WorldWideScience

Sample records for radiation dose commitments

  1. Age-specific radiation dose commitment factors for a one-year chronic intake

    International Nuclear Information System (INIS)

    Hoenes, G.R.; Soldat, J.K.

    1977-11-01

    During the licensing process for nuclear facilities, radiation doses and dose commitments must be calculated for people in the environs of a nuclear facility. These radiation doses are determined by examining characteristics of population groups, pathways to people, and radionuclides found in those pathways. The pertinent characteristics, which are important in the sense of contributing a significant portion of the total dose, must then be analyzed in depth. Dose factors are generally available for adults, see Reference 1 for example, however numerous improvements in data on decay schemes and half-lives have been made in recent years. In addition, it is advisable to define parameters for calculation of the radiation dose for ages other than adults since the population surrounding nuclear facilities will be composed of various age groups. Further, since infants, children, and teens may have higher rates of intake per unit body mass, it is conceivable that the maximally exposed individual may not be an adult. Thus, it was necessary to develop new radiation-dose commitment factors for various age groups. Dose commitment factors presented in this report have been calculated for a 50-year time period for four age groups

  2. Great Lakes waters: radiation dose commitments, potential health effects, and cost-benefit considerations

    International Nuclear Information System (INIS)

    Ainsworth, E.J.

    1977-07-01

    In 1972, a Great Lakes Water Quality Agreement was signed by the United States and Canadian Governments. It was stipulated that the operation and effectiveness of the agreement were to be reviewed comprehensively in 1977. Aspects of the agreement concern nondegradation of Great Lakes waters and maintenance of levels of radioactivity or other potential pollutants at levels considered as low as practicable. A refined radioactivity objective of one millirem is proposed in the Water Quality Agreement. The implications of adoption of this objective are not known fully. The Division of Environmental Impact Studies was commissioned by ERDA's Division of Technology Overview to summarize the information available on the current levels of radioactivity in Great Lakes waters, compute radiation-dose commitment (integrated dose over 50 years after consumption of 2.2 liters of water of one year), and to comment on the feasibility and cost-benefit considerations associated with the refined one-millirem objective. Current levels of radioactivity in the waters of Lakes Michigan, Ontario, Erie, and Huron result in dose commitments in excess of 1 mrem for whole body and 6 mrem for bone. Future projections of isotope concentrations in Great lakes water indicate similar dose commitments for drinking water in the year 2050. Reduction of the levels of radioactivity in Great Lakes waters is not feasible, but cost-benefit considerations support removal of 226 Ra and 90 Sr through interceptive technology before water consumption. Adoption of the one-millirem objective is not propitious

  3. 85Kr management trade-offs: a perspective to total radiation dose commitment

    Energy Technology Data Exchange (ETDEWEB)

    Mellinger, P.J.; Hoenes, G.R.; Brackenbush, L.W.; Greenborg, J.

    1980-01-01

    Radiological consequences arising from the trade-offs for /sup 85/Kr waste management from possible nuclear fuel resource recovery activities have been investigated. The reference management technique is to release all the waste gas to the atmosphere where it is diluted and dispersed. A potential alternative is to collect, concentrate, package and submit the gas to long-term storage. This study compares the radiation dose commitment to the public and to the occupationally exposed work force from these alternatives. The results indicate that it makes little difference to the magnitude of the world population dose whether /sup 85/Kr is captured and stored or chronically released to the environment. Further, comparisons of radiation exposures (for the purpose of estimating health effects) at very low dose rates to very large populations with exposures to a small number of occupationally exposed workers who each receive much higher dose rates may be misleading. Finally, cost studies (EPA 1976 and DOE 1979a) show that inordinate amounts of money will be required to lower this already extremely small 80-year cumulative world population dose of 0.05 mrem/person (<0.001% of natural background radiation for the same time period).

  4. 85Kr management trade-offs: a perspective to total radiation dose commitment

    International Nuclear Information System (INIS)

    Mellinger, P.J.; Hoenes, G.R.; Brackenbush, L.W.; Greenborg, J.

    1980-01-01

    Radiological consequences arising from the trade-offs for 85 Kr waste management from possible nuclear fuel resource recovery activities have been investigated. The reference management technique is to release all the waste gas to the atmosphere where it is diluted and dispersed. A potential alternative is to collect, concentrate, package and submit the gas to long-term storage. This study compares the radiation dose commitment to the public and to the occupationally exposed work force from these alternatives. The results indicate that it makes little difference to the magnitude of the world population dose whether 85 Kr is captured and stored or chronically released to the environment. Further, comparisons of radiation exposures (for the purpose of estimating health effects) at very low dose rates to very large populations with exposures to a small number of occupationally exposed workers who each receive much higher dose rates may be misleading. Finally, cost studies (EPA 1976 and DOE 1979a) show that inordinate amounts of money will be required to lower this already extremely small 80-year cumulative world population dose of 0.05 mrem/person

  5. The issue concerning the use of an annual as opposed to a committed dose limit for internal radiation protection

    International Nuclear Information System (INIS)

    Skrable, K.W.; Chabot, G.E.; Alexander, E.L.; French, C.S.

    1985-01-01

    The scientific, technical, practical, and ethical considerations that relate to the use of an annual as opposed to a committed dose limitation system for internal radiation protection are evaluated and presented. The concerns about problems associated with the more recent ICRP committed dose recommendations that have been expressed by persons who are currently operating under an annual dose limitation system are reviewed and discussed in terms of the radiation protection programme elements that are required for an effective ALARA programme. We include in this and a follow-up article a comparison of how these alternative dose limitation systems affect the economic and professional livelihood of radiation workers and the requirements that they impose upon employers. Finally, we recommend the use of an ICRP based committed dose limitation system that provides protection of workers over an entire occupational lifetime without undue impact on their livelihood and without undue requirements for employers. (author)

  6. Collective dose commitments from nuclear power programmes

    International Nuclear Information System (INIS)

    Beninson, D.

    1977-01-01

    The concepts of collective dose and collective dose commitment are discussed, particularly regarding their use to compare the relative importance of the exposure from several radiation sources and to predict future annual doses from a continuing practice. The collective dose commitment contributions from occupational exposure and population exposure due to the different components of the nuclear power fuel cycle are evaluated. A special discussion is devoted to exposures delivered over a very long time by released radionuclides of long half-lives and to the use of the incomplete collective dose commitment. The maximum future annual ''per caput'' doses from present and projected nuclear power programmes are estimated

  7. Age-specific inhalation radiation dose commitment factors for selected radionuclides

    International Nuclear Information System (INIS)

    Strenge, D.L.; Peloquin, R.A.; Baker, D.A.

    1982-08-01

    Inhalation dose commitment factors are presented for selected radionuclides for exposure of individuals in four age groups: infant, child, teen and adult. Radionuclides considered are 35 S, 36 Cl, 45 Ca, 67 Ga, 75 Se, 85 Sr, 109 Cd, 113 Sn, 125 I, 133 Ba, 170 Tm, 169 Yb, 182 Ta, 192 Ir, 198 Au, 201 Tl, 204 Tl, and 236 Pu. The calculational method is based on the human metabolic model of ICRP as defined in Publication 2 (ICRP 1959) and as used in previous age-specific dose factor calculations by Hoenes and Soldat (1977). Dose commitment factors are presented for the following organs of reference: total body, bone, liver, kidney, thyroid, lung and lower large intestine

  8. Estimation of the committed radiation dose resulting from gamma radionuclides ingested with food

    International Nuclear Information System (INIS)

    Piotr Godyn; Agnieszka Dolhanczuk-Srodka; Zbigniew Ziembik; Ewa Moliszewska

    2014-01-01

    The objective of the study was to estimate the value of the radiation dose absorbed in consequence of consumption of popular food products for individual age groups. Potatoes, corn and sugar beet were selected for the study. Edible parts of these plants were collected in experimental fields of the KWS Lochow Polska Sp. z o.o. seeding company in Kondratowice (Poland). On the basis of the obtained study results, it can be stated that in consequence of consumption of the selected food products, people may receive increased doses from both natural and artificial radioactive isotopes. The doses calculated for several age groups do not show any health hazards in consequence of consumption of the tested food. One of the determined radionuclides was 137 Cs; however, its presence in the absorbed dose is lower than the doses from natural radioactive isotopes, in particular 40 K. (author)

  9. Model to estimate radiation dose commitments to the world population from the atmospheric release of radionuclides (LWBR development program)

    International Nuclear Information System (INIS)

    Rider, J.L.; Beal, S.K.

    1978-02-01

    The equations developed for use in the LWBR environmental statement to estimate the dose commitment over a given time interval to a given organ of the population in the entire region affected by the atmospheric releases of a radionuclide are presented and may be used for any assessment of dose commitments in these regions. These equations define the dose commitments to the world resulting from a released radionuclide and each of its daughters and the sum of these dose commitments provides the total dose commitment accrued from the release of a given radionuclide. If more than one radionuclide is released from a facility, then the sum of the dose commitments from each released nuclide and from each daughter of each released nuclide is the total dose commitment to the world from that facility. Furthermore, if more than one facility is considered as part of an industry, then the sum of the dose commitments from the individual facilities represents the total world dose commitment associated with that industry. The actual solutions to these equations are carried out by the AIRWAY computer program. The writing of this computer program entailed defining in detail the specific representations of the various parameters such as scavenging coefficients, resuspension factors, deposition velocities, dose commitment conversion factors, and food uptake factors, in addition to providing specific numerical values for these types of parameters. The program permits the examination of more than one released nuclide at a time and performs the necessary summing to obtain the total dose commitment to the world accrued from the specified releases

  10. Remarks and suggestions concerned with formulation of the definition of quantity ''committed dose'' and quantity ''radiation burden'' useful in estimates of population exposure

    International Nuclear Information System (INIS)

    Cwik, T.

    1990-01-01

    The paper contains remarks to the definitions of the quantity ''commited dose'' given in the publications of the ICRP. The suggestions are presented on the mode of formulating the definition of the quantity ''commited dose'' and the definition of the quantity denoted hitherto by the symbol H 50 . The other suggestions deal with introduction of the quantity ''radiation burden'', assigned for use in assessments of irradiation expressed ''per caput'' of population. 9 refs. (author)

  11. Study of the correlation between administered activity and radiation committed dose to the thyroid in 131I Therapy of Graves' Disease

    International Nuclear Information System (INIS)

    Traino, A.C.; Di Martino, F.; Lazzeri, M.; Stabin, M.G.

    2001-01-01

    Substantial reduction in the thyroid volume (up to 70-80%) after 131 I therapy of Graves' disease has been demonstrated and reported in the literature. Recently a mathematical model of thyroid mass reduction during the first month after therapy has been developed and a new algorithm for the radiation committed dose calculation has been proposed. Reduction of the thyroid mass and the radiation committed dose to the gland depend on a parameter k, defined for each subject. The calculation of k allows the prediction of the activity to administer, depending on the radiation committed dose chosen by the physician. In this paper a method for calculating k is proposed. The calculated values of k are compared to values derived from measurements of the changes in thyroid mass in twenty-six patients treated by 131 I for Graves' disease. The radiation committed dose to the thyroid can be predicted within 21%, and the radioiodine activity to administer to the patient can be predicted within 22% using the calculated values of k. The thyroid volume reduction during the first month after therapy administration can be also predicted with good accuracy using the calculated values of k. The radiation committed dose and the radioiodine activity to administer were calculated using a new, very simple algorithm. A comparison between the values calculated by this new algorithm and the old, classical Marinelli-Quimby algorithm shows that the new method is more accurate. (author)

  12. Calculation of committed dose equivalent from intake of tritiated water

    International Nuclear Information System (INIS)

    Law, D.V.

    1978-08-01

    A new computerized method of calculating the committed dose equivalent from the intake of tritiated water at Harwell is described in this report. The computer program has been designed to deal with a variety of intake patterns and urine sampling schemes, as well as to produce committed dose equivalents corresponding to any periods for which individual monitoring for external radiation is undertaken. Details of retrospective doses are added semi-automatically to the Radiation Dose Records and committed dose equivalents are retained on a separate file. (author)

  13. Committed effective dose from thoron daughters inhalation

    International Nuclear Information System (INIS)

    Campos, M.P.; Pecequilo, B.R.S.

    2000-01-01

    Mankind's interest in natural radiation exposure levels has increased over the past fifty years and it is now recognized that the most significant contributors to human irradiation by natural sources are the short-lived decay products of radon ( 222 Rn) and thoron ( 220 Rn). Despite the thoron short half-life of 55 s, effective dose from inhalation of thoron an its progeny ( 212 Pb and 212 Bi) must be considered, owing to the high thorium background in countries like Brazil, China and India, for example. The indoor committed effective dose was assessed by air sampling at the thorium purification plant and the nuclear materials storage site of the Instituto de Pesquisas Energeticas e Nucleares; Sao Paulo, Brazil. A total of 21 glass fiber filter samples was analyzed by high resolution gamma ray spectrometry in order to obtain the 212 Pb and 212 Bi activities. The equilibrium equivalent concentration (EEC) varied from 0.3 Bq/m 3 to 6.8 Bq/m 3 for the storage site air samples and from 9.9 Bq/m 3 to 249.8 Bq/m 3 for the thorium purification plant air samples. As retention studies indicate a biological half-life of a few hours inhaled thoron progeny in the human lungs, the main fraction of the potential alpha energy (PAEC) deposited is absorbed in the lungs, meaning negligible to the effective dose the contribution of the dose in other times. The committed effective dose due thoron progeny was performed by compartimental analysis following the ICRP 66 lung compartimental model and ICRP 67 lead compartimental model. The values obtained varied from 0.03 mSv/a to 0.67 mSv/a for the storage site air samples and from 0.12 mSv/a to 6.00 mSv/a for the thorium purification plant air samples. (author)

  14. Committed equivalent organ doses and committed effective doses from intakes of radionuclides

    CERN Document Server

    Phipps, A W; Kendall, G M; Silk, T J; Stather, J W

    1991-01-01

    This report contains details of committed equivalent doses to individual organs for intakes by ingestion and inhalation of 1 mu m AMAD particles of 359 nuclides by infants aged 3 months, by children aged 1, 5, 10 and 15 years, and by adults. It complements NRPB-R245 which describes the changes which have taken place since the last NRPB compendium of dose per unit intake factors (dose coefficients) and gives summary tables. Information on the way committed doses increase with the integration period is given in NRPB-M289. The information given in these memoranda is also available as a microcomputer package - NRPB-SR245.

  15. Estimation of the uranium body radiation and the commitment dose from the results of the radio toxicological analysis of the urine

    International Nuclear Information System (INIS)

    Hirayama, Tomie

    1978-01-01

    The principal way of intake when individuals are accidentally exposed to the uranium compounds is the respiratory one. The deposition and clearance of the inhaled particles are influenced by the chemical, physical and biological characteristics of uranium. Kidney, lung and bones are the principal organs of deposition of absorbed uranium compounds, whose biological half-lives are approximately 6,62 ± 0,9 5 , 72,6 ± 2,2 and 322 ± 6 days respectively. An excretion function for the urinary pat radio toxicological urinalysis. This function is composed by three exponential terms, corresponding to the three organs of deposition. An estimation of the committed dose equivalent was carried out by utilizing: half-lives and the excreted, fraction suggested by I.C.R.F.; the average excreted fraction calculated from experimental data; half-life in the kidney and the fraction y u (1) excreted during the first day, experimentally determined; experimental half-lives in the kidney and lung and y u (1), and finally by utilizing all parameters of the individual, obtaining therefore, through this fifth determination a more reliable value of the committed dose equivalent in function of the particular metabolism of the individual. (author)

  16. Population dose commitments due to radioactive releases from nuclear power plant sites in 1975

    International Nuclear Information System (INIS)

    Baker, D.A.; Soldat, J.K.; Watson, E.C.

    1977-10-01

    Population radiation dose commitments were estimated from reported radionuclide releases from commercial power reactors operating during 1975. Fifty-year dose commitments from one year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teenager and adult) residing between 2 and 80 km from each site. Results are given in the form of tables giving the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within the 2 to 80-km region around each site receiving various average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 750 person-rem to a low of 0.008 person-rem with an arithmetic mean of 34 person-rem

  17. The concept of collective injury and of collective dose commitment

    International Nuclear Information System (INIS)

    Jacobi, W.

    The procedure of optimization based on a cost-benefit-analysis ought to include also costs resulting from injuries to health and environment according to the polluter - pays principle. The implementation of a quantitative optimization analysis in the field of radiation protection, however, seems to be extremely difficult. The expediency and applicability needs careful examination. To develop, or to select appropriate strategies of protection, the concept has to be considered on a long-term basis as something giving the direction for future planning of radiation protection. The term of collective injury and collective dose commitment is of prime importance in this context. In principle the concept can be applied to other noxae, especially to carcinogenic and mutagenic chemicals. (DG) [de

  18. Population dose commitments due to radioactive releases from Nuclear-Power-Plant Sites in 1979

    International Nuclear Information System (INIS)

    Baker, D.A.; Peloquin, R.A.

    1982-12-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1979. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 1300 person-rem to a low of 0.0002 person-rem with an arithmetic mean of 38 person-rem. The total population dose for all sites was estimated at 1800 person-rem for the 94 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 2 x 10 - 6 mrem to a high of 0.7 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites

  19. Population dose commitments due to radioactive releases from nuclear power plant sites in 1982. Volume 4

    International Nuclear Information System (INIS)

    Baker, D.A.; Peloquin, R.A.

    1986-06-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1982. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 51 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments from both liquid and airborne pathways ranged from a high of 30 person-rem to a low of 0.007 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 130 person-rem for the 100 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 6 x 10 -7 mrem to a high of 0.06 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites

  20. Population dose commitments due to radioactive releases from nuclear-power-plant sites in 1978

    International Nuclear Information System (INIS)

    Peloquin, R.A.; Schwab, J.D.; Baker, D.A.

    1982-06-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1978. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 200 person-rem to a low of 0.0004 person-rem with an arithmetic mean of 14 person-rem. The total population dose for allsites was estimated at 660 person-rem for the 93 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 3 x 10 -6 mrem to a high of 0.08 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites

  1. Population dose commitments due to radioactive releases from nuclear power plant sites in 1986

    International Nuclear Information System (INIS)

    Baker, D.A.

    1989-10-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1986. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 66 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 31 person-rem to a low of 0.0007 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 1.7 person-rem. The total population dose for all sites was estimated at 110 person-rem for the 140 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 2 x 10 -6 mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. 12 refs

  2. Population dose commitments due to radioactive releases from nuclear power plant sites in 1984

    International Nuclear Information System (INIS)

    Baker, D.A.

    1988-01-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1984. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 56 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 110 person-rem to a low of 0.002 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 5 person-rem. The total population dose for all sites was estimated at 280 person-rem for the 100 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 6 x 10 -6 mrem to a high of 0.04 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites

  3. Population dose commitments due to radioactive releases from nuclear power plant sites in 1985

    International Nuclear Information System (INIS)

    Baker, D.A.

    1988-08-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commericial power reactors operating during 1985. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 61 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 73 person-rem to a low of 0.011 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 200 person-rem for the 110 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 5 /times/ 10/sup /minus/6/ mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites

  4. Registration of radiation doses

    International Nuclear Information System (INIS)

    2000-02-01

    In Finland the Radiation and Nuclear Safety Authority (STUK) is maintaining the register (called Dose Register) of the radiation exposure of occupationally exposed workers in order to ensure compliance with the principles of optimisation and individual protection. The guide contains a description of the Dose Register and specifies the responsibilities of the party running a radiation practice to report the relevant information to the Dose Register

  5. Population dose commitments due to radioactive releases from nuclear power plant sites in 1987

    International Nuclear Information System (INIS)

    Baker, D.A.

    1990-08-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1987. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 70 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for reach of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The site average individual dose commitment from all pathways ranged from a low of 2 x 10 -6 mrem to a high of 0.009 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. However, licensee calculation of doses to the maximally exposed individual at some sites indicated values of up to approximately 100 times average individual doses (on the order of a few millirem per year). 2 refs., 2 figs., 7 tabs

  6. Committed effective doses at various times after intakes of radionuclides

    CERN Document Server

    Phipps, A W; Kendall, G M; Silk, T J; Stather, J W

    1991-01-01

    This report contains details of committed effective doses at nine times after intake from intakes by ingestion and inhalation of 1 mu 1 AMAD particles by adults. Data are given for various chemical forms of 359 nuclides. It complements NRPB-R245 which describes the changes which have taken place since the last NRPB compendium of dose per unit intake factors (dose coefficients) and gives summary tables. Information on committed equivalent doses to organs is given in NRPB-M288. The information given in these memoranda is also available as a microcomputer package - NRPB-SR245.

  7. Committed dose equivalent in the practice of radiological protection

    International Nuclear Information System (INIS)

    Nenot, J.C.; Piechowski, J.

    1985-01-01

    In the case of internal exposure, the dose is not received at the moment of exposure, as happens with external exposure, since the incorporated radionuclide irradiates the various organs and tissues during the time it is present in the body. By definition, the committed dose equivalent corresponds to the received dose integrated over 50 years from the date of intake. In order to calculate it, one has to know the intake activity and the value of the committed dose equivalent per unit of intake activity. The uncertainties of the first parameter are such that the committed dose equivalent can only be regarded as an order of magnitude and not as a very accurate quantity. The use of it is justified, however, for, like the dose equivalent for external exposure, it expresses the risk of stochastic effects for the individual concerned since these effects, should they appear, would do so only after a latent period which is generally longer than the dose integration time. Moreover, the use of the committed dose equivalent offers certain advantages for dosimetric management, especially when it is simplified. A practical problem which may arise is that the annual dose limit is apparently exceeded by virtue of the fact that one is taking account, in the first year, of doses which will actually be received only in the following years. These problems are rare enough in practice to be dealt with individually in each case. (author)

  8. Radiation doses to Finns

    International Nuclear Information System (INIS)

    Rantalainen, L.

    1996-01-01

    The estimated annual radiation doses to Finns have been reduced in the recent years without any change in the actual radiation environment. This is because the radiation types have been changed. The risk factors will probably be changed again in the future, because recent studies show discrepancies in the neutron dosimetry concerning the city of Hiroshima. Neutron dosimetry discrepancy has been found between the predicted and estimated neutron radiation. The prediction of neutron radiation is calculated by Monte Carlo simulations, which have also been used when designing recommendations for the limits of radiation doses (ICRP60). Estimation of the neutron radiation is made on the basis of measured neutron activation of materials in the city. The estimated neutron dose beyond 1 km is two to ten, or more, times as high as the predicted dose. This discrepancy is important, because the most relevant distances with respect to radiation risk evaluation are between 1 and 2 km. Because of this discrepancy, the present radiation risk factors for gamma and neutron radiation, which rely on the Monte Carlo calculations, are false, too. The recommendations of ICRP60 have been adopted in a few countries, including Finland, and they affect the planned common limits of the EU. It is questionable whether happiness is increased by adopting false limits, even if they are common. (orig.) (2 figs., 1 tab.)

  9. Radiation dose in vertebroplasty

    International Nuclear Information System (INIS)

    Mehdizade, A.; Lovblad, K.O.; Wilhelm, K.E.; Somon, T.; Wetzel, S.G.; Kelekis, A.D.; Yilmaz, H.; Abdo, G.; Martin, J.B.; Viera, J.M.; Ruefenacht, D.A.

    2004-01-01

    We wished to measure the absorbed radiation dose during fluoroscopically controlled vertebroplasty and to assess the possibility of deterministic radiation effects to the operator. The dose was measured in 11 consecutive procedures using thermoluminescent ring dosimeters on the hand of the operator and electronic dosimeters inside and outside of the operator's lead apron. We found doses of 0.022-3.256 mGy outside and 0.01-0.47 mGy inside the lead apron. Doses on the hand were higher, 0.5-8.5 mGy. This preliminary study indicates greater exposure to the operator's hands than expected from traditional apron measurements. (orig.)

  10. Problems arising in the evaluation of collective dose commitment

    International Nuclear Information System (INIS)

    Coulon, R.; Beau, P.

    1979-01-01

    In order to apply the concept of optimization it is necessary to evaluate the collective dose commitment for the population as a whole. This is found by summing the dose commitments for the different population groups involved, including persons occupationally exposed and members of the public both locally and globally. The average dose received by each of these groups can vary considerably: for occupational exposure it is about one order of magnitude below the limits, whereas for the general public it is far below, although certain local groups may be subjected to a much higher exposure than the overall average. The question arises, therefore, whether certain groups should not be weighted differently in order to take into account the heterogeneity of the distribution of exposure. As far as the validity of forecast evaluations is concerned, one may assume that for occupational exposure the dose commitment over the whole period of operation of a facility can be estimated fairly accurately. The overall collective dose commitment for the public is relatively insensitive to local variations in the environment and in the public itself but is strongly dependent on long-term developments which cannot at present be forecast. For the evaluation of dose equivalent to the critical group, local variations are of considerable importance and need to be foreseen, which is not always possible. By taking into account a period which includes the annual maximum collective dose equivalent one can make some of these difficulties less severe. (author)

  11. Population dose commitments due to radioactive releases from nuclear power plant sites in 1988

    International Nuclear Information System (INIS)

    Baker, D.A.

    1992-01-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1988. Fifty-year commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 71 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 16 person-rem to a low of 0.0011 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 1.1 person-rem. The total population dose for all sites was estimated at 75 person-rem for the 150 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 3 x 10 -7 mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. However, licensee calculation of doses to the maximally exposed individual at some sites indicated values of up to approximately 100 times average individual doses (on the order of a few millirem per year)

  12. Population dose commitments due to radioactive releases from nuclear power plant sites in 1980

    International Nuclear Information System (INIS)

    Baker, D.A.; Peloquin, R.A.

    1983-08-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1980. In addition doses derived from the shutdown reactors at the Three Mile Island site were included. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 40 person-rem to a low of 0.02 person-rem with an arithmetic mean of 4 person-rem. The total population dose for all sites was estimated at 180 person-rem for the 96 million people considered at risk

  13. Dose commitments due to radioactive releases from nuclear power plant sites in 1992. Volume 14

    International Nuclear Information System (INIS)

    Aaberg, R.L.; Baker, D.A.

