann, Rolf-Dieter; Willich, Normann

    2011-01-01

    Purpose: To characterize kidney function in children and adolescents who had undergone radiation treatment that included parts of the kidney. Methods and Materials: Patients receiving radiotherapy during childhood or adolescence were prospectively registered in Germany's Registry for the Evaluation of Side Effects after Radiation in Childhood and Adolescence (RiSK). Detailed information was recorded regarding radiation doses at the organs at risk since 2001 all over Germany. Toxicity evaluation was performed according to standardized Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer criteria. Results: Up to May 2009, 1086 patients from 62 centers were recruited, including 126 patients (median age, 10.2 years) who underwent radiotherapy to parts of the kidneys. Maximal late toxicity (median follow-up 28.5 months in 74 patients) was characterized as Grade 0 (n = 65), 1 (n = 7) or 2 (n = 2). All patients with late effects had received potentially nephrotoxic chemotherapy. A statistically significant difference between patients with and without Grade 1 toxicity, revealing higher exposed kidney volumes in patients with toxicity, was seen for the kidney volume exposed to 20 Gy (V20; p = 0.031) and 30 Gy (V30; p = 0.003). Conclusions: Preliminary data indicate that radiation-induced kidney function impairment is rare in current pediatric multimodal treatment approaches. In the future, RiSK will be able to provide further detailed data regarding dose-volume effect relationships of radiation-associated side effects in pediatric oncology patients.

  8. Comments on 'Reconsidering the definition of a dose-volume histogram'-dose-mass histogram (DMH) versus dose-volume histogram (DVH) for predicting radiation-induced pneumonitis

    International Nuclear Information System (INIS)

    Mavroidis, Panayiotis; Plataniotis, Georgios A; Gorka, Magdalena Adamus; Lind, Bengt K

    2006-01-01

    In a recently published paper (Nioutsikou et al 2005 Phys. Med. Biol. 50 L17) the authors showed that the use of the dose-mass histogram (DMH) concept is a more accurate descriptor of the dose delivered to lung than the traditionally used dose-volume histogram (DVH) concept. Furthermore, they state that if a functional imaging modality could also be registered to the anatomical imaging modality providing a functional weighting across the organ (functional mass) then the more general and realistic concept of the dose-functioning mass histogram (D[F]MH) could be an even more appropriate descriptor. The comments of the present letter to the editor are in line with the basic arguments of that work since their general conclusions appear to be supported by the comparison of the DMH and DVH concepts using radiobiological measures. In this study, it is examined whether the dose-mass histogram (DMH) concept deviated significantly from the widely used dose-volume histogram (DVH) concept regarding the expected lung complications and if there are clinical indications supporting these results. The problem was investigated theoretically by applying two hypothetical dose distributions (Gaussian and semi-Gaussian shaped) on two lungs of uniform and varying densities. The influence of the deviation between DVHs and DMHs on the treatment outcome was estimated by using the relative seriality and LKB models using the Gagliardi et al (2000 Int. J. Radiat. Oncol. Biol. Phys. 46 373) and Seppenwoolde et al (2003 Int. J. Radiat. Oncol. Biol. Phys. 55 724) parameter sets for radiation pneumonitis, respectively. Furthermore, the biological equivalent of their difference was estimated by the biologically effective uniform dose (D-bar) and equivalent uniform dose (EUD) concepts, respectively. It is shown that the relation between the DVHs and DMHs varies depending on the underlying cell density distribution and the applied dose distribution. However, the range of their deviation in terms of

  9. Incidence of radiation pneumonitis after thoracic irradiation: Dose-volume correlates

    International Nuclear Information System (INIS)

    Schallenkamp, John M.; Miller, Robert C.; Brinkmann, Debra H.; Foote, Tyler; Garces, Yolanda I.

    2007-01-01

    Purpose: To define clinical and dosimetric parameters correlated with the risk of clinically relevant radiation pneumonitis (RP) after thoracic radiotherapy. Methods and Materials: Records of consecutive patients treated with definitive thoracic radiotherapy were retrospectively reviewed for the incidence of RP of Grade 2 or greater by the Common Toxicity Criteria. Dose-volume histograms using total lung volume (TL) and TL minus gross tumor volume (TL-G) were created with and without heterogeneity corrections. Mean lung dose (MLD), effective lung volume (V eff ), and percentage of TL or TL-G receiving greater than or equal to 10, 13, 15, 20, and 30 Gy (V10-V30, respectively) were analyzed by logistic regression. Receiver operating characteristic (ROC) curves were generated to estimate RP predictive values. Results: Twelve cases of RP were identified in 92 eligible patients. Mean lung dose, V10, V13, V15, V20, and V eff were significantly correlated to RP. Combinations of MLD, V eff , V20, and V30 lost significance using TL-G and heterogeneity corrections. Receiver operating characteristic analysis determined V10 and V13 as the best predictors of RP risk, with a decrease in predictive value above those volumes. Conclusions: Intrathoracic radiotherapy should be planned with caution when using radiotherapy techniques delivering doses of 10 to 15 Gy to large lung volumes

  10. Absence of multiple local minima effects in intensity modulated optimization with dose-volume constraints

    Energy Technology Data Exchange (ETDEWEB)

    Llacer, Jorge [EC Engineering Consultants, LLC 130, Forest Hill Drive, Los Gatos, CA (United States); Deasy, Joseph O [Department of Radiation Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO (United States); Bortfeld, Thomas R [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 30 Fruit Street, Boston, MA (United States); Solberg, Timothy D [Department of Radiation Oncology, University of California, Los Angeles, CA (United States); Promberger, Claus [BrainLAB AG, Ammerthalstrasse 8, 85551 Heimstetten (Germany)

    2003-01-21

    This paper reports on the analysis of intensity modulated radiation treatment optimization problems in the presence of non-convex feasible parameter spaces caused by the specification of dose-volume constraints for the organs-at-risk (OARs). The main aim was to determine whether the presence of those non-convex spaces affects the optimization of clinical cases in any significant way. This was done in two phases: (1) Using a carefully designed two-dimensional mathematical phantom that exhibits two controllable minima and with randomly initialized beamlet weights, we developed a methodology for exploring the nature of the convergence characteristics of quadratic cost function optimizations (deterministic or stochastic). The methodology is based on observing the statistical behaviour of the residual cost at the end of optimizations in which the stopping criterion is progressively more demanding and carrying out those optimizations to very small error changes per iteration. (2) Seven clinical cases were then analysed with dose-volume constraints that are stronger than originally used in the clinic. The clinical cases are two prostate cases differently posed, a meningioma case, two head-and-neck cases, a spleen case and a spine case. Of the 14 different sets of optimizations (with and without the specification of maximum doses allowed for the OARs), 12 fail to show any effect due to the existence of non-convex feasible spaces. The remaining two sets of optimizations show evidence of multiple minima in the solutions, but those minima are very close to each other in cost and the resulting treatment plans are practically identical, as measured by the quality of the dose-volume histograms (DVHs). We discuss the differences between fluence maps resulting from those similar treatment plans. We provide a possible reason for the observed results and conclude that, although the study is necessarily limited, the annealing characteristics of a simulated annealing method may not be

  11. Gastrointestinal toxicity of vorinostat: reanalysis of phase 1 study results with emphasis on dose-volume effects of pelvic radiotherapy

    International Nuclear Information System (INIS)

    Bratland, Åse; Dueland, Svein; Hollywood, Donal; Flatmark, Kjersti; Ree, Anne H

    2011-01-01

    In early-phase studies with targeted therapeutics and radiotherapy, it may be difficult to decide whether an adverse event should be considered a dose-limiting toxicity (DLT) of the investigational systemic agent, as acute normal tissue toxicity is frequently encountered with radiation alone. We have reanalyzed the toxicity data from a recently conducted phase 1 study on vorinostat, a histone deacetylase inhibitor, in combination with pelvic palliative radiotherapy, with emphasis on the dose distribution within the irradiated bowel volume to the development of DLT. Of 14 eligible patients, three individuals experienced Common Terminology Criteria of Adverse Events grade 3 gastrointestinal and related toxicities, representing a toxicity profile vorinostat has in common with radiotherapy to pelvic target volumes. For each study patient, the relative volumes of small bowel receiving radiation doses between 6 Gy and 30 Gy at 6-Gy intervals (V6-V30) were determined from the treatment-planning computed tomography scans. The single patient that experienced a DLT at the second highest dose level of vorinostat, which was determined as the maximum-tolerated dose, had V6-V30 dose-volume estimates that were considerably higher than any other study patient. This patient may have experienced an adverse radiation dose-volume effect rather than a toxic effect of the investigational drug. When reporting early-phase trial results on the tolerability of a systemic targeted therapeutic used as potential radiosensitizing agent, radiation dose-volume effects should be quantified to enable full interpretation of the study toxicity profile.

  12. Lung and heart dose volume analyses with CT simulator in radiation treatment of breast cancer

    International Nuclear Information System (INIS)

    Das, Indra J.; Cheng, Elizabeth C.; Freedman, Gary; Fowble, Barbara

    1998-01-01

    Purpose: Radiation pneumonitis and cardiac effects are directly related to the irradiated lung and heart volumes in the treatment fields. The central lung distance (CLD) from a tangential breast radiograph is shown to be a significant indicator of ipsilateral irradiated lung volume. Retrospective analysis of the pattern of dose volume of lung and heart with actual volume data from a CT simulator in the treatment of breast cancer is presented with respect to CLD. Methods and Materials: The heart and lung volumes in the tangential treatment fields were analyzed in 108 consecutive cases (52 left and 56 right breast) referred for CT simulation. All patients in this study were immobilized and placed on an inclined breast board in actual treatment setup. Both arms were stretched over head to avoid collision with the scanner aperture. Radiopaque marks were placed on the medial and lateral borders of the tangential fields. All patients were scanned in spiral mode with slice width and thickness of 3 mm each, respectively. The lung and heart structures as well as irradiated areas were delineated on each slice and respective volumes were accurately measured. The treatment beam parameters were recorded and the digitally reconstructed radiographs (DRRs) were generated for the measurement of the CLD and analysis. Results: Using CT data the mean volume and standard deviation of left and right lungs were 1307.7 ± 297.7 cm 3 and 1529.6 ± 298.5 cm 3 , respectively. The magnitude of irradiated volume in left and right lung is nearly equal for the same CLD that produces different percent irradiated volumes (PIV). The left and right PIV lungs are 8.3 ± 4.7% and 6.6 ± 3.7%, respectively. The PIV data have shown to correlate with CLD with second- and third-degree polynomials; however, in this study a simple straight line regression is used to provide better confidence than the higher order polynomials. The regression lines for the left and right breasts are very different based on

  13. Late rectal toxicity: dose-volume effects of conformal radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Huang, Eugene H.; Pollack, Alan; Levy, Larry; Starkschall, George; Lei Dong; Rosen, Isaac; Kuban, Deborah A.

    2002-01-01

    Purpose: To identify dosimetric, anatomic, and clinical factors that correlate with late rectal toxicity after three-dimensional conformal radiotherapy (3D-CRT) for prostate cancer. Methods and Materials: We retrospectively analyzed the dose-volume histograms and clinical records of 163 Stage T1b-T3c prostate cancer patients treated between 1992 and 1999 with 3D-CRT, to a total isocenter dose of 74-78 Gy at The University of Texas M. D. Anderson Cancer Center. The median follow-up was 62 months (range 24-102). All late rectal complications were scored using modified Radiation Therapy Oncology Group and Late Effects Normal Tissue Task Force criteria. The 6-year toxicity rate was assessed using Kaplan-Meier analysis and the log-rank test. A univariate proportional hazards regression model was used to test the correlation between Grade 2 or higher toxicity and the dosimetric, anatomic, and clinical factors. In a multivariate regression model, clinical factors were added to the dosimetric and anatomic variables to determine whether they significantly altered the risk of developing late toxicity. Results: At 6 years, the rate of developing Grade 2 or higher late rectal toxicity was 25%. A significant volume effect was observed at rectal doses of 60, 70, 75.6, and 78 Gy, and the risk of developing rectal complications increased exponentially as greater volumes were irradiated. Although the percentage of rectal volume treated correlated significantly with the incidence of rectal complications at all dose levels (p 3 of the rectum. Of the clinical variables tested, only a history of hemorrhoids correlated with rectal toxicity (p=0.003). Multivariate analysis showed that the addition of hemorrhoids increased the risk of toxicity for each dosimetric variable found to be significant on univariate analysis (p<0.05 for all comparisons). Conclusion: Dose-volume histogram analyses clearly indicated a volume effect on the probability of developing late rectal complications

  14. Gastrointestinal toxicity of vorinostat: reanalysis of phase 1 study results with emphasis on dose-volume effects of pelvic radiotherapy

    LENUS (Irish Health Repository)

    Bratland, Ase

    2011-04-08

    Abstract Background In early-phase studies with targeted therapeutics and radiotherapy, it may be difficult to decide whether an adverse event should be considered a dose-limiting toxicity (DLT) of the investigational systemic agent, as acute normal tissue toxicity is frequently encountered with radiation alone. We have reanalyzed the toxicity data from a recently conducted phase 1 study on vorinostat, a histone deacetylase inhibitor, in combination with pelvic palliative radiotherapy, with emphasis on the dose distribution within the irradiated bowel volume to the development of DLT. Findings Of 14 eligible patients, three individuals experienced Common Terminology Criteria of Adverse Events grade 3 gastrointestinal and related toxicities, representing a toxicity profile vorinostat has in common with radiotherapy to pelvic target volumes. For each study patient, the relative volumes of small bowel receiving radiation doses between 6 Gy and 30 Gy at 6-Gy intervals (V6-V30) were determined from the treatment-planning computed tomography scans. The single patient that experienced a DLT at the second highest dose level of vorinostat, which was determined as the maximum-tolerated dose, had V6-V30 dose-volume estimates that were considerably higher than any other study patient. This patient may have experienced an adverse radiation dose-volume effect rather than a toxic effect of the investigational drug. Conclusions When reporting early-phase trial results on the tolerability of a systemic targeted therapeutic used as potential radiosensitizing agent, radiation dose-volume effects should be quantified to enable full interpretation of the study toxicity profile. Trial registration ClinicalTrials.gov: NCT00455351

  15. Radiation-Induced Rib Fractures After Hypofractionated Stereotactic Body Radiation Therapy: Risk Factors and Dose-Volume Relationship

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Kaori [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Shioyama, Yoshiyuki, E-mail: shioyama@radiol.med.kyushu-u.ac.jp [Department of Heavy Particle Therapy and Radiation Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Nakamura, Katsumasa; Sasaki, Tomonari; Ohga, Saiji; Nonoshita, Takeshi [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Yoshitake, Tadamasa [Department of Heavy Particle Therapy and Radiation Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Ohnishi, Kayoko [Department of Radiology, National Center for Global Health and Medicine, Tokyo (Japan); Terashima, Kotaro; Matsumoto, Keiji [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Hirata, Hideki [Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Honda, Hiroshi [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan)

    2012-11-01

    Purpose: The purpose of this study was to clarify the incidence, the clinical risk factors, and the dose-volume relationship of radiation-induced rib fracture (RIRF) after hypofractionated stereotactic body radiation therapy (SBRT). Methods and Materials: One hundred sixteen patients treated with SBRT for primary or metastatic lung cancer at our institution, with at least 6 months of follow-up and no previous overlapping radiation exposure, were included in this study. To determine the clinical risk factors associated with RIRF, correlations between the incidence of RIRF and the variables, including age, sex, diagnosis, gross tumor volume diameter, rib-tumor distance, and use of steroid administration, were analyzed. Dose-volume histogram analysis was also conducted. Regarding the maximum dose, V10, V20, V30, and V40 of the rib, and the incidences of RIRF were compared between the two groups divided by the cutoff value determined by the receiver operating characteristic curves. Results: One hundred sixteen patients and 374 ribs met the inclusion criteria. Among the 116 patients, 28 patients (46 ribs) experienced RIRF. The estimated incidence of rib fracture was 37.7% at 3 years. Limited distance from the rib to the tumor (<2.0 cm) was the only significant risk factor for RIRF (p = 0.0001). Among the dosimetric parameters used for receiver operating characteristic analysis, the maximum dose showed the highest area under the curve. The 3-year estimated risk of RIRF and the determined cutoff value were 45.8% vs. 1.4% (maximum dose, {>=}42.4 Gy or less), 51.6% vs. 2.0% (V40, {>=}0.29 cm{sup 3} or less), 45.8% vs. 2.2% (V30, {>=}1.35 cm{sup 3} or less), 42.0% vs. 8.5% (V20, {>=}3.62 cm{sup 3} or less), or 25.9% vs. 10.5% (V10, {>=}5.03 cm{sup 3} or less). Conclusions: The incidence of RIRF after hypofractionated SBRT is relatively high. The maximum dose and high-dose volume are strongly correlated with RIRF.

  16. Methodological issues in radiation dose-volume outcome analyses: Summary of a joint AAPM/NIH workshop

    International Nuclear Information System (INIS)

    Deasy, Joseph O.; Niemierko, Andrzej; Herbert, Donald; Yan, Di; Jackson, Andrew; Ten Haken, Randall K.; Langer, Mark; Sapareto, Steve

    2002-01-01

    This report represents a summary of presentations at a joint workshop of the National Institutes of Health and the American Association of Physicists in Medicine (AAPM). Current methodological issues in dose-volume modeling are addressed here from several different perspectives. Areas of emphasis include (a) basic modeling issues including the equivalent uniform dose framework and the bootstrap method, (b) issues in the valid use of statistics, including the need for meta-analysis, (c) issues in dealing with organ deformation and its effects on treatment response, (d) evidence for volume effects for rectal complications, (e) the use of volume effect data in liver and lung as a basis for dose escalation studies, and (f) implications of uncertainties in volume effect knowledge on optimized treatment planning. Taken together, these approaches to studying volume effects describe many implications for the development and use of this information in radiation oncology practice. Areas of significant interest for further research include the meta-analysis of clinical data; interinstitutional pooled data analyses of volume effects; analyses of the uncertainties in outcome prediction models, minimal parameter number outcome models for ranking treatment plans (e.g., equivalent uniform dose); incorporation of the effect of motion in the outcome prediction; dose-escalation/isorisk protocols based on outcome models; the use of functional imaging to study radio-response; and the need for further small animal tumor control probability/normal tissue complication probability studies

  17. Dose-volume histogram analysis of hepatic toxicity related to carbon ion radiation therapy of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Yasuda, Shigeo; Kato, Hirotoshi; Tsujii, Hitohiko; Mizoe, Junetsu

    2005-01-01

    The purpose of this study is to analyze the correlation of hepatic toxicity with dose-volume factors of carbon ion radiotherapy in the liver. Forty-nine patients with hepatocellular carcinoma were treated with carbon ion radiotherapy delivered in 4 fractions over 4 to 7 days. Six patients received a total dose of 48 GyE and 43 received 52.8 GyE. The correlation of various blood biochemistry data with dose-volume histogram (DVH) data in non-cancerous liver were evaluated. The strongest significant correlation was seen between percent volume of non-cancerous liver with radiation dose more than 11 GyE (V 11 GyE ) and elevation of serum glutamic oxaloacetic transaminase (GOT) level as early adverse response after carbon ion beam radiation therapy (p=0.0003). In addition, significant correlation between DVH data and change of several other blood biochemistry data were also revealed in early phase. In late phase after carbon ion radiotherapy, the strongest significant correlation was seen between decrease of platelet count and V 26GyE (p=0.015). There was no significant correlation between other blood biochemistry data and DVH data in the late phase. It was suggested that dose-volume factors of carbon ion radiotherapy influenced only transient aggravation of liver function, which improved in the long term after irradiation. (author)

  18. Dose-volume histogram analysis as predictor of radiation pneumonitis in primary lung cancer patients treated with radiotherapy

    International Nuclear Information System (INIS)

    Fay, Michael; Tan, Alex; Fisher, Richard; Mac Manus, Michael; Wirth, Andrew; Ball, David

    2005-01-01

    Purpose: To determine the relationship between various parameters derived from lung dose-volume histogram analysis and the risk of symptomatic radiation pneumonitis (RP) in patients undergoing radical radiotherapy for primary lung cancer. Methods and Materials: The records of 156 patients with lung cancer who had been treated with radical radiotherapy (≥45 Gy) and for whom dose-volume histogram data were available were reviewed. The incidence of symptomatic RP was correlated with a variety of parameters derived from the dose-volume histogram data, including the volume of lung receiving 10 Gy (V 10 ) through 50 Gy (V 50 ) and the mean lung dose (MLD). Results: The rate of RP at 6 months was 15% (95% confidence interval 9-22%). On univariate analysis, only V 30 (p = 0.036) and MLD (p = 0.043) were statistically significantly related to RP. V 30 correlated highly positively with MLD (r = 0.96, p 30 and MLD can be used to predict the risk of RP in lung cancer patients undergoing radical radiotherapy

  19. Dose-volume effects in the rat cervical spinal cord after proton irradiation

    International Nuclear Information System (INIS)

    Bijl, Hendrik P.; Vuijk, Peter van; Coppes, Rob P.; Schippers, Jacobus M.; Konings, Antonius W.T.; Kogel, Albert J. van der

    2002-01-01

    Purpose: To estimate dose-volume effects in the rat cervical spinal cord with protons. Methods and Materials: Wistar rats were irradiated on the cervical spinal cord with a single fraction of unmodulated protons (150-190 MeV) using the shoot through method, which employs the plateau of the depth-dose profile rather than the Bragg peak. Four different lengths of the spinal cord (2, 4, 8, and 20 mm) were irradiated with variable doses. The endpoint for estimating dose-volume effects was paralysis of fore or hind limbs. Results: The results obtained with a high-precision proton beam showed a marginal increase of ED 50 when decreasing the irradiated cord length from 20 mm (ED 50 = 20.4 Gy) to 8 mm (ED 50 = 24.9 Gy), but a steep increase in ED 50 when further decreasing the length to 4 mm (ED 50 = 53.7 Gy) and 2 mm (ED 50 = 87.8 Gy). These results generally confirm data obtained previously in a limited series with 4-6-MV photons, and for the first time it was possible to construct complete dose-response curves down to lengths of 2 mm. At higher ED 50 values and shorter lengths irradiated, the latent period to paralysis decreased from 125 to 60 days. Conclusions: Irradiation of variable lengths of rat cervical spinal cord with protons showed steeply increasing ED 50 values for lengths of less than 8 mm. These results suggest the presence of a critical migration distance of 2-3 mm for cells involved in regeneration processes

  20. Dose-volume correlation in radiation-related late small-bowel complication

    International Nuclear Information System (INIS)

    Letschert, J.G.J.; Lebesque, J.V.; Boer, R.W. de; hart, A.A.M.; Barteling, H.

    1990-01-01

    The effects of the volume of irradiated small bowel on late small-bowel tolerance was studied, taking into account the equivalent total dose ant type of pre-irradiation surgical procedure. A method was developed to estimate small-bowel volumes in the high-bowel volumes were measured for three-field and AP-PA pelvic treatments (165 cm 3 and 400 cm 3 , respectively), extended AP-PA treatment of para-aortic and iliac nodes (1000 cm 3 ). In a retrospective study of 111 patientst irradiated after surgery for rectal or recto-sigmoid cancer to a dose of 45-50 Gy in 5 weeks, extended AP-PA pelvic treatment (n = 27) resulted in a high incidence of severe small-bowel complications (37%), whereas for limited (three-field) pelvic treatment (n = 84) the complication rate was 6%. These complication data together with data from the literature on postoperative radiation-related small-bowel complications were analysed using the maximum likelihood method to fit the data to the logistic form of the dose-response relation, taking the volume effect into account by a power law. The analysis indicated that the incidence of radiation-related small-bowel compllications was higher after rectal surgery than after other types of surgery, which might be explained by the development of more adhesions. For both types of surgery a volume exponent of the power-law of 0.26 ± 0.05 was established. This means that if the small-bowel volume is increased by a factor of 2, the total dose has to be reduced by 17% for the same incidence of small-bowel complications. (author). 45 refs.; 6 figs.; 4 tabs

  1. Association of oesophageal radiation dose volume metrics, neutropenia and acute radiation oesophagitis in patients receiving chemoradiotherapy for non-small cell lung cancer

    International Nuclear Information System (INIS)

    Everitt, Sarah; Duffy, Mary; Bressel, Mathias; McInnes, Belinda; Russell, Christine; Sevitt, Tim; Ball, David

    2016-01-01

    The relationship between oesophageal radiation dose volume metrics and dysphagia in patients having chemoradiation (CRT) for non-small cell lung cancer (NSCLC) is well established. There is also some evidence that neutropenia is a factor contributing to the severity of oesophagitis. We retrospectively analysed acute radiation oesophagitis (ARO) rates and severity in patients with NSCLC who received concurrent chemotherapy and high dose radiation therapy (CRT). We investigated if there was an association between grade of ARO, neutropenia and radiation dose volume metrics. Patients with NSCLC having concurrent CRT who had RT dose and toxicity data available were eligible. Exclusion criteria included previous thoracic RT, treatment interruptions and non-standard dose regimens. RT dosimetrics included maximum and mean oesophageal dose, oesophagus dose volume and length data. Fifty four patients were eligible for analysis. 42 (78 %) patients received 60 Gy. Forty four (81 %) patients received carboplatin based chemotherapy. Forty eight (89 %) patients experienced ARO ≥ grade 1 (95 % CI: 78 % to 95 %). ARO grade was associated with mean dose (r s = 0.27, p = 0.049), V20 (r s = 0.31, p = 0.024) and whole oesophageal circumference receiving 20 Gy (r s = 0.32 p = 0.019). In patients who received these doses, V20 (n = 51, r s = 0.36, p = 0.011), V35 (n = 43, r s = 0.34, p = 0.027) and V60 (n = 25, r s = 0.59, P = 0.002) were associated with RO grade. Eleven of 25 (44 %) patients with ARO ≥ grade 2 also had ≥ grade 2 acute neutropenia compared with 5 of 29 (17 %) patients with RO grade 0 or 1 (p = 0.035). In addition to oesophageal dose-volume metrics, neutropenia may also be a risk factor for higher grades of ARO

  2. Dose-Volume Constraints to Reduce Rectal Side Effects From Prostate Radiotherapy: Evidence From MRC RT01 Trial ISRCTN 47772397

    International Nuclear Information System (INIS)

    Gulliford, Sarah L.; Foo, Kerwyn; Morgan, Rachel C.; Aird, Edwin G.; Bidmead, A. Margaret; Critchley, Helen; Evans, Philip M. D.Phil.; Gianolini, Stefano; Mayles, W. Philip; Moore, A. Rollo; Sanchez-Nieto, Beatriz; Partridge, Mike; Sydes, Matthew R. C.Stat; Webb, Steve; Dearnaley, David P.

    2010-01-01

    Purpose: Radical radiotherapy for prostate cancer is effective but dose limited because of the proximity of normal tissues. Comprehensive dose-volume analysis of the incidence of clinically relevant late rectal toxicities could indicate how the dose to the rectum should be constrained. Previous emphasis has been on constraining the mid-to-high dose range (≥50 Gy). Evidence is emerging that lower doses could also be important. Methods and Materials: Data from a large multicenter randomized trial were used to investigate the correlation between seven clinically relevant rectal toxicity endpoints (including patient- and clinician-reported outcomes) and an absolute 5% increase in the volume of rectum receiving the specified doses. The results were quantified using odds ratios. Rectal dose-volume constraints were applied retrospectively to investigate the association of constraints with the incidence of late rectal toxicity. Results: A statistically significant dose-volume response was observed for six of the seven endpoints for at least one of the dose levels tested in the range of 30-70 Gy. Statistically significant reductions in the incidence of these late rectal toxicities were observed for the group of patients whose treatment plans met specific proposed dose-volume constraints. The incidence of moderate/severe toxicity (any endpoint) decreased incrementally for patients whose treatment plans met increasing numbers of dose-volume constraints from the set of V30≤80%, V40≤65%, V50≤55%, V60≤40%, V65≤30%, V70≤15%, and V75≤3%. Conclusion: Considering the entire dose distribution to the rectum by applying dose-volume constraints such as those tested here in the present will reduce the incidence of late rectal toxicity.

  3. Temporal Evolution and Dose-Volume Histogram Predictors of Visual Acuity After Proton Beam Radiation Therapy of Uveal Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Polishchuk, Alexei L. [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Mishra, Kavita K., E-mail: Kavita.Mishra@ucsf.edu [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Weinberg, Vivian; Daftari, Inder K. [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Nguyen, Jacqueline M.; Cole, Tia B. [Tumori Foundation, San Francisco, California (United States); Quivey, Jeanne M.; Phillips, Theodore L. [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Char, Devron H. [Tumori Foundation, San Francisco, California (United States)

    2017-01-01

    Purpose: To perform an in-depth temporal analysis of visual acuity (VA) outcomes after proton beam radiation therapy (PBRT) in a large, uniformly treated cohort of uveal melanoma (UM) patients, to determine trends in VA evolution depending on pretreatment and temporally defined posttreatment VA measurements; and to investigate the relevance of specific patient, tumor and dose-volume parameters to posttreatment vision loss. Methods and Materials: Uveal melanoma patients receiving PBRT were identified from a prospectively maintained database. Included patients (n=645) received 56 GyE in 4 fractions, had pretreatment best corrected VA (BCVA) in the affected eye of count fingers (CF) or better, with posttreatment VA assessment at specified post-PBRT time point(s). Patients were grouped according to the pretreatment BCVA into favorable (≥20/40) or unfavorable (20/50-20/400) and poor (CF) strata. Temporal analysis of BCVA changes was described, and univariate and forward stepwise multivariate logistic regression analyses were performed to identify predictors for VA loss. Results: Median VA follow-up was 53 months (range, 3-213 months). At 60-month follow up, among evaluable treated eyes with favorable pretreatment BCVA, 45% retained BCVA ≥20/40, whereas among evaluable treated eyes with initially unfavorable/poor BCVA, 21% had vision ≥20/100. Among those with a favorable initial BCVA, attaining BCVA of ≥20/40 at any posttreatment time point was associated with subsequent maintenance of excellent BCVA. Multivariate analysis identified volume of the macula receiving 28GyE (P<.0001) and optic nerve (P=.0004) as independent dose-volume histogram predictors of 48-month post-PBRT vision loss among initially favorable treated eyes. Conclusions: Approximately half of PBRT-treated UM eyes with excellent pretreatment BCVA assessed at 5 years after treatment will retain excellent long-term vision. 28GyE macula and optic nerve dose-volume histogram parameters allow for

  4. Comparison of dose-volume histograms for Tomo therapy, linear accelerator-based 3D conformal radiation therapy, and intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Ji, Youn-Sang; Dong, Kyung-Rae; Kim, Chang-Bok; Choi, Seong-Kwan; Chung, Woon-Kwan; Lee, Jong-Woong

    2011-01-01

    Highlights: → Evaluation of DVH from 3D CRT, IMRT and Tomo therapy was conducted for tumor therapy. → The doses of GTV and CTV were compared using DVHs from 3D CRT, IMRT and Tomo therapy. → The GTV was higher when Tomo therapy was used, while the doses of critical organ were low. → They said that Tomo therapy satisfied the goal of radiation therapy more than the others. - Abstract: Evaluation of dose-volume histograms from three-dimensional conformal radiation therapy (3D CRT), intensity-modulated radiation therapy (IMRT), and Tomo therapy was conducted. These three modalities are among the diverse treatment systems available for tumor therapy. Three patients who received tumor therapy for a malignant oligodendroglioma in the cranium, nasopharyngeal carcinoma in the cervical neck, and prostate cancer in the pelvis were selected as study subjects. Therapy plans were made for the three patients before dose-volume histograms were obtained. The doses of the gross tumor volume (GTV) and the clinical target volume (CTV) were compared using the dose-volume histograms obtained from the LINAC-based 3D CRT, IMRT planning station (Varian Eclipse-Varian, version 8.1), and Tomo therapy planning station. In addition, the doses of critical organs in the cranium, cervix, and pelvis that should be protected were compared. The GTV was higher when Tomo therapy was used compared to 3D CRT and the LINAC-based IMRT, while the doses of critical organ tissues that required protection were low. These results demonstrated that Tomo therapy satisfied the ultimate goal of radiation therapy more than the other therapies.

  5. Optimization of radiation therapy, III: a method of assessing complication probabilities from dose-volume histograms

    International Nuclear Information System (INIS)

    Lyman, J.T.; Wolbarst, A.B.

    1987-01-01

    To predict the likelihood of success of a therapeutic strategy, one must be able to assess the effects of the treatment upon both diseased and healthy tissues. This paper proposes a method for determining the probability that a healthy organ that receives a non-uniform distribution of X-irradiation, heat, chemotherapy, or other agent will escape complications. Starting with any given dose distribution, a dose-cumulative-volume histogram for the organ is generated. This is then reduced by an interpolation scheme (involving the volume-weighting of complication probabilities) to a slightly different histogram that corresponds to the same overall likelihood of complications, but which contains one less step. The procedure is repeated, one step at a time, until there remains a final, single-step histogram, for which the complication probability can be determined. The formalism makes use of a complication response function C(D, V) which, for the given treatment schedule, represents the probability of complications arising when the fraction V of the organ receives dose D and the rest of the organ gets none. Although the data required to generate this function are sparse at present, it should be possible to obtain the necessary information from in vivo and clinical studies. Volume effects are taken explicitly into account in two ways: the precise shape of the patient's histogram is employed in the calculation, and the complication response function is a function of the volume

  6. Quantifying the Impact of Immediate Reconstruction in Postmastectomy Radiation: A Large, Dose-Volume Histogram-Based Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ohri, Nisha [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Cordeiro, Peter G. [Department of Plastic Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Keam, Jennifer [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Ballangrud, Ase [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Shi Weiji; Zhang Zhigang [Department of Biostatistics and Epidemiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Nerbun, Claire T.; Woch, Katherine M.; Stein, Nicholas F.; Zhou Ying [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); McCormick, Beryl; Powell, Simon N. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Ho, Alice Y., E-mail: HoA1234@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2012-10-01

    Purpose: To assess the impact of immediate breast reconstruction on postmastectomy radiation (PMRT) using dose-volume histogram (DVH) data. Methods and Materials: Two hundred forty-seven women underwent PMRT at our center, 196 with implant reconstruction and 51 without reconstruction. Patients with reconstruction were treated with tangential photons, and patients without reconstruction were treated with en-face electron fields and customized bolus. Twenty percent of patients received internal mammary node (IMN) treatment. The DVH data were compared between groups. Ipsilateral lung parameters included V20 (% volume receiving 20 Gy), V40 (% volume receiving 40 Gy), mean dose, and maximum dose. Heart parameters included V25 (% volume receiving 25 Gy), mean dose, and maximum dose. IMN coverage was assessed when applicable. Chest wall coverage was assessed in patients with reconstruction. Propensity-matched analysis adjusted for potential confounders of laterality and IMN treatment. Results: Reconstruction was associated with lower lung V20, mean dose, and maximum dose compared with no reconstruction (all P<.0001). These associations persisted on propensity-matched analysis (all P<.0001). Heart doses were similar between groups (P=NS). Ninety percent of patients with reconstruction had excellent chest wall coverage (D95 >98%). IMN coverage was superior in patients with reconstruction (D95 >92.0 vs 75.7%, P<.001). IMN treatment significantly increased lung and heart parameters in patients with reconstruction (all P<.05) but minimally affected those without reconstruction (all P>.05). Among IMN-treated patients, only lower lung V20 in those without reconstruction persisted (P=.022), and mean and maximum heart doses were higher than in patients without reconstruction (P=.006, P=.015, respectively). Conclusions: Implant reconstruction does not compromise the technical quality of PMRT when the IMNs are untreated. Treatment technique, not reconstruction, is the primary

  7. Effect of various methods for rectum delineation on relative and absolute dose-volume histograms for prostate IMRT treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Kusumoto, Chiaki [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Ohira, Shingo [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita (Japan); Miyazaki, Masayoshi [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Ueda, Yoshihiro [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Suita (Japan); Isono, Masaru [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Teshima, Teruki, E-mail: teshima-te@mc.pref.osaka.jp [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan)

    2016-07-01

    Several reports have dealt with correlations of late rectal toxicity with rectal dose-volume histograms (DVHs) for high dose levels. There are 2 techniques to assess rectal volume for reception of a specific dose: relative-DVH (R-DVH, %) that indicates relative volume for a vertical axis, and absolute-DVH (A-DVH, cc) with its vertical axis showing absolute volume of the rectum. The parameters of DVH vary depending on the rectum delineation method, but the literature does not present any standardization of such methods. The aim of the present study was to evaluate the effects of different delineation methods on rectal DVHs. The enrollment for this study comprised 28 patients with high-risk localized prostate cancer, who had undergone intensity-modulated radiation therapy (IMRT) with the prescription dose of 78 Gy. The rectum was contoured with 4 different methods using 2 lengths, short (Sh) and long (Lg), and 2 cross sections, rectum (Rec) and rectal wall (Rw). Sh means the length from 1 cm above the seminal vesicles to 1 cm below the prostate and Lg the length from the rectosigmoid junction to the anus. Rec represents the entire rectal volume including the rectal contents and Rw the rectal volume of the area with a wall thickness of 4 mm. We compared dose-volume parameters by using 4 rectal contour methods for the same plan with the R-DVHs as well as the A-DVHs. For the high dose levels, the R-DVH parameters varied widely. The mean of V{sub 70} for Sh-Rw was the highest (19.4%) and nearly twice as high as that for Lg-Rec (10.4%). On the contrary, only small variations were observed in the A-DVH parameters (4.3, 4.3, 5.5, and 5.5 cc for Sh-Rw, Lg-Rw, Sh-Rec, and Lg-Rec, respectively). As for R-DVHs, the parameters of V{sub 70} varied depending on the rectal lengths (Sh-Rec vs Lg-Rec: R = 0.76; Sh-Rw vs Lg-Rw: R = 0.85) and cross sections (Sh-Rec vs Sh-Rw: R = 0.49; Lg-Rec vs Lg-Rw: R = 0.65). For A-DVHs, however, the parameters of Sh rectal A-DVHs hardly changed

  8. The role of three dimensional functional lung imaging in radiation treatment planning: the functional dose-volume histogram

    International Nuclear Information System (INIS)

    Marks, Lawrence B.; Spencer, David P.; Sherouse, George W.; Bentel, Gunilla; Clough, Robert; Vann, Karen; Jaszczak, Ronald; Coleman, R. Edward; Prosnitz, Leonard R.

    1995-01-01

    Purpose: During thoracic irradiation (XRT), treatment fields are usually designed to minimize the volume of nontumor-containing lung included. Generally, functional heterogeneities within the lung are not considered. The three dimensional (3D) functional information provided by single photon emission computed tomography (SPECT) lung perfusion scans might be useful in designing beams that minimize incidental irradiation of functioning lung tissue. We herein review the pretreatment SPECT scans in 86 patients (56 with lung cancer) to determine which are likely to benefit from this technology. Methods and Materials: Prior to thoracic XRT, SPECT lung perfusion scans were obtained following the intravenous injection of ∼4 mCi of 99m Tc-labeled macro-aggregated albumin. The presence of areas of decreased perfusion, their location relative to the tumor, and the potential clinical usefulness of their recognition, were scored. Patients were grouped and compared (two-tailed chi-square) based on clinical factors. Conventional dose-volume histograms (DVHs) and functional DVHs (DV F Hs) are calculated based on the dose distribution throughout the computed tomography (CT)-defined lung and SPECT-defined perfused lung, respectively. Results: Among 56 lung cancer patients, decreases in perfusion were observed at the tumor, adjacent to the tumor, and separate from the tumor in 94%, 74%, and 42% of patients, respectively. Perfusion defects adjacent to the tumor were often large with centrally placed tumors. Hypoperfusion in regions separate from the tumor were statistically most common in patients with relatively poor pulmonary function and chronic obstructive pulmonary disease (COPD). Considering all SPECT defects adjacent to and separate from the tumor, corresponding CT abnormalities were seen in only ∼50% and 20% of patients, respectively, and were generally not as impressive. Following XRT, hypoperfusion at and separate from the tumor persisted, while defects adjacent to the

  9. Dose-volume histogram analysis for risk factors of radiation-induced rib fracture after hypofractionated proton beam therapy for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Kanemoto, Ayae

    2013-01-01

    Background: Radiation-induced rib fracture has been reported as a late complication after external radiotherapy to the chest. The purpose of this study was to clarify the characteristics and risk factors of rib fracture after hypofractionated proton beam therapy (PBT). Material and methods: The retrospective study comprised 67 patients with hepatocellular carcinoma who were treated using PBT of 66 Cobalt-Gray-equivalents [Gy (RBE)] in 10 fractions. We analyzed the patients' characteristics and determined dose-volume histograms (DVHs) for the irradiated ribs, and then estimated relationships between risk of fracture and several dose-volume parameters. An irradiated rib was defined to be any rib included in the area irradiated by PBT as determined by treatment-planning computed tomography. Results. Among the 67 patients, a total of 310 ribs were identified as irradiated ribs. Twenty-seven (8.7%) of the irradiated ribs developed fractures in 11 patients (16.4%). No significant relationships were seen between incidence of fracture and characteristics of patients, including sex, age, tumor size, tumor site, and follow-up period (p ≥ 0.05). The results of receiver operating characteristic curve analysis using DVH parameters demonstrated that the largest area under the curve (AUC) was observed for the volume of rib receiving a biologically effective dose of more than 60 Gy 3 (RBE) (V60) [The equivalent dose in 2 Gy fractions (EQD2); 36 Gy 3 ] and the AUCs of V30 to V120 (EQD2; 18-72 Gy 3 ) and D max to D 1 0 cm 3 were similar to that of V60. No significant relationships were seen for DVH parameters and intervals from PBT to incidence of fracture. Conclusion. DVH parameters are useful in predicting late adverse events of rib irradiation. This study identified that V60 was a most statistically significant parameter, and V30 to V120 and D max to D 1 0 cm 3 were also significant and clinically useful for estimating the risk of rib fracture after hypofractionated PBT

  10. Dose-volume histogram analysis for risk factors of radiation-induced rib fracture after hypofractionated proton beam therapy for hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, Ayae [Proton Medical Research Center and Dept. of Radiation Oncology, Univ. of Tsukuba, Ibaraki (Japan)], e-mail: ayaek@pmrc.tsukuba.ac.jp [and others

    2013-04-15

    Background: Radiation-induced rib fracture has been reported as a late complication after external radiotherapy to the chest. The purpose of this study was to clarify the characteristics and risk factors of rib fracture after hypofractionated proton beam therapy (PBT). Material and methods: The retrospective study comprised 67 patients with hepatocellular carcinoma who were treated using PBT of 66 Cobalt-Gray-equivalents [Gy (RBE)] in 10 fractions. We analyzed the patients' characteristics and determined dose-volume histograms (DVHs) for the irradiated ribs, and then estimated relationships between risk of fracture and several dose-volume parameters. An irradiated rib was defined to be any rib included in the area irradiated by PBT as determined by treatment-planning computed tomography. Results. Among the 67 patients, a total of 310 ribs were identified as irradiated ribs. Twenty-seven (8.7%) of the irradiated ribs developed fractures in 11 patients (16.4%). No significant relationships were seen between incidence of fracture and characteristics of patients, including sex, age, tumor size, tumor site, and follow-up period (p {>=} 0.05). The results of receiver operating characteristic curve analysis using DVH parameters demonstrated that the largest area under the curve (AUC) was observed for the volume of rib receiving a biologically effective dose of more than 60 Gy{sub 3} (RBE) (V60) [The equivalent dose in 2 Gy fractions (EQD2); 36 Gy{sub 3}] and the AUCs of V30 to V120 (EQD2; 18-72 Gy{sub 3}) and D{sub max} to D{sub 1}0{sub cm}{sup 3} were similar to that of V60. No significant relationships were seen for DVH parameters and intervals from PBT to incidence of fracture. Conclusion. DVH parameters are useful in predicting late adverse events of rib irradiation. This study identified that V60 was a most statistically significant parameter, and V30 to V120 and D{sub max} to D{sub 1}0{sub cm}{sup 3} were also significant and clinically useful for estimating

  11. The Effect of Dose-Volume Parameters and Interfraction Interval on Cosmetic Outcome and Toxicity After 3-Dimensional Conformal Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Leonard, Kara Lynne; Hepel, Jaroslaw T.; Hiatt, Jessica R.; Dipetrillo, Thomas A.; Price, Lori Lyn; Wazer, David E.

    2013-01-01

    Purpose: To evaluate dose-volume parameters and the interfraction interval (IFI) as they relate to cosmetic outcome and normal tissue effects of 3-dimensional conformal radiation therapy (3D-CRT) for accelerated partial breast irradiation (APBI). Methods and Materials: Eighty patients were treated by the use of 3D-CRT to deliver APBI at our institutions from 2003-2010 in strict accordance with the specified dose-volume constraints outlined in the National Surgical Adjuvant Breast and Bowel Project B39/Radiation Therapy Oncology Group 0413 (NSABP-B39/RTOG 0413) protocol. The prescribed dose was 38.5 Gy in 10 fractions delivered twice daily. Patients underwent follow-up with assessment for recurrence, late toxicity, and overall cosmetic outcome. Tests for association between toxicity endpoints and dosimetric parameters were performed with the chi-square test. Univariate logistic regression was used to evaluate the association of interfraction interval (IFI) with these outcomes. Results: At a median follow-up time of 32 months, grade 2-4 and grade 3-4 subcutaneous fibrosis occurred in 31% and 7.5% of patients, respectively. Subcutaneous fibrosis improved in 5 patients (6%) with extended follow-up. Fat necrosis developed in 11% of women, and cosmetic outcome was fair/poor in 19%. The relative volume of breast tissue receiving 5%, 20%, 50%, 80%, and 100% (V5-V100) of the prescribed dose was associated with risk of subcutaneous fibrosis, and the volume receiving 50%, 80%, and 100% (V50-V100) was associated with fair/poor cosmesis. The mean IFI was 6.9 hours, and the minimum IFI was 6.2 hours. The mean and minimum IFI values were not significantly associated with late toxicity. Conclusions: The incidence of moderate to severe late toxicity, particularly subcutaneous fibrosis and fat necrosis and resulting fair/poor cosmesis, remains high with continued follow-up. These toxicity endpoints are associated with several dose-volume parameters. Minimum and mean IFI values were

  12. The Impact of Heart Irradiation on Dose-Volume Effects in the Rat Lung

    International Nuclear Information System (INIS)

    Luijk, Peter van; Faber, Hette; Meertens, Harm; Schippers, Jacobus M.; Langendijk, Johannes A.; Brandenburg, Sytze; Kampinga, Harm H.; Coppes, Robert P. Ph.D.

    2007-01-01

    Purpose: To test the hypothesis that heart irradiation increases the risk of a symptomatic radiation-induced loss of lung function (SRILF) and that this can be well-described as a modulation of the functional reserve of the lung. Methods and Materials: Rats were irradiated with 150-MeV protons. Dose-response curves were obtained for a significant increase in breathing frequency after irradiation of 100%, 75%, 50%, or 25% of the total lung volume, either including or excluding the heart from the irradiation field. A significant increase in the mean respiratory rate after 6-12 weeks compared with 0-4 weeks was defined as SRILF, based on biweekly measurements of the respiratory rate. The critical volume (CV) model was used to describe the risk of SRILF. Fits were done using a maximum likelihood method. Consistency between model and data was tested using a previously developed goodness-of-fit test. Results: The CV model could be fitted consistently to the data for lung irradiation only. However, this fitted model failed to predict the data that also included heart irradiation. Even refitting the model to all data resulted in a significant difference between model and data. These results imply that, although the CV model describes the risk of SRILF when the heart is spared, the model needs to be modified to account for the impact of dose to the heart on the risk of SRILF. Finally, a modified CV model is described that is consistent to all data. Conclusions: The detrimental effect of dose to the heart on the incidence of SRILF can be described by a dose dependent decrease in functional reserve of the lung

  13. BEDVH--A method for evaluating biologically effective dose volume histograms: Application to eye plaque brachytherapy implants

    International Nuclear Information System (INIS)

    Gagne, Nolan L.; Leonard, Kara L.; Huber, Kathryn E.; Mignano, John E.; Duker, Jay S.; Laver, Nora V.; Rivard, Mark J.

    2012-01-01

    Purpose: A method is introduced to examine the influence of implant duration T, radionuclide, and radiobiological parameters on the biologically effective dose (BED) throughout the entire volume of regions of interest for episcleral brachytherapy using available radionuclides. This method is employed to evaluate a particular eye plaque brachytherapy implant in a radiobiological context. Methods: A reference eye geometry and 16 mm COMS eye plaque loaded with 103 Pd, 125 I, or 131 Cs sources were examined with dose distributions accounting for plaque heterogeneities. For a standardized 7 day implant, doses to 90% of the tumor volume ( TUMOR D 90 ) and 10% of the organ at risk volumes ( OAR D 10 ) were calculated. The BED equation from Dale and Jones and published α/β and μ parameters were incorporated with dose volume histograms (DVHs) for various T values such as T = 7 days (i.e., TUMOR 7 BED 10 and OAR 7 BED 10 ). By calculating BED throughout the volumes, biologically effective dose volume histograms (BEDVHs) were developed for tumor and OARs. Influence of T, radionuclide choice, and radiobiological parameters on TUMOR BEDVH and OAR BEDVH were examined. The nominal dose was scaled for shorter implants to achieve biological equivalence. Results: TUMOR D 90 values were 102, 112, and 110 Gy for 103 Pd, 125 I, and 131 Cs, respectively. Corresponding TUMOR 7 BED 10 values were 124, 140, and 138 Gy, respectively. As T decreased from 7 to 0.01 days, the isobiologically effective prescription dose decreased by a factor of three. As expected, TUMOR 7 BEDVH did not significantly change as a function of radionuclide half-life but varied by 10% due to radionuclide dose distribution. Variations in reported radiobiological parameters caused TUMOR 7 BED 10 to deviate by up to 46%. Over the range of OAR α/β values, OAR 7 BED 10 varied by up to 41%, 3.1%, and 1.4% for the lens, optic nerve, and lacrimal gland, respectively. Conclusions: BEDVH permits evaluation of the

  14. Spinal cord tolerance to single-session uniform irradiation in pigs: Implications for a dose-volume effect

    International Nuclear Information System (INIS)

    Medin, Paul M.; Foster, Ryan D.; Kogel, Albert J. van der; Sayre, James W.; McBride, William H.; Solberg, Timothy D.

    2013-01-01

    Background and purpose: This study was performed to test the hypothesis that spinal cord radiosensitivity is significantly modified by uniform versus laterally non-uniform dose distributions. Materials and methods: A uniform dose distribution was delivered to a 4.5–7.0 cm length of cervical spinal cord in 22 mature Yucatan minipigs for comparison with a companion study in which a laterally non-uniform dose was given [1]. Pigs were allocated into four dose groups with mean maximum spinal cord doses of 17.5 ± 0.1 Gy (n = 7), 19.5 ± 0.2 Gy (n = 6), 22.0 ± 0.1 Gy (n = 5), and 24.1 ± 0.2 Gy (n = 4). The study endpoint was motor neurologic deficit determined by a change in gait within one year. Spinal cord sections were stained with a Luxol fast blue/periodic acid Schiff combination. Results: Dose–response curves for uniform versus non-uniform spinal cord irradiation were nearly identical with ED 50 ’s (95% confidence interval) of 20.2 Gy (19.1–25.8) and 20.0 Gy (18.3–21.7), respectively. No neurologic change was observed for either dose distribution when the maximum spinal cord dose was ⩽17.8 Gy while all animals experienced deficits at doses ⩾21.8 Gy. Conclusion: No dose-volume effect was observed in pigs for the dose distributions studied and the endpoint of motor neurologic deficit; however, partial spinal cord irradiation resulted in less debilitating neurologic morbidity and histopathology

  15. Late Toxicity After Intensity-Modulated Radiation Therapy for Localized Prostate Cancer: An Exploration of Dose-Volume Histogram Parameters to Limit Genitourinary and Gastrointestinal Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, Aaron W.; Fricano, Janine; Correa, David; Pelizzari, Charles A. [Department of Radiation and Cellular Oncology, Pritzker School of Medicine, University of Chicago, Chicago, IL (United States); Liauw, Stanley L., E-mail: sliauw@radonc.uchicago.edu [Department of Radiation and Cellular Oncology, Pritzker School of Medicine, University of Chicago, Chicago, IL (United States)

    2012-01-01

    Purpose: To characterize the late genitourinary (GU) and gastrointestinal (GI) toxicity for prostate cancer patients treated with intensity-modulated radiation therapy (IMRT) and propose dose-volume histogram (DVH) guidelines to limit late treatment-related toxicity. Methods and Materials: In this study 296 consecutive men were treated with IMRT for adenocarcinoma of the prostate. Most patients received treatment to the prostate with or without proximal seminal vesicles (90%), to a median dose of 76 Gy. Concurrent androgen deprivation therapy was given to 150 men (51%) for a median of 4 months. Late toxicity was defined by Common Toxicity Criteria version 3.0 as greater than 3 months after radiation therapy completion. Four groupings of DVH parameters were defined, based on the percentage of rectal or bladder tissue receiving 70 Gy (V{sub 70}), 65 Gy (V{sub 65}), and 40 Gy (V{sub 40}). These DVH groupings, as well as clinical and treatment characteristics, were correlated to maximal Grade 2+ GU and GI toxicity. Results: With a median follow-up of 41 months, the 4-year freedom from maximal Grade 2+ late toxicity was 81% and 91% for GU and GI systems, respectively, and by last follow-up, the rates of Grade 2+ GU and GI toxicity were 9% and 5%, respectively. On multivariate analysis, whole-pelvic IMRT was associated with Grade 2+ GU toxicity and age was associated with Grade 2+ GI toxicity. Freedom from Grade 2+ GI toxicity at 4 years was 100% for men with rectal V{sub 70} {<=}10%, V{sub 65} {<=}20%, and V{sub 40} {<=}40%; 92% for men with rectal V{sub 70} {<=}20%, V{sub 65} {<=}40%, and V{sub 40} {<=}80%; and 85% for men exceeding these criteria (p = 0.13). These criteria were more highly associated with GI toxicity in men aged {>=}70 years (p = 0.07). No bladder dose-volume relationships were associated with the risk of GU toxicity. Conclusions: IMRT is associated with low rates of severe GU or GI toxicity after treatment for prostate cancer. Rectal dose constraints

  16. Evaluation of dose-volume metrics for microbeam radiation therapy dose distributions in head phantoms of various sizes using Monte Carlo simulations

    Science.gov (United States)

    Anderson, Danielle; Siegbahn, E. Albert; Fallone, B. Gino; Serduc, Raphael; Warkentin, Brad

    2012-05-01

    This work evaluates four dose-volume metrics applied to microbeam radiation therapy (MRT) using simulated dosimetric data as input. We seek to improve upon the most frequently used MRT metric, the peak-to-valley dose ratio (PVDR), by analyzing MRT dose distributions from a more volumetric perspective. Monte Carlo simulations were used to calculate dose distributions in three cubic head phantoms: a 2 cm mouse head, an 8 cm cat head and a 16 cm dog head. The dose distribution was calculated for a 4 × 4 mm2 microbeam array in each phantom, as well as a 16 × 16 mm2 array in the 8 cm cat head, and a 32 × 32 mm2 array in the 16 cm dog head. Microbeam widths of 25, 50 and 75 µm and center-to-center spacings of 100, 200 and 400 µm were considered. The metrics calculated for each simulation were the conventional PVDR, the peak-to-mean valley dose ratio (PMVDR), the mean dose and the percentage volume below a threshold dose. The PVDR ranged between 3 and 230 for the 2 cm mouse phantom, and between 2 and 186 for the 16 cm dog phantom depending on geometry. The corresponding ranges for the PMVDR were much smaller, being 2-49 (mouse) and 2-46 (dog), and showed a slightly weaker dependence on phantom size and array size. The ratio of the PMVDR to the PVDR varied from 0.21 to 0.79 for the different collimation configurations, indicating a difference between the geometric dependence on outcome that would be predicted by these two metrics. For unidirectional irradiation, the mean lesion dose was 102%, 79% and 42% of the mean skin dose for the 2 cm mouse, 8 cm cat and 16 cm dog head phantoms, respectively. However, the mean lesion dose recovered to 83% of the mean skin dose in the 16 cm dog phantom in intersecting cross-firing regions. The percentage volume below a 10% dose threshold was highly dependent on geometry, with ranges for the different collimation configurations of 2-87% and 33-96% for the 2 cm mouse and 16 cm dog heads, respectively. The results of this study

  17. Evaluation of dose-volume metrics for microbeam radiation therapy dose distributions in head phantoms of various sizes using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Anderson, Danielle; Fallone, B Gino; Warkentin, Brad; Siegbahn, E Albert; Serduc, Raphael

    2012-01-01

    This work evaluates four dose-volume metrics applied to microbeam radiation therapy (MRT) using simulated dosimetric data as input. We seek to improve upon the most frequently used MRT metric, the peak-to-valley dose ratio (PVDR), by analyzing MRT dose distributions from a more volumetric perspective. Monte Carlo simulations were used to calculate dose distributions in three cubic head phantoms: a 2 cm mouse head, an 8 cm cat head and a 16 cm dog head. The dose distribution was calculated for a 4 × 4 mm 2 microbeam array in each phantom, as well as a 16 × 16 mm 2 array in the 8 cm cat head, and a 32 × 32 mm 2 array in the 16 cm dog head. Microbeam widths of 25, 50 and 75 µm and center-to-center spacings of 100, 200 and 400 µm were considered. The metrics calculated for each simulation were the conventional PVDR, the peak-to-mean valley dose ratio (PMVDR), the mean dose and the percentage volume below a threshold dose. The PVDR ranged between 3 and 230 for the 2 cm mouse phantom, and between 2 and 186 for the 16 cm dog phantom depending on geometry. The corresponding ranges for the PMVDR were much smaller, being 2–49 (mouse) and 2–46 (dog), and showed a slightly weaker dependence on phantom size and array size. The ratio of the PMVDR to the PVDR varied from 0.21 to 0.79 for the different collimation configurations, indicating a difference between the geometric dependence on outcome that would be predicted by these two metrics. For unidirectional irradiation, the mean lesion dose was 102%, 79% and 42% of the mean skin dose for the 2 cm mouse, 8 cm cat and 16 cm dog head phantoms, respectively. However, the mean lesion dose recovered to 83% of the mean skin dose in the 16 cm dog phantom in intersecting cross-firing regions. The percentage volume below a 10% dose threshold was highly dependent on geometry, with ranges for the different collimation configurations of 2–87% and 33–96% for the 2 cm mouse and 16 cm dog heads, respectively. The results of this

  18. The analysis of correlation between changes of myocardial enzymes level in serum before and after radiation and dose-volume histogram parameters of the heart

    International Nuclear Information System (INIS)

    Ding Xiuping; Li Hongjun; Li Baosheng; Wang Dongqing

    2012-01-01

    Objective: To analyze the correlation between the changes of myocardial enzyme level in serum before and after radiotherapy and dose - volume histogram (DVH) parameters of the heart. Methods: A total of 102 patients with 68 cases of lung cancer and 34 cases of esophageal cancer were recruited. All patients received three-dimensional conformal radiotherapy (3DCRT) or intensity-modulated radiotherapy (IMRT), with the radiation beams passing through the heart. Aspartate aminotransferase (AST), creatine kinase (CK), creatine kinase isozyme (CK-MB), lactate dehydrogenase (LDH), α-hydroxybutyrate dehydrogenase (α-HBDH) were determined in the serum before and after radiotherapy. All the enzyme levels before and after radiotherapy were compared through paired t-test. Independent sample t-test was conducted between sub-groups. And the dose-volume histogram (DVH) parameters of the heart were calculated (the volume percentage of heart receiving dose equal to or exceeding x Gy (V x ). The correlation between myocardial enzyme level and DVH parameters was analyzed through Pearson method. Results: Serum AST, CK-MB, LDH, α-HBDH levels increased significantly after radiotherapy (19.42: 27.89, 14.72:19.57, 178.80 : 217.57, 140.32 : 176.25, t =-3.39 - -6.92, all P=0.000). In Group IMRT, significant correlations between the increase of myocardial enzyme concentration and DVH parameters of the heart are found, AST with V 20 , V 25 , V 30 of heart ( r=0.302 - 0.431, P =0.039 - 0.003), CK with V 30 of heart (r=0.345, P=0.013), and CK-MB, LDH, α-HBDH with V 25 , V 30 (r=0.465 -0.376, P=0.001-0.005). In Group CRT, there are significant correlations between changes of CK-MB, LDH level and V 30 of heart (r =0.330, 0.274, P=0.014, 0.033), α-HBDH and V 25 , V 30 , and V 35 of heart (r=0.270-0.331, P=0.046-0.014). When the irradiation dose was more than 50 Gy, significant correlations were found between the concentration changes of AST, LDH, α-HBDH and V 25 , V 30 of heart (r=0

  19. Beyond mean pharyngeal constrictor dose for beam path toxicity in non-target swallowing muscles: dose-volume correlates of chronic radiation-associated dysphagia (RAD) after oropharyngeal intensity modulated radiotherapy

    Science.gov (United States)

    2016-01-01

    Purpose/Objective(s) We sought to identify swallowing muscle dose-response thresholds associated with chronic radiation-associated dysphagia (RAD) after IMRT for oropharyngeal cancer. Materials/Methods T1-4 N0-3 M0 oropharyngeal cancer patients who received definitive IMRT and systemic therapy were examined. Chronic RAD was coded as any of the following ≥ 12 months post-IMRT: videofluoroscopy/endoscopy detected aspiration or stricture, gastrostomy tube and/or aspiration pneumonia. DICOM-RT plan data were autosegmented using a custom region-of-interest (ROI) library and included inferior, middle and superior constrictors (IPC, MPC, and SPC), medial and lateral pterygoids (MPM, LPM), anterior and posterior digastrics (ADM, PDM), intrinsic tongue muscles (ITM), mylo/geniohyoid complex (MHM), genioglossus (GGM), ), masseter (MM), Buccinator (BM), palatoglossus (PGM), and cricopharyngeus (CPM), with ROI dose-volume histograms (DVHs) calculated. Recursive partitioning analysis (RPA) was used to identify dose-volume effects associated with chronic-RAD, for use in a multivariate (MV) model. Results Of 300 patients, 34 (11%) had chronic-RAD. RPA showed DVH-derived MHM V69 (i.e. the volume receiving ≥69Gy), GGM V35, ADM V60, MPC V49, and SPC V70 were associated with chronic-RAD. A model including age in addition to MHM V69 as continuous variables was optimal among tested MV models (AUC 0.835). Conclusion In addition to SPCs, dose to MHM should be monitored and constrained, especially in older patients (>62-years), when feasible. PMID:26897515

  20. Beyond mean pharyngeal constrictor dose for beam path toxicity in non-target swallowing muscles: Dose-volume correlates of chronic radiation-associated dysphagia (RAD) after oropharyngeal intensity modulated radiotherapy.