    1996-03-01

    Population and individual radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1992. Fifty-year dose commitments for a 1-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teenager, and adult) residing between 2 and 80 km from each of 72 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is an estimate of individual doses, which are compared with 10 CFR Part 50, Appendix I, design objectives. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 3.7 person-rem to a low of 0.0015 person-rem for the sites with plants in operation and producing power during the year. The arithmetic mean was 0.66 person-rem. The total population dose for all sites was estimated at 47 person-rem for the 130-million people considered at risk. The individual dose commitments estimated for all sites were below the 10 CFR 50, Appendix I, design objectives

  14. Dose commitments due to radioactive releases from nuclear power plant sites in 1991. Volume 13

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.A. [Pacific Northwest Lab., Richland, WA (United States)

    1995-04-01

    Population and individual radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1991. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teenager and adult) residing between 2 and 80 km from each of 72 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is an estimate of individual doses which are compared with 10 CFR Part 50, Appendix 1 design objectives. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 22 person-rem to a low of 0.002 person-rem for the sites with plants in operation and producing power during the year. The arithmetic mean was 1.2 person-rem. The total population dose for all sites was estimated at 88 person-rem for the 130 million people considered at risk. The individual dose commitments estimated for all sites were below the Appendix 1 design objectives.

  15. Dose commitments due to radioactive releases from nuclear power plant sites in 1992. Volume 14

    Energy Technology Data Exchange (ETDEWEB)

    Aaberg, R.L.; Baker, D.A.

    1996-03-01

    Population and individual radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1992. Fifty-year dose commitments for a 1-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teenager, and adult) residing between 2 and 80 km from each of 72 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is an estimate of individual doses, which are compared with 10 CFR Part 50, Appendix I, design objectives. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 3.7 person-rem to a low of 0.0015 person-rem for the sites with plants in operation and producing power during the year. The arithmetic mean was 0.66 person-rem. The total population dose for all sites was estimated at 47 person-rem for the 130-million people considered at risk. The individual dose commitments estimated for all sites were below the 10 CFR 50, Appendix I, design objectives.

  16. Dose commitments due to radioactive releases from nuclear power plant sites in 1991. Volume 13

    International Nuclear Information System (INIS)

    Baker, D.A.

    1995-04-01

    Population and individual radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1991. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teenager and adult) residing between 2 and 80 km from each of 72 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is an estimate of individual doses which are compared with 10 CFR Part 50, Appendix 1 design objectives. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 22 person-rem to a low of 0.002 person-rem for the sites with plants in operation and producing power during the year. The arithmetic mean was 1.2 person-rem. The total population dose for all sites was estimated at 88 person-rem for the 130 million people considered at risk. The individual dose commitments estimated for all sites were below the Appendix 1 design objectives

  17. Dose commitments due to radioactive releases from nuclear power plant sites in 1989

    International Nuclear Information System (INIS)

    Baker, D.A.

    1993-02-01

    Population and individual radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1989. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 72 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is an estimate of individual doses which are compared with 10 CFR Part 50, Appendix I design objectives. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 14 person-rem to a low of 0.005 person-rem for the sites with plants in operation and producing power during the year. The arithmetic mean was 1.2 person-rem. The total population dose for all sites was estimated at 84 person-rem for the 140 million people considered at risk. The individual dose commitments estimated for all sites were below the Appendix I design objectives

  18. Dose commitments due to radioactive releases from nuclear power plant sites in 1989

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.A. (Pacific Northwest Lab., Richland, WA (United States))

    1993-02-01

    Population and individual radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1989. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 72 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is an estimate of individual doses which are compared with 10 CFR Part 50, Appendix I design objectives. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 14 person-rem to a low of 0.005 person-rem for the sites with plants in operation and producing power during the year. The arithmetic mean was 1.2 person-rem. The total population dose for all sites was estimated at 84 person-rem for the 140 million people considered at risk. The individual dose commitments estimated for all sites were below the Appendix I design objectives.

  19. Dose commitments due to radioactive releases from nuclear power plant sites in 1990: Volume 12

    International Nuclear Information System (INIS)

    Baker, D.A.

    1994-11-01

    Population and individual radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1990. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 72 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is an estimate of individual doses which are compared with 10 CFR Part 50, Appendix 1 design objectives. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 15 person-rem to a low of 0.002 person-rem for the sites with plants in operation and producing power during the year. The arithmetic mean was 1.1 person-rem. The total population dose for all sites was estimated at 78 person-rem for the 130 million people considered at risk. The individual dose commitments estimated for all sites were below the Appendix 1 design objectives

  20. Doses from radiation exposure

    International Nuclear Information System (INIS)

    Menzel, H-G.; Harrison, J.D.

    2012-01-01

    Practical implementation of the International Commission on Radiological Protection’s (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP’s 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effective dose. In preparation for the calculation of new dose coefficients, Committee 2 and its task groups have provided updated nuclear decay data (ICRP Publication 107) and adult reference computational phantoms (ICRP Publication 110). New dose coefficients for external exposures of workers are complete (ICRP Publication 116), and work is in progress on a series of reports on internal dose coefficients to workers from inhaled and ingested radionuclides. Reference phantoms for children will also be provided and used in the calculation of dose coefficients for public exposures. Committee 2 also has task groups on exposures to radiation in space and on the use of effective dose.

  1. Population dose commitments due to radioactive releases from nuclear power plant sites in 1981. Volume 3

    International Nuclear Information System (INIS)

    Baker, D.A.; Peloquin, R.A.

    1985-01-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1981. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teenager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways from 48 sites ranged from a high of 20 person-rem to a low of 0.008 person-rem with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 160 person-rem for the 98 million people considered at risk

  2. Population dose commitments due to radioactive releases from nuclear power plant sites in 1983

    International Nuclear Information System (INIS)

    Baker, D.A.; Peloquin, R.A.

    1987-04-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1983. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 52 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 45 person-rem to a low of 0.002 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 170 person-rem for the 100 million people considered at risk

  3. Evaluation of the dose committed as based on direct measurements with the Whole Body Counter

    International Nuclear Information System (INIS)

    Meladani, C.; Castellani, C.M.; Battisti, P.; Tarroni, G.

    1989-01-01

    During normal working activities or in accidental situations, when the introduction of radioactive gamma emitters is non-negligible amount, accurate determination of effective committed dose equivalent based on direct measurements of the internal contamination cannot be avoided. Internal contamination measurements carried out by Whole Body Counter and the application of dosimetric and metabolic models as proposed by ICRP Publication 30 allow the intakes and committed dose equivalents to be evaluated. This paper presents the evaluation methodologies of committed dose equivalent both for istantaneous and extended contaminations. Furthermore, some advice about useful, opportune modes and time uncertainties due to the application of generalized models to particular situations, are also reported. On the basis of the Chernobyl experience, the general criteria for the chice and size of homogeneous groups of individuals to be measured, are finally submitted with a view to collecting the necessary radiation protection information concerning contamination of a part or a whole population

  4. Committed effective dose determination in southern Brazilian cereal flours.

    Science.gov (United States)

    Scheibel, V; Appoloni, C R

    2013-01-01

    The health impact of radionuclide ingestion from foodstuffs was evaluated by the committed effective doses determined in eight commercial samples of South-Brazilian cereal flours (soy, wheat, cornmeal, cassava, rye, oat, barley and rice flours). The radioactivity traces of (228)Th, (228)Ra, (226)Ra, (40)K, (7)Be and (137)Cs were measured by gamma-ray spectrometry employing an HPGe detector of 66 % relative efficiency. The efficiency curve has taken into account the differences in densities and chemical composition between the matrix and the certified sample. The highest concentration levels of (228)Th and (40)K were 3.5±0.4 and 1469±17 Bq kg(-1) for soy flour, respectively, within the 95 % confidence level. The lower limit of detection for (137)Cs ranged from 0.04 to 0.4 Bq kg(-1). The highest committed effective dose was 0.36 μSv.y(-1) for (228)Ra in cassava flour (adults). All committed effective doses determined at the present work were lower than the International Atomic Energy Agency dose limit of 1 mSv.y(-1), to the public exposure.

  5. Committed effective dose determination in southern Brazilian cereal flours

    International Nuclear Information System (INIS)

    Scheibel, V.; Appoloni, C. R.

    2013-01-01

    The health impact of radionuclide ingestion from foodstuffs was evaluated by the committed effective doses determined in eight commercial samples of South-Brazilian cereal flours (soy, wheat, cornmeal, cassava, rye, oat, barley and rice flours). The radioactivity traces of 228 Th, 228 Ra, 226 Ra, 40 K, 7 Be and 137 Cs were measured by gamma-ray spectrometry employing an HPGe detector of 66 % relative efficiency. The efficiency curve has taken into account the differences in densities and chemical composition between the matrix and the certified sample. The highest concentration levels of 228 Th and 40 K were 3.5±0.4 and 1469±17 Bq kg -1 for soy flour, respectively, within the 95 % confidence level. The lower limit of detection for 137 Cs ranged from 0.04 to 0.4 Bq kg -1 . The highest committed effective dose was 0.36 μSv.y -1 for 228 Ra in cassava flour (adults). All committed effective doses determined at the present work were lower than the International Atomic Energy Agency dose limit of 1 mSv.y -1 , to the public exposure. (authors)

  6. Radiation dose electrophysiology procedures

    International Nuclear Information System (INIS)

    Hernandez-Armas, J.; Rodriguez, A.; Catalan, A.; Hernandez Armas, O.; Luque Japon, L.; Moral, S.; Barroso, L.; Rfuez-Hdez, R.

    2006-01-01

    The aim of this paper has been to measure and analyse some of the parameters which are directly related with the doses given to patients in two electrophysiology procedures: diagnosis and ablation with radiofrequency. 16 patients were considered in this study. 13 them had an ablation with radiofrequency at the Unit of Electrophysiology at the University Hospital of the Canaries, La Laguna., Tenerife. The results of skin doses, in the ablation cases, were higher than 2 Gy (threshold of some deterministic effects). The average value was 1.1 Gy. The personal doses, measured under the lead apron, for physician and nurses were 4 and 3 micro Sievert. These results emphasised the necessity of radiation protection measures in order to reduce, ad much as possible, the doses to patients. (Author)

  7. Doses from radiation exposure

    CERN Document Server

    Menzel, H G

    2012-01-01

    Practical implementation of the International Commission on Radiological Protection's (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP's 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effecti...

  8. Radiation dose measurements

    International Nuclear Information System (INIS)

    1960-01-01

    About 200 scientists from 28 countries and 5 international organizations met at a symposium on radiation dosimetry held by the International Atomic Energy Agency in June 1960. The aim of the symposium was not so much the description of a large number of measuring instruments as a discussion of the methods used, with special emphasis on those problems which had become important in the context of recent developments, such as the measurement of mixed or very large doses

  9. Doses from Medical Radiation Sources

    Science.gov (United States)

    ... Medical Radiation Sources Michael G. Stabin, PhD, CHP Introduction Radiation exposures from diagnostic medical examinations are generally ... of exposure annually to natural background radiation. Plain Film X Rays Single Radiographs Effective Dose, mSv Skull ( ...

  10. Committed effective dose from naturally occuring radionuclides in shellfish

    International Nuclear Information System (INIS)

    Khandaker, Mayeen Uddin; Wahib, Norfadira Binti; Amin, Yusoff Mohd.; Bradley, D.A.

    2013-01-01

    Recognizing their importance in the average Malaysian daily diet, the radioactivity concentrations in mollusc- and crustacean-based food have been determined for key naturally occuring radionuclides. Fresh samples collected from various maritime locations around peninsular Malaysia have been processed using standard procedures; the radionuclide concentrations being determined using an HPGe γ-ray spectrometer. For molluscs, assuming secular equilibrium, the range of activities of 238 U ( 226 Ra), 232 Th ( 228 Ra) and 40 K were found to be 3.28±0.35 to 5.34±0.52, 1.20±0.21 to 2.44±0.21 and 118±6 to 281±14 Bq kg −1 dry weight, respectively. The respective values for crustaceans were 3.02±0.57 to 4.70±0.52, 1.38±0.21 to 2.40±0.35 and 216±11 to 316±15 Bq kg −1 . The estimated average daily intake of radioactivity from consumption of molluscs are 0.37 Bq kg −1 for 238 U ( 226 Ra), 0.16 Bq kg −1 for 232 Th ( 228 Ra) and 18 Bq kg −1 for 40 K; the respective daily intake values from crustaceans are 0.36 Bq kg −1 , 0.16 Bq kg −1 and 23 Bq kg −1 . Associated annual committed effective doses from molluscs are estimated to be in the range 21.3 to 34.7 μSv for 226 Ra, 19.3 to 39.1 μSv for 228 Ra and 17.0 to 40.4 μSv for 40 K. For crustaceans, the respective dose ranges are 19.6 to 30.5 μSv, 22.0 to 38.4 μSv and 31.1 to 45.5 μSv, being some several times world average values. - Highlights: ► Activity concentrations of naturally occuring radionuclides were assessed for shellfish. ► 238 U, 232 Th, 40 K intake via shellfish showed several times higher than world averages. ► Committed effective doses due to the ingestions of 238 U, 232 Th, 40 K are the first report in Malaysia. ► Estimated committed effective dose also showed higher values than the world average

  11. Labour cost of radiation dose

    International Nuclear Information System (INIS)

    Cook, A.; Lockett, L.E.

    1978-01-01

    In order to optimise capital expenditure on measures to protect workers against radiation it would be useful to have a means to measure radiation dose in money terms. Because labour has to be employed to perform radiation work there must be some relationship between the wages paid and the doses received. Where the next increment of radiation dose requires additional labour to be recruited the cost will at least equal the cost of the extra labour employed. This paper examines some of the factors which affect the variability of the labour cost of radiation dose and notes that for 'in-plant' exposures the current cost per rem appears to be significantly higher than values quoted in ICRP Publication 22. An example is given showing how this concept may be used to determine the capital it is worth spending on installed plant to prevent regular increments of radiation dose to workers. (author)

  12. Estimated radiation dose from timepieces containing tritium

    International Nuclear Information System (INIS)

    McDowell-Boyer, L.M.

    1980-01-01

    Luminescent timepieces containing radioactive tritium, either in elemental form or incorporated into paint, are available to the general public. The purpose of this study was to estimate potential radiation dose commitments received by the public annually as a result of exposure to tritium which may escape from the timepieces during their distribution, use, repair, and disposal. Much uncertainty is associated with final dose estimates due to limitations of empirical data from which exposure parameters were derived. Maximum individual dose estimates were generally less than 3 μSv/yr, but ranged up to 2 mSv under worst-case conditions postulated. Estimated annual collective (population) doses were less than 5 person/Sv per million timepieces distributed

  13. Radiation dose in dental radiology

    International Nuclear Information System (INIS)

    Cohnen, M.; Kemper, J.; Moedder, U.; Moebes, O.; Pawelzik, J.

    2002-01-01

    The aim of this study was to compare radiation exposure in panoramic radiography (PR), dental CT, and digital volume tomography (DVT). An anthropomorphic Alderson-Rando phantom and two anatomical head phantoms with thermoluminescent dosimeters fixed at appropriate locations were exposed as in a dental examination. In PR and DVT, standard parameters were used while variables in CT included mA, pitch, and rotation time. Image noise was assessed in dental CT and DVT. Radiation doses to the skin and internal organs within the primary beam and resulting from scatter radiation were measured and expressed as maximum doses in mGy. For PR, DVT, and CT, these maximum doses were 0.65, 4.2, and 23 mGy. In dose-reduced CT protocols, radiation doses ranged from 10.9 to 6.1 mGy. Effective doses calculated on this basis showed values below 0.1 mSv for PR, DVT, and dose-reduced CT. Image noise was similar in DVT and low-dose CT. As radiation exposure and image noise of DVT is similar to low-dose CT, this imaging technique cannot be recommended as a general alternative to replace PR in dental radiology. (orig.)

  14. Are low radiation doses Dangerous?

    International Nuclear Information System (INIS)

    Garcia Lima, O.; Cornejo, N.

    1996-01-01

    In the last few years the answers to this questions has been affirmative as well as negative from a radiation protection point of view low doses of ionizing radiation potentially constitute an agent causing stochasting effects. A lineal relation without threshold is assumed between dose and probability of occurrence of these effects . Arguments against the danger of probability of occurrence of these effects. Arguments again the danger of low dose radiation are reflected in concepts such as Hormesis and adaptive response, which are phenomena that being studied at present

  15. Prenatal radiation doses from radiopharmaceuticals

    International Nuclear Information System (INIS)

    Rojo, A.M.; Gomez Parada, I.M.; Di Trano, J.L.

    1998-01-01

    The radiopharmaceutical administration with diagnostic or therapeutic purpose during pregnancy implies a prenatal radiation dose. The dose assessment and the evaluation of the radiological risks become relevant due to the great radiosensitivity of the fetal tissues in development. This paper is a revision of the available data for estimating fetal doses in the cases of the more frequently used radiopharmaceuticals in nuclear medicine, taking into account recent investigation in placental crossover. The more frequent diagnostic and therapeutic procedures were analyzed according to the radiation doses implied. (author) [es

  16. Radiation doses in interventional neuroradiology

    International Nuclear Information System (INIS)

    Theodorakou, C.; Butler, P.; Horrocks, J.A.

    2001-01-01

    Patient radiation doses during interventional radiology (IR) procedures may reach the thresholds for radiation-induced skin and eye lens injuries. This study investigates the radiation doses received by patients undergoing cerebral embolization. Measurements were conducted using thermoluminescent dosimeters. Radiotherapy verification films were used in order to visualise the radiation field. For each procedure the fluoroscopic and digital dose-area product, the fluoroscopic time, the total number of acquired images and entrance-skin dose calculated by the angiographic unit were recorded. In this paper, the skin, eye and thyroid glands doses on a sample of patients are presented. From a preliminary study of 13 patients having undergone cerebral embolization, it was deduced that six of them have received a dose above 1 Gy. Detailed dose data from patients undergoing IR procedures will be collected in the future with the aim of developing a model to allow estimation of the dose prior to the procedure as well as to look at techniques of dose reduction. (author)

  17. Radiation dose during angiographic procedures

    International Nuclear Information System (INIS)

    Lavoie, Ch.; Rasuli, P.

    2001-01-01

    The use of angiographic procedures is becoming more prevalent as new techniques and equipment are developed. There have been concerns in the scientific community about the level of radiation doses received by patients, and indirectly by staff, during some of these radiological procedures. The purpose of this study was to assess the level of radiation dose from angiographic procedures to patient at the Ottawa Hospital, General Campus. Radiation dose measurements, using Thermo-Luminescent Dosimeters (TLDs), were performed on more than 100 patients on various procedures. The results show that while the patient dose from the great majority of angiographic procedures is less than 2 Gy, a significant number of procedures, especially interventional procedures may have doses greater than 2 Gy and may lead to deterministic effects. (author)

  18. Calculating radiation exposure and dose

    International Nuclear Information System (INIS)

    Hondros, J.

    1987-01-01

    This paper discusses the methods and procedures used to calculate the radiation exposures and radiation doses to designated employees of the Olympic Dam Project. Each of the three major exposure pathways are examined. These are: gamma irradiation, radon daughter inhalation and radioactive dust inhalation. A further section presents ICRP methodology for combining individual pathway exposures to give a total dose figure. Computer programs used for calculations and data storage are also presented briefly

  19. Radiation. Doses, effect, risk

    International Nuclear Information System (INIS)

    Vapirev, E.; Todorov, P.

    1994-12-01

    This book outlines in a popular form the topic of ionizing radiation impacts on living organisms. It contains data gathered by ICRP for a period of 35 years. The essential dosimetry terms and units are presented. Natural and artificial sources of ionizing radiation are described. Possible biological radiation effects and diseases as a consequence of external and internal irradiation at normal and accidental conditions are considered. An assessment of genetic risk for human populations is presented and the concept of 'acceptable risk' is discussed

  20. Evaluation for committed effective dose due to dietary foods by the intake for Japanese adults

    International Nuclear Information System (INIS)

    Ota, Tomoko; Sanada, Tetsuya; Kashiwara, Yoko; Morimoto, Takao; Sato, Kaneaki

    2009-01-01

    Radioactivity levels in 137 foods commonly consumed daily in Japan were evaluated to determine the committed effective dose in the Japanese adults. The levels of radioactivity for 238 U, 232 Th, 226 Ra, 210 Pb, 210 Po, 90 Sr, 137 Cs and 239+240 Pu were ND-5.2 Bq/kg fresh weight, ND-0.18 Bq/kg fresh weight, ND-3.9 Bq/kg fresh weight, ND-45 Bq/kg fresh weight, ND-120 Bq/kg fresh weight, ND-9.9 Bq/kg fresh weight, ND-19 Bq/kg fresh weight and ND-0.010 Bq/kg fresh weight, respectively. The committed effective dose was estimated to be 0.80 mSv from the intake of the foods. The effective dose was greater than the world mean value for adults of 0.12 mSv by natural radioactive elements in the uranium and thorium series from the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2000 because of the large contribution from 210 Po in seafood. (author)

  1. Radiation dose estimates for radiopharmaceuticals

    International Nuclear Information System (INIS)

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E.

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms

  2. Effects of small radiation doses

    International Nuclear Information System (INIS)

    Fuchs, G.

    1986-01-01

    The term 'small radiation dosis' means doses of about (1 rem), fractions of one rem as well as doses of a few rem. Doses like these are encountered in various practical fields, e.g. in X-ray diagnosis, in the environment and in radiation protection rules. The knowledge about small doses is derived from the same two forces, on which the radiobiology of human beings nearly is based: interpretation of the Hiroshima and Nagasaki data, as well as the experience from radiotherapy. Careful interpretation of Hiroshima dates do not provide any evidence that small doses can induce cancer, fetal malformations or genetic damage. Yet in radiotherapy of various diseases, e.g. inflammations, doses of about 1 Gy (100 rad) do no harm to the patients. According to a widespread hypothesis even very small doses may induce some types of radiation damage ('no threshold'). Nevertheless an alternative view is justified. At present no decision can be made between these two alternatives, but the usefullness of radiology is definitely better established than any damage calculated by theories or extrapolations. Based on experience any exaggerated fear of radiations can be met. (author)

  3. Calculation of the dose caused by internal radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    For the purposes of monitoring radiation exposure it is necessary to determine or to estimate the dose caused by both external and internal radiation. When comparing the value of exposure to the dose limits, account must be taken of the total dose incurred from different sources. This guide explains how to calculate the committed effective dose caused by internal radiation and gives the conversion factors required for the calculation. Application of the maximum values for radiation exposure is dealt with in ST guide 7.2, which also sets out the definitions of the quantities and concepts most commonly used in the monitoring of radiation exposure. The monitoring of exposure and recording of doses are dealt with in ST Guides 7.1 and 7.4.

  4. Committed effective dose from naturally occuring radionuclides in shellfish

    Science.gov (United States)

    Khandaker, Mayeen Uddin; Wahib, Norfadira Binti; Amin, Yusoff Mohd.; Bradley, D. A.

    2013-07-01

    Recognizing their importance in the average Malaysian daily diet, the radioactivity concentrations in mollusc- and crustacean-based food have been determined for key naturally occuring radionuclides. Fresh samples collected from various maritime locations around peninsular Malaysia have been processed using standard procedures; the radionuclide concentrations being determined using an HPGe γ-ray spectrometer. For molluscs, assuming secular equilibrium, the range of activities of 238U (226Ra), 232Th (228Ra) and 40K were found to be 3.28±0.35 to 5.34±0.52, 1.20±0.21 to 2.44±0.21 and 118±6 to 281±14 Bq kg-1 dry weight, respectively. The respective values for crustaceans were 3.02±0.57 to 4.70±0.52, 1.38±0.21 to 2.40±0.35 and 216±11 to 316±15 Bq kg-1. The estimated average daily intake of radioactivity from consumption of molluscs are 0.37 Bq kg-1 for 238U (226Ra), 0.16 Bq kg-1 for 232Th (228Ra) and 18 Bq kg-1 for 40K; the respective daily intake values from crustaceans are 0.36 Bq kg-1, 0.16 Bq kg-1 and 23 Bq kg-1. Associated annual committed effective doses from molluscs are estimated to be in the range 21.3 to 34.7 μSv for 226Ra, 19.3 to 39.1 μSv for 228Ra and 17.0 to 40.4 μSv for 40K. For crustaceans, the respective dose ranges are 19.6 to 30.5 μSv, 22.0 to 38.4 μSv and 31.1 to 45.5 μSv, being some several times world average values.

  5. Radiation absorbed doses in cephalography

    International Nuclear Information System (INIS)

    Eliasson, S.; Julin, P.; Richter, S.; Stenstroem, B.

    1984-01-01

    Radiation absorbed doses to different organs in the head and neck region in lateral (LAT) and postero-anterior (PA) cephalography were investigated. The doses were measured by thermoluminescence dosimeters (TLD) on a tissue equivalent phantom head. Lanthanide screens in speed group 4 were used at 90 and 85 k Vp. A near-focus aluminium dodger was used and the radiation beam was collimated strictly to the face. The maximum entrance dose from LAT was 0.25 mGy and 0.42 mGy from a PA exposure. The doses to the salivary glands ranged between 0.2 and 0.02 mGy at LAT and between 0.15 and 0.04 mGy at PA exposures. The average thyroid gland dose without any shielding was 0.11 mGy (LAT) and 0.06 mGy (PA). When a dodger was used the dose was reduced to 0.07 mGy (LAT). If the thyroid gland was sheilded off, the dose was further reduced to 0.01 mGy and if the thyroid region was collimated out of the primary radiation field the dose was reduced to only 0.005 mGy. (authors)

  6. Population dose commitment associated with various radionuclides in foods

    International Nuclear Information System (INIS)

    Simpson, Robert E.; Baratta, Edmond J.; Tanner, James T.