    Science.gov (United States)

    2016-02-01

    We sought to identify swallowing muscle dose-response thresholds associated with chronic radiation-associated dysphagia (RAD) after IMRT for oropharyngeal cancer. T1-4 N0-3 M0 oropharyngeal cancer patients who received definitive IMRT and systemic therapy were examined. Chronic RAD was coded as any of the following ⩾12months post-IMRT: videofluoroscopy/endoscopy detected aspiration or stricture, gastrostomy tube and/or aspiration pneumonia. DICOM-RT plan data were autosegmented using a custom region-of-interest (ROI) library and included inferior, middle and superior constrictors (IPC, MPC, and SPC), medial and lateral pterygoids (MPM, LPM), anterior and posterior digastrics (ADM, PDM), intrinsic tongue muscles (ITM), mylo/geniohyoid complex (MHM), genioglossus (GGM), masseter (MM), buccinator (BM), palatoglossus (PGM), and cricopharyngeus (CPM), with ROI dose-volume histograms (DVHs) calculated. Recursive partitioning analysis (RPA) was used to identify dose-volume effects associated with chronic-RAD, for use in a multivariate (MV) model. Of 300 patients, 34 (11%) had chronic-RAD. RPA showed DVH-derived MHM V69 (i.e. the volume receiving⩾69Gy), GGM V35, ADM V60, MPC V49, and SPC V70 were associated with chronic-RAD. A model including age in addition to MHM V69 as continuous variables was optimal among tested MV models (AUC 0.835). In addition to SPCs, dose to MHM should be monitored and constrained, especially in older patients (>62-years), when feasible. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Differences in the dose-volume metrics with heterogeneity correction status and its influence on local control in stereotactic body radiation therapy for lung cancer

    International Nuclear Information System (INIS)

    Ueki, Nami; Matsuo, Yukinori; Nakamura, Mitsuhiro; Narabayashi, Masaru; Sakanaka, Katsuyuki; Norihisa, Yoshiki; Mizowaki, Takashi; Hiraoka, Masahiro; Shibuya, Keiko

    2013-01-01

    The purpose of this study is to evaluate the dose-volume metrics under different heterogeneity corrections and the factors associated with local recurrence (LR) after stereotactic body radiation therapy (SBRT) for non-small-cell lung cancer (NSCLC). Eighty-three patients who underwent SBRT for pathologically proven stage I NSCLC were reviewed retrospectively. The prescribed dose was 48 Gy in four fractions at the isocenter (IC) under heterogeneity correction with the Batho power law (BPL). The clinical plans were recalculated with Eclipse (Varian) for the same monitor units under the BPL and anisotropic analytical algorithm (AAA) and with no heterogeneity correction (NC). The dose at the IC, dose that covers 95% of the volume (D95), minimum dose (Min), and mean dose (Mean) of the planning target volume (PTV) were compared under each algorithm and between patients with local lesion control (LC) and LR. The IC doses under NC were significantly lower than those under the BPL and AAA. Under the BPL, the mean PTV D95, Min and Mean were 8.0, 9.4 and 7.4% higher than those under the AAA, and 9.6, 9.2 and 4.6% higher than those under NC, respectively. Under the AAA, all dose-volumetric parameters were significantly lower in T1a patients than in those with T1b and T2a. With a median follow-up of 35.9 months, LR occurred in 18 patients. Between the LC and LR groups, no significant differences were observed for any of the metrics. Even after stratification according to T-stage, no significant difference was observed between LC and LR. (author)

  2. Effect of tumor dose, volume and overall treatment time on local control after radiochemotherapy including MRI guided brachytherapy of locally advanced cervical cancer

    DEFF Research Database (Denmark)

    Tanderup, Kari; Fokdal, Lars Ulrik; Sturdza, Alina

    2016-01-01

    -center patient series (retroEMBRACE). Materials and methods This study analyzed 488 locally advanced cervical cancer patients treated with external beam radiotherapy ± chemotherapy combined with IGABT. Brachytherapy contouring and reporting was according to ICRU/GEC-ESTRO recommendations. The Cox Proportional...... Hazards model was applied to analyze the effect on local control of dose-volume metrics as well as overall treatment time (OTT), dose rate, chemotherapy, and tumor histology. Results With a median follow up of 46 months, 43 local failures were observed. Dose (D90) to the High Risk Clinical Target Volume...

  3. The dose-volume relationship of acute small bowel toxicity from concurrent 5-FU-based chemotherapy and radiation therapy for rectal cancer

    International Nuclear Information System (INIS)

    Baglan, Kathy L.; Frazier, Robert C.; Yan Di; Huang, Raywin R.; Martinez, Alvaro A.; Robertson, John M.

    2002-01-01

    Purpose: A direct relationship between the volume of small bowel irradiated and the degree of acute small bowel toxicity experienced during concurrent 5-fluorouracil (5-FU)-based chemoradiotherapy for rectal carcinoma is well recognized but poorly quantified. This study uses three-dimensional treatment-planning tools to more precisely quantify this dose-volume relationship. Methods and Materials: Forty patients receiving concurrent 5-FU-based chemotherapy and pelvic irradiation for rectal carcinoma had treatment-planning CT scans with small bowel contrast. A median isocentric dose of 50.4 Gy was delivered using a posterior-anterior and opposed lateral field arrangement. Bowel exclusion techniques were routinely used, including prone treatment position on a vacuum bag cradle to allow anterior displacement of the abdominal contents and bladder distension. Individual loops of small bowel were contoured on each slice of the planning CT scan, and a small bowel dose-volume histogram was generated for the initial pelvis field receiving 45 Gy. The volume of small bowel receiving each dose between 5 and 40 Gy was recorded at 5-Gy intervals. Results: Ten patients (25%) experienced Common Toxicity Criteria Grade 3+ acute small bowel toxicity. A highly statistically significant association between the development of Grade 3+ acute small bowel toxicity and the volume of small bowel irradiated was found at each dose level. Specific dose-volume threshold levels were found, below which no Grade 3+ toxicity occurred and above which 50-60% of patients developed Grade 3+ toxicity. The volume of small bowel receiving at least 15 Gy (V 15 ) was strongly associated with the degree of toxicity. Univariate analysis of patient and treatment-related factors revealed no other significant predictors of severe toxicity. Conclusions: A strong dose-volume relationship exists for the development of Grade 3+ acute small bowel toxicity in patients receiving concurrent 5-FU-based chemoradiotherapy

  4. Intensity-modulated radiation therapy versus three-dimensional conformal radiation therapy with concurrent nedaplatin-based chemotherapy after radical hysterectomy for uterine cervical cancer: comparison of outcomes, complications, and dose-volume histogram parameters

    International Nuclear Information System (INIS)

    Isohashi, Fumiaki; Mabuchi, Seiji; Yoshioka, Yasuo; Seo, Yuji; Suzuki, Osamu; Tamari, Keisuke; Yamashita, Michiko; Unno, Hikari; Kinose, Yasuto; Kozasa, Katsumi; Sumida, Iori; Otani, Yuki; Kimura, Tadashi; Ogawa, Kazuhiko

    2015-01-01

    The purpose of this study is to report our clinical outcomes using intensity-modulated radiation therapy (IMRT) for adjuvant treatment of cervical cancer, compared with three-dimensional conformal radiation therapy (3DCRT), in terms of tumor control, complications and dose-volume histogram (DVH) parameters. Between March 2008 and February 2014, 62 patients were treated with concurrent nedaplatin-based chemotherapy and whole-pelvic external beam radiation therapy (RT). Of these patients, 32 (52 %) received 3DCRT and 30 (48 %) received IMRT. The median follow-up periods were 40 months (range 2–74 months). The 3-year overall survival rate (OS), locoregional control rate (LRC) and progression-free survival rate (PFS) were 92, 95 and 92 % in the IMRT group, and 85, 82 and 70 % in the 3DCRT group, respectively. A comparison of OS, LRC and PFS showed no significant differences between IMRT and 3DCRT. The 3-year cumulative incidences of grade 2 or higher chronic gastrointestinal (GI) complications were significantly lower with IMRT compared to 3DCRT (3 % vs. 45 %, p < .02) and in patients with V40 of the small bowel loops of ≤340 mL compared to those with >340 mL (3 % vs. 45 %, p < .001). Patients treated with IMRT had a higher incidence of grade 3 acute hematologic complications (p < .05). V40 and V45 of the small bowel loops or bowel bag were predictive for development of both acute and chronic GI complications. Our results suggest that IMRT for adjuvant treatment of cervical cancer is useful for decreasing GI complications without worsening outcomes

  5. Use of benchmark dose-volume histograms for selection of the optimal technique between three-dimensional conformal radiation therapy and intensity-modulated radiation therapy in prostate cancer

    International Nuclear Information System (INIS)

    Luo Chunhui; Yang, Claus Chunli; Narayan, Samir; Stern, Robin L.; Perks, Julian; Goldberg, Zelanna; Ryu, Janice; Purdy, James A.; Vijayakumar, Srinivasan

    2006-01-01

    Purpose: The aim of this study was to develop and validate our own benchmark dose-volume histograms (DVHs) of bladder and rectum for both conventional three-dimensional conformal radiation therapy (3D-CRT) and intensity-modulated radiation therapy (IMRT), and to evaluate quantitatively the benefits of using IMRT vs. 3D-CRT in treating localized prostate cancer. Methods and Materials: During the implementation of IMRT for prostate cancer, our policy was to plan each patient with both 3D-CRT and IMRT. This study included 31 patients with T1b to T2c localized prostate cancer, for whom we completed double-planning using both 3D-CRT and IMRT techniques. The target volumes included prostate, either with or without proximal seminal vesicles. Bladder and rectum DVH data were summarized to obtain an average DVH for each technique and then compared using two-tailed paired t test analysis. Results: For 3D-CRT our bladder doses were as follows: mean 28.8 Gy, v60 16.4%, v70 10.9%; rectal doses were: mean 39.3 Gy, v60 21.8%, v70 13.6%. IMRT plans resulted in similar mean dose values: bladder 26.4 Gy, rectum 34.9 Gy, but lower values of v70 for the bladder (7.8%) and rectum (9.3%). These benchmark DVHs have resulted in a critical evaluation of our 3D-CRT techniques over time. Conclusion: Our institution has developed benchmark DVHs for bladder and rectum based on our clinical experience with 3D-CRT and IMRT. We use these standards as well as differences in individual cases to make decisions on whether patients may benefit from IMRT treatment rather than 3D-CRT

  6. Decomposition analysis of differential dose volume histograms

    International Nuclear Information System (INIS)

    Heuvel, Frank van den

    2006-01-01

    Dose volume histograms are a common tool to assess the value of a treatment plan for various forms of radiation therapy treatment. The purpose of this work is to introduce, validate, and apply a set of tools to analyze differential dose volume histograms by decomposing them into physically and clinically meaningful normal distributions. A weighted sum of the decomposed normal distributions (e.g., weighted dose) is proposed as a new measure of target dose, rather than the more unstable point dose. The method and its theory are presented and validated using simulated distributions. Additional validation is performed by analyzing simple four field box techniques encompassing a predefined target, using different treatment energies inside a water phantom. Furthermore, two clinical situations are analyzed using this methodology to illustrate practical usefulness. A comparison of a treatment plan for a breast patient using a tangential field setup with wedges is compared to a comparable geometry using dose compensators. Finally, a normal tissue complication probability (NTCP) calculation is refined using this decomposition. The NTCP calculation is performed on a liver as organ at risk in a treatment of a mesothelioma patient with involvement of the right lung. The comparison of the wedged breast treatment versus the compensator technique yields comparable classical dose parameters (e.g., conformity index ≅1 and equal dose at the ICRU dose point). The methodology proposed here shows a 4% difference in weighted dose outlining the difference in treatment using a single parameter instead of at least two in a classical analysis (e.g., mean dose, and maximal dose, or total dose variance). NTCP-calculations for the mesothelioma case are generated automatically and show a 3% decrease with respect to the classical calculation. The decrease is slightly dependant on the fractionation and on the α/β-value utilized. In conclusion, this method is able to distinguish clinically

  7. Effects of first-dose volume and exercise on the efficacy and tolerability of bowel preparations for colonoscopy in Chinese people

    Directory of Open Access Journals (Sweden)

    Qin Y

    2016-04-01

    Full Text Available Ying Qin, Wei Liu, Songbai Lin, Xiangfeng Li International Medical Services, Peking Union Medical College Hospital, Beijing, People’s Republic of China Aim: This study was designed to compare the efficacy and tolerability of bowel preparations with and without the higher first-dose volume of polyethylene glycol (PEG solution or exercise after drinking PEG solution in Chinese people. Methods: A total of 330 participants who had a colonoscopy done in Peking Union Medical College Hospital were randomly and evenly assigned to three groups. Participants in Group A ingested 1 L PEG solution and then ingested 2 L PEG solution at a rate of 250 mL every 15 minutes. Participants in Group B ingested 3 L PEG solution at a rate of 250 mL every 15 minutes and then exercised more than 10 minutes after ingesting each liter of PEG solution. Participants in Group C ingested 3 L PEG solution at a rate of 250 mL every 15 minutes. Experienced gastrointestinal endoscopists rated the efficacy of bowel preparations based on the Boston Bowel Preparation Scale score. A questionnaire regarding participants’ symptoms associated with bowel preparations was administered to evaluate participants’ tolerability. Results: The three groups had insignificant difference in the percentages of participants’ symptoms including dizziness, nausea, stomach ache, bloating, and asthenia. However, the percentages of participants having hunger sensation, sleep disturbance, and anal discomfort were significantly higher in groups with the higher first-dose volume of PEG solution or exercise after drinking PEG solution than without them. The three groups had insignificant difference in the Boston Bowel Preparation Scale score. Conclusion: Whether to add the higher first-dose volume of PEG solution and exercise after drinking PEG solution or not, all participants achieved a similar quality of bowel preparations. Bowel preparations without the additional first-dose volume of PEG

  8. Radiation tolerance of the spinal cord previously-damaged by tumor operation: long term neurological improvement and time-dose-volume relationships after irradiation of intraspinal gliomas

    International Nuclear Information System (INIS)

    Kopelson, G.

    1982-01-01

    Of 26 patients with intramedullary spinal cord gliomas (9 astrocytomas, 5 glioblastomas, 12 ependymomas) seen at the Massachusetts General Hospital from 1962-1980, 24 were irradiated (21 initially and 3 after post-surgical recurrence). Those 19 patients who survived at least 1 year after completion of irradiation were evaluated for post-irradiation neurological changes.No patient developed radiation myelopathy. Return to a permanently and completely normal neurological status occured for 33/51 (65%) of pre-irradiation neurological deficits. The major cause of post-irradiation neurological deterioration was tumor recurrence. Although 18/19 patients had their thoracic or lumbar spinal cords irradiated, each with field sizes greater than 10 cm, spinal cord doses approaching, equalling, or occasionally exceeding various definitions of spinal cord tolerance were tolerated well without evidence of radiation myelopathy. Spinal cords of patients with intramedullary gliomas, often with major neurological deficits prior to irradiation, may be treated safely to doses approaching or equalling spinal cord tolerance levels. These doses are expected to locally control most ependymomas and astrocytomas without an increased radiation myelopathy. Caution should be observed if doses higher than this are contemplated in an attempt to cure glioblastoma, because the 5% tolerance level of the damaged spinal remains to be defined

  9. Biological-effective versus conventional dose volume histograms correlated with late genitourinary and gastrointestinal toxicity after external beam radiotherapy for prostate cancer: a matched pair analysis

    Directory of Open Access Journals (Sweden)

    Roeske John C

    2003-05-01

    Full Text Available Abstract Background To determine whether the dose-volume histograms (DVH's for the rectum and bladder constructed using biological-effective dose (BED-DVH's better correlate with late gastrointestinal (GI and genitourinary (GU toxicity after treatment with external beam radiotherapy for prostate cancer than conventional DVH's (C-DVH's. Methods The charts of 190 patients treated with external beam radiotherapy with a minimum follow-up of 2 years were reviewed. Six patients (3.2% were found to have RTOG grade 3 GI toxicity, and similarly 6 patients (3.2% were found to have RTOG grade 3 GU toxicity. Average late C-DVH's and BED-DVH's of the bladder and rectum were computed for these patients as well as for matched-pair control patients. For each matched pair the following measures of normalized difference in the DVH's were computed: (a δAUC = (Area Under Curve [AUC] in grade 3 patient – AUC in grade 0 patient/(AUC in grade 0 patient and (b δV60 = (Percent volume receiving = 60 Gy [V60] in grade 3 patient – V60 in grade 0 patient/(V60 in grade 0 patient. Results As expected, the grade 3 curve is to the right of and above the grade 0 curve for all four sets of average DVH's – suggesting that both the C-DVH and the BED-DVH can be used for predicting late toxicity. δAUC was higher for the BED-DVH's than for the C-DVH's – 0.27 vs 0.23 (p = 0.036 for the rectum and 0.24 vs 0.20 (p = 0.065 for the bladder. δV60 was also higher for the BED-DVH's than for the C-DVH's – 2.73 vs 1.49 for the rectum (p = 0.021 and 1.64 vs 0.71 (p = 0.021 for the bladder. Conclusions When considering well-established dosimetric endpoints used in evaluating treatment plans, BED-DVH's for the rectum and bladder correlate better with late toxicity than C-DVH's and should be considered when attempting to minimize late GI and GU toxicity after external beam radiotherapy for prostate cancer.

  10. WE-AB-BRA-02: Development of Biomechanical Models to Describe Dose-Volume Response to Liver Stereotactic Body Radiation Therapy (SBRT) Patients

    International Nuclear Information System (INIS)

    McCulloch, M; Polan, D; Feng, M; Lawrence, T; Haken, R Ten; Brock, K

    2015-01-01

    with the biological characterization of patients’ response to radiation

  11. Retrospective Reconstructions of Active Bone Marrow Dose-Volume Histograms

    International Nuclear Information System (INIS)

    Veres, Cristina; Allodji, Rodrigue S.; Llanas, Damien; Vu Bezin, Jérémi; Chavaudra, Jean; Mège, Jean Pierre; Lefkopoulos, Dimitri; Quiniou, Eric; Deutsh, Eric; Vathaire, Florent de; Diallo, Ibrahima

    2014-01-01

    Purpose: To present a method for calculating dose-volume histograms (DVH's) to the active bone marrow (ABM) of patients who had undergone radiation therapy (RT) and subsequently developed leukemia. Methods and Materials: The study focuses on 15 patients treated between 1961 and 1996. Whole-body RT planning computed tomographic (CT) data were not available. We therefore generated representative whole-body CTs similar to patient anatomy. In addition, we developed a method enabling us to obtain information on the density distribution of ABM all over the skeleton. Dose could then be calculated in a series of points distributed all over the skeleton in such a way that their local density reflected age-specific data for ABM distribution. Dose to particular regions and dose-volume histograms of the entire ABM were estimated for all patients. Results: Depending on patient age, the total number of dose calculation points generated ranged from 1,190,970 to 4,108,524. The average dose to ABM ranged from 0.3 to 16.4 Gy. Dose-volume histograms analysis showed that the median doses (D 50% ) ranged from 0.06 to 12.8 Gy. We also evaluated the inhomogeneity of individual patient ABM dose distribution according to clinical situation. It was evident that the coefficient of variation of the dose for the whole ABM ranged from 1.0 to 5.7, which means that the standard deviation could be more than 5 times higher than the mean. Conclusions: For patients with available long-term follow-up data, our method provides reconstruction of dose-volume data comparable to detailed dose calculations, which have become standard in modern CT-based 3-dimensional RT planning. Our strategy of using dose-volume histograms offers new perspectives to retrospective epidemiological studies

  12. Influence of dosing volume on the neurotoxicity of bifenthrin.

    Science.gov (United States)

    Wolansky, M J; McDaniel, K L; Moser, V C; Crofton, K M

    2007-01-01

    Pyrethroids are pesticides with high insecticidal activity and relatively low potency in mammals. The influence of dosing volume on the neurobehavioral syndrome following oral acute exposure to the Type-I pyrethroid insecticide bifenthrin in corn oil was evaluated in adult male Long Evans rats. We tested bifenthrin effects at 1 and 5 ml/kg, two commonly used dose volumes in toxicological studies. Two testing times (4 and 7 h) were used in motor activity and functional observational battery (FOB) assessments. Four to eight doses were examined at either dosing condition (up to 20 or 26 mg/kg, at 1 and 5 ml/kg, respectively). Acute oral bifenthrin exposure produced toxic signs typical of Type I pyrethroids, with dose-related increases in fine tremor, decreased motor activity and grip strength, and increased pawing, head shaking, click response, and body temperature. Bifenthrin effects on motor activity and pyrethroid-specific clinical signs were approximately 2-fold more potent at 1 ml/kg than 5 ml/kg. This difference was clearly evident at 4 h and slightly attenuated at 7 h post-dosing. Benchmark dose (BMD) modeling estimated similar 2-fold potency differences in motor activity and pyrethroid-specific FOB data. These findings demonstrate that dose volume, in studies using corn oil as the vehicle influences bifenthrin potency. Further, these data suggest that inconsistent estimates of pyrethroid potency between laboratories are at least partially due to differences in dosing volume.

  13. SU-F-J-217: Accurate Dose Volume Parameters Calculation for Revealing Rectum Dose-Toxicity Effect Using Deformable Registration in Cervical Cancer Brachytherapy: A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, X; Chen, H; Liao, Y; Zhou, L [Southern Medical University, Guangzhou, Guangdong (China); Hrycushko, B; Albuquerque, K; Gu, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To study the feasibility of employing deformable registration methods for accurate rectum dose volume parameters calculation and their potentials in revealing rectum dose-toxicity between complication and non-complication cervical cancer patients with brachytherapy treatment. Method and Materials: Data from 60 patients treated with BT including planning images, treatment plans, and follow-up clinical exam were retrospectively collected. Among them, 12 patients complained about hematochezia were further examined with colonoscopy and scored as Grade 1–3 complication (CP). Meanwhile, another 12 non-complication (NCP) patients were selected as a reference group. To seek for potential gains in rectum toxicity prediction when fractional anatomical deformations are account for, the rectum dose volume parameters D0.1/1/2cc of the selected patients were retrospectively computed by three different approaches: the simple “worstcase scenario” (WS) addition method, an intensity-based deformable image registration (DIR) algorithm-Demons, and a more accurate, recent developed local topology preserved non-rigid point matching algorithm (TOP). Statistical significance of the differences between rectum doses of the CP group and the NCP group were tested by a two-tailed t-test and results were considered to be statistically significant if p < 0.05. Results: For the D0.1cc, no statistical differences are found between the CP and NCP group in all three methods. For the D1cc, dose difference is not detected by the WS method, however, statistical differences between the two groups are observed by both Demons and TOP, and more evident in TOP. For the D2cc, the CP and NCP cases are statistically significance of the difference for all three methods but more pronounced with TOP. Conclusion: In this study, we calculated the rectum D0.1/1/2cc by simple WS addition and two DIR methods and seek for gains in rectum toxicity prediction. The results favor the claim that accurate dose

  14. A theoretical approach to the problem of dose-volume constraint estimation and their impact on the dose-volume histogram selection

    International Nuclear Information System (INIS)

    Schinkel, Colleen; Stavrev, Pavel; Stavreva, Nadia; Fallone, B. Gino

    2006-01-01

    This paper outlines a theoretical approach to the problem of estimating and choosing dose-volume constraints. Following this approach, a method of choosing dose-volume constraints based on biological criteria is proposed. This method is called ''reverse normal tissue complication probability (NTCP) mapping into dose-volume space'' and may be used as a general guidance to the problem of dose-volume constraint estimation. Dose-volume histograms (DVHs) are randomly simulated, and those resulting in clinically acceptable levels of complication, such as NTCP of 5±0.5%, are selected and averaged producing a mean DVH that is proven to result in the same level of NTCP. The points from the averaged DVH are proposed to serve as physical dose-volume constraints. The population-based critical volume and Lyman NTCP models with parameter sets taken from literature sources were used for the NTCP estimation. The impact of the prescribed value of the maximum dose to the organ, D max , on the averaged DVH and the dose-volume constraint points is investigated. Constraint points for 16 organs are calculated. The impact of the number of constraints to be fulfilled based on the likelihood that a DVH satisfying them will result in an acceptable NTCP is also investigated. It is theoretically proven that the radiation treatment optimization based on physical objective functions can sufficiently well restrict the dose to the organs at risk, resulting in sufficiently low NTCP values through the employment of several appropriate dose-volume constraints. At the same time, the pure physical approach to optimization is self-restrictive due to the preassignment of acceptable NTCP levels thus excluding possible better solutions to the problem

  15. Isobio software: biological dose distribution and biological dose volume histogram from physical dose conversion using linear-quadratic-linear model.

    Science.gov (United States)

    Jaikuna, Tanwiwat; Khadsiri, Phatchareewan; Chawapun, Nisa; Saekho, Suwit; Tharavichitkul, Ekkasit

    2017-02-01

    To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model. The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR), and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD 2 ) was calculated using biological effective dose (BED) based on the LQL model. The software calculation and the manual calculation were compared for EQD 2 verification with pair t -test statistical analysis using IBM SPSS Statistics version 22 (64-bit). Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS) in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV) determined by D 90% , 0.56% in the bladder, 1.74% in the rectum when determined by D 2cc , and less than 1% in Pinnacle. The difference in the EQD 2 between the software calculation and the manual calculation was not significantly different with 0.00% at p -values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT) and 0.240, 0.320, and 0.849 for brachytherapy (BT) in HR-CTV, bladder, and rectum, respectively. The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

  16. Reliability of dose volume constraint inference from clinical data

    DEFF Research Database (Denmark)

    Lutz, C M; Møller, D S; Hoffmann, L

    2017-01-01

    Dose volume histogram points (DVHPs) frequently serve as dose constraints in radiotherapy treatment planning. An experiment was designed to investigate the reliability of DVHP inference from clinical data for multiple cohort sizes and complication incidence rates. The experimental background...... was radiation pneumonitis in non-small cell lung cancer and the DVHP inference method was based on logistic regression. From 102 NSCLC real-life dose distributions and a postulated DVHP model, an 'ideal' cohort was generated where the most predictive model was equal to the postulated model. A bootstrap...

  17. Calculation of complication probability of pion treatment at PSI using dose-volume histograms

    International Nuclear Information System (INIS)

    Nakagawa, Keiichi; Akanuma, Atsuo; Aoki, Yukimasa

    1991-01-01

    In the conformation technique a target volume is irradiated uniformly as in conventional radiations, whereas surrounding tissue and organs are nonuniformly irradiated. Clinical data on radiation injuries that accumulate with conventional radiation are not applicable without appropriate compensation. Recently a putative solution of this problem was proposed by Lyman using dose-volume histograms. This histogram reduction method reduces a given dose-volume histogram of an organ to a single step which corresponds to the equivalent complication probability by interpolation. As a result it converts nonuniform radiation into a unique dose to the whole organ which has the equivalent likelihood of radiation injury. This method is based on low LET radiation with conventional fractionation schedules. When it is applied to high LET radiation such as negative pion treatment, a high LET dose should be converted to an equivalent photon dose using an appropriate value of RBE. In the present study the histogram reduction method was applied to actual patients treated by the negative pion conformation technique at the Paul Scherrer Institute. Out of evaluable 90 cases of pelvic tumors, 16 developed grade III-IV bladder injury, and 7 developed grade III-IV rectal injury. The 90 cases were divided into roughly equal groups according to the equivalent doses to the entire bladder and rectum. Complication rates and equivalent doses to the full organs in these groups could be represented by a sigmoid dose-effect relation. When RBE from a pion dose to a photon dose is assumed to be 2.1 for bladder injury, the rates of bladder complications fit best to the theoretical complication curve. When the RBE value was 2.3, the rates of rectal injury fit the theoretical curve best. These values are close to the conversion factor of 2.0 that is used in clinical practice at PSI. This agreement suggests the clinical feasibility of the histogram reduction method in conformation radiotherapy. (author)

  18. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): Concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology

    International Nuclear Information System (INIS)

    Poetter, Richard; Haie-Meder, Christine; Limbergen, Erik van; Barillot, Isabelle; Brabandere, Marisol De; Dimopoulos, Johannes; Dumas, Isabelle; Erickson, Beth; Lang, Stefan; Nulens, An; Petrow, Peter; Rownd, Jason; Kirisits, Christian

    2006-01-01

    The second part of the GYN GEC ESTRO working group recommendations is focused on 3D dose-volume parameters for brachytherapy of cervical carcinoma. Methods and parameters have been developed and validated from dosimetric, imaging and clinical experience from different institutions (University of Vienna, IGR Paris, University of Leuven). Cumulative dose volume histograms (DVH) are recommended for evaluation of the complex dose heterogeneity. DVH parameters for GTV, HR CTV and IR CTV are the minimum dose delivered to 90 and 100% of the respective volume: D90, D100. The volume, which is enclosed by 150 or 200% of the prescribed dose (V150, V200), is recommended for overall assessment of high dose volumes. V100 is recommended for quality assessment only within a given treatment schedule. For Organs at Risk (OAR) the minimum dose in the most irradiated tissue volume is recommended for reporting: 0.1, 1, and 2 cm 3 ; optional 5 and 10 cm 3 . Underlying assumptions are: full dose of external beam therapy in the volume of interest, identical location during fractionated brachytherapy, contiguous volumes and contouring of organ walls for >2 cm 3 . Dose values are reported as absorbed dose and also taking into account different dose rates. The linear-quadratic radiobiological model-equivalent dose (EQD 2 )-is applied for brachytherapy and is also used for calculating dose from external beam therapy. This formalism allows systematic assessment within one patient, one centre and comparison between different centres with analysis of dose volume relations for GTV, CTV, and OAR. Recommendations for the transition period from traditional to 3D image-based cervix cancer brachytherapy are formulated. Supplementary data (available in the electronic version of this paper) deals with aspects of 3D imaging, radiation physics, radiation biology, dose at reference points and dimensions and volumes for the GTV and CTV (adding to [Haie-Meder C, Poetter R, Van Limbergen E et al

  19. Dose-volume histograms for optimization of treatment plans illustrated by the example of oesophagus carcinoma

    International Nuclear Information System (INIS)

    Roth, J.; Huenig, R.; Huegli, C.

    1995-01-01

    Using the example of oesophagus carcinoma, dose-volume histograms for diverse treatment techniques are calculated and judged by means of multiplanar isodose representations. The selected treatment plans are ranked with the aid of the dose-volume histograms. We distinguish the tissue inside and outside of the target volume. The description of the spatial dose distribution in dependence of the different volumes and the respective fractions of the tumor dose therein with the help of dose-volume histograms brings about a correlation between the physical parameters and the biological effects. In addition one has to bear in mind the consequences of measures that influence the reaction and the side-effects of radiotherapy (e.g. chemotherapy), i.e. the recuperation of the tissues that were irradiated intentionally or inevitably. Taking all that into account it is evident that the dose-volume histograms are a powerful tool for assessing the quality of treatment plans. (orig./MG) [de

  20. Treatment plan evaluation using dose-volume histogram (DVH) and spatial dose-volume histogram (zDVH)

    International Nuclear Information System (INIS)

    Cheng, C.-W.; Das, Indra J.

    1999-01-01

    37% of the bladder wall and 43% of the rectal wall. The zDVHs of the bladder revealed that the hot-spot region was superior to the central axis. The zDVHs of the rectum showed that the high-dose region was an 8-cm segment mostly superior to the central axis. The serial array-like of the rectum warrants a closer attention with regard to the complication probability of the organ. Conclusions: Although DVH provides an averaged dose-volume information, zDVH provides differential dose-volume information with respect to the CT slice position. zDVH is a 2D analog of a 3D DVH and, in some situations, more superior. It provides additional information on plan evaluation that otherwise could not be appreciated. The zDVH may be used along with DVH for plan evaluation and for the correlation of radiation outcome

  1. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Science.gov (United States)

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos

    2010-09-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent™ x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  2. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos [Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, TX 78229 (United States); Cheng, Chih-Yao, E-mail: shic@uthscsa.ed [Radiation Oncology Department, Oklahoma University Health Science Center, Oklahoma, OK 73104 (United States)

    2010-09-21

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V{sub 100} reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as

  3. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    International Nuclear Information System (INIS)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos; Cheng, Chih-Yao

    2010-01-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V 100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  4. SU-C-207A-07: Cumulative 18F-FDG Uptake Histogram Relative to Radiation Dose Volume Histogram of Lung After IMRT Or PSPT and Their Association with Radiation Pneumonitis

    International Nuclear Information System (INIS)

    Shusharina, N; Choi, N; Bortfeld, T; Liao, Z; Mohan, R

    2016-01-01

    Purpose: To determine whether the difference in cumulative 18F-FDG uptake histogram of lung treated with either IMRT or PSPT is associated with radiation pneumonitis (RP) in patients with inoperable stage II and III NSCLC. Methods: We analyzed 24 patients from a prospective randomized trial to compare IMRT (n=12) with vs. PSPT (n=12) for inoperable NSCLC. All patients underwent PET-CT imaging between 35 and 88 days post-therapy. Post-treatment PET-CT was aligned with planning 4D CT to establish a voxel-to-voxel correspondence between post-treatment PET and planning dose images. 18F-FDG uptake as a function of radiation dose to normal lung was obtained for each patient. Distribution of the standard uptake value (SUV) was analyzed using a volume histogram method. The image quantitative characteristics and DVH measures were correlated with clinical symptoms of pneumonitis. Results: Patients with RP were present in both groups: 5 in the IMRT and 6 in the PSPT. The analysis of cumulative SUV histograms showed significantly higher relative volumes of the normal lung having higher SUV uptake in the PSPT patients for both symptomatic and asymptomatic cases (VSUV=2: 10% for IMRT vs 16% for proton RT and VSUV=1: 10% for IMRT vs 23% for proton RT). In addition, the SUV histograms for symptomatic cases in PSPT patients exhibited a significantly longer tail at the highest SUV. The absolute volume of the lung receiving the dose >70 Gy was larger in the PSPT patients. Conclusion: 18F-FDG uptake – radiation dose response correlates with RP in both groups of patients by means of the linear regression slope. SUV is higher for the PSPT patients for both symptomatic and asymptomatic cases. Higher uptake after PSPT patients is explained by larger volumes of the lung receiving high radiation dose.

  5. A model to incorporate organ deformation in the evaluation of dose/volume relationship

    International Nuclear Information System (INIS)

    Yan, D.; Jaffray, D.; Wong, J.; Brabbins, D.; Martinez, A. A.

    1997-01-01

    Purpose: Measurements of internal organ motion have demonstrated that daily organ deformation exists during the course of radiation treatment. However, a model to evaluate the resultant dose delivered to a daily deformed organ remains a difficult challenge. Current methods which model such organ deformation as rigid body motion in the dose calculation for treatment planning evaluation are incorrect and misleading. In this study, a new model for treatment planning evaluation is introduced which incorporates patient specific information of daily organ deformation and setup variation. The model was also used to retrospectively analyze the actual treatment data measured using daily CT scans for 5 patients with prostate treatment. Methods and Materials: The model assumes that for each patient, the organ of interest can be measured during the first few treatment days. First, the volume of each organ is delineated from each of the daily measurements and cumulated in a 3D bit-map. A tissue occupancy distribution is then constructed with the 50% isodensity representing the mean, or effective, organ volume. During the course of treatment, each voxel in the effective organ volume is assumed to move inside a local 3D neighborhood with a specific distribution function. The neighborhood and the distribution function are deduced from the positions and shapes of the organ in the first few measurements using the biomechanics model of viscoelastic body. For each voxel, the local distribution function is then convolved with the spatial dose distribution. The latter includes also the variation in dose due to daily setup error. As a result, the cumulative dose to the voxel incorporates the effects of daily setup variation and organ deformation. A ''variation adjusted'' dose volume histogram, aDVH, for the effective organ volume can then be constructed for the purpose of treatment evaluation and optimization. Up to 20 daily CT scans and daily portal images for 5 patients with prostate

  6. Dose volume relationships for intraoperatively irradiated saphenous nerve

    International Nuclear Information System (INIS)

    Gillette, E.L.; Powers, B.E.; Gillette, S.M.; Thames, H.D.; Childs, G.; Vujaskovic, Z.; LaRue, S.M.

    1995-01-01

    Purpose/Objective: Intraoperative radiation therapy (IORT) is used to deliver high single doses of radiation to the tumor bed following surgical removal of various abdominal malignancies. The advantage of IORT is the ability to remove sensitive normal tissues from the treatment field and to limit the volume of normal tissue irradiated. The purpose of this study was to determine dose-volume relationships for retroperitoneal tissues. Materials and methods: 134 adult beagle dogs were irradiated to the surgically exposed paraaortic area. Normal tissues included in the treatment field were aorta, peripheral nerve, ureter, bone and muscle. Groups of 4 - 8 dogs were irradiated to doses ranging from 18 - 54 Gy for a 2x5 cm field, from 12 - 46 Gy for a 4x5 cm field, and 12 - 42 Gy to an 8x5 cm field. The radiations were done using 6 MeV electrons from a linear accelerator. Dogs were observed for three years after radiation. Electrophysiologic procedures were done prior to irradiation and annually following irradiation. The procedures included electromyography of the pelvic limb and paralumbar muscles supplied by the L1 to S1 spinal nerves to determine presence and degree of motor unit disease. Motor nerve conduction velocities of the proximal and distal sciatic nerves were determined. Sensory nerve conduction velocities of the saphenous nerve were also determined. Evoked lumbosacral and thoraco-lumbar spinal cord potentials were evaluated following stimulation of the left sciatic nerve. In addition to electrophysiologic studies, neurologic examinations were done prior to treatment and at six month intervals for the three year observation period. At the three year time period, dogs were euthanatized, sections of peripheral nerve taken, routinely processed, stained with Masson's trichrome and evaluated histomorphometrically using point count techniques. Results: Twenty-two dogs were euthanatized prior to the three year observation period due to peripheral nerve damage

  7. Radiation effects

    International Nuclear Information System (INIS)

    Collings, E.W.

    1986-01-01

    An important cause of deterioration in superconducting magnets intended for high-energy physics and fusion-reactor applications is radiation damage. The present chapter deals chiefly with the effects of electron, proton, gamma and neutron irradiation on the properties of stabilized Ti-Nb-base composite superconductors. The authors examine the particle-accelerator environment, electron irradiation of Ti-Nb superconductor, proton irradiation of Ti-Nb superconductor and its stabilizer, and deuteron irradiation of Ti-Nb superconductor. A section discussing the fusion reactor environment in general is presented, and the two principal classes of fusion reactor based on the magnetic-confinement concept, namely the tokamak and the mirrormachine are examined. Also discussed is neutron irradiation of Cu/TiNb composite superconductors and critical current density of neutronirradiated Ti-Nb. Finally, radiation damage to stabilizer and insulating materials is described

  8. Effect of radiation in radiotherapy

    International Nuclear Information System (INIS)

    Hirata, Hideki; Fujibuchi, Toshio; Saito, Tsutomu

    2013-01-01

    The title subject is easily explained for the deterministic effect, secondary cancer formation and case reports of accidental exposure at radiotherapy. For the deterministic effect, the dose-effect relationship is sigmoidal in normal and cancer tissues, and the more separated are their curves, the more favorable is the radiotherapy. TD 5/5 is the tolerable dose to yield <5% of irreversible radiation injury to the normal tissue within 5 years after the therapy and is generally dose-limiting. The curves are of various shapes depending on the tissue composition that its functional subunit (FSU) is parallel like lobules of the liver, or in series like neuron. Symptoms appear complicated on these factors. Recent development of CT-based therapeutic planning has made it possible to analyze the partial tissue volume to be irradiated and its absorbed dose by the relationship (dose volume histogram, DVH) between the electron density vs CT value regardless to anatomy. The normal tissue complication probability is a model composed from the physical DVH and biological factors of FSU composition and cellular radiation susceptibility, and is a measure of the irreversible late effect manifested in normal tissues. Epidemiology has shown the increased risk of secondary cancer formation by radiotherapy. Children are highly susceptible to this, and in adults undergoing the therapy of a certain cancer, it is known that the risk of radiation carcinogenesis is increased in the particular tissue. There are presented such case reports of accidental excessive exposure at radiotherapy as caused by an inappropriate use of detector, partial loss of data in a therapeutic planning device, reading of reversed MRI image, and too much repeated use of the old-type electric portal imaging device. (T.T.)

  9. Hippocampal dose volume histogram predicts Hopkins Verbal Learning Test scores after brain irradiation

    Directory of Open Access Journals (Sweden)

    Catherine Okoukoni, PhD

    2017-10-01

    Full Text Available Purpose: Radiation-induced cognitive decline is relatively common after treatment for primary and metastatic brain tumors; however, identifying dosimetric parameters that are predictive of radiation-induced cognitive decline is difficult due to the heterogeneity of patient characteristics. The memory function is especially susceptible to radiation effects after treatment. The objective of this study is to correlate volumetric radiation doses received by critical neuroanatomic structures to post–radiation therapy (RT memory impairment. Methods and materials: Between 2008 and 2011, 53 patients with primary brain malignancies were treated with conventionally fractionated RT in prospectively accrued clinical trials performed at our institution. Dose-volume histogram analysis was performed for the hippocampus, parahippocampus, amygdala, and fusiform gyrus. Hopkins Verbal Learning Test-Revised scores were obtained at least 6 months after RT. Impairment was defined as an immediate recall score ≤15. For each anatomic region, serial regression was performed to correlate volume receiving a given dose (VD(Gy with memory impairment. Results: Hippocampal V53.4Gy to V60.9Gy significantly predicted post-RT memory impairment (P < .05. Within this range, the hippocampal V55Gy was the most significant predictor (P = .004. Hippocampal V55Gy of 0%, 25%, and 50% was associated with tumor-induced impairment rates of 14.9% (95% confidence interval [CI], 7.2%-28.7%, 45.9% (95% CI, 24.7%-68.6%, and 80.6% (95% CI, 39.2%-96.4%, respectively. Conclusions: The hippocampal V55Gy is a significant predictor for impairment, and a limiting dose below 55 Gy may minimize radiation-induced cognitive impairment.

  10. The dose-volume constraint satisfaction problem for inverse treatment planning with field segments

    International Nuclear Information System (INIS)

    Michalski, Darek; Xiao, Ying; Censor, Yair; Galvin, James M

    2004-01-01

    The prescribed goals of radiation treatment planning are often expressed in terms of dose-volume constraints. We present a novel formulation of a dose-volume constraint satisfaction search for the discretized radiation therapy model. This approach does not rely on any explicit cost function. Inverse treatment planning uses the aperture-based approach with predefined, according to geometric rules, segmental fields. The solver utilizes the simultaneous version of the cyclic subgradient projection algorithm. This is a deterministic iterative method designed for solving the convex feasibility problems. A prescription is expressed with the set of inequalities imposed on the dose at the voxel resolution. Additional constraint functions control the compliance with selected points of the expected cumulative dose-volume histograms. The performance of this method is tested on prostate and head-and-neck cases. The relationships with other models and algorithms of similar conceptual origin are discussed. The demonstrated advantages of the method are: the equivalence of the algorithmic and prescription parameters, the intuitive setup of free parameters, and the improved speed of the method as compared to similar iterative as well as other techniques. The technique reported here will deliver approximate solutions for inconsistent prescriptions

  11. A novel method for the evaluation of uncertainty in dose-volume histogram computation.

    Science.gov (United States)

    Henríquez, Francisco Cutanda; Castrillón, Silvia Vargas

    2008-03-15

    Dose-volume histograms (DVHs) are a useful tool in state-of-the-art radiotherapy treatment planning, and it is essential to recognize their limitations. Even after a specific dose-calculation model is optimized, dose distributions computed by using treatment-planning systems are affected by several sources of uncertainty, such as algorithm limitations, measurement uncertainty in the data used to model the beam, and residual differences between measured and computed dose. This report presents a novel method to take them into account. To take into account the effect of associated uncertainties, a probabilistic approach using a new kind of histogram, a dose-expected volume histogram, is introduced. The expected value of the volume in the region of interest receiving an absorbed dose equal to or greater than a certain value is found by using the probability distribution of the dose at each point. A rectangular probability distribution is assumed for this point dose, and a formulation that accounts for uncertainties associated with point dose is presented for practical computations. This method is applied to a set of DVHs for different regions of interest, including 6 brain patients, 8 lung patients, 8 pelvis patients, and 6 prostate patients planned for intensity-modulated radiation therapy. Results show a greater effect on planning target volume coverage than in organs at risk. In cases of steep DVH gradients, such as planning target volumes, this new method shows the largest differences with the corresponding DVH; thus, the effect of the uncertainty is larger.

  12. Reliability of dose volume constraint inference from clinical data

    Science.gov (United States)

    Lutz, C. M.; Møller, D. S.; Hoffmann, L.; Knap, M. M.; Alber, M.

    2017-04-01

    Dose volume histogram points (DVHPs) frequently serve as dose constraints in radiotherapy treatment planning. An experiment was designed to investigate the reliability of DVHP inference from clinical data for multiple cohort sizes and complication incidence rates. The experimental background was radiation pneumonitis in non-small cell lung cancer and the DVHP inference method was based on logistic regression. From 102 NSCLC real-life dose distributions and a postulated DVHP model, an ‘ideal’ cohort was generated where the most predictive model was equal to the postulated model. A bootstrap and a Cohort Replication Monte Carlo (CoRepMC) approach were applied to create 1000 equally sized populations each. The cohorts were then analyzed to establish inference frequency distributions. This was applied to nine scenarios for cohort sizes of 102 (1), 500 (2) to 2000 (3) patients (by sampling with replacement) and three postulated DVHP models. The Bootstrap was repeated for a ‘non-ideal’ cohort, where the most predictive model did not coincide with the postulated model. The Bootstrap produced chaotic results for all models of cohort size 1 for both the ideal and non-ideal cohorts. For cohort size 2 and 3, the distributions for all populations were more concentrated around the postulated DVHP. For the CoRepMC, the inference frequency increased with cohort size and incidence rate. Correct inference rates  >85 % were only achieved by cohorts with more than 500 patients. Both Bootstrap and CoRepMC indicate that inference of the correct or approximate DVHP for typical cohort sizes is highly uncertain. CoRepMC results were less spurious than Bootstrap results, demonstrating the large influence that randomness in dose-response has on the statistical analysis.

  13. Radiation effects at ISABELLE

    International Nuclear Information System (INIS)

    Sanger, P.A.; Danby, G.T.

    1975-01-01

    Shielding, radiation damage, and radiation heating at the planned ISABELLE storage rings were considered. Radiation shielding studies were reviewed and were found to be adequate for present day dosage limits. Radiation damage could be encountered in some extreme cases, but is not expected to limit the performance of the superconducting magnets. Experiments to study the effect of radiation heating on actual magnets are recommended

  14. Radiation effects and radiation risks

    International Nuclear Information System (INIS)

    Lengfelder, E.; Forst, D.; Feist, H.; Pratzel, H.

    1988-01-01

    The book presents the facts and the principles of assessment and evaluation of biological radiation effects in general and also with particular reference to the reactor accident of Chernobyl, reviewing the consequences and the environmental situation on the basis of current national and international literature, including research work by the authors. The material compiled in this book is intended especially for physicians, but will also prove useful for persons working in the public health services, in administration, or other services taking care of people. The authors tried to find an easily comprehensible way of presenting and explaining the very complex processes and mechanisms of biological radiation effects and carcinogenesis, displaying the physical primary processes and the mechanisms of the molecular radiation effects up to the effects of low-level radiation, and present results of comparative epidemiologic studies. This section has been given considerable space, in proportion to its significance. It also contains literature references for further reading, offering more insight and knowledge of aspects of special subject fields. The authors also present less known results and data and discuss them against the background of well-known research results and approaches. Apart from the purpose of presenting comprehensive information, the authors intend to give an impact for further thinking about the problems, and helpful tools for independent decisions and action on the basis of improved insight and assessment, and in this context particularly point to the problems induced by the Chernobyl reactor accident. (orig./MG) With 8 maps in appendix [de

  15. Systematic review of dose-volume parameters in the prediction of esophagitis in thoracic radiotherapy

    International Nuclear Information System (INIS)

    Rose, Jim; Rodrigues, George; Yaremko, Brian; Lock, Michael; D'Souza, David

    2009-01-01

    Purpose: With dose escalation and increasing use of concurrent chemoradiotherapy, radiation esophagitis (RE) remains a common treatment-limiting acute side effect in the treatment of thoracic malignancies. The advent of 3DCT planning has enabled investigators to study esophageal dose-volume histogram (DVH) parameters as predictors of RE. The purpose of this study was to assess published dosimetric parameters and toxicity data systematically in order to define reproducible predictors of RE, both for potential clinical use, and to provide recommendations for future research in the field. Materials and methods: We performed a systematic literature review of published studies addressing RE in the treatment of lung cancer and thymoma. Our search strategy included a variety of electronic medical databases, textbooks and bibliographies. Both prospective and retrospective clinical studies were included. Information relating to the relationship among measured dosimetric parameters, patient demographics, tumor characteristics, chemotherapy and RE was extracted and analyzed. Results: Eighteen published studies were suitable for analysis. Eleven of these assessed acute RE, while the remainder assessed both acute and chronic RE together. Heterogeneity of esophageal contouring practices, individual differences in information reporting and variability of RE outcome definitions were assessed. Well-described clinical and logistic modeling directly related V 35Gy , V 60Gy and SA 55Gy to clinically significant RE. Conclusions: Several reproducible dosimetric parameters exist in the literature, and these may be potentially relevant in the prediction of RE in the radiotherapy of thoracic malignancies. Further clarification of the predictive relationship between such standardized dosimetric parameters and observed RE outcomes is essential to develop efficient radiation treatment planning in locally advanced NSCLC in the modern concurrent chemotherapy and image-guided IMRT era.

  16. Tumor dose-volume response in image-guided adaptive brachytherapy for cervical cancer: A meta-regression analysis.

    Science.gov (United States)

    Mazeron, Renaud; Castelnau-Marchand, Pauline; Escande, Alexandre; Rivin Del Campo, Eleonor; Maroun, Pierre; Lefkopoulos, Dimitri; Chargari, Cyrus; Haie-Meder, Christine

    2016-01-01

    Image-guided adaptive brachytherapy is a high precision technique that allows dose escalation and adaptation to tumor response. Two monocentric studies reported continuous dose-volume response relationships, however, burdened by large confidence intervals. The aim was to refine these estimations by performing a meta-regression analysis based on published series. Eligibility was limited to series reporting dosimetric parameters according to the Groupe Européen de Curiethérapie-European SocieTy for Radiation Oncology recommendations. The local control rates reported at 2-3 years were confronted to the mean D90 clinical target volume (CTV) in 2-Gy equivalent using the probit model. The impact of each series on the relationships was pondered according to the number of patients reported. An exhaustive literature search retrieved 13 series reporting on 1299 patients. D90 high-risk CTV ranged from 70.9 to 93.1 Gy. The probit model showed a significant correlation between the D90 and the probability of achieving local control (p < 0.0001). The D90 associated to a 90% probability of achieving local control was 81.4 Gy (78.3-83.8 Gy). The planning aim of 90 Gy corresponded to a 95.0% probability (92.8-96.3%). For the intermediate-risk CTV, less data were available, with 873 patients from eight institutions. Reported mean D90 intermediate-risk CTV ranged from 61.7 to 69.1 Gy. A significant dose-volume effect was observed (p = 0.009). The D90 of 60 Gy was associated to a 79.4% (60.2-86.0%) local control probability. Based on published data from a high number of patients, significant dose-volume effect relationships were confirmed and refined between the D90 of both CTV and the probability of achieving local control. Further studies based on individual data are required to develop nomograms including nondosimetric prognostic criteria. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  17. Space radiation effects

    International Nuclear Information System (INIS)

    Li Shiqing; Yan Heping

    1995-01-01

    The authors briefly discusses the radiation environment in near-earth space and it's influences on material, and electronic devices using in space airship, also, the research developments in space radiation effects are introduced

  18. Radiation effects in space

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1986-01-01

    The paper discusses the radiation environment in space that astronauts are likely to be exposed to. Emphasis is on proton and HZE particle effects. Recommendations for radiation protection guidelines are presented

  19. Biological radiation effects

    International Nuclear Information System (INIS)

    Gomes, R.A.

    1976-01-01

    The stages of processes leading to radiation damage are studied, as well as, the direct and indirect mechanics of its production. The radiation effects on nucleic acid and protein macro moleculas are treated. The physical and chemical factors that modify radiosensibility are analysed, in particular the oxygen effects, the sensibilization by analogues of nitrogen bases, post-effects, chemical protection and inherent cell factors. Consideration is given to restoration processes by excision of injured fragments, the bloching of the excision restoration processes, the restoration of lesions caused by ionizing radiations and to the restoration by genetic recombination. Referring to somatic effects of radiation, the early ones and the acute syndrome of radiation are discussed. The difference of radiosensibility observed in mammalian cells and main observable alterations in tissues and organs are commented. Referring to delayed radiation effects, carcinogeneses, alterations of life span, effects on growth and development, as well as localized effects, are also discussed [pt

  20. Biological effects of radiation

    International Nuclear Information System (INIS)

    2013-01-01

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  1. Normal tissue complication probabilities: dependence on choice of biological model and dose-volume histogram reduction scheme

    International Nuclear Information System (INIS)

    Moiseenko, Vitali; Battista, Jerry; Van Dyk, Jake

    2000-01-01

    Purpose: To evaluate the impact of dose-volume histogram (DVH) reduction schemes and models of normal tissue complication probability (NTCP) on ranking of radiation treatment plans. Methods and Materials: Data for liver complications in humans and for spinal cord in rats were used to derive input parameters of four different NTCP models. DVH reduction was performed using two schemes: 'effective volume' and 'preferred Lyman'. DVHs for competing treatment plans were derived from a sample DVH by varying dose uniformity in a high dose region so that the obtained cumulative DVHs intersected. Treatment plans were ranked according to the calculated NTCP values. Results: Whenever the preferred Lyman scheme was used to reduce the DVH, competing plans were indistinguishable as long as the mean dose was constant. The effective volume DVH reduction scheme did allow us to distinguish between these competing treatment plans. However, plan ranking depended on the radiobiological model used and its input parameters. Conclusions: Dose escalation will be a significant part of radiation treatment planning using new technologies, such as 3-D conformal radiotherapy and tomotherapy. Such dose escalation will depend on how the dose distributions in organs at risk are interpreted in terms of expected complication probabilities. The present study indicates considerable variability in predicted NTCP values because of the methods used for DVH reduction and radiobiological models and their input parameters. Animal studies and collection of standardized clinical data are needed to ascertain the effects of non-uniform dose distributions and to test the validity of the models currently in use

  2. Radiation effects in semiconductors

    CERN Document Server

    2011-01-01

    There is a need to understand and combat potential radiation damage problems in semiconductor devices and circuits. Written by international experts, this book explains the effects of radiation on semiconductor devices, radiation detectors, and electronic devices and components. These contributors explore emerging applications, detector technologies, circuit design techniques, new materials, and innovative system approaches. The text focuses on how the technology is being used rather than the mathematical foundations behind it. It covers CMOS radiation-tolerant circuit implementations, CMOS pr

  3. Lung and heart dose volume analyses with CT simulator in tangential field irradiation of breast cancer

    International Nuclear Information System (INIS)

    Das, Indra J.; Cheng, Elizabeth C.; Fowble, Barbara

    1997-01-01

    Objective: Radiation pneumonitis and cardiac effects are directly related to the irradiated lung and heart volumes in the treatment fields. The central lung distance (CLD) from a tangential breast radiograph is shown to be a significant indicator of ipsilateral irradiated lung volume based on empirically derived functions which accuracy depends on the actual measured volume in treatment position. A simple and accurate linear relationship with CLD and retrospective analysis of the pattern of dose volume of lung and heart is presented with actual volume data from a CT simulator in the treatment of breast cancer. Materials and Methods: The heart and lung volumes in the tangential treatment fields were analyzed in 45 consecutive (22 left and 23 right breast) patients referred for CT simulation of the cone down treatment. All patients in this study were immobilized and placed on an inclined breast board in actual treatment setup. Both arms were stretched over head uniformly to avoid collision with the scanner aperture. Radiopaque marks were placed on the medial and lateral borders of the tangential fields. All patients were scanned in spiral mode with slice width and thickness of 3 mm each, respectively. The lung and heart structures as well as irradiated areas were delineated on each slice and respective volumes were accurately measured. The treatment beam parameters were recorded and the digitally reconstructed radiographs (DRRs) were generated for the CLD and analysis. Results: Table 1 shows the volume statistics of patients in this study. There is a large variation in the lung and heart volumes among patients. Due to differences in the shape of right and left lungs the percent irradiated volume (PIV) are different. The PIV data have shown to correlate with CLD with 2nd and 3rd degree polynomials; however, in this study a simple straight line regression is used to provide better confidence than the higher order polynomial. The regression lines for the left and right

  4. Radiation Therapy Side Effects

    Science.gov (United States)

    Radiation therapy has side effects because it not only kills or slows the growth of cancer cells, it can also affect nearby healthy cells. Many people who get radiation therapy experience fatigue. Other side effects depend on the part of the body that is being treated. Learn more about possible side effects.

  5. IMRT: Improvement in treatment planning efficiency using NTCP calculation independent of the dose-volume-histogram

    International Nuclear Information System (INIS)

    Grigorov, Grigor N.; Chow, James C.L.; Grigorov, Lenko; Jiang, Runqing; Barnett, Rob B.

    2006-01-01

    The normal tissue complication probability (NTCP) is a predictor of radiobiological effect for organs at risk (OAR). The calculation of the NTCP is based on the dose-volume-histogram (DVH) which is generated by the treatment planning system after calculation of the 3D dose distribution. Including the NTCP in the objective function for intensity modulated radiation therapy (IMRT) plan optimization would make the planning more effective in reducing the postradiation effects. However, doing so would lengthen the total planning time. The purpose of this work is to establish a method for NTCP determination, independent of a DVH calculation, as a quality assurance check and also as a mean of improving the treatment planning efficiency. In the study, the CTs of ten randomly selected prostate patients were used. IMRT optimization was performed with a PINNACLE3 V 6.2b planning system, using planning target volume (PTV) with margins in the range of 2 to 10 mm. The DVH control points of the PTV and OAR were adapted from the prescriptions of Radiation Therapy Oncology Group protocol P-0126 for an escalated prescribed dose of 82 Gy. This paper presents a new model for the determination of the rectal NTCP ( R NTCP). The method uses a special function, named GVN (from Gy, Volume, NTCP), which describes the R NTCP if 1 cm 3 of the volume of intersection of the PTV and rectum (R int ) is irradiated uniformly by a dose of 1 Gy. The function was 'geometrically' normalized using a prostate-prostate ratio (PPR) of the patients' prostates. A correction of the R NTCP for different prescribed doses, ranging from 70 to 82 Gy, was employed in our model. The argument of the normalized function is the R int , and parameters are the prescribed dose, prostate volume, PTV margin, and PPR. The R NTCPs of another group of patients were calculated by the new method and the resulting difference was <±5% in comparison to the NTCP calculated by the PINNACLE3 software where Kutcher's dose

  6. Radiation effects on polyaniline

    International Nuclear Information System (INIS)

    Oki, Yuichi; Kondo, Kenjiro; Suzuki, Takenori; Numajiri, Masaharu; Miura, Taichi; Doi, Shuji; Ohnishi, Toshihiro.

    1992-01-01

    Effects of γ-irradiation on electrical conductivity of polyaniline were investigated. A drastic increase of the conductivity due to radiation-induced doping was observed in combined systems of polyaniline films and halogen-containing polymers. This effect can be applied to measure an integrated radiation dose. (author)

  7. Radiation effects in space

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1987-07-01

    As more people spend more time in space, and the return to the moon and exploratory missions are considered, the risks require continuing examination. The effects of microgravity and radiation are two potential risks in space. These risks increase with increasing mission duration. This document considers the risk of radiation effects in space workers and explorers. 17 refs., 1 fig., 4 tabs

  8. Relationships Between Rectal Wall Dose-Volume Constraints and Radiobiologic Indices of Toxicity for Patients With Prostate Cancer

    International Nuclear Information System (INIS)

    Marzi, Simona; Arcangeli, Giorgio; Saracino, Bianca; Petrongari, Maria G.; Bruzzaniti, Vicente; Iaccarino, Giuseppe; Landoni, Valeria; Soriani, Antonella; Benassi, Marcello

    2007-01-01

    Purpose: The purpose of this article was to investigate how exceeding specified rectal wall dose-volume constraints impacts on the risk of late rectal bleeding by using radiobiologic calculations. Methods and Materials: Dose-volume histograms (DVH) of the rectal wall of 250 patients with prostate cancer were analyzed. All patients were treated by three-dimensional conformal radiation therapy, receiving mean target doses of 80 Gy. To study the main features of the patient population, the average and the standard deviation of the distribution of DVHs were generated. The mean dose , generalized equivalent uniform dose formulation (gEUD), modified equivalent uniform dose formulation (mEUD) 0 , and normal tissue complication probability (NTCP) distributions were also produced. The DVHs set was then binned into eight classes on the basis of the exceeding or the fulfilling of three dose-volume constraints: V 40 = 60%, V 50 = 50%, and V 70 = 25%. Comparisons were made between them by , gEUD, mEUD 0 , and NTCP. Results: The radiobiologic calculations suggest that late rectal toxicity is mostly influenced by V 70 . The gEUD and mEUD 0 are risk factors of toxicity always concordant with NTCP, inside each DVH class. The mean dose, although a reliable index, may be misleading in critical situations. Conclusions: Both in three-dimensional conformal radiation therapy and particularly in intensity-modulated radiation therapy, it should be known what the relative importance of each specified dose-volume constraint is for each organ at risk. This requires a greater awareness of radiobiologic properties of tissues and radiobiologic indices may help to gradually become aware of this issue

  9. Radiation effects and radioprotectors

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, R.K., E-mail: dr_rajendra_purohit@yahoo.co.in [Radiation Biology Laboratory, Department of Zoology, Govt. Dungar College, Bikaner (India); Bugalia, Saroj [Department of Zoology, S.K. Kalyan College, Sikar (India); Dakshene, Monika [Department of Chemistry, Govt. College, Kota (India)

    2012-07-01

    Radiation exposure causes damage to biological systems and these damages are mediated by the generation of free radicals and reactive oxygen species targeting vital cellular components such as DNA and membranes. DNA repair systems and the endogenous cellular biochemical defense mechanisms against reactive oxygen species and antioxidants enzymes like reduced Glutathione (GSH), Superoxide dismutase, Glutathione peroxidase catalase etc. fail upon exposures to higher as well as chronic radiation doses leading to alterations in cell functions, cell death or mutations. Radioprotectors prevent these alterations and protect cells and tissues from the deleterious effects of radiations. Radioprotectors are of great importance due to their possible and potential application during planned radiation exposures such as radiotherapy, diagnostic scanning, clean up operations in nuclear accidents, space expeditions etc. and Unplanned radiations exposures such as accidents in nuclear industry, nuclear terrorism, natural background radiation etc. Many of the available synthetic radioprotectors are toxic to mammalian system at doses required to be effective as radioprotector. Increasing uses of ionizing radiation have drawn the attention of many radiobiologists towards their undesired side effects produced in various tissues and for modifying them to facilitate the beneficial uses of radiation. Modification of radiation response is obtained by means of chemical substances that can significantly decrease the magnitude of response when present in a biological system during irradiation. Radioprotectors are chemicals that modify a cell's response to radiation. Radioprotectors are drugs that protect normal (non cancerous) cells from the damage caused by radiation therapy. These agents promote the repair of normal cells that are exposed to radiation. Various chemicals, like Cysteamine, MPG , WR-2721 have been tested for the protection against harmful effects of radiation. These radio

  10. Radiation effects and radioprotectors

    International Nuclear Information System (INIS)

    Purohit, R.K.; Bugalia, Saroj; Dakshene, Monika

    2012-01-01

    Radiation exposure causes damage to biological systems and these damages are mediated by the generation of free radicals and reactive oxygen species targeting vital cellular components such as DNA and membranes. DNA repair systems and the endogenous cellular biochemical defense mechanisms against reactive oxygen species and antioxidants enzymes like reduced Glutathione (GSH), Superoxide dismutase, Glutathione peroxidase catalase etc. fail upon exposures to higher as well as chronic radiation doses leading to alterations in cell functions, cell death or mutations. Radioprotectors prevent these alterations and protect cells and tissues from the deleterious effects of radiations. Radioprotectors are of great importance due to their possible and potential application during planned radiation exposures such as radiotherapy, diagnostic scanning, clean up operations in nuclear accidents, space expeditions etc. and Unplanned radiations exposures such as accidents in nuclear industry, nuclear terrorism, natural background radiation etc. Many of the available synthetic radioprotectors are toxic to mammalian system at doses required to be effective as radioprotector. Increasing uses of ionizing radiation have drawn the attention of many radiobiologists towards their undesired side effects produced in various tissues and for modifying them to facilitate the beneficial uses of radiation. Modification of radiation response is obtained by means of chemical substances that can significantly decrease the magnitude of response when present in a biological system during irradiation. Radioprotectors are chemicals that modify a cell's response to radiation. Radioprotectors are drugs that protect normal (non cancerous) cells from the damage caused by radiation therapy. These agents promote the repair of normal cells that are exposed to radiation. Various chemicals, like Cysteamine, MPG , WR-2721 have been tested for the protection against harmful effects of radiation. These radio

  11. Man and radiation effects

    International Nuclear Information System (INIS)

    Rausch, L.

    1982-01-01

    The book describes the effects of ionizing radiation on man in a simple, popular, detailed and generally valid manner and gives a comprehensive picture of the concepts, elements, principles of function, and perspectives of medical radiobiology. Radiobiology in general is explained, and its application in research on the causes of radiolesions and radiation diseases as well as a radiotherapy and radiation protection is discussed in popular form. (orig./MG) [de

  12. Biological radiation effects

    International Nuclear Information System (INIS)

    Kiefer, J.

    1989-01-01

    The book covers all aspects of biological radiation effects. The physical basis is dealt with in some detail, and the effects at the subcellular and the cellular level are discussed, taking into account modern developments and techniques. The effects on the human organism are reviewed, both from the point of view of applications in medicine as well as with regard to radiation hazards (teratogenic, gonadal and carcinogenic effects)

  13. Biophysical radiation effects

    International Nuclear Information System (INIS)

    Fidorra, J.

    1982-07-01

    The biological effectiveness of ionizing radiation is based upon the absorption of energy in molecular structures of a cell. Because of the quantum nature of radiation large fluctuations of energy concentration in subcellulare regions has to be considered. In addition both the spatial distribution of a sensitive molecular target and cellulare repair processes has to be taken into consideration for an assessment of radiation action. In radiation protection the difference between the quality factor and the Relative Biological Effectiveness has a fundamental meaning and will be discussed in more detail. The present report includes a short review on some relevant models on radiation action and a short discussion on effects of low dose irradiation. (orig.) [de

  14. Radiation effects in gases

    International Nuclear Information System (INIS)

    Leonhardt, J.W.

    1985-01-01

    Problems in the studies of radiation effects in gases are discussed. By means of ionization- excitation- and electron-capture yields various applications are characterized: ionization detectors, X-ray detectors, radionuclide battery, and radiation-induced chemical gas-phase reactions. Some new results of basic research in respect to the SO 2 oxidation are discussed. (author)

  15. Effects of ionizing radiations

    International Nuclear Information System (INIS)

    Gaussens, G.

    1984-08-01

    After recalling radiation-matter interaction, influence on radiation effects of chemical composition, structure, irradiation atmosphere, dose rate, temperature of organic materials and evolution of electrical, mechanical and physical properties are reviewed. Then behaviour under irradiation of main organic materials: elastomers, thermoplastics, thermosetting plastics, oils and paints are examined. 68 refs [fr

  16. Ionizing radiation, radiation sources, radiation exposure, radiation effects. Pt. 2

    International Nuclear Information System (INIS)

    Schultz, E.

    1985-01-01

    Part 2 deals with radiation exposure due to artificial radiation sources. The article describes X-ray diagnosis complete with an analysis of major methods, nuclear-medical diagnosis, percutaneous radiation therapy, isotope therapy, radiation from industrial generation of nucler energy and other sources of ionizing radiation. In conclusion, the authors attempt to asses total dose, genetically significant dose and various hazards of total radiation exposure by means of a summation of all radiation impacts. (orig./WU) [de

  17. Dose-volume effect relationships for late rectal morbidity in patients treated with chemoradiation and MRI-guided adaptive brachytherapy for locally advanced cervical cancer: Results from the prospective multicenter EMBRACE study

    DEFF Research Database (Denmark)

    Mazeron, Renaud; Fokdal, Lars U; Kirchheiner, Kathrin

    2016-01-01

    Purpose To establish dose volume–effect relationships predicting late rectal morbidity in cervix cancer patients treated with concomitant chemoradiation and MRI-guided adaptive brachytherapy (IBABT) within the prospective EMBRACE study. Material and method All patients were treated with curative ...

  18. Dose-volume based ranking of incident beam direction and its utility in facilitating IMRT beam placement

    International Nuclear Information System (INIS)

    Schreibmann, Eduard; Xing Lei

    2005-01-01

    Purpose: Beam orientation optimization in intensity-modulated radiation therapy (IMRT) is computationally intensive, and various single beam ranking techniques have been proposed to reduce the search space. Up to this point, none of the existing ranking techniques considers the clinically important dose-volume effects of the involved structures, which may lead to clinically irrelevant angular ranking. The purpose of this work is to develop a clinically sensible angular ranking model with incorporation of dose-volume effects and to show its utility for IMRT beam placement. Methods and Materials: The general consideration in constructing this angular ranking function is that a beamlet/beam is preferable if it can deliver a higher dose to the target without exceeding the tolerance of the sensitive structures located on the path of the beamlet/beam. In the previously proposed dose-based approach, the beamlets are treated independently and, to compute the maximally deliverable dose to the target volume, the intensity of each beamlet is pushed to its maximum intensity without considering the values of other beamlets. When volumetric structures are involved, the complication arises from the fact that there are numerous dose distributions corresponding to the same dose-volume tolerance. In this situation, the beamlets are not independent and an optimization algorithm is required to find the intensity profile that delivers the maximum target dose while satisfying the volumetric constraints. In this study, the behavior of a volumetric organ was modeled by using the equivalent uniform dose (EUD). A constrained sequential quadratic programming algorithm (CFSQP) was used to find the beam profile that delivers the maximum dose to the target volume without violating the EUD constraint or constraints. To assess the utility of the proposed technique, we planned a head-and-neck and abdominal case with and without the guidance of the angular ranking information. The qualities of the

  19. Estimation of pneumonitis risk in three-dimensional treatment planning using dose-volume histogram analysis

    International Nuclear Information System (INIS)

    Oetzel, Dieter; Schraube, Peter; Hensley, Frank; Sroka-Perez, Gabriele; Menke, Markus; Flentje, Michael

    1995-01-01

    Purpose: Investigations to study correlations between the estimations of biophysical models in three dimensional (3D) treatment planning and clinical observations are scarce. The development of clinically symptomatic pneumonitis in the radiotherapy of thoracic malignomas was chosen to test the predictive power of Lyman's normal tissue complication probability (NTCP) model for the assessment of side effects for nonuniform irradiation. Methods and Materials: In a retrospective analysis individual computed-tomography-based 3D dose distributions of a random sample of (46(20)) patients with lung/esophageal cancer were reconstructed. All patients received tumor doses between 50 and 60 Gy in a conventional treatment schedule. Biological isoeffective dose-volume histograms (DVHs) were used for the calculation of complication probabilities after applying Lyman's and Kutcher's DVH-reduction algorithm. Lung dose statistics were performed for single lung (involved ipsilateral and contralateral) and for the lung as a paired organ. Results: In the lung cancer group, about 20% of the patients (9 out of 46) developed pneumonitis 3-12 (median 7.5) weeks after completion of radiotherapy. For the majority of these lung cancer patients, the involved ipsilateral lung received a much higher dose than the contralateral lung, and the pneumonitis patients had on average a higher lung exposure with a doubling of the predicted complication risk (38% vs. 20%). The lower lung exposure for the esophagus patients resulted in a mean lung dose of 13.2 Gy (lung cancer: 20.5 Gy) averaged over all patients in correlation with an almost zero complication risk and only one observed case of pneumonitis (1 out of 20). To compare the pneumonitis risk estimations with observed complication rates, the patients were ranked into bins of mean ipsilateral lung dose. Particularly, in the bins with the highest patient numbers, a good correlation was achieved. Agreement was not reached for the lung functioning as

  20. Radiation. Doses, effect, risk

    International Nuclear Information System (INIS)

    Vapirev, E.; Todorov, P.

    1994-12-01

    This book outlines in a popular form the topic of ionizing radiation impacts on living organisms. It contains data gathered by ICRP for a period of 35 years. The essential dosimetry terms and units are presented. Natural and artificial sources of ionizing radiation are described. Possible biological radiation effects and diseases as a consequence of external and internal irradiation at normal and accidental conditions are considered. An assessment of genetic risk for human populations is presented and the concept of 'acceptable risk' is discussed

  1. The Dose-Volume Relationship of Small Bowel Irradiation and Acute Grade 3 Diarrhea During Chemoradiotherapy for Rectal Cancer

    International Nuclear Information System (INIS)

    Robertson, John M.; Lockman, David; Yan Di; Wallace, Michelle

    2008-01-01

    Purpose: Previous work has found a highly significant relationship between the irradiated small-bowel volume and development of Grade 3 small-bowel toxicity in patients with rectal cancer. This study tested the previously defined parameters in a much larger group of patients. Methods and Materials: A total of 96 consecutive patients receiving pelvic radiation therapy for rectal cancer had treatment planning computed tomographic scans with small-bowel contrast that allowed the small bowel to be outlined with calculation of a small-bowel dose-volume histogram for the initial intended pelvic treatment to 45 Gy. Patients with at least one parameter above the previously determined dose-volume parameters were considered high risk, whereas those with all parameters below these levels were low risk. The grade of diarrhea and presence of liquid stool was determined prospectively. Results: There was a highly significant association with small-bowel dose-volume and Grade 3 diarrhea (p ≤ 0.008). The high-risk and low-risk parameters were predictive with Grade 3 diarrhea in 16 of 51 high-risk patients and in 4 of 45 low-risk patients (p = 0.01). Patients who had undergone irradiation preoperatively had a lower incidence of Grade 3 diarrhea than those treated postoperatively (18% vs. 28%; p = 0.31); however, the predictive ability of the high-risk/low-risk parameters was better for preoperatively (p = 0.03) than for postoperatively treated patients (p = 0.15). Revised risk parameters were derived that improved the overall predictive ability (p = 0.004). Conclusions: The highly significant dose-volume relationship and validity of the high-risk and low-risk parameters were confirmed in a large group of patients. The risk parameters provided better modeling for the preoperative patients than for the postoperative patients

  2. Inverse optimization of objective function weights for treatment planning using clinical dose-volume histograms

    Science.gov (United States)

    Babier, Aaron; Boutilier, Justin J.; Sharpe, Michael B.; McNiven, Andrea L.; Chan, Timothy C. Y.

    2018-05-01

    We developed and evaluated a novel inverse optimization (IO) model to estimate objective function weights from clinical dose-volume histograms (DVHs). These weights were used to solve a treatment planning problem to generate ‘inverse plans’ that had similar DVHs to the original clinical DVHs. Our methodology was applied to 217 clinical head and neck cancer treatment plans that were previously delivered at Princess Margaret Cancer Centre in Canada. Inverse plan DVHs were compared to the clinical DVHs using objective function values, dose-volume differences, and frequency of clinical planning criteria satisfaction. Median differences between the clinical and inverse DVHs were within 1.1 Gy. For most structures, the difference in clinical planning criteria satisfaction between the clinical and inverse plans was at most 1.4%. For structures where the two plans differed by more than 1.4% in planning criteria satisfaction, the difference in average criterion violation was less than 0.5 Gy. Overall, the inverse plans were very similar to the clinical plans. Compared with a previous inverse optimization method from the literature, our new inverse plans typically satisfied the same or more clinical criteria, and had consistently lower fluence heterogeneity. Overall, this paper demonstrates that DVHs, which are essentially summary statistics, provide sufficient information to estimate objective function weights that result in high quality treatment plans. However, as with any summary statistic that compresses three-dimensional dose information, care must be taken to avoid generating plans with undesirable features such as hotspots; our computational results suggest that such undesirable spatial features were uncommon. Our IO-based approach can be integrated into the current clinical planning paradigm to better initialize the planning process and improve planning efficiency. It could also be embedded in a knowledge-based planning or adaptive radiation therapy framework to

  3. Handbook of radiation effects

    International Nuclear Information System (INIS)

    Holmes-Siedle, A.; Adams, L.

    1993-01-01

    This handbook is intended to serve as a tool for designers of equipment and scientific instruments in cases where they are required to ensure the survival of the equipment in radiation environments. High-technology materials, especially semiconductors and optics, tend to degrade on exposure to radiation in many different ways. Intense high-energy radiation environments are found in nuclear reactors and accelerators, machines for radiation therapy, industrial sterilization, and space. Some engineers have to build equipment which will survive a nuclear explosion from a hostile source. Proper handling of a disaster with radioactive materials requires equipment which depends utterly on semiconductor microelectronics and imaging devices. Thus the technology of radiation-tolerant electronics is an instrument for good social spheres as diverse as disaster planning and the exploration of Mars. In order to design equipment for intense environments like those described above, then degradation from high-energy irradiation must be seen as a basic design parameter. The aim of this handbook is to assist the engineer or student in that thought; to make it possible to write intelligent specifications; to offer some understanding of the complex variety of effects which occur when high-technology components encounter high-energy radiation; and to go thoroughly into the balance of choices of how to alleviate the effects and hence achieve the design aims of the project. Separate abstracts were prepared for 15 chapters of this book

  4. Biological Effects of Radiation

    International Nuclear Information System (INIS)

    Jatau, B.D.; Garba, N.N.; Yusuf, A.M.; Yamusa, Y. A.; Musa, Y.

    2013-01-01

    In earlier studies, researchers aimed a single particle at the nucleus of the cell where DNA is located. Eighty percent of the cells shot through the nucleus survived. This contradicts the belief that if radiation slams through the nucleus, the cell will die. But the bad news is that the surviving cells contained mutations. Cells have a great capacity to repair DNA, but they cannot do it perfectly. The damage left behind in these studies from a single particle of alpha radiation doubled the damage that is already there. This proved, beyond a shadow of doubt, those there biological effects occur as a result of exposure to radiation, Radiation is harmful to living tissue because of its ionizing power in matter. This ionization can damage living cells directly, by breaking the chemical bonds of important biological molecules (particularly DNA), or indirectly, by creating chemical radicals from water molecules in the cells, which can then attack the biological molecules chemically. At some extent these molecules are repaired by natural biological processes, however, the effectiveness of this repair depends on the extent of the damage. The interaction of ionizing with the human body, arising either from external sources outside the body or from internal contamination of the body by radioactive materials, leads to the biological effects which may later show up as a clinical symptoms. Basically, this formed the baseline of this research to serve as a yardstick for creating awareness about radiation and its resulting effects.

  5. Biological Effects of Ionizing Radiation

    Science.gov (United States)

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  6. Radiation effects on living systems

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1980-10-01

    This bibliography includes papers and reports by Atomic Energy of Canada Limited scientists concerning radiation effects on living systems. It is divided into three sections: Radiobiology, Radiation Biochemistry and Radiation Chemistry. (auth)

  7. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Heribanova, A.

    1995-01-01

    The basic principles and pathways of effects of ionizing radiation on living organisms and cells are outlined. The following topics are covered: effects of radiation on living matter (direct effects, radical or indirect effects, dual radiation action, and molecular biological theories); effects of radiation on cells and tissues (cell depletion, changes in the cytogenetic information, reparation mechanisms), dose-response relationship (deterministic effects, stochastic effects), and the effects of radiation on man (acute radiation sickness, acute local changes, fetus injuries, non-tumorous late injuries, malignant tumors, genetic changes). (P.A.). 3 tabs., 2 figs., 5 refs

  8. Bystander effects of radiation

    International Nuclear Information System (INIS)

    Umar, Neethu Fathima; Daniel, Nittu

    2013-01-01

    The Radiation-Induced Bystander Effect is the phenomenon in which unirradiated cells show irradiated effects due to the signals received from nearby irradiated cells. Evidence suggests that targeted cytoplasmic irradiation results in mutation in the nucleus of the hit cells. Cells that are not directly hit by an alpha particle, but are in the vicinity of one that is hit, also contribute to the genotoxic response of the cell population. When cells are irradiated, and the medium is transferred to unirradiated cells, these unirradiated cells show bystander responses when assayed for clonogenic survival and oncogenic transformation. The demonstration of a bystander effect in human tissues and, more recently, in whole organisms have clear implication of the potential relevance of the non-targeted response to human health. This effect may also contribute to the final biological consequences of exposure to low doses of radiation. The radiation-induced bystander effect represents a paradigm shift in our understanding of the radiobiological effects of ionizing radiation, in that extranuclear and extracellular events may also contribute to the final biological consequences of exposure to low doses of radiation. Multiple pathways are involved in the bystander phenomenon, and different cell types respond differently to bystander signalling. Using cDNA microarrays, a number of cellular signalling genes, including cyclooxygenase-2 (CQX-2), have been shown to be casually linked to the bystander phenomenon. The observation that inhibition of the phosphorylation of extracellular signal-related kinase (ERK) suppressed the bystander response further confirmed the important role of the mitogen-activated protein kinase (MAPK) signalling cascade in the bystander process. The cells deficient in mitochondrial DNA showed a significantly reduced response to bystander signalling, suggesting a functional role of mitochondria in the signalling process. (author)

  9. Radiation effects on superconductivity

    International Nuclear Information System (INIS)

    Brown, B.S.

    1975-01-01

    The effect of radiation on the superconducting transition temperature (T/sub c/), upper critical field (H/sub c2/), and volume-pinning-force density (F/sub p/) were discussed for the three kinds of superconducting material (elements, alloys, and compounds). 11 figures, 3 tables, 86 references

  10. Genetic effects of radiation

    International Nuclear Information System (INIS)

    Selby, P.B.

    1977-01-01

    Many of the most important findings concerning the genetic effects of radiation have been obtained in the Biology Division of Oak Ridge National Laboratory. The paper focuses on some of the major discoveries made in the Biology Division and on a new method of research that assesses damage to the skeletons of mice whose fathers were irradiated. The results discussed have considerable influence upon estimates of genetic risk in humans from radiation, and an attempt is made to put the estimated amount of genetic damage caused by projected nuclear power development into its proper perspective

  11. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Marko, A.M.

    1981-05-01

    In this review radiation produced by the nuclear industry is placed into context with other sources of radiation in our world. Human health effects of radiation, derivation of standards and risk estimates are reviewed in this document. The implications of exposing the worker and the general population to radiation generated by nuclear power are assessed. Effects of radiation are also reviewed. Finally, gaps in our knowledge concerning radiation are identified and current research on biological effects, on environmental aspects, and on dosimetry of radiation within AECL and Canada is documented in this report. (author)

  12. Radiation Effects Research Foundation

    International Nuclear Information System (INIS)

    1979-01-01

    The last day of March 1978 marked the completion of the first 3 years of operation of the Radiation Effects Research Foundation in Hiroshima and Nagasaki. RERF was established on 1 April 1975 as successor to the Atomic Bomb Casualty Commission which had been in continuous operation since 1947. This record of the first 3 years of operation consists of selected reports and other documents prepared in the course of conducting the business of RERF and includes a brief history, a late radiation effects that might be conducted at RERF. The wisdom and thought given to the research program and its operation by the Scientific Council and the Board of Directors is reflected in the minutes of their meetings which are included in the Appendix. (Mori, K.)

  13. Radiation Bystander Effects Mechanism

    Directory of Open Access Journals (Sweden)

    Shokohzaman Soleymanifard

    2009-06-01

    Full Text Available Introduction: Radiation Induced Bystander Effect (RIBE which cause radiation effects in non-irradiated cells, has challenged the principle according to which radiation traversal through the nucleus of a cell is necessary for producing biological responses. What is the mechanism of this phenomenon? To have a better understanding of this rather ambiguous concept substantial number of original and reviewed article were carefully examined. Results: Irradiated cells release molecules which can propagate in cell environment and/or transmit through gap junction intercellular communication. These molecules can reach to non-irradiated cells and transmit bystander signals. In many investigations, it has been confirmed that these molecules are growth factors, cytokines, nitric oxide and free radicals like reactive oxygen species (ROS. Transmission of by stander signal to neighboring cells persuades them to produce secondary growth factors which in their turn cause further cell injuries. Some investigators suggest, organelles other than nucleus (mitochondria and cell membrane are the origin of these signals.  There is another opinion which suggests double strand breaks (DSB are not directly generated in bystander cells, rather they are due to smaller damage like single strand breaks which accumulate and end up to DSB. Although bystander mechanisms have not been exactly known, it can be confirmed that multiple mechanisms and various pathways are responsible for this effect. Cell type, radiation type, experimental conditions and end points identify the dominant mechanism. Conclusion: Molecules and pathways which are responsible for RIBE, also cause systemic responses to other non-irradiation stresses. So RIBE is a kind of systemic stress or innate immune responses, which are performed by cell microenvironment. Irradiated cells and their signals are components of microenvironment for creating bystander effects.

  14. Radiation effects in metals

    International Nuclear Information System (INIS)

    Leteurtre Jean.

    1978-01-01

    The current understanding of radiation damage in metals is reviewed, simplifying the actual complexity of the effects by considering some aspects separately. The production of point defects in metals, the primary damage state are first studied. The second part of the lecture is devoted to the evolution of this primary damage state as a function of temperature and dose: the steady state concentration of point defects, the nucleation of secondary defects and their growth are successively considered

  15. Cumulative radiation effect

    International Nuclear Information System (INIS)

    Kirk, J.; Gray, W.M.; Watson, E.R.

    1977-01-01

    In five previous papers, the concept of Cumulative Radiation Effect (CRE) has been presented as a scale of accumulative sub-tolerance radiation damage, with a unique value of the CRE describing a specific level of radiation effect. Simple nomographic and tabular methods for the solution of practical problems in radiotherapy are now described. An essential feature of solving a CRE problem is firstly to present it in a concise and readily appreciated form, and, to do this, nomenclature has been introduced to describe schedules and regimes as compactly as possible. Simple algebraic equations have been derived to describe the CRE achieved by multi-schedule regimes. In these equations, the equivalence conditions existing at the junctions between schedules are not explicit and the equations are based on the CREs of the constituent schedules assessed individually without reference to their context in the regime as a whole. This independent evaluation of CREs for each schedule has resulted in a considerable simplification in the calculation of complex problems. The calculations are further simplified by the use of suitable tables and nomograms, so that the mathematics involved is reduced to simple arithmetical operations which require at the most the use of a slide rule but can be done by hand. The order of procedure in the presentation and calculation of CRE problems can be summarised in an evaluation procedure sheet. The resulting simple methods for solving practical problems of any complexity on the CRE-system are demonstrated by a number of examples. (author)

  16. Radiation effects on microelectronics

    International Nuclear Information System (INIS)

    Gover, J.E.

    1987-01-01

    Applications of radiation-hardened microelectronics in nuclear power systems include (a) light water reactor (LWR) containment building, postaccident instrumentation that can operate through the beta and gamma radiation released in a design basis loss-of-coolant accident; (b) advanced LWR instrumentation and control systems employing distributed digital integrated circuit (IC) technology to achieve a high degree of artificial intelligence and thereby reduce the probability of operator error under accident conditions; (c) instrumentation, command, control and communication systems for space nuclear power applications that must operate during the neutron and gamma-ray core leakage environments as well as the background electron, proton, and heavy charged particle environments of space; and (d) robotics systems designed for the described functions. Advanced microelectronics offer advantages in cost and reliability over alternative approaches to instrumentation and control. No semiconductor technology is hard to all classes of radiation effects phenomena. As the effects have become better understood, however, significant progress has been made in hardening IC technology. Application of hardened microelectronics to nuclear power systems has lagged military applications because of the limited market potential of hardened instruments and numerous institutional impediments

  17. Radiation effect on implanted pacemakers

    International Nuclear Information System (INIS)

    Pourhamidi, A.H.

    1983-01-01

    It was previously thought that diagnostic or therapeutic ionizing radiation did not have an adverse effect on the function of cardiac pacemakers. Recently, however, some authors have reported damaging effect of therapeutic radiation on cardiac pulse generators. An analysis of a recently-extracted pacemaker documented the effect of radiation on the pacemaker pulse generator

  18. Radiation effects on polyethylenes

    International Nuclear Information System (INIS)

    Suzuki, T.; Oki, Y.; Numajiri, M.; Miura, T.; Kondo, K.; Tanabe, Y.; Ishiyama, M.; Ito, Y.

    1992-01-01

    Radiation effects on four kinds of polyethylenes were studied from the viewpoints of mechanical properties, free radicals and free volumes. The samples were irradiated using a cobalt 60 gamma source to give doses up to 3MGy. The degradation of mechanical strength due to gamma-irradiation was evaluated by the elongation at break and its tensile strength. Radiation induced free radicals were measured by ESR. Free volumes observed by the o-Ps component of the positron annihilation spectrum are normally the large ones located in the amorphous regions and after irradiation these are created in crystalline regions, too. The sizes and the relative numbers of free volumes were evaluated by lifetimes and intensities of a long-lived component of positronium, respectively. Using these data, the properties of polyethylenes before and after irradiation are discussed. (author)

  19. Biological effects of ionising radiation

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The paper reports the proceedings of a conference organised jointly by Friends of the Earth (U.K.) and Greenpeace (International). The aim of the conference was to discuss the effects of low level radiation, particularly on man, within the terms of dose/risk relationships. The topics discussed included: sources of radiation, radiation discharges from nuclear establishments, predictive modelling of radiation hazards, radiation effects at Hiroshima, low dose effects and ICRP dose limits, variation in sensitivity to radiation, and the link between childhood cancer and nuclear power. (U.K.)

  20. Dose Volume Histogram analysis for rectum and urethral reaction of prostate cancer

    International Nuclear Information System (INIS)

    Yanagi, Takeshi; Tsuji, Hiroshi; Kamada, Tadashi; Tsujii, Hirohiko

    2005-01-01

    The aim of this study is to evaluate the clinically relevant parameters for rectum and urethral reaction using DVH (dose volume histogram) in carbon ion radiotherapy of prostate cancer. In this year, we studied the urinary reaction mainly. 35 patients with prostate cancer were treated with carbon ion beams between June 1995 and December 1997. The applied dose was escalated from 54.0 GyE to 72.0 GyE in fixed 20 fractions. Clinical urinary reaction and rectum reaction were reviewed using Radiation Therapy Oncology Group (RTOG) scoring system for acute reactions, RTOG/European Organization for Research and Treatment of Cancer (EORTC) scoring system for late reactions. Taking the ROI (region of interest) for DVH of urethra, we used surrogate one that was derived from the observation of MR images. 35 patients were analyzed for acute urinary reaction and 34 for late urinary reaction in the study of this year. DVH analysis suggested difference among the grades for acute and late reactions. These analysis appears to be a useful tool for predicting the urinary reactions. (author)

  1. First impressions of 3D visual tools and dose volume histograms for plan evaluation

    International Nuclear Information System (INIS)

    Rattray, G.; Simitcioglu, A.; Parkinson, M.; Biggs, J.

    1999-01-01

    Converting from 2D to 3D treatment planning offers numerous challenges. The practices that have evolved in the 2D environment may not be applicable when translated into the 3D environment. One such practice is the methods used to evaluate a plan. In 2D planning a plane by plane comparison method is generally practiced. This type of evaluation method would not be appropriate for plans produced by a 3D planning system. To this end 3D dose displays and Dose Volume Histograms (DVHs) have been developed to facilitate the evaluation of such plans. A survey was conducted to determine the impressions of Radiation Therapists as they used these tools for the first time. The survey involved comparing a number of plans for a small group of patients and selecting the best plan for each patient. Three evaluation methods were assessed. These included the traditional plane by plane, 3D dose display, and DVHs. Those surveyed found the DVH to be the easiest of the three methods to use, with the 3D display being the next easiest. Copyright (1999) Blackwell Science Pty Ltd

  2. Dose-volume analysis for quality assurance of interstitial brachytherapy for breast cancer

    International Nuclear Information System (INIS)

    Vicini, Frank A.; Kestin, Larry L.; Edmundson, Gregory K.; Jaffray, David A.; Wong, John W.; Kini, Vijay R.; Chen, Peter Y.; Martinez, Alvaro A.

    1999-01-01

    Purpose/Objective: The use of brachytherapy in the management of breast cancer has increased significantly over the past several years. Unfortunately, few techniques have been developed to compare dosimetric quality and target volume coverage concurrently. We present a new method of implant evaluation that incorporates computed tomography-based three-dimensional (3D) dose-volume analysis with traditional measures of brachytherapy quality. Analyses performed in this fashion will be needed to ultimately assist in determining the efficacy of breast implants. Methods and Materials: Since March of 1993, brachytherapy has been used as the sole radiation modality after lumpectomy in selected protocol patients with early-stage breast cancer treated with breast-conserving therapy. Eight patients treated with high-dose-rate (HDR) brachytherapy who had surgical clips outlining the lumpectomy cavity and underwent computed tomography (CT) scanning after implant placement were selected for this study. For each patient, the postimplant CT dataset was transferred to a 3D treatment planning system. The lumpectomy cavity, target volume (lumpectomy cavity plus a 1-cm margin), and entire breast were outlined on each axial slice. Once all volumes were entered, the programmed HDR brachytherapy source positions and dwell times were imported into the 3D planning system. Using the tools provided by the 3D planning system, the implant dataset was then registered to the visible implant template in the CT dataset. The distribution of the implant dose was analyzed with respect to defined volumes via dose-volume histograms (DVH). Isodose surfaces, the dose homogeneity index, and dosimetric coverage of the defined volumes were calculated and contrasted. All patients received 32 Gy to the entire implanted volume in 8 fractions of 4 Gy over 4 days. Results: Three-plane implants were used for 7 patients and a two-plane implant for 1 patient. The median number of needles per implant was 16.5 (range

  3. Gastrointestinal Dose-Histogram Effects in the Context of Dose-Volume–Constrained Prostate Radiation Therapy: Analysis of Data From the RADAR Prostate Radiation Therapy Trial

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Martin A., E-mail: Martin.Ebert@health.wa.gov.au [Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia (Australia); School of Physics, University of Western Australia, Perth, Western Australia (Australia); Foo, Kerwyn [Sydney Medical School, University of Sydney, Sydney, New South Wales (Australia); Haworth, Annette [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria (Australia); Gulliford, Sarah L. [Joint Department of Physics, Institute of Cancer Research and Royal Marsden National Health Service Foundation Trust, Sutton, Surrey (United Kingdom); Kennedy, Angel [Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia (Australia); Joseph, David J. [Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia (Australia); School of Surgery, University of Western Australia, Perth, Western Australia (Australia); Denham, James W. [School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales (Australia)

    2015-03-01

    Purpose: To use a high-quality multicenter trial dataset to determine dose-volume effects for gastrointestinal (GI) toxicity following radiation therapy for prostate carcinoma. Influential dose-volume histogram regions were to be determined as functions of dose, anatomical location, toxicity, and clinical endpoint. Methods and Materials: Planning datasets for 754 participants in the TROG 03.04 RADAR trial were available, with Late Effects of Normal Tissues (LENT) Subjective, Objective, Management, and Analytic (SOMA) toxicity assessment to a median of 72 months. A rank sum method was used to define dose-volume cut-points as near-continuous functions of dose to 3 GI anatomical regions, together with a comprehensive assessment of significance. Univariate and multivariate ordinal regression was used to assess the importance of cut-points at each dose. Results: Dose ranges providing significant cut-points tended to be consistent with those showing significant univariate regression odds-ratios (representing the probability of a unitary increase in toxicity grade per percent relative volume). Ranges of significant cut-points for rectal bleeding validated previously published results. Separation of the lower GI anatomy into complete anorectum, rectum, and anal canal showed the impact of mid-low doses to the anal canal on urgency and tenesmus, completeness of evacuation and stool frequency, and mid-high doses to the anorectum on bleeding and stool frequency. Derived multivariate models emphasized the importance of the high-dose region of the anorectum and rectum for rectal bleeding and mid- to low-dose regions for diarrhea and urgency and tenesmus, and low-to-mid doses to the anal canal for stool frequency, diarrhea, evacuation, and bleeding. Conclusions: Results confirm anatomical dependence of specific GI toxicities. They provide an atlas summarizing dose-histogram effects and derived constraints as functions of anatomical region, dose, toxicity, and endpoint for

  4. Gastrointestinal Dose-Histogram Effects in the Context of Dose-Volume–Constrained Prostate Radiation Therapy: Analysis of Data From the RADAR Prostate Radiation Therapy Trial

    International Nuclear Information System (INIS)

    Ebert, Martin A.; Foo, Kerwyn; Haworth, Annette; Gulliford, Sarah L.; Kennedy, Angel; Joseph, David J.; Denham, James W.

    2015-01-01

    Purpose: To use a high-quality multicenter trial dataset to determine dose-volume effects for gastrointestinal (GI) toxicity following radiation therapy for prostate carcinoma. Influential dose-volume histogram regions were to be determined as functions of dose, anatomical location, toxicity, and clinical endpoint. Methods and Materials: Planning datasets for 754 participants in the TROG 03.04 RADAR trial were available, with Late Effects of Normal Tissues (LENT) Subjective, Objective, Management, and Analytic (SOMA) toxicity assessment to a median of 72 months. A rank sum method was used to define dose-volume cut-points as near-continuous functions of dose to 3 GI anatomical regions, together with a comprehensive assessment of significance. Univariate and multivariate ordinal regression was used to assess the importance of cut-points at each dose. Results: Dose ranges providing significant cut-points tended to be consistent with those showing significant univariate regression odds-ratios (representing the probability of a unitary increase in toxicity grade per percent relative volume). Ranges of significant cut-points for rectal bleeding validated previously published results. Separation of the lower GI anatomy into complete anorectum, rectum, and anal canal showed the impact of mid-low doses to the anal canal on urgency and tenesmus, completeness of evacuation and stool frequency, and mid-high doses to the anorectum on bleeding and stool frequency. Derived multivariate models emphasized the importance of the high-dose region of the anorectum and rectum for rectal bleeding and mid- to low-dose regions for diarrhea and urgency and tenesmus, and low-to-mid doses to the anal canal for stool frequency, diarrhea, evacuation, and bleeding. Conclusions: Results confirm anatomical dependence of specific GI toxicities. They provide an atlas summarizing dose-histogram effects and derived constraints as functions of anatomical region, dose, toxicity, and endpoint for

  5. Biological radiation effects

    International Nuclear Information System (INIS)

    Koggl, D.; Dedenkov, A.N.

    1986-01-01

    All nowadays problems of radio biology are considered: types of ionizing radiations, their interaction with material; damage of molecular structures and their reparation; reaction of cells and their recovery from radiation damage; reaction of the whole organism and its separate systems. Particular attention is given to the problems of radiation carcinogenesis and radiation hazard for man

  6. Cumulative radiation effect

    International Nuclear Information System (INIS)

    Kirk, J.; Cain, O.; Gray, W.M.

    1977-01-01

    Cumulative Radiation Effect (CRE) represents a scale of accumulative sub-tolerance radiation damage, with a unique value of the CRE describing a specific level of radiation effect. Computer calculations have been used to simplify the evaluation of problems associated with the applications of the CRE-system in radiotherapy. In a general appraisal of the applications of computers to the CRE-system, the various problems encountered in clinical radiotherapy have been categorised into those involving the evaluation of a CRE at a point in tissue and those involving the calculation of CRE distributions. As a general guide, the computer techniques adopted at the Glasgow Institute of Radiotherapeutics for the solution of CRE problems are presented, and consist basically of a package of three interactive programs for point CRE calculations and a Fortran program which calculates CRE distributions for iso-effect treatment planning. Many examples are given to demonstrate the applications of these programs, and special emphasis has been laid on the problem of treating a point in tissue with different doses per fraction on alternate treatment days. The wide range of possible clinical applications of the CRE-system has been outlined and described under the categories of routine clinical applications, retrospective and prospective surveys of patient treatment, and experimental and theoretical research. Some of these applications such as the results of surveys and studies of time optimisation of treatment schedules could have far-reaching consequences and lead to significant improvements in treatment and cure rates with the minimum damage to normal tissue. (author)

  7. Effects of background radiation

    International Nuclear Information System (INIS)

    Knox, E.G.; Stewart, A.M.; Gilman, E.A.; Kneale, G.W.

    1987-01-01

    The primary objective of this investigation is to measure the relationship between exposure to different levels of background gamma radiation in different parts of the country, and different Relative Risks for leukaemias and cancers in children. The investigation is linked to an earlier analysis of the effects of prenatal medical x-rays upon leukaemia and cancer risk; the prior hypothesis on which the background-study was based, is derived from the earlier results. In a third analysis, the authors attempted to measure varying potency of medical x-rays delivered at different stages of gestation and the results supply a link between the other two estimates. (author)

  8. Radiation effects on vasoproliferation

    International Nuclear Information System (INIS)

    Yamaura, Hirotsugu; Matsuzawa, Taiju

    1975-01-01

    The authors quantitatively examined radiation effects on vascular proliferarion, using the rat transparent chamber technique to observe the living microcirculation. We studied the process of vasoproliferation and revascularization from the surrounding pre-existing vessels into the surgically avascularized area in the chamber, by measuring the vascular lenght photographically. A hyper-vascularized zone, about 0.5 mm in with, was formed on the vascularizing frontier, the significance of which is so far not known. When the chambers were irradiated with various doses of 60 Co γ-rays, a dose dependent inhibition of vasoproliferation was observed. (auth.)

  9. Radiation effects on vasoproliferation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaura, H; Matsuzawa, T [Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis, Leprosy and Cancer

    1975-06-01

    The authors quantitatively examined radiation effects on vascular proliferarion, using the rat transparent chamber technique to observe the living microcirculation. We studied the process of vasoproliferation and revascularization from the surrounding pre-existing vessels into the surgically avascularized area in the chamber, by measuring the vascular lenght photographically. A hyper-vascularized zone, about 0.5 mm in with, was formed on the vascularizing frontier, the significance of which is so far not known. When the chambers were irradiated with various doses of /sup 60/Co ..gamma..-rays, a dose dependent inhibition of vasoproliferation was observed.

  10. Biological radiation effects

    International Nuclear Information System (INIS)

    Sejourne, Michele.

    1977-01-01

    This work examines ionizing radiations: what they are, where they come from, their actions and consequences, finally the norms and preventive measures necessary to avoid serious contamination, whether the individual or the population in general is involved. Man has always been exposed to natural irradiation, but owing to the growing use of ionizing radiations both in medicine and in industry, not to mention nuclear tests and their use as an argument of dissuasion, the irradiation of human beings is increasing daily. Radioactive contamination does remain latent, apart from acute cases, but this is where the danger lies since the consequences may not appear until long after the irradiation. Of all biological effects due to the action of radioelements the genetic risk is one of the most important, affecting the entire population and especially the generations to come. The risk of cancer and leukemia induction plays a substantial part also since a large number of people may be concerned, depending on the mode of contamination involved. All these long-term dangers do not of course exclude the various general or local effects to which the individual alone may be exposed and which sometimes constitute a threat to life. As a result the use of ionizing radiations must be limited and should only be involved if no other process can serve instead. The regulations governing radioelements must be stringent and their application strictly supervised for the better protection of man. This protection must be not only individual but also collective since pollution exists in air, water and land passes to plants and animals and finally reaches the last link in the food chain, man [fr

  11. Radiation effects and radiation risks. 2. ed.

    International Nuclear Information System (INIS)

    Lengfelder, E.; Forst, D.; Feist, H.; Pratzel, H.G.

    1990-01-01

    The book presents the facts and the principles of assessment and evaluation of biological radiation effects in general and also with particular reference to the reactor accident of Chernobyl, reviewing the consequences and the environmental situation on the basis of current national and international literature, including research work by the authors. The material compiled in this book is intended especially for physicians, but will also prove useful for persons working in the public health services, in administration, or other services taking care of people. The authors tried to find an easily comprehensible way of presenting and explaining the very complex processes and mechanisms of biological radiation effects and carcinogenesis, displaying the physical primary processes and the mechanisms of the molecular radiation effects up to the effects of low-level radiation, and present results of comparative epidemiologic studies. This section has been given considerable space, in proportion to its significance. It also contains literature references for further reading, offering more insight and knowledge of aspects of special subject fields. The authors also present less known results and data and discuss them against the background of well-known research results and approaches. Apart from the purpose of presenting comprehensive information, the authors intend to give an impact for further thinking about the problems, and helpful tools for independent decisions and action on the basis of improved insight and assessment, and in this context particularly point to the problems induced by the Chernobyl reactor accident. (orig.) With 10 maps in appendix [de

  12. Effects of radiation

    International Nuclear Information System (INIS)

    Masse, R.

    2006-01-01

    The medical consequences of a whole-body irradiation come from the destruction of cells and inflammatory reactions it provokes. The most sensitive organs are the tissues that actively split. The embryo is particularly sensitive, from 200 mSv for the effects on the brain development. The reproduction functions are reached for man from 2000 mSv, the ovary sensitivity is less, the oocytes do not split after the fetus life. For adult the bone marrow outrage leads to the disappearing of blood cells (4000 mSv). The doses from 6000 to 10000 mSv lead the failure of the digestive system and lung. for the upper doses every tissue is reached, particularly by the effects on cells of blood vessels. Important brain dysfunctions appear beyond 10000 mSv. As regards the delayed effects of overexposures the epidemiology brings to light sanitary consequences of the exposure of the population to the ionizing radiations and requires that all the possible factors associated for that purpose are considered. About hereditary effects, it appears that moderate acute radiation exposures of even a relatively large human population must have little impact, in spite of the rate of spontaneous congenital deformations is of the order of 6 %. For the induction of cancers, it is not observed excess for doses lower than 200 mSv for adults and 100 mSv for children (the populations studied are survival people of hiroshima and Nagasaki, patients treated by irradiation, uranium miners, children exposed to radioactive iodine after Chernobylsk accident). To simplify an expression of the risk has been fixed to 5% of induced cancer by Sv for population and 4% by Sv for workers, the different being explained by the demography and the sensitivity of the youngest age groups. As regards the low doses of radiations, a bundle of convergent epidemiological observations notices the absence of effects of the low doses rates. Biological mechanisms, notably of repair are approached, then certain accidents (Goiania

  13. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    Science.gov (United States)

    Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.

    2013-06-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less

  14. Radiation effects on living systems

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1984-04-01

    This bibliography includes papers and reports by Atomic Energy of Canada Limited scientists concerning radiation effects on living systems. It is divided into three sections: Radiobiology, Radiation Biochemistry and Radiation Chemistry. It is intended that the bibliography will be updated regularly

  15. Radiation effects in optoelectronic devices

    International Nuclear Information System (INIS)

    Barnes, C.E.

    1977-03-01

    A summary is given of studies on radiation effects in light-emitting diodes, laser diodes, detectors, optical isolators and optical fibers. It is shown that the study of radiation damage in these devices can provide valuable information concerning the nature of the devices themselves, as well as methods of hardening these devices for applications in radiation environments

  16. Genetic effects of ionising radiation

    International Nuclear Information System (INIS)

    Saunders, P.A.H.

    1991-12-01

    Ionizing radiation effects on the gem cells, which can result in genetic abnormalities, are described. The basic mechanisms of radiation interactions with chromosomes, or specifically DNA, which can result in radiation induced mutation are discussed. Methods of estimating genetic risks, and some values for quantitative risk estimates are given. (U.K.). 13 refs., 2 figs., 1 tab

  17. Biological effects of particle radiation

    International Nuclear Information System (INIS)

    Sakamoto, Kiyohiko

    1988-01-01

    Conventional radiations such as photons, gamma rays or electrons show several physical or biological disadvantages to bring tumors to cure, therefore, more and more attentions is being paid to new modalitie such as fast neutrons, protons, negative pions and heavy ions, which are expected to overcome some of the defects of the conventional radiations. Except for fast neutrons, these particle radiations show excellet physical dose localization in tissue, moreover, in terms of biological effects, they demonstrate several features compared to conventional radiations, namely low oxygen enhancement ratio, high value of relative biological effectiveness, smaller cellular recovery, larger therapeutic gain factor and less cell cycle dependency in radiation sensitivity. In present paper the biological effects of particle radiations are shown comparing to the effects of conventional radiations. (author)

  18. Biology of ionizing radiation effects

    International Nuclear Information System (INIS)

    Ferradini, C.; Pucheault, J.

    1983-01-01

    The present trends in biology of ionizing radiation are reviewed. The following topics are investigated: interaction of ionizing radiations with matter; the radiolysis of water and aqueous solutions; properties of the free radicals intervening in the couples O 2 /H 2 O and H 2 O/H 2 ; radiation chemistry of biological compounds; biological effects of ionizing radiations; biochemical mechanisms involving free radicals as intermediates; applications (biotechnological applications, origins of life) [fr

  19. The biological effects of radiation

    International Nuclear Information System (INIS)

    Sykes, D.A.

    1979-01-01

    The hazards of radiations to man are briefly covered in this paper. The natural background sources of radiations are stated and their resulting doses are compared to those received voluntarily by man. The basis of how radiations cause biological damage is given and the resulting somatic effects are shown for varying magnitude of dose. Risk estimates are given for cancer induction and genetic effects are briefly discussed. Finally four case studies of radiation damage to humans are examined exemplifying the symptoms of large doses of radiations [af

  20. Radiation effects on lymphocytes

    International Nuclear Information System (INIS)

    Roser, B.

    1976-01-01

    This review of the ontogeny of lymphocyte populations concentrates on sites of production, rates of production, and the factors governing the differentiation and longevity of the various lymphocyte pools. The physiology of the lymphocyte pools is described with particular emphasis on recirculation from blood to lymph through lymphoid tissues. The separate routes of recirculation of both thymus-derived and nonthymus-derived lymphocytes and the possible anatomical sites and mechanisms of lymphocyte cooperation are discussed. Radiation effects on lymphocyte populations are divided into two sections. First, the effects of whole-body irradiation on the total lymphocyte pools are discussed including the differential effects of irradiation on T lymphocytes, B lymphocytes, lymphoblasts, and plasma cells. The differential sensitivity of various types of immune response is correlated, where possible, with the differential sensitivity of the lymphocyte types involved. Second, experimental attempts to selectively deplete discrete subpopulations of the total lymphocyte pools, e.g., recirculating cells, are briefly discussed with particular emphasis on studies on the effects of the localization of radionuclides in lymphoid tissue

  1. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Experiments with small animals, tissue cultures, and inanimate materials help with understanding the effects of ionizing radiation that occur at the molecular level and cause the gross effects observed in man. Topics covered in this chapter include the following: Radiolysis of Water; Radiolysis of Organic Compounds; Radiolysis in Cells; Radiation Exposure and Dose Units; Dose Response Curves; Radiation Effects in Animals; Factors Affecting Health Risks. 8 refs., 3 figs., 5 tabs

  2. Multiple local minima in IMRT optimization based on dose-volume criteria

    International Nuclear Information System (INIS)

    Wu Qiuwen; Mohan, Radhe

    2002-01-01

    Multiple local minima traps are known to exist in dose-volume and dose-response objective functions. Nevertheless, their presence and consequences are not considered impediments in finding satisfactory solutions in routine optimization of IMRT plans using gradient methods. However, there is often a concern that a significantly superior solution may exist unbeknownst to the planner and that the optimization process may not be able to reach it. We have investigated the soundness of the assumption that the presence of multiple minima traps can be ignored. To find local minima, we start the optimization process a large number of times with random initial intensities. We investigated whether the occurrence of local minima depends upon the choice of the objective function parameters and the number of variables and whether their existence is an impediment in finding a satisfactory solution. To learn about the behavior of multiple minima, we first used a symmetric cubic phantom containing a cubic target and an organ-at-risk surrounding it to optimize the beam weights of two pairs of parallel-opposed beams using a gradient technique. The phantom studies also served to test our software. Objective function parameters were chosen to ensure that multiple minima would exist. Data for 500 plans, optimized with random initial beam weights, were analyzed. The search process did succeed in finding the local minima and showed that the number of minima depends on the parameters of the objective functions. It was also found that the consequences of local minima depended on the number of beams. We further searched for the multiple minima in intensity-modulated treatment plans for a head-and-neck case and a lung case. In addition to the treatment plan scores and the dose-volume histograms, we examined the dose distributions and intensity patterns. We did not find any evidence that multiple local minima affect the outcome of optimization using gradient techniques in any clinically

  3. Effects of radiation on man

    International Nuclear Information System (INIS)

    Saunders, P.A.H.

    1981-01-01

    The available evidence on the effects of radiation on man and the predictions that have been made of possible low level effects are reviewed. Data from United Nations Scientific Committee of the Effects of Atomic Radiation (UNSCEAR) and the committee on the Biological Effects of Ionising Radiation (BEIR) is used to illustrate the acute, delayed and hereditary effects of high dose levels. The effects of low dose levels are discussed on the assumption that both somatic and hereditary effects can be predicted on the basis of linear extrapolation from high dose effects. (U.K.)

  4. Health effects of ionizing radiation

    International Nuclear Information System (INIS)

    Pathak, B.

    1989-12-01

    Ionizing radiation is energy that travels through space as electromagnetic waves or a stream of fast moving particles. In the workplace, the sources of ionizing radiation are radioactive substances, nuclear power plants, x-ray machines and nuclear devices used in medicine, research and industry. Commonly encountered types of radiation are alpha particles, beta particles and gamma rays. Alpha particles have very little penetrating power and pose a risk only when the radioactive substance is deposited inside the body. Beta particles are more penetrating than alpha particles and can penetrate the outer body tissues causing damage to the skin and the eyes. Gamma rays are highly penetrating and can cause radiation damage to the whole body. The probability of radiation-induced disease depends on the accumulated amount of radiation dose. The main health effects of ionizing radiation are cancers in exposed persons and genetic disorders in the children, grandchildren and subsequent generations of the exposed parents. The fetus is highly sensitive to radiation-induced abnormalities. At high doses, radiation can cause cataracts in the eyes. There is no firm evidence that ionizing radiation causes premature aging. Radiation-induced sterility is highly unlikely for occupational doses. The data on the combined effect of ionizing radiation and other cancer-causing physical and chemical agents are inconclusive

  5. Chemical effects of radiation

    International Nuclear Information System (INIS)

    Philips, G.O.

    1986-01-01

    Ionizing radiations initiate chemical changes in materials because of the high energy of their quanta. In water, highly reactive free radicals are produced which can initiate secondary changes of solutes, and in chemical of biological molecules in contact with the water. Free radicals can also be directly produced in irradiated medical products. Their fate can be identified and the molecular basis of radiation inactivation clarified. Methods have now been developed to protect and minimise such radiation damage. (author)

  6. Dose-volume modeling of salivary function in patients with head-and-neck cancer receiving radiotherapy

    International Nuclear Information System (INIS)

    Blanco, Angel I.; Chao, K.S. Clifford; El Naqa, Issam; Franklin, Gregg E.; Zakarian, Konstantin; Vicic, Milos; Deasy, Joseph O.

    2005-01-01

    Purpose: We investigated the factors that affect salivary function after head-and-neck radiotherapy (RT), including parotid gland dose-volume effects, potential compensation by less-irradiated gland tissue, and functional recovery over time. Methods and Materials: Sixty-five patients with head-and-neck tumors were enrolled in a prospective salivary function study. RT was delivered using intensity-modulated RT (n = 45), forward-planning three-dimensional conformal RT (n = 14), or three-dimensional conformal RT with an intensity-modulated RT boost (n = 6). Whole salivary flow was measured before therapy and at 6 months (n = 61) and 12 months (n = 31) after RT. A wide variety of dose-volume models to predict post-RT salivary function were tested. Xerostomia was defined according to the subjective, objective, management, analytic (SOMA) criteria as occurring when posttreatment salivary function was s ] = 0.46, p s = 0.73), stimulated saliva flow at 12 months (R s = 0.54), and quality-of-life score at 6 months (R s = 0.35) after RT. Conclusion: Stimulated parotid salivary gland dose-volume models strongly correlated with both stimulated salivary function and quality-of-life scores at 6 months after RT. The mean stimulated saliva flow rates improved from 6 to 12 months after RT. Salivary function, in each gland, appeared to be lost exponentially at a rate of approximately 5%/1 Gy of mean dose. Additional research is necessary to distinguish among the models for use in treatment planning. The incidence of xerostomia was significantly decreased when the mean dose of at least one parotid gland was kept to <25.8 Gy with conventional fractionation. However, even lower mean doses imply increased late salivary function

  7. Single-dose volume regulation algorithm for a gas-compensated intrathecal infusion pump.

    Science.gov (United States)

    Nam, Kyoung Won; Kim, Kwang Gi; Sung, Mun Hyun; Choi, Seong Wook; Kim, Dae Hyun; Jo, Yung Ho

    2011-01-01

    The internal pressures of medication reservoirs of gas-compensated intrathecal medication infusion pumps decrease when medication is discharged, and these discharge-induced pressure drops can decrease the volume of medication discharged. To prevent these reductions, the volumes discharged must be adjusted to maintain the required dosage levels. In this study, the authors developed an automatic control algorithm for an intrathecal infusion pump developed by the Korean National Cancer Center that regulates single-dose volumes. The proposed algorithm estimates the amount of medication remaining and adjusts control parameters automatically to maintain single-dose volumes at predetermined levels. Experimental results demonstrated that the proposed algorithm can regulate mean single-dose volumes with a variation of 98%. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  8. Diffusion effects in undulator radiation

    Directory of Open Access Journals (Sweden)

    Ilya Agapov

    2014-11-01

    Full Text Available Quantum diffusion effects in undulator radiation in semiclassical approximation are considered. Short-term effects on the electron beam motion are discussed and it is shown that approaches based on diffusion approximation with drift-diffusion coefficients derived from undulator or bending magnet radiation spectrum, and on Poisson statistics with radiation spectrum defined by the local beding field, all lead to similar results in terms of electron energy spread for cases of practical interest. An analytical estimate of the influence of quantum diffusion on the undulator radiation spectrum is derived.

  9. Radiation effect on polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Deng Pengyang; Zhong Xiaoguang; Sun Jiazhen

    1999-01-01

    Polytetrafluoroethylene (PTFE) has always been regarded as a typical kind of radiation degradation polymer. But, in fact, PTFE can be induced crosslinking by γ-ray or electron beam at some special conditions (free oxygen and a narrow temperature region at 335 +- 5 degree C). Compared with radiation degradiation PTFE, cosslinking PTFE owns a lot of new properties. Some articles concerning with these have been published, which will be systematically reviewed in this

  10. Radiation effects on cell membranes

    International Nuclear Information System (INIS)

    Koeteles, G.J.

    1982-01-01

    Experimental data are presented concerning the effects of relatively low doses of x radiation and low concentration of tritiated water (HTO) on various receptor functions - concanavalin A, cationized ferritin, poliovirus of plasma membranes of animal and human cells which point to early and temporary disturbances of the composite structures and functions of membranes. References are given to the manifold influence of radiation-induced membrane phenomenon on the development and regeneration of radiation injuries. (author)

  11. Radiation effects in optoelectronic devices

    International Nuclear Information System (INIS)

    Barnes, C.E.; Wiczer, J.J.

    1984-05-01

    Purpose of this report is to provide not only a summary of radiation damage studies at Sandia National Laboratories, but also of those in the literature on the components of optoelectronic systems: light emitting diodes (LEDs), laser diodes, photodetectors, optical fibers, and optical isolators. This review of radiation damage in optoelectronic components is structured according to device type. In each section, a brief discussion of those device properties relevant to radiation effects is given

  12. Effects of radiation; Effets des radiations

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    The medical consequences of a whole-body irradiation come from the destruction of cells and inflammatory reactions it provokes. The most sensitive organs are the tissues that actively split. The embryo is particularly sensitive, from 200 mSv for the effects on the brain development. The reproduction functions are reached for man from 2000 mSv, the ovary sensitivity is less, the oocytes do not split after the fetus life. For adult the bone marrow outrage leads to the disappearing of blood cells (4000 mSv). The doses from 6000 to 10000 mSv lead the failure of the digestive system and lung. for the upper doses every tissue is reached, particularly by the effects on cells of blood vessels. Important brain dysfunctions appear beyond 10000 mSv. As regards the delayed effects of overexposures the epidemiology brings to light sanitary consequences of the exposure of the population to the ionizing radiations and requires that all the possible factors associated for that purpose are considered. About hereditary effects, it appears that moderate acute radiation exposures of even a relatively large human population must have little impact, in spite of the rate of spontaneous congenital deformations is of the order of 6 %. For the induction of cancers, it is not observed excess for doses lower than 200 mSv for adults and 100 mSv for children (the populations studied are survival people of hiroshima and Nagasaki, patients treated by irradiation, uranium miners, children exposed to radioactive iodine after Chernobylsk accident). To simplify an expression of the risk has been fixed to 5% of induced cancer by Sv for population and 4% by Sv for workers, the different being explained by the demography and the sensitivity of the youngest age groups. As regards the low doses of radiations, a bundle of convergent epidemiological observations notices the absence of effects of the low doses rates. Biological mechanisms, notably of repair are approached, then certain accidents (Goiania

  13. Effects of radiation; Effets des radiations

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R. [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    The medical consequences of a whole-body irradiation come from the destruction of cells and inflammatory reactions it provokes. The most sensitive organs are the tissues that actively split. The embryo is particularly sensitive, from 200 mSv for the effects on the brain development. The reproduction functions are reached for man from 2000 mSv, the ovary sensitivity is less, the oocytes do not split after the fetus life. For adult the bone marrow outrage leads to the disappearing of blood cells (4000 mSv). The doses from 6000 to 10000 mSv lead the failure of the digestive system and lung. for the upper doses every tissue is reached, particularly by the effects on cells of blood vessels. Important brain dysfunctions appear beyond 10000 mSv. As regards the delayed effects of overexposures the epidemiology brings to light sanitary consequences of the exposure of the population to the ionizing radiations and requires that all the possible factors associated for that purpose are considered. About hereditary effects, it appears that moderate acute radiation exposures of even a relatively large human population must have little impact, in spite of the rate of spontaneous congenital deformations is of the order of 6 %. For the induction of cancers, it is not observed excess for doses lower than 200 mSv for adults and 100 mSv for children (the populations studied are survival people of hiroshima and Nagasaki, patients treated by irradiation, uranium miners, children exposed to radioactive iodine after Chernobylsk accident). To simplify an expression of the risk has been fixed to 5% of induced cancer by Sv for population and 4% by Sv for workers, the different being explained by the demography and the sensitivity of the youngest age groups. As regards the low doses of radiations, a bundle of convergent epidemiological observations notices the absence of effects of the low doses rates. Biological mechanisms, notably of repair are approached, then certain accidents (Goiania

  14. Ionizing radiations: effects and sources

    International Nuclear Information System (INIS)

    Vignes, S.; Nenot, J.C.

    1978-01-01

    Having first mentioned the effects of ionizing radiations in cancerogenisis, pre-natal, and genetic fields, the authors present the different sources of radiations and estimate their respective contributions to the total irradiation dose. Their paper makes reference to the main elements of a report issued by the United Nations Scientific Committee in 1977 [fr

  15. Genetic effects of ionising radiation

    International Nuclear Information System (INIS)

    Saunders, P.

    1981-01-01

    The mutagenic effects of ionising radiation on germ cells with resulting genetic abnormalities in subsequent generations, are considered. Having examined a simple model to explain the interaction of ionising radiation with genetic material and discussed its limitations, the methods whereby mutations are transmitted are discussed. Methods of estimating genetic risks and the results of such studies are examined. (U.K.)

  16. Epigenetic effects of ionizing radiation

    International Nuclear Information System (INIS)

    EI-Naggar, A.M.

    2007-01-01

    Data generated during the last three decades provide evidence of Epigenetic Effects that ave-induced by ionizing radiation, particularly those of high LET values, and low level dose exposures. Epigenesist is defined as the stepwise process by which genetic information, as modified by environmental influences, is translated into the substance and behavior of cells, tissues, organism.The epigenetic effects cited in the literature are essentially classified into fine types depending on the type and nature of the effect induced.The most accepted postulation, for the occurrence of these epigenetic effects, is a radiation induced bio electric disturbances in the environment of the non-irradiated cellular volume. This will trigger signals that will induce effects in the unirradiated cells.The epigenetic effects referenced in the literature up to date are five types; namely, Genomic Instability, Bystander. Effects, Clastogenic Plasma Factors,, Abscopal Effects, and Tran generational Effects.The demonstration of Epigenetic Effects associated with exposure to ionizing radiation indicates the need to re- examine the concept of radiation dose and target size. Also an improved understanding of qualifiring and quantifying radiation risk estimates may be attained. Also, a more logical means to understand the underlying mechanisms of radiation induced carcinogenic transformation of cells

  17. Radiation hazards and biological effects of ionising radiation on man

    International Nuclear Information System (INIS)

    Siti Najila Mohd Janib

    2004-01-01

    The contents of this chapter are follows - Mechanism of damage: direct action of radiation, indirect action of radiation. Classification of effects: somatic effect, induction of cancer, factors, affecting somatic effects, genetic effect, inherited abnormalities, induced effects, early effects, late effects, deterministic effect, stochastic effect. Effect of specific group: development abnormality, childhood Cancer, fertile women, risk and uncertainty, comparison of risk

  18. Radiation and radiation effects; Strahlung und Strahlenwirkung

    Energy Technology Data Exchange (ETDEWEB)

    Neumaier, S. [Physikalisch-Technische Bundesanstalt, Berlin (Germany). Arbeitsgruppe Strahlenschutz; Janssen, H. [Physikalisch-Technische Bundesanstalt, Berlin (Germany). Abt. Ionisierende Strahlung

    2006-12-15

    The average dose incurred by the German population is about 4 millisievert p.a., about half of which results from natural radiation sources. The second half is caused nearly completely by medical applications. Only a very small fraction of the annual dose results from technical applications. This special issue of PTB focuses on the measuring problems relating to natural radiation sources and technical applications of ionizing radiation. The current contribution also outlines some important aspects of radiation exposure from medical applications. (orig.)

  19. Radiation effects on structural materials

    International Nuclear Information System (INIS)

    Ghoniem, N.M.

    1991-01-01

    This report discusses the following topics on the effect radiation has on thermonuclear reactor materials: Atomic Displacements; Microstructure Evolution; Materials Engineering, Mechanics, and Design; Research on Low-Activation Steels; and Research Motivated by Grant Support

  20. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Gisone, Pablo; Perez, Maria R.

    2001-01-01

    It has been emphasised the importance of DNA as the main target for ionizing radiation, that can induce damage by its direct action on this molecule or by an indirect effect mediated by free-radicals generated by water radiolysis. Biological effects of ionizing radiation are influenced not only by the dose but also by the dose-rate and the radiation quality. Radiation induced damage, mainly DNA single and double strand breaks, is detected by molecular sensors which in turn trigger signalling cascades leading to cell cycle arrest to allow DNA repair or programmed cell death (apoptosis). Those effects related with cell death, named deterministic, exhibits a dose-threshold below which they are not observed. Acute radiation syndrome and radiological burns are examples of this kind of effects. Other radiation induced effects, called stochastic, are the consequence of cell transformation and do not exhibit a dose-threshold. This is the case of cancer induction and hereditary effects. The aim of this presentation is briefly describe the main aspects of deterministic and stochastic effects from the point of view of radiobiology and radio pathology. (author)

  1. Effects after prenatal radiation exposures

    International Nuclear Information System (INIS)

    Streffer, C.

    2001-01-01

    The mammalian organism is highly radiosensitive during all prenatal developmental periods. For most effects a dose relationship with a threshold is observed. These threshold doses are generally above the exposures from medical diagnostic procedures. The quality and extent of radiation effects are very much dependent on the developmental stage during which an exposure takes place and on the radiation dose. An exposure during the preimplantation period will cause lethality. Malformations are usually induced after exposures during the major organogenesis. Growth retardation is also possible during the late organogenesis and foetal periods. The lower limits of threshold doses for these effects are in the range of 100 mGy. A radiation exposure during the early foetal period can lead to severe mental retardation and impairment of intelligence. There are very serious effects with radiation doses above 0.3 Gy. Carcinogenesis can apparently occur after radiation exposures during the total prenatal development period. The radiation risk factor up to now has not been clear, but it seems that it is in the range of risk factors for cancer that are observed after exposures during childhood. For radiation doses that are used in radiological diagnostics the risk is zero or very low. A termination of pregnancy after doses below 100 mGy should not be considered. (author)

  2. Effects of radiation on erythropoiesis

    Energy Technology Data Exchange (ETDEWEB)

    Harriss, E B

    1971-04-01

    Since the pioneer work of Heineke (1903; 1905) many workers have studied the effect of radiation on haemopoiesis. Their work has been reviewed by Bloom (1948), by Jacobson (1954) and more recently by Bond et al. (1965). The subject continues to stimulate much interest but is now more concerned with the effects of radiation on the multipotential stem cell pool than on radiation damage to the erythropoietic cells themselves. Death from haemopoietic failure following an LD{sub 50/30} dose of radiation is probably not attributable to failure of erythropoiesis; while damage to the erythropoietic system certainly plays a part in the syndrome, it is not a major factor contributing to the death of the animal. Although the severity and time course of the response vary with the species studied, the general effects of radiation on erythropoiesis are similar in all mammalian bone marrow studied to date. Likewise, though the severity of the reaction varies somewhat with the energy of the radiation and has been used to compare the relative biological effectiveness of different types of radiation (Sinclair et al., 1962; Sztanyik, 1967), the response is different only in degree and not in its fundamental pattern. The initial syndrome of depression and recovery will therefore be described largely by reference to work performed on the response of the rat to single acute exposures of either whole-body or partial-body irradiation with conventional X-rays.