    1978-01-01

    The radionuclides in foods monitoring program initiated by the Food and Drug Administration in 1973 was expanded in 1975 to include the analysis for hydrogen-3 in selected foods originating from the vicinity of nuclear power stations. Also, in 1975 the analysis for radium-226 was initiated in food samples from areas adjacent to the phosphate mines in Florida. In October 1976 a special survey of milk was performed to determine the levels of fission product contamination from the fallout produced by the detonation of a nuclear device by the People's Republic of China. Results from the analysis of strontium-90 and cesium-137 in the general foods survey for the years 1973 through 1977 indicated intake levels well within range I of the Radiation Protection Guides (RPG) [FRC 1: Range I at 0.1xRPG dose, periodic surveillance; Range II at the RPG dose, quantitative surveillance and routine control; Range III 10xRPG dose, evaluation and additional controls]. The levels of hydrogen-3 in foods from nuclear power station areas were slightly above the tritium background. The radium-226 levels in foods from Florida phosphate mining areas were about double that of the controls. In both cases, however, the radium-226 intake from the total diet was in range II of the RPGs. The iodine-131 levels in the special milk survey in HEW regions I and III were in range III of the RPGs. The levels of barium-lanthanum-140, cesium-137 and strontium-89-90 were all within range I. The clearance half-time from milk for these radionuclides was about 5, 7 and 9 days respectively. (author)

  7. Radiation dose rate measuring device

    International Nuclear Information System (INIS)

    Sorber, R.

    1987-01-01

    A portable device is described for in-field usage for measuring the dose rate of an ambient beta radiation field, comprising: a housing, substantially impervious to beta radiation, defining an ionization chamber and having an opening into the ionization chamber; beta radiation pervious electrically-conductive window means covering the opening and entrapping, within the ionization chamber, a quantity of gaseous molecules adapted to ionize upon impact with beta radiation particles; electrode means disposed within the ionization chamber and having a generally shallow concave surface terminating in a generally annular rim disposed at a substantially close spacing to the window means. It is configured to substantially conform to the window means to define a known beta radiation sensitive volume generally between the window means and the concave surface of the electrode means. The concave surface is effective to substantially fully expose the beta radiation sensitive volume to the radiation field over substantially the full ambient area faced by the window means

  8. Radiation dose rate meter

    International Nuclear Information System (INIS)

    Kronenberg, S.; Siebentritt, C.R.

    1981-01-01

    A combined dose rate meter and charger unit therefor which does not require the use of batteries but on the other hand produces a charging potential by means of a piezoelectric cylinder which is struck by a manually triggered hammer mechanism. A tubular type electrometer is mounted in a portable housing which additionally includes a geiger-muller (Gm) counter tube and electronic circuitry coupled to the electrometer for providing multi-mode operation. In one mode of operation, an rc circuit of predetermined time constant is connected to a storage capacitor which serves as a timed power source for the gm tube, providing a measurement in terms of dose rate which is indicated by the electrometer. In another mode, the electrometer indicates individual counts

  9. Spiral CT and radiation dose

    International Nuclear Information System (INIS)

    Imhof, H.; Schibany, N.; Ba-Ssalamah, A.; Czerny, C.; Hojreh, A.; Kainberger, F.; Krestan, C.; Kudler, H.; Noebauer, I.; Nowotny, R.

    2003-01-01

    Recent studies in the USA and Europe state that computed tomography (CT) scans compromise only 3-5% of all radiological exams, but they contribute 35-45% of total radiation dose to the patient population. These studies lead to concern by several public authorities. Basis of CT-dose measurements is the computed tomography dose index (CTDI), which was established 1981. Nowadays there are several modifications of the CTDI values, which may lead to confusion. It is suggested to use the standardized CTDI-100 w. value together with the dose length product in all CT-examinations. These values should be printed on all CT-images and allows an evaluation of the individualized patient dose. Nowadays, radiologist's aim must be to work at the lowest maximal diagnostic acceptable signal to noise ratio. To decrease radiation dose radiologist should use low kV and mA, but high pitches. Newly developed CT-dose-reduction soft-wares and filters should be installed in all CT-machines. We should critically compare the average dose used for a specific examination with the reference dose used in this country and/or Europe. Greater differences should caution the radiologist. Finally, we as radiologists must check very carefully all indications and recommend alternative imaging methods. But we have also to teach our customers--patients and medical doctors who are non-radiologists--that a 'good' image is not that which show all possible information, but that which visualize 'only' the diagnostic necessary information

  10. Committed dose assessment based on background outdoor gamma exposure in Chihuahua City, Mexico

    International Nuclear Information System (INIS)

    Luevano G, S.; Perez T, A.; Pinedo A, C.; Renteria V, M.; Carrillo F, J.; Montero C, M. E.

    2015-10-01

    Full text: Determining ionizing radiation in a geographic area serves to assess its effects on populations health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the committed dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, annual effective dose, and the lifetime cancer risk, 48 sampling points were randomly selected along the Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Muller counter. At the same sites, 48 soil samples were taken to obtain the activity concentrations of 226 Ra, 232 Th, 40 K and their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Outdoor gamma dose rates ranged from 56 to 193 n Gy h -1 . Results indicated that lifetime effective dose to inhabitants of Chihuahua City is in average of 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of activity concentrations in soil were 51.8, 73.1, and 1096.5 Bq kg -1 , of 226 Ra, 232 Th and 40 K, respectively. From the analysis of the spatial distribution of 232 Th, 226 Ra, and 40 K is to north, to north-center, and to south of city, respectively. In conclusion, natural background gamma dose received by inhabitants of Chihuahua City is high and mainly due to geological characteristics of the zone. (Author)

  11. Committed dose assessment based on background outdoor gamma exposure in Chihuahua City, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Luevano G, S.; Perez T, A.; Pinedo A, C.; Renteria V, M. [Universidad Autonoma de Chihuahua, Facultad de Zootecnia y Ecologia, Perif. Francisco R. Almada Km 1, 31415 Chihuahua, Chih. (Mexico); Carrillo F, J.; Montero C, M. E., E-mail: mrenteria@uach.mx [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, 31136 Chihuahua, Chih. (Mexico)

    2015-10-15

    Full text: Determining ionizing radiation in a geographic area serves to assess its effects on populations health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the committed dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, annual effective dose, and the lifetime cancer risk, 48 sampling points were randomly selected along the Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Muller counter. At the same sites, 48 soil samples were taken to obtain the activity concentrations of {sup 226}Ra, {sup 232}Th, {sup 40}K and their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Outdoor gamma dose rates ranged from 56 to 193 n Gy h{sup -1}. Results indicated that lifetime effective dose to inhabitants of Chihuahua City is in average of 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of activity concentrations in soil were 51.8, 73.1, and 1096.5 Bq kg{sup -1}, of {sup 226}Ra, {sup 232}Th and {sup 40}K, respectively. From the analysis of the spatial distribution of {sup 232}Th, {sup 226}Ra, and {sup 40}K is to north, to north-center, and to south of city, respectively. In conclusion, natural background gamma dose received by inhabitants of Chihuahua City is high and mainly due to geological characteristics of the zone. (Author)

  12. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  13. Effectance, committed effective dose equivalent and annual limits on intake: what are the changes?

    International Nuclear Information System (INIS)

    Kendall, G.M.; Stather, J.W.; Phipps, A.W.

    1990-01-01

    This paper outlines the concept of effectance, compares committed effectance with the old committed effective dose equivalent and goes on to discuss changes in the annual limits on intakes and the maximum organ doses which would result from an intake of an ALI (Annual Limit of Intake). It is shown that committed effectance is usually, but not always, higher than committed effective dose equivalent. ALIS are usually well below those resulting from the ICRP Publication 30 scheme. However, if the ALI were based only on a limit on effectance it would imply a high dose to specific organs for certain nuclides. In order to control maximum organ doses an explicit limit could be introduced. However, this would destroy some of the attractive features of the new scheme. An alternative would be a slight modification to some of the weighting factors. (author)

  14. Global collective dose commitments from release of long-lived radionuclides. Differential cost-benefit considerations

    International Nuclear Information System (INIS)

    Gjoerup, H.L.

    1977-01-01

    The concept of global collective dose commitment as a measure of total detriment from the release of radioactivity to the environment is outlined. Estimates are given of global collective dose commitments resulting from the release of 14 C and uranium daughter products from the nuclear fuel cycle. Comparisons are made with similar estimates of global collective dose commitments resulting from the use of fossil fuels and certain fertilizers due to their content of uranium and its daughter products. In the case of long-lived radionuclides that remain in circulation in the biosphere, it is shown that the use of global collective dose commitments in differential cost-benefit analysis can lead to questionable results. In differential cost-benefit analysis it is suggested that population exposures should not simply be integrated irrespective of their time of occurrence, but that a certain discount rate should be applied for future doses. This suggestion is examined. (author)

  15. Global Collective Dose Commitments from Release of Long-Lived Radionuclides

    DEFF Research Database (Denmark)

    Gjørup, H. L.

    1977-01-01

    The concept of global collective dose commitment as a measure of total detriment from the release of radioactivity to the environment is outlined. Estimates are given of global collective dose commitments resulting from the release of 14C and uranium daughter products from the nuclear fuel cycle...... that the use of global collective dose commitments in differential cost-benefit analysis can lead to questionable results. In differential cost-benefit analysis it is suggested that population exposures should not simply be integrated irrespective of their time of occurrence, but that a certain discount rate...

  16. Group consensus peer review in radiation oncology: commitment to quality.

    Science.gov (United States)

    Duggar, W Neil; Bhandari, Rahul; Yang, Chunli Claus; Vijayakumar, Srinivasan

    2018-03-27

    Peer review, especially prospective peer review, has been supported by professional organizations as an important element in optimal Radiation Oncology practice based on its demonstration of efficacy at detecting and preventing errors prior to patient treatment. Implementation of peer review is not without barriers, but solutions do exist to mitigate or eliminate some of those barriers. Peer review practice at our institution involves three key elements: new patient conference, treatment planning conference, and chart rounds. The treatment planning conference is an adaptation of the group consensus peer review model from radiology which utilizes a group of peers reviewing each treatment plan prior to implementation. The peer group in radiation oncology includes Radiation Oncologists, Physician Residents, Medical Physicists, Dosimetrists, and Therapists. Thus, technical and clinical aspects of each plan are evaluated simultaneously. Though peer review is held in high regard in Radiation Oncology, many barriers commonly exist preventing optimal implementation such as time intensiveness, repetition, and distraction from clinic time with patients. Through the use of automated review tools and commitment by individuals and administration in regards to staffing, scheduling, and responsibilities, these barriers have been mitigated to implement this Group Consensus Peer Review model into a Radiation Oncology Clinic. A Group Consensus Peer Review model has been implemented with strategies to address common barriers to effective and efficient peer review.

  17. Prenatal radiation exposure. Dose calculation

    International Nuclear Information System (INIS)

    Scharwaechter, C.; Schwartz, C.A.; Haage, P.; Roeser, A.

    2015-01-01

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero X-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties.

  18. Radiation dose monitoring in the clinical routine

    Energy Technology Data Exchange (ETDEWEB)

    Guberina, Nika [UK Essen (Germany). Radiology

    2017-04-15

    Here we describe the first clinical experiences regarding the use of an automated radiation dose management software to monitor the radiation dose of patients during routine examinations. Many software solutions for monitoring radiation dose have emerged in the last decade. The continuous progress in radiological techniques, new scan features, scanner generations and protocols are the primary challenge for radiation dose monitoring software systems. To simulate valid dose calculations, radiation dose monitoring systems have to follow current trends and stay constantly up-to-date. The dose management software is connected to all devices at our institute and conducts automatic data acquisition and radiation dose calculation. The system incorporates 18 virtual phantoms based on the Cristy phantom family, estimating doses in newborns to adults. Dose calculation relies on a Monte Carlo simulation engine. Our first practical experiences demonstrate that the software is capable of dose estimation in the clinical routine. Its implementation and use have some limitations that can be overcome. The software is promising and allows assessment of radiation doses, like organ and effective doses according to ICRP 60 and ICRP 103, patient radiation dose history and cumulative radiation doses. Furthermore, we are able to determine local diagnostic reference doses. The radiation dose monitoring software systems can facilitate networking between hospitals and radiological departments, thus refining radiation doses and implementing reference doses at substantially lower levels.

  19. Dose limits for ionising radiation

    International Nuclear Information System (INIS)

    Gifford, D.

    1989-01-01

    Dose limits for exposure to ionising radiation are assessed to see if they give sufficient protection both for the occupationally exposed and for the general public. It is concluded that current limits give a level of safety that satisfies the necessary criteria in the light of present knowledge and further reductions would be unlikely to improve standards of safety. (author)

  20. Natural Radioactivity in Biota From Balok River and Its Associated Committed Effective Dose to Human

    International Nuclear Information System (INIS)

    Mei-Wo, Y.; Zal Uyun Wan Mahmood; Mohamad Noh Sawon; Khairul Nizam Razali; Dainee Nor Fardzilla Ahmad Tugi

    2016-01-01

    Several types of biota samples such as fishes, crabs and snails were collected from the Balok river which located close to the Gebeng industrial site that situated Lynas rare earth processing plant. Local communities were worried that operational of Lynas plant could introduce some radioactive contaminants into the adjacent river and endanger the aquatic animals and people. The activity concentration of radionuclides in these biota samples were determined using HPGe Gamma spectrometry system and found to be low and insignificant. They were ranged from MDA (Minimum Detectable Activity) to 2.88 Bq/ kg, MDA to 6.75 Bq/ kg, MDA to 7.98 Bq/ kg, MDA to 4.43 Bq/ kg and MDA to 32.50 Bq/ kg, for 226 Ra, 228 Ra, 238 U, 232 Th and 40 K, respectively. The MDA values for these radionuclides were varies and quiet high due to the limited sample size available. Using the computer code ERICA tool, it was found that the radiation risk of these radionuclides to the aquatic lives to be less than 1 μGy/ h and was below than the probability selected and therefore the potential radiation risk to human being should also be low. By using the dose conversion factors given in the AELB (Basic Safety Radiation Protection) Regulation 2010, assuming an adult consumed one kilogram of these contaminated biota, he would expected to receive a total committed effective dose per unit intake between 2.2 - 23.7 μSv depending on the consumed species. However, this value was far below the annual dose limit of 1,000 μSv for general public as stipulated under Act 304. (author)

  1. Natural radiation dose to Gammarus

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Wrenn, M.E.; Eisenbud, M.

    1975-01-01

    The natural radiation dose rate to whole body and components of the Gammarus species (i.e., G. Tigrinus, G. Fasciatus and G. Daiberi) that occurs in the Hudson River is evaluated and the results compared with the upper limits of dose rates from man made sources to the whole body of the organisms. Methods were developed to study the distribution of alpha emitters from 226 Ra plus daughter products in Gammarus using autoradiographic techniques, taking into account the amount of radon that escapes from the organisms. This methodology may be adapted to study the distribution of alpha emitters in contaminated tissues of plants and animals

  2. The impact of selected organizational variables and managerial leadership on radiation therapists' organizational commitment

    International Nuclear Information System (INIS)

    Akroyd, Duane; Legg, Jeff; Jackowski, Melissa B.; Adams, Robert D.

    2009-01-01

    The purpose of this study was to examine the impact of selected organizational factors and the leadership behavior of supervisors on radiation therapists' commitment to their organizations. The population for this study consists of all full time clinical radiation therapists registered by the American Registry of Radiologic Technologists (ARRT) in the United States. A random sample of 800 radiation therapists was obtained from the ARRT for this study. Questionnaires were mailed to all participants and measured organizational variables; managerial leadership variable and three components of organizational commitment (affective, continuance and normative). It was determined that organizational support, and leadership behavior of supervisors each had a significant and positive affect on normative and affective commitment of radiation therapists and each of the models predicted over 40% of the variance in radiation therapists organizational commitment. This study examined radiation therapists' commitment to their organizations and found that affective (emotional attachment to the organization) and normative (feelings of obligation to the organization) commitments were more important than continuance commitment (awareness of the costs of leaving the organization). This study can help radiation oncology administrators and physicians to understand the values their radiation therapy employees hold that are predictive of their commitment to the organization. A crucial result of the study is the importance of the perceived support of the organization and the leadership skills of managers/supervisors on radiation therapists' commitment to the organization.

  3. The impact of selected organizational variables and managerial leadership on radiation therapists' organizational commitment

    Energy Technology Data Exchange (ETDEWEB)

    Akroyd, Duane [Department of Adult and Community College Education, College of Education, Campus Box 7801, North Carolina State University, Raleigh, NC 27695 (United States)], E-mail: duane_akroyd@ncsu.edu; Legg, Jeff [Department of Radiologic Sciences, Virginia Commonwealth University, Richmond, VA 23284 (United States); Jackowski, Melissa B. [Division of Radiologic Sciences, University of North Carolina School of Medicine 27599 (United States); Adams, Robert D. [Department of Radiation Oncology, University of North Carolina School of Medicine 27599 (United States)

    2009-05-15

    The purpose of this study was to examine the impact of selected organizational factors and the leadership behavior of supervisors on radiation therapists' commitment to their organizations. The population for this study consists of all full time clinical radiation therapists registered by the American Registry of Radiologic Technologists (ARRT) in the United States. A random sample of 800 radiation therapists was obtained from the ARRT for this study. Questionnaires were mailed to all participants and measured organizational variables; managerial leadership variable and three components of organizational commitment (affective, continuance and normative). It was determined that organizational support, and leadership behavior of supervisors each had a significant and positive affect on normative and affective commitment of radiation therapists and each of the models predicted over 40% of the variance in radiation therapists organizational commitment. This study examined radiation therapists' commitment to their organizations and found that affective (emotional attachment to the organization) and normative (feelings of obligation to the organization) commitments were more important than continuance commitment (awareness of the costs of leaving the organization). This study can help radiation oncology administrators and physicians to understand the values their radiation therapy employees hold that are predictive of their commitment to the organization. A crucial result of the study is the importance of the perceived support of the organization and the leadership skills of managers/supervisors on radiation therapists' commitment to the organization.

  4. Validation of radiation dose estimations in VRdose: comparing estimated radiation doses with observed radiation doses

    International Nuclear Information System (INIS)

    Nystad, Espen; Sebok, Angelia; Meyer, Geir

    2004-04-01

    The Halden Virtual Reality Centre has developed work-planning software that predicts the radiation exposure of workers in contaminated areas. To validate the accuracy of the predicted radiation dosages, it is necessary to compare predicted doses to actual dosages. During an experimental study conducted at the Halden Boiling Water Reactor (HBWR) hall, the radiation exposure was measured for all participants throughout the test session, ref. HWR-681 [3]. Data from this experimental study have also been used to model tasks in the work-planning software and gather data for predicted radiation exposure. Two different methods were used to predict radiation dosages; one method used all radiation data from all the floor levels in the HBWR (all-data method). The other used only data from the floor level where the task was conducted (isolated data method). The study showed that the all-data method gave predictions that were on average 2.3 times higher than the actual radiation dosages. The isolated-data method gave predictions on average 0.9 times the actual dosages. (Author)

  5. Aquatic pathway variables affecting the estimation of dose commitment from uranium mill tailings

    International Nuclear Information System (INIS)

    Lush, D.L.; Snodgrass, W.J.; McKee, P.

    1982-01-01

    As one of a series of studies being carried out for the Atomic Energy Control Board of Canada, the environmental variables affecting population dose commitment and critical group dose rates from aquatic pathways were investigated. A model was developed to follow uranium and natural thorium decay series radionuclides through aquatic pathways leading both to long-term sediment sinks and to man. Pathways leading to man result in both a population dose commitment and a critical group dose rate. The key variables affecting population dose commitment are suspended particulate concentrations in the receiving aquatic systems, the settling velocities of these particulates and the solid-aqueous phase distribution coefficient associated with each radionuclide. Of secondary importance to population dose commitment are the rate at which radionuclides enter the receiving waters and the value of the water to food transfer coefficients that are used in the model. For the critical group dose rate, the rate at which the radionuclides leave the tailings, the water to food transfer coefficients, the rate of water and fish consumption and the dose conversion factors for 210 Pb and 210 Po are of secondary importance (author)

  6. Radiation doses from residual radioactivity

    International Nuclear Information System (INIS)

    Okajima, Shunzo; Fujita, Shoichiro; Harley, John H.

    1987-01-01

    requires knowing the location of the person to within about 200 m from the time of the explosion to a few weeks afterwards. This is an effort that might be comparable to the present shielding study for survivors. The sizes of the four exposed groups are relatively small; however, the number has been estimated only for those exposed to fallout in the Nishiyama district of Nagasaki. Okajima listed the population of Nishiyama as about 600 at the time of the bomb. No figures are available for the other three groups. The individual exposures from residual radiation may not be significant compared with the direct radiation at the time of the bomb. On the other hand, individuals with potential exposure from these sources are dubious candidates for inclusion in a cohort that was presumably not exposed. For comparison with organ doses estimated in other parts of this program, the exposure estimates are converted to absorbed dose in tissue. The first conversion of exposure to absorbed dose in air uses the factor rad in air 0.87 x exposure in R. UNSCEAR uses an average combined factor of 0.7 to convert absorbed dose in air to absorbed dose in tissue for the whole body. This factor accounts for the change in material (air to tissue) and for backscatter and the shielding afforded by other tissues of the body. No allowance for shielding by buildings has been included here. The cumulative fallout exposures given above become absorbed doses in tissue of 12 to 24 rad for Nagasaki and 0.6 to 2 rad for Hiroshima. The cumulative exposures from induced radioactivity become absorbed doses in tissue of 18 to 24 rad for Nagasaki and about 50 rad for Hiroshima. (author)

  7. Data base for terrestrial food pathways dose commitment calculations

    International Nuclear Information System (INIS)

    Bailey, C.E.

    1979-01-01

    A computer program is under development to allow calculation of the dose-to-man in Georgia and South Carolina from ingestion of radionuclides in terrestrial foods resulting from deposition of airborne radionuclides. This program is based on models described in Regulatory Guide 1.109 (USNRC, 1977). The data base describes the movement of radionuclides through the terrestrial food chain, growth and consumption factors for a variety of radionuclides

  8. Committed effective dose determination in cereal flours by gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Scheibel, Viviane

    2006-01-01

    The health impact from radionuclides ingestion of foodstuffs was evaluated by the committed effective doses determined in commercial samples of South-Brazilian cereal flours (soy, wheat, corn, manioc, rye, oat, barley and rice flour). The radioactivity traces of 228 Th, 228 Ra, 226 Ra, 40 K, 7 Be and 137 Cs were measured by gamma-ray spectrometry employing a 66% relative efficiency HPGe detector. The energy resolution for the 1332.46 keV line of 60 Co was 2.03 keV. The committed effective doses were calculated with the activities analyzed in the present flour samples, the foodstuff rates of consumption (Brazilian Institute of Geography and Statistics) and the ingestion dose coefficients (International Commission of Radiological Protection). The reliability median activities were verified with χ 2 tests, assuring the fittings quality. The highest concentration levels of 228 Th and 40 K were 3.5 ± 0.4 and 1469 ± 17 Bq.kg -1 for soy flour, respectively, with 95% of confidence level. The lower limit of detection for 137 Cs ranged from 0.04 to 0.4 Bq.kg -1 . The highest committed effective dose was 0.36 μSv.y -1 for 228 Ra in manioc flour (adults). All committed effective doses determined at the present work were lower than the UNSCEAR limits of 140 μSv.y -1 and much lower than the ICRP (1991) limits of 1 mSv.y -1 , for general public. There are few literature references for natural and artificial radionuclides in foodstuffs and mainly for committed effective doses. This work brings the barley flour data, which is not present at the literature and 7 Be data which is not encountered in foodstuffs at the literature, besides all the other flours data information about activities and committed effective doses. (author)

  9. IDEAS: estimation of committed dose from incorporation monitoring data

    International Nuclear Information System (INIS)

    Hurtgen, C.

    2006-01-01

    This project addresses specific problems and issues encountered in the nuclear industry, and other users of radioactive materials, in the area of internal dose assessment. The innovative aspects relate mainly to the development and application of new methods, rather than the acquisition of new knowledge or information on biokinetics and internal dosimetry. The project has three main scientific/technological objectives: (1) the creation of a database of well-documented cases, and the filling during and after the project to provide a source of basic information about internal exposure for a large number of radionuclides; (2) the development of a general philosophy for the evaluation of monitoring data from the practical experience of the scientific community; (3) the definition of general guidelines according to the general philosophy

  10. Do dose area product meter measurements reflect radiation doses ...

    African Journals Online (AJOL)

    Enrique

    SA JOURNAL OF RADIOLOGY • August 2004. Abstract. This study determined the correlation between radiation doses absorbed by health care workers and dose area product meter (DAP) measurements at Universitas Hospital, Bloemfontein. The DAP is an instrument which accurately measures the radiation emitted from ...

  11. Do dose area product meter measurements reflect radiation doses ...

    African Journals Online (AJOL)

    This study determined the correlation between radiation doses absorbed by health care workers and dose area product meter (DAP) measurements at Universitas Hospital, Bloemfontein. The DAP is an instrument which accurately measures the radiation emitted from the source. The study included the interventional ...

  12. Dose reconstruction modeling for medical radiation workers

    International Nuclear Information System (INIS)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin

    2017-01-01

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  13. Dose reconstruction modeling for medical radiation workers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin [Dept. of Preventive Medicine, Korea University, Seoul (Korea, Republic of)

    2017-04-15

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  14. A computer program to calculate the committed dose equivalent after the inhalation of radioactivity

    International Nuclear Information System (INIS)

    Van der Woude, S.

    1989-03-01

    A growing number of people are, as part of their occupation, at risk of being exposed to radiation originating from sources inside their bodies. The quantification of this exposure is an important part of health physics. The International Commission on Radiological Protection (ICRP) developed a first-order kinetics compartmental model to determine the transport of radioactive material through the human body. The model and the parameters involved in its use, are discussed. A versatile computer program was developed to do the following after the in vivo measurement of either the organ- or whole-body activity: calculate the original amount of radioactive material which was inhaled (intake) by employing the ICRP compartmental model of the human body; compare this intake to calculated reference levels and state any action to be taken for the case under consideration; calculate the committed dose equivalent resulting from this intake. In the execution of the above-mentioned calculations, the computer program makes provision for different aerosol particle sizes and the effect of previous intakes. Model parameters can easily be changed to take the effects of, for instance, medical intervention into account. The computer program and the organization of the data in the input files are such that the computer program can be applied to any first-order kinetics compartmental model. The computer program can also conveniently be used for research on problems related to the application of the ICRP model. 18 refs., 25 figs., 5 tabs

  15. 40 CFR Appendix B to Part 191 - Calculation of Annual Committed Effective Dose

    Science.gov (United States)

    2010-07-01

    ... SPENT NUCLEAR FUEL, HIGH-LEVEL AND TRANSURANIC RADIOACTIVE WASTES Pt. 191, App. B Appendix B to Part 191... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Calculation of Annual Committed Effective Dose B Appendix B to Part 191 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  16. Dependence on age at intake of committed dose equivalents from radionuclides

    International Nuclear Information System (INIS)

    Adams, N.