  3. Aerosol effects in radiation transfer

    International Nuclear Information System (INIS)

    Binenko, V.I.; Harshvardhan, H.

    1993-01-01

    The radiative properties and effects of aerosols are assessed for the following aerosol sources: relatively clean background aerosol, dust storms and dust outbreaks, anthropogenic pollution, and polluted cloud layers. Studies show it is the submicron aerosol fraction that plays a dominant radiative role in the atmosphere. The radiative effect of the aerosol depends not only on its loading but also on the underlying surface albedo and on solar zenith angle. It is only with highly reflecting surfaces such as Arctic ice that aerosols have a warming effect. Radiometric, microphysical, mineral composition, and refractive index measurements are presented for dust and in particular for the Saharan aerosol layer (SAL). Short-wave radiative heating of the atmosphere is caused by the SAL and is due mainly to absorption. However, the SAL does not contribute significantly to the long-wave thermal radiation budget. Field program studies of the radiative effects of aerosols are described. Anthropogenic aerosols deplete the incoming solar radiation. A case field study for a regional Ukrainian center is discussed. The urban aerosol causes a cooling of metropolitan centers, compared with outlying areas, during the day, which is followed by a warming trend at night. In another study, an increase in turbidity by a factor of 3 due to increased industrialization for Mexico City is noted, together with a drop in atmospheric transmission by 10% over a 50-year period. Numerous studies are cited that demonstrate that anthropogenic aerosols affect both the microphysical and radiative properties of clouds, which in turn affect regional climate. Particles acting as cloud nuclei are considered to have the greatest indirect effect on cloud absorptivity of short-wave radiation. Satellite observations show that low-level stratus clouds contaminated by ship exhaust at sea lead to an increase in cloud albedo

  4. Low level radiation: biological effects

    International Nuclear Information System (INIS)

    Loken, M.K.

    1983-01-01

    It is imperative that physicians and scientists using radiations in health care delivery continue to assess the benefits derived, vs. potential risk, to patients and radiation workers being exposed to radiation in its various forms as part of our health delivery system. Insofar as possible we should assure our patients and ourselves that the benefits outweigh the potential hazards involved. Inferences as to the possible biological effects of low level radiation are generally based on extrapolations from those effects observed and measured following acute exposures to considerably higher doses of radiation. Thus, in order to shed light on the question of the possible biological effects of low level radiation, a wide variety of studies have been carried out using cells in culture and various species of plant and animal life. This manuscript makes reference to some of those studies with indications as to how and why the studies were done and the conclusions that might be drawn there from. In addition reference is made to the handling of this information by scientists, by environmentalists, and by the news media. Unfortunately, in many instances the public has been misled by what has been said and/or written. It is hoped that this presentation will provide an understandable and reasonable perspective on the various appropriate uses of radiation in our lives and how such uses do provide significant improvement in our health and in our quality of life

  5. Analysis of dose volume histogram parameters to estimate late bladder and rectum complications after high-dose (70-78 Gy) conformal radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Boersma, L.J.; Brink, M. van den; Bruce, A.; Gras, L.; Velde, A. te; Lebesque, J.V.

    1997-01-01

    Purpose: To investigate whether Dose Volume Histogram (DVH) parameters can be used to identify risk groups for developing late gastrointestinal (GI) and genitourinary (GU) complications after conformal radiotherapy for prostate cancer, and to examine the effect of using different morbidity scoring systems on the results of these analyses. Materials and Methods: DVH parameters were analyzed for 130 patients with localized prostate cancer, treated with conformal radiotherapy in a dose-escalating protocol (70-78 Gy, 2 Gy per fraction). The incidence of late (> 6 months) GI and GU complications was scored based on questionnaires and classified using the RTOG/EORTC and the SOMA/LENT scoring system. Moreover, patients were classified as being a rectal bleeder or no rectal bleeder and a distinction was made between non-severe and severe (requiring one or more laser treatments) rectal bleeding. The median follow-up time was 22 months. It was investigated whether the relative and absolute rectal wall volumes, irradiated to various dose levels (≥ 60 Gy, ≥ 65 Gy, ≥ 70 Gy and ≥ 75 Gy) were correlated with the observed actuarial incidences of GI complications. First, the analysis was performed using volume as a continuous variable. Subsequently, for each dose level in the DVH the rectal wall volumes were dichotomized using different volumes as cut-off levels. Twenty cut-off levels were tested on their ability to discriminate between high and low risk for developing GI complications (Fig.). The relationship between bladder wall volumes irradiated to various dose levels and observed actuarial GU complications was investigated using the absolute bladder wall volumes, measured as a continuous variable. For both GI and GU complications, the role of the prescribed radiation dose and the maximum radiation dose in the rectal and bladder wall was analyzed as well. Results: None of the DVH parameters of the rectal wall was significantly correlated with the actuarial incidences of

  6. Topical Day on Biological Effects of Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Baatout, S.; Jacquet, P.

    1997-05-15

    The topical day has been focussed on the potential effects of ionizing radiation on human health. A general overview on molecular and biophysical aspects of radiation, its effects on cells and organisms, and the contribution of radiobiology to radiation protection and risk assessment is given. The genetic effects of radiation and its effects on the developing organism, the effects of radiation on the cell cycle and the mechanisms of radiation induced apoptosis were also discussed.

  7. Topical Day on Biological Effects of Radiation

    International Nuclear Information System (INIS)

    Baatout, S.; Jacquet, P.

    1997-01-01

    The topical day has been focussed on the potential effects of ionizing radiation on human health. A general overview on molecular and biophysical aspects of radiation, its effects on cells and organisms, and the contribution of radiobiology to radiation protection and risk assessment is given. The genetic effects of radiation and its effects on the developing organism, the effects of radiation on the cell cycle and the mechanisms of radiation induced apoptosis were also discussed

  8. Evaluation of dose-volume histograms after prostate seed implantation. 4-year experience

    International Nuclear Information System (INIS)

    Hoinkis, C.; Lehmann, D.; Winkler, C.; Herrmann, T.; Hakenberg, O.W.; Wirth, M.P.

    2004-01-01

    Background and purpose: permanent interstitial brachytherapy by seed implantation is a treatment alternative for low-volume low-risk prostate cancer and a complex interdisciplinary treatment with a learning curve. Dose-volume histograms are used to assess postimplant quality. The authors evaluated their learning curve based on dose-volume histograms and analyzed factors influencing implantation quality. Patients and methods: since 1999, 38 patients with a minimum follow-up of 6 months were treated at the authors' institution with seed implantation using palladium-103 or iodine-125, initially using the preplan method and later real-time planning. Postimplant CT was performed after 4 weeks. The dose-volume indices D90, V100, V150, the D max of pre- and postplans, and the size and position of the volume receiving the prescribed dose (high-dose volume) of the postplans were evaluated. In six patients, postplan imaging both by CT and MRI was used and prostate volumes were compared with preimplant transrectal ultrasound volumes. The first five patients were treated under external supervision. Results: patients were divided into three consecutive groups for analysis of the learning curve (group 1: n = 5 patients treated under external supervision; group 2: n = 13 patients; group 3: n = 20 patients). D90 post for the three groups were 79.3%, 74.2%, and 99.9%, the V100 post were 78.6%, 73.5%, and 88.2%, respectively. The relationship between high-dose volume and prostate volume showed a similar increase as the D90, while the relationship between high-dose volume lying outside the prostate and prostate volume remained constant. The ratio between prostate volumes from transrectal ultrasound and CT imaging decreased with increasing D90 post , while the preplanning D90 and V100 remained constant. The different isotopes used, the method of planning, and the implanted activity per prostate volume did not influence results. Conclusion: a learning curve characterized by an increase

  9. Effects of radiation-counselling convergence education on radiation awareness

    Energy Technology Data Exchange (ETDEWEB)

    Seoung, Youl Hun [Dept. of Radiological Science, College of Health Science, Cheongju University, Cheongju (Korea, Republic of)

    2017-06-15

    The purpose of study was to analysis on the effects of radiation-counselling convergence education on radiation awareness. The survey objects were students of radiation-counselling convergence education from 12th May to 22th June in 2016. The questionnaires were education satisfactions and radiation awareness (risk, benefit, control) by Likert-type 5 scales. The analysis results revealed that education satisfactions of men students showed a significant higher female students and correlation coefficient of education satisfactions were the best high in the benefit and control of radiation. Finally radiation-counselling convergence education had a significant effect on radiation benefit. This convergence education influenced positive recognition on radiation benefit and it was indicated that radiation-counselors could treat clients on the basis of radiation benefit.

  10. Effects of radiation-counselling convergence education on radiation awareness

    International Nuclear Information System (INIS)

    Seoung, Youl Hun

    2017-01-01

    The purpose of study was to analysis on the effects of radiation-counselling convergence education on radiation awareness. The survey objects were students of radiation-counselling convergence education from 12th May to 22th June in 2016. The questionnaires were education satisfactions and radiation awareness (risk, benefit, control) by Likert-type 5 scales. The analysis results revealed that education satisfactions of men students showed a significant higher female students and correlation coefficient of education satisfactions were the best high in the benefit and control of radiation. Finally radiation-counselling convergence education had a significant effect on radiation benefit. This convergence education influenced positive recognition on radiation benefit and it was indicated that radiation-counselors could treat clients on the basis of radiation benefit

  11. Radiation, chemicals and combined effects

    International Nuclear Information System (INIS)

    Sinclair, W.K.

    1991-01-01

    A brief background has been provided on current carcinogenic risks from ionizing radiation and their magnitude in background circumstances. The magnitude of the risks from possibly carcinogenic chemicals at background levels in air, water and food are surprisingly similar. The exception is, perhaps, for the single source of radon which, while variable, on the average stands out above all other sources. Some basic principles concerning the interaction of combined radiation and chemicals and some practical examples where the two interact synergistically to enhance radiation effects has also been provided. Areas for human research in the future are discussed. (Author)

  12. Measuring space radiation shielding effectiveness

    OpenAIRE

    Bahadori Amir; Semones Edward; Ewert Michael; Broyan James; Walker Steven

    2017-01-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles ...

  13. Radiation effects in optical components

    International Nuclear Information System (INIS)

    Friebele, E.J.

    1987-01-01

    This report discusses components of high performance optical devices may be exposed to high energy radiation environments during their lifetime. The effect of these adverse environments depends upon a large number of parameters associated with the radiation (nature, energy, dose, dose rate, etc.) or the system (temperature, optical performance requirements, optical wavelength, optical power, path length, etc.), as well as the intrinsic susceptibility of the optical component itself to degradation

  14. Environmental dosimetry and radiation effects

    International Nuclear Information System (INIS)

    Woodhead, D.S.

    1997-01-01

    Specific assessment of the potential effects on wild organisms of increased radiation exposure arising from the authorized disposal of radioactive wastes to the environment requires two interrelated sets of information. First, an estimate is required of the incremental radiation exposure; and second, dose rate-response relationships are necessary to predict the potential impact of the estimated incremental exposure. Each of these aspects will be discussed in detail. (author)

  15. SU-E-T-72: A Retrospective Correlation Analysis On Dose-Volume Control Points and Treatment Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Roy, A; Nohadani, O [Northwestern University, Evanston, IL (United States); Refaat, T; Bacchus, I; Cutright, D; Sathiaseelan, V; Mittal, B [Northwestern University, Chicago, IL (United States)

    2015-06-15

    Purpose: To quantify correlation between dose-volume control points and treatment outcomes. Specifically, two outcomes are analyzed: occurrence of radiation induced dysphagia and target complications. The results inform the treatment planning process when competing dose-volume criteria requires relaxations. Methods: 32 patients, treated with whole-field sequential intensity modulated radiation therapy during 2009–2010 period, are considered for this study. Acute dysphagia that is categorized into 3 grades is observed on all patients. 3 patients are observed in grade 1, 17 patients in grade 2, and 12 patients in grade 3. Ordinal logistic regression is employed to establish correlations between grades of dysphagia and dose to cervico-thoracic esophagus. Particularly, minimum (Dmin), mean (Dmean), and maximum (Dmax) dose control points are analyzed. Additionally, target complication, which includes local-regional recurrence and/or distant metastasis, is observed on 4 patients. Binary logistic regression is used to quantify correlation between target complication and four dose control points. Namely, ICRU recommended dose control points, D2, D50, D95, and D98 are analyzed. Results: For correlation with dysphagia, Dmin on cervico-thoracic esophagus is statistically significant (p-value = 0.005). Additionally, Dmean on cervico-thoracic esophagus is also significant in association with dysphagia (p-value = 0.012). However, no correlation was observed between Dmax and dysphagia (p-value = 0.263). For target complications, D50 on the target is a statistically significant dose control point (p-value = 0.032). No correlations were observed between treatment complications and D2 (p-value = 0.866), D95 (p-value = 0.750), and D98 (p-value = 0.710) on the target. Conclusion: Significant correlations are observed between radiation induced dysphagia and Dmean (and Dmin) to cervico-thoracic esophagus. Additionally, correlation between target complications and median dose to target

  16. SU-E-T-72: A Retrospective Correlation Analysis On Dose-Volume Control Points and Treatment Outcomes

    International Nuclear Information System (INIS)

    Roy, A; Nohadani, O; Refaat, T; Bacchus, I; Cutright, D; Sathiaseelan, V; Mittal, B

    2015-01-01

    Purpose: To quantify correlation between dose-volume control points and treatment outcomes. Specifically, two outcomes are analyzed: occurrence of radiation induced dysphagia and target complications. The results inform the treatment planning process when competing dose-volume criteria requires relaxations. Methods: 32 patients, treated with whole-field sequential intensity modulated radiation therapy during 2009–2010 period, are considered for this study. Acute dysphagia that is categorized into 3 grades is observed on all patients. 3 patients are observed in grade 1, 17 patients in grade 2, and 12 patients in grade 3. Ordinal logistic regression is employed to establish correlations between grades of dysphagia and dose to cervico-thoracic esophagus. Particularly, minimum (Dmin), mean (Dmean), and maximum (Dmax) dose control points are analyzed. Additionally, target complication, which includes local-regional recurrence and/or distant metastasis, is observed on 4 patients. Binary logistic regression is used to quantify correlation between target complication and four dose control points. Namely, ICRU recommended dose control points, D2, D50, D95, and D98 are analyzed. Results: For correlation with dysphagia, Dmin on cervico-thoracic esophagus is statistically significant (p-value = 0.005). Additionally, Dmean on cervico-thoracic esophagus is also significant in association with dysphagia (p-value = 0.012). However, no correlation was observed between Dmax and dysphagia (p-value = 0.263). For target complications, D50 on the target is a statistically significant dose control point (p-value = 0.032). No correlations were observed between treatment complications and D2 (p-value = 0.866), D95 (p-value = 0.750), and D98 (p-value = 0.710) on the target. Conclusion: Significant correlations are observed between radiation induced dysphagia and Dmean (and Dmin) to cervico-thoracic esophagus. Additionally, correlation between target complications and median dose to target

  17. Radiation effects at the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Gilchriese, M.G.D. [ed.] [Superconducting Super Collider Lab., Dallas, TX (United States)

    1988-06-01

    This report contains a preliminary study of the effects of the radiation levels expected at the SSC on potential detector components and a subset of materials to be used in the SSC accelerators. The report does not contain a discussion of radiation damage to electronics components that may be used at the SSC. We have investigated many of the effects of radiation on silicon detectors, on wire chambers, on scintillating materials and the associated readout, on optical fibers for data transmission and on structural or other materials to be used in detector or accelerator components. In the SSC accelerator complex, in particular the storage rings, radiation damage will not present significant problems different than those now faced by existing high energy accelerators. We find that the effects of radiation damage on SSC detector components will be significant at the design luminosity of the ssc and will limit, or determine, many of the options for different detector components. In this regard the reader should keep in mind that, in the absence of a specific detector design, it is not possible to form definitive conclusions regarding the viability of the detector components. Since the radiation levels in experiments at the SSC will depend on the geometry and composition of the apparatus, simple yes /no generalizations about the feasibility of a detector component are not possible.

  18. Health effects of ionising radiation

    International Nuclear Information System (INIS)

    Mohammadi, S.

    2000-01-01

    Human and animal studies have shown an increased incidence of cancer and malformation due to radioactive materials and external radiation. The biological effects of radiation on tissues are the occurrence of morphological and functional changes in the body. The critical parts of the body are those tissues or organs which when irradiated, are likely to influence the health of the individual or its offspring. The probability of these changes depends on the radiation dose. There are two main types of damage due to radiation dose. Radiation Sickness with well-defined symptoms like cancer and inherited disorders which can appear after several years. A second type of damage, namely Acute Radiation Sickness results after exposure of the whole or parts of the body to high doses of radiation greater than 1 Gy. There are safety standards for the amount of dose equivalent that is taken as acceptable. The International Commission on Radiological Protection (ICRP) has given norms in which natural and medical causes were not included. These are given as recommended values (1966) and proposed values (2000), both in mSv/yr: population at large: 1.7 and 0.4; members of the public: 5 and 2; and radiologic workers: 50 and 20, respectively. Taking into account the increased number of reactor accidents, the question is how safe is our safety standards? Even when one is able to connect a quantitative risk with a radiation dose, there are three fundamental principles which we should obey in dealing with risks from radiation. These are: (1) Avoid any risk. (2) The risk should be related to the possible benefit. (3) Any dose below the politically agreed limits is acceptable

  19. Harmful effects of ultraviolet radiation

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Tanning for cosmetic purposes by sunbathing or by using artificial tanning devices is widespread. The hazards associated with exposure to ultraviolet radiation are of concern to the medical profession. Depending on the amount and form of the radiation, as well as on the skin type of the individual exposed, ultraviolet radiation causes erythema, sunburn, photodamage (photoaging), photocarcinogenesis, damage to the eyes, alteration of the immune system of the skin, and chemical hypersensitivity. Skin cancers most commonly produced by ultraviolet radiation are basal and squamous cell carcinomas. There also is much circumstantial evidence that the increase in the incidence of cutaneous malignant melanoma during the past half century is related to increased sun exposure, but this has not been proved. Effective and cosmetically acceptable sunscreen preparations have been developed that can do much to prevent or reduce most harmful effects to ultraviolet radiation if they are applied properly and consistently. Other safety measures include (1) minimizing exposure to ultraviolet radiation, (2) being aware of reflective surfaces while in the sun, (3) wearing protective clothing, (4) avoiding use of artificial tanning devices, and (5) protecting infants and children

  20. Biological effects of nuclear radiation

    International Nuclear Information System (INIS)

    Hotz, G.

    1975-01-01

    After a brief survey about the main radiobiological effects caused by ionizing radiation, human symptoms after irradiation and incorporation are shown. The special radiotoxic effect of radionuclides which are chemically associated with metabolism-specific elements such as calcium and potassium is shown and methods of treatment are indicated. (ORU) [de

  1. Radiation Effects in Carbon Nanoelectronics

    Directory of Open Access Journals (Sweden)

    Cory D. Cress

    2012-07-01

    Full Text Available We experimentally investigate the effects of Co-60 irradiation on the electrical properties of single-walled carbon nanotube and graphene field-effect transistors. We observe significant differences in the radiation response of devices depending on their irradiation environment, and confirm that, under controlled conditions, standard dielectric hardening approaches are applicable to carbon nanoelectronics devices.

  2. WE-B-304-02: Treatment Planning Evaluation and Optimization Should Be Biologically and Not Dose/volume Based

    International Nuclear Information System (INIS)

    Deasy, J.

    2015-01-01

    The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor control probability (TCP) with an acceptable normal tissue complication probability (NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. It has been suggested that treatment planning evaluation and optimization would be more effective if they were biologically and not dose/volume based, and this is the claim debated in this month’s Point/Counterpoint. After a brief overview of biologically and DVH based treatment planning by the Moderator Colin Orton, Joseph Deasy (for biological planning) and Charles Mayo (against biological planning) will begin the debate. Some of the arguments in support of biological planning include: this will result in more effective dose distributions for many patients DVH-based measures of plan quality are known to have little predictive value there is little evidence that either D95 or D98 of the PTV is a good predictor of tumor control sufficient validated outcome prediction models are now becoming available and should be used to drive planning and optimization Some of the arguments against biological planning include: several decades of experience with DVH-based planning should not be discarded we do not know enough about the reliability and errors associated with biological models the radiotherapy community in general has little direct experience with side by side comparisons of DVH vs biological metrics and outcomes it is unlikely that a clinician would accept extremely cold regions in a CTV or hot regions in a PTV, despite having acceptable TCP values Learning Objectives: To understand dose/volume based treatment planning and its potential limitations To understand biological metrics such as EUD, TCP, and NTCP To understand biologically based treatment planning and its potential limitations

  3. Dose-Volume Parameters of the Corpora Cavernosa Do Not Correlate With Erectile Dysfunction After External Beam Radiotherapy for Prostate Cancer: Results From a Dose-Escalation Trial

    International Nuclear Information System (INIS)

    Wielen, Gerard J. van der; Hoogeman, Mischa S.; Dohle, Gert R.; Putten, Wim L.J. van; Incrocci, Luca

    2008-01-01

    Purpose: To analyze the correlation between dose-volume parameters of the corpora cavernosa and erectile dysfunction (ED) after external beam radiotherapy (EBRT) for prostate cancer. Methods and Materials: Between June 1997 and February 2003, a randomized dose-escalation trial comparing 68 Gy and 78 Gy was conducted. Patients at our institute were asked to participate in an additional part of the trial evaluating sexual function. After exclusion of patients with less than 2 years of follow-up, ED at baseline, or treatment with hormonal therapy, 96 patients were eligible. The proximal corpora cavernosa (crura), the superiormost 1-cm segment of the crura, and the penile bulb were contoured on the planning computed tomography scan and dose-volume parameters were calculated. Results: Two years after EBRT, 35 of the 96 patients had developed ED. No statistically significant correlations between ED 2 years after EBRT and dose-volume parameters of the crura, the superiormost 1-cm segment of the crura, or the penile bulb were found. The few patients using potency aids typically indicated to have ED. Conclusion: No correlation was found between ED after EBRT for prostate cancer and radiation dose to the crura or penile bulb. The present study is the largest study evaluating the correlation between ED and radiation dose to the corpora cavernosa after EBRT for prostate cancer. Until there is clear evidence that sparing the penile bulb or crura will reduce ED after EBRT, we advise to be careful in sparing these structures, especially when this involves reducing treatment margins

  4. Kinetic theory of radiation effects

    International Nuclear Information System (INIS)

    Mansur, L.K.

    1987-01-01

    To help achieve the quantitative and mechanistic understanding of these processes, the kinetic theory of radiation effects has been developed in the DOE basic energy sciences radiation effects and fusion reactor materials programs, as well as in corresponding efforts in other countries. This discipline grapples with a very wide range of phenomena and draws on numerous sub-fields of theory such as defect physics, diffusion, elasticity, chemical reaction rates, phase transformations and thermodynamics. The theory is cast in a mathematical framework of continuum dynamics. Issues particularly relevant to the present inquiry can be viewed from the standpoints of applications of the theory and areas requiring further progress

  5. Converging stereotactic radiotherapy using kilovoltage X-rays: experimental irradiation of normal rabbit lung and dose-volume analysis with Monte Carlo simulation.

    Science.gov (United States)

    Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi

    2009-10-01

    To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.

  6. Radiation research contracts: Biological effects of small radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Hug, O [International Atomic Energy Agency, Division of Health, Safety and Waste Disposal, Vienna (Austria)

    1959-04-15

    To establish the maximum permissible radiation doses for occupational and other kinds of radiation exposure, it is necessary to know those biological effects which can be produced by very small radiation doses. This particular field of radiation biology has not yet been sufficiently explored. This holds true for possible delayed damage after occupational radiation exposure over a period of many years as well as for acute reactions of the organism to single low level exposures. We know that irradiation of less than 25 Roentgen units (r) is unlikely to produce symptoms of radiation sickness. We have, however, found indications that even smaller doses may produce certain instantaneous reactions which must not be neglected

  7. The effects and control of radiation

    International Nuclear Information System (INIS)

    Saunders, P.A.H.

    1982-12-01

    The subject is discussed under the headings: introduction; ionising radiation (alpha and beta particles, gamma- and X-radiation, neutrons, half-life, sources of radiation); biological effects; risk estimates (somatic) (early effects, delayed effects); risk estimates (hereditary); control of radiation; risk estimates (accidents). (U.K.)

  8. Evaluation of different set-up error corrections on dose-volume metrics in prostate IMRT using CBCT images

    International Nuclear Information System (INIS)

    Hirose, Yoshinori; Tomita, Tsuneyuki; Kitsuda, Kenji; Notogawa, Takuya; Miki, Katsuhito; Nakamura, Mitsuhiro; Nakamura, Kiyonao; Ishigaki, Takashi

    2014-01-01

    We investigated the effect of different set-up error corrections on dose-volume metrics in intensity-modulated radiotherapy (IMRT) for prostate cancer under different planning target volume (PTV) margin settings using cone-beam computed tomography (CBCT) images. A total of 30 consecutive patients who underwent IMRT for prostate cancer were retrospectively analysed, and 7-14 CBCT datasets were acquired per patient. Interfractional variations in dose-volume metrics were evaluated under six different set-up error corrections, including tattoo, bony anatomy, and four different target matching groups. Set-up errors were incorporated into planning the isocenter position, and dose distributions were recalculated on CBCT images. These processes were repeated under two different PTV margin settings. In the on-line bony anatomy matching groups, systematic error (Σ) was 0.3 mm, 1.4 mm, and 0.3 mm in the left-right, anterior-posterior (AP), and superior-inferior directions, respectively. Σ in three successive off-line target matchings was finally comparable with that in the on-line bony anatomy matching in the AP direction. Although doses to the rectum and bladder wall were reduced for a small PTV margin, averaged reductions in the volume receiving 100% of the prescription dose from planning were within 2.5% under all PTV margin settings for all correction groups, with the exception of the tattoo set-up error correction only (≥ 5.0%). Analysis of variance showed no significant difference between on-line bony anatomy matching and target matching. While variations between the planned and delivered doses were smallest when target matching was applied, the use of bony anatomy matching still ensured the planned doses. (author)

  9. Health effects of ionizing radiation

    International Nuclear Information System (INIS)

    Radford, E.P.

    1980-01-01

    This presentation is restricted to the health effects of low doses of ionizing radiation. In general, these cumulative exposures are well below 100 rem, or about 50 times background or less. The two effects of interest in this dose range are genetic mutations and cancer production. The genetic effects will not be discussed in detail. The chief reason for the rise in risk estimates for cancer is the longer follow-up of exposed populations

  10. Stimulating effects of ionizing radiation

    International Nuclear Information System (INIS)

    Jaworowski, Z.

    1995-01-01

    The influence of low doses on human organism is not definite known up to now. The worldwide discussion on this topic has been presented. A lot of analysed statistical data proved that the stimulating effect of low doses of ionizing radiation really exists and can have a beneficial influence on human health. 43 refs, 4 figs, 6 tabs

  11. Radiation effects on video imagers

    International Nuclear Information System (INIS)

    Yates, G.J.; Bujnosek, J.J.; Jaramillo, S.A.; Walton, R.B.; Martinez, T.M.; Black, J.P.

    1985-01-01

    Radiation sensitivity of several photoconductive, photoemissive, and solid state silicon-based video imagers was measured by analyzing stored photocharge induced by irradiation with continuous and pulsed sources of high energy photons and neutrons. Transient effects as functions of absorbed dose, dose rate, fluences, and ionizing particle energy are presented

  12. Biopositive Effects of Ionizing Radiation?

    International Nuclear Information System (INIS)

    Broda, E.

    1972-01-01

    This paper was written for a talk given by E. Broda in Vienna for an event organised by the chemical physical society, the Austrian biochemical society and the Austrian biophysical society in December 1972. In this paper Broda analyses the question of biopositive effects of ionizing radiation. (nowak)

  13. Modification of radiation effects

    International Nuclear Information System (INIS)

    Lindenbaum, A.

    1975-01-01

    Results are reported from studies on the tissue distribution of 239 Pu and 241 Am in mice and beagle dogs and the effectiveness of various therapeutic treatments for decorporation. In dogs injected with monomeric Pu the value of a regimen of early and prolonged treatment with DTPA (diethylenetriaminepentaacetic acid) for minimizing the Pu burden in the soft tissues and skeleton was demonstrated. These results have immediate implication for DTPA treatment in man. New studies in mice verified the action of pyran copolymer antiviral agents in enhancing the effectiveness of DTPA for removal of polymeric Pu from the liver. Recent application of autoradiographic procedures for quantitatively comparing short- and long-term localization of monomeric and polymeric 239 Pu in dog liver showed that there is no net translocation of monomeric Pu within the liver between 6 and 90 days following injection. One of the molecular studies presently underway aims at synthesis of a variety of DTPA esters. The diethyl ester has already been prepared and tested for toxicity in mice. These compounds are designed to bring DTPA into contact with plutonium deposits unavailable to the action of ionic DTPA. (U.S.)

  14. Radiation effects on eye components

    Science.gov (United States)

    Durchschlag, H.; Fochler, C.; Abraham, K.; Kulawik, B.

    1999-08-01

    The most important water-soluble components of the vertebrate eye (lens proteins, aqueous humor, vitreous, hyaluronic acid, ascorbic acid) have been investigated in aqueous solution, after preceding X- or UV-irradiation. Spectroscopic, chromatographic, electrophoretic, hydrodynamic and analytic techniques have been applied, to monitor several radiation damages such as destruction of aromatic and sulfur-containing amino acids, aggregation, crosslinking, dissociation, fragmentation, and partial unfolding. Various substances were found which were able to protect eye components effectively against radiation, some of them being also of medical relevance.

  15. Quantitative dose-volume response analysis of changes in parotid gland function after radiotherapy in the head-and-neck region

    International Nuclear Information System (INIS)

    Roesink, Judith M.; Moerland, Marinus A.; Battermann, Jan J.; Hordijk, Gerrit Jan; Terhaard, Chris H.J.

    2001-01-01

    Purpose: To study the radiation tolerance of the parotid glands as a function of dose and volume irradiated. Methods and Materials: One hundred eight patients treated with primary or postoperative radiotherapy for various malignancies in the head-and-neck region were prospectively evaluated. Stimulated parotid flow rate was measured before radiotherapy and 6 weeks, 6 months, and 1 year after radiotherapy. Parotid gland dose-volume histograms were derived from CT-based treatment planning. The normal tissue complication probability model proposed by Lyman was fit to the data. A complication was defined as stimulated parotid flow rate 50 (the dose to the whole organ leading to a complication probability of 50%) was found to be 31, 35, and 39 Gy at 6 weeks, 6 months, and 1 year postradiotherapy, respectively. The volume dependency parameter n was around 1, which means that the mean parotid dose correlates best with the observed complications. There was no steep dose-response curve (m=0.45 at 1 year postradiotherapy). Conclusions: This study on dose/volume/parotid gland function relationships revealed a linear correlation between postradiotherapy flow ratio and parotid gland dose and a strong volume dependency. No threshold dose was found. Recovery of parotid gland function was shown at 6 months and 1 year after radiotherapy. In radiation planning, attempts should be made to achieve a mean parotid gland dose at least below 39 Gy (leading to a complication probability of 50%)

  16. Radiation Effects in Paediatric radiography

    International Nuclear Information System (INIS)

    Mutwasi, O.

    2006-01-01

    Diagnostic imaging has evolved from single technique to a field which we have a choice from many modalities. Some without radiation. Radiation producing modalities include plain films (low dose), Fluoroscopy (mid range dose), Computed tomography (high dose). Radiography dose can significantly be influenced in plain radiography by varying speed of screens, cassette construction and type of radiography. E.g. digital or computed. In computed or digital radiography we are no longer able to tell h igh dose b y the quality of images. The final image is by great extend a product of post processing algorithms. It's for this reasons that the basic understanding of the sensitivity and specifying of various types of examinations and of specifically radiation effects is mandatory for a paediatric imager

  17. Measuring space radiation shielding effectiveness

    Directory of Open Access Journals (Sweden)

    Bahadori Amir

    2017-01-01

    Full Text Available Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  18. Measuring space radiation shielding effectiveness

    Science.gov (United States)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  19. Biological radiation effects

    International Nuclear Information System (INIS)

    Russo, A.

    2000-01-01

    Everyone is exposed to a complex mix of electromagnetic fields (EMF) of different frequencies that permeate our environment. Exposures to these EMF are increasing significantly as technology advances unabated and new applications are found. Technological progress in the broadest sense of the word has always been associated with various hazards and risks, both perceived and real. The industrial, commercial and household application on EMF is no exception. Throughout the world, the general public is concerned that exposure to EMF from such sources as high voltage power lines, broadcasting networks, mobile telephones and their base stations could lead to adverse health consequences, especially in children. As a result, the construction of new power lines and broadcasting and mobile telephone network has met with considerable opposition in many countries. Public exposure to EMF is regulated by a variety of voluntary and legal limits, together with various national safety standards. Guidelines are designed to avoid all identified hazards, from short and long term exposure, recommended limits. The aim of this paper is to report the summary of the actual scientific knowledge about the potential health effects and hazards due to man made EMF and the new tendencies of the social and political choices [it

  20. SU-G-BRC-08: Evaluation of Dose Mass Histogram as a More Representative Dose Description Method Than Dose Volume Histogram in Lung Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J; Eldib, A; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States); Lin, M [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States); Li, J [Cyber Medical Inc, Xian, Shaanxi (China); Mora, G [Universidade de Lisboa, Codex, Lisboa (Portugal)

    2016-06-15

    Purpose: Dose-volume-histogram (DVH) is widely used for plan evaluation in radiation treatment. The concept of dose-mass-histogram (DMH) is expected to provide a more representative description as it accounts for heterogeneity in tissue density. This study is intended to assess the difference between DVH and DMH for evaluating treatment planning quality. Methods: 12 lung cancer treatment plans were exported from the treatment planning system. DVHs for the planning target volume (PTV), the normal lung and other structures of interest were calculated. DMHs were calculated in a similar way as DVHs expect that the voxel density converted from the CT number was used in tallying the dose histogram bins. The equivalent uniform dose (EUD) was calculated based on voxel volume and mass, respectively. The normal tissue complication probability (NTCP) in relation to the EUD was calculated for the normal lung to provide quantitative comparison of DVHs and DMHs for evaluating the radiobiological effect. Results: Large differences were observed between DVHs and DMHs for lungs and PTVs. For PTVs with dense tumor cores, DMHs are higher than DVHs due to larger mass weighing in the high dose conformal core regions. For the normal lungs, DMHs can either be higher or lower than DVHs depending on the target location within the lung. When the target is close to the lower lung, DMHs show higher values than DVHs because the lower lung has higher density than the central portion or the upper lung. DMHs are lower than DVHs for targets in the upper lung. The calculated NTCPs showed a large range of difference between DVHs and DMHs. Conclusion: The heterogeneity of lung can be well considered using DMH for evaluating target coverage and normal lung pneumonitis. Further studies are warranted to quantify the benefits of DMH over DVH for plan quality evaluation.

  1. Mechanistic simulation of normal-tissue damage in radiotherapy-implications for dose-volume analyses

    International Nuclear Information System (INIS)

    Rutkowska, Eva; Baker, Colin; Nahum, Alan

    2010-01-01

    A radiobiologically based 3D model of normal tissue has been developed in which complications are generated when 'irradiated'. The aim is to provide insight into the connection between dose-distribution characteristics, different organ architectures and complication rates beyond that obtainable with simple DVH-based analytical NTCP models. In this model the organ consists of a large number of functional subunits (FSUs), populated by stem cells which are killed according to the LQ model. A complication is triggered if the density of FSUs in any 'critical functioning volume' (CFV) falls below some threshold. The (fractional) CFV determines the organ architecture and can be varied continuously from small (series-like behaviour) to large (parallel-like). A key feature of the model is its ability to account for the spatial dependence of dose distributions. Simulations were carried out to investigate correlations between dose-volume parameters and the incidence of 'complications' using different pseudo-clinical dose distributions. Correlations between dose-volume parameters and outcome depended on characteristics of the dose distributions and on organ architecture. As anticipated, the mean dose and V 20 correlated most strongly with outcome for a parallel organ, and the maximum dose for a serial organ. Interestingly better correlation was obtained between the 3D computer model and the LKB model with dose distributions typical for serial organs than with those typical for parallel organs. This work links the results of dose-volume analyses to dataset characteristics typical for serial and parallel organs and it may help investigators interpret the results from clinical studies.

  2. Correlation of Acute and Late Brainstem Toxicities With Dose-Volume Data for Pediatric Patients With Posterior Fossa Malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Ronica H., E-mail: rhazari@emory.edu [Department of Radiation Oncology, Winship Cancer Institute, Emory University College of Medicine, Atlanta, Georgia (United States); Ganju, Rohit G.; Schreibmann, Edward [Department of Radiation Oncology, Winship Cancer Institute, Emory University College of Medicine, Atlanta, Georgia (United States); Chen, Zhengjia; Zhang, Chao [Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University Rollins School of Public Health, Atlanta, Georgia (United States); Jegadeesh, Naresh; Cassidy, Richard; Deng, Claudia; Eaton, Bree R.; Esiashvili, Natia [Department of Radiation Oncology, Winship Cancer Institute, Emory University College of Medicine, Atlanta, Georgia (United States)

    2017-06-01

    Purpose: Radiation-induced brainstem toxicity after treatment of pediatric posterior fossa malignancies is incompletely understood, especially in the era of intensity modulated radiation therapy (IMRT). The rates of, and predictive factors for, brainstem toxicity after photon RT for posterior fossa tumors were examined. Methods and Materials: After institutional review board approval, 60 pediatric patients treated at our institution for nonmetastatic infratentorial ependymoma and medulloblastoma with IMRT were included in the present analysis. Dosimetric variables, including the mean and maximum dose to the brainstem, the dose to 10% to 90% of the brainstem (in 10% increments), and the volume of the brainstem receiving 40, 45, 50, and 55 Gy were recorded for each patient. Acute (onset within 3 months) and late (>3 months of RT completion) RT-induced brainstem toxicities with clinical and radiographic correlates were scored using Common Terminology Criteria for Adverse Events, version 4.0. Results: Patients aged 1.4 to 21.8 years underwent IMRT or volumetric arc therapy postoperatively to the posterior fossa or tumor bed. At a median clinical follow-up period of 2.8 years, 14 patients had developed symptomatic brainstem toxicity (crude incidence 23.3%). No correlation was found between the dosimetric variables examined and brainstem toxicity. Vascular injury or ischemia showed a strong trend toward predicting brainstem toxicity (P=.054). Patients with grade 3 to 5 brainstem toxicity had undergone treatment to significant volumes of the posterior fossa. Conclusion: The results of the present series demonstrate a low, but not negligible, risk of brainstem radiation necrosis for pediatric patients with posterior fossa malignancies treated with IMRT. No specific dose-volume correlations were identified; however, modern treatment volumes might help limit the incidence of severe toxicity. Additional work investigating inherent biologic sensitivity might also provide

  3. Prostate position variability and dose-volume histograms in radiotherapy for prostate cancer with full and empty bladder

    International Nuclear Information System (INIS)

    Pinkawa, Michael; Asadpour, Branka; Gagel, Bernd; Piroth, Marc D.; Holy, Richard; Eble, Michael J.

    2006-01-01

    Purpose: To evaluate prostate position variability and dose-volume histograms in prostate radiotherapy with full bladder (FB) and empty bladder (EB). Methods and Materials: Thirty patients underwent planning computed tomography scans in a supine position with FB and EB before and after 4 and 8 weeks of radiation therapy. The scans were matched by alignment of pelvic bones. Displacements of the prostate/seminal vesicle organ borders and center of mass were determined. Treatment plans (FB vs. EB) were compared. Results: Compared with the primary scan, FB volume varied more than EB volume (standard deviation, 106 cm 3 vs. 47 cm 3 ), but the prostate/seminal vesicle center of mass position variability was the same (>3 mm deviation in right-left, anterior-posterior, and superior-inferior directions in 0, 41%, and 33%, respectively, with FB vs. 0, 44%, and 33% with EB). The bladder volume treated with 90% of the prescription dose was significantly larger with EB (39% ± 14% vs. 22% ± 10%; p < 0.01). Bowel loops received ≥90% of prescription dose in 37% (3% with FB; p < 0.01). Conclusion: Despite the larger variability of bladder filling, prostate position stability was the same with FB compared with EB. An increased amount of bladder volume in the high-dose region and a higher dose to bowel loops result from treatment plans with EB

  4. Genomic instability and radiation effects

    International Nuclear Information System (INIS)

    Christian Streffer

    2007-01-01

    Complete text of publication follows. Cancer, genetic mutations and developmental abnormalities are apparently associated with an increased genomic instability. Such phenomena have been frequently shown in human cancer cells in vitro and in situ. It is also well-known that individuals with a genetic predisposition for cancer proneness, such as ataxia telangiectesia, Fanconi anaemia etc. demonstrate a general high genomic instability e.g. in peripheral lymphocytes before a cancer has developed. Analogous data have been found in mice which develop a specific congenital malformation which has a genetic background. Under these aspects it is of high interest that ionising radiation can increase the genomic instability of mammalian cells after exposures in vitro an in vivo. This phenomenon is expressed 20 to 40 cell cycles after the exposure e.g. by de novo chromosomal aberrations. Such effects have been observed with high and low LET radiation, high LET radiation is more efficient. With low LET radiation a good dose response is observed in the dose range 0.2 to 2.0 Gy, Recently it has been reported that senescence and genomic instability was induced in human fibroblasts after 1 mGy carbon ions (1 in 18 cells are hit), apparently bystander effects also occurred under these conditions. The instability has been shown with DNA damage, chromosomal aberrations, gene mutation and cell death. It is also transferred to the next generation of mice with respect to gene mutations, chromosomal aberrations and congenital malformations. Several mechanisms have been discussed. The involvement of telomeres has gained interest. Genomic instability seems to be induced by a general lesion to the whole genome. The transmission of one chromosome from an irradiated cell to an non-irradiated cell leads to genomic instability in the untreated cells. Genomic instability increases mutation rates in the affected cells in general. As radiation late effects (cancer, gene mutations and congenital

  5. Notes on radiation effects on materials

    International Nuclear Information System (INIS)

    Anno, J.N.

    1984-01-01

    The effects of radiation from nuclear reactions on various classes of materials are examined in an introductory textbook for students of nuclear engineering. Topics discussed include the units and general scale of radiation damage, fundamental interactions of neutrons and gamma rays with materials, transient radiation effects on electrical components, radiation effects on organic materials and on steels, nuclear fission effects, surface effects of nuclear radiations, radiation effects on biological material, and neutron and gamma-ray dosimetry. Graphs, diagrams, tables of numerical data, and problems for each chapter are provided. 122 references

  6. Thermal effects in radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1985-01-01

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The csub(p) of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation. (author)

  7. Radiation effects in silicate glasses

    International Nuclear Information System (INIS)

    Bibler, N.E.; Howitt, D.G.

    1988-01-01

    The study of radiation effects in complex silicate glasses has received renewed attention because of their use in special applications such as high level nuclear waste immobilization and fiber optics. Radiation changes the properties of these glasses by altering their electronic and atomic configurations. These alterations or defects may cause dilatations or microscopic phase changes along with absorption centers that limit the optical application of the glasses. Atomic displacements induced in the already disordered structure of the glasses may affect their use where heavy irradiating particles such as alpha particles, alpha recoils, fission fragments, or accelerated ions are present. Large changes (up to 1%) in density may result. In some cases the radiation damage may be severe enough to affect the durability of the glass in aqueous solutions. In the paper, the authors review the literature concerning radiation effects on density, durability, stored energy, microstructure and optical properties of silicate glasses. Both simple glasses and complex glasses used for immobilization of nuclear waste are considered

  8. Thermal effects in radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1984-01-01

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The specific heat of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation

  9. Health effects of radiation and the implications for radiation safety

    International Nuclear Information System (INIS)

    Gonzalez, A.J.; Anderer, J.

    1991-01-01

    In this Paper two elements of a multiphase analysis of radiation exposures in the living environment - the human health effects of ionizing radiation and the implications for radiation safety policy and practices - are presented. Part 1 draws together the current state of scientific knowledge and insight about the human health effects of radiation, describing these in terms of known cause-related deterministic effects and of the estimated incidence of stochastic effects as defined by biostatistics and biological models. The 1988 UNSCEAR report provides an authoritative basis for such an examination. Part 2 explores some of the major implications that the state-of-the-art of radiation biology has - or should have - for radiation safety policy and practices. (author)

  10. SU-F-T-378: Evaluation of Dose-Volume Variability and Parameters Between Prostate IMRT and VMAT Plans

    Energy Technology Data Exchange (ETDEWEB)

    Chow, J [Princess Margaret Cancer Centre, Toronto, ON (Canada); Jiang, R [Grand River Regional Cancer Centre, Kitchener, ON (Canada); Kiciak, A [University of Waterloo, Waterloo, ON (Canada)

    2016-06-15

    Purpose: This study compared the rectal dose-volume consistency, equivalent uniform dose (EUD) and normal tissue complication probability (NTCP) in prostate intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Methods: For forty prostate IMRT and fifty VMAT patients treated using the same dose prescription (78 Gy/39 fraction) and dose-volume criteria in inverse planning optimization, the rectal EUD and NTCP were calculated for each patient. The rectal dose-volume consistency, showing the variability of dose-volume histogram (DVH) among patients, was defined and calculated based on the deviation between the mean and corresponding rectal DVH. Results: From both the prostate IMRT and VMAT plans, the rectal EUD and NTCP were found decreasing with the rectal volume. The decrease rates for the IMRT plans (EUD = 0.47 × 10{sup −3} Gy cm{sup −3} and NTCP = 3.94 × 10{sup −2} % cm{sup −3}) were higher than those for the VMAT (EUD = 0.28 × 10{sup −3} Gy cm{sup −3} and NTCP = 2.61 × 10{sup −2} % cm{sup −3}). In addition, the dependences of the rectal EUD and NTCP on the dose-volume consistency were found very similar between the prostate IMRT and VMAT plans. This shows that both delivery techniques have similar variations of the rectal EUD and NTCP on the dose-volume consistency. Conclusion: Dependences of the dose-volume consistency on the rectal EUD and NTCP were compared between the prostate IMRT and VMAT plans. It is concluded that both rectal EUD and NTCP decreased with an increase of the rectal volume. The variation rates of the rectal EUD and NTCP on the rectal volume were higher for the IMRT plans than VMAT. However, variations of the rectal dose-volume consistency on the rectal EUD and NTCP were found not significant for both delivery techniques.

  11. Research on radiation effect and radiation protection at JAEA

    International Nuclear Information System (INIS)

    Saito, Kimiaki

    2007-01-01

    Researches on radiation effect and radiation protection at JAEA have been carried out in different sections. In recent years, the organizations were rearranged to attain better research circumstances, and new research programs started. At present, radiation effect studies focus on radiation effect mechanisms at atomic, molecular and cellular levels including simulation studies, and protection studies focus on dosimetry for conditions difficult to cover with currently used methods and data as well as the related basic studies. The outlines of the whole studies and also some descriptions on selected subjects will be given in this paper. (author)

  12. Dosimetric analysis of the alopecia preventing effect of hippocampus sparing whole brain radiation therapy

    International Nuclear Information System (INIS)

    Mahadevan, Anand; Sampson, Carrie; LaRosa, Salvatore; Floyd, Scott R.; Wong, Eric T.; Uhlmann, Erik J.; Sengupta, Soma; Kasper, Ekkehard M.

    2015-01-01

    Whole brain radiation therapy (WBRT) is widely used for the treatment of brain metastases. Cognitive decline and alopecia are recognized adverse effects of WBRT. Recently hippocampus sparing whole brain radiation therapy (HS-WBRT) has been shown to reduce the incidence of memory loss. In this study, we found that multi-field intensity modulated radiation therapy (IMRT), with strict constraints to the brain parenchyma and to the hippocampus, reduces follicular scalp dose and prevents alopecia. Suitable patients befitting the inclusion criteria of the RTOG 0933 trial received Hippocampus sparing whole brain radiation. On follow up, they were noticed to have full scalp hair preservation. 5 mm thickness of follicle bearing scalp in the radiation field was outlined in the planning CT scans. Conventional opposed lateral WBRT radiation fields were applied to these patient-specific image sets and planned with the same nominal dose of 30 Gy in 10 fractions. The mean and maximum dose to follicle bearing skin and Dose Volume Histogram (DVH) data were analyzed for conventional and HS-WBRT. Paired t-test was used to compare the means. All six patients had fully preserved scalp hair and remained clinically cognitively intact 1–3 months after HS-WBRT. Compared to conventional WBRT, in addition to the intended sparing of the Hippocampus, HS-WBRT delivered significantly lower mean dose (22.42 cGy vs. 16.33 cGy, p < 0.0001), V 24 (9 cc vs. 44 cc, p < 0.0000) and V 30 (9 cc vs. 0.096 cc, p = 0.0106) to follicle hair bearing scalp and prevented alopecia. There were no recurrences in the Hippocampus area. HS-WBRT, with an 11-field set up as described, while attempting to conserve hippocampus radiation and maintain radiation dose to brain inadvertently spares follicle-bearing scalp and prevents alopecia

  13. Health effects of radiation damage

    International Nuclear Information System (INIS)

    Gasimova, K; Azizova, F; Mehdieva, K.

    2012-01-01

    Full text : A summary of the nature of radiactive contamination would be incomplete without some mention of the human health effects relatied to radioactivity and radioactive materials. Several excellent reviews at the variety of levels of detail have been written and should be consulted by the reader. Internal exposures of alpha and beta particles are important for ingested and inhaled radionuclides. Dosimetry models are used to estimate the dose from internally deposited radioactive particles. As mentioned above weighting parameters that take into account the radiation type, the biological half-life and the tissue or organ at risk are used to convert the physically absorbed dose in units of gray (or red) to the biologically significant committed equivalent dose and effective dose, measured in units of Sv (or rem). There is considerable controversy over the shape of the dose-response curve at the chronic low dose levels important for enviromental contamination. Proposed models include linear models, non-linear models and threshold models. Because risks at low dose must be extrapolated from available date at high doses, the shape of the dose-response curve has important implications for the environmental regulations used to protect the general public. The health effect of radiation damage depends on a combination of events of on the cellular, tissue and systemic levels. These lead to mutations and cellular of the irradiated parent cell. The dose level at which significant damage occurs depends on the cell type. Cells that reproduce rapidily, such as those found in bone marrow or the gastrointestinal tract, will be more sensitive to radiation than those that are longer lived, such as striated muscle or nerve cells. The effects of high radiation doses on an organ depends on the various cell types it contains

  14. Genetic and somatic effects of ionizing radiation

    International Nuclear Information System (INIS)

    1986-01-01

    This is the ninth substantive report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) to the General Assembly. This report contains reviews on three special topics in the field of biological effects of ionizing radiation that are among those presently under consideration by the Committee: genetic effects of radiation, dose-response relationships for radiation-induced cancer and biological effects of pre-natal irradiation

  15. Ionising radiation - physical and biological effects

    International Nuclear Information System (INIS)

    Holter, Oe.; Ingebretsen, F.; Parr, H.

    1979-01-01

    The physics of ionising radiation is briefly presented. The effects of ionising radiation on biological cells, cell repair and radiosensitivity are briefly treated, where after the effects on man and mammals are discussed and related to radiation doses. Dose limits are briefly discussed. The genetic effects are discussed separately. Radioecology is also briefly treated and a table of radionuclides deriving from reactors, and their radiation is given. (JIW)

  16. Radiation effects on microelectronics in space

    International Nuclear Information System (INIS)

    Srour, J.R.; McGarrity, J.M.

    1988-01-01

    The basic mechanisms of space radiation effects on microelectronics are reviewed in this paper. Topics discussed include the effects of displacement damage and ionizing radiation on devices and circuits, single event phenomena, dose enhancement, radiation effects on optoelectronic devices and passive components, hardening approaches, and simulation of the space radiation environment. A summary is presented of damage mechanisms that can cause temporary or permanent failure of devices and circuits operating in space

  17. Radiation Effects in Nuclear Ceramics

    Directory of Open Access Journals (Sweden)

    L. Thomé

    2012-01-01

    Full Text Available Due to outstanding physicochemical properties, ceramics are key engineering materials in many industrial domains. The evaluation of the damage created in ceramics employed in radiative media is a challenging problem for electronic, space, and nuclear industries. In this latter field, ceramics can be used as immobilization forms for radioactive wastes, inert fuel matrices for actinide transmutation, cladding materials for gas-cooled fission reactors, and structural components for fusion reactors. Information on the radiation stability of nuclear materials may be obtained by simulating the different types of interactions involved during the slowing down of energetic particles with ion beams delivered by various types of accelerators. This paper presents a review of the radiation effects occurring in nuclear ceramics, with an emphasis on recent results concerning the damage accumulation processes. Energetic ions in the KeV-GeV range are used to explore the nuclear collision (at low energy and electronic excitation (at high energy regimes. The recovery by electronic excitation of the damage created by ballistic collisions (SHIBIEC process is also addressed.

  18. Radiation effects on cell membranes

    International Nuclear Information System (INIS)

    Koeteles, G.J.

    1982-01-01

    The recent developments in the field of membrane biology of eukaryotic cells result in revival of relevant radiobiological studies. The spatial relations and chemical nature of membrane components provide rather sensitive targets. Experimental data are presented concerning the effects of relatively low doses of X-irradiation and low concentration of tritiated water (HTO) on various receptor functions - concanavalin A, cationized ferritin, poliovirus - of plasma membranes of animal and human cells which point to early and temporary disturbances of the composite structures and functions of membranes. References are given to the multifold roles of radiationinduced membrane phenomena on the development and regeneration of radiation injuries. (orig.)

  19. Radiation effects on cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Koeteles, G.J.

    1982-11-01

    The recent developments in the field of membrane biology of eukaryotic cells result in revival of relevant radiobiological studies. The spatial relations and chemical nature of membrane components provide rather sensitive targets. Experimental data are presented concerning the effects of relatively low doses of X-irradiation and low concentration of tritiated water (HTO) on various receptor functions - concanavalin A, cationized ferritin, poliovirus - of plasma membranes of animal and human cells which point to early and temporary disturbances of the composite structures and functions of membranes. References are given to the multifold roles of radiationinduced membrane phenomena on the development and regeneration of radiation injuries.

  20. Effect of radiation on food

    Energy Technology Data Exchange (ETDEWEB)

    Sofyan, R [National Atomic Energy Agency, Jakarta (Indonesia). Pasar Djumat Research Centre

    1983-07-01

    Research reports on the effect on radiation on food are reviewed. Irradiation processing inhibits the sprouting of vegetables, delays ripening, reduces the number of microorganisms that spoil food, controls patrogenic organisms and parasites found in food, disinfests food of insects, and disinfects spices of microbes. So far there has been no evidence that food irradiaton introduces nutritional or microbiological problems. The FAO/WHO/IAEA expert committee on the wholesomeness of irradiated food recommend the acceptability from a toxicological stand-point of any food commodity irradiated up to an overall average dose of 10 kilograys.

  1. Effect of radiation on food

    International Nuclear Information System (INIS)

    Sofyan, Rochestri

    1983-01-01

    Research reports on the effect on radiation on food are reviewed. Irradiation processing inhibits the sprouting of vegetables, delays ripening, reduces the number of microorganisms that spoil food, controls patrogenic organisms and parasites found in food, disinfests food of insects, and disinfects spices of microbes. So far there has been no evidence that food irradiaton introduces nutritional or microbiological problems. The FAO/WHO/IAEA expert committee on the wholesomeness of irradiated food recommend the acceptability from a toxicological stand-point of any food commodity irradiated up to an overall average dose of 10 kilograys. (RUW)

  2. Effects of radiation upon gastrointestinal motility

    Institute of Scientific and Technical Information of China (English)

    Mary F Otterson

    2007-01-01

    Whether due to therapeutic or belligerent exposure, the gastrointestinal effects of irradiation produce symptoms dreaded by a majority of the population. Nausea, vomiting, diarrhea and abdominal cramping are hallmarks of the prodromal phase of radiation sickness, occurring hours to days following radiation exposure. The prodromal phase is distinct from acute radiation sickness in that the absorptive, secretory and anatomic changes associated with radiation damage are not easily identifiable. It is during this phase of radiation sickness that gastrointestinal motility significantly changes. In addition, there is evidence that motor activity of the gut contributes to some of the acute and chronic effects of radiation.

  3. The Brookhaven Radiation Effects Facility

    Energy Technology Data Exchange (ETDEWEB)

    Grand, P.; Snead, C.L.; Ward, T.

    1988-01-01

    The Neutral Particle Beam (NPB) Radiation Effects Facility (REF), funded by the Strategic Defense Initiative Office (SDIO) through the Defense Nuclear Agency (DNA) and the Air Force Weapons Laboratory (AFWL), has been constructed at Brookhaven National Laboratory (BNL). Operation started in October 1986. The facility is capable of delivering pulsed H{sup -}, H{sup o}, and H{sup +} beams of 100 to 200 MeV energy up to 30 mA peak current. Pulses can be adjusted from 5 {mu}s to 500 {mu}s length at a repetition rate of 5 pps. The beam spot on target is adjustable from 3 to 100 cm diameter (2 {sigma}) resulting in a maximum dose of about 10 MRads (Si) per pulse (small beam spot). Experimental use of the REF is being primarily supported by the SDI lethality (LTH-4) program. The program has addressed ionization effects in electronics, both dose rate and total dose dependence, radiation-sensitive components, and dE/dx effects in energetic materials including propellants and high explosives (HE). This paper describes the facility, its capabilities and potential, and the experiments that have been carried out to date or are being planned. 2 refs., 10 figs.

  4. The Brookhaven Radiation Effects Facility

    International Nuclear Information System (INIS)

    Grand, P.; Snead, C.L.; Ward, T.

    1988-01-01

    The Neutral Particle Beam (NPB) Radiation Effects Facility (REF), funded by the Strategic Defense Initiative Office (SDIO) through the Defense Nuclear Agency (DNA) and the Air Force Weapons Laboratory (AFWL), has been constructed at Brookhaven National Laboratory (BNL). Operation started in October 1986. The facility is capable of delivering pulsed H - , H/sup o/, and H + beams of 100 to 200 MeV energy up to 30 mA peak current. Pulses can be adjusted from 5 μs to 500 μs length at a repetition rate of 5 pps. The beam spot on target is adjustable from 3 to 100 cm diameter (2 σ) resulting in a maximum dose of about 10 MRads (Si) per pulse (small beam spot). Experimental use of the REF is being primarily supported by the SDI lethality (LTH-4) program. The program has addressed ionization effects in electronics, both dose rate and total dose dependence, radiation-sensitive components, and dE/dx effects in energetic materials including propellants and high explosives (HE). This paper describes the facility, its capabilities and potential, and the experiments that have been carried out to date or are being planned. 2 refs., 10 figs

  5. Effects of radiation on DNA

    International Nuclear Information System (INIS)

    Braddock, M.

    1985-07-01

    The hydroxyl radical (OH radical) is the most damaging radical produced by the effect of ionizing radiation in water. The rate of reaction of the OH radical with purified, native and isodisperse DNA has been determined as compared with calf thymus DNA. This has been achieved by direct observation of the rate of formation of the DNA-OH radical adduct, and by competition with SCN - . Results obtained from direct observation are consistent with calculations which have been performed using the encounter frequency model of Braams and Ebert. However, results obtained for OH radical with DNA derived from competition plots suggest a rate constant somewhat lower than that obtained from direct observation. The relative merits of both techniques are discussed. In order to study the effect of energy deposited directly in the DNA, dry films of purified plasmid DNA have been irradiated in a system where the indirect effects of radical interaction have been minimized. The present results indicate that with different molecular lengths of plasmid DNA, non-random breakage may occur, and that additional damage may be brought about at sites of previously existing damage. Differences in the sensitivity of plasmid DNA molecules of varying lengths to radiation induced double strand breaks have been demonstrated. (author)

  6. A comparison of dose-volume constraints derived using peak and longitudinal definitions of late rectal toxicity

    International Nuclear Information System (INIS)

    Gulliford, Sarah L.; Partridge, Mike; Sydes, Matthew R.; Andreyev, Jervoise; Dearnaley, David P.

    2010-01-01

    Background and purpose: Accurate reporting of complications following radiotherapy is an important part of the feedback loop to improve radiotherapy techniques. The definition of toxicity is normally regarded as the maximum or peak (P) grade of toxicity reported over the follow-up period. An alternative definition (integrated longitudinal toxicity (ILT)) is proposed which takes into account both the severity and the duration of the complication. Methods and materials: In this work, both definitions of toxicity were used to derive dose-volume constraints for six specific endpoints of late rectal toxicity from a cohort of patients who received prostate radiotherapy in the MRC RT01 trial. The dose-volume constraints were derived using ROC analysis for 30, 40, 50, 60, 65 and 70 Gy. Results: Statistically significant dose-volume constraints were not derived for all dose levels tested for each endpoint and toxicity definition. However, where both definitions produced constraints, there was generally good agreement. Variation in the derived dose-volume constraints was observed to be larger between endpoints than between the two definitions of toxicity. For one endpoint (stool frequency (LENT/SOM)) statistically significant dose-volume constraints were only derived using ILT. Conclusions: The longitudinal definition of toxicity (ILT) produced results consistent with those derived using peak toxicity and in some cases provided additional information which was not seen by analysing peak toxicity alone.

  7. Effects of ionizing radiation on vitamins

    International Nuclear Information System (INIS)

    Thayer, D.W.; Fox, J.B. Jr.; Lakritz, L.

    1991-01-01

    Vitamins are known to be sensitive to the effects of ionizing radiation. Since most foods contain a large proportion of water, the most probable reaction of the ionizing radiation would be with water; and as vitamins are present in very small amounts compared with other substances in the food they will be affected indirectly by the radiation. This chapter discusses the effect of ionizing radiation on water soluble vitamins and fat soluble vitamins. (author)

  8. Radiation effects of high and low doses

    International Nuclear Information System (INIS)

    El-Naggar, A.M.

    1998-01-01

    The extensive proliferation of the uses and applications of atomic and nuclear energy resulted in possible repercussions on human health. The prominent features of the health hazards that may be incurred after exposure to high and low radiation doses are discussed. The physical and biological factors involved in the sequential development of radiation health effects and the different cellular responses to radiation injury are considered. The main criteria and features of radiation effects of high and low doses are comprehensively outlined

  9. Medical response to effects of ionising radiation

    International Nuclear Information System (INIS)

    Crosbie, W.A.; Gittus, J.H.

    1989-01-01

    The proceedings of a conference on 'Medical Response to Effects of Ionising Radiation' in 1989 in the form of nineteen papers published as a book. Topics discussed include radiation accidents at nuclear facilities, the medical management of radiation casualties, the responsibilities, plans and resources for coping with a nuclear accident and finally the long term effects of radiation, including leukaemia epidemiology studies. All papers were selected and indexed separately. (UK)

  10. Converging Stereotactic Radiotherapy Using Kilovoltage X-Rays: Experimental Irradiation of Normal Rabbit Lung and Dose-Volume Analysis With Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M.; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N.; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi

    2009-01-01

    Purpose: To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. Methods and Materials: A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. Results: A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. Conclusions: A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.

  11. Experimental validation of heterogeneity-corrected dose-volume prescription on respiratory-averaged CT images in stereotactic body radiotherapy for moving tumors

    International Nuclear Information System (INIS)

    Nakamura, Mitsuhiro; Miyabe, Yuki; Matsuo, Yukinori; Kamomae, Takeshi; Nakata, Manabu; Yano, Shinsuke; Sawada, Akira; Mizowaki, Takashi; Hiraoka, Masahiro

    2012-01-01

    The purpose of this study was to experimentally assess the validity of heterogeneity-corrected dose-volume prescription on respiratory-averaged computed tomography (RACT) images in stereotactic body radiotherapy (SBRT) for moving tumors. Four-dimensional computed tomography (CT) data were acquired while a dynamic anthropomorphic thorax phantom with a solitary target moved. Motion pattern was based on cos (t) with a constant respiration period of 4.0 sec along the longitudinal axis of the CT couch. The extent of motion (A 1 ) was set in the range of 0.0–12.0 mm at 3.0-mm intervals. Treatment planning with the heterogeneity-corrected dose-volume prescription was designed on RACT images. A new commercially available Monte Carlo algorithm of well-commissioned 6-MV photon beam was used for dose calculation. Dosimetric effects of intrafractional tumor motion were then investigated experimentally under the same conditions as 4D CT simulation using the dynamic anthropomorphic thorax phantom, films, and an ionization chamber. The passing rate of γ index was 98.18%, with the criteria of 3 mm/3%. The dose error between the planned and the measured isocenter dose in moving condition was within ± 0.7%. From the dose area histograms on the film, the mean ± standard deviation of the dose covering 100% of the cross section of the target was 102.32 ± 1.20% (range, 100.59–103.49%). By contrast, the irradiated areas receiving more than 95% dose for A 1 = 12 mm were 1.46 and 1.33 times larger than those for A 1 = 0 mm in the coronal and sagittal planes, respectively. This phantom study demonstrated that the cross section of the target received 100% dose under moving conditions in both the coronal and sagittal planes, suggesting that the heterogeneity-corrected dose-volume prescription on RACT images is acceptable in SBRT for moving tumors.

  12. Dose-Volume Histogram Parameters and Clinical Factors Associated With Pleural Effusion After Chemoradiotherapy in Esophageal Cancer Patients

    International Nuclear Information System (INIS)

    Shirai, Katsuyuki; Tamaki, Yoshio; Kitamoto, Yoshizumi; Murata, Kazutoshi; Satoh, Yumi; Higuchi, Keiko; Nonaka, Tetsuo; Ishikawa, Hitoshi; Katoh, Hiroyuki; Takahashi, Takeo; Nakano, Takashi

    2011-01-01

    Purpose: To investigate the dose-volume histogram parameters and clinical factors as predictors of pleural effusion in esophageal cancer patients treated with concurrent chemoradiotherapy (CRT). Methods and Materials: Forty-three esophageal cancer patients treated with definitive CRT from January 2001 to March 2007 were reviewed retrospectively on the basis of the following criteria: pathologically confirmed esophageal cancer, available computed tomography scan for treatment planning, 6-month follow-up after CRT, and radiation dose ≥50 Gy. Exclusion criteria were lung metastasis, malignant pleural effusion, and surgery. Mean heart dose, mean total lung dose, and percentages of heart or total lung volume receiving ≥10-60 Gy (Heart-V 10 to V 60 and Lung-V 10 to V 60 , respectively) were analyzed in relation to pleural effusion. Results: The median follow-up time was 26.9 months (range, 6.7-70.2) after CRT. Of the 43 patients, 15 (35%) developed pleural effusion. By univariate analysis, mean heart dose, Heart-V 10 to V 60 , and Lung-V 50 to V 60 were significantly associated with pleural effusion. Poor performance status, primary tumor of the distal esophagus, and age ≥65 years were significantly related with pleural effusion. Multivariate analysis identified Heart-V 50 as the strongest predictive factor for pleural effusion (p = 0.01). Patients with Heart-V 50 50 50 ≥40% had 6%, 44%, and 64% of pleural effusion, respectively (p 50 is a useful parameter for assessing the risk of pleural effusion and should be reduced to avoid pleural effusion.

  13. Intensity modulated radiotherapy for localized prostate cancer: rigid compliance to dose-volume constraints as a warranty of acceptable toxicity?

    International Nuclear Information System (INIS)

    Chen, Michael J; Nadalin, Wladmir; Weltman, Eduardo; Hanriot, Rodrigo M; Luz, Fábio P; Cecílio, Paulo J; Cruz, José C da; Moreira, Frederico R; Santos, Adriana S; Martins, Lidiane C

    2007-01-01

    To report the toxicity after intensity modulated radiotherapy (IMRT) for patients with localized prostate cancer, as a sole treatment or after radical prostatectomy. Between August 2001 and December 2003, 132 patients with prostate cancer were treated with IMRT and 125 were evaluable to acute and late toxicity analysis, after a minimum follow-up time of one year. Clinical and treatment data, including normal tissue dose-volume histogram (DVH) constraints, were reviewed. Gastro-intestinal (GI) and genito-urinary (GU) signs and symptoms were evaluated according to the Radiation Therapy Oncology Group (RTOG) toxicity scales. Median prescribed dose was 76 Gy. Median follow-up time was of 26.1 months. From the 125 patients, 73 (58.4%) presented acute Grade 1 or Grade 2 GI and 97 (77.2%) presented acute Grade 1 or Grade 2 GU toxicity. Grade 3 GI acute toxicity occurred in only 2 patients (1.6%) and Grade 3 GU acute toxicity in only 3 patients (2.4%). Regarding Grade 1 and 2 late toxicity, 26 patients (20.8%) and 21 patients (16.8%) presented GI and GU toxicity, respectively. Grade 2 GI late toxicity occurred in 6 patients (4.8%) and Grade 2 GU late toxicity in 4 patients (3.2%). None patient presented any Grade 3 or higher late toxicity. Non-conformity to DVH constraints occurred in only 11.2% of treatment plans. On univariate analysis, no significant risk factor was identified for Grade 2 GI late toxicity, but mean dose delivered to the PTV was associated to higher Grade 2 GU late toxicity (p = 0.042). IMRT is a well tolerable technique for routine treatment of localized prostate cancer, with short and medium-term acceptable toxicity profiles. According to the data presented here, rigid compliance to DHV constraints might prevent higher incidences of normal tissue complication

  14. Radiation effects in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Begay, F.; Rosen, L.; Petersen, D.F.; Mason, C.; Travis, B. [Los Alamos National Lab., NM (United States); Yazzie, A. [Navajo Nation, Window Rock, AZ (United States). Dept. of History; Isaac, M.C.P.; Seaborg, G.T. [Lawrence Berkeley National Lab., CA (United States); Leavitt, C.P. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy

    1999-04-01

    Although the Navajo possess substantial resource wealth-coal, gas, uranium, water-this potential wealth has been translated into limited permanent economic or political power. In fact, wealth or potential for wealth has often made the Navajo the victims of more powerful interests greedy for the assets under limited Navajo control. The primary focus for this education workshop on the radiation effects in the environment is to provide a forum where scientists from the nuclear science and technology community can share their knowledge toward the advancement and diffusion of nuclear science and technology issues for the Navajo public. The scientists will make an attempt to consider the following basic questions; what is science; what is mathematics; what is nuclear radiation? Seven papers are included in this report: Navajo view of radiation; Nuclear energy, national security and international stability; ABC`s of nuclear science; Nuclear medicine: 100 years in the making; Radon in the environment; Bicarbonate leaching of uranium; and Computational methods for subsurface flow and transport. The proceedings of this workshop will be used as a valuable reference materials in future workshops and K-14 classrooms in Navajo communities that need to improve basic understanding of nuclear science and technology issues. Results of the Begay-Stevens research has revealed the existence of strange and mysterious concepts in the Navajo Language of nature. With these research results Begay and Stevens prepared a lecture entitled The Physics of Laser Fusion in the Navajo language. This lecture has been delivered in numerous Navajo schools, and in universities and colleges in the US, Canada, and Alaska.

  15. Effects of ionizing radiation on life

    International Nuclear Information System (INIS)

    Rausch, L.

    1982-01-01

    Radiobiology in the last years was able to find detailed explanations for the effects of ionizing radiation on living organisms. But it is still impossible to make exact statements concerning the damages by radiation. Even now, science has to content itself with probability data. Moreover no typical damages of ionizing radiation can be identified. Therefore, the risks of ionizing radiation can only be determined by comparison with the spontaneous rate of cancerous or genetic defects. The article describes the interaction of high-energy radiation with the molecules of the organism and their consequences for radiation protection. (orig.)

  16. γ radiation effects on Collembola

    International Nuclear Information System (INIS)

    Loring, S.J.

    1985-01-01

    Pitfall traps were used to collect surface-active Collembola at intervals of 10-100 m from a γ radiation source on Long Island, N.Y., during the summer of 1968. Thirty-two species of Collembola were collected along the radiation transect. Community diversities were similar at all intervals except 10 m. Collembola appeared resistant to γ radiation; only chronic, very high γ radiation exposure seriously affected population levels and community diversity of surface Collembola

  17. Finding dose-volume constraints to reduce late rectal toxicity following 3D-conformal radiotherapy (3D-CRT) of prostate cancer

    International Nuclear Information System (INIS)

    Greco, Carlo; Mazzetta, Chiara; Cattani, Federica; Tosi, Giampiero; Castiglioni, Simona; Fodor, Andrei; Orecchia, Roberto

    2003-01-01

    Background and purpose: The rectum is known to display a dose-volume effect following high-dose 3D-conformal radiotherapy (3D-CRT). The aim of the study is to search for significant dose-volume combinations with the specific treatment technique and patient set-up currently used in our institution. Patients and methods: We retrospectively analyzed the dose-volume histograms (DVH) of 135 patients with stage T1b-T3b prostate cancer treated consecutively with 3D-CRT between 1996 and 2000 to a total dose of 76 Gy. The median follow-up was 28 months (range 12-62). All late rectal complications were scored using RTOG criteria. Time to late toxicity was assessed using the Kaplan-Meyer method. The association between variables at baseline and ≥2 rectal toxicity was tested using χ 2 test or Fisher's exact test. A multivariate analysis using logistic regression was performed. Results: Late rectal toxicity grade ≥2 was observed in 24 of the 135 patients (17.8%). A 'grey area' of increased risk has been identified. Average DVHs of the bleeding and non-bleeding patients were generated. The area under the percent volume DVH for the rectum of the bleeding patients was significantly higher than that of patients without late rectal toxicity. On multivariate analysis the correlation between the high risk DVHs and late rectal bleeding was confirmed. Conclusions: The present analysis confirms the role of the rectal DVH as a tool to discriminate patients undergoing high-dose 3D-CRT into a low and a high risk of developing late rectal bleeding. Based on our own results and taking into account the data published in the literature, we have been able to establish new dose-volume constraints for treatment planning: if possible, the percentage of rectal volume exposed to 40, 50, 60, 72 and 76 Gy should be limited to 60, 50, 25, 15 and 5%, respectively

  18. Biologic effects of electromagnetic radiation and microwave

    International Nuclear Information System (INIS)

    Deng Hua

    2002-01-01

    Electromagnetic radiation and microwave exist mankind's environment widely. People realize they disserve authors' health when authors make use of them. Electromagnetic radiation is one of the major physic factors which injure people's health. A review of the biologic mechanism about electromagnetic radiation and microwave, their harmful effects to human body, problems in authors' research and the prospect

  19. Study of biological effect of radiation

    International Nuclear Information System (INIS)

    Li Guisheng

    1992-01-01

    The some progress on the study of biological effect for protract exposure to low dose rate radiation is reported, and it is indicated that the potential risk of this exposure for the human health and the importance of the routine monitoring of radiation dose for various nuclear installations. The potential exposure to the low dose rate radiation would attract people's extra attention

  20. Molecular and cellular effects of radiations

    International Nuclear Information System (INIS)

    Peak, M.J.; Peak, J.G.; Ito, A.; Roth, R.M.

    1985-01-01

    This program is concerned with the basic nature of the biological effects of mutagenic and carcinogenic environmental radiations, including those solar ultraviolet and visible radiations responsible for the most common form of human cancer: cancer of the skin. Concentrating on the damages to DNA caused by these radiations, the program attempts to delineate the basic mechanisms whereby such damage may occur. 14 refs

  1. Radiation effects on biochemical systems

    International Nuclear Information System (INIS)

    Seddon, G.M.

    2000-04-01

    Xanthine oxidase catalyses the oxidative hydroxylation of hypoxanthine, xanthine and a wide range of carbonyl compounds. The enzyme exists as an oxidase and a dehydrogenase; both catalyze the oxidation of the same substrates. Steady state radiolysis and pulse radiolysis were used to generate oxidative and reductive free radicals. Their effects on the enzymatic activity of xanthine oxidase were determined. Initially inactivation studies were carried out to evaluate the extent to which radiolysis in aqueous solution affects the enzyme activity. Values of D 37 and G inactivation were calculated following irradiation in the presence of free radical scavengers and in the presence of catalase and superoxide dismutase. The kinetic constants Vmax and Km were also determined following radiolysis. The effect of ionising radiation on the iron content of xanthine oxidase was measured using atomic absorption spectrometry. Native gel electrophoresis and iso-electric focussing were performed in an attempt to demonstrate changes in the overall structure of the enzyme. The binding of xanthine oxidase to heparin was carried out by measuring, (1) the displacement of methylene blue (MB + ) from a heparin-MB + complex, (2) affinity chromatography and, (3) pulse radiolysis. The effect of irradiation on the binding process was investigated using techniques (1) and (2). Finally the radiation-induced conversion of xanthine oxidase to dehydrogenase was established. The results indicate that xanthine oxidase is inactivated greatest in the presence of air and irradiation causes Vmax to he reduced and Km to increase. The iron content of irradiated xanthine oxidase is unaffected. Electrophoresis shows the enzyme becomes fragmented and the isoelectric points of the fragments vary over a wide range of pH. Binding of xanthine oxidase to heparin as measured by displacement of MB + from a heparin-MB + complex suggests that irradiation increases the affinity of the enzyme for the polyanion, whereas

  2. The effects of radiation on man

    International Nuclear Information System (INIS)

    Saunders, P.

    1981-01-01

    Available evidence on the effects of high levels of radiation on man and the predictions which have been made on possible low level effects, by extrapolation of the high level data, are summarised. The factors which influence the biological effects of radiation are examined and acute, delayed, somatic and hereditary effects as reported in the literature, are discussed. (U.K.)

  3. Dose-volume analysis of hypothyroidism in patients irradiated to the neck

    International Nuclear Information System (INIS)

    Te, Vuong; Liu, Mitchell C.C.; Parker, William; Curtin-Savard, Arthur J.; Clark, Brenda

    1997-01-01

    Purpose: To determine if the incidence of hypothyroidism in patients who have received radiation therapy to the neck region has any relationship with the total dose to the thyroid and volume of thyroid irradiation. Methods and Materials: From 1988 to 1996, TSH levels were measured at regular intervals of every 3 to 6 months in 528 patients with head and neck cancers or lymphomas (Hodgkin and non-Hodgkin) who had received radiation therapy to the neck region. Hypothyroidism was defined by TSH of ≥ 5 (normal range: 0.5 - 4mU/L). Medical charts, radiotherapy charts, treatment planning films, dosimetry and CT scans/MRI were reviewed. Thyroid volume was determined utilizing treatment planning films and CT scans/MRI. Four hundred and six patients had normal TSH prior to radiation and sufficient information to be eligible for analysis. There were 264 (65%) male and 142 (35%) female, median age was 59 yr (range: 12 - 85). Median follow-up was 39.5 months (range: 1 - 289 months). Results: Out of the 406 eligible patients, 152 (37%) had developed hypothyroidism. The actuarial incidence of hypothyroidism at 1 yr, 3 yr and 5 yr are 9.1%, 29% and 38.5%, respectively. Analysis of volume effect and dose effect are as follows: When the radiation dose to the thyroid and the volume of thyroid irradiated are analyzed together, the group of patients who received ≥ 60Gy to half of thyroid or received ≥ 30Gy to the whole thyroid has increased risk of developing hypothyroidism as compared to those receiving <60Gy to half the thyroid or <30Gy to the whole thyroid (p=.0001). Conclusions: The actuarial incidence of hypothyroidism at 5 year in patients who had received radiation to the neck is 38.5%. Patients who received ≥ 60Gy to half the thyroid or received ≥ 30Gy to the whole thyroid are at higher risk of developing hyperthyroidism

  4. Long term effects of radiation in man

    International Nuclear Information System (INIS)

    Tso Chih Ping; Idris Besar

    1984-01-01

    An overview of the long term effects of radiation in man is presented, categorizing into somatic effects, genetic effects and teratogenic effects, and including an indication of the problems that arise in their determination. (author)

  5. Non controlled effect of ionizing radiations : involvement for radiation protection

    International Nuclear Information System (INIS)

    Little, J. B.

    2005-01-01

    It is widely accepted that damage to DNA is the critical event on irradiated cells, and that double strand breaks are the primary DNA lesions responsible for the biological effects of ionizing radiation. This has lead to the long standing paradigm that these effects, be they cytotoxicity, mutagenesis or malignant transformation, occur in irradiated cells as a consequences of the DNA damage they incur. Evidence has been accumulating over the past decade, however, to indicate that radiation may induce effects that ar not targeted to the irradiated cells itself. Two non-targeted effects will be described in this review. The first, radiation-induced genomic instability, is a phenomenon whereby signals are transmitted to the progeny of the irradiated cell over many generations, leading to the occurrence of genetic effects such as mutations and chromosomal aberrations arising in the distant descendants of the irradiated cell. Second, the bystander effect, is a phenomenon whereby irradiated cells transmit damage signals to non-irradiated cells in a mixed population, leading to genetic effects arising in these bystander cells that received no radiation exposure. the model system described in this review involves dense monolayer cultures exposed to very low fluences of alpha particles. The potential implications of these two phenomena for the analysis of the risk to the human population of exposure to low levels of ionising radiation is discussed. (Author) 111 refs

  6. Radiation effects on materials in high-radiation environments

    International Nuclear Information System (INIS)

    Weber, W.J.; Mansur, L.K.; Clinard, F.W. Jr.; Parkin, D.M.

    1991-01-01

    A workshop on Radiation Effects on Materials in High-Radiation Environments was held in Salt Lake City, Utah (USA) from August 13 to 15, 1990 under the auspices of the Division of Materials Sciences, Office of Basic Energy Sciences, US Department of Energy. The workshop focused on ceramics, alloys, and intermetallics and covered research needs and capabilities, recent experimental data, theory, and computer simulations. It was concluded that there is clearly a continuing scientific and technological need for fundamental knowledge on the underlying causes of radiation-induced property changes in materials. Furthermore, the success of many current and emerging nuclear-related technologies critically depend on renewed support for basic radiation-effects research, irradiation facilities, and training of scientists. The highlights of the workshop are reviewed and specific recommendations are made regarding research needs. (orig.)

  7. Graphene Field Effect Transistor for Radiation Detection

    Science.gov (United States)

    Li, Mary J. (Inventor); Chen, Zhihong (Inventor)

    2016-01-01

    The present invention relates to a graphene field effect transistor-based radiation sensor for use in a variety of radiation detection applications, including manned spaceflight missions. The sensing mechanism of the radiation sensor is based on the high sensitivity of graphene in the local change of electric field that can result from the interaction of ionizing radiation with a gated undoped silicon absorber serving as the supporting substrate in the graphene field effect transistor. The radiation sensor has low power and high sensitivity, a flexible structure, and a wide temperature range, and can be used in a variety of applications, particularly in space missions for human exploration.

  8. Radiation-induced polymerization and radiation effect on polymers

    International Nuclear Information System (INIS)

    Seguchi, Tadao

    1977-12-01

    The processes of radiation-induced polymerization of monomers and also radiation effects on polymers have been studied by instrumental analyses of electron spin resonance (ESR), nuclear magnetic resonance (NMR) and electron microscopy. In radiation-induced polymerization, graft-copolymerization and absorbed state polymerization were taken up. For graft-copolymerization, monomers such as methylmethacrylate and butadiene were made to react with irradiated polyethylene, and behaviors of the initiating radicals and propagating radicals were followed under the reaction by ESR. For absorbed state polymerization, acrylonitrile/zeolite and methylmethacrylate/zeolite were chosen. Absorbed monomers were irradiated at 77 0 K and polymerized at room temperature. Active species and the concentrations were measured by ESR and the yields of polymer were observed by NMR. In radiation effect on polymers, polyvinylfluoride, polyvinylidenfluoride and polytetrafluoroethylene were taken up. Active species trapped in the polymer matrixes were identified and decay and reactivity of the species were also studied. On the basis of information from the electron microscopy and x-ray analysis, radiation effects on these polymers are described. In polytetrafluoroethylene produced by radiation polymerization, the relation between morphology and polymerization conditions and also the process of crystallization during polymerization were studied. (auth.)

  9. Untargeted effects of ionizing radiation: Implications for radiation pathology

    International Nuclear Information System (INIS)

    Wright, Eric G; Coates, Philip J

    2006-01-01

    The dogma that genetic alterations are restricted to directly irradiated cells has been challenged by observations in which effects of ionizing radiation, characteristically associated with the consequences of energy deposition in the cell nucleus, arise in non-irradiated cells. These, so called, untargeted effects are demonstrated in cells that have received damaging signals produced by irradiated cells (radiation-induced bystander effects) or that are the descendants of irradiated cells (radiation-induced genomic instability). Radiation-induced genomic instability is characterized by a number of delayed adverse responses including chromosomal abnormalities, gene mutations and cell death. Similar effects, as well as responses that may be regarded as protective, have been attributed to bystander mechanisms. Whilst the majority of studies to date have used in vitro systems, some adverse non-targeted effects have been demonstrated in vivo. However, at least for haemopoietic tissues, radiation-induced genomic instability in vivo may not necessarily be a reflection of genomically unstable cells. Rather the damage may reflect responses to ongoing production of damaging signals; i.e. bystander responses, but not in the sense used to describe the rapidly induced effects resulting from direct interaction of irradiated and non-irradiated cells. The findings are consistent with a delayed and long-lived tissue reaction to radiation injury characteristic of an inflammatory response with the potential for persisting bystander-mediated damage. An important implication of the findings is that contrary to conventional radiobiological dogma and interpretation of epidemiologically-based risk estimates, ionizing radiation may contribute to malignancy and particularly childhood leukaemia by promoting initiated cells rather than being the initiating agent. Untargeted mechanisms may also contribute to other pathological consequences

  10. A-bomb radiation effects digest

    International Nuclear Information System (INIS)

    Shigematsu, Itsuzo; Akiyama, Mitoshi; Sasaki, Hideo; Ito, Chikako; Kamada, Nanao.

    1993-01-01

    This publication is the digest of the book 'Genbaku Hoshasen no Jintai Eikyo (Effects of A-bomb Radiation on the Human Body)' (365p.), published in Japanese by Hiroshima International Council for Medical Care of the Radiation-Exposed. Following a brief description on the damage of the atomic bomb, the subjects of malignant tumors, endocrine and metabolic deseases, ocular lesions, dermatologic effects, prenatal exposure, chromosoal aberrations, mutations, sensitivity to radiation, immune function, genetic effects and other effects of radiation are summarized. (J.P.N.)

  11. Long-term effects of ionizing radiation

    International Nuclear Information System (INIS)

    Kaul, Alexander; Burkart, Werner; Grosche, Bernd; Jung, Thomas; Martignoni, Klaus; Stephan, Guenther

    1997-01-01

    This paper approaches the long-term effects of ionizing radiation considering the common thought that killing of cells is the basis for deterministic effects and that the subtle changes in genetic information are important in the development of radiation-induced cancer, or genetic effects if these changes are induced in germ cells

  12. Effects of smoking cessation on hypoxia and its potential impact on radiation treatment effects in lung cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Nieder, C. [Radiation Oncology Unit, Medical Dept., Nordlandssykehuset HF, Bodo (Norway); Inst. of Clinical Medicine, Faculty of Medicine, Univ. of Tromso (Norway); Bremnes, R.M. [Inst. of Clinical Medicine, Faculty of Medicine, Univ. of Tromso (Norway); Dept. of Oncology, Univ. Hospital of North Norway, Tromso (Norway)

    2008-11-15

    Background and purpose: smoking cessation is often attempted in the context of a lung cancer diagnosis. If cessation causes slowly continuing changes of total lung capacity and vital capacity, this may have consequences for lung volume, results of dose-volume histogram (DVH) analysis and targeting precision, in addition to changes in oxygenation, tumor biology (gene expression) and prognosis. Methods: to address the impact of smoking cessation on radiation treatment of lung cancer, a literature review was performed. Results: smoking cessation is associated with important benefits such as improved lung function and a better general health and performance status. In surgically and radiation treated patients, smoking cessation might lead to longer survival and reduced complications. Early data indicate that hypoxia in non-small cell lung cancer should be considered a poor prognostic factor. Yet, specific human data on how hypoxia is influenced by smoking status are not available. The influence of smoking history on the pneumonitis risk is not entirely clear. However, it appears that other factors outweigh the influence of smoking. The short-term effects of smoking cessation on lung function do not appear to cause relevant errors in treatment planning or targeting precision. Yet, no prospective study formally addressing this question was identified. Conclusion: smoking cessation appears to be prognostically beneficial. The role of hypoxia in this context requires more detailed evaluation. (orig.)

  13. Radiation hazards and their effects

    International Nuclear Information System (INIS)

    Lunu, Shyam; Kumar, Hemant; Joshi, Pankaj Kumar; Songara, Venkteshwer

    2012-01-01

    Radiation can be classified into ionizing radiation and non-ionizing radiation, based on whether it is capable of ionizing atoms and breaking chemical bonds. Ultraviolet and higher frequency such as X-rays, gamma rays are ionizing. These pose their own special hazards. Non ionizing radiation is associated with two major potential hazards. i.e. electrical and biological. Additionally includes electric current caused by radiation can generate sparks and create a fire or explosive hazards. Strong radiation can induce current capable of delivering an electric shock. Extremely high power electromagnetic radiation can cause electric currents strong enough to create sparks when an induced voltage exceeds the breakdown voltage of surrounding mediums. A 2009 study at the University of Basal in Switzerland found that intermitted exposure of human cells to a 50 Hz electromagnetic field at a flux density of 10 Gy induced a slight but significant increase of DNA fragmentation in the comet assay. Mobile phones radiation and health concerns have been raised, especially following the enormous increase in the use of wireless mobile telephony throughout the world. Mobile phones use electromagnetic radiation in the microwaves range and some believes this may be harmful to human health. (author)

  14. Volume effect on the radiation injury of rat kidney

    International Nuclear Information System (INIS)

    Lo, Y.-C.; Kutcher, Gerald J.; Ling, Clifton C.

    1996-01-01

    Purpose: To minimize the likelihood of radiation-induced kidney injury in treating tumors, the relationship of tolerance dose and irradiated volume of kidney should be known. We have used a rat model to determine the dose-response relationship when various volumes of the kidney are irradiated. Methods and Materials: Anesthetized adult male rats (CD, 10-12 week old) were irradiated with 250 KV x-rays. The kidney was exteriorized and placed in a jig designed to shield all other tissues. Graded single doses were delivered to each of four volumes: 1/4V (half of one kidney), 1/2V (one whole kidney, or half of each kidney), 3/4V (one and a half kidneys) and 1V, where V is the volume of both kidneys. In addition, to compare radiation injury and surgery, partial nephrectomy was performed for 1/4V, 1/2V and 3/4V. Four to sixteen rats were used for each dose-volume point. The rats have been followed up for 540 days. The endpoints for the damage were: lethality, anemia, glomerular filtration rate, effective renal flow, and histology. Results: We found that: (1) There was a threshold volume for radiation damage; injury did not occur if the volume irradiated was ≤ 1/2V, depending on the endpoints. (2) Median survival times did not depend on the dose when a small volume (i.e., 1/4V or 1/2V) was irradiated. (3) The LD 50 (and the 95% confidence limits) at 450 days were 11.35 (8.08 to 12.13) Gy for 1V, 12.38 (11.08 to 13.40) Gy for 3/4V, 21.16 (17.21 to 26.56) Gy for 1/2V, and 28.80 (21.11 to 65.00) Gy for 1/4V. (4) The ED 50 for animals with hematocrit level ≤0.36 at 365 days was 10.98 (4.96 to 13.67) Gy for 1.0V, and 13.82 (6.16 to 17.97) Gy for 3/4V. For 1/2V, only the 80% confidence limits could be derived, giving ED 50 +40.14 (27.98 to ∞) Gy. (5) The results for all other endpoints were similar to those for hematocrit. (6) The dose response was the same whether to half of each kidney or one whole kidney was irradiated. (7) While the threshold volume for radiation injury

  15. Calculation of normal tissue complication probability and dose-volume histogram reduction schemes for tissues with a critical element architecture

    International Nuclear Information System (INIS)

    Niemierko, Andrzej; Goitein, Michael

    1991-01-01

    The authors investigate a model of normal tissue complication probability for tissues that may be represented by a critical element architecture. They derive formulas for complication probability that apply to both a partial volume irradiation and to an arbitrary inhomogeneous dose distribution. The dose-volume isoeffect relationship which is a consequence of a critical element architecture is discussed and compared to the empirical power law relationship. A dose-volume histogram reduction scheme for a 'pure' critical element model is derived. In addition, a point-based algorithm which does not require precomputation of a dose-volume histogram is derived. The existing published dose-volume histogram reduction algorithms are analyzed. The authors show that the existing algorithms, developed empirically without an explicit biophysical model, have a close relationship to the critical element model at low levels of complication probability. However, it is also showed that they have aspects which are not compatible with a critical element model and the authors propose a modification to one of them to circumvent its restriction to low complication probabilities. (author). 26 refs.; 7 figs

  16. Risk of Late Urinary Complications Following Image Guided Adaptive Brachytherapy for Locally Advanced Cervical Cancer: Refining Bladder Dose-Volume Parameters.

    Science.gov (United States)

    Manea, Elena; Escande, Alexandre; Bockel, Sophie; Khettab, Mohamed; Dumas, Isabelle; Lazarescu, Ioana; Fumagalli, Ingrid; Morice, Philippe; Deutsch, Eric; Haie-Meder, Christine; Chargari, Cyrus

    2018-06-01

    To study correlations between dose-volume parameters of the whole bladder and bladder trigone and late urinary toxicity in locally advanced cervical cancer patients treated with pulsed-dose-rate brachytherapy. Patients with locally advanced cervical cancer treated with chemoradiation therapy and pulsed-dose-rate brachytherapy from 2004 to 2015 were included. Cumulative dose-volume parameters of the whole bladder and bladder trigone were converted into 2-Gy/fraction equivalents (EQD2, with α/β = 3 Gy); these parameters, as well as clinical factors, were analyzed as predictors of toxicity in patients without local relapse. A total of 297 patients fulfilled the inclusion criteria. The median follow-up period was 4.9 years (95% confidence interval 4.5-5.3 years). In patients without local relapse (n = 251), the Kaplan-Meier estimated grade 2 or higher urinary toxicity rates at 3 years and 5 years were 25.4% and 32.1%, respectively. Minimal dose to the most exposed 2 cm 3 of the whole bladder [Formula: see text] , bladder International Commission on Radiation Units & Measurements (ICRU) (B ICRU ) dose, and trigone dose-volume parameters correlated with grade 2 or higher toxicity. At 3 years, the cumulative incidence of grade 2 or higher complications was 22.8% (standard error, 2.9%) for bladder [Formula: see text]   60 Gy EQD2 was significant for grade 2 or higher toxicity (P = .027). The probability of grade 3 or higher toxicities increased with bladder [Formula: see text]  > 80 Gy EQD2 (16.7% vs 1.6%; hazard ratio [HR], 5.77; P = .039), B ICRU dose > 65 Gy EQD2 (4.9% vs 1.3%; HR, 6.36; P = .018), and trigone D 50%  > 60 Gy EQD2 (3.1% vs 1.2%; HR, 6.29; P = .028). Pearson correlation coefficients showed a moderate correlation between bladder [Formula: see text] , B ICRU dose, and bladder trigone D 50% (P < .0001). These data suggest that [Formula: see text]  ≤ 80 Gy EQD2 should be advised for minimizing the risk of severe urinary

  17. Conformal irradiation of the prostate: estimating long-term rectal bleeding risk using dose-volume histograms

    International Nuclear Information System (INIS)

    Hartford, Alan C.; Niemierko, Andrzej; Adams, Judith A.; Urie, Marcia M.; Shipley, William U.

    1996-01-01

    Purpose: Dose-volume histograms (DVHs) may be very useful tools for estimating probability of normal tissue complications (NTCP), but there is not yet an agreed upon method for their analysis. This study introduces a statistical method of aggregating and analyzing primary data from DVHs and associated outcomes. It explores the dose-volume relationship for NTCP of the rectum, using long-term data on rectal wall bleeding following prostatic irradiation. Methods and Materials: Previously published data were reviewed and updated on 41 patients with Stages T3 and T4 prostatic carcinoma treated with photons followed by perineal proton boost, including dose-volume histograms (DVHs) of each patient's anterior rectal wall and data on the occurrence of postirradiation rectal bleeding (minimum FU > 4 years). Logistic regression was used to test whether some individual combination of dose and volume irradiated might best separate the DVHs into categories of high or low risk for rectal bleeding. Further analysis explored whether a group of such dose-volume combinations might be superior in predicting complication risk. These results were compared with results of the 'critical volume model', a mathematical model based on assumptions of underlying radiobiological interactions. Results: Ten of the 128 tested dose-volume combinations proved to be 'statistically significant combinations' (SSCs) distinguishing between bleeders (14 out of 41) and nonbleeders (27 out of 41), ranging contiguously between 60 CGE (Cobalt Gray Equivalent) to 70% of the anterior rectal wall and 75 CGE to 30%. Calculated odds ratios for each SSC were not significantly different across the individual SSCs; however, analysis combining SSCs allowed segregation of DVHs into three risk groups: low, moderate, and high. Estimates of probabilities of normal tissue complications (NTCPs) based on these risk groups correlated strongly with observed data (p = 0.003) and with biomathematical model-generated NTCPs

  18. Some characteristics and effects of natural radiation

    International Nuclear Information System (INIS)

    Mc Laughlin, J.P.

    2015-01-01

    Since life first appeared on the Earth, it has, in all its subsequent evolved forms including human, been exposed to natural radiation in the environment both from terrestrial and extra-terrestrial sources. Being an environmental mutagen, ionising natural radiation may have played a role of some significance in the evolution of early life forms on Earth. It has been estimated by United Nations Scientific Committee on the Effects of Atomic Radiation that at the present time, exposure to natural radiation globally results in an annual average individual effective dose of about 2.4 mSv. This represents about 80 % of the total dose from all sources. The three most important components of natural radiation exposure are cosmic radiation, terrestrial radioactivity and indoor radon. Each of these components exhibits both geographical and temporal variabilities with indoor radon exposure being the most variable and also the largest contributor to dose for most people. In this account, an overview is given of the characteristics of the main components of the natural radiation environment and some of their effects on humans. In the case of cosmic radiation, these range from radiation doses to aircrew and astronauts to the controversial topic of its possible effect on climate change. In the case of terrestrial natural radiation, accounts are given of a number of human exposure scenarios. (author)

  19. Towards the elimination of Monte Carlo statistical fluctuation from dose volume histograms for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Sempau, J.; Bielajew, A.F.

    2000-01-01

    The Monte Carlo calculation of dose for radiotherapy treatment planning purposes introduces unavoidable statistical noise into the prediction of dose in a given volume element (voxel). When the doses in these voxels are summed to produce dose volume histograms (DVHs), this noise translates into a broadening of differential DVHs and correspondingly flatter DVHs. A brute force approach would entail calculating dose for long periods of time - enough to ensure that the DVHs had converged. In this paper we introduce an approach for deconvolving the statistical noise from DVHs, thereby obtaining estimates for converged DVHs obtained about 100 times faster than the brute force approach described above. There are two important implications of this work: (a) decisions based upon DVHs may be made much more economically using the new approach and (b) inverse treatment planning or optimization methods may employ Monte Carlo dose calculations at all stages of the iterative procedure since the prohibitive cost of Monte Carlo calculations at the intermediate calculation steps can be practically eliminated. (author)

  20. Equivalent uniform dose concept evaluated by theoretical dose volume histograms for thoracic irradiation.

    Science.gov (United States)

    Dumas, J L; Lorchel, F; Perrot, Y; Aletti, P; Noel, A; Wolf, D; Courvoisier, P; Bosset, J F

    2007-03-01

    The goal of our study was to quantify the limits of the EUD models for use in score functions in inverse planning software, and for clinical application. We focused on oesophagus cancer irradiation. Our evaluation was based on theoretical dose volume histograms (DVH), and we analyzed them using volumetric and linear quadratic EUD models, average and maximum dose concepts, the linear quadratic model and the differential area between each DVH. We evaluated our models using theoretical and more complex DVHs for the above regions of interest. We studied three types of DVH for the target volume: the first followed the ICRU dose homogeneity recommendations; the second was built out of the first requirements and the same average dose was built in for all cases; the third was truncated by a small dose hole. We also built theoretical DVHs for the organs at risk, in order to evaluate the limits of, and the ways to use both EUD(1) and EUD/LQ models, comparing them to the traditional ways of scoring a treatment plan. For each volume of interest we built theoretical treatment plans with differences in the fractionation. We concluded that both volumetric and linear quadratic EUDs should be used. Volumetric EUD(1) takes into account neither hot-cold spot compensation nor the differences in fractionation, but it is more sensitive to the increase of the irradiated volume. With linear quadratic EUD/LQ, a volumetric analysis of fractionation variation effort can be performed.

  1. Brachytherapy dose-volume histogram computations using optimized stratified sampling methods

    International Nuclear Information System (INIS)

    Karouzakis, K.; Lahanas, M.; Milickovic, N.; Giannouli, S.; Baltas, D.; Zamboglou, N.

    2002-01-01

    A stratified sampling method for the efficient repeated computation of dose-volume histograms (DVHs) in brachytherapy is presented as used for anatomy based brachytherapy optimization methods. The aim of the method is to reduce the number of sampling points required for the calculation of DVHs for the body and the PTV. From the DVHs are derived the quantities such as Conformity Index COIN and COIN integrals. This is achieved by using partial uniform distributed sampling points with a density in each region obtained from a survey of the gradients or the variance of the dose distribution in these regions. The shape of the sampling regions is adapted to the patient anatomy and the shape and size of the implant. For the application of this method a single preprocessing step is necessary which requires only a few seconds. Ten clinical implants were used to study the appropriate number of sampling points, given a required accuracy for quantities such as cumulative DVHs, COIN indices and COIN integrals. We found that DVHs of very large tissue volumes surrounding the PTV, and also COIN distributions, can be obtained using a factor of 5-10 times smaller the number of sampling points in comparison with uniform distributed points

  2. Radiation effects in ice: New results

    International Nuclear Information System (INIS)

    Baragiola, R.A.; Fama, M.; Loeffler, M.J.; Raut, U.; Shi, J.

    2008-01-01

    Studies of radiation effects in ice are motivated by intrinsic interest and by applications in astronomy. Here we report on new and recent results on radiation effects induced by energetic ions in ice: amorphization of crystalline ice, compaction of microporous amorphous ice, electrostatic charging and dielectric breakdown and correlated structural/chemical changes in the irradiation of water-ammonia ices

  3. Radiation effects of ion beams on polymers

    International Nuclear Information System (INIS)

    Tagawa, Seiichi

    1993-01-01

    Recent progress in the radiation effects of ion beams on polymers are reviewed briefly. Our recent work on the radiation effects of ion beams on polystyrene thin films on silicon wafers and time resolved emission studies on polymers are described. (orig.)

  4. SU-F-T-340: Direct Editing of Dose Volume Histograms: Algorithms and a Unified Convex Formulation for Treatment Planning with Dose Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Ungun, B [Stanford University, Stanford, CA (United States); Stanford University School of Medicine, Stanford, CA (United States); Fu, A; Xing, L [Stanford University School of Medicine, Stanford, CA (United States); Boyd, S [Stanford University, Stanford, CA (United States)

    2016-06-15

    Purpose: To develop a procedure for including dose constraints in convex programming-based approaches to treatment planning, and to support dynamic modification of such constraints during planning. Methods: We present a mathematical approach that allows mean dose, maximum dose, minimum dose and dose volume (i.e., percentile) constraints to be appended to any convex formulation of an inverse planning problem. The first three constraint types are convex and readily incorporated. Dose volume constraints are not convex, however, so we introduce a convex restriction that is related to CVaR-based approaches previously proposed in the literature. To compensate for the conservatism of this restriction, we propose a new two-pass algorithm that solves the restricted problem on a first pass and uses this solution to form exact constraints on a second pass. In another variant, we introduce slack variables for each dose constraint to prevent the problem from becoming infeasible when the user specifies an incompatible set of constraints. We implement the proposed methods in Python using the convex programming package cvxpy in conjunction with the open source convex solvers SCS and ECOS. Results: We show, for several cases taken from the clinic, that our proposed method meets specified constraints (often with margin) when they are feasible. Constraints are met exactly when we use the two-pass method, and infeasible constraints are replaced with the nearest feasible constraint when slacks are used. Finally, we introduce ConRad, a Python-embedded free software package for convex radiation therapy planning. ConRad implements the methods described above and offers a simple interface for specifying prescriptions and dose constraints. Conclusion: This work demonstrates the feasibility of using modifiable dose constraints in a convex formulation, making it practical to guide the treatment planning process with interactively specified dose constraints. This work was supported by the

  5. SU-F-T-340: Direct Editing of Dose Volume Histograms: Algorithms and a Unified Convex Formulation for Treatment Planning with Dose Constraints

    International Nuclear Information System (INIS)

    Ungun, B; Fu, A; Xing, L; Boyd, S

    2016-01-01

    Purpose: To develop a procedure for including dose constraints in convex programming-based approaches to treatment planning, and to support dynamic modification of such constraints during planning. Methods: We present a mathematical approach that allows mean dose, maximum dose, minimum dose and dose volume (i.e., percentile) constraints to be appended to any convex formulation of an inverse planning problem. The first three constraint types are convex and readily incorporated. Dose volume constraints are not convex, however, so we introduce a convex restriction that is related to CVaR-based approaches previously proposed in the literature. To compensate for the conservatism of this restriction, we propose a new two-pass algorithm that solves the restricted problem on a first pass and uses this solution to form exact constraints on a second pass. In another variant, we introduce slack variables for each dose constraint to prevent the problem from becoming infeasible when the user specifies an incompatible set of constraints. We implement the proposed methods in Python using the convex programming package cvxpy in conjunction with the open source convex solvers SCS and ECOS. Results: We show, for several cases taken from the clinic, that our proposed method meets specified constraints (often with margin) when they are feasible. Constraints are met exactly when we use the two-pass method, and infeasible constraints are replaced with the nearest feasible constraint when slacks are used. Finally, we introduce ConRad, a Python-embedded free software package for convex radiation therapy planning. ConRad implements the methods described above and offers a simple interface for specifying prescriptions and dose constraints. Conclusion: This work demonstrates the feasibility of using modifiable dose constraints in a convex formulation, making it practical to guide the treatment planning process with interactively specified dose constraints. This work was supported by the

  6. Radiobiologic effects at low radiation levels

    International Nuclear Information System (INIS)

    Casarett, G.W.

    1975-01-01

    Data are reviewed on the effects of low radiation doses on mammals. Data from the 1972 report on the Biological Effects of Ionizing Radiation issued by the Advisory Committee of the National Academy of Sciences and National Research Council are discussed. It was concluded that there are certain radiosensitive systems in which low doses of radiation may cause degenerative effects, including gametogenic epithelium, lens of the eye, and developing embryos. Despite extensive investigation of genetic effects, including chromosomal effects, neither the amount of change that will be caused by very low levels of irradiation nor the degree of associated detriment is known

  7. Physics of intense, high energy radiation effects.

    Energy Technology Data Exchange (ETDEWEB)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic

  8. Physics of intense, high energy radiation effects

    International Nuclear Information System (INIS)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-01-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic calculations, the

  9. Radiation Effects on Polymers - XI

    DEFF Research Database (Denmark)

    Ghanem, N. A.; El-Awady, N. I.; Singer, Klaus Albert Julius

    1979-01-01

    With the aim of improving properties of cellulose acetate membranes for reverse osmosis desalination, grafting was performed using high energy electrons. In this paper, the grafting parameters (radiation dose and method, monomer concentration, solvents, chain transfer agent and redox system...

  10. Radiation effects in polycarbonate capacitors

    Directory of Open Access Journals (Sweden)

    Vujisić Miloš

    2009-01-01

    Full Text Available The aim of this paper is to examine the influence of neutron and gamma irradiation on the dissipation factor and capacitance of capacitors with polycarbonate dielectrics. The operation of capacitors subject to extreme conditions, such as the presence of ionizing radiation fields, is of special concern in military industry and space technology. Results obtained show that the exposure to a mixed neutron and gamma radiation field causes a decrease of capacitance, while the loss tangent remains unchanged.

  11. Biological effects of high LET radiations

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masami [Nagasaki Univ. (Japan). Faculty of Pharmaceutical Sciences

    1997-03-01

    Biological effect of radiation is different by a kind of it greatly. Heavy ions were generally more effective in cell inactivation, chromosome aberration induction, mutation induction and neoplastic cell transformation induction than {gamma}-rays in SHE cells. (author)

  12. Genetic effects of ionizing radiation

    International Nuclear Information System (INIS)

    Myers, D.K.; Childs, J.D.

    1980-01-01

    The genetic material in living organisms is susceptible to damage from a wide variety of causes including radiation exposure. Most of this damage is repaired by the organism; the residual damage and damage which is not correctly repaired can lead to genetic changes such as mutations. In lower organisms, most offspring carry an unaltered copy of the genetic information that was present in the parental organism, most of the genetic changes which do occur are not caused by natural background radiation, and the increase in frequency of genetic changes after irradiation at low-dose rates is directly proportional to total radiation dose. The same principles appear to be valid in mammals and other higher organisms. About 105 out of every 1000 humans born suffer from some genetic or partly-genetic condition requiring medical attention at some time. It has been estimated that approximately 1 person in every 2000 born carry a deleterious genetic mutation that was caused by the continued exposure of many generations of our ancestors to natural background radiation. On the same basis, it is predicted that the incidence of genetic diseases would be increased to 106 per 1000 in the children and grandchildren of radiation workers who were exposed to 1 rem per year commencing at age 18. However, there was no detectable change in the health and fitness of mice whose male ancestors were repeatedly exposed to high radiation doses up to 900 rem per generation. (auth)

  13. Postimplantation Analysis Enables Improvement of Dose-Volume Histograms and Reduction of Toxicity for Permanent Seed Implantation

    International Nuclear Information System (INIS)

    Wust, Peter; Postrach, Johanna; Kahmann, Frank; Henkel, Thomas; Graf, Reinhold; Cho, Chie Hee; Budach, Volker; Boehmer, Dirk

    2008-01-01

    Purpose: To demonstrate how postimplantation analysis is useful for improving permanent seed implantation and reducing toxicity. Patients and Methods: We evaluated 197 questionnaires completed by patients after permanent seed implantation (monotherapy between 1999 and 2003). For 70% of these patients, a computed tomography was available to perform postimplantation analysis. The index doses and volumes of the dose-volume histograms (DVHs) were determined and categorized with respect to the date of implantation. Differences in symptom scores relative to pretherapeutic status were analyzed with regard to follow-up times and DVH descriptors. Acute and subacute toxicities in a control group of 117 patients from an earlier study (June 1999 to September 2001) by Wust et al. (2004) were compared with a matched subgroup from this study equaling 110 patients treated between October 2001 and August 2003. Results: Improved performance, identifying a characteristic time dependency of DVH parameters (after implantation) and toxicity scores, was demonstrated. Although coverage (volume covered by 100% of the prescription dose of the prostate) increased slightly, high-dose regions decreased with the growing experience of the users. Improvement in the DVH and a reduction of toxicities were found in the patient group implanted in the later period. A decline in symptoms with follow-up time counteracts this gain of experience and must be considered. Urinary and sexual discomfort was enhanced by dose heterogeneities (e.g., dose covering 10% of the prostate volume, volume covered by 200% of prescription dose). In contrast, rectal toxicities correlated with exposed rectal volumes, especially the rectal volume covered by 100% of the prescription dose. Conclusion: The typical side effects occurring after permanent seed implantation can be reduced by improving the dose distributions. An improvement in dose distributions and a reduction of toxicities were identified with elapsed time between

  14. Estimation of the incidence of late bladder and rectum complications after high-dose (70-78 Gy) conformal radiotherapy for prostate cancer, using dose-volume histograms

    International Nuclear Information System (INIS)

    Boersma, Liesbeth J.; Brink, Mandy van den; Bruce, Allison M.; Shouman, Tarek; Gras, Luuk; Velde, Annet te; Lebesque, Joos V.

    1998-01-01

    Purpose: To investigate whether Dose-Volume Histogram (DVH) parameters can be used to identify risk groups for developing late gastrointestinal (GI) and genitourinary (GU) complications after conformal radiotherapy for prostate cancer. Methods and Materials: DVH parameters were analyzed for 130 patients with localized prostate cancer, treated with conformal radiotherapy in a dose-escalating protocol (70-78 Gy, 2 Gy per fraction). The incidence of late (>6 months) GI and GU complications was classified using the RTOG/EORTC and the SOMA/LENT scoring system. In addition, GI complications were divided in nonsevere and severe (requiring one or more laser treatments or blood transfusions) rectal bleeding. The median follow-up time was 24 months. We investigated whether rectal and bladder wall volumes, irradiated to various dose levels, correlated with the observed actuarial incidences of GI and GU complications, using volume as a continuous variable. Subsequently, for each dose level in the DVH, the rectal wall volumes were dichotomized using different volumes as cutoff levels. The impact of the total radiation dose, and the maximum radiation dose in the rectal and bladder wall was analyzed as well. Results: The actuarial incidence at 2 years for GI complications ≥Grade II was 14% (RTOG/EORTC) or 20% (SOMA/LENT); for GU complications ≥Grade III 8% (RTOG/EORTC) or 21% (SOMA/LENT). Neither for GI complications ≥Grade II (RTOG/EORTC or SOMA/LENT), nor for GU complications ≥Grade III (RTOG/EORTC or SOMA/LENT), was a significant correlation found between any of the DVH parameters and the actuarial incidence of complications. For severe rectal bleeding (actuarial incidence at 2 years 3%), four consecutive volume cutoff levels were found, which significantly discriminated between high and low risk. A trend was observed that a total radiation dose ≥ 74 Gy (or a maximum radiation dose in the rectal wall >75 Gy) resulted in a higher incidence of severe rectal bleeding (p

  15. Modification of genetic effects of gamma radiation by laser radiation

    International Nuclear Information System (INIS)

    Khotyljova, L.V.; Khokhlova, S.A.; Khokhlov, I.V.

    1988-01-01

    Full text: Mutants obtained by means of ionizing radiation and chemical mutagens often show low viability and productivity that makes their use in plant breeding difficult. Methods reducing the destructive mutagen action on important functions of plant organism and increasing quality and practical value of induced mutants would be interesting. We believe that one method for increasing efficiency of experimental mutagenesis in plants is the application of laser radiation as a modificator of genetic effects of ionizing radiation and chemical mutagens. Combined exposure of wheat seedlings to a gamma radiation dose of 2 kR and to laser radiation with the wave length of 632.8 nm (power density - 20 mVt/cm 2 , exposure - 30 min.) resulted in reducing the chromosomal aberration percentage from 30.5% in the gamma version to 16.3% in the combined treatment version. A radiosensibilizing effect was observed at additional exposure of gamma irradiated wheat seeds to laser light with the wave length of 441.6 nm where chromosomal aberration percentage increased from 22% in the gamma-irradiation version to 31% in the combined treatment version. By laser radiation it is also possible to normalize mitotic cell activity suppressed by gamma irradiation. Additional seedling irradiation with the light of helium-neon laser (632.8 nm) resulted in recovery of mitotic cell activity from 21% to 62% and increasing the average content of DNA per nucleus by 10%. The influence of only laser radiation on plant variability was also studied and it was shown that irradiation of wheat seeds and seedlings with pulsed and continuous laser light of visible spectrum resulted in phenotypically altered forms in M 2 . Their frequencies was dependent upon power density, dose and radiation wave length. Number of altered forms increased in going from long-wave to short-wave spectrum region. In comparing efficiency of different laser types of pulsed and continuous exposure (dose - 180 J/cm 2 ) 2% of altered

  16. Radiation effects on light sources and detectors

    International Nuclear Information System (INIS)

    Barnes, C.E.

    1985-01-01

    The rapidly expanding field of optoelectronics includes a wide variety of both military and non-military applications in which the systems must meet radiation exposure requirements. Herein, we review the work on radiation effects on sources and detectors for such optoelectronic systems. For sources the principal problem is permanent damage-induced light output degradation, while for detectors it is ionizing radiation-induced photocurrents

  17. Dose-Volume Histogram Analysis of the Safety of Proton Beam Therapy for Unresectable Hepatocellular Carcinoma

    International Nuclear Information System (INIS)

    Kawashima, Mitsuhiko; Kohno, Ryosuke; Nakachi, Kohei; Nishio, Teiji; Mitsunaga, Shuichi; Ikeda, Masafumi; Konishi, Masaru; Takahashi, Shinichiro; Gotohda, Naoto; Arahira, Satoko; Zenda, Sadamoto; Ogino, Takashi; Kinoshita, Taira

    2011-01-01

    Purpose: To evaluate the safety and efficacy of radiotherapy using proton beam (PRT) for unresectable hepatocellular carcinoma. Methods and Materials: Sixty consecutive patients who underwent PRT between May 1999 and July 2007 were analyzed. There were 42 males and 18 females, with a median age of 70 years (48-92 years). All but 1 patient had a single lesion with a median diameter of 45 mm (20-100 mm). Total PRT dose/fractionation was 76-cobalt Gray equivalent (CGE)/20 fractions in 46 patients, 65 CGE/26 fractions in 11 patients, and 60 CGE/10 fractions in 3 patients. The risk of developing proton-induced hepatic insufficiency (PHI) was estimated using dose-volume histograms and an indocyanine-green retention rate at 15 minutes (ICG R15). Results: None of the 20 patients with ICG R15 of less than 20% developed PHI, whereas 6 of 8 patients with ICG R15 values of 50% or higher developed PHI. Among 32 patients whose ICG R15 ranged from 20% to 49.9%, PHI was observed only in patients who had received 30 CGE (V30) to more than 25% of the noncancerous parts of the liver (n = 5) Local progression-free and overall survival rates at 3 years were 90% (95% confidence interval [CI], 80-99%) and 56% (95% CI, 43-69%), respectively. A gastrointestinal toxicity of Grade ≥2 was observed in 3 patients. Conclusions: ICG R15 and V30 are recommended as useful predictors for the risk of developing PHI, which should be incorporated into multidisciplinary treatment plans for patients with this disease.

  18. Dose-volume complication analysis for visual pathway structures of patients with advanced paranasal sinus tumors

    International Nuclear Information System (INIS)

    Martel, Mary Kaye; Sandler, Howard M.; Cornblath, Wayne T.; Marsh, Lon H.; Hazuka, Mark B.; Roa, Wilson H.; Fraass, Benedict A.; Lichter, Allen S.

    1997-01-01

    Purpose: The purpose of the present work was to relate dose and volume information to complication data for visual pathway structures in patients with advanced paranasal sinus tumors. Methods and Materials: Three-dimensional (3D) dose distributions for chiasm, optic nerve, and retina were calculated and analyzed for 20 patients with advanced paranasal sinus malignant tumors. 3D treatment planning with beam's eye view capability was used to design beam and block arrangements, striving to spare the contralateral orbit (to lessen the chance of unilateral blindness) and frequently the ipsilateral orbit (to help prevent bilateral blindness). Point doses, dose-volume histogram analysis, and normal tissue complication probability (NTCP) calculations were performed. Published tolerance doses that indicate significant risk of complications were used as guidelines for analysis of the 3D dose distributions. Results: Point doses, percent volume exceeding a specified published tolerance dose, and NTCP calculations are given in detail for patients with complications versus patients without complications. Two optic nerves receiving maximum doses below the published tolerance dose sustained damage (mild vision loss). Three patients (of 13) without optic nerve sparing and/or chiasm sparing had moderate or severe vision loss. Complication data, including individual patient analysis to estimate overall risk for loss of vision, are given. Conclusion: 3D treatment planning techniques were used successfully to provide bilateral sparing of the globe for most patients. It was more difficult to spare the optic nerves, especially on the ipsilateral side, when prescription dose exceeded the normal tissue tolerance doses. NTCP calculations may be useful in assessing complication risk better than point dose tolerance criteria for the chiasm, optic nerve, and retina. It is important to assess the overall risk of blindness for the patient in addition to the risk for individual visual pathway

  19. Dose volume assessment of high dose rate 192IR endobronchial implants

    International Nuclear Information System (INIS)

    Cheng, B. Saw; Korb, Leroy J.; Pawlicki, Todd; Wu, Andrew

    1996-01-01

    Purpose: To study the dose distributions of high dose rate (HDR) endobronchial implants using the dose nonuniformity ratio (DNR) and three volumetric irradiation indices. Methods and Materials: Multiple implants were configured by allowing a single HDR 192 Ir source to step through a length of 6 cm along an endobronchial catheter. Dwell times were computed to deliver a dose of 5 Gy to points 1 cm away from the catheter axis. Five sets of source configurations, each with different dwell position spacings from 0.5 to 3.0 cm, were evaluated. Three-dimensional (3D) dose distributions were then generated for each source configuration. Differential and cumulative dose-volume curves were generated to quantify the degree of target volume coverage, dose nonuniformity within the target volume, and irradiation of tissues outside the target volume. Evaluation of the implants were made using the DNR and three volumetric irradiation indices. Results: The observed isodose distributions were not able to satisfy all the dose constraints. The ability to optimally satisfy the dose constraints depended on the choice of dwell position spacing and the specification of the dose constraint points. The DNR and irradiation indices suggest that small dwell position spacing does not result in a more homogeneous dose distribution for the implant. This study supports the existence of a relationship between the dwell position spacing and the distance from the catheter axis to the reference dose or dose constraint points. Better dose homogeneity for an implant can be obtained if the spacing of the dwell positions are about twice the distance from the catheter axis to the reference dose or dose constraint points

  20. Bystander Effects of Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Little, John B. [Harvard T.H. Chan School of Public Health, Boston, MA (United States). Dept. of Genetics and Complex Diseases

    2017-01-17

    The objectives of this grant renewal are to provide administrative support and travel funds to allow the continued participation of the principal investigator (Dr. John B. Little) as an advisor to research initiated by several research fellows from his laboratory. The actual research will be carried out under the direction of Dr. Hatsumi Nagasawa with the collaboration of Dr. Joel Bedford at the Colorado State University, and by Drs. Edouard Azzam and Sonia de Toledo at the University of Medicine and Dentistry of New Jersey. Dr. Little will advise on the planning of experiments and development of experimental protocols, the analysis of data, and the preparation of manuscripts for publication. The Specific Aims for several of the planned experiments include: 1) to extend studies of the role of recombinational repair in the bystander effect by examining other genes in this pathway and cell lines deficient in excision repair; 2) to continue studies to determine the nature of the damage signal transmitted to bystander cells including the expression of several connexins in the bystander response, and the extent to which the enhanced oxidative metabolism observed in bystander cells may relate to the nature of the transmitted bystander signal; 3) to utilize a genome-wide approach to examine the genetic basis for the hypersensitivity to ionization we have observed in unaffected parents of patients with hereditary retinoblastoma, as well as from a group of apparently normal individuals that show similar radiosensitivity; 4) to complete studies concerning the induction of high frequencies of cells with massive chromosome damage in clonal derivatives of p53 and p21 knockout mouse cell lines; in particular to examine the role of telomere changes in this phenomenon. Overall, the results of these studies should enhance our understanding of the risk of low-dose exposures to ionizing radiation, including human populations to residential radon as well as occupational exposures.

  1. Bystander Effects of Ionizing Radiation

    International Nuclear Information System (INIS)

    Little, John B.

    2017-01-01

    The objectives of this grant renewal are to provide administrative support and travel funds to allow the continued participation of the principal investigator (Dr. John B. Little) as an advisor to research initiated by several research fellows from his laboratory. The actual research will be carried out under the direction of Dr. Hatsumi Nagasawa with the collaboration of Dr. Joel Bedford at the Colorado State University, and by Drs. Edouard Azzam and Sonia de Toledo at the University of Medicine and Dentistry of New Jersey. Dr. Little will advise on the planning of experiments and development of experimental protocols, the analysis of data, and the preparation of manuscripts for publication. The Specific Aims for several of the planned experiments include: 1) to extend studies of the role of recombinational repair in the bystander effect by examining other genes in this pathway and cell lines deficient in excision repair; 2) to continue studies to determine the nature of the damage signal transmitted to bystander cells including the expression of several connexins in the bystander response, and the extent to which the enhanced oxidative metabolism observed in bystander cells may relate to the nature of the transmitted bystander signal; 3) to utilize a genome-wide approach to examine the genetic basis for the hypersensitivity to ionization we have observed in unaffected parents of patients with hereditary retinoblastoma, as well as from a group of apparently normal individuals that show similar radiosensitivity; 4) to complete studies concerning the induction of high frequencies of cells with massive chromosome damage in clonal derivatives of p53 and p21 knockout mouse cell lines; in particular to examine the role of telomere changes in this phenomenon. Overall, the results of these studies should enhance our understanding of the risk of low-dose exposures to ionizing radiation, including human populations to residential radon as well as occupational exposures.

  2. Dose-volume analysis of predictors for chronic rectal toxicity after treatment of prostate cancer with adaptive image-guided radiotherapy

    International Nuclear Information System (INIS)

    Vargas, Carlos; Martinez, Alvaro; Kestin, Larry L.; Yan Di; Grills, Inga; Brabbins, Donald S.; Lockman, David M.; Liang Jian; Gustafson, Gary S.; Chen, Peter Y.; Vicini, Frank A.; Wong, John W.

    2005-01-01

    of rectum or rectal wall radiated to ≥50 Gy was a strong predictor for chronic rectal toxicity. Nonpredictive factors: Rectal solid/wall absolute or relative volumes irradiated to ≤40 Gy, dose level, and use of androgen deprivation were not found predictive. Conclusions In our ART dose escalation study, rectal wall or rectum relative ≥V50 are closely predictive for chronic rectal toxicity. If rectal dose-volume histogram constraints are used to select the dose level, the risk of chronic rectal toxicity will reflect the risk of toxicity of the selected constraint rather than the dose selected as found in our study using an adaptive process. To select the prescribed dose, different dose-volume histogram constraints may be used including the rectal wall V70. Patients experiencing acute rectal toxicity are more likely to experience chronic toxicity

  3. Chernobyl health effects: radiation or stress?

    International Nuclear Information System (INIS)

    Grinkhal', G.

    1996-01-01

    Consideration is given to results of wide-scale examination of human population, subjected to the effect of radiation in result of Chernobyl accident. The examined contingents consisted of liquidators, evacuated from 30-km zone, people still living in contamination territories, children of irradiated parents and children, who received large radiation doses. High levels of respiratory system diseases, digestive system diseases, cardiovascular diseases and nervous system diseases were revealed for these people. It was revealed that stress, socio-economic and chemical factors played sufficient role in disease incidence. It is shown that fair of radiation may damage more, than radiation itself

  4. Late effects of radiation: host factors

    International Nuclear Information System (INIS)

    Fry, R.J.M.; Storer, J.B.