    1981-01-01

    The dependence of committed dose equivalents on age at intake is needed to assess the significance of exposures of young persons among the general public resulting from inhaled or ingested radionuclides. The committed dose equivalents, evaluated using ICRP principles, depend on the body dimensions of the young person at the time of intake of a radionuclide and on subsequent body growth. Representation of growth by a series of exponential segments facilitates the derivation of general expressions for the age dependence of committed dose equivalents if metabolic models do not change with age. The additional assumption that intakes of radionuclides in air or food are proportional to a person's energy expenditure (implying age-independent dietary composition) enables the demonstration that the age of the most highly exposed 'critical groups' of the general public from these radionuclides is either about 1 year or 17 years. With the above assumptions the exposure of the critical group is less than three times the exposure of adult members of the general public. Approximate values of committed dose equivalents which avoid both underestimation and excessive overestimation are shown to be obtainable by simplified procedures. Modified procedures are suggested for use if metabolic models change with age. (author)

  17. Fiber optics in high dose radiation fields

    International Nuclear Information System (INIS)

    Partin, J.K.

    1985-01-01

    A review of the behavior of state-of-the-art optical fiber waveguides in high dose (greater than or equal to 10 5 rad), steady state radiation fields is presented. The influence on radiation-induced transmission loss due to experimental parameters such as dose rate, total dose, irradiation history, temperature, wavelength, and light intensity, for future work in high dose environments are given

  18. Energies, health, medicine. Low radiation doses

    International Nuclear Information System (INIS)

    2004-01-01

    This file concerns the biological radiation effects with a special mention for low radiation doses. The situation of knowledge in this area and the mechanisms of carcinogenesis are detailed, the different directions of researches are given. The radiation doses coming from medical examinations are given and compared with natural radioactivity. It constitutes a state of the situation on ionizing radiations, known effects, levels, natural radioactivity and the case of radon, medicine with diagnosis and radiotherapy. (N.C.)

  19. Radiation effects of high and low doses

    International Nuclear Information System (INIS)

    El-Naggar, A.M.

    1998-01-01

    The extensive proliferation of the uses and applications of atomic and nuclear energy resulted in possible repercussions on human health. The prominent features of the health hazards that may be incurred after exposure to high and low radiation doses are discussed. The physical and biological factors involved in the sequential development of radiation health effects and the different cellular responses to radiation injury are considered. The main criteria and features of radiation effects of high and low doses are comprehensively outlined

  20. Radiation research contracts: Biological effects of small radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Hug, O [International Atomic Energy Agency, Division of Health, Safety and Waste Disposal, Vienna (Austria)

    1959-04-15

    To establish the maximum permissible radiation doses for occupational and other kinds of radiation exposure, it is necessary to know those biological effects which can be produced by very small radiation doses. This particular field of radiation biology has not yet been sufficiently explored. This holds true for possible delayed damage after occupational radiation exposure over a period of many years as well as for acute reactions of the organism to single low level exposures. We know that irradiation of less than 25 Roentgen units (r) is unlikely to produce symptoms of radiation sickness. We have, however, found indications that even smaller doses may produce certain instantaneous reactions which must not be neglected

  1. Estimates of effective equivalent dose commitments for Slovene population following the Chernobyl accident

    International Nuclear Information System (INIS)

    Kanduc, M.; Jovanowic, O.; Kuhar, B.

    2004-01-01

    This paper shows the estimates of effective equivalent dose commitments for the two groups of Slovene population, 5 years old children and adults. Doses were calculated on the basis of the ICRP 30 methodology, first from the measurements of the concentrations of the radionuclides in air, water and food samples and then compared with the results of the measurements of radionuclides in composite samples of the prepared food, taken in the kindergarten nearby. Results show that there is certain degree of conservatism hidden in the calculation of the doses on the basis of measurements of the activity concentration in the elements of the biosphere and is estimated to be roughly 50%. (author)

  2. Estimation of committed effective dose due to tritium in ground water in some places of Maharashtra

    International Nuclear Information System (INIS)

    Reddy, P.J.; Bhade, S.P.D.; Kolekar, R.V.; Singh, Rajvir; Pradeepkumar, K.S.

    2014-01-01

    In the present study Tritium concentration in well and bore well water samples were analyzed for the samples collected from the villages of Pune, Kolhapur and Ratnagiri. The activity concentration ranged from 0.55 - 3.66 Bq L -1 . The associated age-dependant dose from water ingestion in the study area was estimated. The effective committed dose recorded for different age classes is negligible compared to World Health Organization and U.S. Environmental Protection Agency dose guidelines. The Minimum Detectable Activity achieved was 1.5 Bq L -1 for a total counting time of 500 minutes. (author)

  3. Carcinogenesis induced by low-dose radiation

    Directory of Open Access Journals (Sweden)

    Piotrowski Igor

    2017-11-01

    Full Text Available Although the effects of high dose radiation on human cells and tissues are relatively well defined, there is no consensus regarding the effects of low and very low radiation doses on the organism. Ionizing radiation has been shown to induce gene mutations and chromosome aberrations which are known to be involved in the process of carcinogenesis. The induction of secondary cancers is a challenging long-term side effect in oncologic patients treated with radiation. Medical sources of radiation like intensity modulated radiotherapy used in cancer treatment and computed tomography used in diagnostics, deliver very low doses of radiation to large volumes of healthy tissue, which might contribute to increased cancer rates in long surviving patients and in the general population. Research shows that because of the phenomena characteristic for low dose radiation the risk of cancer induction from exposure of healthy tissues to low dose radiation can be greater than the risk calculated from linear no-threshold model. Epidemiological data collected from radiation workers and atomic bomb survivors confirms that exposure to low dose radiation can contribute to increased cancer risk and also that the risk might correlate with the age at exposure.

  4. Annual radiation dose in thermoluminescence dating

    International Nuclear Information System (INIS)

    Li Huhou

    1988-01-01

    The annual radiation dose in thermoluminescence dating has been discussed. The autor gives an entirely new concept of the enviromental radiation in the thermoluminescence dating. Methods of annual dose detemination used by author are dating. Methods of annual dose determination used by author are summed up, and the results of different methods are compared. The emanium escapiug of three radioactive decay serieses in nature has been considered, and several determination methods are described. The contribution of cosmic rays for the annual radiation dose has been mentioned

  5. Annual radiation dose in thermoluminescence dating

    Energy Technology Data Exchange (ETDEWEB)

    Huhou, Li [Chinese Academy of Social Sciences, Beijing, BJ (China). Inst. of Archaeology

    1988-11-01

    The annual radiation dose in thermoluminescence dating has been discussed. The autor gives an entirely new concept of the enviromental radiation in the thermoluminescence dating. Methods of annual dose detemination used by author are dating. Methods of annual dose determination used by author are summed up, and the results of different methods are compared. The emanium escapiug of three radioactive decay serieses in nature has been considered, and several determination methods are described. The contribution of cosmic rays for the annual radiation dose has been mentioned.

  6. Potential radiation doses from 1994 Hanford Operations

    Energy Technology Data Exchange (ETDEWEB)

    Soldat, J.K.; Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site.

  7. Potential radiation doses from 1994 Hanford Operations

    International Nuclear Information System (INIS)

    Soldat, J.K.; Antonio, E.J.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site

  8. Cytogenetic effects of low-dose radiation

    International Nuclear Information System (INIS)

    Metalli, P.

    1983-01-01

    The effects of ionizing radiation on chromosomes have been known for several decades and dose-effect relationships are also fairly well established in the mid- and high-dose and dose-rate range for chromosomes of mammalian cells. In the range of low doses and dose rates of different types of radiation few data are available for direct analysis of the dose-effect relationships, and extrapolation from high to low doses is still the unavoidable approach in many cases of interest for risk assessment. A review is presented of the data actually available and of the attempts that have been made to obtain possible generalizations. Attention is focused on some specific chromosomal anomalies experimentally induced by radiation (such as reciprocal translocations and aneuploidies in germinal cells) and on their relevance for the human situation. (author)

  9. Distribution of fallout 137Cs in soils from Biscay (Spain) and the associated collective dose commitment

    International Nuclear Information System (INIS)

    Legarda, F.; Elejalde, C.; Herranz, M.; Romero, F.

    2000-01-01

    137 Cs is an important contributor to the external irradiation dose received by world population as a consequence of the injections of radionuclides into the biosphere. The activity of 137 Cs injected into the stratosphere in the atmospheric nuclear weapons tests performed between 1945 and 1980 amounts to 960 PBq. The amount of radionuclide deposited onto the ground at a given location is a function of i) rainfall and ii) surface characteristics. After atmospheric nuclear weapons tests had finished in 1980, the accident occurred in Chernobyl injected into the biosphere a new amount of 137 Cs whose magnitude was estimated as 85 PBq. This activity was deposited onto the ground over a large region of Europe with a complicated deposition pattern. The amount of radioactive material from both sources that has been deposited on the Biscay region, located in the north of Spain, was unknown. Hence a program was developed with the aim of quantifying such deposition and so allow the evaluation of radiation doses received by population as well as possible future depositions of radioactivity. To determine such deposition a sampling program based on a sampling grid with a 15-km mesh was designed and applied. Seventeen sampling points were selected. At each sampling point, six 50 cm deep soil cores were collected along a straight line with 50 cm spacing between them. To measure the contents of 137 Cs, samples were placed into 500 cm 3 Marinelli beakers and analysed by gamma-ray spectroscopy with a p-type HPGe coaxial detector. From the results obtained it was observed that such deposition was entirely due to nuclear weapons testing. The contents of 137 Cs were in the range 764 - 5880 Bq/m 2 . A relationship between activity and rainfall was investigated, the correlation is similar to those reported by other authors. Finally, the dose commitment to the population due to internal and external irradiation by the deposited radionuclide has been calculated and a value of 575 Gy

  10. Charpak, Garwin, propose unit for radiation dose

    CERN Multimedia

    Feder, Toni

    2002-01-01

    Becquerels, curries, grays, rads, rems, roentgens, sieverts - even for specialists the units of radiation can get confusing. That's why two eminent physicists, Georges Charpak of France, and Richard Garwin, are proposing the DARI as a unit of radiation dose they hope will help the public evaluate the risks associated with low-level radiation exposure (1 page)

  11. SMART, Radiation Dose Rates on Cask Surface

    International Nuclear Information System (INIS)

    Yamakoshi, Hisao

    1989-01-01

    1 - Description of program or function: SMART calculates radiation dose rate at the center of each cask surface by using characteristic functions for radiation shielding ability and for radiation current back-scattered from cask wall and cask cavity of each cask, once cask-type is specified. 2 - Method of solution: Matrix Calculation

  12. Dose commitments due to radioactive releases from nuclear power plant sites: Methodology and data base. Supplement 1

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.A. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-06-01

    This manual describes a dose assessment system used to estimate the population or collective dose commitments received via both airborne and waterborne pathways by persons living within a 2- to 80-kilometer region of a commercial operating power reactor for a specific year of effluent releases. Computer programs, data files, and utility routines are included which can be used in conjunction with an IBM or compatible personal computer to produce the required dose commitments and their statistical distributions. In addition, maximum individual airborne and waterborne dose commitments are estimated and compared to 10 CFR Part 50, Appendix 1, design objectives. This supplement is the last report in the NUREG/CR-2850 series.

  13. Dose commitments due to radioactive releases from nuclear power plant sites: Methodology and data base. Supplement 1

    International Nuclear Information System (INIS)

    Baker, D.A.

    1996-06-01

    This manual describes a dose assessment system used to estimate the population or collective dose commitments received via both airborne and waterborne pathways by persons living within a 2- to 80-kilometer region of a commercial operating power reactor for a specific year of effluent releases. Computer programs, data files, and utility routines are included which can be used in conjunction with an IBM or compatible personal computer to produce the required dose commitments and their statistical distributions. In addition, maximum individual airborne and waterborne dose commitments are estimated and compared to 10 CFR Part 50, Appendix 1, design objectives. This supplement is the last report in the NUREG/CR-2850 series

  14. Low doses effects and gamma radiations low dose rates

    International Nuclear Information System (INIS)

    Averbeck, D.

    1999-01-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  15. Dose and dose commitment calculations from groundwaterborne radio-active elements released from a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Bergstroem, U.

    1983-05-01

    The turnover of radioactive matter entering the biosphere with groundwater has been studied with regard to exposure and doses to critical groups and populations. Two main recipients, a well and a lake, have been considered for the inflow of groundwaterborne nuclides. Mathematical models of a set of coupled ecosystems on regional, intermediate and global levels have been used for calculations of doses. The intermediate system refers to the Baltic Sea. The mathematical treatment of the model is based upon compartment theory with first order kinetics and also includes products in decay chains. The time-dependent exposures have been studied for certain long-lived nuclides of radiological interest in waste from disposed fuel. Dose and dose commitment have been calculated for different episodes for inflow to the biosphere. (author)

  16. Biological clearance and committed dose equivalent in pulmonary region from inhaled radioaerosols for lung scanning

    Energy Technology Data Exchange (ETDEWEB)

    Soni, P.S.; Sharma, S.M.; Raghunath, B.; Somasundaram, S.

    1987-01-01

    Biological clearance half-lives (Tsub(b)) of different /sup 99/Tcsup(m)-labelled compounds from each lung have been determined, after administering the radioaerosol to normal subjects using the BARC dry aerosol generation and inhalation system. Based on these experimental clearance half-lives, the committed dose equivalent to the lungs has been computed using both the ICRP lung model and MIRD-11 values.

  17. Biological clearance and committed dose equivalent in pulmonary region from inhaled radioaerosols for lung scanning

    International Nuclear Information System (INIS)

    Soni, P.S.; Sharma, S.M.; Raghunath, B.; Somasundaram, S.

    1987-01-01

    Biological clearance half-lives (Tsub(b)) of different 99 Tcsup(m)-labelled compounds from each lung have been determined, after administering the radioaerosol to normal subjects using the BARC dry aerosol generation and inhalation system. Based on these experimental clearance half-lives, the committed dose equivalent to the lungs has been computed using both the ICRP lung model and MIRD-11 values. (author)

  18. Occupational radiation doses during interventional procedures

    International Nuclear Information System (INIS)

    Nuraeni, N; Hiswara, E; Kartikasari, D; Waris, A; Haryanto, F

    2016-01-01

    Digital subtraction angiography (DSA) is a type of fluoroscopy technique used in interventional radiology to clearly visualize blood vessels in a bony or dense soft tissue environment. The use of DSA procedures has been increased quite significantly in the Radiology departments in various cities in Indonesia. Various reports showed that both patients and medical staff received a noticeable radiation dose during the course of this procedure. A study had been carried out to measure these doses among interventionalist, nurse and radiographer. The results show that the interventionalist and the nurse, who stood quite close to the X-ray beams compared with the radiographer, received radiation higher than the others. The results also showed that the radiation dose received by medical staff were var depending upon the duration and their position against the X-ray beams. Compared tothe dose limits, however, the radiation dose received by all these three medical staff were still lower than the limits. (paper)

  19. Dose evaluation and protection of cosmic radiation

    International Nuclear Information System (INIS)

    Iwai, Satoshi; Takagi, Toshiharu

    2004-01-01

    This paper explained the effects of cosmic radiation on aircraft crews and astronauts, as well as related regulations. International Commission on Radiological Protection (ICRP) recommends the practice of radiation exposure management for the handling/storage of radon and materials containing natural radioactive substances, as well as for boarding jet aircraft and space flight. Common aircraft crew members are not subject to radiation exposure management in the USA and Japan. In the EU, the limit value is 6 mSv per year, and for the crew group exceeding this value, it is recommended to keep records containing appropriate medical examination results. Pregnant female crewmembers are required to keep an abdominal surface dose within 1 mSv. For astronauts, ICRP is in the stage of thinking about exposure management. In the USA, National Council on Radiation Protection and Measurement has set dose limits for 30 days, 1 year, and lifetime, and recommends lifetime effective dose limits against carcinogenic risk for each gender and age group. This is the setting of the dose limits so that the risk of carcinogenesis, to which space radiation exposure is considered to contribute, will reach 3%. For cosmic radiation environments at spacecraft inside and aircraft altitude, radiation doses can be calculated for astronauts and crew members, using the calculation methods for effective dose and dose equivalent for tissue. (A.O.)

  20. Dose Assurance in Radiation Processing Plants

    DEFF Research Database (Denmark)

    Miller, Arne; Chadwick, K.H.; Nam, J.W.

    1983-01-01

    Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed...... at the radiation processing plant can be obtained through the mediation of an international organization, and the IAEA is now implementing a dose assurance service for industrial radiation processing....

  1. Exposure to low doses of ionizing radiations

    International Nuclear Information System (INIS)

    Le Guen, B.

    2008-01-01

    The author discusses the knowledge about the effects of ionizing radiations on mankind. Some of them have been well documented (skin cancer and leukaemia for the pioneer scientists who worked on radiations, some other types of cancer for workers who handled luminescent paints, rock miners, nuclear explosion survivors, patients submitted to radiological treatments). He also evokes the issue of hereditary cancers, and discusses the issue of low dose irradiation where some surveys can now be performed on workers. He discusses the biological effects of these low doses. He outlines that many questions remain about these effects, notably the influence of dose level and of dose rate level on the biological reaction

  2. Development of radiation dose assessment system for radiation accident (RADARAC)

    International Nuclear Information System (INIS)

    Takahashi, Fumiaki; Shigemori, Yuji; Seki, Akiyuki

    2009-07-01

    The possibility of radiation accident is very rare, but cannot be regarded as zero. Medical treatments are quite essential for a heavily exposed person in an occurrence of a radiation accident. Radiation dose distribution in a human body is useful information to carry out effectively the medical treatments. A radiation transport calculation utilizing the Monte Carlo method has an advantageous in the analysis of radiation dose inside of the body, which cannot be measured. An input file, which describes models for the accident condition and quantities of interest, should be prepared to execute the radiation transport calculation. Since the accident situation, however, cannot be prospected, many complicated procedures are needed to make effectively the input file soon after the occurrence of the accident. In addition, the calculated doses are to be given in output files, which usually include much information concerning the radiation transport calculation. Thus, Radiation Dose Assessment system for Radiation Accident (RADARAC) was developed to derive effectively radiation dose by using the MCNPX or MCNP code. RADARAC mainly consists of two parts. One part is RADARAC - INPUT, which involves three programs. A user can interactively set up necessary resources to make input files for the codes, with graphical user interfaces in a personnel computer. The input file includes information concerning the geometric structure of the radiation source and the exposed person, emission of radiations during the accident, physical quantities of interest and so on. The other part is RADARAC - DOSE, which has one program. The results of radiation doses can be effectively indicated with numerical tables, graphs and color figures visibly depicting dose distribution by using this program. These results are obtained from the outputs of the radiation transport calculations. It is confirmed that the system can effectively make input files with a few thousand lines and indicate more than 20

  3. Ionizing Radiation Dose Due to the Use of Agricultural Fertilizers

    International Nuclear Information System (INIS)

    Umisedo, Nancy K.; Okuno, Emico; Medina, Nilberto H.; Colacioppo, Sergio; Hiodo, Francisco Y.

    2008-01-01

    The transference of radionuclides from the fertilizers to/and from soils to the foodstuffs can represent an increment in the internal dose when the vegetables are consumed by the human beings. This work evaluates the contribution of fertilizers to the increase of radiation level in the environment and of dose to the people. Samples of fertilizers, soils and vegetables produced in farms located in the neighbourhood of Sao Paulo city in the State of Sao Paulo, Brazil were analysed through gamma spectroscopy. The values of specific activity of 40 K, 238 U and 232 Th show that there is no significant transference of natural radionuclides from fertilizers to the final product of the food chain. The annual committed effective dose due to the ingestion of 40 K contained in the group of consumed vegetables analysed in this work resulted in the very low value of 0.882 μSv

  4. PABLM: a computer program to calculate accumulated radiation doses from radionuclides in the environment

    International Nuclear Information System (INIS)

    Napier, B.A.; Kennedy, W.E. Jr.; Soldat, J.K.

    1980-03-01

    A computer program, PABLM, was written to facilitate the calculation of internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. This report contains details of mathematical models used and calculational procedures required to run the computer program. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides in the environment after the releases have ended. Radioactive decay is considered during the release of radionuclides, after they are deposited on the plants or ground, and during holdup of food after harvest. The radiation dose models consider several exposure pathways. Doses may be calculated for either a maximum-exposed individual or for a population group. The doses calculated are accumulated doses from continuous chronic exposure. A first-year committed dose is calculated as well as an integrated dose for a selected number of years. The equations for calculating internal radiation doses are derived from those given by the International Commission on Radiological Protection (ICRP) for body burdens and MPC's of each radionuclide. The radiation doses from external exposure to contaminated water and soil are calculated using the basic assumption that the contaminated medium is large enough to be considered an infinite volume or plane relative to the range of the emitted radiations. The equations for calculations of the radiation dose from external exposure to shoreline sediments include a correction for the finite width of the contaminated beach

  5. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  6. Radiation dose to the global flying population

    International Nuclear Information System (INIS)

    Alvarez, Luis E; Eastham, Sebastian D; Barrett, Steven R H

    2016-01-01

    Civil airliner passengers and crew are exposed to elevated levels of radiation relative to being at sea level. Previous studies have assessed the radiation dose received in particular cases or for cohort studies. Here we present the first estimate of the total radiation dose received by the worldwide civilian flying population. We simulated flights globally from 2000 to 2013 using schedule data, applying a radiation propagation code to estimate the dose associated with each flight. Passengers flying in Europe and North America exceed the International Commission on Radiological Protection annual dose limits at an annual average of 510 or 420 flight hours per year, respectively. However, this falls to 160 or 120 h on specific routes under maximum exposure conditions. (paper)

  7. Radiation Dose Measurement Using Chemical Dosimeters

    International Nuclear Information System (INIS)

    Lee, Min Sun; Kim, Eun Hee; Kim, Yu Ri; Han, Bum Soo

    2010-01-01

    The radiation dose can be estimated in various ways. Dose estimates can be obtained by either experiment or theoretical analysis. In experiments, radiation impact is assessed by measuring any change caused by energy deposition to the exposed matter, in terms of energy state (physical change), chemical production (chemical change) or biological abnormality (biological change). The chemical dosimetry is based on the implication that the energy deposited to the matter can be inferred from the consequential change in chemical production. The chemical dosimetry usually works on the sample that is an aqueous solution, a biological matter, or an organic substance. In this study, we estimated absorbed doses by quantitating chemical changes in matter caused by radiation exposure. Two different chemical dosimeters, Fricke and ECB (Ethanol-Chlorobenzene) dosimeter, were compared in several features including efficacy as dose indicator and effective dose range

  8. Radiation dose assessment in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.

    2002-01-01

    In any application involving the use of ionizing radiation in humans, risks and benefits must be properly evaluated and balanced. Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. Recently, interest has grown in therapeutic agents for a number of applications in nuclear medicine, particularly in the treatment of hematologic and non-hematologic malignancies. This has heightened interest in the need for radiation dose calculations and challenged the scientific community to develop more patient-specific and relevant dose models. Consideration of radiation dose in such studies is central to efforts to maximize dose to tumor while sparing normal tissues. In many applications, a significant absorbed dose may be received by some radiosensitive organs, particularly the active marrow. This talk will review the methods and models used in internal dosimetry in nuclear medicine, and discuss some current trends and challenges in this field

  9. Plastic for indicating a radiation dose

    International Nuclear Information System (INIS)

    Hori, Y.; Yoshikawa, N.; Ohmori, S.

    1975-01-01

    A plastic film suitable for indicating radiation dose contains a chlorine polymer, at least one acid sensitive coloring agent and a plasticizer. The film undergoes a distinct change of color in response to a given radiation dose, the degree of change proportional to the total change. These films may be stored for a long period without loss of sensitivity, and have good color stability after irradiation. (auth)

  10. Gamma Radiation Doses In Sweden

    International Nuclear Information System (INIS)

    Almgren, Sara; Isaksson, Mats; Barregaard, Lars

    2008-01-01

    Gamma dose rate measurements were performed in one urban and one rural area using thermoluminescence dosimeters (TLD) worn by 46 participants and placed in their dwellings. The personal effective dose rates were 0.096±0.019(1 SD) and 0.092±0.016(1 SD)μSv/h in the urban and rural area, respectively. The corresponding dose rates in the dwellings were 0.11±0.042(1 SD) and 0.091±0.026(1 SD)μSv/h. However, the differences between the areas were not significant. The values were higher in buildings made of concrete than of wood and higher in apartments than in detached houses. Also, 222 Rn measurements were performed in each dwelling, which showed no correlation with the gamma dose rates in the dwellings

  11. Characteristics of natural background external radiation and effective dose equivalent

    International Nuclear Information System (INIS)

    Fujimoto, Kenzo

    1989-01-01

    The two sources of natural radiation - cosmic rays and primordial radionuclides - are described. The factors affecting radiation doses received from natural radiation and the calculation of effective dose equivalent due to natural radiation are discussed. 10 figs., 3 tabs

  12. Low doses of gamma radiation in soybean

    International Nuclear Information System (INIS)

    Franco, José G.; Franco, Suely S.H.; Villavicencio, Anna L.C.; Arthur, Valter; Arthur, Paula B.; Franco, Caio H.

    2017-01-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Dry soya seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.210 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. A treatment with four radiation doses was applied as follows: 0 (control); 12.5; 25.0 and 50.0 Gy. Seed germination and harvested of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds number and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were the doses of 12.5 and 50.0 Gy. The results show that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  13. Low doses of gamma radiation in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Franco, José G.; Franco, Suely S.H.; Villavicencio, Anna L.C., E-mail: zegilmar60@gmail.com, E-mail: gilmita@uol.com.br, E-mail: villavic@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Arthur, Valter; Arthur, Paula B., E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Franco, Caio H. [Universidade Federal de São Paulo (UNIFESP), SP (Brazil). Departamento de Microbiologia, Imunologia e Parasitologia

    2017-07-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Dry soya seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.210 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. A treatment with four radiation doses was applied as follows: 0 (control); 12.5; 25.0 and 50.0 Gy. Seed germination and harvested of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds number and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were the doses of 12.5 and 50.0 Gy. The results show that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  14. Evaluation of radiation doses from radioactive drugs

    International Nuclear Information System (INIS)

    Halperin, J.A.; Grove, G.R.