    1983-01-01

    The paper discusses the influence of host factors on radiation late effects and in particular cancer. Radiation induces cellular changes that result in initiated cells with a potential to become cancers. The expression of the initiated cells as tumors is influenced, if not determined, by both tissue and systemic factors that are sex-, age-, and species-dependent

  5. Biological radiation effects and radioprotection standards

    International Nuclear Information System (INIS)

    Clerc, H.

    1991-03-01

    In this report, after recalling the mode of action of ionizing radiations, the notions of dose, dose equivalents and the values of natural irradiation, the author describes the biological radiation effects. Then he presents the ICRP recommendations and their applications to the french radioprotection system

  6. Radiation effects on Fischer-Tropsch syntheses

    International Nuclear Information System (INIS)

    Hatada, M.; Matsuda, K.

    1977-01-01

    Radiation effects on Fischer-Tropsch synthesis has been examined using high dose rate electron beams and Fe-Cu-diatomaceous earth catalyst. Yields of saturated hydrocarbons were found to increase by irradiation, but the yields of these compounds were decreased by raising reaction temperature without irradiation, suggesting the presence of radiation chemical process in catalytic reactions. (author)

  7. Radiation effects in charge coupled devices

    International Nuclear Information System (INIS)

    Williams, R.A.; Nelson, R.D.

    1975-01-01

    Charge coupled devices (CCD s) exhibit a number of advantages (low cost, low power, high bit density) in their several applications (serial memories, imagers, digital filters); however, fairly elementary theoretical considerations indicate that they will be very vulnerable to permanent radiation damage, by both neutrons and ionizing radiation, and to transient upset by pulsed ionizing radiation. Although studies of permanent ionizing-radiation damage in CCD's have been reported, little information has been published concerning their overall nuclear radiation vulnerability. This paper presents a fairly comprehensive experimental study of radiation effects in a 256-cell surface-channel, CCD shift-register. A limited amount of similar work is also presented for a 128-cell surface-channel device and a 130 cell peristaltic CCD shift register. The radiation effects phenomena discussed herein, include transient-ionizing-radiation responses, permanent ionizing- radiation damage to transfer efficiency, charge-carrying capacity and input transfer gate bias, and neutron damage to storage time--determined from dark current and charge-up time measurements

  8. Coherence effects in radiative scattering

    International Nuclear Information System (INIS)

    Knoll, J.; Lenk, R.

    1993-03-01

    The bremsstrahl-production of photons in dense matter is reinvestigated using the example of an exactly solvable quantum mechanical model in one space dimension. Coherence phenomena between successive radiative scatterings among the constituents lead to a modification of the production cross section in the medium relative to the incoherent quasi-free prescription used in kinetic models. Analytic expressions for the correction factor have been derived comparing the quantum rates with the corresponding incoherent quasi-free rates. The result has implications for the kinetic description of all kinds of radiative processes in nucleus-nucleus collisions, both on the level of hadron and parton dynamics. (orig.)

  9. Physics of radiation effects in crystals

    CERN Document Server

    Johnson, RA

    1986-01-01

    ``Physics of Radiation Effects in Crystals'' is presented in two parts. The first part covers the general background and theory of radiation effects in crystals, including the theory describing the generation of crystal lattice defects by radiation, the kinetic approach to the study of the disposition of these defects and the effects of the diffusion of these defects on alloy compositions and phases. Specific problems of current interest are treated in the second part and include anisotropic dimensional changes in x-uranium, zirconium and graphite, acceleration of thermal creep in reactor ma

  10. Effects of radiation on scintillating fiber performance

    International Nuclear Information System (INIS)

    Bauer, M.L.; Cohn, H.; Efremenko, Yu.; Gordeev, A.; Kamyshkov, Yu.; Onopienko, D.; Savin, S.; Shmakov, K.; Tarkovsky, E.; Young, K.G.; Carey, R.; Rothman, M.; Sulak, L.; Worstell, W.; Parr, H.

    1992-01-01

    Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain needed information and calculational procedures used in performing predications for hadron scintillating fiber calorimetry in the Superconducting Supercollider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects, and other factors. These calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is also presented

  11. Effects of radiation on scintillating fiber performance

    International Nuclear Information System (INIS)

    Young, K.G.; Bauer, M.L.; Cohn, H.; Efremenko, Yu.; Gordeev, A.; Kamyshkov, Yu.; Onopienko, D.; Savin, S.; Shmakov, K.; Tarkovsky, E.; Carey, R.; Rothman, M.; Sulak, L.; Worstell, W.; Paar, H.

    1993-01-01

    Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain desired information and calculational procedures used in performing predictions for hadron scintillating fiber calorimetry in the Superconducting Supercollider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects, and other factors. The calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is also presented

  12. Characteristics of natural background external radiation and effective dose equivalent

    International Nuclear Information System (INIS)

    Fujimoto, Kenzo

    1989-01-01

    The two sources of natural radiation - cosmic rays and primordial radionuclides - are described. The factors affecting radiation doses received from natural radiation and the calculation of effective dose equivalent due to natural radiation are discussed. 10 figs., 3 tabs

  13. Overview of radiation effects research in photonics

    Science.gov (United States)

    Webb, Robert C.; Cohn, Lewis M.; Taylor, Edward W.; Greenwell, Roger A.

    1995-05-01

    A brief overview of ongoing radiation effects research in photonics is presented focusing on integrated optic and acousto-optic components. A short summary of radiation-induced effects in electro-optic modulators, detector arrays, and other photonic technologies is presented along with extensive references. The coordinated radiation effects studies among researchers within the Tri-Service Organizations and international experimental teams are beginning to demonstrate consistent measurements of radiation-induced effects in photonic components and confirming earlier reported data. This paper will present an overview of these coordinated investigations and focus on key research being conducted with the AFMC Phillips Laboratory, Naval Research Laboratory, Defence Nuclear Agency, NATO Nuclear Effects Task Group, and the Tri-Service Photonics Coordinating Committee.

  14. Effects of small radiation doses

    International Nuclear Information System (INIS)

    Fuchs, G.

    1986-01-01

    The term 'small radiation dosis' means doses of about (1 rem), fractions of one rem as well as doses of a few rem. Doses like these are encountered in various practical fields, e.g. in X-ray diagnosis, in the environment and in radiation protection rules. The knowledge about small doses is derived from the same two forces, on which the radiobiology of human beings nearly is based: interpretation of the Hiroshima and Nagasaki data, as well as the experience from radiotherapy. Careful interpretation of Hiroshima dates do not provide any evidence that small doses can induce cancer, fetal malformations or genetic damage. Yet in radiotherapy of various diseases, e.g. inflammations, doses of about 1 Gy (100 rad) do no harm to the patients. According to a widespread hypothesis even very small doses may induce some types of radiation damage ('no threshold'). Nevertheless an alternative view is justified. At present no decision can be made between these two alternatives, but the usefullness of radiology is definitely better established than any damage calculated by theories or extrapolations. Based on experience any exaggerated fear of radiations can be met. (author)

  15. Effect of radiation processing on meat tenderisation

    International Nuclear Information System (INIS)

    Kanatt, Sweetie R.; Chawla, S.P.; Sharma, Arun

    2015-01-01

    The effect of radiation processing (0, 2.5, 5 and 10 kGy) on the tenderness of three types of popularly consumed meat in India namely chicken, lamb and buffalo was investigated. In irradiated meat samples dose dependant reduction in water holding capacity, cooking yield and shear force was observed. Reduction in shear force upon radiation processing was more pronounced in buffalo meat. Protein and collagen solubility as well as TCA soluble protein content increased on irradiation. Radiation processing of meat samples resulted in some change in colour of meat. Results suggested that irradiation leads to dose dependant tenderization of meat. Radiation processing of meat at a dose of 2.5 kGy improved its texture and had acceptable odour. - Highlights: • Effect of radiation processing on tenderness of three meat systems was evaluated. • Dose dependant reduction in shear force seen in buffalo meat. • Collagen solubility increased with irradiation

  16. Effects of gamma radiation in tomato seeds

    Energy Technology Data Exchange (ETDEWEB)

    Wiendl, Toni A.; Wiendl, Fritz W.; Franco, Suely S.H.; Franco, Jose G.; Althur, Valter, E-mail: tawiendl@hotmail.com, E-mail: gilmita@uol.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Arthur, Paula B., E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2013-07-01

    Tomato dry seeds of the hybrid 'Gladiador' F1 were exposed to low doses of gamma radiation from Co-60 source at 0,509 kGy tax rate in order to study stimulation effects of radiation on germination and plant growth. Eight treatments radiation doses were applied as follows: 0 (control); 2,5; 5,0; 7,5; 10,0; 12,5; 15,0; 20,0 Gy. Seed germination as well as green fruits number, harvested fruit number, fruit weight and total production were assessed to identify occurrence of stimulation. Tomato seeds and plants were handled as for usual tomato production in Brazil. Low doses of gamma radiation treatment in the seeds stimulate germination and substantially increase fruit number and total production up to 86% at 10 Gy dose. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production thus, showing hormetic effects. (author)

  17. Radiation effect on rocket engine performance

    Science.gov (United States)

    Chiu, Huei-Huang; Kross, K. W.; Krebsbach, A. N.

    1990-01-01

    Critical problem areas involving the effect of radiation on the combustion of bipropellants are addressed by formulating a universal scaling law in combination with a radiation-enhanced vaporization combustion model. Numerical algorithms are developed and data pertaining to the Variable Thrust Engine (VTE) and the Space Shuttle Main Engine (SSME) are used to conduct parametric sensitivity studies to predict the principal intercoupling effects of radiation. The analysis reveals that low-enthalpy engines, such as the VTE, are vulnerable to a substantial performance setback due to radiative loss, whereas the performance of high-enthalpy engines such as the SSME are hardly affected over a broad range of engine operation. Combustion enhancement by radiative heating of the propellant has a significant impact on propellants with high absorptivity.

  18. Effects of gamma radiation in tomato seeds

    International Nuclear Information System (INIS)

    Wiendl, Toni A.; Wiendl, Fritz W.; Franco, Suely S.H.; Franco, Jose G.; Althur, Valter; Arthur, Paula B.

    2013-01-01

    Tomato dry seeds of the hybrid 'Gladiador' F1 were exposed to low doses of gamma radiation from Co-60 source at 0,509 kGy tax rate in order to study stimulation effects of radiation on germination and plant growth. Eight treatments radiation doses were applied as follows: 0 (control); 2,5; 5,0; 7,5; 10,0; 12,5; 15,0; 20,0 Gy. Seed germination as well as green fruits number, harvested fruit number, fruit weight and total production were assessed to identify occurrence of stimulation. Tomato seeds and plants were handled as for usual tomato production in Brazil. Low doses of gamma radiation treatment in the seeds stimulate germination and substantially increase fruit number and total production up to 86% at 10 Gy dose. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production thus, showing hormetic effects. (author)

  19. Biological effects of proton radiation: an update

    International Nuclear Information System (INIS)

    Girdhani, S.; Hlatky, L.; Sachs, R.

    2015-01-01

    Proton radiation provides significant dosimetric advantages when compared with gamma radiation due to its superior energy deposition characteristics. Although the physical aspects of proton radiobiology are well understood, biological and clinical endpoints are understudied. The current practice to assume the relative biological effectiveness of low linear energy transfer (LET) protons to be a generic value of about 1.1 relative to photons likely obscures important unrecognised differentials in biological response between these radiation qualities. A deeper understanding of the biological properties induced by proton radiation would have both radiobiological and clinical impact. This article briefly points to some of the literature pertinent to the effects of protons on tissue-level processes that modify disease progression, such as angiogenesis, cell invasion and cancer metastasis. Recent findings hint that proton radiation may, in addition to offering improved radio-therapeutic targeting, be a means to provide a new dimension for increasing therapeutic benefits for patients by manipulating these tissue-level processes. (authors)

  20. The effects of ionizing radiation on man

    International Nuclear Information System (INIS)

    Watson, G.M.

    1975-08-01

    This paper describes the major effects of ionizing radiation on man and the relationship between such effects and radiation dose, with the conclusion that standards of radiological safety must be based on the carcinogenetic and mutagenic properties of ionizing radiation. Man is exposed to radiation from natural sources and from man-made sources. Exposure from the latter should be regulated but, since there is little observational or experimental evidence for predicting the effects of the very small doses likely to be required for adequate standards of safety, it is necessary to infer them from what is seen at high doses. Because the formal relationship between dose and effect is not fully understood, simplifying assumptions are necessary to estimate the effects of low doses. Two such assumptions are conventionally used; that there is a linear relationship between dose and effect at all levels of dose, and that the rate at which a dose of radiation is given does not alter the magnitude of the effect. These assumptions are thought to be conservative, that is they will not lead to an underestimation of the effects of small radiation doses although they may give an over-estimate. (author)

  1. Fast Neutron Radiation Effects on Bacillus Subtili

    International Nuclear Information System (INIS)

    Chen Xiaoming; Zhang Jianguo; Chu Shijin; Ren Zhenglong; Zheng Chun; Yang Chengde; Tan Bisheng

    2009-01-01

    To examine the sterilizing effect and mechanism of neutron radiation, Bacillus subtilis var. niger. strain (ATCC 9372) spores were irradiated with the fast neutron from the Chinese fast burst reactor II(CFBR-II). The plate-count results indicated that the D 10 value was 384.6 Gy with a neutron radiation dose rate of 7.4 Gy/min. The rudimental catalase activity of the spores declined obviously with the increase in the radiation dose. Meanwhile, under the scanning electron microscope, no visible influence of the neutron radiation on the spore configuration was detected even if the dose was increased to 4 kGy. The content and distribution of DNA double-strand breaks induced by neutron radiation at different doses were measured and quantified by pulsed-field gel electrophoresis (PFGE). Further analysis of the DNA release percentage (PR), the DNA breakage level (L), and the average molecular weight, indicated that DNA fragments were obviously distributed around the 5 kb regions at different radiation doses, which suggests that some points in the DNA molecule were sensitive to neutron radiation. Both PR and L varied regularly to some extent with the increase in radiation dose. Thus neutron radiation has a high sterilization power, and can induce falling enzyme activity and DNA breakage in Bacillus subtilis spores

  2. Radiative effects of global MODIS cloud regimes

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji

    2018-01-01

    We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations. PMID:29619289

  3. Radiative Effects of Global MODIS Cloud Regimes

    Science.gov (United States)

    Oraiopoulos, Lazaros; Cho, Nayeong; Lee, Dong Min; Kato, Seiji

    2016-01-01

    We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations.

  4. Predicted solar cell edge radiation effects

    International Nuclear Information System (INIS)

    Gates, M.T.

    1993-01-01

    The Advanced Solar Cell Orbital Test (ASCOT) will test six types of solar cells in a high energy proton environment. During the design of the experiment a question was raised about the effects of proton radiation incident on the edge of the solar cells and whether edge radiation shielding was required. Historical geosynchronous data indicated that edge radiation damage is not detectable over the normal end of life solar cell degradation; however because the ASCOT radiation environment has a much higher and more energetic fluence of protons, considerably more edge damage is expected. A computer analysis of the problem was made by modeling the expected radiation damage at the cell edge and using a network model of small interconnected solar cells to predict degradation in the cell's electrical output. The model indicated that the deepest penetration of edge radiation was at the top of the cell near the junction where the protons have access to the cell through the low density cell/cover adhesive layer. The network model indicated that the cells could tolerate high fluences at their edge as long as there was high electrical resistance between the edge radiated region and the contact system on top of the cell. The predicted edge radiation related loss was less than 2% of maximum power for GaAs/Ge solar cells. As a result, no edge radiation protection was used for ASCOT

  5. The Effects of Ionizing Radiation on Mammalian Cells.

    Science.gov (United States)

    Biaglow, John E.

    1981-01-01

    Discusses the effects of radiation on dividing cells and factors influencing these effects; also briefly reviews the radical mechanism for radiation damage. Emphasizes the importance of oxygen in radiation effects. (CS)

  6. Analysis of clinical complication data for radiation hepatitis using a parallel architecture model

    International Nuclear Information System (INIS)

    Jackson, A.; Haken, R.K. ten; Robertson, J.M.; Kessler, M.L.; Kutcher, G.J.; Lawrence, T.S.

    1995-01-01

    Purpose: The detailed knowledge of dose volume distributions available from the three-dimensional (3D) conformal radiation treatment of tumors in the liver (reported elsewhere) offers new opportunities to quantify the effect of volume on the probability of producing radiation hepatitis. We aim to test a new parallel architecture model of normal tissue complication probability (NTCP) with these data. Methods and Materials: Complication data and dose volume histograms from a total of 93 patients with normal liver function, treated on a prospective protocol with 3D conformal radiation therapy and intraarterial hepatic fluorodeoxyuridine, were analyzed with a new parallel architecture model. Patient treatment fell into six categories differing in doses delivered and volumes irradiated. By modeling the radiosensitivity of liver subunits, we are able to use dose volume histograms to calculate the fraction of the liver damaged in each patient. A complication results if this fraction exceeds the patient's functional reserve. To determine the patient distribution of functional reserves and the subunit radiosensitivity, the maximum likelihood method was used to fit the observed complication data. Results: The parallel model fit the complication data well, although uncertainties on the functional reserve distribution and subunit radiosensitivy are highly correlated. Conclusion: The observed radiation hepatitis complications show a threshold effect that can be described well with a parallel architecture model. However, additional independent studies are required to better determine the parameters defining the functional reserve distribution and subunit radiosensitivity

  7. Internal friction, microstructure, and radiation effects

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Sommer, W.F.; Davidson, D.R.

    1984-01-01

    A brief review is given of internal friction relaxation peaks and background internal friction. The microstructural origin of the internal friction is discussed. Particular emphasis is placed on radiation effects

  8. Effects of solar radiation on glass

    Science.gov (United States)

    Tucker, Dennis S.; Kinser, Donald L.

    1991-01-01

    The effects of solar radiation of selected glasses are reported. Optical property degradation is studied using UV-Vis spectrophotometry. Strength changes are measured using a concentric ring bend test. Direct fracture toughness measurements using an indentation test are planned.

  9. Decomposition of radiational effects of model feedbacks

    International Nuclear Information System (INIS)

    Ellsaesser, H.W.; MacCracken, M.C.; Potter, G.L.; Mitchell, C.S.

    1981-08-01

    Three separate doubled CO 2 experiments with the statistical dynamic model are used to illustrate efforts to study the climate dynamics, feedbacks, and interrelationships of meteorological parameters by decomposing and isolating their individual effects on radiation transport

  10. Sterilizing radiation effects on selected polymers

    International Nuclear Information System (INIS)

    Skiens, W.E.

    1979-03-01

    The mechanism of radiation effects and their industrial applications are discussed for the following classes of polymers: thermoplastics, thermosets, elastomers, films and fibers, and adhesives/coatings/potting compounds. 35 references, 3 tables

  11. Radiobiology: Biologic effects of ionizing radiations

    International Nuclear Information System (INIS)

    Held, K.D.

    1987-01-01

    The biologic effects after exposure to ionizing radiation, such as cell death or tissue injury, result from a chain of complex physical, chemical, metabolic, and histologic events. The time scale of these radiation actions spans many orders of magnitude. The physical absorption of ionizing radiation occurs in about 10 -18 s, while late carcinogenic and genetic effects are expressed years or even generations later. Collectively, these effects form the science of radiobiology. Many of the concepts discussed in this chapter have been developed through the study of effects generated in tissues by external radiation sources, but they apply generally and often specifically to internally distributed radiopharmaceuticals which form the central topic of this book

  12. Genetic effects of ionizing radiations in Eucaryocytes

    International Nuclear Information System (INIS)

    Jullien, Pierre

    1976-01-01

    The litterature on the genetic effects of ionizing radiations is reviewed, especially as concerns specific loci or chromosome mutations. Extrapolation from one species to another is considered as well as extra-nuclear mutations [fr

  13. The effect of ionizing radiation on cyanophyta

    International Nuclear Information System (INIS)

    Kondrat'eva, N.V.; Shevchenko, T.F.; Golubkova, M.G.

    1989-01-01

    Publication data on the effect of ionizing radiation on cyanophyta are generalized. The conclusion about the presence of premises for forming cyanophyta radiobiology as special direction of procaryotic algae investigation is made

  14. [Effects of radiation exposure on human body].

    Science.gov (United States)

    Kamiya, Kenji; Sasatani, Megumi

    2012-03-01

    There are two types of radiation health effect; acute disorder and late on-set disorder. Acute disorder is a deterministic effect that the symptoms appear by exposure above a threshold. Tissues and cells that compose the human body have different radiation sensitivity respectively, and the symptoms appear in order, from highly radiosensitive tissues. The clinical symptoms of acute disorder begin with a decrease in lymphocytes, and then the symptoms appear such as alopecia, skin erythema, hematopoietic damage, gastrointestinal damage, central nervous system damage with increasing radiation dose. Regarding the late on-set disorder, a predominant health effect is the cancer among the symptoms of such as cancer, non-cancer disease and genetic effect. Cancer and genetic effect are recognized as stochastic effects without the threshold. When radiation dose is equal to or more than 100 mSv, it is observed that the cancer risk by radiation exposure increases linearly with an increase in dose. On the other hand, the risk of developing cancer through low-dose radiation exposure, less 100 mSv, has not yet been clarified scientifically. Although uncertainty still remains regarding low level risk estimation, ICRP propound LNT model and conduct radiation protection in accordance with LNT model in the low-dose and low-dose rate radiation from a position of radiation protection. Meanwhile, the mechanism of radiation damage has been gradually clarified. The initial event of radiation-induced diseases is thought to be the damage to genome such as radiation-induced DNA double-strand breaks. Recently, it is clarified that our cells could recognize genome damage and induce the diverse cell response to maintain genome integrity. This phenomenon is called DNA damage response which induces the cell cycle arrest, DNA repair, apoptosis, cell senescence and so on. These responses act in the direction to maintain genome integrity against genome damage, however, the death of large number of

  15. Effects of radiations on ornamental fish

    International Nuclear Information System (INIS)

    Anita; Kalyankar, Amol D.; Ohlyan, Sunita; Gupta, R.K.

    2012-01-01

    Radiation is a process in which energetic particles or energetic waves travel through a medium or space. There are two distinct types of radiations: ionizing and non-ionizing. Ultraviolet, X-rays, and gamma rays are some examples of radiation. 'Ornamental fish' is designed for aquatic hobbyists and the aquatic industry for several purposes. UV light has two primary uses in fish culture: Controlling green water and disinfecting the water supply. Many proponents of UV disinfection sometimes overlook the additional benefits relating to ornamental fish; those being that cleaner water reduces the stress on the fish by not having to fight off diseases, thus enhancing its immune system and leading to faster growth and more brilliant colors. Ultraviolet sterilizers are often used in aquaria to help control unwanted microorganisms in the water. UV radiation also ensures that exposed pathogens cannot reproduce, thus decreasing the likelihood of a disease outbreak in an aquarium. Despite of these benefits, the ill-effects of radiations cannot be ruled out. Ultraviolet Radiation-induced DNA Damage is seen in the skin of the Platyfish Xiphophorus. Higher radiation doses may cause the gastrointestinal syndrome that leads to defects of the intestinal mucosa barrier with successive contamination of musculature. Exposure to UV radiation can kill the fish and induce sublethal effects in embryos, larvae and adults. The change in skin includes irregularity of skin surface, epidermal oedema, necrosis etc. Irradiation may badly influence the textural attributes of fish muscle. (author)

  16. Dose-volume histograms based on serial intravascular ultrasound: a calculation model for radioactive stents

    International Nuclear Information System (INIS)

    Kirisits, Christian; Wexberg, Paul; Gottsauner-Wolf, Michael; Pokrajac, Boris; Ortmann, Elisabeth; Aiginger, Hannes; Glogar, Dietmar; Poetter, Richard

    2001-01-01

    Background and purpose: Radioactive stents are under investigation for reduction of coronary restenosis. However, the actual dose delivered to specific parts of the coronary artery wall based on the individual vessel anatomy has not been determined so far. Dose-volume histograms (DVHs) permit an estimation of the actual dose absorbed by the target volume. We present a method to calculate DVHs based on intravascular ultrasound (IVUS) measurements to determine the dose distribution within the vessel wall. Materials and methods: Ten patients were studied by intravascular ultrasound after radioactive stenting (BX Stent, P-32, 15-mm length) to obtain tomographic cross-sections of the treated segments. We developed a computer algorithm using the actual dose distribution of the stent to calculate differential and cumulative DVHs. The minimal target dose, the mean target dose, the minimal doses delivered to 10 and 90% of the adventitia (DV10, DV90), and the percentage of volume receiving a reference dose at 0.5 mm from the stent surface cumulated over 28 days were derived from the DVH plots. Results were expressed as mean±SD. Results: The mean activity of the stents was 438±140 kBq at implantation. The mean reference dose was 111±35 Gy, whereas the calculated mean target dose within the adventitia along the stent was 68±20 Gy. On average, DV90 and DV10 were 33±9 Gy and 117±41 Gy, respectively. Expanding the target volume to include 2.5-mm-long segments at the proximal and distal ends of the stent, the calculated mean target dose decreased to 55±17 Gy, and DV 90 and DV 10 were 6.4±2.4 Gy and 107±36 Gy, respectively. Conclusions: The assessment of DVHs seems in principle to be a valuable tool for both prospective and retrospective analysis of dose-distribution of radioactive stents. It may provide the basis to adapt treatment planning in coronary brachytherapy to the common standards of radiotherapy

  17. Effect of ionizing radiations on connective tissue

    International Nuclear Information System (INIS)

    Altman, K.I.; Gerber, G.B.

    1980-01-01

    The effects of ionizing radiations on connective tissue in lung, heart, vasculature, kidney, skin, and skeletal tissues are reviewed. Special emphasis is given to the effect of ionizing radiations on vasculo-connective tissue and fibrotic changes following radiation-induced injury to organs and tissues. In order to put the subject matter in proper prospective, the general biochemistry, physiology, and pathology of connective tissue is reviewed briefly together with the participation of connective tissue in disease. The review closes with an assessment of future problems and an enumeration and discussion of important, as yet unanswered questions

  18. The minimum knowledge base for predicting organ-at-risk dose-volume levels and plan-related complications in IMRT planning

    International Nuclear Information System (INIS)

    Zhang, Hao H; D'Souza, Warren D; Meyer, Robert R; Shi Leyuan

    2010-01-01

    IMRT treatment planning requires consideration of two competing objectives: achieving the required amount of radiation for the planning target volume and minimizing the amount of radiation delivered to all other tissues. It is important for planners to understand the tradeoff between competing factors so that the time-consuming human interaction loop (plan-evaluate-modify) can be eliminated. Treatment-plan-surface models have been proposed as a decision support tool to aid treatment planners and clinicians in choosing between rival treatment plans in a multi-plan environment. In this paper, an empirical approach is introduced to determine the minimum number of treatment plans (minimum knowledge base) required to build accurate representations of the IMRT plan surface in order to predict organ-at-risk (OAR) dose-volume (DV) levels and complications as a function of input DV constraint settings corresponding to all involved OARs in the plan. We have tested our approach on five head and neck patients and five whole pelvis/prostate patients. Our results suggest that approximately 30 plans were sufficient to predict DV levels with less than 3% relative error in both head and neck and whole pelvis/prostate cases. In addition, approximately 30-60 plans were sufficient to predict saliva flow rate with less than 2% relative error and to classify rectal bleeding with an accuracy of 90%.

  19. Radiation abuse and its effects

    Energy Technology Data Exchange (ETDEWEB)

    Halm, A

    1976-06-01

    This paper delves into overuse practiced in diagnostic radiography. The conventional attitudes to low-dose irradiation are critically examined, as is the MPD related to individual radiosensitivity. Concern is expressed that a sizeable proportion of radiologists ignore important aspects of the Code of Practice and this attitude is readily emulated in the hospital setting. The author advocates education within the medical profession and the community on the risks involved in radiation abuse and the benefits derived from justified exposures to x rays.

  20. Radiation Effects in M and NEMS

    Science.gov (United States)

    2016-03-31

    electrical basis of operation of M&NEM structures? In particular, cumulative damage by non - ionizing energy loss can, in principle, alter the... Radiation Effects in M&NEMS Michael Alles, Kirill Bolotin, Alex Zettl, Brian Homeijer, Jim Davidson, Ronald Schrimpf, Robert Reed, Dan Fleetwood...understanding radiation effects on the relevant properties of the constituent materials and structures, particularly advanced 2D materials, and the

  1. Modifiers of radiation effects in the eye

    Science.gov (United States)

    Kleiman, Norman J.; Stewart, Fiona A.; Hall, Eric J.

    2017-11-01

    World events, including the threat of radiological terrorism and the fear of nuclear accidents, have highlighted an urgent need to develop medical countermeasures to prevent or reduce radiation injury. Similarly, plans for manned spaceflight to a near-Earth asteroid or journey to Mars raise serious concerns about long-term effects of space radiation on human health and the availability of suitable therapeutic interventions. At the same time, the need to protect normal tissue from the deleterious effects of radiotherapy has driven considerable research into the design of effective radioprotectors. For more than 70 years, animal models of radiation cataract have been utilized to test the short and long-term efficacy of various radiation countermeasures. While some compounds, most notably the Walter Reed (WR) class of radioprotectors, have reported limited effectiveness when given before exposure to low-LET radiation, the human toxicity of these molecules at effective doses limits their usefulness. Furthermore, while there has been considerable testing of eye responses to X- and gamma irradiation, there is limited information about using such models to limit the injurious effects of heavy ions and neutrons on eye tissue. A new class of radioprotector molecules, including the sulfhydryl compound PrC-210, are reported to be effective at much lower doses and with far less side effects. Their ability to modify ocular radiation damage has not yet been examined. The ability to non-invasively measure sensitive, radiation-induced ocular changes over long periods of time makes eye models an attractive option to test the radioprotective and radiation mitigating abilities of new novel compounds.

  2. Radiation effects on eye components

    International Nuclear Information System (INIS)

    Durchschlag, H.; Fochler, C.; Abraham, K.; Kulawik, B.

    1998-01-01

    The radiation damage (X-ray, UV light) of the most important components of the vertebrate eye (crystallins and other proteins, hyaluronic acid, vitreous, aqueous humour, ascorbic acid) has been investigated by various methods of physical chemistry. UV absorption and fluorescence spectroscopy as well as circular dichroism unveiled changes of the chromophores/fluorophores of the constituent biopolymers and low-molecular components, together with alterations of helix content and the occurrence of aggregation. Size-exclusion chromatography, analytical ultracentrifugation, densimetry, viscometry and light scattering experiments monitored changes of the global structure of proteins and polysaccharides involved. Electrophoreses allowed conclusions on fragmentation, unfolding and crosslinking. Analytical methods provided information regarding the integrity of groups of special concern (SH, SS) and revealed the existence of stable noxious species (H 2 O 2 ). By means of various measures and additives, manifold modifications of the impact of both ionizing and nonionizing radiation may be achieved. Caused by differences in the primary reactions, eye polymers are protected efficaciously by typical OH radical scavengers against X-irradiation, whereas compounds which exhibit absorption behavior in the UV range turn out to act as potent protectives ('chemical filters') against UV light. A few substances, such as ascorbate, are able to provide protection against both sorts of radiation and are even able to exhibit a slight chemical repair of already damaged particles. The results obtained are of importance for understanding pathological alterations of the eye (loss of transparency, cataractogenesis) and for developing new strategies for protection and repair of eye components. (author)

  3. Radiation effects on biodegradable polyesters

    International Nuclear Information System (INIS)

    Hiroshi Mitomo; Darmawan Darwis; Fumio Yoshii; Keizo Makuuchi

    1999-01-01

    Poly(3-hydroxybutyrate) [P(3HB)] and its copolymer poly(3-hydroxybutyrate-co-3hydroxyvalerate) [P(3HB-co-3HV)] are microbial biodegradable polyesters produced by many types of bacteria. Poly(butylene succinate) (PBS) and poly(E-caprolactone) (PCL) are also biodegradable synthetic polyesters which have been commercialized. These thermoplastics are expected for wide usage in environmental protection and blocompatible applications. Radiation grafting of hydrophilic monomers onto many polymers, e.g., polyethylene and polypropylene has been studied mainly for biomedical applications. In the present study, radiation-induced graft polymerization of vinyl monomers onto PHB and P(3HB-co-3HV) was carried out and improvement of their properties was studied. Changes in the properties and biodegradability were compared with the degree of grafting. Radiation-induced crosslinking of PBS and PCL which relatively show thermal and irradiation stability was also carried out to improve their thermal stability or processability. Irradiation to PBS and PCL mainly resulted in crosslinking and characterization of these crosslinked polyesters was investigated

  4. Perturbed effects at radiation physics

    International Nuclear Information System (INIS)

    Külahcı, Fatih; Şen, Zekâi

    2013-01-01

    Perturbation methodology is applied in order to assess the linear attenuation coefficient, mass attenuation coefficient and cross-section behavior with random components in the basic variables such as the radiation amounts frequently used in the radiation physics and chemistry. Additionally, layer attenuation coefficient (LAC) and perturbed LAC (PLAC) are proposed for different contact materials. Perturbation methodology provides opportunity to obtain results with random deviations from the average behavior of each variable that enters the whole mathematical expression. The basic photon intensity variation expression as the inverse exponential power law (as Beer–Lambert's law) is adopted for perturbation method exposition. Perturbed results are presented not only in terms of the mean but additionally the standard deviation and the correlation coefficients. Such perturbation expressions provide one to assess small random variability in basic variables. - Highlights: • Perturbation methodology is applied to Radiation Physics. • Layer attenuation coefficient (LAC) and perturbed LAC are proposed for contact materials. • Perturbed linear attenuation coefficient is proposed. • Perturbed mass attenuation coefficient (PMAC) is proposed. • Perturbed cross-section is proposed

  5. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  6. Non-targeted effects of ionising radiation

    International Nuclear Information System (INIS)

    Belyakov, O.V.

    2008-01-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects and genomic instability. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm would cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (LNT) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (orig.)

  7. Fluence map optimization (FMO) with dose-volume constraints in IMRT using the geometric distance sorting method.

    Science.gov (United States)

    Lan, Yihua; Li, Cunhua; Ren, Haozheng; Zhang, Yong; Min, Zhifang

    2012-10-21

    A new heuristic algorithm based on the so-called geometric distance sorting technique is proposed for solving the fluence map optimization with dose-volume constraints which is one of the most essential tasks for inverse planning in IMRT. The framework of the proposed method is basically an iterative process which begins with a simple linear constrained quadratic optimization model without considering any dose-volume constraints, and then the dose constraints for the voxels violating the dose-volume constraints are gradually added into the quadratic optimization model step by step until all the dose-volume constraints are satisfied. In each iteration step, an interior point method is adopted to solve each new linear constrained quadratic programming. For choosing the proper candidate voxels for the current dose constraint adding, a so-called geometric distance defined in the transformed standard quadratic form of the fluence map optimization model was used to guide the selection of the voxels. The new geometric distance sorting technique can mostly reduce the unexpected increase of the objective function value caused inevitably by the constraint adding. It can be regarded as an upgrading to the traditional dose sorting technique. The geometry explanation for the proposed method is also given and a proposition is proved to support our heuristic idea. In addition, a smart constraint adding/deleting strategy is designed to ensure a stable iteration convergence. The new algorithm is tested on four cases including head-neck, a prostate, a lung and an oropharyngeal, and compared with the algorithm based on the traditional dose sorting technique. Experimental results showed that the proposed method is more suitable for guiding the selection of new constraints than the traditional dose sorting method, especially for the cases whose target regions are in non-convex shapes. It is a more efficient optimization technique to some extent for choosing constraints than the dose

  8. Biological effects of high-energy radiation

    International Nuclear Information System (INIS)

    Curtis, S.B.

    1976-01-01

    The biological effects of high-energy radiation are reviewed, with emphasis on the effects of the hadronic component. Proton and helium ion effects are similar to those of the more conventional and sparsely ionizing x- and γ-radiation. Heavy-ions are known to be more biologically effective, but the long term hazard from accumulated damage has yet to be assessed. Some evidence of widely varying but dramatically increased effectiveness of very high-energy (approximately 70 GeV) hadron beams is reviewed. Finally, the importance of the neutron component in many situations around high-energy accelerators is pointed out

  9. Biological effects and hazards of radiation exposure

    International Nuclear Information System (INIS)

    Boas, J.F.; Solomon, S.B.

    1990-01-01

    Radiation induced carcinogenesis and mutagenesis form the main risk to health from exposure to low levels of radiation. This risk effects can be at least qualitatively understood by considering the effects of radiation on cell DNA. Whilst exposure to high levels of radiation results in a number of identifiable effects, exposure to low levels of radiation may result in effects which only manifest themselves after many years. Risk estimates for low levels of radiation have been derived on the basis of a number of assumptions. In the case of uranium mine workers a major hazard arises from the inhalation of radon daughters. Whilst the correlation between radon daughter exposure and lung cancer incidence is well established, the numerical value of the risk factor is the subject of controversy. ICRP 50 gives a value of 10 cases per 10 6 person-years at risk per WLM (range 5-15 x 10 -6 PYR -1 WLM -1 ). The effect of smoking on lung cancer incidence rates amongst miners is also controversial. Nevertheless, smoking by miners should be discouraged

  10. Radiation abuse and its effects

    International Nuclear Information System (INIS)

    Halm, A.

    1976-01-01

    This paper delves into overuse practiced in diagnostic radiography. The conventional attitudes to low-dose irradiation are critically examined, as is the MPD related to individual radiosensitivity. Concern is expressed that a sizeable proportion of radiologists ignore important aspects of the Code of Practice and this attitude is readily emulated in the hospital setting. The author advocates education within the medical profession and the community on the risks involved in radiation abuse and the benefits derived from justified exposures to x rays. (author)

  11. Biological Effects of Ionizing Radiation

    International Nuclear Information System (INIS)

    Durand, J.L.

    2000-01-01

    The aim of this work is to verify the existence of the adaptive response phenomenon induced by low doses of ionizing radiation in living cells.A wild-type yeast Saccharomyces cerevisiae (Baker's yeast) was chosen as the biological target.As a parameter to quantify the sensibility of the target to radiation, the Lethal Dose 50 (LD50 ) was observed. In our experimental condition a value of (60 ± 1) Gy was measured for LD50 with Dose Rate of (0.44 ± 0.03) Gy/min. The method employed to show up the adaptive response phenomenon consisted in exposing the sample to low ''conditioning'' doses, which would initiate these mechanisms. Later the samples with and without conditioning were exposed to higher ''challenging'' doses (such as LD50), and the surviving fractions were compared. In order to maximize the differences, the doses and the time between irradiations were varied. The best results were obtained with both a conditioning dose of (0.44 ± 0.03) Gy and a waiting time of 2 hs until the application of the challenging dose. Following this procedures the 80% of the conditioned samples has survived, after receiving the application of the LD50. The adaptive response phenomenon was also verified for a wide range of challenging doses

  12. Radiation effects on ion exchange materials

    International Nuclear Information System (INIS)

    Gangwer, T.E.; Goldstein, M.; Pillay, K.K.S.

    1977-11-01

    An extensive literature review and data compilation has been completed on the radiation-damage of ion exchange resins. The primary goal of the study has been to review the available literature on ion exchange materials used in, as well as those with potential for use in, the nuclear fuel and waste reprocessing areas. The physical and chemical properties of ion exchangers are reviewed. Experimental parameters useful in characterizing the effects of radiation on synthetic ion exchange resins are identified or defined. In compiling the diverse types of data, an effort was made to present the experimental data or experimentally based parameters in a format that would be useful for inter-comparing radiation effects on resins. When subject to radiation there are various general trends or qualitative effects displayed by the different types of resins. These radiation-trends and effects have been formulated into qualitative statements. The present day level of understanding of the behavior of resins under ionizing radiation is too limited to justify quantitative predictive modeling. The limitations and deficiencies of the literature are discussed and the experimentation needed to achieve quantitative modeling are outlined. 14 figs., 108 references

  13. Radiation effects on ion exchange materials

    Energy Technology Data Exchange (ETDEWEB)

    Gangwer, T.E.; Goldstein, M.; Pillay, K.K.S.

    1977-11-01

    An extensive literature review and data compilation has been completed on the radiation-damage of ion exchange resins. The primary goal of the study has been to review the available literature on ion exchange materials used in, as well as those with potential for use in, the nuclear fuel and waste reprocessing areas. The physical and chemical properties of ion exchangers are reviewed. Experimental parameters useful in characterizing the effects of radiation on synthetic ion exchange resins are identified or defined. In compiling the diverse types of data, an effort was made to present the experimental data or experimentally based parameters in a format that would be useful for inter-comparing radiation effects on resins. When subject to radiation there are various general trends or qualitative effects displayed by the different types of resins. These radiation-trends and effects have been formulated into qualitative statements. The present day level of understanding of the behavior of resins under ionizing radiation is too limited to justify quantitative predictive modeling. The limitations and deficiencies of the literature are discussed and the experimentation needed to achieve quantitative modeling are outlined. 14 figs., 108 references.

  14. Radiation effects on optical data transmission systems

    International Nuclear Information System (INIS)

    Leskovar, B.

    1989-01-01

    The state of the art of optical transmitters, low loss fiber waveguides and receivers in both steady state and pulsed radiation environments is reviewed and summarized. Emphasis is placed on the effects of irradiation on the performance of light emitting and laser diodes, optical fiber waveguides and photodiodes. The influence of radiation-induced attenuation of optical fibers due to total dose, dose rate, time after irradiation, temperature, radiation history, photobleaching, OH and impurity content, dopant type and concentration is described. The performance of candidate components of the transmission system intended for deployment in the Superconducting Super Collider Detector and primary beam tunnel nuclear environment is discussed

  15. Radiation effects on the integrity of paper

    International Nuclear Information System (INIS)

    Otero D'Almeida, Maria Luiza; Medeiros Barbosa, Patricia de Souza; Boaratti, Marcelo Fernando Guerra; Borrely, Sueli Ivone

    2009-01-01

    Books and documents attacked by fungi and insects have already been treated by radiation for disinfestations purposes. However, there is still need to investigate the influence of radiation on the cellulose paper structure. The aim of this research was to study the effects of radiation on paper properties, especially those related to strength and appearance. Paper sheets for this study were prepared in the laboratory, using bleached eucalyptus pulp as raw material. No additives were used to concentrate the attention only on the effects of irradiation on the pure cellulose matrix. The samples were irradiated at IPEN's 60 Co Gammacell irradiator with six radiation doses, from 3 to 15 kGy at the dose rate 0.817 Gy/s. The properties of paper sheets were tested after irradiation and compared with unirradiated samples according to ISO methods. No significant changes were detected in paper samples irradiated up to 15 kGy.

  16. Effect of gamma radiation on Campylobacter jejuni

    International Nuclear Information System (INIS)

    Lambert, J.D.; Maxcy, R.B.

    1984-01-01

    Radiation resistance of Campylobacter jejuni in broth, ground beef, and ground turkey meat was determined using dose levels from 0-200 Krad at -30 +/- 10 0 C, at 0-5 0 C, and at 30 +/- 10 0 C. Irradiation at -30 0 C increased radiation resistance of cultures in ground meats; broth cultures were not greatly influenced by temperature. The effect of culture age on radiation resistance was also evaluated using cells in various physiological phases. Age did not have a pronounced effect on radiation resistance. The largest D 10 value for C. jejuni was 32 Krad, which was less than D 10 values commonly reported for salmonellae. 20 references, 4 figures

  17. Radiation effects on DNA methylation in mice

    International Nuclear Information System (INIS)

    Komura, J.; Kurishita, A.; Miyamura, Y.; Ono, T.; Tawa, R.; Sakurai, H.

    1992-01-01

    Effects of ionizing radiation on DNA methylation in liver, brain and spleen were examined by high performance liquid chromatography (HPLC). The total methylated cytosine level in the genome was reduced within 8 hours after 3.8 Gy of irradiation in liver of adult mice. But no appreciable effect was observed in brain and spleen. When mice were irradiated at newborn, liver DNA revealed no change in methylated cytosine level. Even though slight effects of radiation were detected in he methylation of the c-myc and c-fos genes, they were only temporary and no long-term effects were observed. These data suggest that the effect of radiation on DNA methylation in vivo is not prevailing a DNA damage, but rather influenced much through biological parameters. (author)

  18. Evidence for beneficial low level radiation effects and radiation hormesis

    International Nuclear Information System (INIS)

    Feinendegen, L.E.

    2005-01-01

    Low doses in the mGy range cause a dual effect on cellular DNA. One effect concerns a relatively low probability of DNA damage per energy deposition event and it increases proportional with dose, with possible bystander effects operating. This damage at background radiation exposure is orders of magnitudes lower than that from endogenous sources, such as ROS. The other effect at comparable doses brings an easily obeservable adaptive protection against DNA damage from any, mainly endogenous sources, depending on cell type, species, and metabolism. Protective responses express adaptive responses to metabolic perturbations and also mimic oxygen stress responses. Adaptive protection operates in terms of DNA damage prevention and repair, and of immune stimulation. It develops with a delay of hours, may last for days to months, and increasingly disappears at doses beyond about 100 to 200 mGy. Radiation-induced apoptosis and terminal cell differentiation occurs also at higher doses and adds to protection by reducing genomic instability and the number of mutated cells in tissues. At low doses, damage reduction by adaptive protection against damage from endogenous sources predictably outweighs radiogenic damage induction. The analysis of the consequences of the particular low-dose scenario shows that the linear-no-threshold (LNT) hypothesis for cancer risk is scientifically unfounded and appears to be invalid in favor of a threshold or hormesis. This is consistent with data both from animal studies and human epidemiological observations on low-dose induced cancer. The LNT hypothesis should be abandoned and be replaced by a hypothesis that is scientifically justified. The appropriate model should include terms for both linear and non-linear response probabilities. Maintaining the LNT-hypothesis as basis for radiation protection causes unressonable fear and expenses. (author)

  19. The radiation effects on the living cell

    International Nuclear Information System (INIS)

    Sage, E.; Dutrillaux, B.; Soussi, Th.; Boiteux, S.; Lopez, B.; Feunteun, J.

    1999-06-01

    This publication is a presentation of particular points discussed during the colloquium of the 15-18 june 1999, for which scientific researches are performed at the CEA/CNRS. They deal with the radiobiology, for the radiation effects on living matter; with the DNA, for the knowledge and repair mechanisms on cells submitted to ionizing radiations; with the exposition to UV in correlation with neoplasms; with the P53 gene which is a tumour suppressor. (A.L.B.)

  20. Genetic effects of radiation. Annex I

    International Nuclear Information System (INIS)

    1982-01-01

    This Annex is aimed at an updating of the 1977 UNSCEAR report, which presented a detailed review of the genetic effects of ionizing radiation, especially those parts that require significant revisions in the light of new data. There is an extensive bibliography with over 1000 references. Particular emphasis is given to those data that are relevant to the evaluation of genetic radiation hazards in man.

  1. Biological effect of radiation on human

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Sil; Cho, Chul Koo; Lee, Su Jae [and others

    2000-04-01

    1. Adaptive response when 0.01 Gy was preirradiated before high challenging dose is induced in normal cell types such normal lymphocytes, primary keratinocytes, and L929 fibroblast cells but not in neoplastic cells such as L5178Y lymphoma cells, EL-4 lymphoma cells and 308 papilloma cells. 2. Heat shock protein (HSP) 25 and inducible HSP70 is responsible for the induction of adaptive response and radioresistance - cell cycle regulation, antiapoptotic molecule and PKC activation were involved. 3. Apoptosis was induced at most 5. hrs after irradiation in primary keratinocytes, in v-rasHa transformed keratinocytes, the maximum interval was 16 hrs, and in 308 papilloma cells, the maximum was 48 hrs. 4. PKC response by radiation is correlated with induction of apoptosis. 5. Rapid induction PKCdelta in primary keratinocytes and no response of PKC epsilon may involved in radiation induced apoptosis. 6. The rate of resorption was increased when radiation was given at 2.5 days after gestation. Early death including foetal death were highly expressed when radiation was given at 7.5 days after gestation. There are no difference in incidence of late death including embryonic death. 7. 2 Gy is the most effective dose in radiation induced teratogenesis in mouse model. 8. Growth retardation and small head was present when radiation was given at 5.5, 7.5, 11.5 and 15.5 days after gestation and small head showed high incidence at 11.5 days after gestation. 9. External malformation, internal malformation and skeletal malformation was induced when radiation was given at 7.5 days after gestation. 10. OGG1-mutated cells induced radiosensitive by G2/M cell cycle arrest. 11. Radiation induced G2/M phase cell cycle and correlated with radiosensitivity. 12. PKCalpha induced differentiation. 13. Radiation exposed cells showed carcinogenic effect. 14. Organ specific radiosensitivity was shown and protein expression was involved.

  2. Biological effect of radiation on human

    International Nuclear Information System (INIS)

    Lee, Yun Sil; Cho, Chul Koo; Lee, Su Jae

    2000-04-01

    1. Adaptive response when 0.01 Gy was preirradiated before high challenging dose is induced in normal cell types such normal lymphocytes, primary keratinocytes, and L929 fibroblast cells but not in neoplastic cells such as L5178Y lymphoma cells, EL-4 lymphoma cells and 308 papilloma cells. 2. Heat shock protein (HSP) 25 and inducible HSP70 is responsible for the induction of adaptive response and radioresistance - cell cycle regulation, antiapoptotic molecule and PKC activation were involved. 3. Apoptosis was induced at most 5. hrs after irradiation in primary keratinocytes, in v-rasHa transformed keratinocytes, the maximum interval was 16 hrs, and in 308 papilloma cells, the maximum was 48 hrs. 4. PKC response by radiation is correlated with induction of apoptosis. 5. Rapid induction PKCdelta in primary keratinocytes and no response of PKC epsilon may involved in radiation induced apoptosis. 6. The rate of resorption was increased when radiation was given at 2.5 days after gestation. Early death including foetal death were highly expressed when radiation was given at 7.5 days after gestation. There are no difference in incidence of late death including embryonic death. 7. 2 Gy is the most effective dose in radiation induced teratogenesis in mouse model. 8. Growth retardation and small head was present when radiation was given at 5.5, 7.5, 11.5 and 15.5 days after gestation and small head showed high incidence at 11.5 days after gestation. 9. External malformation, internal malformation and skeletal malformation was induced when radiation was given at 7.5 days after gestation. 10. OGG1-mutated cells induced radiosensitive by G2/M cell cycle arrest. 11. Radiation induced G2/M phase cell cycle and correlated with radiosensitivity. 12. PKCalpha induced differentiation. 13. Radiation exposed cells showed carcinogenic effect. 14. Organ specific radiosensitivity was shown and protein expression was involved

  3. Radiation effects in corundum monocrystal

    International Nuclear Information System (INIS)

    Soulayman, S.; Attiah, J.; Molhem, A. G.

    2007-01-01

    It is found by this work that the irradiation of corundum monocrystals by energetic particles creates stable lattice defects, as a result of the atomic displacements to the sublattice. We have identified the colour centers (F and F + ) and more complex ones line [Al i + F]. This finding is in an agreement with the experimental results, available in the literature. We have also investigated the mechanism of occurrence of, so called 'radiation memory' in corundum monocrystals. This phenomenon reflects the fact that, after irradiation and annealing at high temperature and irradiation again by the quanta of x-rays, the absorption line 302 nm (4.1 eV) in the spectrum of optical absorption is restored in the range 200-650 nm. A comparison of our results with the results of other researchers in carried out. (author)

  4. Additive effects of ultraviolet radiation

    International Nuclear Information System (INIS)

    Cullen, A.P.

    1980-01-01

    A xenon-mercury high pressure lamp and a double monochromator were used to produce ultraviolet (uv) radiation at 295 nm. Pigmented rabbit eyes were irradiated and evaluated by slitlamp biomicroscopy. Corneal threshold (Hc) was 0.05 J.cm-2 and lens threshold (hL) was 0.75 J.cm-2. Other eyes were irradiated with 2 Hc and evaluated from 4 to 24 h at 4 h intervals. Corneal damage was only greater than that expected from a single Hc exposure if the separation between the two Hc exposures did not exceed 8 h. The most repeatable and reliable corneal response to these levels of uv was the development of corneal epithelial granules

  5. Size effect in radiation damage

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1979-01-01

    Radiation embrittlement of nuclear reactor pressure vessel steels is mostly measured using small standard specimens in dynamic bend tests. Their dimensions are much smaller than those of the reactor. The increase in the critical temperature (transition temperature from the brittle-to-ductile fracture) is normally measured using standard Charpy-V type specimens or small CT-type specimens. This increase is then used as the main parameter for the pressure vessel safety evaluation. The philosophy of experiments is discussed used for the nonirradiated and irradiated pressure vessel steels. A comparison of the increase in the transition temperature measured in different types of specimens using various testing methods (static and dynamic bend tests with notch or crack) is also made. The results of this comparison and another study showed a relatively good agreement. (author)

  6. Radiation Effects on Spacecraft Structural Materials

    International Nuclear Information System (INIS)

    Wang, Jy-An J.; Ellis, Ronald J.; Hunter, Hamilton T.; Singleterry, Robert C. Jr.

    2002-01-01

    Research is being conducted to develop an integrated technology for the prediction of aging behavior for space structural materials during service. This research will utilize state-of-the-art radiation experimental apparatus and analysis, updated codes and databases, and integrated mechanical and radiation testing techniques to investigate the suitability of numerous current and potential spacecraft structural materials. Also included are the effects on structural materials in surface modules and planetary landing craft, with or without fission power supplies. Spacecraft structural materials would also be in hostile radiation environments on the surface of the moon and planets without appreciable atmospheres and moons around planets with large intense magnetic and radiation fields (such as the Jovian moons). The effects of extreme temperature cycles in such locations compounds the effects of radiation on structural materials. This paper describes the integrated methodology in detail and shows that it will provide a significant technological advance for designing advanced spacecraft. This methodology will also allow for the development of advanced spacecraft materials through the understanding of the underlying mechanisms of material degradation in the space radiation environment. Thus, this technology holds a promise for revolutionary advances in material damage prediction and protection of space structural components as, for example, in the development of guidelines for managing surveillance programs regarding the integrity of spacecraft components, and the safety of the aging spacecraft. (authors)

  7. Medical exposure and the effects of radiation

    International Nuclear Information System (INIS)

    Okuyama, Chio

    2011-01-01

    Radiation gives cracks to genes. The influence is divided into deterministic effect with a threshold value, and the stochastic effect (tumor and genetic effect) which increases according to the exposure amount. Although we are put to various non-artificial radiations, which we cannot be avoided, on the earth, the contamination by artificial radiation can be defended. Artificial radioactive exposure includes medical exposure and non-medical exposure for example by nuclear power plant. As to medical examinations using radiation, the inquiry about the radiation exposure is increasing after the occurrence of the first nuclear power plant disaster of Fukushima. While concern about non-medical radioactive exposure increases, the uneasiness to medical irradiation is also increasing. The dose limit by artificial radioactive exposure other than medical exposure is set up in order to prevent the influence on the health. While the dose limit of the public exposure is set to the lower value than the total dose of non-artificial exposure concerning of a safety margin for all people, the dose limit of medical exposure is not defined, since it is thought that medical irradiation has a benefit for those who receive irradiation. Making an effort to decrease the radiation dose in performing the best medical treatment is the responsibility with which we are burdened. (author)

  8. Radiation effects concerns at a spallation source

    International Nuclear Information System (INIS)

    Sommer, W.F.

    1990-01-01

    Materials used at spallation neutron sources are exposed to energetic particle and photon radiation. Mechanical and physical properties of these materials are altered; radiation damage on the atomic scale leads to radiation effects on the macroscopic scale. Most notable among mechanical-property radiation effects in metals and metal alloys are changes in tensile strength and ductility, changes in rupture strength, dimensional stability and volumetric swelling, and dimensional changes due to stress-induced creep. Physical properties such as electrical resistivity also are altered. The fission-reactor community has accumulated a good deal of data on material radiation effects. However, when the incident particle energy exceeds 50 MeV or so, a new form of radiation damage ensues; spallation reactions lead to more energetic atom recoils and the subsequent temporal and spatial distribution of point defects is much different from that due to a fission-reactor environment. In addition, spallation reactions cause atomic transmutations with these new atoms representing an impurity in the metal. The higher-energy case is of interest at spallation sources; limited detailed data exist for material performance in this environment. 35 refs., 13 figs., 1 tab

  9. Radiation effects in LDD MOS devices

    International Nuclear Information System (INIS)

    Woodruff, R.L.; Adams, J.R.

    1987-01-01

    The purpose of this work is to investigate the response of lightly doped drain (LDD) n-channel transistors to ionizing radiation. Transistors were fabricated with conventional (non-LDD) and lightly doped drain (LDD) structures using both standard (non-hardened) and radiation hardened gate oxides. Characterization of the transistors began with a correlation of the total-dose effects due to 10 keV x-rays with Co-60 gamma rays. The authors find that for the gate oxides and transistor structures investigated in this work, 10 keV x-rays produce more fixed-charge guild-up in the gate oxide, and more interface charge than do Co-60 gamma rays. They determined that the radiation response of LDD transistors is similar to that of conventional (non-LDD) transistors. In addition, both standard and radiation-hardened transistors subjected to hot carrier stress before irradiation show a similar radiation response. After exposure to 1.0 x 10 6 rads(Si), non-hardened transistors show increased susceptibility to hot-carrier graduation, while the radiation-hardened transistors exhibit similar hot-carrier degradation to non-irradiated devices. The authors have demonstrated a fully-integrated radiation hardened process tht is solid to 1.0 x 10 6 rads(Si), and shows promise for achieving 1.0 x 10 7 rad(Si) total-dose capability

  10. Solar Radiation effect on the bituminous binder

    International Nuclear Information System (INIS)

    Tadeo Rico, A.; Torres Perez, A.

    2010-01-01

    Asphalt, used as binder in road construction, becomes more brittle and harder during working life on the surface of the road pavement, conducting toward their deterioration. This is caused by the oxidation of the molecular functional groups of the asphalt molecular structure. Moreover, it is observed that ultraviolet radiation increases the oxidation process. However, the effect of solar light on the asphalt degradation has been poorly researched. The aim of this work is to study asphalt ageing caused by effect of solar radiation, by using standard test. Four commercial asphalts from different companies were selected: two with penetration number 50/70, and the other two polymer modified asphalts. From each of the asphalts forty samples were taken off and placed in four different aging conditions of temperature and radiation for a period ranging from 40 to 500 days. Ring and Ball test, and Fraass breaking Point test, were used to analyse the changes of asphalt properties after exposition to solar radiation. The results of the four analyzed asphalts showed a distinct behaviour; not only in the test temperature increase but also in the rate. Another experiment was carried out. Samples from a hot mix asphalt batch were placed under solar radiation, and were compacted by the Marshall procedure after increasing periods of time. Density and resistance to plastic flow using Marshall Apparatus were measured. Results showed an increase in the stability of samples under radiation. Both experiments show that the solar radiation is enough to cause changes in the asphalt molecular structure due to oxidation. So that, the study of the effect of the solar radiation on the asphalt properties could be a good tool to asses the performances of asphalt pavement. (Author) 26 refs.

  11. Effects of radiation on aquatic organisms

    International Nuclear Information System (INIS)

    Kaur, Harbhajan; Lata, Poonam; Sharma, Ankush

    2012-01-01

    With the onset of nuclear age, nuclear fuel cycle products, nuclear medicine techniques, disposal of radio active wastes on land or in water, fall out of testing nuclear weapons has contributed large amount of radio nuclides to the water bodies. Radio nuclides can imbalance aquatic ecosystem resulting in danger to natural life. The biological effects of radiation on aquatic life are mortality, pathophysiological, reproductive, developmental and genetic changes. A broad review of the results obtained about the aquatic organisms related to different phyla indicates that the lower or less developed or more primitive organisms are more resistant than the higher or more advanced, developed and complex organisms to ionizing radiation. The algae, protozoa are more resistant than the insects, crustaceans, molluscs and fishes. The changes in sensitivity between different stages of development have also been noted. A review of the results of exposing salmonoid gametes, eggs, fingerlings and adults to X-rays supports the concepts that radio sensitivity decreases with age. This paper presents a selective review on effects of radiation and radio nuclides on the aquatic life. It include uses and sources of radiation, effective quantity of radiation, lethal and sub lethal effect, effects on survival, growth, reproduction, behaviour, metabolism, carcinogenicity and mutagenicity. (author)

  12. Principles and techniques of radiation hardening. Volume 2. Transient radiation effects in electronics (TREE)

    International Nuclear Information System (INIS)

    Rudie, N.J.

    1976-01-01

    The three-volume book is intended to serve as a review of the effects of thermonuclear explosion induced radiation (x-rays, gamma rays, and beta particles) and the resulting electromagnetic pulse (EMP). Volume 2 deals with the following topics: radiation effects on quartz crystals, tantalum capacitors, bipolar semiconductor devices and integrated circuits, field effect transistors, and miscellaneous electronic devices; hardening electronic systems to photon and neutron radiation; nuclear radiation source and/or effects simulation techniques; and radiation dosimetry

  13. Relationship between dose-volume parameters and pulmonary complications after neoadjuvant chemoradiotherapy followed by surgery for lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Shigeo; Shibata, Toru [Kagawa University Hospital, Department of Radiation Oncology, Kagawa (Japan); Go, Tetsuhiko; Kasai, Yoshitaka; Yokomise, Hiroyasu [Kagawa University, Department of General Thoracic, Breast and Endocrine Surgery, Faculty of Medicine, Kagawa (Japan)

    2016-09-15

    This study evaluated the relationship between dose-volume histogram (DVH) parameters and pulmonary complications after neoadjuvant chemoradiotherapy (NACRT) followed by surgery for lung cancer. We also examined a new DVH parameter, because the unresected lung should be more spared than the later resected lung. Data from 43 non-small cell lung cancer patients were retrospectively analyzed. The DVH parameters of the lung were calculated from the total bilateral lung volume minus (1) the gross tumor volume (DVHg) or (2) the later resected lung volume (DVHr). Radiation pneumonitis (RP) and fistula, including bronchopleural and pulmonary fistula, were graded as the pulmonary complications. Factors affecting the incidences of grade 2 or higher RP (≥G2 RP) and fistula were analyzed. Sixteen patients (37 %) experienced ≥G2 RP and a V20 value of the total lung minus the later resected lung (V20r) ≥ 12 % was a significant factor affecting the incidence of ≥G2 RP (p = 0.032). Six patients (14 %) developed a fistula and a V35 value of the total lung minus the gross tumor (V35g) ≥ 19 % and a V40g ≥ 16 % were significant factors affecting the incidence of fistula (p = 0.002 and 0.009, respectively). These DVH parameters may be related to the incidences of ≥G2 RP and fistula. (orig.) [German] In dieser Studie wurde die Beziehung zwischen Dosis-Volumen-Histogramm-(DVH-)Parametern und pulmonalen Komplikationen nach neoadjuvanter Radiochemotherapie (NARCT) und nachfolgender Operation beim Lungenkarzinom untersucht. Zudem wurde ein neuer DVH-Parameter untersucht, da das nichtresezierte Lungengewebe mehr geschont werden sollte als reseziertes Gewebe. Daten von 43 Patienten mit nicht-kleinzelligem Bronchialkarzinom wurden retrospektiv analysiert. Die DVH-Parameter der Lunge wurden aus dem gesamten beidseitigen Lungenvolumen minus (1) das makroskopische Tumorvolumen (DVHg) oder (2) das resezierte Lungenvolumen (DVHr) ermittelt. Strahlenpneumonitis (RP) und Fisteln

  14. Health effects of low level radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Sadao [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1998-12-31

    In 1982, Prof. Thomas Don Luckey of Missouri Univ. asserted `Radiation Hormesis` on the Journal of Health Physics and he published two books. CRIEPI initiated the research program on Radiation Hormesis following his assertion to confirm `is it true or not?` After nearly ten year research activities on data surveys and animal tests with many Universities, we are realizing scientific truth of bio-positive effects by low level radiation exposures. The interesting bio-positive effects we found could be categorized in following five groups. 1) Rejuvenation of cells such as increase of SOD and cell membrane permeability, 2) Moderation of psychological stress through response of key enzymes, 3) Suppression and therapy of adult-diseases such as diabetes and hypertension, 4) Suppression of cancer through enhancement of immune systems such as lymphocytes, 5) Suppression of cancer and ratio-adaptive response by activation of DNA repair and apoptosis. In the responses of many specialists to our initiation of radiation hormesis research program following T.D. Luckey`s claim about low level radiation, I have to pick up for the first, the great success of Prof. Sakamoto. Prof. Sakamoto had been already applying whole body low dose irradiation for ten years before our radiation hormesis research started on the therapy to suppress the cancer reappearing after treatment. He reported about his successful trial to real patients and showed an enhancement of immune system. (author)

  15. Health effects of low level radiation

    International Nuclear Information System (INIS)

    Hattori, Sadao

    1998-01-01

    In 1982, Prof. Thomas Don Luckey of Missouri Univ. asserted 'Radiation Hormesis' on the Journal of Health Physics and he published two books. CRIEPI initiated the research program on Radiation Hormesis following his assertion to confirm 'is it true or not?' After nearly ten year research activities on data surveys and animal tests with many Universities, we are realizing scientific truth of bio-positive effects by low level radiation exposures. The interesting bio-positive effects we found could be categorized in following five groups. 1) Rejuvenation of cells such as increase of SOD and cell membrane permeability, 2) Moderation of psychological stress through response of key enzymes, 3) Suppression and therapy of adult-diseases such as diabetes and hypertension, 4) Suppression of cancer through enhancement of immune systems such as lymphocytes, 5) Suppression of cancer and ratio-adaptive response by activation of DNA repair and apoptosis. In the responses of many specialists to our initiation of radiation hormesis research program following T.D. Luckey's claim about low level radiation, I have to pick up for the first, the great success of Prof. Sakamoto. Prof. Sakamoto had been already applying whole body low dose irradiation for ten years before our radiation hormesis research started on the therapy to suppress the cancer reappearing after treatment. He reported about his successful trial to real patients and showed an enhancement of immune system. (author)

  16. Radiation effects on bovine taste bud membranes

    International Nuclear Information System (INIS)

    Shatzman, A.R.; Mossman, K.L.

    1982-01-01

    In order to investigate the mechanisms of radiation-induced taste loss, the effects of radiation on preparations of enriched bovine taste bud membranes were studied. Taste buds containing circumvallate papilae, and surrounding control epithelial tissues devoid of taste buds, were obtained from steers and given radiation doses of 0-7000 cGy (rad). Tissue fractions were isolated into membrane-enriched and heterogeneous components using differential and sucrose gradient centrifugation of tissue homogenates. The yield of membranes, as measured by protein content in the buoyant membrane-enriched fractions, was reduced in quantity with increasing radiation dose. The relation between radiation dose and membrane quantity in membrane-enriched fractions could be fit by a simple exponential model with taste bud-derived membranes twice as radiosensitive as membranes from control epithelial tissue. Binding of sucrose, sodium, and acetate and fluoride stimulation of adenylate cyclase were nearly identical in both irradiated and nonirradiated intact membranes. Radiation had no effect on fractions of heterogeneous components. While it is not clear what changes are occurring in enriched taste cell membranes, damage to membranes may play an important role in the taste loss observed in patients following radiotherapy

  17. Effects of ionizing radiation on bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Suhadi, F [National Atomic Energy Agency, Jakarta (Indonesia). Pasar Djumat Research Centre

    1976-10-01

    The differences of radiosensitivities among bacteria in addition to the dependence upon the species or strains also depends on the environmental condition during irradiation (temperature, medium, the presence of protective or sensitizing agents, the gas phase or atmosphere, and water activity, or degree of hydration) and on the effects of the environmental condition before and after irradiation treatment (temperature of incubation, age of culture and growth medium). In general, spores are more resistant to radiation than vegetatic bacteria, with the exception that a few cocci are the most radiation resistant bacteria (Micrococcus and Streptococcus). The application of ionizing radiation in the fields of microbiology supports the radiation sterilization of medical and pharmaceutical products. In addition, microbiological aspects of food preservation, especially radurization, radicidation, and immunization studies by using irradiated microorganisms, are also important.

  18. Electromagnetic and radiation environments: effects on pacemakers

    International Nuclear Information System (INIS)

    Mouton, J.; Trochet, R.; Vicrey, J.; Sauvage, M.; Chauvenet, B.; Ostrovski, A.; Leroy, E.; Haug, R.; Dodinot, B.; Joffre, F.

    1999-01-01

    Nowadays, medical care development allows many people to share the benefits of implanted pacemakers (PM). PM can be perturbed and even fall in complete breakdowns in an electromagnetic and radiation environment. A stimuli-dependent patient can thus be seriously in danger. This article presents the effect of ionizing radiation from either a cobalt-60 source or from a linear accelerator (Saturne 43) on 12 pacemakers. It seems that technological progress make electronic circuits more sensitive to the cumulated dose of radiation. This survey shows that pacemakers have great difficulties to sustain ionizing radiation doses that are commonly delivered to patients during therapies. Usually perturbed functioning appears suddenly and means a strong shift of stimuli that might lead to heart failure

  19. Effect of radiation processing on meat tenderisation

    Science.gov (United States)

    Kanatt, Sweetie R.; Chawla, S. P.; Sharma, Arun

    2015-06-01

    The effect of radiation processing (0, 2.5, 5 and 10 kGy) on the tenderness of three types of popularly consumed meat in India namely chicken, lamb and buffalo was investigated. In irradiated meat samples dose dependant reduction in water holding capacity, cooking yield and shear force was observed. Reduction in shear force upon radiation processing was more pronounced in buffalo meat. Protein and collagen solubility as well as TCA soluble protein content increased on irradiation. Radiation processing of meat samples resulted in some change in colour of meat. Results suggested that irradiation leads to dose dependant tenderization of meat. Radiation processing of meat at a dose of 2.5 kGy improved its texture and had acceptable odour.

  20. The toxic effects of ionizing radiations

    International Nuclear Information System (INIS)

    Draghita Payet, A.C.

    2006-06-01

    The sources of radiations to which the human body is subjected are of natural or artificial origin and the irradiation of the human body can take place either by internal or external way. The ionizing radiations act at several levels of the human body, the main thing being the molecule of DNA. The ionizing radiations have no specificity, the effects on the human body can be: somatic, genetic or hereditary, teratogen. In the case of a human being irradiation, we proceed to the diagnosis and to the treatment of the irradiated person, however, to decrease the incidence of injuries we use the radiation protection. The treatment if necessary will be established according to the irradiation type. (N.C.)

  1. Effects of radiation on the skin

    International Nuclear Information System (INIS)

    Hopewell, J.W.

    1985-01-01

    The effects of X-irradiation on pig skin are described, comparing and contrasting the effects seen in human and rodent skin. It is concluded that, anatomically, pig skin is the best animal model for human skin. The applications of the 'pig skin model' to investigations of the problems of radiation therapy and radiological protection of human skin are discussed. (U.K.)

  2. Radiation dose effects, hardening of electronic components

    International Nuclear Information System (INIS)

    Dupont-Nivet, E.

    1991-01-01

    This course reviews the mechanism of interaction between ionizing radiation and a silicon oxide type dielectric, in particular the effect of electron-hole pairs creation in the material. Then effects of cumulated dose on electronic components and especially in MOS technology are examined. Finally methods hardening of these components are exposed. 93 refs

  3. Cardiovascular effects of radiation therapy

    International Nuclear Information System (INIS)

    Alvarez, Jose A.G.; Leiva, Gustavo

    2001-01-01

    Therapeutic mediastinal irradiation can induce heart disease with variable degree of cardiac engagement. Heart disease manifestations depend on the grade of involvement of the different cardiac structures. During the first two years following irradiation, pericarditis with or without pericardial effusion is the most common manifestation of toxicity related to radiation therapy. Later on, after a latency period of five to ten years, a constrictive pericarditis may develop. Other type of late cardiac toxicities due to irradiation are restrictive cardiomyopathy, multiple valvular disease, coronary artery disease and different atrioventricular conduction disturbances. The therapeutic approach to this kind of heart disease has to be focused on its progressive course and in the possibility of a global involvement of all the cardiac structures. Pericardiectomy is strongly recommended for recurrent pericardial effusion with cardiac tamponade. Cardiac surgery for myocardial revascularization or valvular disease can be performed with variable results; the presence of myocardial fibrosis can significantly affect perioperative management and long-term results. Cardiac transplantation is a promissory option for those patients with end-stage cardiac failure. Immunosuppressive regimens are not associated with recurrence of malignancy. (author) [es

  4. Radiation effects, nuclear energy and comparative risks

    International Nuclear Information System (INIS)

    Gopinath, D.V.

    2007-01-01

    Nuclear energy had a promising start as an unlimited, inexpensive and environmentally benign source of energy for electricity generation. However, over the decades its growth was severely retarded due to concerns about its possible detrimental effects on the well-being of mankind and the environment. Since such concerns are essentially due to the gigantic magnitude of radioactivity and ionizing radiations associated with nuclear energy, this article starts with a comprehensive account of effects of the ionizing radiation on living systems. Quantitative description of types of radiation exposure and their varied effects is given. The origin, type and magnitude of mutagenic effects of radiation are described. The concept of radiation risk factors, basis for their evaluation and their currently accepted values are presented. With this background, origin and magnitude of radioactivity and associated ionizing radiations in nuclear reactors are presented and the elaborate measures to contain them are described. It is recognized that notwithstanding all the measures taken in the nuclear industry, certain amount of radiation exposure, however small, is inevitable and the values, based on the experience world over, are presented. Estimated health risk due to such exposures is evaluated. For a comparative analysis, risks in other options of electricity generation such as hydel and fossil-fuelled plants are described. It is seen that on an overall basis, the nuclear option is no more risky than the other commonly employed options, and is in fact, significantly less. Lastly, since every option of electricity generation entails some risk, the case of 'no addition of electricity, and its impact on the society are considered. Based on the analysis of extensive data provided by UNDP on the human development parameters for different countries in the world, it is shown that at least for developing countries, any option of addition of electricity would be far more desirable than the

  5. Ionizing radiation effect on human reproduction

    International Nuclear Information System (INIS)

    Jirous, J.

    1987-01-01

    A review is presented of the existing knowledge on the adverse effects of ionizing radiation on human reproduction. Some interesting findings have been obtained by interapolating the results of studies in mouse embryos to humans, important knowledge has been obtained in studies involving the population of Hiroshima and Nagasaki. The review summarizes the knowledge in the following conclusions: (1) prior to the blastocyst stage, the mammalian embryo is insensitive to teratogenic and growth retarding radiation effects but is highly sensitive to the lethal radiation effect; (2) in the early organogenesis, the embryo is very sensitive to growth retarding, teratogenic and lethal radiation effects. It can, however, partly offset growth retardation in the post-natal period; (3) in the early fetal development stage, the fetus shows reduced sensitivity to teratogenic damage of many organs; sensitivity of the central nervous system and growth retardation remain which can only be compensated post-natally with difficulties; (4) in the late stage of pregnancy the fetus is not significantly deformed as a result of irradiation but permanent cellular depletion can result in various organs and tissues post-natally if radiation doses are high. (L.O.). 22 refs

  6. Effects of UV radiation on freshwater metazooplankton

    International Nuclear Information System (INIS)

    Tartarotti, B.

    1999-06-01

    There is evidence that fluxes of solar ultraviolet-B radiation (UV-B, 290-320 nm) are increasing over wide parts of the earth's surface due to stratospheric ozone depletion. UV radiation (290-400 nm) can have damaging effects on biomolecules and cell components that are common to most living organisms. The aim of this thesis is to gain a more thorough understanding of the potential impacts of solar radiation on freshwater metazooplankton. To detect UV-vulnerability in zooplankton populations dominating the zooplankton community of two clear-water, high mountain lakes located one in the Austrian Alps and another in the Chilean Andes, the survival of two copepod species was studied. The organisms were exposed to a 10- to 100-fold increase in UV-B radiation compared to those levels found at their natural, maximum daytime distribution. Both species vertically migrate and are pigmented. UV-absorbing compounds with a maximum absorption at ∼334 nm were also detected. Cyclops abyssorum tatricus, a common cyclopoid copepod species of Alpine lakes, was highly resistant to UV-B radiation and no significant lethal effect was observed. The calanoid copepod Boeckella gracilipes, frequent in Andean lakes, had a mortality ∼5 times higher in the treatment receiving full sunlight than in the UV-B excluded treatment (3.2 %) only when exposed for 70 h. The resistance of B. gracilipes was higher than that reported in the literature for the same species suggesting the existence of intraspecific differences in UV sensitivity. Survival, fecundity and development of the zooplankton community of a clear-water, high elevation Andean lake (33 o S) were studied with mesocosms experiments after prolonged UV exposure (48 days). When exposed to full sunlight, the population of the cladoceran Chydorus sphaericus and the rotifer Lepadella ovalis were strongly inhibited by UV-B, whereas both species were resistant to UV-A radiation. Conversely, UV-B radiation had no effect on the survival of the

  7. Cytogenetic effects of low-dose radiation

    International Nuclear Information System (INIS)

    Metalli, P.

    1983-01-01

    The effects of ionizing radiation on chromosomes have been known for several decades and dose-effect relationships are also fairly well established in the mid- and high-dose and dose-rate range for chromosomes of mammalian cells. In the range of low doses and dose rates of different types of radiation few data are available for direct analysis of the dose-effect relationships, and extrapolation from high to low doses is still the unavoidable approach in many cases of interest for risk assessment. A review is presented of the data actually available and of the attempts that have been made to obtain possible generalizations. Attention is focused on some specific chromosomal anomalies experimentally induced by radiation (such as reciprocal translocations and aneuploidies in germinal cells) and on their relevance for the human situation. (author)

  8. The late biological effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-06-15

    Full text: The principal objective of the symposium was to review the current status of understanding of the late biological effects of ionizing radiation from external and internal sources. A second objective was to critically evaluate information obtained from epidemiological studies of human population groups as well as from animal experimentation in order to provide a solid scientific basis upon which problems of current concern, such as radiation protection standards and risk-benefit analysis, could be deliberated. Eighty-one papers were presented in 10 sessions which covered epidemiological studies of late effects in human populations exposed to internal and/or external ionizing radiation; quantitative and qualitative data from animal experimentation of late effects; methodological problems and modern approaches; factors influencing susceptibility or expression of late radiation injury; comparative evaluation of late effects induced by radiation and other environmental pollutants, and problems of risk assessment. In addition, there were two evening sessions for free discussion of problems of interpreting animal data, and of the epidemiological studies of occupationally exposed populations. Reports on atomic bomb survivors showed that these epidemiological studies are providing dependable data, such as dose-related excess infant mortality. The reports also revealed the need for consensus in the method employed in the interpretation of data. That was also the case with studies on occupationally exposed populations at Hanford plant, where disparate results were presented on radiation-induced neoplasia among radiation workers. These data are, however, considered not so significant in relative terms when compared to risks involved in other industries. It was recommended that national registry systems for the dosimetry and medical records of radiation workers be established and co-ordinated internationally in order to facilitate reliable epidemiological

  9. Long-term effects of radiation

    International Nuclear Information System (INIS)

    Smith, J.; Smith, T.

    1981-01-01

    It is pointed out that sources of long-term damage from radiation are two-fold. People who have been exposed to doses of radiation from initial early fallout but have recovered from the acute effects may still suffer long-term damage from their exposure. Those who have not been exposed to early fallout may be exposed to delayed fallout, the hazards from which are almost exclusively from ingesting strontium, caesium and carbon isotopes present in food; the damage caused is relatively unimportant compared with that caused by the brief doses from initial radiation and early fallout. A brief discussion is presented of the distribution of delayed long-lived isotope fallout, and an outline is sketched of late biological effects, such as malignant disease, cataracts, retarded development, infertility and genetic effects. (U.K.)

  10. Radiation effects on Brassica seeds and seedlings

    Science.gov (United States)

    Deoli, Naresh; Hasenstein, Karl H.

    2016-07-01

    Space radiation consists of high energy charged particles and affects biological systems, but because of its stochastic, non-directional nature is difficult to replicate on Earth. Radiation damages biological systems acutely at high doses or cumulatively at low doses through progressive changes in DNA organization. These damages lead to death or cause of mutations. While radiation biology typically focuses on mammalian or human systems, little is known as to how radiation affects plants. In addition, energetic ion beams are widely used to generate new mutants in plants considering their high-LET (Linear Energy Transfer) as compared to gamma rays and X-rays. Understanding the effect of ionizing radiation on plant provides a basis for studying effects of radiation on biological systems and will help mitigate (space) radiation damage in plants. We exposed dry and imbibed Brassica rapa seeds and seedling roots to proton beams of varying qualities and compared the theoretical penetration range of different energy levels with observable growth response. We used 1, 2 and 3 MeV protons in air at the varying fluences to investigate the effect of direct irradiation on the seeds (1012 - 1015 ions/cm2) and seedlings (1013 ions/cm2). The range of protons in the tissue was calculated using Monte-Carlo based SRIM (Stopping and Range of Ions in Matter) software. The simulation and biological results indicate that ions did not penetrate the tissue of dry or hydrated seeds at all used ion energies. Therefore the entire energy was transferred to the treated tissue. Irradiated seeds were germinated vertically under dim light and roots growth was observed for two days after imbibition. The LD50 of the germination was about 2×1014 ions/cm2 and about 5×1014 ions/cm2 for imbibed and dry seeds, respectively. Since seedlings are most sensitive to gravity, the change in gravitropic behavior is a convenient means to assess radiation damage on physiological responses other than direct tissue

  11. Dose-volume histogram comparison between static 5-field IMRT with 18-MV X-rays and helical tomotherapy with 6-MV X-rays.

    Science.gov (United States)

    Hayashi, Akihiro; Shibamoto, Yuta; Hattori, Yukiko; Tamura, Takeshi; Iwabuchi, Michio; Otsuka, Shinya; Sugie, Chikao; Yanagi, Takeshi

    2015-03-01

    We treated prostate cancer patients with static 5-field intensity-modulated radiation therapy (IMRT) using linac 18-MV X-rays or tomotherapy with 6-MV X-rays. As X-ray energies differ, we hypothesized that 18-MV photon IMRT may be better for large patients and tomotherapy may be more suitable for small patients. Thus, we compared dose-volume parameters for the planning target volume (PTV) and organs at risk (OARs) in 59 patients with T1-3 N0M0 prostate cancer who had been treated using 5-field IMRT. For these same patients, tomotherapy plans were also prepared for comparison. In addition, plans of 18 patients who were actually treated with tomotherapy were analyzed. The evaluated parameters were homogeneity indicies and a conformity index for the PTVs, and D2 (dose received by 2% of the PTV in Gy), D98, Dmean and V10-70 Gy (%) for OARs. To evaluate differences by body size, patients with a known body mass index were grouped by that index ( 25 kg/m(2)). For the PTV, all parameters were higher in the tomotherapy plans compared with the 5-field IMRT plans. For the rectum, V10 Gy and V60 Gy were higher, whereas V20 Gy and V30 Gy were lower in the tomotherapy plans. For the bladder, all parameters were higher in the tomotherapy plans. However, both plans were considered clinically acceptable. Similar trends were observed in 18 patients treated with tomotherapy. Obvious trends were not observed for body size. Tomotherapy provides equivalent dose distributions for PTVs and OARs compared with 18-MV 5-field IMRT. Tomotherapy could be used as a substitute for high-energy photon IMRT for prostate cancer regardless of body size. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  12. Effects of radiation on DNA

    International Nuclear Information System (INIS)

    Medina, V.F.O.

    1978-01-01

    Irradiation has been shown to depress DNA (deoxyribonucleic acid) synthesis resulting in deficient DNA synthesis. In one experiment, Hela S 3 cells completed the next division after a dose of 500 rads to 200 kw X-rays. Another experiment showed that the amount of DNA synthesized was dependent on the stage in the generation cycle at which the cells are irradiated (Giffites and Tolmach, 1975). DNA synthesis was measured by radioactive thymidine incorporation. The smallest deficiency (20-35%) after a dose of 500 rad X-ray was observed in Hela S 3 cells irradiated in early G 1 or early G 2 , while the greatest deficiency (55-70*) after 500 rad X-ray was found in cells irradiated at mitosis or at the Gsub(1)/S transition. Using velocity sedimentation in alkaline gradients of the DNA from hamster, Elkind, et al 1972, studied repair processes as a function of X-ray dose. DNA containing material released by alkaline lysis was found initially contained in a complex-containing lipid, the sedimentation of which was anomalous relative to denatured RNA from unirradated cells. Doses of X-rays small enough to be in the range that permits high survival (100-800 rads) speed the resolution of single-stranded DNA from this DNA complex, giving rise to a species having a number average molecular weight of 2 x 10 8 daltons. Larger doses greater than 1000 to 2000 rads resulted in a degradation of these DNA strands. Incubation after irradiation resulted in the rapid repair of damage, although the rate of repair of damage to the complex resulted in a reassociation of lipid and DNA. This evidence supports the possibility that a large DNA-membrane structure is a principal target of radiation

  13. Ultra violet radiation : effects on animals

    International Nuclear Information System (INIS)

    Stockdale, P.H.G.

    1993-01-01

    The paper deals with the evolutionary and historical events that have increased the susceptibility of certain genotypes of humanity and domestic animals to ultra violet radiation. Further it discusses the general effects of ultraviolet B (UVB) on vertebrates and then the clinical syndromes seen in such animals as a result of prolonged exposure to this form of radiation. Finally it gives anecdotal comments on evidence for changes in the immediately above types of disease and describes the need for a better recording system for these conditions so that these hypothetical changes could be effectively monitored. (author). 12 refs

  14. Genetic and chromosomal effects of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The genetic and chromosomal effects of ionizing radiations deal with those effects in the descendants of the individuals irradiated. The information base concerning genetic and chromosomal injury to humans from radiation is less adequate than is the information base for cancer and leukemia. As a result, it is not possible to make the kinds of quantitative estimates that have been made for carcinogenesis in previous chapters of this book. The chapter includes a detailed explanation of various types of genetic injuries such as chromosomal diseases, x-linked diseases, autosomal dominant diseases, recessive diseases, and irregularly inherited diseases. Quantitative estimates of mutation rates and incidences are given based on atomic bomb survivors data

  15. Additive effects in radiation grafting and curing

    International Nuclear Information System (INIS)

    Viengkhou, V.; Ng, L.

    1996-01-01

    Full text: Detailed studies on the accelerative effect of novel additives in radiation grafting and curing using acrylated monomer/oligomer systems have been performed in the presence of ionising radiation and UV as sources. Methyl methacrylate (MMA) is used as typical monomer for these grafting studies in the presence of the additives with model backbone polymers, cellulose and propropylene. Additives which have been found to accelerate these grafting processes are: mineral acid, occlusion compounds like urea, thermal initiators and photoinitiators as well as multifunctional monomers such as multifunctional acrylates. The results from irradiation with gamma rays have also been compared with irradiation from a 90W UV lamp. The role of the above additives in accelerating the analogous process of radiation curing has been investigated. Acrylated urethanes, epoxies and polyesters are used as oligomers together with acrylated monomers in this work with uv lamps of 300 watts/inch as radiation source. In the UV curing process bonding between film and substrate is usually due to physical forces. In the present work the presence of additives are shown to influence the occurrence of concurrent grafting during cure thus affecting the nature of the bonding of the cured film. The conditions under which concurrent grafting with UV can occur will be examined. A mechanism for accelerative effect of these additives in both grafting and curing processes has been proposed involving radiation effects and partitioning phenomena

  16. Radiation effects on custom MOS devices

    International Nuclear Information System (INIS)

    Harris, R.

    1999-05-01

    This Thesis consists of four chapters: The first is primarily for background information on the effects of radiation on MOS devices and the theory of wafer bonding; the second gives a full discussion of all practical work carried out for manufacture of Field Effect test Capacitors, the third discusses manufacture of vacuum insulator Field Effect Transistors (FET's) and the fourth discusses the testing of these devices. Using a thermally bonded field effect capacitor structure, a vacuum dielectric was studied for use in high radiation environments with a view to manufacturing a CMOS compatible, micro machined transistor. Results are given in the form of high frequency C-V curves before and after a 120 kGy(Si), 12 MRad(Si), dose from a Co 60 source showing a 1 Volt shift. The work is then extended to the design and manufacture of a micro machined, under-etch technique, Field Effect Transistor for use in high radiation areas. Results are shown for Threshold, Subthreshold and Transfer characteristics before and after irradiation up to a total dose of 100kGy or 10MRad. The conclusion from this work is that it should be possible to commercially manufacture practical vacuum dielectric field effect transistors which are radiation hard to at least 120 kGy(Si). (author)

  17. Ceramics radiation effects issues for ITER

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1993-01-01

    The key radiation effects issues associated with the successful operation of ceramic materials in components of the planned International Thermonuclear Experimental Reactor (ITER) are discussed. Radiation-induced volume changes and degradation of the mechanical properties should not be a serious issue for the fluences planned for ITER. On the other hand, radiation-induced electrical degradation effects may severely limit the allowable exposure of ceramic insulators. Degradation of the loss tangent and thermal conductivity may also restrict the location of some components such as ICRH feedthrough insulators to positions far away from the first wall. In-situ measurements suggest that the degradation of physical properties in ceramics during irradiation is greater than that measured in postirradiation tests. Additional in-situ data during neutron irradiation are needed before engineering designs for ITER can be finalized

  18. Effects of radiation rays on construction materials

    International Nuclear Information System (INIS)

    Akkurt, I.; Kilicarslan, S.; Basyigit, C.; Kacar, A.

    2006-01-01

    Molecules that are bring into existence material determined as gas, liquid and stiff according to their internal structures and heat. Materials show various reaction to various effects that is result from all kind of materials have various internal structures. Radiation is covert materials' mechanical, physical and chemical properties. Nowadays in construction formation there isn't using only one material it is preferred that kind of materials composition because of there are run into some problems about choosing and decision sort of material. Material that using in construction is classified as metals, plastics and ceramics in three groups. About sixty percent of construction cost is being formed from construction materials. In this study effects of various radiations on construction materials are being investigated and the end of study it is being suggestion some useful construction materials according to usage land and radiation properties

  19. Radiation research contracts: Biological effects of small radiation doses

    International Nuclear Information System (INIS)

    Hug, O.

    1959-01-01

    According to its Statute the IAEA has to fulfil a dual function - to help individual countries in solving their specific problems and to undertake tasks in the common interest of all its Member States. With this latter aim in mind the Agency has placed a number of research contracts with national research institutes. The purpose and scope of two of them is described below by the scientists responsible for their execution. The Agency has contributed to this work by putting at the institutes' disposal scientists from its own staff apparatus and financial aid.IAEA placed a research contract concerning the effects of small radiation doses on cells, in particular on nervous cells, with the Pharmacological Institute of the University of Vienna. This Institute appeared well suited to deal with the problem owing to the type of its previous research work. The Director, Prof. Franz Bruecke, and his collaborator Dr. Otto Kraupp, have long been interested in the functioning of the nervous system and in the influence of different drugs upon it. It was particularly fortunate that the electrical properties and functions of cells had been measured by a method specially developed at this Institute. From the above mentioned observations one could expect that instantaneous reactions of cells to radiation would also lead to changes of the electrical status. Consequently, this method is now being applied to the research undertaken for IAEA. Different cells of plants and animals, ranging from algae to muscle fibres of mammals, were chosen as objects. So far changes of potentials-had been observed only during irradiation with very high doses. During these investigations another useful test for small radiation doses was developed, namely the measurement of the through-flow of an artificial blood solution through the blood vessels of an intestinal loop. It was observed that a few seconds after irradiation the flow rate diminishes, and returns to its normal level only when irradiation ends

  20. Radiation research contracts: Biological effects of small radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Hug, O

    1959-01-15

    According to its Statute the IAEA has to fulfil a dual function - to help individual countries in solving their specific problems and to undertake tasks in the common interest of all its Member States. With this latter aim in mind the Agency has placed a number of research contracts with national research institutes. The purpose and scope of two of them is described below by the scientists responsible for their execution. The Agency has contributed to this work by putting at the institutes' disposal scientists from its own staff apparatus and financial aid.IAEA placed a research contract concerning the effects of small radiation doses on cells, in particular on nervous cells, with the Pharmacological Institute of the University of Vienna. This Institute appeared well suited to deal with the problem owing to the type of its previous research work. The Director, Prof. Franz Bruecke, and his collaborator Dr. Otto Kraupp, have long been interested in the functioning of the nervous system and in the influence of different drugs upon it. It was particularly fortunate that the electrical properties and functions of cells had been measured by a method specially developed at this Institute. From the above mentioned observations one could expect that instantaneous reactions of cells to radiation would also lead to changes of the electrical status. Consequently, this method is now being applied to the research undertaken for IAEA. Different cells of plants and animals, ranging from algae to muscle fibres of mammals, were chosen as objects. So far changes of potentials-had been observed only during irradiation with very high doses. During these investigations another useful test for small radiation doses was developed, namely the measurement of the through-flow of an artificial blood solution through the blood vessels of an intestinal loop. It was observed that a few seconds after irradiation the flow rate diminishes, and returns to its normal level only when irradiation ends

  1. Effects of gamma radiation in annatto seeds

    International Nuclear Information System (INIS)

    Franco, Camilo F. de Oliveira; Arthur, Valter; Arthur, Paula B.; Harder, Marcia N.C.; Filho, Jose C.; Neto, Miguel B.

    2015-01-01

    The annatto bixin has emerged as a major source of natural dyes used in the world notably by the substitution of synthetics harmful to human health and ecologic tendency in obtaining industrial products free of additives with applications in industries textiles; cosmetics; pharmaceutical and food mainly. The aim of this research was to obtain increased of germination rate and dormancy breaking on annatto seeds by gamma radiation. Annatto dry seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.456 kGy/hour dose rate. In order to study stimulation effects of radiation on germination rate and dormancy breaking in the seeds. Five treatments with gamma radiation doses were applied as follows: 0 (control); 100; 125; 150 and 175 Gy. After irradiation the annatto seeds were planted as for usual seed production. According to the results obtained in this experiment we can conclude that the low doses of gamma radiation utilized on the annatto seeds did not presented significantly effect on the germination of plants. But the best dose to increase the germination of seeds was 150 Gy. (author)

  2. Effects of gamma radiation in soybean

    International Nuclear Information System (INIS)

    Franco, Jose Gilmar; Franco, Suely Salumita Haddad; Arthur, Valter; Arthur, Paula Bergamin; Franco, Caio Haddad

    2015-01-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Soya dry seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.245 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. Five treatments radiation doses were applied as follows: 0 (control); 25; 50; 75 and 100 Gy. Seed germination and harvest of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were doses of 25, 50 and 75 Gy. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  3. Effects of gamma radiation in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Jose Gilmar; Franco, Suely Salumita Haddad; Arthur, Valter; Arthur, Paula Bergamin, E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Franco, Caio Haddad [Centro Nacional de Pesquisa em Energia e Materiais (LNBio/CNPEM), Campinas, SP (Brazil). Laboratorio Nacional de Biociencias; Villavicencio, Anna Lucia, E-mail: zegilmar60@gmail.com, E-mail: gilmita@uol.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Soya dry seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.245 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. Five treatments radiation doses were applied as follows: 0 (control); 25; 50; 75 and 100 Gy. Seed germination and harvest of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were doses of 25, 50 and 75 Gy. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  4. Effects of gamma radiation in annatto seeds

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Camilo F. de Oliveira, E-mail: camilo.urucum@hotmail.com [Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA/EMEPA), Joao Pessoa, PB (Brazil); Arthur, Valter; Arthur, Paula B., E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Harder, Marcia N.C., E-mail: marcia.harder@fatec.sp.gov.br [Centro Paula Souza, Curso Superior de Tecnologia em Bicombustiveis (FATEC), Piracicaba, SP (Brazil); Filho, Jose C.; Neto, Miguel B., E-mail: jorgecazefilho@yahoo.com.br [Empresa Estadual de Pesquisa Agropecuaria da Paraiba (EMEPA), Joao Pessoa, PB (Brazil)

    2015-07-01

    The annatto bixin has emerged as a major source of natural dyes used in the world notably by the substitution of synthetics harmful to human health and ecologic tendency in obtaining industrial products free of additives with applications in industries textiles; cosmetics; pharmaceutical and food mainly. The aim of this research was to obtain increased of germination rate and dormancy breaking on annatto seeds by gamma radiation. Annatto dry seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.456 kGy/hour dose rate. In order to study stimulation effects of radiation on germination rate and dormancy breaking in the seeds. Five treatments with gamma radiation doses were applied as follows: 0 (control); 100; 125; 150 and 175 Gy. After irradiation the annatto seeds were planted as for usual seed production. According to the results obtained in this experiment we can conclude that the low doses of gamma radiation utilized on the annatto seeds did not presented significantly effect on the germination of plants. But the best dose to increase the germination of seeds was 150 Gy. (author)

  5. Gamma and electron radiation effects on straw

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Baer, M.; Huebner, G.

    1983-01-01

    Gamma and electron radiation effects on wheat straw, oat straw, barley straw and rye straw are reported. In vitro and in vivo studies show that the digestibility of these agricultural rough materials can be increased up to 80% and more at high doses. The increase of the digestibility is connected with a depolymerisation of cellulose and hemicellulose. (author)

  6. The effects and control of radiation

    International Nuclear Information System (INIS)

    Saunders, P.A.H.

    1985-09-01

    Written for the layman, this booklet describes the effects of ionising radiation on people, and discusses the somatic hereditary risk estimates, and the measures taken to ensure the safe operation of the nuclear industry. New edition based on the sievert. (U.K.)

  7. Antiproton radiation found effective in cancer research

    CERN Multimedia

    2003-01-01

    "An international collaboration of scientists has completed the first ever antiproton beam experiments designed to reveal the biological effectiveness of antiproton radiation in terminating cells used for cancer research...PBar Labs assembled the collaboration at CERN (European Organization for Nuclear Research in Geneva) to perform the measurements" (1 page).

  8. Aerosol effects on UV radiation

    International Nuclear Information System (INIS)

    Koepke, P.; Reuder, J.; Schwander, H.

    2000-01-01

    The reduction of erythemally weighted UV-irradiance (given as UV index, UVI) due to aerosols is analyzed by variation of the tropospheric particles in a wide, but realistic range. Varied are amount and composition of the particles and relative humidity and thickness of the mixing layer. The reduction of UVI increases with aerosol optical depth and the UV change is around 10% for a change aerosol optical depth from 0.25 to 0.1 and 0.4 respectively. Since both aerosol absorption and scattering are of relevance, the aerosol effect depends besides total aerosol amount on relative amount of soot and on relative humidity

  9. Loading Effect on Tire Noise Radiation

    OpenAIRE

    Cao, Rui; Bolton, J Stuart

    2016-01-01

    Noise radiated by tires is a prominent noise pollution source and it is affected by many different parameters. Here, the effect of static load on tire noise radiation in a laboratory environment was investigated. The measurement was conducted by using the Tire Pavement Testing Apparatus (TPTA), on which a loaded tire can be run at speeds up to 50 km/hr; the tire noise was measured using a nearfield microphone method. The tire loading was varied from 500 to 900 pounds, and several different co...

  10. Effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Ionizing radiation of cosmic or terrestrial origin is part of the environment in which all living things have evolved since the creation of the universe. The artificial radioactivity generated by medical diagnostic and treatment techniques, some industrial activities, radioactive fallout, etc. has now been added to this natural radioactivity. This article reviews the biological effects of the low doses of ionizing radiation to which the population is thus exposed. Their carcinogenic risk cannot simply be extrapolated from what we know about high-dose exposure. (author)

  11. Radiation effects on cultured human lymphoid cells

    International Nuclear Information System (INIS)

    Johansson, L.; Nilsson, K.; Carlsson, J.; Larsson, B.; Jakobsson, P.

    1981-01-01

    The cloning efficiency of human normal and malignant lymphoid cells is usually low. Radiation effects in vitro on such cells can therefore not be analysed with conventional cloning. However, this problem can be circumscribed by using the growth extrapolation method. A panel of human leukemia-lymphoma cell-lines representing Epstein-Barr virus carrying lymphoblastoid cells of presumed non-neoplastic derivation and neoplastic T- and B-lymphocytes was used to test the efficiency of this method. The sensitivity to radiation could be determined for all these cell types. The growth extrapolation method gave generally the same result as conventional cloning demonstrated by comparison with one exceptional cell-line with capacity for cloning in agar. The sensitivity varied largely between the different cell types. A common feature was that none of the cell lines had a good capacity to accumulate sublethal radiation injury. (Auth.)

  12. Radiation effects in brain and spinal cord

    International Nuclear Information System (INIS)

    Franke, H.D.; Lierse, W.

    1978-01-01

    Radiation sensitivity of both the brain and spinal cord in prenatal and postnatal stages, in infancy and adult age is represented also in consideration of a combined treatment with methotrexate. In adults, application of important doses of high-energy radiation increases the risk of injurious effects to the central nervous system. If the spinal cord is involved, more than 60% of the radiolesions have a progredient course ending with death. The pathogenesis and disposing factors are referred to, and the incidence of radiation necrosis with regard to age and sex, the degrees of injury and their frequence within different ranges of dosage are analyzed on the basis of data from universal literature. An examination of 'tolerance doses' for the spinal cord is made by means of Strandquist-diagrams and of the Ellis-formula. The slopes of regression lines are reported for various 'degrees of response' in skin, brain and spinal cord following radiation therapy. In the Strandquist-diagram, slopes of regression lines are dependent on the 'degree of response', flattening if skin and spinal cord are affected by radiation in the same degree, necroses having the same slope for both the organs. (orig./MG) [de

  13. Effect of domperidone on radiation sickness

    Energy Technology Data Exchange (ETDEWEB)

    Sakakibara, T; Sato, K [Nihon Univ., Tokyo. School of Medicine; Watari, T; Tanaka, T; Furuta, A

    1981-07-01

    Domperidone was administered to 95 patients with radiation sickness following radiotherapy for various cancers. The chest and the mediastinum were irradiated in 43 patients, the upper and lower abdomen in 40 patients, and the head, neck, and supraclavicular region in 12 patients. As to radiation source, x-ray was used for 46 patients, ..gamma..-ray for 41 patients, electron beam for 3 patients, and more than one radiation was used for 5 patients. The dose given before the onset of radiation sickness totaled 3000 rad in 20 patients, 1000 rad -- 3000 rad in 41, and less than 1000 rad in 34. Domperidone was given to the patients one tablet (5 mg or 10 mg) P.O., 3 times per day before meals, for 1 -- 2 weeks. The overall effective rate of the drug was 68.4%. The 10 mg tablets were slightly more effective than the 5 mg ones. In the patients who were given the drug in a dose of 10 mg, the ameliorating rate of subjective symptoms was 68.1% for nausea, 88.9% for vomiting, 44.6% for anorexia, 17.5% for general fatigue, and 69.2% for dizziness. Laboratory findings showed no abnormal effects of the drug. One patient had itching with eruptions, which, however, was mild and disappeared immediately after withdrawal of the medication.

  14. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst

    2009-01-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  15. Radiation doses and possible radiation effects of low-level, chronic radiation in vegetation

    International Nuclear Information System (INIS)

    Rhoads, W.A.; Franks, L.A.

    1975-01-01

    Measurements were made of radiation doses in soil and vegetation in Pu-contaminated areas at the Nevada Test Site with the objective of investigating low-level, low-energy gamma radiation (with some beta radiation) effects at the cytological or morphological level in native shrubs. In this preliminary investigation, the exposure doses to shrubs at the approximate height of stem apical meristems were estimated from 35 to 140 R for a ten-year period. The gamma exposure dose estimated for the same period was 20.7 percent +- 6.4 percent of that recorded by the dosimeters used in several kinds of field instrument surveys. Hence, a survey instrument reading made at about 25 cm in the tops of shrubs should indicate about 1 / 5 the dosimeter-measured exposures. No cytology has yet been undertaken because of the drought since last winter. (auth)

  16. Radiation effects in mammalian cells in vitro

    International Nuclear Information System (INIS)

    Hill, C.K.; Han, A.; Elkind, M.M.; Wells, R.L.; Buess, E.M.; Lin, C.M.

    1985-01-01

    The purpose of this research effort is to elucidate the mechanisms for the radiation-induced changes in mammalian cells that lead to cell death, mutation, neoplastic transformation, DNA damage, and chromosomal alterations. Of particular interest are the effects of low-dose-rate and fractionated irradiation on these end points with respect to the mechanisms whereby these effects are influenced by cellular repair processes, inhibitors, and promoters that act at the genetic or biochemical level. 17 refs

  17. Exploring gamma radiation effect on exoelectron emission properties of bone

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, M.; Dekhtyar, Y.; Bogucharska, T.; Noskov, V. [Riga Technical Univ., Biomedical Engineering and Nanotechnology Institute (Latvia)

    2006-07-01

    Gamma radiation is used for radiation therapy to treat carcinogenic diseases including bone cancer. Ionising radiation kills carcinogenic calls. However, there are side effects of the gamma radiation on the bone surface electron structure. One of the effects is in the form of altering electron density of states of bone that, with time, influences biomedical reactions on bone life condition. (authors)

  18. Exploring gamma radiation effect on exoelectron emission properties of bone

    International Nuclear Information System (INIS)

    Zakaria, M.; Dekhtyar, Y.; Bogucharska, T.; Noskov, V.

    2006-01-01

    Gamma radiation is used for radiation therapy to treat carcinogenic diseases including bone cancer. Ionising radiation kills carcinogenic calls. However, there are side effects of the gamma radiation on the bone surface electron structure. One of the effects is in the form of altering electron density of states of bone that, with time, influences biomedical reactions on bone life condition. (authors)

  19. Radiation effect on PVC/ENR blends

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Mohd Dahlan

    1997-01-01

    The effect of irradiation on the physical properties of Polyvinyl Chloride / Epoxidised Natural Rubber Blends (PVC/ENR blends) were investigated. The enhancement in tensile strength, elongation at break, hardness and aging properties of the blends have confirmed the positive effect of irradiation on the blends. It is evident from gel fraction and infra red spectroscopic studies that the blends of PVC and ENR cross-linked upon irradiation. The results also revealed that at any blend composition, the enhancement in properties depend on irradiation dose which controls the degree of radiation induced cross-linking. In an attempt to maximize the constructive effect of irradiation, the influence of various additives such as stabilizers, radiation sensitizers, fillers and processing aids on the blend properties were studied. The changes in blend properties upon irradiation with the presents of above additives were also presented in this paper

  20. Effects of Scattering of Radiation on Wormholes

    Directory of Open Access Journals (Sweden)

    Alexander Kirillov

    2018-02-01

    Full Text Available Significant progress in the development of observational techniques gives us the hope to directly observe cosmological wormholes. We have collected basic effects produced by the scattering of radiation on wormholes, which can be used in observations. These are the additional topological damping of cosmic rays, the generation of a diffuse background around any discrete source, the generation of an interference picture, and distortion of the cosmic microwave background (CMB spectrum. It turns out that wormholes in the leading order mimic perfectly analogous effects of the scattering of radiation on the standard matter (dust, hot electron gas, etc.. However, in higher orders, a small difference appears, which allows for disentangling effects of wormholes and ordinary matter.

  1. Neurophysiological appropriateness of ionizing radiation effects

    International Nuclear Information System (INIS)

    Nyagu, A.I.; Loganovsky, K.N.

    1997-01-01

    The goal of this study was to compare bioelectrical activity of the brain in remote period of acute radiation sickness (ARS), chronic and prenatal irradiation as a result of the Chernobyl disaster. Registration of computerized 19-channel EEG, visual and somato-sensory evoked potentials have been carried out for 70 patients who had a verified ARS, 100 Chernobyl disaster survivors, who have been working in the Chernobyl exclusion zone since 1986-87 during 5 and more years, 50 prenatally irradiated children, and relevant controls. The relative risks of neurophysiological abnormalities are 4.5 for the ARS-patients, 3.6 for the chronically irradiated persons and 3.7 for the prenatally irradiated children. The data obtained testify to possibility of radiation-induced neurophysiological abnormalities in examined Chernobyl accident survivors which seems to be non-stochastic effects of ionizing radiation. For all examined irradiated patients it was typically an increasing of δ- and β- powers of EEG, particularly, in the frontal lobe shifted to the left fronto-temporal region, but spectral power of both θ- and α-range was significantly depressed. Aforesaid signs together with data of evoked potentials reflect the structural and functional abnormalities of limbic system and the left hemisphere as the first revealed neurophysiological appropriateness of ionizing radiation effects. (author)

  2. Neurophysiological appropriateness of ionizing radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Nyagu, A I; Loganovsky, K N [Department of Neurology, Inst. of Clinical Radiology, Scientific Centre for Radiation Medicine of Academy of Medical Sciences of Ukraine, Kiev (Ukraine)

    1997-11-01

    The goal of this study was to compare bioelectrical activity of the brain in remote period of acute radiation sickness (ARS), chronic and prenatal irradiation as a result of the Chernobyl disaster. Registration of computerized 19-channel EEG, visual and somato-sensory evoked potentials have been carried out for 70 patients who had a verified ARS, 100 Chernobyl disaster survivors, who have been working in the Chernobyl exclusion zone since 1986-87 during 5 and more years, 50 prenatally irradiated children, and relevant controls. The relative risks of neurophysiological abnormalities are 4.5 for the ARS-patients, 3.6 for the chronically irradiated persons and 3.7 for the prenatally irradiated children. The data obtained testify to possibility of radiation-induced neurophysiological abnormalities in examined Chernobyl accident survivors which seems to be non-stochastic effects of ionizing radiation. For all examined irradiated patients it was typically an increasing of {delta}- and {beta}- powers of EEG, particularly, in the frontal lobe shifted to the left fronto-temporal region, but spectral power of both {theta}- and {alpha}-range was significantly depressed. Aforesaid signs together with data of evoked potentials reflect the structural and functional abnormalities of limbic system and the left hemisphere as the first revealed neurophysiological appropriateness of ionizing radiation effects. (author). 25 refs.

  3. Ultraviolet radiation and its biological effects

    International Nuclear Information System (INIS)

    Rames, J.; Bencko, V.

    1993-01-01

    In connexion with contamination of the atmosphere with freons, the interest is increasing in geophysical and health aspects of 'ozone holes' - the seasonal incidence of increased intensity of UV radiation. Its biological effects depend on the intensity of the radiation, the exposure time and the wavelength. There is a wide range of various sorts of damage, local as well as general. In addition to skin pigmentation and symptoms produced by an elevated histamine blood level, also changes are found which may have more serious and permanent consequences: changes in the number and structure of Langerhans islets, changes of the peripheral capillary walls, dimerization of pyrimidine and thymine in DNA. These changes demonstrably contribute to the development of skin malignancies. After exposure of the eye, changes in pigmentation are found, and depending on the dose, possibly also development of conjunctivitis or retinal damage. Recently the interaction of UV radiation with arsenic was investigated. On the other side, therapeutic effects of UV radiation combined with chemotherapy are used in dermatology, eg., for inhibition of contact sensitization. (author) 42 refs

  4. Effect of ionizing radiation on cardiovascular system

    International Nuclear Information System (INIS)

    Milliat, F.; Benderitter, M.; Gaugler, M.H.

    2011-01-01

    Radiotherapy treatment for cancer of the chest, mediastinal area or the neck area is associated with increased risk of cardiovascular disease. With the increasing number of cancer patients and the increased treatment efficiency, the number of cancer survivors is increasing exponentially. The cancer survivors live longer and their long-term follow-up must be considered. The cardiovascular toxicity is mainly associated with the treatment of breast cancer, Hodgkin's lymphoma and head and neck cancer. Radiation-induced cardiovascular effects are insidious and chronic. Their occurrence is linked to numerous factors including the age of the patient at the beginning of the radiotherapy schedule, the number of years following radiotherapy, the doses (and volume) to the heart and the large vessels (coronary and carotid arteries), and the association with the traditional cardiovascular risk factors. Pathophysiological mechanisms remain unclear and, even if similarities with age-related atherosclerosis were established, the specificities of the radiation-induced atherosclerosis for high doses remain to be discovered. For low/moderate doses of ionising radiation, recent epidemiological studies provide evidence of increased risk of cardiovascular pathologies. A better knowledge of the mechanisms associated with the radiation-induced cardiovascular pathologies and the more precise identification of the populations at risk in the future should allow a more effective care of these patients with cardiovascular risk. (authors)

  5. The effects of radiation on electronic systems

    International Nuclear Information System (INIS)

    Messenger, G.C.; Ash, M.S.

    1986-01-01

    This book is the first unified treatment of the analysis and design methods for protection of principally electronic systems from the deleterious effects of nuclear and electro-magnetic radiation. Coverage spans from a detailed description of the nuclear radiation sources to pertinent semiconductor physics, then to hardness assurance. This work combines the disciplines of solid state physics, semiconductor physics, circuit engineering, nuclear physics, together with electronics and electromagnetic theory into a book that can be used as a text with problems at the end of the majority of the chapters. Written by veterans in the field, the most significant feature of this book is its comprehensive treatment of the phenomena involved. This treatment includes the analysis and design of the effect of nuclear radiation on electronic systems from the experimental, theoretical, and engineering viewpoints. Unique pedagogical attempts are employed to make the material more understandable from the position of an enlightened engineering and scientific readership whose task is the design and analysis of radiation hardened electronic systems

  6. Radiation effects on two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)

    2016-12-15

    The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Microwave radiation - Biological effects and exposure standards

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, I.R.

    1980-06-01

    The thermal and nonthermal effects of exposure to microwave radiation are discussed and current standards for microwave exposure are examined in light of the proposed use of microwave power transmission from solar power satellites. Effects considered include cataractogenesis at levels above 100 mW/sq cm, and possible reversible disturbances such as headaches, sleeplessness, irritability, fatigue, memory loss, cardiovascular changes and circadian rhythm disturbances at levels less than 10 mW/sq cm. It is pointed out that while the United States and western Europe have adopted exposure standards of 10 mW/sq cm, those adopted in other countries are up to three orders of magnitude more restrictive, as they are based on different principles applied in determining safe limits. Various aspects of the biological effects of microwave transmissions from space are considered in the areas of the protection of personnel working in the vicinity of the rectenna, interactions of the transmitted radiation with cardiac pacemakers, and effects on birds. It is concluded that thresholds for biological effects from short-term microwave radiation are well above the maximal power density of 1 mW/sq cm projected at or beyond the area of exclusion of a rectenna.

  8. Literature survey: health effects of radiation

    International Nuclear Information System (INIS)

    Tveten, U.; Garder, K.

    This report was originally written as a chapter of a report entitled 'Air pollution effects of electric power generation, a literature survey', written jointly by the Norwegian Institute for Air Research (NILU) and the Institutt for Atomenergi (IFA). (INIS RN242406). A survey is presented of the health effects of radiation. It has not, however, been the intention of the authors to make a complete list of all the literature relevant to this subject. The NILU/IFA report was meant as a first step towards a method of comparing the health effects of electric power generation by fission, gas and oil. Consequently information relevant to quantification of the health effects on humans has been selected. It is pointed out that quantitative information on the health effects of low radiation and dose rates, as are relevant to routine releases, does not exist for humans. The convention of linear extrapolation from higher doses and dose rates is used worldwide, but it is felt by most that the estimates are conservative. As an example of the use of the current best estimates, a calculation of normal release radiation doses is performed. (Auth.)

  9. Radiation effects in semiconductor laser diode arrays

    International Nuclear Information System (INIS)

    Carson, R.F.

    1988-01-01

    The effects of radiation events are important for many of the present and future applications that involve optoelectronic components. Laser diodes show a strong resistance to degradation by gamma rays, prompt x-rays and (to a lesser extent), neutrons. This is due to the short carrier lifetime that is associated with stimulated emission and the high current injection conditions that are present in these devices. Radiation-resistant properties should carry over to many of the more recently developed devices such as multi-stripe array and broad area laser diodes. There are, however, additional considerations for radiation tolerance that are introduced by these devices. Arrays and other high power laser diodes have larger active region volumes than lower power single stripe devices. In addition, evanescent field coupling between stripes, the material quality available from newer MOCVD epitaxial growth techniques, and stripe definition methods may all influence the radiation tolerance of the high power laser diode devices. Radiation tests have been conducted on various GaAs-GaAlAs laser diode array and broad area devices. Tests involving total gamma dose have indicated that high power laser diodes and arrays have small degradations in light power output with current input after 4 MRad(Si) of radiation from a Co 60 source. Additional test results involving flash x-rays indicate that high power diode lasers and arrays are tolerant to 10 12 rads(Si)/sec, when observed on microsecond or millisecond time scales. High power diode laser devices were also irradiated with neutrons to a fluence of 10 14 neutrons/cm 2 with some degradation of threshold current level

  10. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.

    2005-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  11. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.; Wang, Lumin; Hess, Nancy J.; Icenhower, Jonathan P.; Thevuthasan, Suntharampillai

    2003-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  12. Radiation effects in IRAS extrinsic infrared detectors

    Science.gov (United States)

    Varnell, L.; Langford, D. E.

    1982-01-01

    During the calibration and testing of the Infrared Astronomy Satellite (IRAS) focal plane, it was observed that the extrinsic photoconductor detectors were affected by gamma radiation at dose levels of the order of one rad. Since the flight environment will subject the focal plane to dose levels of this order from protons in single pass through the South Atlantic Anomaly, an extensive program of radiation tests was carried out to measure the radiation effects and to devise a method to counteract these effects. The effects observed after irradiation are increased responsivity, noise, and rate of spiking of the detectors after gamma-ray doses of less than 0.1 rad. The detectors can be returned almost to pre-irradiation performance by increasing the detector bias to breakdown and allowing a large current to flow for several minutes. No adverse effects on the detectors have been observed from this bias boost, and this technique will be used for IRAS with frequent calibration to ensure the accuracy of observations made with the instrument.

  13. Radiation Therapy and Hearing Loss

    International Nuclear Information System (INIS)

    Bhandare, Niranjan; Jackson, Andrew; Eisbruch, Avraham; Pan, Charlie C.; Flickinger, John C.; Antonelli, Patrick; Mendenhall, William M.

    2010-01-01

    A review of literature on the development of sensorineural hearing loss after high-dose radiation therapy for head-and-neck tumors and stereotactic radiosurgery or fractionated stereotactic radiotherapy for the treatment of vestibular schwannoma is presented. Because of the small volume of the cochlea a dose-volume analysis is not feasible. Instead, the current literature on the effect of the mean dose received by the cochlea and other treatment- and patient-related factors on outcome are evaluated. Based on the data, a specific threshold dose to cochlea for sensorineural hearing loss cannot be determined; therefore, dose-prescription limits are suggested. A standard for evaluating radiation therapy-associated ototoxicity as well as a detailed approach for scoring toxicity is presented.

  14. Simulation of first-wall radiation effects

    International Nuclear Information System (INIS)

    Logan, C.M.; Anderson, J.D.; Hansen, L.F.

    1975-01-01

    Many of the effects induced in metals as a result of exposure to a radiation environment are intimately associated with the energy of primary recoil atoms (PKAs). Protons with an energy of 16 MeV closely reproduce the PKA energy spectrum which will be present at the first wall in a D--T fusion reactor and should therefore closely reproduce the radiation effects induced by PKAs in the first wall. A preliminary experiment with protons was conducted to measure the sputtering rate and to look for the phenomenon of chunk emission recently observed by Kaminsky and co-workers in samples exposed to 14-MeV neutrons. We are also able to observe the average projected transport range of activated PKAs. (U.S.)

  15. Thermal radiation effects on hydromagnetic flow

    International Nuclear Information System (INIS)

    Abdelkhalek, M.M.

    2005-01-01

    Numerical results are presented for the effects of thermal radiation, buoyancy and heat generation or absorption on hydromagnetic flow over an accelerating permeable surface. These results are obtained by solving the coupled nonlinear partial differential equations describing the conservation of mass, momentum and energy by a perturbation technique. This qualitatively agrees with the expectations, since the magnetic field exerts a retarding force on the free convection flow. A parametric study is performed to illustrate the influence of the radiation parameter, magnetic parameter, Prandtl number, Grashof number and Schmidt number on the profiles of the velocity components and temperature. The effects of the different parameters on the velocity and temperature profiles as well as the skin friction and wall heat transfer are presented graphically. Favorable comparisons with previously published work confirm the correctness of numerical results

  16. Effect of laser radiation on rat radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Laprun, I.B.

    1979-03-01

    Quite a few experimental data have been obtained to date indicating that radioresistance of the organism is enhanced under the influence of electromagnetic emissions in the radiofrequency and optical ranges. But no studies were made of the possible radioprotective properties of coherent laser radiation. At the same time, it was demonstrated that the low-energy emission of optical quantum generators (lasers) in the red band stimulates the protective forces of the organism and accelerates regenerative processes; i.e., it induces effects that are the opposite of that of ionizing radiation. Moreover, it was recently demonstrated that there is activation of catalase, a radiosensitive enzyme that plays an important role in the metabolism of peroxide compounds, under the influence of lasers. For this reason, the effect of pre-exposure to laser beams on radiosensitivity of rats was tested.

  17. Combined genetic effects of chemicals and radiation

    International Nuclear Information System (INIS)

    Kada, T.; Inoue, T.; Yokoiyama, A.; Russel, L.B.

    1979-01-01

    Interactions of chemicals and radiation are complex and there may exist other unexpected patterns that are not mentioned. We show some examples. Photodynamic mutation induction by fluorescein dyes and Radiosensitization with iodine compounds are classified as Interactions of chemicals and radiation outside of the cell. On the other hand, the Antimutagenic effects of cobaltous chloride is concerned with events taking place in cells that had already been exposed to a mutagenic agent. It is likely that the action of a mutagenic agent is not direct and that cellular functions, such as mutators or repair systems, are involved in the mutagenesis initiated by the agent. Such cellular functions can be affected by a second agent. In sexually reproducing organisms, the two agents can also act on separate cells (male and female germcells) which subsequently fuse. Interaction effects of all types will be useful in future research in shedding light on the main pathways of mutagenesis

  18. Radiation Effects in the Space Telecommunications Environment

    International Nuclear Information System (INIS)

    Fleetwood, Daniel M.; Winokur, Peter S.

    1999-01-01

    Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space

  19. Radiation Effects in the Space Telecommunications Environment

    Energy Technology Data Exchange (ETDEWEB)

    Fleetwood, Daniel M.; Winokur, Peter S.

    1999-05-17

    Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space.

  20. Treatment of Locally Advanced Vaginal Cancer With Radiochemotherapy and Magnetic Resonance Image-Guided Adaptive Brachytherapy: Dose-Volume Parameters and First Clinical Results

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, Johannes C.A. [Department of Radiation Oncology, Metropolitan Hospital, Athens (Greece); Schmid, Maximilian P., E-mail: maximilian.schmid@akhwien.at [Department of Radiotherapy, Medical University of Vienna, Vienna (Austria); Fidarova, Elena; Berger, Daniel; Kirisits, Christian; Poetter, Richard [Department of Radiotherapy, Medical University of Vienna, Vienna (Austria)

    2012-04-01

    Purpose: To investigate the clinical feasibility of magnetic resonance image-guided adaptive brachytherapy (IGABT) for patients with locally advanced vaginal cancer and to report treatment outcomes. Methods and Materials: Thirteen patients with vaginal cancer were treated with external beam radiotherapy (45-50.4 Gy) plus IGABT with or without chemotherapy. Distribution of International Federation of Gynecology and Obstetrics stages among patients were as follows: 4 patients had Stage II cancer, 5 patients had Stage III cancer, and 4 patients had Stage IV cancer. The concept of IGABT as developed for cervix cancer was transferred and adapted for vaginal cancer, with corresponding treatment planning and reporting. Doses were converted to the equivalent dose in 2 Gy, applying the linear quadratic model ({alpha}/{beta} = 10 Gy for tumor; {alpha}/{beta} = 3 for organs at risk). Endpoints studied were gross tumor volume (GTV), dose-volume parameters for high-risk clinical target volume (HRCTV), and organs at risk, local control (LC), adverse side effects, and survival. Results: The mean GTV ({+-} 1 standard deviation) at diagnosis was 45.3 ({+-}30) cm{sup 3}, and the mean GTV at brachytherapy was 10 ({+-}14) cm{sup 3}. The mean D90 for the HRCTV was 86 ({+-}13) Gy. The mean D2cc for bladder, urethra, rectum, and sigmoid colon were 80 ({+-}20) Gy, 76 ({+-}16) Gy, 70 ({+-}9) Gy, and 60 ({+-}9) Gy, respectively. After a median follow-up of 43 months (range, 19-87 months), one local recurrence and two distant metastases cases were observed. Actuarial LC and overall survival rates at 3 years were 92% and 85%. One patient with Stage IVA and 1 patient with Stage III disease experienced fistulas (one vesicovaginal, one rectovaginal), and 1 patient developed periurethral necrosis. Conclusions: The concept of IGABT, originally developed for treating cervix cancer, appears to be applicable to vaginal cancer treatment with only minor adaptations. Dose-volume parameters for HRCTV and

  1. Radiation dosimetry predicts IQ after conformal radiation therapy in pediatric patients with localized ependymoma

    International Nuclear Information System (INIS)

    Merchant, Thomas E.; Kiehna, Erin N.; Li Chenghong; Xiong Xiaoping; Mulhern, Raymond K.

    2005-01-01

    Purpose: To assess the effects of radiation dose-volume distribution on the trajectory of IQ development after conformal radiation therapy (CRT) in pediatric patients with ependymoma. Methods and Materials: The study included 88 patients (median age, 2.8 years ± 4.5 years) with localized ependymoma who received CRT (54-59.4 Gy) that used a 1-cm margin on the postoperative tumor bed. Patients were evaluated with tests that included IQ measures at baseline (before CRT) and at 6, 12, 24, 36, 48, and 60 months. Differential dose-volume histograms (DVH) were derived for total-brain, supratentorial-brain, and right and left temporal-lobe volumes. The data were partitioned into three dose intervals and integrated to create variables that represent the fractional volume that received dose over the specified intervals (e.g., V 0-20Gy , V 20-40Gy , V 40-65Gy ) and modeled with clinical variables to develop a regression equation to estimate IQ after CRT. Results: A total of 327 IQ tests were performed in 66 patients with infratentorial tumors and 20 with supratentorial tumors. The median follow-up was 29.4 months. For all patients, IQ was best estimated by age (years) at CRT; percent volume of the supratentorial brain that received doses between 0 and 20 Gy, 20 and 40 Gy, and 40 and 65 Gy; and time (months) after CRT. Age contributed significantly to the intercept (p > 0.0001), and the dose-volume coefficients were statistically significant (V 0-20Gy , p = 0.01; V 20-40Gy , p 40-65Gy , p = 0.04). A similar model was developed exclusively for patients with infratentorial tumors but not supratentorial tumors. Conclusion: Radiation dosimetry can be used to predict IQ after CRT in patients with localized ependymoma. The specificity of models may be enhanced by grouping according to tumor location

  2. Radiation effects on algae and its application

    International Nuclear Information System (INIS)

    Dwivedi, Rakesh Kumar

    2013-01-01

    The effects of radiation on algae have been summarized in this article. Today, algae are being considered to have the great potential to fulfill the demand of food, fodder, fuel and various pharmaceutical products. Red algae are particularly rich in the content of polysaccharides present in their cell wall. For isolation of these polysaccharides, separation of cells cemented together by middle lamella is essential. The gamma rays are known to bring about biochemical changes in the cell wall and cause the breakdown of the middle lamella. These rays ate also known to speed up the starch sugar inter-conversion in the cells which is very useful for the tapping the potential of algae to be used as biofuel as well as in pharmaceutical industries. Cyanobacteria, among algae and other plants are more resistant to the radiation. In some cyanobacteria the radiation treatment is known to enhance the resistance against the antibiotics. Radiation treatment is also known to enhance the diameter of cell and size of the nitrogen fixing heterocyst. (author)

  3. Effect of γ-radiation on the saccharification of cellulose

    International Nuclear Information System (INIS)

    De la Rosa, A.M.; Banzon, R.B.; Abad, L.V.; Nuguid, Z.F.; Bulos, A.S.