    1977-01-01

    Radioactive new drugs are regulated by the Food and Drug Administration (FDA) in the United States. Before a new drug can be marketed it must have an approved New Drug Application (NDA). Clinical investigations of a radioactive new drug are carried out under a Notice of Claimed Investigational Exemption for a New Drug (IND), submitted to the FDA. In the review of the IND, radiation doses are projected on the basis of experimental data from animal models and from calculations based upon radiation characteristics, predicted biodistribution of the drug in humans, and activity to be administered. FDA physicians review anticipated doses and prevent clinical investigations in humans when the potential risk of the use of a radioactive substance outweighs the prospect of achieving beneficial results from the administration of the drug. In the evaluation of an NDA, FDA staff attempt to assure that the intended diagnostic or therapeutic effect is achievable with the lowest practicable radiation dose. Radiation doses from radioactive new drugs are evaluated by physicians within the FDA. Important radioactive new drugs are also evaluated by the Radiopharmaceuticals Advisory Committee. FDA also supports the Center for Internal Radiation Dosimetry at Oak Ridge, to provide information regarding in vivo distribution and dosimetry to critical organs and the whole body from radioactive new drugs. The process for evaluation of radiation doses from radioactive new drugs for protection against use of unnecessary radiation exposure by patients in nuclear medicine procedures, a

  15. Radiation doses - maps and magnitudes

    International Nuclear Information System (INIS)

    1989-01-01

    A NRPB leaflet in the 'At-a-Glance' Series presents information on the numerous sources and magnitude of exposure of man to radiation. These include the medical use of radiation, radioactive discharges to the environment, cosmic rays, gamma rays from the ground and buildings, radon gas and food and drink. A Pie chart represents the percentage contribution of each of those sources. Finally, the terms becquerel, microsievert and millisievert are explained. (U.K.)

  16. Progress in high-dose radiation dosimetry

    International Nuclear Information System (INIS)

    Ettinger, K.V.; Nam, J.W.; McLaughlin, W.L.; Chadwick, K.H.

    1981-01-01

    The last decade has witnessed a deluge of new high-dose dosimetry techniques and expanded applications of methods developed earlier. Many of the principal systems are calibrated by means of calorimetry, although production of heat is not always the final radiation effect of interest. Reference systems also include a number of chemical dose meters: ferrous sulphate, ferrous-cupric sulphate, and ceric sulphate acidic aqueous solutions. Requirements for stable and reliable transfer dose meters have led to further developments of several important high-dose systems: amino acids and saccharides analysed by ESR or lyoluminescence, thermoluminescent materials, radiochromic dyes and plastics, ceric-cerous solutions analysed by potentiometry, and ethanol-chlorobenzene solutions analysed by high-frequency oscillometry. A number of other prospective dose meters are also treated in this review. In addition, an IAEA programme of high-dose standardization and intercomparison for industrial radiation processing is described. (author)

  17. Dose estimation for space radiation protection

    International Nuclear Information System (INIS)

    Xu Feng; Xu Zhenhua; Huang Zengxin; Jia Xianghong

    2007-01-01

    For evaluating the effect of space radiation on human health, the dose was estimated using the models of space radiation environment, models of distribution of the spacecraft's or space suit's mass thickness and models of human body. The article describes these models and calculation methods. (authors)

  18. Radiation dose reduction in pediatric CT

    International Nuclear Information System (INIS)

    Robinson, A.E.; Hill, E.P.; Harpen, M.D.

    1986-01-01

    The relationship between image noise and radiation dose was investigated in computed tomography (CT) images of a pediatric abdomen phantom. A protocol which provided a minimum absorbed dose consistent with acceptable image noise criteria was determined for a fourth generation CT scanner. It was found that pediatric abdominal CT scans could maintain diagnostic quality with at least a 50% reduction in dose from the manufacturers' suggested protocol. (orig.)

  19. Dose mapping for documentation of radiation sterilization

    DEFF Research Database (Denmark)

    Miller, A.

    1999-01-01

    The radiation sterilization standards EN 552 and ISO 11137 require that dose mapping in real or simulated product be carried in connection with the process qualification. This paper reviews the recommendations given in the standards and discusses the difficulties and limitations of practical dose...... mapping. The paper further gives recommendations for effective dose mapping including traceable dosimetry, documented procedures for placement of dosimeters, and evaluation of measurement uncertainties. (C) 1999 Elsevier Science Ltd. All rights reserved....

  20. Cosmic radiation dose in the aircraft

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Varga, M.; Planinic, J.; Vekic, B.

    2006-01-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A 320 and ATR 42 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb - Paris - Buenos Aires and reversely, when one measured cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 μSv/h and the TLD dosimeter registered the total dose of 75 μSv or the average dose rate of 2.7 μSv/h; the neutron dosimeter gave the dose rate of 2.4 μSv/h. In the same month, February 2005, a traveling to the Japan (24 hours-flight: Zagreb - Frankfurt - Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h; the neutron dosimeter gave the dose rate of 2.5 μSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude the neutron component curried about 50% of the total dose, that was near other known data. (author)

  1. Analysis of T101 outage radiation dose

    International Nuclear Information System (INIS)

    Li, Zhonghua

    2008-01-01

    Full text: Collective radiation dose during outage is about 80% of annual collective radiation dose at nuclear power plants (NPPs). T 101 Outage is the first four-year outage of Unit 1 at Tianwan Nuclear Power Station (TNPS) and thorough overhaul was undergone for the 105-day's duration. Therefore, T 101 Outage has significant reference meaning to reducing collective radiation dose at TNPS. This paper collects the radiation dose statistics during T 101 Outage and analyses the radiation dose distribution according to tasks, work kinds and varying trend of the collective radiation dose etc., comparing with other similar PWRs in the world. Based on the analysis this paper attempts to find out the major factors in collective radiation dose during T 101 Outage. The major positive factor is low radiation level at workplace, which profits from low content of Co in reactor construction materials, optimised high-temperature p H value of the primary circuit coolant within the tight range and reactor operation without trips within the first fuel cycle. One of the most negative factors is long outage duration and many person-hours spent in the radiological controlled zone, caused by too many tasks and inefficient work. So besides keeping good performance of reducing radioactive sources, it should be focused on how to improve implementation of work management including work selection, planning and scheduling, work preparation, work implementation, work assessment and feedback, which can lead to reduced numbers of workers needed to perform a task, of person-hours spent in the radiological controlled zone. Moreover, this leads to reduce occupational exposures in an ALARA fashion. (author)

  2. Assessment and recording of radiation doses to workers

    International Nuclear Information System (INIS)

    1986-01-01

    The assessment and recording of the radiation exposure of workers in activities involving radiation risks are required for demonstrating compliance with institutional dose limitations and for a number of other complementary purposes. A significant proportion of the labor force involved in radiation work is currently represented by those specialised workers who operate as itinerant contractors for different nuclear installations and in different countries. In order to ensure that the exposure of these workers is adequately and consistently controlled and kept within acceptable limits, there is a need for the criteria and methods for dose assessment and recording to be harmonised throughout the different countries. An attempt in that direction has been made in this report, which has been prepared by a group of experts convened by the Committee on Radiation Protection and Public Health of the OECD Nuclear Energy Agency. Its primary purpose is to describe recommended technical procedures for an unified approach to the assessment and recording of worker doses. The report is published under the responsibility of the Secretary-General of the OECD, and does not commit Member governments

  3. Work on optimum medical radiation doses

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2010-01-01

    Every day the medical world makes use of X-rays and radioisotopes. Radiology allows organs to be visualised, nuclear medicine diagnoses and treats cancer by injecting radioisotopes, and radiotherapy uses ionising radiation for cancer therapy. The medical world is increasingly mindful of the risks of ionising radiation that patients are exposed to during these examinations and treatments. In 2009 SCK-CEN completed two research projects that should help optimise the radiation doses of patients.

  4. Radiation Doses Received by the Irish Population

    International Nuclear Information System (INIS)

    Colgan, P.A.; Organo, C.; Hone, C.; Fenton, D.

    2008-05-01

    Some chemical elements present in the environment since the Earth was formed are naturally radioactive and exposure to these sources of radiation cannot be avoided. There have also been additions to this natural inventory from artificial sources of radiation that did not exist before the 1940s. Other sources of radiation exposure include cosmic radiation from outer space and the use of radiation in medical diagnosis and treatment. There can be large variability in the dose received by invividual members of the population from any given source. Some sources of radiation expose every member of the population while, in other cases, only selected individuals may be exposed. For example, natural radioactivity is found in all soils and therefore everybody receives some radiation dose from this activity. On the other hand, in the case of medical exposures, only those who undergo a medical procedure using radiation will receive a radiation dose. The Radiological Protection Institute of Ireland (RPII) has undertaken a comprehensive review of the relevant data on radiation exposure in Ireland. Where no national data have been identified, the RPII has either undertaken its own research or has referred to the international literature to provide a best estimate of what the exposure in Ireland might be. This has allowed the relative contribution of each source to be quantified. This new evaluation is the most up-to-date assessment of radiation exposure and updates the assessment previously reported in 2004. The dose quoted for each source is the annual 'per caput' dose calculated on the basis of the most recently available data. This is an average value calculated by adding the doses received by each individual exposed to a given radiation source and dividing the total by the current population of 4.24 million. All figures have been rounded, consistent with the accuracy of the data. In line with accepted international practice, where exposure takes place both indoors and

  5. Radiation Dose from Reentrant Electrons

    Science.gov (United States)

    Badhwar, G.D.; Cleghorn, T. E.; Watts, J.

    2003-01-01

    In estimating the crew exposures during an EVA, the contribution of reentrant electrons has always been neglected. Although the flux of these electrons is small compared to the flux of trapped electrons, their energy spectrum extends to several GeV compared to about 7 MeV for trapped electrons. This is also true of splash electrons. Using the measured reentrant electron energy spectra, it is shown that the dose contribution of these electrons to the blood forming organs (BFO) is more than 10 times greater than that from the trapped electrons. The calculations also show that the dose-depth response is a very slowly changing function of depth, and thus adding reasonable amounts of additional shielding would not significantly lower the dose to BFO.

  6. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    International Nuclear Information System (INIS)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  7. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice.

    Science.gov (United States)

    Ware, J H; Sanzari, J; Avery, S; Sayers, C; Krigsfeld, G; Nuth, M; Wan, X S; Rusek, A; Kennedy, A R

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  8. Assessment of radiation dose awareness among pediatricians

    International Nuclear Information System (INIS)

    Thomas, Karen E.; Parnell-Parmley, June E.; Charkot, Ellen; BenDavid, Guila; Krajewski, Connie; Haidar, Salwa; Moineddin, Rahim

    2006-01-01

    There is increasing awareness among pediatric radiologists of the potential risks associated with ionizing radiation in medical imaging. However, it is not known whether there has been a corresponding increase in awareness among pediatricians. To establish the level of awareness among pediatricians of the recent publicity on radiation risks in children, knowledge of the relative doses of radiological investigations, current practice regarding parent/patient discussions, and the sources of educational input. Multiple-choice survey. Of 220 respondents, 105 (48%) were aware of the 2001 American Journal of Roentgenology articles on pediatric CT and radiation, though only 6% were correct in their estimate of the quoted lifetime excess cancer risk associated with radiation doses equivalent to pediatric CT. A sustained or transient increase in parent questioning regarding radiation doses had been noticed by 31%. When estimating the effective doses of various pediatric radiological investigations in chest radiograph (CXR) equivalents, 87% of all responses (and 94% of CT estimates) were underestimates. Only 15% of respondents were familiar with the ALARA principle. Only 14% of pediatricians recalled any relevant formal teaching during their specialty training. The survey response rate was 40%. Awareness of radiation protection issues among pediatricians is generally low, with widespread underestimation of relative doses and risks. (orig.)

  9. Health effect of low dose/low dose rate radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji

    2012-01-01

    The clarified and non-clarified scientific knowledge is discussed to consider the cause of confusion of explanation of the title subject. The low dose is defined roughly lower than 200 mGy and low dose rate, 0.05 mGy/min. The health effect is evaluated from 2 aspects of clinical symptom/radiation hazard protection. In the clinical aspect, the effect is classified in physical (early and late) and genetic ones, and is classified in stochastic (no threshold value, TV) and deterministic (with TV) ones from the radioprotection aspect. Although the absence of TV in the carcinogenic and genetic effects has not been proved, ICRP employs the stochastic standpoint from the safety aspect for radioprotection. The lowest human TV known now is 100 mGy, meaning that human deterministic effect would not be generated below this dose. Genetic deterministic effect can be observable only in animal experiments. These facts suggest that the practical risk of exposure to <100 mGy in human is the carcinogenesis. The relationship between carcinogenic risk in A-bomb survivors and their exposed dose are found fitted to the linear no TV model, but the epidemiologic data, because of restriction of subject number analyzed, do not always mean that the model is applicable even below the dose <100 mGy. This would be one of confusing causes in explanation: no carcinogenic risk at <100 mGy or risk linear to dose even at <100 mGy, neither of which is scientifically conclusive at present. Also mentioned is the scarce risk of cancer in residents living in the high background radiation regions in the world in comparison with that in the A-bomb survivors exposed to the chronic or acute low dose/dose rate. Molecular events are explained for the low-dose radiation-induced DNA damage and its repair, gene mutation and chromosome aberration, hypothesis of carcinogenesis by mutation, and non-targeting effect of radiation (bystander effect and gene instability). Further researches to elucidate the low dose

  10. The Dose Response Relationship for Radiation Carcinogenesis

    Science.gov (United States)

    Hall, Eric

    2008-03-01

    Recent surveys show that the collective population radiation dose from medical procedures in the U.S. has increased by 750% in the past two decades. It would be impossible to imagine the practice of medicine today without diagnostic and therapeutic radiology, but nevertheless the widespread and rapidly increasing use of a modality which is a known human carcinogen is a cause for concern. To assess the magnitude of the problem it is necessary to establish the shape of the dose response relationship for radiation carcinogenesis. Information on radiation carcinogenesis comes from the A-bomb survivors, from occupationally exposed individuals and from radiotherapy patients. The A-bomb survivor data indicates a linear relationship between dose and the risk of solid cancers up to a dose of about 2.5 Sv. The lowest dose at which there is a significant excess cancer risk is debatable, but it would appear to be between 40 and 100 mSv. Data from the occupation exposure of nuclear workers shows an excess cancer risk at an average dose of 19.4 mSv. At the other end of the dose scale, data on second cancers in radiotherapy patients indicates that cancer risk does not continue to rise as a linear function of dose, but tends towards a plateau of 40 to 60 Gy, delivered in a fractionated regime. These data can be used to estimate the impact of diagnostic radiology at the low dose end of the dose response relationship, and the impact of new radiotherapy modalities at the high end of the dose response relationship. In the case of diagnostic radiology about 90% of the collective population dose comes from procedures (principally CT scans) which involve doses at which there is credible evidence of an excess cancer incidence. While the risk to the individual is small and justified in a symptomatic patient, the same is not true of some screening procedures is asymptomatic individuals, and in any case the huge number of procedures must add up to a potential public health problem. In the

  11. Potential gonadal dose from leakage radiation?

    International Nuclear Information System (INIS)

    Nicholson, R.A.

    1995-01-01

    The author draws attention to the potential dangers of leakage radiation from mobile image intensifier units, and points out that during interventional urological procedures, radiation from below the urologist's knees may irradiate male gonads without being intercepted by protective aprons. Results are presented for a Shimatzu WHA mobile II, phantom doses being measured with an ionization chamber. Dose rates measured in the male gonad position were compared with rates at waist level behind a 0.35 mm lead equivalent shielding and dose rates at collar level outside the lead apron. Results are also presented of a study on the effect on gonad dose of a) adding 0.7 mm lead shielding to the tube housing and b) adding 0.7 mm lead and removing the spacer cone to reduce scatter. Results show that it is possible for gonad doses to be comparable with those assumed for the eyes, rather than the body. (Author)

  12. Estimation of radiation risks at low dose

    International Nuclear Information System (INIS)

    1990-04-01

    The report presents a review of the effects caused by radiation in low doses, or at low dose rates. For the inheritable (or ''genetic''), as well as for the cancer producing effects of radiation, present evidence is consistent with: (a) a non-linear relationship between the frequency of at least some forms of these effects, with comparing frequencies caused by doses many times those received annually from natural sources, with those caused by lower doses; (b) a probably linear relationship, however, between dose and frequency of effects for dose rates in the region of that received from natural sources, or at several times this rate; (c) no evidence to indicate the existence of a threshold dose below which such effects are not produced, and a strong inference from the mode of action of radiation on cells at low dose rates that no such thresholds are likely to apply to the detrimental, cancer-producing or inheritable, effects resulting from unrepaired damage to single cells. 19 refs

  13. Radiation dose from cigarette tobacco

    International Nuclear Information System (INIS)

    Papastefanou, Constantin

    2008-01-01

    The radioactivity in tobacco leaves collected from 15 different regions of Greece before cigarette production was studied in order to estimate the effective dose from cigarette tobacco due to the naturally occurring primordial radionuclides, such as 226 Ra and 210 Pb of the uranium series and 228 Ra of the thorium series and or man-made produced radionuclides, such as 137 Cs of Chernobyl origin. Gamma-ray spectrometry was applied using Ge planar and coaxial type detectors of high resolution and high efficiency. It was concluded that the annual effective dose due to inhalation for adults (smokers) for 226 Ra varied from 42.5 to 178.6 μSv y -1 (average 79.7 μSv y -1 ), while for 228 Ra from 19.3 to 116.0 μSv y -1 (average 67.1 μSv y -1 ) and for 210 Pb from 47.0 to 134.9 μSv y -1 (average 104.7 μSv y -1 ), that is the same order of magnitude for each radionuclide. The sum of the effective dose of the three natural radionuclides varied from 151.9 to 401.3 μSv y -1 (average 251.5 μSv y -1 ). The annual effective dose from 137 Cs of Chernobyl origin was three orders of magnitude lower as it varied from 70.4 to 410.4 μSv y -1 (average 199.3 μSv y -1 ). (author)

  14. Low radiation doses and antinuclear lobby

    International Nuclear Information System (INIS)

    Drobnik, J.

    1987-01-01

    The probability of mutations or diseases resulting from other than radiation causes is negatively dependent on radiation. Thus, for instance, the incidence of cancer, is demonstrably lower in areas with a higher radiation background. The hypothesis is expressed that there exist repair mechanisms for DNA damage which will repair the damage, and will give priority to those genes which are currently active. Survival and stochastic processes are not dependent on the overall repair of DNA but on the repair of critical function genes. New discoveries shed a different light on views of the linear dependence of radiation damage on the low level doses. (M.D.)

  15. Dose distribution following selective internal radiation therapy

    International Nuclear Information System (INIS)

    Fox, R.A.; Klemp, P.F.; Egan, G.; Mina, L.L.; Burton, M.A.; Gray, B.N.

    1991-01-01

    Selective Internal Radiation Therapy is the intrahepatic arterial injection of microspheres labelled with 90Y. The microspheres lodge in the precapillary circulation of tumor resulting in internal radiation therapy. The activity of the 90Y injected is managed by successive administrations of labelled microspheres and after each injection probing the liver with a calibrated beta probe to assess the dose to the superficial layers of normal tissue. Predicted doses of 75 Gy have been delivered without subsequent evidence of radiation damage to normal cells. This contrasts with the complications resulting from doses in excess of 30 Gy delivered from external beam radiotherapy. Detailed analysis of microsphere distribution in a cubic centimeter of normal liver and the calculation of dose to a 3-dimensional fine grid has shown that the radiation distribution created by the finite size and distribution of the microspheres results in an highly heterogeneous dose pattern. It has been shown that a third of normal liver will receive less than 33.7% of the dose predicted by assuming an homogeneous distribution of 90Y

  16. Radiation absorbed dose from medically administered radiopharmaceuticals

    International Nuclear Information System (INIS)

    Roedler, H.D.; Kaul, A.

    1975-01-01

    The use of radiopharmaceuticals for medical examinations is increasing. Surveys carried out in West Berlin show a 20% average yearly increase in such examinations. This implies an increased genetic and somatic radiation exposure of the population in general. Determination of radiation exposure of the population as well as of individual patients examined requires a knowledge of the radiation dose absorbed by each organ affected by each examination. An extensive survey of the literature revealed that different authors reported widely different dose values for the same defined examination methods and radiopharmaceuticals. The reason for this can be found in the uncertainty of the available biokinetic data for dose calculations and in the application of various mathematical models to describe the kinetics and calculation of organ doses. Therefore, the authors recalculated some of the dose values published for radiopharmaceuticals used in patients by applying biokinetic data obtained from exponential models of usable metabolism data reported in the literature. The calculation of organ dose values was done according to the concept of absorbed fractions in its extended form. For all radiopharmaceuticals used in nuclear medicine the energy dose values for the most important organs (ovaries, testicles, liver, lungs, spleen, kidneys, skeleton, total body or residual body) were recalculated and tabulated for the gonads, skeleton and critical or examined organs respectively. These dose values are compared with those reported in the literature and the reasons for the observed deviations are discussed. On the basis of recalculated dose values for the gonads and bone-marrow as well as on the basis of results of statistical surveys in West Berlin, the genetically significant dose and the somatically (leukemia) significant dose were calculated for 1970 and estimated for 1975. For 1970 the GSD was 0.2 mrad and the LSD was 0.7 mrad. For 1975 the GSD is estimated at < 0.5 mrad and the

  17. Internal radiation dose of Indians

    International Nuclear Information System (INIS)

    Ranganathan, S.; Nagaratnam, A.; Sharma, U.C.

    2001-01-01

    The measurement of γ-rays from 40 K by whole-body counting provides a sensitive technique to estimate the body 40 K radioactivity. In India, right from the whole body counter (WBC) of Trombay in the early 1960s to the INMAS WBC of 1970s, some limited information has been available about the internal 40 K of Indians. However, information on 40 K dose with age and sex of Indians is scanty. Therefore, a systematic study was taken up to generate this information

  18. Radiation doses from computed tomography in Australia

    International Nuclear Information System (INIS)

    Thomson, J.E.M.; Tingey, D.R.C.

    1997-11-01

    Recent surveys in various countries have shown that computed tomography (CT) is a significant and growing contributor to the radiation dose from diagnostic radiology. Australia, with 332 CT scanners (18 per million people), is well endowed with CT equipment compared to European countries (6 to 13 per million people). Only Japan, with 8500 units (78 per million people), has a significantly higher proportion of CT scanners. In view of this, a survey of CT facilities, frequency of examinations, techniques and patient doses has been performed in Australia. It is estimated that there are 1 million CT examinations in Australia each year, resulting in a collective effective dose of 7000 Sv and a per caput dose of 0.39 mSv. This per caput dose is much larger than found in earlier studies in the UK and New Zealand but is less than 0.48 mSv in Japan. Using the ICRP risk factors, radiation doses from CT could be inducing about 280 fatal cancers per year in Australia. CT is therefore a significant, if not the major, single contributor to radiation doses and possible risk from diagnostic radiology. (authors)

  19. The public committed effective dose caused by consumption of foods and foodstuffs in Ninh Thuan

    International Nuclear Information System (INIS)

    Nguyen Trong Ngo; Nguyen Thanh Binh; Le Nhu Sieu; Truong Y; Nguyen Van Phuc; Nguyen Thi Linh; Nguyen Dinh Tung

    2014-01-01

    Based on the data set about radionuclides concentration in foods and foodstuffs obtained from the implementation of the National Projects on “Investigation on radionuclides and toxic elements concentration in the main kinds of foods and foodstuffs of Vietnam” and “Assessment of Marine Environmental Radioactivity Status for two selected sites of Nuclear Power Plant in the near future at Ninh Thuan Province”, a calculation software of the International Commission for Radiological Protection (ICRP), the public committed effective doses (for adult only) caused by consumption of main foods & foodstuffs in the studied experimental region were estimated. In general, the committed effective doses for adult public caused by the daily intake of radionuclides of U, 232 Th, 210 Pb, 210 Po, 226 Ra, 40 K, 90 Sr, 137 Cs and 239,240 Pu are: 7.9x10 -5 , 4.1x10 -6 , 1.1x10 -2 , 1.7x10 -1 , 1.4x10 -3 , 1.2x10 -1 , 2.32x10 -4 , 1.9x10 -4 , 2.7x10 -9 (mSv/year), respectively, and the contribution of U, Th series, 40 K and artificial radionuclides are 61.3%, 38.6% and 0.1%, respectively. (author)

  20. Radiation doses from phosphate fertilizers

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The activity concentrations determined of 226 Ra, 232 Th and 40 K in nCi/kg P 2 O 5 for the five most important kinds of fertilizer as well as their percent share in the economy year 1973/74 in the FRG are compiled in a table. From these values, the consumption of 0.917 million tons P 2 O 5 and from an average annual fertilizer coverage of 68.3 kg/ha, one can calculate a distribution of 32 Ci 226 Ra, 1 Ci 232 Th and 543 Ci 40 K over the total agriculturally used area, in other words, a deposit of 2.4 μCi 226 Ra, 0.07 μCi 232 Th and 40.5 μCi 40 K per ha. Taking a pessimistic view, an external radiation exposure of 0.11 mrad/a was calculated for gonads and bone marrow. If the total accumulation of 226 Ra (38% of the radiation exposure) from phosphate fertilizers from the ground during the last 80 years is assumed, then there is an exposure of 1.7 mrad/a for individual members of the population and 2.0 mrad/a for those occupied in agriculture. (HP/LH) [de

  1. Consequences of the Chernobyl reactor accident for the dose commitment of the general public

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, H

    1986-01-01

    The cumulative effective equipment dose from external radiation and by inhalation was about 5.10/sup -5/ Sv (5 mrem) for the adults monitored and about 7.10/sup -5/ Sv (7 mrem) for small children by the beginning of June. The inhalation dose has already reached its limit, but the external dose could rise by another 1 to 2.10/sup -5/ Sv (1-2 mrem) during the year. Another 2.5.10/sup -5/ Sv (2.5 mrem) effective equivalent dose was measured in children and 1.10/sup -5/ Sv (1 mrem) in adults, due to ingestion. The dose from Cs 137 received by the population in food will remain small during the next few years.