    1985-01-01

    The effect of gamma radiation on the acid and saccharification of agricultural cellulosic wastes was investigated. Radiation doses of 200 KGy and higher significantly increased the saccharification of rice straw, rice hull and corn husk. The observed radiation effects varied with the cellulosic material. Rice straw exhibited the greatest radiosensitivity while rice hull showed the least susceptibility to gamma radiation. Possible mechanisms for the radiation-induced degradation of cellulose and agricultural cellulosic wastes are discussed. (author)

  4. Grading-System-Dependent Volume Effects for Late Radiation-Induced Rectal Toxicity After Curative Radiotherapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Laan, Hans Paul van der; Bergh, Alphons van den; Schilstra, Cornelis; Vlasman, Renske; Meertens, Harm; Langendijk, Johannes A.

    2008-01-01

    Purpose: To assess the association between the dose distributions in the rectum and late Radiation Therapy Oncology Group and the European Organisation for Research and Treatment of Cancer (RTOG/EORTC), Late Effects of Normal Tissue SOMA, and Common Terminology Criteria for Adverse Events (CTCAE) version 3.0 graded rectal toxicity among patients with prostate cancer treated with RT. Methods and Materials: Included in the study were 124 patients who received three-dimensional conformal RT for prostate cancer to a total dose of 70 Gy in 2-Gy fractions. All patients completed questionnaires regarding rectum complaints before RT and during long-term follow-up. Late rectum Grade 2 or worse toxicity, according to RTOG/EORTC, LENT SOMA, and CTCAE v3.0 criteria, was analyzed in relation to rectal dose and volume parameters. Results: Dose-volume thresholds (V40 ≥65%, V50 ≥55%, V65 ≥45%, V70 ≥20%, and a rectum volume ≤140 cm 3 ), significantly discriminated patients with late Grade 0-1 and Grade 2 or worse rectal toxicity, particularly using the LENT SOMA and CTCAE v3.0 systems. The rectum volume receiving ≥70 Gy (V70) was most predictive for late Grade 2 or worse rectal toxicity with each of the grading systems. The associations were strongest, however, with use of the LENT SOMA system. Conclusions: Volume effects for late radiation-induced rectal toxicity are present, but their clinical significance depends on the grading system used. This should be taken into account in the interpretation of studies reporting on radiation-induced rectal toxicity

  5. Advanced CMOS Radiation Effects Testing and Analysis

    Science.gov (United States)

    Pellish, J. A.; Marshall, P. W.; Rodbell, K. P.; Gordon, M. S.; LaBel, K. A.; Schwank, J. R.; Dodds, N. A.; Castaneda, C. M.; Berg, M. D.; Kim, H. S.; hide

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  6. Transistor Small Signal Analysis under Radiation Effects

    International Nuclear Information System (INIS)

    Sharshar, K.A.A.

    2004-01-01

    A Small signal transistor parameters dedicate the operation of bipolar transistor before and after exposed to gamma radiation (1 Mrad up to 5 Mrads) and electron beam(1 MeV, 25 mA) with the same doses as a radiation sources, the electrical parameters of the device are changed. The circuit Model has been discussed.Parameters, such as internal emitter resistance (re), internal base resistance, internal collector resistance (re), emitter base photocurrent (Ippe) and base collector photocurrent (Ippe). These parameters affect on the operation of the device in its applications, which work as an effective element, such as current gain (hFE≡β)degradation it's and effective parameter in the device operation. Also the leakage currents (IcBO) and (IEBO) are most important parameters, Which increased with radiation doses. Theoretical representation of the change in the equivalent circuit for NPN and PNP bipolar transistor were discussed, the input and output parameters of the two types were discussed due to the change in small signal input resistance of the two types. The emitter resistance(re) were changed by the effect of gamma and electron beam irradiation, which makes a change in the role of matching impedances between transistor stages. Also the transistor stability factors S(Ico), S(VBE) and S(β are detected to indicate the transistor operations after exposed to radiation fields. In low doses the gain stability is modified due to recombination of induced charge generated during device fabrication. Also the load resistance values are connected to compensate the effect

  7. Pilot study in the treatment of endometrial carcinoma with 3D image-based high-dose-rate brachytherapy using modified Heyman packing: Clinical experience and dose-volume histogram analysis

    International Nuclear Information System (INIS)

    Weitmann, Hajo Dirk; Poetter, Richard; Waldhaeusl, Claudia; Nechvile, Elisabeth; Kirisits, Christian; Knocke, Tomas Hendrik

    2005-01-01

    Purpose: The aim of this study was to evaluate dose distribution within uterus (clinical target volume [CTV]) and tumor (gross tumor volume [GTV]) and the resulting clinical outcome based on systematic three-dimensional treatment planning with dose-volume adaptation. Dose-volume assessment and adaptation in organs at risk and its impact on side effects were investigated in parallel. Methods and Materials: Sixteen patients with either locally confined endometrial carcinoma (n = 15) or adenocarcinoma of uterus and ovaries after bilateral salpingo-oophorectomy (n = 1) were included. Heyman packing was performed with mean 11 Norman-Simon applicators (3-18). Three-dimensional treatment planning based on computed tomography (n = 29) or magnetic resonance imaging (n = 18) was done in all patients with contouring of CTV, GTV, and organs at risk. Dose-volume adaptation was achieved by dwell location and time variation (intensity modulation). Twelve patients treated with curative intent received five to seven fractions of high-dose-rate brachytherapy (7 Gy per fraction) corresponding to a total dose of 60 Gy (2 Gy per fraction and α/β of 10 Gy) to the CTV. Four patients had additional external beam radiotherapy (range, 10-40 Gy). One patient had salvage brachytherapy and 3 patients were treated with palliative intent. A dose-volume histogram analysis was performed in all patients. On average, 68% of the CTV and 92% of the GTV were encompassed by the 60 Gy reference volume. Median minimum dose to 90% of CTV and GTV (D90) was 35.3 Gy and 74 Gy, respectively. Results: All patients treated with curative intent had complete remission (12/12). After a median follow-up of 47 months, 5 patients are alive without tumor. Seven patients died without tumor from intercurrent disease after median 22 months. The patient with salvage treatment had a second local recurrence after 27 months and died of endometrial carcinoma after 57 months. In patients treated with palliative intent

  8. Radiation protection standards: a summary of the biological effects of ionising radiation and principles of radiation protection

    International Nuclear Information System (INIS)

    1994-01-01

    This leaflet in the NRPB At-a-Glance-Series briefly summarises the biological effects of radiation, harm and sensitivity to radiation, radiation protection principles, acceptability of risk and the control of doses to workers, the public and in medical procedures in the UK. (UK)

  9. A dose-volume histogram based decision-support system for dosimetric comparison of radiotherapy treatment plans

    International Nuclear Information System (INIS)

    Alfonso, J. C. L.; Herrero, M. A.; Núñez, L.

    2015-01-01

    The choice of any radiotherapy treatment plan is usually made after the evaluation of a few preliminary isodose distributions obtained from different beam configurations. Despite considerable advances in planning techniques, such final decision remains a challenging task that would greatly benefit from efficient and reliable assessment tools. For any dosimetric plan considered, data on dose-volume histograms supplied by treatment planning systems are used to provide estimates on planning target coverage as well as on sparing of organs at risk and the remaining healthy tissue. These partial metrics are then combined into a dose distribution index (DDI), which provides a unified, easy-to-read score for each competing radiotherapy plan. To assess the performance of the proposed scoring system, DDI figures for fifty brain cancer patients were retrospectively evaluated. Patients were divided in three groups depending on tumor location and malignancy. For each patient, three tentative plans were designed and recorded during planning, one of which was eventually selected for treatment. We thus were able to compare the plans with better DDI scores and those actually delivered. When planning target coverage and organs at risk sparing are considered as equally important, the tentative plan with the highest DDI score is shown to coincide with that actually delivered in 32 of the 50 patients considered. In 15 (respectively 3) of the remaining 18 cases, the plan with highest DDI value still coincides with that actually selected, provided that organs at risk sparing is given higher priority (respectively, lower priority) than target coverage. DDI provides a straightforward and non-subjective tool for dosimetric comparison of tentative radiotherapy plans. In particular, DDI readily quantifies differences among competing plans with similar-looking dose-volume histograms and can be easily implemented for any tumor type and localization, irrespective of the planning system and

  10. Side Effects of Chemotherapy and Radiation (For Parents)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Side Effects of Chemotherapy and Radiation KidsHealth / For Parents / Side Effects of Chemotherapy and Radiation What's in this article? What to ...

  11. Gamma radiation effects on nestling Tree Swallows

    International Nuclear Information System (INIS)

    Zach, R.; Mayoh, K.R.

    1984-01-01

    The sensitivity of Tree Swallows (Tachycineta bicolor) to the stress of ionizing radiation was investigated with growth analysis. Freshly hatched nestlings were temporarily removed from nests, taken to the laboratory and acutely exposed to 0.9, 2.7, or 4.5 Gy gamma radiation. Some of the unirradiated control nestlings were also taken to the laboratory whereas others were left in the nests. Growth of all the nestlings was measured daily and analyzed by fitting growth models. There was no detectable radiation-induced mortality up to fledgling, approx. = 20 d after irradiation. Radiation exposure did not affect the basic growth pattern; the logistic growth model was most suitable for body mass and foot length, and the von Bertalanffy model for primary-feather length, irrespective of treatment. Parameter values from these models indicated pronounced growth depression in the 2.7-Gy and 4.5-Gy groups, particularly for body mass. Radiation also affected the timing of development. The growth depression of the 2.7-Gy group was similar to that caused by hatching asynchrony in unirradiated nestlings. The 4.5-Cy nestlings grew as well as unexposed nestlings that died from natural causes. Chronic irradiation at approx. = 1.0 Cy/d caused more severe growth effects than acute exposure to 4.5 Gy and may have caused permanent stunting. Growth analysis is a potent tool for assessing man-made environmental stresses. Observed body-mass statistics and model parameters seem to be most sensitive to environmental stresses, but coefficients of variation are not necessarily correlated with sensitivity. 34 references, 2 figures, 4 tables

  12. Incidence of late rectal bleeding in high-dose conformal radiotherapy of prostate cancer using equivalent uniform dose-based and dose-volume-based normal tissue complication probability models

    International Nuclear Information System (INIS)

    Soehn, Matthias; Yan Di; Liang Jian; Meldolesi, Elisa; Vargas, Carlos; Alber, Markus

    2007-01-01

    Purpose: Accurate modeling of rectal complications based on dose-volume histogram (DVH) data are necessary to allow safe dose escalation in radiotherapy of prostate cancer. We applied different equivalent uniform dose (EUD)-based and dose-volume-based normal tissue complication probability (NTCP) models to rectal wall DVHs and follow-up data for 319 prostate cancer patients to identify the dosimetric factors most predictive for Grade ≥ 2 rectal bleeding. Methods and Materials: Data for 319 patients treated at the William Beaumont Hospital with three-dimensional conformal radiotherapy (3D-CRT) under an adaptive radiotherapy protocol were used for this study. The following models were considered: (1) Lyman model and (2) logit-formula with DVH reduced to generalized EUD (3) serial reconstruction unit (RU) model (4) Poisson-EUD model, and (5) mean dose- and (6) cutoff dose-logistic regression model. The parameters and their confidence intervals were determined using maximum likelihood estimation. Results: Of the patients, 51 (16.0%) showed Grade 2 or higher bleeding. As assessed qualitatively and quantitatively, the Lyman- and Logit-EUD, serial RU, and Poisson-EUD model fitted the data very well. Rectal wall mean dose did not correlate to Grade 2 or higher bleeding. For the cutoff dose model, the volume receiving > 73.7 Gy showed most significant correlation to bleeding. However, this model fitted the data more poorly than the EUD-based models. Conclusions: Our study clearly confirms a volume effect for late rectal bleeding. This can be described very well by the EUD-like models, of which the serial RU- and Poisson-EUD model can describe the data with only two parameters. Dose-volume-based cutoff-dose models performed worse

  13. UV radiation and its effects. Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    The National Science Strategy Committee for Climate Change was established in 1991 by the New Zealand Minister of Research, Science and Technology. It advises government through the Minister on research priorities and on levels of expenditure appropriate in various topics relating to climate change. An additional role is to promote coordination between research groups and the user communities to ensure an appropriate range of research strategies. To assist with implementing the latter aspects the NSS Committee will organise workshops on specific aspects of atmosphere and climate change, with a broad spectrum of participants. The first of these was the Workshop on UV Radiation and its Effects held in Christchurch on 20-21 May 1993. The workshop had 40 participants, including representatives from specialist science groups, medicine, veterinary science, farming, forestry and environmental groups. This publication will update the interested reader, whether scientist or lay-person, on the current state of knowledge on changing UV radiation levels and potential problems. As the summaries of papers show, research on ozone levels and on UV radiation and its effects is particularly appropriate for New Zealand scientists with their access to sites covering a wide range of latitudes from Antarctica to the Pacific Islands. New Zealand is part of an important international monitoring network, measuring local stratospheric ozone levels and related surface UV radiation levels. There are concerns about increasing UVB levels and the consequent effects on human health, plant and tree growth, and phytoplankton growth in the oceans. Priorities for further work on these areas are included in the summary of the workshop. (author). 13 figs.; 5 tabs

  14. Biologically based multistage modeling of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of

  15. Association of anorectal dose-volume histograms and impaired fecal continence after 3D conformal radiotherapy for carcinoma of the prostate

    International Nuclear Information System (INIS)

    Vordermark, Dirk; Schwab, Michael; Ness-Dourdoumas, Rhea; Sailer, Marco; Flentje, Michael; Koelbl, Oliver

    2003-01-01

    Purpose: The late toxicity of fecal incontinence after pelvic radiotherapy is now frequently recognized but the etiology poorly understood. We therefore investigated associations between dose-volume histogram (DVH) parameters of the rectum and the anal canal with fecal continence as measured by an established 10-item questionnaire. Methods and materials: Forty-four patients treated for carcinoma of the prostate with 58-72 Gy of 3D conformal radiotherapy between 1995 and 1999 who completed the questionnaire formed the study population. Total continence scores of treated patients obtained 1.5 years (median) after radiotherapy were compared to a control group of 30 patients before radiotherapy. Median, mean, minimum and maximum doses as well as the volume (% and ml) treated to 40, 50, 60 and 70 Gy were determined separately for anal canal and rectum. DVH parameters were correlated with total continence score (Spearman rank test) and patients grouped according to observed continence were compared regarding DVH values (Mann-Whitney U-test). Results: Median fecal continence scores were significantly worse in the irradiated than in the control group (31 vs. 35 of a maximum 36 points). In treated patients, 59%/27%/14% were classified as fully continent, slightly incontinent and severely incontinent. Continence was similar in the 58-to-62-Gy, 66-Gy and 68-to-72-Gy dose groups. No DVH parameter was significantly correlated with total continence score, but severely incontinent patients had a significantly higher minimum dose to the anal canal than fully continent/slightly incontinent, accompanied by portals extending significantly further inferiorly with respect to the ischial tuberosities. Conclusions: Excluding the inferior part of the anal canal from the treated volume in 3D conformal therapy for carcinoma of the prostate appears to be a promising strategy to prevent radiation-induced fecal incontinence

  16. Effects of Ionizing Radiation in Atopic Patients Exposed to Radiation

    International Nuclear Information System (INIS)

    Radwan, N.K.A.

    2014-01-01

    Atopic dermatitis is a chronic relapsing inflammatory skin disease that arises most commonly during early infancy, and is characterized by severe pruritus, age-dependant skin manifestations, and a fluctuating clinical course. Hereditary, environmental and immunological factors are involved in the aetiopathogenesis of AD. Also the differentiation of helper T- cells, local cytokine profile, IgE, infectious agents and superantigens are factors identified as being involved in the pathogenesis of AD. One hundred patients with AD were selected from the outpatient clinic of the National Center for Radiation Research and Technology in Cairo, Egypt. They were divided into 2 groups; group 1 included radiation workers in the Hall of gamma irradiation unit and group 2 included workers outside controlled area and not exposed to radiation with comparable age and sex. The severity of the disease was evaluated according to the grade of atopic dermatitis. Total and specific serum IgE was measured and Complete Blood Count was also carried out. Four Malassezia species were isolated from AD patients M. globosa, M. furfur, M. sympodialis and M. obtusa. The clinical isolates consisted of two bacterial strains, S. aureus and S. epidermidis. The significant increase of AD severity seems to be more closely related to the prevalence of S. aureus and Malassezia on the skin of radiation workers. This was proved by the presence of high IgE and eosinophils in radiation workers. So, the interactions of low gamma radiation and skin seems to further complicate the risk of assessments of atopic dermatitis

  17. Analytic approximate radiation effects due to Bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi I.

    2012-02-01

    The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R&D Energy Recovery Linac.

  18. Combined genetic effects of chemicals and radiation

    International Nuclear Information System (INIS)

    Kada, T.; Inoue, T.; Yokoiyama, A.; Russell, L.B.

    1979-01-01

    The interactions of chemicals and radiation are complex, and there may exist other unexpected patterns. The photodynamic induction of mutation by fluorescein dyes, and the radiosensitization with iodine compounds are classified as the interactions of chemicals and radiation outside cells. On the other hand, the antimutagenic effects of cobaltous chloride is concerned with the events taking place in the cells that had already been exposed to mutagenic agents. It is likely that the action of mutagenic agents is not direct, and that cellular functions, such as mutators or repair systems, are involved in the mutagenesis initiated by the agents. Such cellular functions can be affected by a second agent. In sexually reproducing organisms, two agents can also act on separate cells (male and female germ cells) which subsequently fuse. In mice, the experiments combining the radiation applied to one sex with the chemicals given to the other sex are only in early stages. Males were irradiated with X-ray (spermatozoa and spermatids sampled) and females (mature oocytes) were treated with caffeine. When the endpoint was dominant lethal, the level of X-ray effect induced in the male genome was independent of the caffeine treatment of the female. However, when the endpoint was sex-chromosome-loss, and a different strain of female was used, the caffeine potentiation was statistically significant at 5% level. (Yamashita, S.)

  19. Analytic approximate radiation effects due to Bremsstrahlung

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    2012-01-01

    The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R and D Energy Recovery Linac.

  20. Annual report of Radiation Effects Research Foundation

    International Nuclear Information System (INIS)

    1980-01-01

    The Radiation Effects Research Foundation was established in April, 1975, as a private nonprofit Japanese Foundation supported equally by the Government of Japan through the Ministry of Health and Welfare, and the Government of the United States through the National Academy of Sciences under contract with the Energy Research and Development Administration. First, the messages from the chairman and the vice-chairman are described. In the annual report, the review of ABCC-RERF studies of atomic bomb survivors, the summary of research activities, the research projects, the technical report abstracts, the research papers published in Japanese and foreign journals, and the oral presentation and lectures, all from April 1, 1978, to March 31, 1979, are reported. Also the report from the Secretariat and the appendixes are given. The surveys and researches carried out in Hiroshima and Nagasaki have offered very valuable informations to the atomic bomb survivors. Many fears were eliminated, medical interests were given to the serious effects of the exposure to atomic bombs, and many things concerning the cancer induced by radiation were elucidated. The knowledges obtained will save many human lives in future by utilizing them for setting up the health and safety standard in the case of handling ionizing radiation. The progress in researches such as life span study, adult health study, pathology study, genetics program, special cancer program and so on is reported. (Kako, I.)

  1. Effective spectrum width of the synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V. G., E-mail: bagrov@phys.tsu.ru [Department of Physics, Tomsk State University, Tomsk (Russian Federation); Institute of High Current Electronics, SB RAS, Tomsk (Russian Federation); Gitman, D. M., E-mail: gitman@if.usp.br [Department of Physics, Tomsk State University, Tomsk (Russian Federation); Institute of Physics, University of São Paulo, São Paulo (Brazil); P.N.Lebedev Physical Institute, Moscow (Russian Federation); Levin, A. D., E-mail: alevin@if.usp.br [Institute of Physics, University of São Paulo, São Paulo (Brazil); Loginov, A. S.; Saprykin, A. D. [Department of Physics, Tomsk State University, Tomsk (Russian Federation)

    2015-11-25

    For an exact quantitative description of spectral properties of synchrotron radiation (SR), the concept of effective width of the spectrum is introduced. In the most interesting case, which corresponds to the ultrarelativistic limit of SR, the effective width of the spectrum is calculated for the polarization components, and new physically important quantitative information on the structure of spectral distributions is obtained. For the first time, the spectral distribution for the circular polarization component of the SR for the upper half-space is obtained within classical theory.

  2. Effective spectrum width of the synchrotron radiation

    International Nuclear Information System (INIS)

    Bagrov, V. G.; Gitman, D. M.; Levin, A. D.; Loginov, A. S.; Saprykin, A. D.

    2015-01-01

    For an exact quantitative description of spectral properties of synchrotron radiation (SR), the concept of effective width of the spectrum is introduced. In the most interesting case, which corresponds to the ultrarelativistic limit of SR, the effective width of the spectrum is calculated for the polarization components, and new physically important quantitative information on the structure of spectral distributions is obtained. For the first time, the spectral distribution for the circular polarization component of the SR for the upper half-space is obtained within classical theory

  3. Effective spectrum width of the synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); SB RAS, Institute of High Current Electronics, Tomsk (Russian Federation); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); P.N. Lebedev Physical Institute, Moscow (Russian Federation); Levin, A.D. [University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); Loginov, A.S.; Saprykin, A.D. [Tomsk State University, Department of Physics, Tomsk (Russian Federation)

    2015-11-15

    For an exact quantitative description of spectral properties of synchrotron radiation (SR), the concept of effective width of the spectrum is introduced. In the most interesting case, which corresponds to the ultrarelativistic limit of SR, the effective width of the spectrum is calculated for the polarization components, and new physically important quantitative information on the structure of spectral distributions is obtained. For the first time, the spectral distribution for the circular polarization component of the SR for the upper half-space is obtained within classical theory. (orig.)

  4. Effects of gluon radiation in hadronic collisions

    International Nuclear Information System (INIS)

    Gustafson, Goesta.

    1989-10-01

    In this talk I discuss effects of gluon emission in soft collisions, the so-called 'soft radiation' in the Fritjof model. It is seen e.g. that the pT in the fragmentation regions, the seagull effect, increases with energy in fair agreement with experiments. I also discuss the content of strange and heavier quarks in high-pT gluon jets. Within the dipole scheme for QCD cascades on finds a larger production of heavier quarks than in previous approaches. Qualitative agreement with data is obtained for the K/π ratio and D meson production

  5. MOS modeling hierarchy including radiation effects

    International Nuclear Information System (INIS)

    Alexander, D.R.; Turfler, R.M.

    1975-01-01

    A hierarchy of modeling procedures has been developed for MOS transistors, circuit blocks, and integrated circuits which include the effects of total dose radiation and photocurrent response. The models were developed for use with the SCEPTRE circuit analysis program, but the techniques are suitable for other modern computer aided analysis programs. The modeling hierarchy permits the designer or analyst to select the level of modeling complexity consistent with circuit size, parametric information, and accuracy requirements. Improvements have been made in the implementation of important second order effects in the transistor MOS model, in the definition of MOS building block models, and in the development of composite terminal models for MOS integrated circuits

  6. Radiation in the human environment: health effects, safety and acceptability

    International Nuclear Information System (INIS)

    Gonzalez, A.J.; Anderer, J.

    1990-01-01

    This paper reports selectively on three other aspects of radiation (used throughout to mean ionizing radiation) in the human environment: the human health effects of radiation, radiation safety policy and practices, and the acceptability of scientifically justified practices involving radiation exposures. Our argument is that the science of radiation biology, the judgemental techniques of radiation safety, and the social domain of radiation acceptability express different types of expertise that should complement - and not conflict with or substitute for - one another. Unfortunately, communication problems have arisen among these three communities and even between the various disciplines represented within a community. These problems have contributed greatly to the misperceptions many people have about radiation and which are frustrating a constructive dialogue on how radiation can be harnessed to benefit mankind. Our analysis seeks to assist those looking for a strategic perspective from which to reflect on their interaction with practices involving radiation exposures. (author)

  7. Effects of UV radiation on genetic recombination

    International Nuclear Information System (INIS)

    Vlahovic, K.; Zahradka, D.; Petranovic, M.; Petranovic, D.

    1996-01-01

    We have used the model consisting of Escherichia coli cells and l phage to study the effects of UV radiation on genetic recombination. We found two radiation induced processes that reduce or inhibit genetic recombination. One such process leads to the inability of prophage to excise itself from the irradiated bacterial chromosome by the site-specific recombination. The other process was shown to inhibit a type of general recombination by which the prophage transfers one of its genetic markers to the infecting homologous phage. Loss of the prophage ability to take part in both site-specific and general recombination was shown to develop in recB + but not in recB cells. From this we infer that the loss of prophage recombinogenicity in irradiated cells is a consequence of one process in which RecBCD enzyme (the product of recB, recC and recD genes) plays an essential role. (author)

  8. Effects of gamma radiation on fish lipids

    Energy Technology Data Exchange (ETDEWEB)

    Sofyan, R [National Atomic Energy Agency, Jakarta (Indonesia). Pasar Djumat Research Centre

    1982-04-01

    Investigations on the changes of free fatty acid (FFA) value and thiobarbituric acid (TBA) value of fish muscle lipids during chilled storage were carried out. Experimental results showed significant increases in FFA and TBA values during storage. The FFA and TBA values of unirradiated fish were also determined. It was observed that radiation treatments at doses of 2.5 and 5.0 kGy gave no significant effects on FFA values. On the other hand the TBA values of irradiated samples were significantly higher than those of unirradiated samples, indicating that oxidative changes have occured due to radiation. TLC investigations on muscle nonpolar-, phospho- and glycolipids of control and fish samples, irradiated at doses up to 10 kGy revealed that the lipid components or irradiated fish were identical with those of control.

  9. Radiation effects on structural ceramics in fusion

    International Nuclear Information System (INIS)

    Hopkins, G.R.; Price, R.J.; Trester, P.W.

    1986-01-01

    Ceramics are required to serve in a conventional role as electrical and thermal insulators and dielectrics in fusion power reactors. In addition, certain ceramic materials can play a unique structural role in fusion power reactors by virtue of their very low induced radioactivity from fusion neutron capture. The aspects of safety, long-term radioactive waste management, and personnel access for maintenance and repair can all be significantly improved by applying the low-activation ceramics to the structural materials of the first-wall and blanket regions of a fusion reactor. Achievement of long service life at high structural loads and thermal stresses on the materials exposed to high-radiation doses presents a critical challenge for fusion. In this paper, we discuss radiation effects on structural ceramics for fusion application

  10. Effect of radiation on hydrotalcites with chromates

    International Nuclear Information System (INIS)

    Martinez G, S.; Bulbulian, S.

    2002-01-01

    Nowadays the generation of radioactive wastes is matter of several studies. In this work anion material, chromates, in hydrotalcite are retained which are anion exchangers. It was proposed to heat the hydrotalcite until temperature of 1200 C with the purpose to form the (MgAl 2 O 4 ) spinel is very stable and in this way to immobilize strongly the anions. The effect of radiation on this compound and in particular the chromium lixiviation with solution 1N NaCl. It was found that in all case, the anions are strongly retained in the spinel formed. The radiation dose used for this was 100 Mrad, the samples were treated with NaCl 1N for studying the Cr lixiviation. The results show that for the calcined samples at 1200 C and irradiated there are not chromium escapes, which indicates that it is strongly retained in the spinel that is the formed structure after of the material calcination. (Author)

  11. Radiation effects on active pixel sensors (APS)

    International Nuclear Information System (INIS)

    Cohen, M.; David, J.P.

    1999-01-01

    Active pixel sensor (APS) is a new generation of image sensors which presents several advantages relatively to charge coupled devices (CCDs) particularly for space applications (APS requires only 1 voltage to operate which reduces considerably current consumption). Irradiation was performed using 60 Co gamma radiation at room temperature and at a dose rate of 150 Gy(Si)/h. 2 types of APS have been tested: photodiode-APS and photoMOS-APS. The results show that photoMOS-APS is more sensitive to radiation effects than photodiode-APS. Important parameters of image sensors like dark currents increase sharply with dose levels. Nevertheless photodiode-APS sensitivity is one hundred time lower than photoMOS-APS sensitivity

  12. Reliability and radiation effects in compound semiconductors

    CERN Document Server

    Johnston, Allan

    2010-01-01

    This book discusses reliability and radiation effects in compound semiconductors, which have evolved rapidly during the last 15 years. Johnston's perspective in the book focuses on high-reliability applications in space, but his discussion of reliability is applicable to high reliability terrestrial applications as well. The book is important because there are new reliability mechanisms present in compound semiconductors that have produced a great deal of confusion. They are complex, and appear to be major stumbling blocks in the application of these types of devices. Many of the reliability problems that were prominent research topics five to ten years ago have been solved, and the reliability of many of these devices has been improved to the level where they can be used for ten years or more with low failure rates. There is also considerable confusion about the way that space radiation affects compound semiconductors. Some optoelectronic devices are so sensitive to damage in space that they are very difficu...

  13. SU-E-J-89: Motion Effects On Organ Dose in Respiratory Gated Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T; Zhu, L [Georgia Institute of Technology, Atlanta, GA (Georgia); Khan, M; Landry, J; Rajpara, R; Hawk, N [Emory University, Atlanta, GA (United States)

    2014-06-01

    Purpose: Existing reports on gated radiation therapy focus mainly on optimizing dose delivery to the target structure. This work investigates the motion effects on radiation dose delivered to organs at risk (OAR) in respiratory gated stereotactic body radiation therapy (SBRT). A new algorithmic tool of dose analysis is developed to evaluate the optimality of gating phase for dose sparing on OARs while ensuring adequate target coverage. Methods: Eight patients with pancreatic cancer were treated on a phase I prospective study employing 4DCT-based SBRT. For each patient, 4DCT scans are acquired and sorted into 10 respiratory phases (inhale-exhale- inhale). Treatment planning is performed on the average CT image. The average CT is spatially registered to other phases. The resultant displacement field is then applied on the plan dose map to estimate the actual dose map for each phase. Dose values of each voxel are fitted to a sinusoidal function. Fitting parameters of dose variation, mean delivered dose and optimal gating phase for each voxel over respiration cycle are mapped on the dose volume. Results: The sinusoidal function accurately models the dose change during respiratory motion (mean fitting error 4.6%). In the eight patients, mean dose variation is 3.3 Gy on OARs with maximum of 13.7 Gy. Two patients have about 100cm{sup 3} volumes covered by more than 5 Gy deviation. The mean delivered dose maps are similar to plan dose with slight deformation. The optimal gating phase highly varies across the patient, with phase 5 or 6 on about 60% of the volume, and phase 0 on most of the rest. Conclusion: A new algorithmic tool is developed to conveniently quantify dose deviation on OARs from plan dose during the respiratory cycle. The proposed software facilitates the treatment planning process by providing the optimal respiratory gating phase for dose sparing on each OAR.

  14. Health effects of low-level radiations

    International Nuclear Information System (INIS)

    Tubiana, M.

    1982-01-01

    Epidemiological surveys have attempted to assess the carcinogenic risk induced by exposure to low doses of ionizing radiation. Such studies are difficult to carry out because the incidence of radiation induced cancers is of only a few per cent, even following relativity large doses, and because there is no way to distinguish radiation induced cancer from the background of natural human cancers; moreover these surveys are exposed to many biases due to relatively small sizes of the populations studied and the difficulties of finding an appropriate control group, of estimating the absorbed doses and of collecting the data. A few national or international expert committees have analysed the available data and evaluated the carcinogenic effects. Their estimations of the risk, are similar and allow one to quantify the carcinogenic risk for doses above 100 rads. The risks of lower doses must be determined by extrapolation from human data at high doses. This extrapolation requires the knowledge of the dose-effect relationship. A linear extrapolation is most common and probably leads to a conservative estimate of the risk. A linear-quadratic function is probably more realistic and in better accordance with most scientific data. However the validity of its use for the estimation of carcinogenic risk is still debated. In experimental animals, the influence of dose-rate is important and some data suggest that this is the same for the carcinogenic effect in human beings. The genetic effects are probably less important than was feared a few years ago. The most important recent observation is the absence of any significant genetic effect in the progeny of the survivors of the A. bombs in Hiroshima and Nagasaki. This allows a conservative estimate of the maximum genetic risk for human beings [fr

  15. RADIATION EFFECTS IN NUCLEAR WASTE MATERIALS

    International Nuclear Information System (INIS)

    Weber, William J.

    2000-01-01

    The objective of this research was to develop fundamental understanding and predictive models of radiation effects in glasses and ceramics at the atomic, microscopic, and macroscopic levels, as well as an understanding of the effects of these radiation-induced solid-state changes on dissolution kinetics (i.e., radionuclide release). The research performed during the duration of this project has addressed many of the scientific issues identified in the reports of two DOE panels [1,2], particularly those related to radiation effects on the structure of glasses and ceramics. The research approach taken by this project integrated experimental studies and computer simulations to develop comprehensive fundamental understanding and capabilities for predictive modeling of radiation effects and dissolution kinetics in both glasses and ceramics designed for the stabilization and immobilization of high-level tank waste (HLW), plutonium residues and scraps, surplus weapons plutonium, other actinides, and other highly radioactive waste streams. Such fundamental understanding is necessary in the development of predictive models because all experimental irradiation studies on nuclear waste materials are ''accelerated tests'' that add a great deal of uncertainty to predicted behavior because the damage rates are orders of magnitude higher than the actual damage rates expected in nuclear waste materials. Degradation and dissolution processes will change with damage rate and temperature. Only a fundamental understanding of the kinetics of all the physical and chemical processes induced or affected by radiation will lead to truly predictive models of long-term behavior and performance for nuclear waste materials. Predictive models of performance of nuclear waste materials must be scientifically based and address both radiation effects on structure (i.e., solid-state effects) and the effects of these solid-state structural changes on dissolution kinetics. The ultimate goal of this

  16. Effects of small doses of ionising radiation

    International Nuclear Information System (INIS)

    Doll, R.

    1998-01-01

    Uncertainty remains about the quantitative effects of doses of ionising radiation less than 0.2 Sv. Estimates of hereditary effects, based on the atomic bomb survivors, suggest that the mutation doubling dose is about 2 Sv for acute low LET radiation, but the confidence limits are wide. The idea that paternal gonadal irradiation might explain the Seascale cluster of childhood leukaemia has been disproved. Fetal irradiation may lead to a reduction in IQ and an increase in seizures in childhood proportional to dose. Estimates that doses to a whole population cause a risk of cancer proportional to dose, with 0.1 Sv given acutely causing a risk of 1%, will need to be modified as more information is obtained, but the idea that there is a threshold for risk above this level is not supported by observations on the irradiated fetus or the effect of fallout. The idea, based on ecological observations, that small doses protect against the development of cancer is refuted by the effect of radon in houses. New observations on the atomic bomb survivors have raised afresh the possibility that small doses may also have other somatic effects. (author)

  17. SU-F-T-128: Dose-Volume Constraints for Particle Therapy Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, R; Smith, W; Hendrickson, K; Meyer, J; Cao, N; Lee, E; Gopan, O; Sandison, G; Parvathaneni, U; Laramore, G [University of Washington, Seattle, WA (United States)

    2016-06-15

    Purpose: Determine equivalent Organ at Risk (OAR) tolerance dose (TD) constraints for MV x-rays and particle therapy. Methods: Equivalent TD estimates for MV x-rays are determined from an isoeffect, regression-analysis of published and in-house constraints for various fractionation schedules (n fractions). The analysis yields an estimate of (α/β) for an OAR. To determine equivalent particle therapy constraints, the MV x-ray TD(n) values are divided by the RBE for DSB induction (RBE{sub DSB}) or cell survival (RBE{sub S}). Estimates of (RBE{sub DSB}) are computed using the Monte Carlo Damage Simulation, and estimates of RBES are computed using the Repair-Misrepair-Fixation (RMF) model. A research build of the RayStation™ treatment planning system implementing the above model is used to estimate (RBE{sub DSB}) for OARs of interest in 16 proton therapy patient plans (head and neck, thorax, prostate and brain). Results: The analysis gives an (α/β) estimate of about 20 Gy for the trachea and heart and 2–4 Gy for the esophagus, spine, and brachial plexus. Extrapolation of MV x-ray constraints (n = 1) to fast neutrons using RBE{sub DSB} = 2.7 are in excellent agreement with clinical experience (n = 10 to 20). When conventional (n > 30) x-ray treatments are used as the reference radiation, fast neutron RBE increased to a maximum of 6. For comparison to a constant RBE of 1.1, the RayStation™ analysis gave estimates of proton RBE{sub DSB} from 1.03 to 1.33 for OARs of interest. Conclusion: The presented system of models is a convenient formalism to synthesize from multiple sources of information a set of self-consistent plan constraints for MV x-ray and hadron therapy treatments. Estimates of RBE{sub DSB} from the RayStation™ analysis differ substantially from 1.1 and vary among patients and treatment sites. A treatment planning system that incorporates patient and anatomy-specific corrections in proton RBE would create opportunities to increase the therapeutic

  18. Basic radiation effects in nuclear power electronics technology

    International Nuclear Information System (INIS)

    Gover, J.E.; Srour, J.R.

    1985-05-01

    An overview is presented of the effects of radiation in microelectronics technology. The approach taken throughout these notes is to review microscopic phenomena associated with radiation effects and to show how these lead to macroscopic effects in semiconductor devices and integrated circuits. Bipolar integrated circuits technology is reviewed in Appendix A. Appendix B gives present and future applications of radiation-tolerant microelectronics in nuclear power applications as well as the radiation tolerance requirements of these applications

  19. Ionising radiation effects on food packaging

    International Nuclear Information System (INIS)

    Ragni, P.; Segre, A. L.; Capitani, D.; Danesi, P.R.

    2001-01-01

    The main aim of any food irradiation treatment is to guarantee the best safe quality of the products, reducing the spreading risk ( c ross-contamination ) for several food-associated diseases. Actually, over 40 countries provide clearances for the treatment of about 45 different types of foodstuffs. EU has to homogenise the situation within the associated States. With the European directive 1999/2/EC Italy, as other EU countries, already has brought into force their regulations to comply. The current Italian regulation on irradiation treatment of foodstuffs is referred since 1996 as follows: a) potatoes, onions and garlic; b) spices, herbs and condiments microbial. The new (April 2001) Italian law allows the possibility to ask for special permission of treatment for other foodstuff which is possible to treat in other E.U. countries. Large majority of foods are submitted to irradiation treatment after they have been packaged. In Dutch cases the study of radiation effects on the package becomes crucial, also because polymeric materials may be affected by ionizing radiation. We performed our studies on several materials employed in food packaging, with a particular care to the role of anti-oxidant additives present in food packaging materials. The attention is pointed on the possible chemical-physical effects induced by radiation on foodstuff packaging. After irradiation in plastic materials two main effects may occur: degradation and cross-linking. The result depending on the comparative rates of the two actions. This kind of information was successfully obtained using NMR methods on a large number of polymers effectively used for the food packaging procedures

  20. Radiation-electromagnetic effect in germanium monocrystals

    International Nuclear Information System (INIS)

    Kikoin, I.K.; Kikoin, L.I.; Lazarev, S.D.

    1980-01-01

    Experimentally investigated is the radiation-electromagnetic effect (REM) in germanium monocrystals on excitation of excess current carriers by α particles, protons and X-rays in magnetic fields up to 8 kOe. A cyclotron was used as an α particle source, and a standard X-ray tube with a copper anode - as an X-ray source. The e.m.f. of the REM effect linearly increases with the increase of the magnetic field and is proportional to the charged particle flux at small flux values, saturation occurs at great flux values (approximately 5x10 11 part./cm 2 xs). In the 4-40 MeV energy range the e.m.f. of the REM effect practically does not depend on the α particle energy. On irradiation of the samples with a grinding front surface the REM e.m.f. changes its sign. The REM and Hall effect measurement on α particle irradiated samples has shown that during irradiation a p-n transition is formed in the samples, which must be taken into account while studying the REM effect. The e.m.f. measured for the even REM effect quadratically increases with the magnetic field increase. The barrier radiation-voltaic effect (the effect e.m.f. is measured between the irradiated and nonirradiated sample faces) is studied. Using special masks the samples with a set of consecutive p-n transitions are produced by irradiation of germanium crystals by α particles. Investigation of the photovoltaic and photoelectromagnetic effects on such samples has shown that using this method the efficiency of the REM devices can be increased

  1. The radiation effects on lipid bilayers

    International Nuclear Information System (INIS)

    Ikigai, Hajime; Matsuura, Tomio; Narita, Noboru; Ozawa, Atsushi.

    1980-01-01

    The Radiation effects on lipid bilayers are studied by the electron spin resonance. Egg lecithin liposomes and human erythrocytes are labeled with spin probes (5 SAL, 12 SAL). Effects of membrane fluidity by X-Ray (or ultraviolet) irradiation are measured by change of the order parameter S. The results obtained are as follows: 1) A similar tendency is observed on the order parameter S between X-Ray irradiated egg lecithin liposomes and human erythrocytes. 2) The rapid changes of the membrane fluidity are observed below 1 krad. The fluctuation of membrane fluidity decreases above 1 krad, consequently the membrane has a tendency changing to a rigid state at low dose area. 3) It is suggested that the more effective radicals are hydroxyl radicals and superoxide radicals. 4) The effects of ultraviolet irradiation with hydrogen peroxide show that hydroxyl radicals lead to changes of membrane fluidity. (author)

  2. Effect of infrared radiation on the lens

    Directory of Open Access Journals (Sweden)

    Aly Eman

    2011-01-01

    Full Text Available Background: Infrared (IR radiation is becoming more popular in industrial manufacturing processes and in many instruments used for diagnostic and therapeutic application to the human eye. Aim : The present study was designed to investigate the effect of IR radiation on rabbit′s crystalline lens and lens membrane. Materials and Methods: Fifteen New Zealand rabbits were used in the present work. The rabbits were classified into three groups; one of them served as control. The other two groups were exposed to IR radiation for 5 or 10 minutes. Animals from these two irradiated groups were subdivided into two subgroups; one of them was decapitated directly after IR exposure, while the other subgroup was decapitated 1 hour post exposure. IR was delivered from a General Electric Lamp model 250R 50/10, placed 20 cm from the rabbit and aimed at each eye. The activity of Na + -K + ATPase was measured in the lens membrane. Soluble lens proteins were extracted and the following measurements were carried out: estimation of total soluble protein, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE and Fourier transform infrared (FTIR spectroscopy. For comparison between multiple groups, analysis of variance was used with significance level set at P < 0.001. Results: The results indicated a change in the molecular weight of different lens crystalline accompanied with changes in protein backbone structure. These changes increased for the groups exposed to IR for 10 minutes. Moreover, the activity of Na + -K + ATPase significantly decreased for all groups. Conclusions: The protein of eye lens is very sensitive to IR radiation which is hazardous and may lead to cataract.

  3. Physiological and pathological effects of thermal radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hymes, I.

    1983-09-15

    This report deals with man's response to abnormally high levels of thermal radiation. The early sections deal with the properties and biological roles of the skin in some detail as a basis for the definitions and descriptions of pathological damage. The estimation of hazard ranges in thermal radiation exposures requires a moderately accurate knowledge of the intensity and duration of the emitted flux. The (BLEVE) Boiling Liquid Expanding Vapor Explosion fireball conveniently meets this requirement as well as having the capability to inflict severe burn injuries over considerable distances. Liquid Petroleum Gas fireballs have been used as the source term for the thermal radiation calculations which predict threshold lethality and various categories of burn injury. Inevitably there are areas of uncertainty in such calculations, some contributory factors being atmospheric conditions, fuel container rupture pattern, type of clothing worn etc. The sensitivity of the predicted hazard ranges to these influential parameters is exemplified in several of the graphs presented. The susceptibility of everyday clothing to ignite or melt in thermal fluxes greater than about 70 kW/m/sup 2/ is shown to be a matter of some gravity since burning clothing can thwart escape and inflict serious, if not fatal, burns quite apart from injuries directly received from the incident radiation. The various means by which incident heat fluxes can be reduced or their effects mitigated are reviewed. Two major BLEVE case histories are discussed in some detail and the circumstances compared with those predicted by the theoretical calculations. 38 refs., 36 figs.

  4. Effects of UV radiation on phytoplankton

    Science.gov (United States)

    Smith, Raymond C.; Cullen, John J.

    1995-07-01

    It is now widely documented that reduced ozone will result in increased levels of ultraviolet (UV) radiation, especially UV-B (280-320nm), incident at the surface of the earth [Watson, 1988; Anderson et al., 1991; Schoeberl and Hartmann, 1991; Frederick and Alberts, 1991; WMO, 1991; Madronich, 1993; Kerr and McElroy, 1993], and there is considerable and increasing evidence that these higher levels of UV-B radiation may be detrimental to various forms of marine life in the upper layers of the ocean. With respect to aquatic ecosystems, we also know that this biologically- damaging mid-ultraviolet radiation can penetrate to ecologically- significant depths in marine and freshwater systems [Jerlov, 1950; Lenoble, 1956; Smith and Baker, 1979; Smith and Baker, 1980; Smith and Baker, 1981; Kirk et al., 1994]. This knowledge, plus the dramatic decline in stratospheric ozone over the Antarctic continent each spring, now known to be caused by anthropogenically released chemicals [Solomon, 1990; Booth et al., 1994], has resulted in increased UV-environmental research and a number of summary reports. The United Nations Environmental Program (UNEP) has provided recent updates with respect to the effects of ozone depletion on aquatic ecosystems (Hader, Worrest, Kumar in UNEP 1989, 1991, Hader, Worrest, Kumar and Smith UNEP 1994) and the Scientific Committee on Problems of the Environment (SCOPE) has provided [SCOPE, 1992] a summary of the effects of increased UV radiation on biological systems. SCOPE has also reported [SCOPE, 1993] on the effects of increased UV on the biosphere. In addition, several books have recently been published reviewing various aspects of environmental UV photobiology [Young et al., 1993], UV effects on humans, animals and plants [Tevini, 1993], the biological effects of UV radiation in Antarctica [Weiler and Penhale, 1994], and UV research in freshwater ecosystems [Williamson and Zagarese, 1994]. Several other reviews are relevant [NAS, 1984; Caldwell

  5. Radiation-effects state of the art 1965-1966

    Energy Technology Data Exchange (ETDEWEB)

    Hamman, D.J.; Drennan, J.E.; Veazie, W.H.; Shober, F.R.; Leach, E.R.

    1966-06-30

    Developments in the field of radiation effects on electronic components including semiconductors, polymetric materials, lubricants, flotation fluids, hydraulic fluids, structural metals and alloys, ceramics, space radiation environment, dosimetry, and ceramic and metallic fuel materials are reviewed. Programs currently being conducted in radiation effects are briefly given for each section of the report.

  6. The environmental effects of radiation on flight crews

    International Nuclear Information System (INIS)

    Connor, C.W.

    1991-01-01

    A review is presented of a continuing investigation of flight deck radiation and its potential effects on flight crews. Attention is given to the various critical factors concerned in UV radiation exposure and detection including skin cancer classifications, skin types, effectiveness of different sun protection factors, and flight deck color configuration and sunglasses. Consideration is given to both UV and ionizing radiation

  7. Radiation effects on the human organs, app. A

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The appendix is subdivided into eleven chapters dealing with radiation effcts on organisms and comprising the following subjects: biological effects of ionizing radiations (dose, LET, RBE, formation of radicals, age and sex, cell types, biological repair), recommendations and protective measures for somatic risks, genetic risks, experimental models and dose-effect relationships, and internal radiation. The groups conclusions are given

  8. Intense Ion Pulses for Radiation Effects Research

    Science.gov (United States)

    2017-04-01

    induction linear accelerator that has been developed to deliver intense, up to 50 nC/pulse/mm2, sub-ns pulses of light ions with kinetic energy up to 1.2...II induction linear accelerator for intense ion beam pulses at Berkeley Lab. Figure 3. Helium current and integrated charge versus time at the...under contracts DE-AC02-205CH11231 and DE-AC52-07NA27344. JOURNAL OF RADIATION EFFECTS, Research and Engineering Vol. 35, No. 1, April 2017 158 INTENSE

  9. Radiation effects in corundum single crystals

    International Nuclear Information System (INIS)

    Gevorkyan, V.A.; Harutunyan, V.V.; Hakhverdyan, E.A.

    2005-01-01

    On the basis of new experimental results and analysis of publications it is shown that in the lattice of corundum crystals the high-energy particles create stable structural defects due to knocking out of atoms from normal sites of the anionic sublattice; this leads to the formation of F and F '+ centers as well as to other complex [Al i '+ F] type color centers. The essence of 'radiation memory' effect in corundum single crystals is that the high-energy particles irradiation, annealing at high temperatures and additional irradiation by X-rays result in the restoration of some spectral bands of the optical absorption in the range 200-650 nm

  10. Study of radiation effects on semiconductor devices

    International Nuclear Information System (INIS)

    Kuboyama, Satoshi; Shindou, Hiroyuki; Ikeda, Naomi; Iwata, Yoshiyuki; Murakami, Takeshi

    2004-01-01

    Fine structure of the recent semiconductor devices has made them more sensitive to the space radiation environment with trapped high-energy protons and heavy ions. A new failure mode caused by bulk damage had been reported on such devices with small structure, and its effect on commercial synchronous dynamic random access memory (SDRAMs) was analyzed from the irradiation test results performed at Heavy ion Medical Accelerator in Chiba (HIMAC). Single event upset (SEU) data of static random access memory (SRAMs) were also collected to establish the method of estimating the proton-induced SEU rate from the results of heavy ion irradiation tests. (authors)

  11. Radiation effects on the developing human brain

    International Nuclear Information System (INIS)

    1993-01-01

    The developing human brain has been shown to be especially sensitive to ionizing radiation. Mental retardation has been observed in the survivors of the atomic bombings in Japan exposed in utero during sensitive periods, and clinical studies of pelvically irradiated pregnant women have demonstrated damaging effects on the fetus. In this annex the emphasis is on reviewing the results of the study of the survivors of the atomic bombings in Japan, although the results of other human epidemiological investigations and of pertinent experimental studies are also considered. Refs, 3 figs, 10 tabs

  12. Space storms and radiation causes and effects

    CERN Document Server

    Schrijver, Carolus J

    2010-01-01

    Heliophysics is a fast-developing scientific discipline that integrates studies of the Sun's variability, the surrounding heliosphere, and the environment and climate of planets. The Sun is a magnetically variable star and for planets with intrinsic magnetic fields, planets with atmospheres, or planets like Earth with both, there are profound consequences. This 2010 volume, the second in this series of three heliophysics texts, integrates the many aspects of space storms and the energetic radiation associated with them - from causes on the Sun to effects in planetary environments. It reviews t

  13. Health effects of low level radiation exposure among radiation workers

    International Nuclear Information System (INIS)

    Murata, Motoi

    2003-01-01

    In Japan, a cohort study of radiation workers has been conducted since 1990. The cohort population consisted of about 176,000 workers (mostly males) who had been registered in the centralized radiation dose registry system and engaged in various radiation works at nuclear facilities. Statistical analyses were performed mainly on the 2,934 deaths, of which 1,191 were cancer cases, detected among 119,000 male subjects during the prospective follow-up. The standardized mortality ratio showed that for any cancers mortality was not different between this population and Japanese general population. By the trend test, though significantly increasing trend in accord with increasing doses was not observed for both cancer in all sites and leukemia, it was highly significant for esophagus cancer and external causes of deaths. Results of the questionnaire survey study of lifestyle of radiation workers suggested that increasing trend of these diseases was at least partly due to the influence of some confounding factors. As a result of reviewing published studies, including the present work, trend of mortality from cancer in all sites with increasing doses seems still unclear, whereas for leukemia it appears to stay flat under 100 mSv but rapidly rise up in the doses higher than this as if fitting to either a linear-quadratic or threshold models. (author)

  14. Effect of lateral radiative losses on radiative shock propagation

    Czech Academy of Sciences Publication Activity Database

    Busquet, M.; Audit, E.; González, M.; Stehlé, C.; Thais, F.; Acef, O.; Bauduin, D.; Barroso, P.; Rus, Bedřich; Kozlová, Michaela; Polan, Jiří; Mocek, Tomáš

    2007-01-01

    Roč. 3, - (2007), s. 8-11 ISSN 1574-1818 EU Projects: European Commission(XE) 506350 - LASERLAB-EUROPE Institutional research plan: CEZ:AV0Z10100523 Keywords : radiative shocks * laboratory astrophysics Subject RIV: BH - Optics, Masers, Lasers

  15. Effects of ionizing radiations on insects

    International Nuclear Information System (INIS)

    Goyffon, Max.

    1978-01-01

    The most traditional effects caused by irradiation are development and morphogenesis disorders since on the whole the sensitivity of the developing organism to ionizing radiations is all the greater as the growth rate is faster. During the development of higher insects two categories of cell divide: larval cells on the one hand, which differentiate immediately after segmentation and give rise to larval organisms, and embryonic cells on the other which divide actively to form various islets or imaginal discs destined, each to its own extent, to provide the organs of the adult. Two cell categories thus coexist in the larva, one undergoing differentiation and the other multiplication, the radiosensitivity of which will be quite different for this very reason and will account at least partly, where the lethal effect of ionizing radiations is concerned, for the results observed. Three chapters deal in turn with effects on longevity, on regeneration and restoration and on morphogenesis and development. Strong doses give rise beyond a certain threshold to the appearance of acute radiodermatitis; their clinical signs and different degrees of seriousness liken them to burns of a special type [fr

  16. Radiation effects after low dose chronic long-term exposure

    International Nuclear Information System (INIS)

    Fliedner, T.M.; Friesecke, I.

    1997-01-01

    This document approaches the radiation effects after low dose chronic long-term exposure, presenting examples occurred, the pathophysiologic mechanisms for cell system tolerance in elevated radiation fields, and the diagnostic and therapeutic possibilities

  17. Effect of radiation environment on radiation use efficiency and growth of sunflower

    International Nuclear Information System (INIS)

    Bange, M.P.; Hammer, G.L.; Rickert, K.G.

    1997-01-01

    The level of incident radiation and the proportion of radiation that is diffuse affects radiation use efficiency (RUE) in crops. However, the degree of this effect, and its importance to growth and yield of sunflower (Helianthus annuus L.) have not been established. A field experiment was conducted to investigate the effects of radiation environment on RUE, growth, and yield of sunflower. A fully irrigated crop was sown on an alluvial-prairie soil (Fluventic Haplustoll) and was exposed to three distinct radiation environments. In two treatments, the level of incident radiation was reduced by 14 and 20% by suspending two different types of polyethylene plastic films well above the crop. In addition to the reductions in incident radiation, the proportion of radiation that was diffuse was increased by about 14% in these treatments. Lower incident radiation and increased proportion of diffuse radiation had no effect on total biomass, phenology, leaf area, and the canopy light extinction coefficient (k = 0.89). However, yield was reduced in shaded treatments due to smaller grain size and lower harvest index. Although crop RUE measured over the entire crop cycle (1.25 g/MJ) did not differ significantly among treatments, there was a trend where RUE compensated for less intercepted incident radiation. Theoretical derivations of the response of RUE to different levels of incident radiation supported this finding. Shaded sunflower crops have the ability to produce biomass similar to unshaded crops by increasing RUE, but have lower harvest indices

  18. Testing the effects from dark radiation

    International Nuclear Information System (INIS)

    Zhang Yi; Gong Yungui

    2013-01-01

    In this paper, the effects of dark radiation (DR) are tested. Theoretically, the phase-space analysis method is applied to check whether the model is consist with the history of our universe which shows positive results. Observationally, by using the observational data (SuperNovae Legacy Survey (SNLS), Wilkinson Microwave Anisotropy Probe 9 Years Result (WMAP9), Planck First Data Release (PLANCK), baryon acoustic oscillations (BAO), Hubble parameter data (H(z)) and Big Bang nucleosynthesis (BBN)), the DR is found to have the effect of wiping out the tension between the SNLS data and the other data in a flat ΛCDM model. The effects of DR also make the best fit value of N eff slightly larger than 3.04. (paper)

  19. Gamma radiation effects on liofilized human serum

    International Nuclear Information System (INIS)

    Padron Soler, E.; Romay Penabad, Z.; Chavez Ardanza, A.; Hernandez Gonzalez, C.; Martin Gonzalez, O.; Garcia Gonzalez, I.; Prieto Miranda, E.

    1995-01-01

    Human freeze dried serum was artificially contaminated with Flavobacterium sp. for studying the effects of gamma radiation of it. The radiobiological parameters of the contaminator were determined and the sterilization dose was set. The quality of the product irradiated at both, calculated sterilization dose (8.5 kGy) an another one about 25 kGy was determined. It was made according to: sterility testing, total proteins, pH enzymes (alanina-aminotransferase, aspartato-aminotransferase, alkaline phosphatase), protein electrophoresis, fast performance liquid chromatographic and effect on the cellular growth. From the latter was concluded that the calculated sterilization dose was adequate form keeping the biological properties and viability of the irradiated serum. Nevertheless, the dose of 25 k Gy was not adequate because of its dangerous effects on the cell culture

  20. Radiation effects on foodstuffs. Pt. 1

    International Nuclear Information System (INIS)

    Kuehl, M.; Boegl, W.; Stockhausen, K.

    1980-01-01

    In this report, results of irradiation experiments at about 30 foodstuffs are compiled and analyzed. The only objective was to obtain a survey of the chemical changes of irradiated foodstuffs; therefore, neither microbiological nor toxicological aspects were considered. The results were taken from the original publications and compiled in a type of dictionary of foodstuffs listing all relevant data for each substance (foodstuff, irradiation conditions, investigation procedures, results etc.) in a defined order. The main radiation source was Co 60, and the doses ranged between 0,006 and 10 Mrad. The investigations were related not only to the effects of irradiation (in some cases using different absorbed doses per foodstuff), but also to the effects of storage after irradiation (for 16 foodstuffs) and the effects of temperature (for 3 foodstuffs). (orig./MG) [de

  1. The ionizing radiation environment in space and its effects

    International Nuclear Information System (INIS)

    Adams, Jim; Falconer, David; Fry, Dan

    2012-01-01

    The ionizing radiation environment in space poses a hazard for spacecraft and space crews. The hazardous components of this environment are reviewed and those which contribute to radiation hazards and effects identified. Avoiding the adverse effects of space radiation requires design, planning, monitoring and management. Radiation effects on spacecraft are avoided largely though spacecraft design. Managing radiation exposures of space crews involves not only protective spacecraft design and careful mission planning. Exposures must be managed in real time. The now-casting and forecasting needed to effectively manage crew exposures is presented. The techniques used and the space environment modeling needed to implement these techniques are discussed.

  2. Optimization of stereotactically-guided conformal treatment planning of sellar and parasellar tumors, based on normal brain dose volume histograms

    International Nuclear Information System (INIS)

    Perks, Julian R.; Jalali, Rakesh; Cosgrove, Vivian P.; Adams, Elizabeth J.; Shepherd, Stephen F.; Warrington, Alan P.; Brada, Michael

    1999-01-01

    Purpose: To investigate the optimal treatment plan for stereo tactically-guided conformal radiotherapy (SCRT) of sellar and parasellar lesions, with respect to sparing normal brain tissue, in the context of routine treatment delivery, based on dose volume histogram analysis. Methods and Materials: Computed tomography (CT) data sets for 8 patients with sellar- and parasellar-based tumors (6 pituitary adenomas and 2 meningiomas) have been used in this study. Treatment plans were prepared for 3-coplanar and 3-, 4-, 6-, and 30-noncoplanar-field arrangements to obtain 95% isodose coverage of the planning target volume (PTV) for each plan. Conformal shaping was achieved by customized blocks generated with the beams eye view (BEV) facility. Dose volume histograms (DVH) were calculated for the normal brain (excluding the PTV), and comparisons made for normal tissue sparing for all treatment plans at ≥80%, ≥60%, and ≥40% of the prescribed dose. Results: The mean volume of normal brain receiving ≥80% and ≥60% of the prescribed dose decreased by 22.3% (range 14.8-35.1%, standard deviation σ = 7.5%) and 47.6% (range 25.8-69.1%, σ 13.2%), respectively, with a 4-field noncoplanar technique when compared with a conventional 3-field coplanar technique. Adding 2 further fields, from 4-noncoplanar to 6-noncoplanar fields reduced the mean normal brain volume receiving ≥80% of the prescribed dose by a further 4.1% (range -6.5-11.8%, σ = 6.4%), and the volume receiving ≥60% by 3.3% (range -5.5-12.2%, σ = 5.4%), neither of which were statistically significant. Each case must be considered individually however, as a wide range is seen in the volume spared when increasing the number of fields from 4 to 6. Comparing the 4- and 6-field noncoplanar techniques to a 30-field conformal field approach (simulating a dynamic arc plan) revealed near-equivalent normal tissue sparing. Conclusion: Four to six widely spaced, fixed-conformal fields provide the optimum class solution

  3. Radiation effects in bulk and nanostructured silicon

    Energy Technology Data Exchange (ETDEWEB)

    Holmstrom, E.

    2012-07-01

    Understanding radiation effects in silicon (Si) is of great technological importance. The material, being the basis of modern semiconductor electronics and photonics, is subjected to radiation already at the processing stage, and in many applications throughout the lifetime of the manufactured component. Despite decades of research, many fundamental questions on the subject are still not satisfactorily answered, and new ones arise constantly as device fabrication shifts towards the nanoscale. In this study, methods of computational physics are harnessed to tackle basic questions on the radiation response of bulk and nanostructured Si systems, as well as to explain atomic-scale phenomena underlying existing experimental results. Empirical potentials and quantum mechanical models are coupled with molecular dynamics simulations to model the response of Si to irradiation and to characterize the created crystal damage. The threshold displacement energy, i.e., the smallest recoil energy required to create a lattice defect, is determined in Si bulk and nanowires, in the latter system also as a function of mechanical strain. It is found that commonly used values for this quantity are drastically underestimated. Strain on the nanowire causes the threshold energy to drop, with an effect on defect production that is significantly higher than in an another nanostructure with similar dimensions, the carbon nanotube. Simulating ion irradiation of Si nanowires reveals that the large surface area to volume ratio of the nanostructure causes up to a three-fold enhancement in defect production as compared to bulk Si. Amorphous defect clusters created by energetic neutron bombardment are predicted, on the basis of their electronic structure and abundance, to cause a deleterious phenomenon called type inversion in Si strip detectors in high-energy physics experiments. The thinning of Si lamellae using a focused ion beam is studied in conjunction with experiment to unravel the cause for

  4. Indirect effects in dual radiation action

    International Nuclear Information System (INIS)

    Zaider, M.; Rossi, H.H.

    1988-01-01

    The basic aim in this paper is to establish the link between indirect effects of radiation action and the spatial distribution of radicals at the time of energy deposition as well as throughout subsequent diffusion and interaction. The fact that radicals diffuse for a finite distance before damaging a biomolecule has dramatic effects on their subsequent probability to result in lesions. Thus at very low DMSO concentrations, where p = 0.5, one expects - all other things being equal - some 75% of the lesions to result from indirect or semidirect lesions. The number calculated here is lower (15%), a direct result of the fact that such lesions involve proximity functions modulated by diffusion. At higher DMSO concentrations this percentage becomes progressively smaller, as expected. It appears thus that for low-LET radiation, the relative amount of indirect damage in single tracks (also termed intratrack or single events) action is very small. By contrast, intertrack (or two-event) contributions will have the ratio between direct and (indirect + semidirect) contributions given by p 2 /(1-p 2 ). The reason for this is that sublesions from different tracks are uniformly distributed throughout the cell nucleus; their probability of interaction should not depend on any previous diffusional processes. For the example given above (p = 0.5) they do expect 65% of intertrack (two-hit) lesions to have resulted from indirect or semidirect mechanisms. This contrast between the almost exclusively direct character of intratrack lesions and the dominant role of indirect action in intertrack lesions produc