  2. Metrology of radiation doses in diagnostic radiology

    International Nuclear Information System (INIS)

    Leclet, H.

    2016-01-01

    This article recalls how to calculate effective and equivalent doses in radiology from the measured value of the absorbed dose. The 97/43 EURATOM directive defines irradiation standards for diagnostic radiology (NRD) as the value of the radiation dose received by the patient's skin when the diagnostic exam is performed. NRD values are standard values that can be exceeded only with right medical or technical reasons, they are neither limit values nor optimized values. The purpose of NRD values is to avoid the over-irradiation of patients and to homogenize radiologists' practices. French laws impose how and when radiologists have to calculate the radiation dose received by the patient's skin. The calculated values have to be compared with NRD values and any difference has to be justified. A table gives NRD values for all diagnostic exams. (A.C.)

  3. Epigenomic Adaptation to Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gould, Michael N. [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-30

    The overall hypothesis of this grant application is that the adaptive responses elicited by low dose ionizing radiation (LDIR) result in part from heritable DNA methylation changes in the epigenome. In the final budget period at the University of Wisconsin-Madison, we will specifically address this hypothesis by determining if the epigenetically labile, differentially methylated regions (DMRs) that regulate parental-specific expression of imprinted genes are deregulated in agouti mice by low dose radiation exposure during gestation. This information is particularly important to ascertain given the 1) increased human exposure to medical sources of radiation; 2) increased number of people predicted to live and work in space; and 3) enhanced citizen concern about radiation exposure from nuclear power plant accidents and terrorist ‘dirty bombs.’

  4. Dose specification for radiation therapy: dose to water or dose to medium?

    International Nuclear Information System (INIS)

    Ma, C-M; Li Jinsheng

    2011-01-01

    The Monte Carlo method enables accurate dose calculation for radiation therapy treatment planning and has been implemented in some commercial treatment planning systems. Unlike conventional dose calculation algorithms that provide patient dose information in terms of dose to water with variable electron density, the Monte Carlo method calculates the energy deposition in different media and expresses dose to a medium. This paper discusses the differences in dose calculated using water with different electron densities and that calculated for different biological media and the clinical issues on dose specification including dose prescription and plan evaluation using dose to water and dose to medium. We will demonstrate that conventional photon dose calculation algorithms compute doses similar to those simulated by Monte Carlo using water with different electron densities, which are close (<4% differences) to doses to media but significantly different (up to 11%) from doses to water converted from doses to media following American Association of Physicists in Medicine (AAPM) Task Group 105 recommendations. Our results suggest that for consistency with previous radiation therapy experience Monte Carlo photon algorithms report dose to medium for radiotherapy dose prescription, treatment plan evaluation and treatment outcome analysis.

  5. Effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Ionizing radiation of cosmic or terrestrial origin is part of the environment in which all living things have evolved since the creation of the universe. The artificial radioactivity generated by medical diagnostic and treatment techniques, some industrial activities, radioactive fallout, etc. has now been added to this natural radioactivity. This article reviews the biological effects of the low doses of ionizing radiation to which the population is thus exposed. Their carcinogenic risk cannot simply be extrapolated from what we know about high-dose exposure. (author)

  6. Tumor induction by small doses ionising radiation

    International Nuclear Information System (INIS)

    Putten, L.M. van

    1981-01-01

    Tumour induction by low radiation doses is in general a non-linear process. However, two exceptions are well known: myeloid leukemia in Rf mice and mamma tumours in Sprague-Dawley rats. The hypothesis that radiation is highly oncogenic in combination with cell growth stimuli, as reaction to massive cell death after damage of nuclear DNA, is applied to man and the consequences are discussed. (Auth.)

  7. Visual indicator of absorbed radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Generalova, V V; Krasovitskii, B M; Vainshtok, B A; Gurskii, M N

    1968-10-15

    A visual indicator of the absorbed doses of ionizing radiation is proposed. The indicator has a polymer base with the addition of a dye. A distinctive feature of the indicator consists of the use of polystyrene as its polymer base with the addition of halogen-containing hydrocarbon and the light-proof dye. Such combination of the radiation-resistant polymer of polystyrene and the light-proof dyestuff makes the proposed indicator highly stable.

  8. An approach to the calculation of dose commitment arising from different methods for the long-term management of uranium mill tailings through aquatic pathways

    International Nuclear Information System (INIS)

    1983-01-01

    This report describes the development and use of the aquatic pathway portion of a diagnostic model. The model was developed as part of a study intended to improve methods for estimating the environmental dispersion of radionuclides from uranium mill tailings disposal sites. This, the aquatic portion of the study, investigates radionuclide dispersion through aquatic pathways from a hypothetical mill tailings disposal site and presents dose commitment calculations for human exposure to the simulated patterns of radionuclide concentrations over time. Dose commitment estimates are made, based on the simulated geochemical behaviour of the hypothetical site and tailings, aquatic dispersion from the generic site located in northern Ontario and human exposure to and utilization of aquatic products (fish, water). The dose commitment estimates are presented based upon a range of input variable assumptions. This, the 'Aquatic Technical Appendix', describes all important aspects of: the aquatic portion of the diagnostic model, the modelling of the hypothetical tailings site and tailings mass, and findings resulting from use of the models. This report does not predict real radiation doses, or real radionuclide dispersion patterns for any site whether existing or projected

  9. Biological evidence of low ionizing radiation doses

    International Nuclear Information System (INIS)

    Mirsch, Johanna

    2017-01-01

    Throughout life, every person is constantly exposed to different types of ionising radiation, without even noticing the exposure. The mean radiation exposure for people living in Germany amounts to approximately 4 mSv per year and encompasses the exposure from natural and man-made sources. The risks associated with exposure to low doses of radiation are still the subject of intense and highly controversial discussions, emphasizing the social relevance of studies investigating the effects of low radiation doses. In this thesis, DNA double-strand breaks (DSBs) were analyzed within three projects covering different aspects. DSBs are among the most hazardous DNA lesions induced by ionizing radiation, because this type of damage can easily lead to the loss of genetic information. Consequently, the DSB presents a high risk for the genetic integrity of the cell. In the first project, extensive results uncovered the track structure of charged particles in a biological model tissue. This provided the first biological data that could be used for comparison with data that were measured or predicted using theoretical physical dosimetry methods and mathematical simulations. Charged particles contribute significantly to the natural radiation exposure and are used increasingly in cancer radiotherapy because they are more efficient in tumor cell killing than X- or γ-rays. The difference in the biological effects of high energy charged particles compared with X- or γ-rays is largely determined by the spatial distribution of their energy deposition and the track structure inducing a three-dimensional damage pattern in living cells. This damage pattern consists of cells directly hit by the particle receiving a high dose and neighboring cells not directly hit by primary particles but exposed to far-reaching secondary electrons (δ-electrons). These cells receive a much lower dose deposition in the order of a few mGy. The radial dose distribution of single particle tracks was

  10. Effects of small doses of ionising radiation

    International Nuclear Information System (INIS)

    Doll, R.

    1998-01-01

    Uncertainty remains about the quantitative effects of doses of ionising radiation less than 0.2 Sv. Estimates of hereditary effects, based on the atomic bomb survivors, suggest that the mutation doubling dose is about 2 Sv for acute low LET radiation, but the confidence limits are wide. The idea that paternal gonadal irradiation might explain the Seascale cluster of childhood leukaemia has been disproved. Fetal irradiation may lead to a reduction in IQ and an increase in seizures in childhood proportional to dose. Estimates that doses to a whole population cause a risk of cancer proportional to dose, with 0.1 Sv given acutely causing a risk of 1%, will need to be modified as more information is obtained, but the idea that there is a threshold for risk above this level is not supported by observations on the irradiated fetus or the effect of fallout. The idea, based on ecological observations, that small doses protect against the development of cancer is refuted by the effect of radon in houses. New observations on the atomic bomb survivors have raised afresh the possibility that small doses may also have other somatic effects. (author)

  11. Radiologist and angiographic procedures. Absorbed radiation dose

    International Nuclear Information System (INIS)

    Tryhus, M.; Mettler, F.A. Jr.; Kelsey, C.

    1987-01-01

    The radiation dose absorbed by the angiographer during angiographic procedures is of vital importance to the radiologist. Nevertheless, most articles on the subject are incomplete, and few measure gonadal dose. In this study, three TLDs were used for each of the following sites: radiologist's eyes, thyroid, gonads with and without shielding apron, and hands. The average dose during carotid angiograms was 2.6, 4.1, 0.4, 4.7, and 7.1 mrads to the eyes, thyroid, gonads with and without .5 mm of lead shielding, and hands, respectively. Average dose during abdominal and peripheral vascular angiographic procedures was 5.2, 7.5, 1.2, 8.5, and 39.9 mrads to the eyes, thyroid, gonads with and without shielding, and hands, respectively. A literature review demonstrates a significant reduction in radiation dose to the angiographer after the advent of automated injectors. Our measured doses for carotid angiography are compatible with contemporary reported values. There was poor correlation with fluoroscopy time and measured dose to the angiographer

  12. Intracavitary radiation treatment planning and dose evaluation

    International Nuclear Information System (INIS)

    Anderson, L.L.; Masterson, M.E.; Nori, D.

    1987-01-01

    Intracavitary radiation therapy with encapsulated radionuclide sources has generally involved, since the advent of afterloading techniques, inserting the sources in tubing previously positioned within a body cavity near the region to be treated. Because of the constraints on source locations relative to the target region, the functions of treatment planning and dose evaluation, usually clearly separable in interstitial brachytherapy, tend to merge in intracavitary therapy. Dose evaluation is typically performed for multiple source-strength configurations in the process of planning and thus may be regarded as complete when a particular configuration has been selected. The input data for each dose evaluation, of course, must include reliable dose distribution information for the source-applicator combinations used. Ultimately, the goal is to discover the source-strength configuration that results in the closest possible approach to the dose distribution desired

  13. Brachytherapy radiation doses to the neurovascular bundles

    International Nuclear Information System (INIS)

    Di Biase, Steven J.; Wallner, Kent; Tralins, Kevin; Sutlief, Steven

    2000-01-01

    Purpose: To investigate the role of radiation dose to the neurovascular bundles (NVB) in brachytherapy-related impotence. Methods and Materials: Fourteen Pd-103 or I-125 implant patients were studied. For patients treated with implant alone, the prostate and margin (clinical target volume [CTV]) received a prescription dose of 144 Gy for I-125 or 115 Gy for Pd-103. Two patients received Pd-103 (90 Gy) with 46 Gy supplemental external beam radiation (EBRT). Axial CT images were acquired 2 to 4 hours postoperatively for postimplant dosimetry. Because the NVBs cannot be visualized on CT, NVB calculation points were determined according to previously published anatomic descriptions. Bilateral NVB points were considered to lie posterior-laterally, approximately 2 mm from the prostatic capsule. NVB doses were recorded bilaterally, at 0.5-cm intervals from the prostatic base. Results: For Pd-103, the average NVB doses ranged from 150 Gy to 260 Gy, or 130% to 226% of the prescription dose. For I-125, the average NVB dose ranged from 200 Gy to 325 Gy, or 140% to 225% of the prescription dose. These was no consistent relationship between the NVB dose and the distance from the prostatic base. To examine the possible effect of minor deviations of our calculation points from the true NVB location, we performed NVB calculations at points 2 mm medial or lateral from the NVB calculation point in 8 patients. Doses at these alternate calculation points were comparable, although there was greater variability with small changes in the calculation point if sources were located outside the capsule, near the NVB calculation point. Three patients who developed early postimplant impotence had maximal NVB doses that far exceeded the average values. Conclusions: In the next few years, we hope to clarify the role of high NVB radiation doses on potency, by correlating NVB dose calculations with a large number of patients enrolled in an ongoing I-125 versus Pd-103 trial for early-stage patients

  14. Radiation dose effects, hardening of electronic components

    International Nuclear Information System (INIS)

    Dupont-Nivet, E.

    1991-01-01

    This course reviews the mechanism of interaction between ionizing radiation and a silicon oxide type dielectric, in particular the effect of electron-hole pairs creation in the material. Then effects of cumulated dose on electronic components and especially in MOS technology are examined. Finally methods hardening of these components are exposed. 93 refs

  15. Internal radiation dose calculations with the INREM II computer code

    International Nuclear Information System (INIS)

    Dunning, D.E. Jr.; Killough, G.G.

    1978-01-01

    A computer code, INREM II, was developed to calculate the internal radiation dose equivalent to organs of man which results from the intake of a radionuclide by inhalation or ingestion. Deposition and removal of radioactivity from the respiratory tract is represented by the Internal Commission on Radiological Protection Task Group Lung Model. A four-segment catenary model of the gastrointestinal tract is used to estimate movement of radioactive material that is ingested, or swallowed after being cleared from the respiratory tract. Retention of radioactivity in other organs is specified by linear combinations of decaying exponential functions. The formation and decay of radioactive daughters is treated explicitly, with each radionuclide in the decay chain having its own uptake and retention parameters, as supplied by the user. The dose equivalent to a target organ is computed as the sum of contributions from each source organ in which radioactivity is assumed to be situated. This calculation utilizes a matrix of dosimetric S-factors (rem/μCi-day) supplied by the user for the particular choice of source and target organs. Output permits the evaluation of components of dose from cross-irradiations when penetrating radiations are present. INREM II has been utilized with current radioactive decay data and metabolic models to produce extensive tabulations of dose conversion factors for a reference adult for approximately 150 radionuclides of interest in environmental assessments of light-water-reactor fuel cycles. These dose conversion factors represent the 50-year dose commitment per microcurie intake of a given radionuclide for 22target organs including contributions from specified source organs and surplus activity in the rest of the body. These tabulations are particularly significant in their consistent use of contemporary models and data and in the detail of documentation

  16. Bio-indicators for radiation dose assessment

    International Nuclear Information System (INIS)

    Trivedi, A.

    1990-12-01

    In nuclear facilities, such as Chalk River Laboratories, dose to the atomic radiation workers (ARWs) is assessed routinely by using physical dosimeters and bioassay procedures in accordance with regulatory recommendations. However, these procedures may be insufficient in some circumstances, e.g., in cases where the reading of the physical dosimeters is questioned, in cases of radiation accidents where the person(s) in question was not wearing a dosimeter, or in the event of a radiation emergency when an exposure above the dose limits is possible. The desirability of being able to assess radiation dose on the basis of radio-biological effects has prompted the Dosimetric Research Branch to investigate the suitability of biological devices and techniques that could be used for this purpose. Current biological dosimetry concepts suggest that there does not appear to be any bio-indicator that could reliably measure the very low doses that are routinely measured by the physical devices presently in use. Nonetheless, bio-indicators may be useful in providing valuable supplementary information in cases of unusual radiation exposures, such as when the estimated body doses are doubtful because of lack of proper physical measurements, or in cases where available results need to be confirmed for medical treatment plannings. This report evaluates the present state of biological dosimetry and, in particular, assesses the efficiency and limits of individual indicators. This has led to the recommendation of a few promising research areas that may result in the development of appropriate biological dosimeters for operational and emergency needs at Chalk River

  17. Radiation doses and risks from internal emitters

    International Nuclear Information System (INIS)

    Harrison, John; Day, Philip

    2008-01-01

    This review updates material prepared for the UK Government Committee Examining Radiation Risks from Internal Emitters (CERRIE) and also refers to the new recommendations of the International Commission on Radiological Protection (ICRP) and other recent developments. Two conclusions from CERRIE were that ICRP should clarify and elaborate its advice on the use of its dose quantities, equivalent and effective dose, and that more attention should be paid to uncertainties in dose and risk estimates and their implications. The new ICRP recommendations provide explanations of the calculation and intended purpose of the protection quantities, but further advice on their use would be helpful. The new recommendations refer to the importance of understanding uncertainties in estimates of dose and risk, although methods for doing this are not suggested. Dose coefficients (Sv per Bq intake) for the inhalation or ingestion of radionuclides are published as reference values without uncertainty. The primary purpose of equivalent and effective dose is to enable the summation of doses from different radionuclides and from external sources for comparison with dose limits, constraints and reference levels that relate to stochastic risks of whole-body radiation exposure. Doses are calculated using defined biokinetic and dosimetric models, including reference anatomical data for the organs and tissues of the human body. Radiation weighting factors are used to adjust for the different effectiveness of different radiation types, per unit absorbed dose (Gy), in causing stochastic effects at low doses and dose rates. Tissue weighting factors are used to take account of the contribution of individual organs and tissues to overall detriment from cancer and hereditary effects, providing a simple set of rounded values chosen on the basis of age- and sex-averaged values of relative detriment. While the definition of absorbed dose has the scientific rigour required of a basic physical quantity

  18. The Influence of Organizational Commitment, Job Commitment and Job Satisfaction on Professionalism Perceived by Radiotechnologists Working in the Department of Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Gim, Yang Soo; Lee, Sun Young; Lee, Joon Seong; Gwak, Geun Tak; Park, Ju Gyeong; Lee, Seung Hoon; Hwang, Ho In; Cha, Seok Yong [Dept. of Radiation Oncology, Chunbuk National University Hospital, Jeonju (Korea, Republic of)

    2012-09-15

    The study is to check the specialty of radiotherapists working in the department of radiation oncology and find job satisfaction, organizational commitment and job commitment having an effect on professional parts. After making analysis of the mutual relation, it is to provide radiotechnologists with making progress in the future. From March 2 to March 30, we had carried out a survey with email. It is possible to have 272 questionnaires answered in the survey. We make use of SPSS 13.0 for Windows to analyze the data collected for study. Frequency and a percentage are meant to show general characteristics, and t-test and ANOVA to do the difference between general properties and professionalism. Pearson's correlation coefficient also is meant to do the correlation of professionalism, organizational job commitment and job satisfaction, and multiple regression analysis to do the factor for a relevant variable to affect professionalism. There are subdivisions in the professionalism informing us of the self-regulation 17.74{+-}2.32/3.55{+-}46, a sense of calling 17.58{+-}2.63/3.52{+-}53, reference of the professional 17.14{+-}2.39/3.43{+-}48, service to the public 15.97{+-}2.48/3.19{+-}50, and autonomy 15.68{+-}2.28/3.14{+-}46. Grand mean turns out to be 83.89{+-}7.63(Summation of items)/ 3.37{+-}0.49(Numbers of items). When it comes to a statistical relation between general characteristics and professionalism, the statistics have it that these come within age (P<.001), period of employment (P<.001), education status (P<.05), a monthly income (P<.001), radiotherapists who get a special license (P<.001), the position (P<.001), and an opportunity for developing (P<.001). As a result of organizational commitment, job commitment, and job satisfaction, grand mean in organizational commitment proves to be 81.10{+-}8.15/3.34{+-}34. There are subvisions showing affective commitment 28.64{+-}4.61/3.58, continuance commitment 27.54{+-}4.22/3.44{+-}53, and normative commitment

  19. Evaluation of the environmental dose commitment due to radium-contaminated soil

    International Nuclear Information System (INIS)

    Feldman, J.; Eng, J.; Giardina, P.A.

    1979-01-01

    The Middlesex Sampling Plant located in Middlesex, NJ was a uranium ore sampling plant operating during the 1940s and 1950s. A radiological problem was identified during a routine program to resurvey selected former MED/AEC sites which are no longer under government control. The survey, when conducted by the US Department of Energy (DOE), indicated that the Middlesex facility had a radium and radon problem on-site as well as off-site, where some of the contaminated soil was used as landfill. The old sampling plant is presently being used as a Marine Corps Reserve Training Center. Subsequent, more detailed studies have identified possible solutions to the contamination problem. The US Environmental Protection Agency (EPA) is examining cleanup options based on a cost/benefit analysis utilizing the environmental dose commitment concept rather than an annual dose calculation. The practice of using dose to local populations as a basis for impact assessment can lead to a large underestimate of the total potential impact from the continuous environmental release of radon

  20. Scatter Dose in Patients in Radiation Therapy

    International Nuclear Information System (INIS)

    Schmidt, W. F. O.

    2003-01-01

    Patients undergoing radiation therapy are often treated with high energy radiation (bremsstrahlung) which causes scatter doses in the patients from various sources as photon scatter coming from collimator, gantry, patient, patient table or room (walls, floor, air) or particle doses resulting from gamma-particle reactions in the atomic nucleus if the photon energies are above 8 MeV. In the last years new treatment techniques like IMRT (esp the step-and-shoot- or the MIMIC-techniques) have increased interest in these topics again. In the lecture an overview about recent measurements on scatter doses resulting from gantry, table and room shall be given. Scatter doses resulting from the volume treated in the patient to other critical parts of the body like eyes, ovarii etc. have been measured in two diploma works in our institute and are compared with a program (PERIDOSE; van der Giessen, Netherlands) to estimate them. In some cases these scatter doses have led to changes of treatment modalities. Also an overview and estimation of doses resulting from photon-particle interactions is given according to a publication from Gudowska et al.(Gudowska I, Brahme A, Andreo P, Gudowski W, Kierkegaard J. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV. Phys Med Biol 1999; 44(9):2099-2125.). Energy dose has been calculated with Monte Carlo-methods and is compared with analytical methods for 50 MV bremsstrahlung. From these data biologically effective doses from particles in different depths of the body can be estimated also for energies used in normal radiotherapy. (author)

  1. Radiation doses from radioactivity in incandescent mantles

    International Nuclear Information System (INIS)

    1985-01-01

    Thorium nitrate is used in the production of incandescent mantles for gas lanterns. In this report dose estimates are given for internal and external exposure that result from the use of the incandescent mantles for gas lanterns. The collective, effective dose equivalent for all users of gas mantles is estimated to be about 100 Sv per annum in the Netherlands. For the population involved (ca. 700,000 persons) this is roughly equivalent to 5% to 10% of the collective dose equivalent associated with exposure to radiation from natural sources. The major contribution to dose estimates comes from inhalation of radium during burning of the mantles. A pessimistic approach results in individual dose estimates for inhalation of up to 0.2 mSv. Consideration of dose consequences in case of a fire in a storage department learns that it is necessary for emergency personnel to wear respirators. It is concluded that the uncontrolled removal of used gas mantles to the environment (soil) does not result in a significant contribution to environmental radiation exposure. (Auth.)

  2. Radiation therapy tolerance doses for treatment planning

    International Nuclear Information System (INIS)

    Lyman, J.T.

    1987-01-01

    To adequately plan acceptable dose distributions for radiation therapy treatments it is necessary to ensure that normal structures do not receive unacceptable doses. Acceptable doses are generally those that are below a stated tolerance dose for development of some level of complication. To support the work sponsored by the National Cancer Institute, data for the tolerance of normal tissues or organs to low-LET radiation has been compiled from a number of sources. These tolerance dose data are ostensibly for uniform irradiation of all or part of an organ, and are for either 5% (TD 5 ) or 50% (TD 50 ) complication probability. The ''size'' of the irradiated organ is variously stated in terms of the absolute volume or the fraction of the organ volume irradiated, or the area or the length of the treatment field. The accuracy of these data is questionable. Much of the data represent doses that one or several experienced therapists have estimated could be safely given rather than quantitative analyses of clinical observations. Because these data have been obtained from multiple sources with possible different criteria for the definition of a complication, there are sometimes different values for what is apparently the same end point. 20 refs., 1 fig., 1 tab

  3. Radiation dose measurement in gastrointestinal studies

    International Nuclear Information System (INIS)

    Sulieman, A.; Elzaki, M.; Kappas, C.; Theodorou, K.

    2011-01-01

    Barium studies investigations (barium swallow, barium meal and barium enema) are the basic routine radiological examination, where barium sulphate suspension is introduced to enhance image contrast of gastrointestinal tracts. The aim of this study was to quantify the patients' radiation doses during barium studies and to estimate the organ equivalent dose and effective dose with those procedures. A total of 33 investigations of barium studies were measured by using thermoluminescence dosemeters. The result showed that the patient entrance surface doses were 12.6±10, 44.5±49 and 35.7±50 mGy for barium swallow, barium meal, follow through and enema, respectively. Effective doses were 0.2, 0.35 and 1.4 mSv per procedure for barium swallow, meal and enema respectively. Radiation doses were comparable with the previous studies. A written protocol for each procedure will reduce the inter-operator variations and will help to reduce unnecessary exposure. (authors)

  4. Link 'soil-plant' as critical in formation committed doses from uptake of long-lived radionuclides

    International Nuclear Information System (INIS)

    Kravetz, A. P.; Pavlenko, Y. A.; Grodzinsky, D. M.

    1994-01-01

    General algorithm of calculation dose from intake 137 Cs and 90 Sr depending upon level of pollution and agrochemical type of soil where trophycal chains to begin with, have been proposed. This methods consider link 'soil → plant' as critical in formation of doses from the intake long-lived radionuclides. Calculation of committed dose as function of type of soil and level of radionuclide pollution have been realized for seven main soil types of the White Russian and Ukrainian Wooded district. (author)

  5. Patient radiation doses from neuroradiology procedures

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Roman, M J; Abreu-Luis, J; Hernandez-Armas, J [Servicio de Fisica Medica, Hospital Universitario de Canarias, La Laguna, Tenerife (Spain); Prada-Martinez, E [Servicio de Radiodiagnostico, Hospital Universitario de Canarias, La Laguna, Tenerife (Spain)

    2001-03-01

    Following the presentation of radiation-induced deterministic effects by some patients undergoing neuroradiological procedures during successive sessions, such as temporary epilation, in the 'Hospital Universitario de Canarias', measurements were made of dose to patients. The maximum dose-area product measured by ionization chamber during these procedures was 39617 cGy.cm{sup 2} in a diagnostic of aneurysm and the maximum dose to the skin measured by thermoluminescent dosemeters (TLDs) was 462.53 mGy. This can justify certain deterministic effects but it is unlikely that the patients will suffer serious effects from this skin dose. Also, measurements were made of effective dose about two usual procedures, embolisation of tumour und embolisation of aneurysm. These procedures were reproduced with an anthropomorphic phantom Rando and doses were measured with TLDs. Effective doses obtained were 3.79 mSv and 4.11 mSv, respectively. The effective dose valued by the program EFFDOSE was less than values measured with TLDs. (author)

  6. Patient radiation doses from neuroradiology procedures

    International Nuclear Information System (INIS)

    Garcia-Roman, M.J.; Abreu-Luis, J.; Hernandez-Armas, J.; Prada-Martinez, E.

    2001-01-01

    Following the presentation of radiation-induced deterministic effects by some patients undergoing neuroradiological procedures during successive sessions, such as temporary epilation, in the 'Hospital Universitario de Canarias', measurements were made of dose to patients. The maximum dose-area product measured by ionization chamber during these procedures was 39617 cGy.cm 2 in a diagnostic of aneurysm and the maximum dose to the skin measured by thermoluminescent dosemeters (TLDs) was 462.53 mGy. This can justify certain deterministic effects but it is unlikely that the patients will suffer serious effects from this skin dose. Also, measurements were made of effective dose about two usual procedures, embolisation of tumour und embolisation of aneurysm. These procedures were reproduced with an anthropomorphic phantom Rando and doses were measured with TLDs. Effective doses obtained were 3.79 mSv and 4.11 mSv, respectively. The effective dose valued by the program EFFDOSE was less than values measured with TLDs. (author)

  7. Internal radiation dose in diagnostic nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Roedler, H D; Kaul, A; Hine, G J

    1978-01-01

    Absorbed dose values per unit administered activity for the most frequently used radipharmaceuticals and methods were calculated according to the MIRD concept or compiled from literature and were tabulated in conventional as well as in the SI-units recently introduced. The data are given for critical or investigated organs, ovaries, testes and red bone marrow. Where available, dose values for newborns, infants and children are included. Additionally, mean values of administered activity are listed. The manner in which to estimate the radiation dose to the patient is to multiply the tabulated dose values per unit administered activity with the corresponding mean or the actually administered activity. The methods are arranged in correlation with the following nuclear medical subspecialities: 1. Endocrinology 2. Neurology, 3. Osteomyology, 4. Gastroenterology, 5. Nephrology, 6. Pulmonology, 7. Hematology, 8. Cardiology/Angiology.

  8. Radiation dose measurements in intravenous pyelography

    International Nuclear Information System (INIS)

    Egeblad, M.; Gottlieb, E.

    1975-01-01

    Intravenous pyelography (IVP) and micturition cystourethrography (MCU) are the standard procedures in the radiological examination of children with urinary tract infections and in the control of these children. Gonad protection against radiation is not possible in MCU, but concerning the girls partly possible in IVP. It is of major importance to know the radiation dose in these procedures, especially since the examination is often repeated in the same patients. All IVP were done by means of the usual technique including possible gonad protection. The thermoluminescence dosimeter was placed rectally in the girls and fixed on the scrota in the boys. A total of 50 children was studied. Gonad dose ranged from 140 to 200mR in the girls and from 20 to 70mR in the boys (mean values). The radiation dose in IVP is very low compared to that of MCU, and from this point of view IVP is a dose saving examination in the control of children with urinary tract infections [fr

  9. Ionizing radiation dose due to the use of agricultural fertilizers

    International Nuclear Information System (INIS)

    Umisedo, Nancy Kuniko

    2007-01-01

    Among several agents that exist in the environment which can expose to different risks and effects, there is the ionizing radiation whose knowledge of dose is of importance to the effective control and prevention of possible damages to human beings and to the environment. The transfer of radionuclides from fertilizers to/and soils to the foodstuffs can result as an increment in the internal dose when they are consumed by the human beings. This work evaluates the contribution of fertilizers to the ionizing radiation dose in the environment and in the human being. Samples of fertilizers, soils and vegetables produced in fertilized soils were analysed through gamma spectrometry with the use of a hyper pure germanium detector. Measurements of ambient dose with thermoluminescent dosimeters were also performed. In the fertilized soil samples values of specific activities from 36 to 342 Bq/kg for K-40, from 42 to 142 Bq/kg for U-238 and from 36 to 107 Bq/kg for Th-232 were obtained. In the vegetables the values varied from 21 to 118 Bq/kg for K-40 and for the elements of uranium and thorium series the values were less than 2 Bq/kg. In fertilizers the maximum value of 5800 Bq/kg was obtained for K-40, 430 Bq/kg for U-238 and 230 Bq/kg for Th-232. The average values of soil to plant transfer factor were not significantly different among the types of vegetables. The annual committed effective dose of 0.882 μSv due to the ingestion of K-40 from the analysed vegetables is very small if compared to the reference value of 170 μv given by United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 2000). The thermoluminescent dosimetry provided the annual ambient dose equivalent from 1.5 to 1.8 mSv without differences between cultivated and non cultivated fields. Through the results obtained, it was not observed a significant transfer of radionuclides from fertilizers to soils and to foodstuffs in the conditions adopted in this work and consequently there

  10. Radiation doses in endoscopic interventional procedures

    International Nuclear Information System (INIS)

    Tsapaki, V.; Paraskeva, K.; Mathou, N.; Aggelogiannopoulou, P.; Triantopoulou, C.; Karagianis, J.; Giannakopoulos, A.; Paspatis, G.; Voudoukis, E.; Athanasopoulos, N.; Lydakis, I.; Scotiniotis, H.; Georgopoulos, P.; Finou, P.; Kadiloru, E.

    2012-01-01

    Purpose: Extensive literature exists on patient radiation doses in various interventional procedures. This does not stand for endoscopic retrograde cholangiopancreatography (ERCP) where the literature is very limited. This study compares patient dose during ERCP procedures performed with different types of X-ray systems. Methods and Materials: Four hospitals participated in the study with the following X-ray systems: A) X-ray conventional system (X-ray tube over table), 137 pts, B) X-ray conventional system (X-ray tube under table), 114 pts, C) C-arm system, 79 pts, and D) angiography system, 57 pts. A single experienced endoscopist performed the ERCP in each hospital. Kerma Area Product (KAP), fluoroscopy time (T) and total number of X-ray films (F) were collected. Results: Median patient dose was 6.2 Gy.cm 2 (0.02-130.2 Gy.cm 2 ). Medium linear correlation between KAP and T (0.6) and F (0.4) were observed. Patient doses were 33 % higher than the reference value in UK (4.15 Gy.cm 2 with a sample of 6089 patients). Median KAP for each hospital was: A) 3.1, B) 9.2, C) 3.9 and D) 6.2 Gy.cm 2 . Median T was: A) 2.6, B) 4.1, C) 2.8 and D) 3.4 min. Median F was: A) 2, B) 7, C) 2 and D) 2 films. Conclusion: Patient radiation dose during ERCP depends on: a) fluoroscopy time and films taken, b) the type of the X-ray system used, with the C arm and the conventional over the couch systems carrying the lower patient radiation dose and the angiography system the higher. (authors)

  11. Internal 40K radiation dose to Indians

    International Nuclear Information System (INIS)

    Ranganathan, S.; Someswara Rao, M.; Nagaratnam, A.; Mishra, U.C.

    2002-01-01

    A group of 350 Indians from both sexes (7-65 years) representing different regions of India was studied for internal 40 K radiation dose from the naturally occurring body 40 K, which was measured in the National Institute of Nutrition (NIN) whole-body counter. Although the 40 K radioactivity reached a peak value by 18 years in female (2,412 Bq) and by 20 years in male (3,058 Bq) and then varied inversely with age in both sexes, the radiation dose did not show such a trend. Boys and girls of 11 years had annual effective dose of nearly 185 mSv, which decreased during adolescence (165 mSv), increased to 175 mSv by 18-20 years in adults and decreased progressively on further ageing to 99 mSv in males and 69 mSv in females at 65 years. The observed annual effective dose (175 mSv) of the young adults was close to that of the ICRP Reference Man (176 mSv) and Indian Reference Man (175 mSv). With a mean specific activity of 55 Bq/kg for the subjects and a conversion coefficient close to 3 mSv per annum per Bq/kg, the average annual effective dose from the internal 40 K turned out to be 165 mSv for Indians. (author)

  12. Patient radiation dose during mammography procedures

    International Nuclear Information System (INIS)

    Mohamed, Swsan Awd Elkriem

    2015-11-01

    The objectives of this study were to estimate the patient dose in term of mean glandular dose and assist in optimization of radiation protection in mammographic procedures in Sudan. A total number of 107 patients were included. Four mammographic units were participated. Only one center was using automatic exposure control (AEC). The mean doses in (mGy) for the CC projection were 3.13, 1.24, 2.45 and 0.98 and for the MLO projection was 2.13, 1.26, 1.99 and 1.02 for centers A, B, C, and D, respectively. The total mean dose per breast from both projections was 5.26, 2.50, 4.44 and 1.99 mGy for centers A, B, C and D, respectively. The minimum mean glandular dose was found between the digital system which was operated under AEC and one of the manual selected exposure factors systems, this highlight possible optimization of radiation protection in the other manual selected systems. The kilo volt and the tube current time products should be selected correctly according to the breast thickness in both centers A and C. (author)

  13. Agriculture-related radiation dose calculations

    International Nuclear Information System (INIS)

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs

  14. Committed effective dose determination in cereal flours by gamma-ray spectrometry; Determinacao das doses efetivas por ingestao de farinhas de cereais atraves da espectrometria de raios gama

    Energy Technology Data Exchange (ETDEWEB)

    Scheibel, Viviane

    2006-07-01

    The health impact from radionuclides ingestion of foodstuffs was evaluated by the committed effective doses determined in commercial samples of South-Brazilian cereal flours (soy, wheat, corn, manioc, rye, oat, barley and rice flour). The radioactivity traces of {sup 228}Th, {sup 228}Ra, {sup 226}Ra, {sup 40}K, {sup 7}Be and {sup 137}Cs were measured by gamma-ray spectrometry employing a 66% relative efficiency HPGe detector. The energy resolution for the 1332.46 keV line of {sup 60}Co was 2.03 keV. The committed effective doses were calculated with the activities analyzed in the present flour samples, the foodstuff rates of consumption (Brazilian Institute of Geography and Statistics) and the ingestion dose coefficients (International Commission of Radiological Protection). The reliability median activities were verified with {chi}{sup 2} tests, assuring the fittings quality. The highest concentration levels of {sup 228}Th and {sup 40}K were 3.5 {+-} 0.4 and 1469 {+-} 17 Bq.kg{sup -1} for soy flour, respectively, with 95% of confidence level. The lower limit of detection for {sup 137}Cs ranged from 0.04 to 0.4 Bq.kg{sup -1}. The highest committed effective dose was 0.36 {mu}Sv.y{sup -1} for {sup 228}Ra in manioc flour (adults). All committed effective doses determined at the present work were lower than the UNSCEAR limits of 140 {mu}Sv.y{sup -1} and much lower than the ICRP (1991) limits of 1 mSv.y{sup -1}, for general public. There are few literature references for natural and artificial radionuclides in foodstuffs and mainly for committed effective doses. This work brings the barley flour data, which is not present at the literature and {sup 7}Be data which is not encountered in foodstuffs at the literature, besides all the other flours data information about activities and committed effective doses. (author)

  15. Radiation doses to patients at dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Paulusson-Odenhagen, M

    1975-11-01

    An investigation about the technique and the equipment at x-ray investigations and the distribution of the radiation doses to the thyroid and the gonads has been made in the dental policlinics belonging to the county council of the province of Stockholm. This investigation, which was suggested by the National Institute of Radiation Protection and the faculty of odontology in Stockholm, consisted of on one hand a distributed questionnaire and on the other visits. The questionnaire was distributed to all dentists (altogether 343) belonging to the dental policlinics of the county council of the province of Stockholm. 22 dentists of these were visited.

  16. Wound trauma alters ionizing radiation dose assessment

    Directory of Open Access Journals (Sweden)

    Kiang Juliann G

    2012-06-01

    Full Text Available Abstract Background Wounding following whole-body γ-irradiation (radiation combined injury, RCI increases mortality. Wounding-induced increases in radiation mortality are triggered by sustained activation of inducible nitric oxide synthase pathways, persistent alteration of cytokine homeostasis, and increased susceptibility to bacterial infection. Among these factors, cytokines along with other biomarkers have been adopted for biodosimetric evaluation and assessment of radiation dose and injury. Therefore, wounding could complicate biodosimetric assessments. Results In this report, such confounding effects were addressed. Mice were given 60Co γ-photon radiation followed by skin wounding. Wound trauma exacerbated radiation-induced mortality, body-weight loss, and wound healing. Analyses of DNA damage in bone-marrow cells and peripheral blood mononuclear cells (PBMCs, changes in hematology and cytokine profiles, and fundamental clinical signs were evaluated. Early biomarkers (1 d after RCI vs. irradiation alone included significant decreases in survivin expression in bone marrow cells, enhanced increases in γ-H2AX formation in Lin+ bone marrow cells, enhanced increases in IL-1β, IL-6, IL-8, and G-CSF concentrations in blood, and concomitant decreases in γ-H2AX formation in PBMCs and decreases in numbers of splenocytes, lymphocytes, and neutrophils. Intermediate biomarkers (7 – 10 d after RCI included continuously decreased γ-H2AX formation in PBMC and enhanced increases in IL-1β, IL-6, IL-8, and G-CSF concentrations in blood. The clinical signs evaluated after RCI were increased water consumption, decreased body weight, and decreased wound healing rate and survival rate. Late clinical signs (30 d after RCI included poor survival and wound healing. Conclusion Results suggest that confounding factors such as wounding alters ionizing radiation dose assessment and agents inhibiting these responses may prove therapeutic for radiation combined

  17. Lowering the Radiation Dose in Dental Offices.

    Science.gov (United States)

    Radan, Elham

    2017-04-01

    While the use of dental imaging continues to evolve into more advanced modalities such as 3-D cone beam computed tomography, in addition to conventional 2-D imaging (intraoral, panoramic and cephalometric), the public concern for radiation safety is also increasing. This article is a guide for how to reduce patients’ exposure to the minimum with proper selection criteria (as needed only if it benefits the patient) and knowledge of effective doses, exposure parameters and proper collimation.

  18. PABLM: a computer program to calculate accumulated radiation doses from radionuclides in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Kennedy, W.E. Jr.; Soldat, J.K.

    1980-03-01

    A computer program, PABLM, was written to facilitate the calculation of internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. This report contains details of mathematical models used and calculational procedures required to run the computer program. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides in the environment after the releases have ended. Radioactive decay is considered during the release of radionuclides, after they are deposited on the plants or ground, and during holdup of food after harvest. The radiation dose models consider several exposure pathways. Doses may be calculated for either a maximum-exposed individual or for a population group. The doses calculated are accumulated doses from continuous chronic exposure. A first-year committed dose is calculated as well as an integrated dose for a selected number of years. The equations for calculating internal radiation doses are derived from those given by the International Commission on Radiological Protection (ICRP) for body burdens and MPC's of each radionuclide. The radiation doses from external exposure to contaminated water and soil are calculated using the basic assumption that the contaminated medium is large enough to be considered an infinite volume or plane relative to the range of the emitted radiations. The equations for calculations of the radiation dose from external exposure to shoreline sediments include a correction for the finite width of the contaminated beach.

  19. New technologies to reduce pediatric radiation doses

    International Nuclear Information System (INIS)

    Bernhardt, Philipp; Lendl, Markus; Deinzer, Frank

    2006-01-01

    X-ray dose reduction in pediatrics is particularly important because babies and children are very sensitive to radiation exposure. We present new developments to further decrease pediatric patient dose. With the help of an advanced exposure control, a constant image quality can be maintained for all patient sizes, leading to dose savings for babies and children of up to 30%. Because objects of interest are quite small and the speed of motion is high in pediatric patients, short pulse widths down to 4 ms are important to reduce motion blurring artifacts. Further, a new noise-reduction algorithm is presented that detects and processes signal and noise in different frequency bands, generating smooth images without contrast loss. Finally, we introduce a super-resolution technique: two or more medical images, which are shifted against each other in a subpixel region, are combined to resolve structures smaller than the size of a single pixel. Advanced exposure control, short exposure times, noise reduction and super-resolution provide improved image quality, which can also be invested to save radiation exposure. All in all, the tools presented here offer a large potential to minimize the deterministic and stochastic risks of radiation exposure. (orig.)

  20. Radiation Dose to Post-Chernobyl Cleanup Workers

    Science.gov (United States)

    Radiation dose calculation for post-Chernobyl Cleanup Workers in Ukraine - both external radiation exposure due to fallout and internal doses due to inhalation (I131 intake) or ingestion of contaminated foodstuffs.

  1. Audit of radiation dose to patients during coronary angiography

    International Nuclear Information System (INIS)

    Livingstone, Roshan S.; Chandy, Sunil; Peace, Timothy B.S.; George, Paul V.; John, Bobby; Pati, Purendra

    2007-01-01

    There is a widespread concern about radiation doses imparted to patients during cardiology procedures in the medical community. The current study intends to audit and optimize radiation dose to patients undergoing coronary angiography performed using two dedicated cardiovascular machines

  2. Natural radiation dose estimates from soils

    International Nuclear Information System (INIS)

    Silveira, M.A.G.R.; Moreira, H.; Medina, N.H.

    2009-01-01

    In this work the natural radiation from soils of southeastern Brazil has been studied. Soil samples from Interlagos, Sao Paulo; parks and Billings dam, in Sao Bernardo do Campo city; Santos, Sao Vicente and Sao Sebastiao beaches, Sao Paulo and sands from Ilha Grande beaches, Rio de Janeiro, were analyzed. The results show that the main contribution to the effective dose is due to elements of the 232 Th decay chain, with a smaller contribution from the radionuclide 40 K and the elements of the series of 238 U. The obtained values found in the studied regions, are around the average international dose due to external exposure to gamma rays (0.48 mSv/yr), except in Praia Preta, Ilha Grande, where the effective dose exceeds the average value. (author)

  3. Low radiation doses - Book of presentations (slides)

    International Nuclear Information System (INIS)

    2013-03-01

    This document brings together all the available presentations (slides) of the conference on low radiation doses organised by the 'research and health' department of the French society of radiation protection (SFRP). Ten presentations are available and deal with he following topics: 1 - Cyto-toxicity, geno-toxicity: comparative approach between ionizing radiations and other geno-toxic agents (F. Nesslany, Institut Pasteur, Lille); Succession of events occurring after a radio-induced DNA damage (D. Averbeck, IRSN/CEA); Importance of stem cells in the response to ionizing radiations (J. Lebeau, CEA); Relation between energy deposition at the sub-cell scale and early biological effects (C. Villagrasa, IRSN); Natural history of breast cancer: predisposition, susceptibility with respect to irradiation (S. Rivera, IGR); Pediatrics scanner study and the EPI-CT project (M.O Bernier, IRSN); What future for an irradiated cell: survival or apoptosis? (E. Sage, Institut Curie); Differential effect of a 137 Cs chronic contamination on the different steps of the atheromatous pathology (T. Ebrahimian, IRSN); Variability of the individual radiosensitivity (S. Chevillard, CEA); What definitions for individual sensitivity? (A. Schmidt, CEA); Low doses: some philosophical remarks (A. Grinbaum, CEA)

  4. Annual individual doses for personnel dealing with ionizing radiation sources

    International Nuclear Information System (INIS)

    Poplavskij, K.K.

    1982-01-01

    Data on annual individual doses for personnel of national economy enterprises, research institutes, high schools, medical establishments dealing with ionizing radiation sources are presented. It is shown that radiation dose for the personnel constitutes only shares of standards established by sanitary legislation. Numeral values of individual doses of the personnel are determined by the type, character and scope of using ionizing radiation sources

  5. Radon and daughters in cigarette smoke measured with SSNTD and corresponding committed equivalent dose to respiratory tract

    International Nuclear Information System (INIS)

    Misdaq, M.A.; Flata, K.

    2003-01-01

    Uranium ( 238 U) and Thorium ( 232 Th) contents were measured inside various tobacco samples by using a method based on determining detection efficiencies of the CR-39 and LR-115 II solid state nuclear track detector (SSNTD) for the emitted alpha particles. Alpha and beta activities per unit volume, due to radon ( 222 Rn), thoron ( 220 Rn) and their decay products, were evaluated inside cigarette smokes of tobacco samples studied. Annual committed equivalent doses due to short-lived radon decay products from the inhalation of various cigarette smokes were determined in the thoracic and extrathoracic regions of the respiratory tract. Three types of cigarettes made in Morocco of black tobacco show higher annual committed equivalent doses in the extrathoracic and thoracic regions of the respiratory tract than the other studied cigarettes (except one type of cigarettes made in France of yellow tobacco); their corresponding annual committed equivalent dose ratios are larger than 1.8. Measured annual committed equivalent doses ranged from 1.8x10 -9 to 1.10x10 -3 Sv yr -1 in the extrathoracic region and from 1.3x10 -10 to 7.6x10 -6 Sv yr -1 in the thoracic region of the respiratory tract for a smoker consuming 20 cigarettes a day

  6. Radiation dose assessment of musa acuminata - triploid (AAA)

    International Nuclear Information System (INIS)

    Maravillas, Mart Andrew S.; Locaylocay, Jocelyn R.; Mendoza, Concepcion S.

    2008-01-01

    Bananas are radioactive due to the presence of the radioisotope- 40 K. This imposes a possible health risk to the general public. This study intended to assess the annual equivalent dosages and the annual effective dosage committed by the body. This seeks to benefit the general public, students and researchers, and entrepreneurs. Using atomic absorption spectrophotometry, lakatan banana (Musa acuminata-triploid (AAA), the most purchased variety cultivated in Barangay Adlawon, Cebu City, Philippines, was found to contain 0.53 g of total potassium for every 100 g of its fresh fruit wherein 6.2 x 10 -5 g of which is potassium-40. Based on its 40 K content banana was calculated to have a radioactivity of 16 Bq/100 g. it was found out that the body is exposed to radiation dosages ranging from 2.8 x 10 -3 rem annually by eating 100 g of lakatan bananas everyday. Conversely, it is equivalent to the annual effective dosage of 0.0043 rem; the amount at which the body of an individual is uniformly exposed. However, no or extremely minute health risk was determined by just eating bananas. In fact, to exceed the radiation dose limits set by the International Commission on Radiation Protection, an individual may eat 116 kg of lakatan bananas everyday for a year. Fertilizers may be the major source of the radioisotope - 40 K and assimilated by the plants. (author)

  7. Low Dose Ionizing Radiation Modulates Immune Function

    International Nuclear Information System (INIS)

    Nelson, Gregory A.

    2016-01-01

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a 'Th2 polarized' immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in

  8. Effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Masse, R.

    2006-01-01

    Several groups of human have been irradiated by accidental or medical exposure, if no gene defect has been associated to these exposures, some radioinduced cancers interesting several organs are observed among persons exposed over 100 to 200 mSv delivered at high dose rate. Numerous steps are now identified between the initial energy deposit in tissue and the aberrations of cell that lead to tumors but the sequence of events and the specific character of some of them are the subject of controversy. The stake of this controversy is the risk assessment. From the hypothesis called linear relationship without threshold is developed an approach that leads to predict cancers at any tiny dose without real scientific foundation. The nature and the intensity of biological effects depend on the quantity of energy absorbed in tissue and the modality of its distribution in space and time. The probability to reach a target (a gene) associated to the cancerating of tissue is directly proportional to the dose without any other threshold than the quantity of energy necessary to the effect, its probability of effect can be a more complex function and depends on the quality of the damage produced as well as the ability of the cell to repair the damage. These two parameters are influenced by the concentration of initial injuries in the target so by the quality of radiation and by the dose rate. The mechanisms of defence explain the low efficiency of radiation as carcinogen and then the linearity of effects in the area of low doses is certainly the least defensible scientific hypothesis for the prediction of the risks. (N.C.)

  9. Low Dose Ionizing Radiation Modulates Immune Function

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Gregory A. [Loma Linda Univ., CA (United States)

    2016-01-12

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a “Th2 polarized” immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in the

  10. Ultraviolet radiation therapy and UVR dose models

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, David Robert, E-mail: davidrobert.grimes@oncology.ox.ac.uk [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland and Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratory, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ (United Kingdom)

    2015-01-15

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  11. Ultraviolet radiation therapy and UVR dose models

    International Nuclear Information System (INIS)

    Grimes, David Robert

    2015-01-01

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed

  12. Radiation dose to the eye lens

    DEFF Research Database (Denmark)

    Baun, Christina; Falch Braas, Kirsten; D. Nielsen, Kamilla

    2015-01-01

    Radiation Dose to the Eye Lens: Does Positioning Really Matter? C. Baun1, K. Falch1, K.D. Nielsen2, S. Shanmuganathan1, O. Gerke1, P.F. Høilund-Carlsen1 1Department of Nuclear Medicine, Odense University Hospital, Odense C, Denmark. 2University College Lillebaelt, Odense, Denmark. Aim: The scan...... field in oncology patients undergoing eyes-to-thighs PET/CT must always include the base of the scull according to department guidelines. The eye lens is sensitive to radiation exposure and if possible it should be avoided to scan the eye. If the patient’s head is kipped backwards during the scan one...... might avoid including the eye in the CT scan without losing sufficient visualization of the scull base. The aim of this study was to evaluate the possibility of decreasing the radiation dose to the eye lens, simply by changing the head position, when doing the PET/CT scan from the base of the scull...

  13. Estimates of radiation doses from various sources of exposure

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter provides an overview of radiation doses to individuals and to the collective US population from various sources of ionizing radiation. Summary tables present doses from various sources of ionizing radiation. Summary tables present doses from occupational exposures and annual per capita doses from natural background, the healing arts, nuclear weapons, nuclear energy and consumer products. Although doses from non-ionizing radiation are not as yet readily available in a concise form, the major sources of non-ionizing radiation are listed

  14. The distribution of committed dose equivalents to workers exposed to tritium in the luminising industry in the United Kingdom

    International Nuclear Information System (INIS)

    Hipkin, J.

    1977-01-01

    In the United Kingdom tritium has become almost the only radionuclide that is used in luminising. Two distinct methods of luminising are used, one involving the use of tritium gas and the other involving the use of tritium activated luminous paint. All major luminisers have voluntarily taken part in urine monitoring programmes. The analyses have been carried out by the National Radiological Protection Board and estimates of committed dose equivalent have been made from the results. The work presented is an analysis of the committed dose equivalents received by all the individuals monitored in the years 1974, 1975 and 1976. It is shown that doses follow, in general, a lognormal distribution modified only at the high dose end by what must be described as dose management. Further evidence for dose management is seen when the pattern of dose versus time are analysed for selected individuals. It is shown that the maximum permissible dose as recommended by the International Commission on Radiological Protection, is only rarely exceeded. It is also shown that there is a substantial difference in the degree of exposure between workers involved in gaseous tritium luminising and workers using paint luminising. A comparison is made between exposure in gaseous tritium luminising and exposure in another common use of gaseous tritium, ie. the filling of electronic devices with tritium gas. It is shown that exposure is very much less in the electronic device work

  15. Radiation doses to neonates requiring intensive care

    International Nuclear Information System (INIS)

    Robinson, A.; Dellagrammaticas, H.D.

    1983-01-01

    Radiological investigations have become accepted as an important part of the range of facilities required to support severely ill newborn babies. Since the infants are so small, many of the examinations are virtually ''whole-body'' irradiations and it was thought that the total doses received might be appreciable. A group of such babies admitted to the Neonatal Intensive Care Unit in Sheffield over a six-month period have been studied. X-ray exposure factors used for each examination have been noted and total skin, gonad and bone marrow doses calculated, supplemented by measurements on phantoms. It is concluded that in most cases doses received are of the same order as those received over the same period from natural background radiation and probably less than those received from prenatal obstetric radiography, so that the additional risks from the diagnostic exposure are small. The highest doses are received in CT scans and barium examinations and it is recommended that the need for these should be carefully considered. (author)

  16. Radiation doses from mammography in Australia

    International Nuclear Information System (INIS)

    Thomson, J.E.M.; Young, B.F.; Young, J.G.; Tingey, D.R.C.

    1991-05-01

    During 1989-90 the Australian Radiation Laboratory conducted a postal survey of at least 90% of the mammographic facilities in Australia. The primary aim of the survey was to measure the mean glandular dose (MGD) and the X-ray beam half value layer (HVL) for a typical mammograph. The MGD and HVL were measured with a specially designed tissue equivalent monitor. In all, 258 mammographic centres were surveyed. It was found that for centres using film-screen imaging, the average mean glandular dose was 1.83 mGy for centres using grids and 0.84 mGy for centres not using grids. In addition to the MGD and HVL, comprehensive statistical information was collected and data is presented on the types of equipment and techniques used, the number and age of patients and demographic distribution of centres. Results indicate that the use of a grid is the major factor determining dose and several other factors appear to have minor effects. In view of the distribution of MGD, it is recommended that the mean glandular dose per image, for a 5 cm compressed breast thickness, should not exceed 2.0 mGy when a grid is used and 1.0 mGy without a grid. 63 refs., 11 tabs., 15 figs

  17. Radiation risk factors and dose limits

    International Nuclear Information System (INIS)

    Barendsen, G.W.

    1979-01-01

    The contents of the ICRP publications 9 (1965) and 26 (1977) are outlined and the research conducted during these years considered. Expressions are derived for the frequency for induction of cancer from the most common irradiations - X rays, gamma rays and electrons. The dose limits advised by the ICRP are discussed and the first two fundamental principles are presented - that no one should be subjected to radiation without useful cause and that in those cases where irradiation is thought necessary, the medical, scientific, social and economic advantages need to be carefully considered with respect to the possible disadvantages. (C.F.)

  18. Link 'soil-plant' as critical in formation committed doses from uptake of long-lived radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Kravetz, A P; Pavlenko, Y A; Grodzinsky, D M [Institute of Cell Biology and Genetic Engineering AS Vasilcovsky st 31/17, Kiev 252022 (Ukraine)

    1994-11-01

    General algorithm of calculation dose from intake {sup 137}Cs and {sup 90}Sr depending upon level of pollution and agrochemical type of soil where trophycal chains to begin with, have been proposed. This methods consider link 'soil {yields} plant' as critical in formation of doses from the intake long-lived radionuclides. Calculation of committed dose as function of type of soil and level of radionuclide pollution have been realized for seven main soil types of the White Russian and Ukrainian Wooded district. (author)

  19. Transatlantic Comparison of CT Radiation Doses in the Era of Radiation Dose-Tracking Software.

    Science.gov (United States)

    Parakh, Anushri; Euler, Andre; Szucs-Farkas, Zsolt; Schindera, Sebastian T

    2017-12-01

    The purpose of this study is to compare diagnostic reference levels from a local European CT dose registry, using radiation-tracking software from a large patient sample, with preexisting European and North American diagnostic reference levels. Data (n = 43,761 CT scans obtained over the course of 2 years) for the European local CT dose registry were obtained from eight CT scanners at six institutions. Means, medians, and interquartile ranges of volumetric CT dose index (CTDI vol ), dose-length product (DLP), size-specific dose estimate, and effective dose values for CT examinations of the head, paranasal sinuses, thorax, pulmonary angiogram, abdomen-pelvis, renal-colic, thorax-abdomen-pelvis, and thoracoabdominal angiogram were obtained using radiation-tracking software. Metrics from this registry were compared with diagnostic reference levels from Canada and California (published in 2015), the American College of Radiology (ACR) dose index registry (2015), and national diagnostic reference levels from local CT dose registries in Switzerland (2010), the United Kingdom (2011), and Portugal (2015). Our local registry had a lower 75th percentile CTDI vol for all protocols than did the individual internationally sourced data. Compared with our study, the ACR dose index registry had higher 75th percentile CTDI vol values by 55% for head, 240% for thorax, 28% for abdomen-pelvis, 42% for thorax-abdomen-pelvis, 128% for pulmonary angiogram, 138% for renal-colic, and 58% for paranasal sinus studies. Our local registry had lower diagnostic reference level values than did existing European and North American diagnostic reference levels. Automated radiation-tracking software could be used to establish and update existing diagnostic reference levels because they are capable of analyzing large datasets meaningfully.

  20. Radiation doses to Norwegian heart-transplanted patients undergoing annual coronary angiography

    International Nuclear Information System (INIS)

    Seierstad, T.; Friberg, E. G.; Lervag, C.; Widmark, A.; Wilhelmsen, N.; Stranden, E.

    2012-01-01

    Heart-transplanted patients in Norway undergo annual coronary angiography (CA). The aims of this study were to establish a conversion factor between dose-area product and effective dose for these examinations and to use this to evaluate the accumulated radiation dose and risks associated with annual CA. An experienced cardiac interventionist performed a simulated examination on an Alderson phantom loaded with thermoluminescence dosemeters. The simulated CA examination yielded a dose-area product of 17 Gy cm 2 and an effective dose of 3.4 mSv: the conversion factor between dose-area product and effective dose was 0.20 mSv Gy cm -2 . Dose-area product values from 200 heart-transplanted patients that had undergone 906 CA examinations between 2001 and 2008 were retrieved from the institutional database. Mean dose-area product from annual CA was 25 Gy cm 2 , ranging from 2 to 140 Gy cm 2 . Mean number of CA procedure was 8 (range, 1-23). Mean accumulated effective dose for Norwegian heart-transplanted patients between 2001 and 2008 was 34 mSv (range, 5-113 mSv). Doses and radiation risks for heart-transplanted patients are generally low, because most heart transplantations are performed on middle-aged patients with limited life expectancy. Special concern should however be taken to reduce doses for young heart-transplanted patients who are committed to lifelong follow-up of their transplanted heart. (authors)

  1. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst

    2009-01-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  2. The development of wireless radiation dose monitoring using smart phone

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Woo; Jeong, Gyo Seong; Lee, Yun Jong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Kim, Chong Yeal [Chonbuk National University, Jeonju (Korea, Republic of); Lim, Chai Wan [REMTECH, Seoul (Korea, Republic of)

    2016-11-15

    Radiation workers at a nuclear facility or radiation working area should hold personal dosimeters. some types of dosimeters have functions to generate audible or visible alarms to radiation workers. However, such devices used in radiation fields these days have no functions to communicate with other equipment or the responsible personnel. our project aims at the development of a remote wireless radiation dose monitoring system that can be utilized to monitor the radiation dose for radiation workers and to notify the radiation protection manager of the dose information in real time. We use a commercial survey meter for personal radiation measurement and a smart phone for a mobile wireless communication tool and a Beacon for position detection of radiation workers using Blue tooth communication. In this report, the developed wireless dose monitoring of cellular phone is introduced.

  3. Determination of the radiation dose to the body due to external radiation

    International Nuclear Information System (INIS)

    Drexler, G.; Eckerl, H.

    1985-01-01

    Section 63 of the Radiation Protection Ordinance defines the basic requirement, determination of radiation dose to the body. The determination of dose equivalents for the body is the basic step in practical monitoring of dose equivalents or dose limits with regard to individuals or population groups, both for constant or varying conditions of exposure. The main field of monitoring activities is the protection of persons occupationally exposed to ionizing radiation. Conversion factors between body doses and radiation quantities are explained. (DG) [de

  4. Ambient radioactivity levels and radiation doses. Annual report 2011

    International Nuclear Information System (INIS)

    Bernhard-Stroel, Claudia; Hachenburger, Claudia; Trugenberger-Schnabel, Angela; Peter, Josef

    2013-07-01

    The annual report 2011 on ambient radioactivity levels and radiation doses covers the following issues: Part A: Natural environmental radioactivity, artificial radioactivity in the environment, occupational radiation exposure, radiation exposure from medical applications, the handling of radioactive materials and sources of ionizing radiation, non-ionizing radiation. Part B; Current data and their evaluation: Natural environmental radioactivity, artificial radioactivity in the environment, occupational radiation exposure, radiation exposure from medical applications, the handling of radioactive materials and sources of ionizing radiation, non-ionizing radiation. The Appendix includes Explanations of terms, radiation doses and related units, external and internal radiation exposure, stochastic and deterministic radiation effects, genetic radiation effects, induction of malignant neoplasm, risk assessment, physical units and glossary, laws, ordinances, guidelines, recommendations and other regulations concerning radiation protection, list of selected radionuclides.

  5. Technology Development for Radiation Dose Measurement and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Hwan; Chang, S. Y.; Lee, T. Y. (and others)

    2007-06-15

    The correction factors essential for the operation of In-Vivo counting system were produced and implemented into a field operation for the improvement of accuracy in measurement of the radioactivity inside a human body. The BiDAS2007 code which calculate an internal dose was developed by upgrading the former code prepared in the previous stage of this project. The method of using the multibioassy data, the maximum likelihood function and the Bayesian statistics were established to an internal dose based on the measurement data of radioactivity, intakes and retention of radioactivity in a human body and it can improve the accuracy in estimation of the intakes of radioactivity and the committed effective dose equivalent. In order to solve the problem of low detection efficiency of the conventional Bonner Sphere (BS) to a high energy neutron, the extended BS's were manufactured and the technique for neutron field spectrometry was established. The fast neutron and gamma spectrometry system with a BC501A scintillation detector was also prepared. Several neutron fluence spectra at several nuclear facilities were measured and collected by using the extended BS. The spectrum weighted responses of some neutron monitoring instruments were also derived by using these spectra and the detector response functions. A high efficient TL material for the neutron personal dosimeter was developed. It solved the main problem of low thermal stability and high residual dose of the commercial TLDs and has the sensitivity to neutron and to gamma radiation with 40 and 10 times higher respectively than them.

  6. Analysis of CT radiation dose based on radiation-dose-structured reports

    International Nuclear Information System (INIS)

    Wang Weipeng; Zhang Yi; Zhang Menglong; Zhang Dapeng; Song Shaojuan

    2014-01-01

    Objective: To analyse the CT radiation dose statistically using the standardized radiation-dose-structured report (RDSR) of digital imaging and communications in medicine (DICOM). Methods: Using the self-designed software, 1230 RDSR files about CT examination were obtained searching on the picture archiving and communication system (PACS). The patient dose database was established by combination of the extracted relevant information with the scanned sites. The patients were divided into adult group (over 10 years) and child groups (0-1 year, 1-5 years, 5-10 years) according to the age. The average volume CT dose index (CTDI vol ) and dose length product (DLP) of all scans were recorded respectively, and then the effective dose (E) was estimated. The DLP value at 75% quantile was calculated and compared with the diagnostic reference level (DRL). Results: In adult group, CTDI vol and DLP values were moderately and positively correlated (r = 0.41), the highest E was observed in upper abdominal enhanced scan, and the DLP value at 75% quantile was 60% higher than DRL. In child group, their CTDI vol in group of 5-10 years was greater than that in groups of 0-1 and 1-5 years (t = 2.42, 2.04, P < 0.05); the DLP value was slightly and positively correlated with the age (r = 0.16), while E was moderately and negatively correlated with the age (r = -0.48). Conclusions: It is a simple and efficient method to use RDSR to obtain the radiation doses of patients. With the popularization of the new equipment and the application of regionalized medical platform, RDSR would become the main tool for the dosimetric level surveying and individual dose recording. (authors)

  7. Evaluation for committed effective dose due to dietary foods by the intake for Japanese adults

    International Nuclear Information System (INIS)

    Sanada, Tetsuya

    2011-01-01

    Explained are the internal exposure (IE) in Japanese adults due to the ordinary intake of food and the committed effective dose (CED) derived from it, which can be the basic reference data for estimating CED at emergency like the recent Fukushima Disaster. IE lasts as long as radioactive substances exist in the body and its health risk is assessed throughout the lifetime, 50 years in adult and in children until their age of 70 years, by CED based on consideration of the physical and biological halftimes of radionuclides involved. CED (mSv) is calculated by an equation given in International Commission of Radiological Protection (ICRP) Pub. 72, using radioactivity level (Bq/kg), intake (kg/y) and age-dependent dose coefficient (mSv/Bq). Japan MEXT in its homepage (http://www.kankyo-hoshano.go.jp/) publishes the states of environmental radioactivity levels including those of daily Japanese food. The food survey of yearly changes of radioactivity level (Bq/man/day) indicates that, when compared with the level in 2009, it is two times higher in 1970s due to old in-atmospheric nuclear experiments, and is decreased gradually with a temporary peak around 1986 by Chernobyl accident. Studies on certain natural and artificial radioisotopes in 240 kinds of current food in 1989-2005 reveal that Po-210 level in fishes and shellfishes is particularly higher than others like St-90, Cs-137, Rd-226, Pb-210 and so on. CED in adults is calculated from yearly intake of foods (kg/y), their radioactivity (Bq/y) and the coefficient above, to be 0.80 mSv, and 0.98 mSv when the contribution of K-40 is taken in calculation. The proportion of the contribution in the latter estimated CED accounts for 74% (0.73 mSv) by Po-210 and for 18% (0.18 mSv) by K-40, which is conceivably derived from intake of more seafood by Japanese than other people in the world (average 0.070 and 0.17 mSv, respectively). (T.T.)

  8. Design of radiation dose tumor response assays

    International Nuclear Information System (INIS)

    Suit, H.D.; Hwang, T.; Hsieh, C.; Thames, H.

    1985-01-01

    The efficient utilization of animals in a radiation dose response assay for tumor control requires a definition of the goal, e.g., TCD50 or slope. A series of computer modelled ''experiments'' have been performed for each of a number of allocations of dose levels (DL) and number of animals/DL. The authors stipulated that the assumed TCD50 was .85 of true value; assumed slope was correct. They stipulated a binominal distribution of observed tumor control results at each dose level. A pilot assay used 6 tumors at 7 DL (from TCD1-TCD97). The second assay used 30 tumors assigned to 2,3,5 or 9 DL and to selected tumor control probabilities (TCP derived from the pilot run. Results from 100 test runs were combined with the pilot run for each of the combination of DL and TCP values. Logit regression lines were fitted through these ''data'' and the 95% CL around the TCD50 and the TCD37 values and the variances of the slopes were computed. These experiments were repeated using the method suggested by Porter (1980). Results show that a different strategy is needed depending upon the goal, viz. TCD50 or TCD37 vs slope. The differences between the two approaches are discussed

  9. Cumulative radiation dose of multiple trauma patients during their hospitalization

    International Nuclear Information System (INIS)

    Wang Zhikang; Sun Jianzhong; Zhao Zudan

    2012-01-01

    Objective: To study the cumulative radiation dose of multiple trauma patients during their hospitalization and to analyze the dose influence factors. Methods: The DLP for CT and DR were retrospectively collected from the patients during June, 2009 and April, 2011 at a university affiliated hospital. The cumulative radiation doses were calculated by summing typical effective doses of the anatomic regions scanned. Results: The cumulative radiation doses of 113 patients were collected. The maximum,minimum and the mean values of cumulative effective doses were 153.3, 16.48 mSv and (52.3 ± 26.6) mSv. Conclusions: Multiple trauma patients have high cumulative radiation exposure. Therefore, the management of cumulative radiation doses should be enhanced. To establish the individualized radiation exposure archives will be helpful for the clinicians and technicians to make decision whether to image again and how to select the imaging parameters. (authors)

  10. Radiation dose-reduction strategies in thoracic CT.

    Science.gov (United States)

    Moser, J B; Sheard, S L; Edyvean, S; Vlahos, I

    2017-05-01

    Modern computed tomography (CT) machines have the capability to perform thoracic CT for a range of clinical indications at increasingly low radiation doses. This article reviews several factors, both technical and patient-related, that can affect radiation dose and discusses current dose-reduction methods relevant to thoracic imaging through a review of current techniques in CT acquisition and image reconstruction. The fine balance between low radiation dose and high image quality is considered throughout, with an emphasis on obtaining diagnostic quality imaging at the lowest achievable radiation dose. The risks of excessive radiation dose reduction are also considered. Inappropriately low dose may result in suboptimal or non-diagnostic imaging that may reduce diagnostic confidence, impair diagnosis, or result in repeat examinations incurring incremental ionising radiation exposure. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  11. Dose effect relationships in cervical and thoracic radiation myelopathies

    International Nuclear Information System (INIS)

    Holdorff, B.

    1980-01-01

    The course and prognosis of radiation myelopathies are determined by 3 factors: the segmental (vertical) location of the lesion, the extent of the transverse syndrome (complete or incomplete) and the radiation dose. The median spinal dose in cervical radiation myelopathies with fatal outcome was higher than in survivals with an incomplete transverse syndrome. In thoracic radiation myelopathies a dose difference between complete and incomplete transverse syndromes could be found as well. Incomplete transverse syndromes as submaximum radiation injuries are more suitable for the determination of the spinal tolerance dose than complete transverse syndromes. The lowest threshold could be stated for cases following high-volume irradiation of the lymphatic system. (Auth.)

  12. Radiation research contracts: Biological effects of small radiation doses

    International Nuclear Information System (INIS)

    Hug, O.

    1959-01-01

    According to its Statute the IAEA has to fulfil a dual function - to help individual countries in solving their specific problems and to undertake tasks in the common interest of all its Member States. With this latter aim in mind the Agency has placed a number of research contracts with national research institutes. The purpose and scope of two of them is described below by the scientists responsible for their execution. The Agency has contributed to this work by putting at the institutes' disposal scientists from its own staff apparatus and financial aid.IAEA placed a research contract concerning the effects of small radiation doses on cells, in particular on nervous cells, with the Pharmacological Institute of the University of Vienna. This Institute appeared well suited to deal with the problem owing to the type of its previous research work. The Director, Prof. Franz Bruecke, and his collaborator Dr. Otto Kraupp, have long been interested in the functioning of the nervous system and in the influence of different drugs upon it. It was particularly fortunate that the electrical properties and functions of cells had been measured by a method specially developed at this Institute. From the above mentioned observations one could expect that instantaneous reactions of cells to radiation would also lead to changes of the electrical status. Consequently, this method is now being applied to the research undertaken for IAEA. Different cells of plants and animals, ranging from algae to muscle fibres of mammals, were chosen as objects. So far changes of potentials-had been observed only during irradiation with very high doses. During these investigations another useful test for small radiation doses was developed, namely the measurement of the through-flow of an artificial blood solution through the blood vessels of an intestinal loop. It was observed that a few seconds after irradiation the flow rate diminishes, and returns to its normal level only when irradiation ends

  13. Radiation research contracts: Biological effects of small radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Hug, O

    1959-01-15

    According to its Statute the IAEA has to fulfil a dual function - to help individual countries in solving their specific problems and to undertake tasks in the common interest of all its Member States. With this latter aim in mind the Agency has placed a number of research contracts with national research institutes. The purpose and scope of two of them is described below by the scientists responsible for their execution. The Agency has contributed to this work by putting at the institutes' disposal scientists from its own staff apparatus and financial aid.IAEA placed a research contract concerning the effects of small radiation doses on cells, in particular on nervous cells, with the Pharmacological Institute of the University of Vienna. This Institute appeared well suited to deal with the problem owing to the type of its previous research work. The Director, Prof. Franz Bruecke, and his collaborator Dr. Otto Kraupp, have long been interested in the functioning of the nervous system and in the influence of different drugs upon it. It was particularly fortunate that the electrical properties and functions of cells had been measured by a method specially developed at this Institute. From the above mentioned observations one could expect that instantaneous reactions of cells to radiation would also lead to changes of the electrical status. Consequently, this method is now being applied to the research undertaken for IAEA. Different cells of plants and animals, ranging from algae to muscle fibres of mammals, were chosen as objects. So far changes of potentials-had been observed only during irradiation with very high doses. During these investigations another useful test for small radiation doses was developed, namely the measurement of the through-flow of an artificial blood solution through the blood vessels of an intestinal loop. It was observed that a few seconds after irradiation the flow rate diminishes, and returns to its normal level only when irradiation ends

  14. Risk of cancer subsequent to low-dose radiation

    International Nuclear Information System (INIS)

    Warren, S.

    1980-01-01

    The author puts low dose irradiation risks in perspective using average background radiation doses for standards. He assailed irresponsible media coverage during the height of public interest in the Three-Mile Island Reactor incident

  15. Radiation effects after low dose chronic long-term exposure

    International Nuclear Information System (INIS)

    Fliedner, T.M.; Friesecke, I.

    1997-01-01

    This document approaches the radiation effects after low dose chronic long-term exposure, presenting examples occurred, the pathophysiologic mechanisms for cell system tolerance in elevated radiation fields, and the diagnostic and therapeutic possibilities

  16. Low dose radiation enhance the anti-tumor effect of high dose radiation on human glioma cell U251

    International Nuclear Information System (INIS)

    Wang Chang; Wang Guanjun; Tan Yehui; Jiang Hongyu; Li Wei

    2008-01-01

    Objective: To detect the effect on the growth of human glioma cell U251 induced by low dose irradiation and low dose irradiation combined with large dose irradiation. Methods: Human glioma cell line U251 and nude mice carried with human glioma were used. The tumor cells and the mice were treated with low dose, high dose, and low dose combined high dose radiation. Cells growth curve, MTT and flow cytometry were used to detect the proliferation, cell cycle and apoptosis of the cells; and the tumor inhibition rate was used to assess the growth of tumor in vivo. Results: After low dose irradiation, there was no difference between experimental group and control group in cell count, MTT and flow cytometry. Single high dose group and low dose combined high dose group both show significantly the suppressing effect on tumor cells, the apoptosis increased and there was cell cycle blocked in G 2 period, but there was no difference between two groups. In vivo apparent anti-tumor effect in high dose radiation group and the combining group was observed, and that was more significant in the combining group; the prior low dose radiation alleviated the injury of hematological system. There was no difference between single low dose radiation group and control. Conclusions: There is no significant effect on human glioma cell induced by low dose radiation, and low dose radiation could not induce adaptive response. But in vivo experience, low dose radiation could enhance the anti-tumor effect of high dose radiation and alleviated the injury of hematological system. (authors)

  17. Personal monitoring and assessment of doses received by radiation workers

    International Nuclear Information System (INIS)

    Swindon, T.N.; Morris, N.D.

    1981-12-01

    The Personal Radiation Monitoring Service operated by the Australian Radiation Laboratory is outlined and the types of monitors used for assessment of doses received by radiation workers are described. The distribution of doses received by radiation workers in different occupational categories is determined. From these distributions, the average doses received have been assessed and the maximum likely additional increase in cancer deaths in Australia as a result of occupational exposure estimated. This increase is shown to be very small. There is, however, a considerable spread of doses received by individuals within occupational groups

  18. Concept and computation of radiation dose at high energies

    International Nuclear Information System (INIS)

    Sarkar, P.K.

    2010-01-01

    Computational dosimetry, a subdiscipline of computational physics devoted to radiation metrology, is determination of absorbed dose and other dose related quantities by numbers. Computations are done separately both for external and internal dosimetry. The methodology used in external beam dosimetry is necessarily a combination of experimental radiation dosimetry and theoretical dose computation since it is not feasible to plan any physical dose measurements from inside a living human body

  19. Application of maximum values for radiation exposure and principles for the calculation of radiation doses

    International Nuclear Information System (INIS)

    2007-08-01

    The guide presents the definitions of equivalent dose and effective dose, the principles for calculating these doses, and instructions for applying their maximum values. The limits (Annual Limit on Intake and Derived Air Concentration) derived from dose limits are also presented for the purpose of monitoring exposure to internal radiation. The calculation of radiation doses caused to a patient from medical research and treatment involving exposure to ionizing radiation is beyond the scope of this ST Guide

  20. Cosmic radiation doses at flight level altitudes of airliners

    International Nuclear Information System (INIS)

    Viragh, E.; Petr, I.

    1985-01-01

    Changes are discussed in flux density of cosmic radiation particles with time as are the origin of cosmic radiation, the level of cosmic radiation near the Earth's surface, and the determination of cosmic radiation doses in airliners. Doses and dose rates are given measured on different flight routes. In spite of the fact that the flight duration at an altitude of about 10 km makes for about 80% of the total flight time, the overall radiation burden of the crews at 1000 flight hours a year is roughly double that of the rest of the population. (J.C.)

  1. Evaluation of occupational and patient radiation doses in orthopedic surgery

    International Nuclear Information System (INIS)

    Sulieman, A.; Alzimami, K.; Habeeballa, B.; Osman, H.; Abdelaziz, I.; Sassi, S.A.; Sam, A.K.

    2015-01-01

    This study intends to measure the radiation dose to patients and staff during (i) Dynamic Hip Screw (DHS) and (ii) Dynamic Cannula Screw (DCS) and to evaluate entrance surface Air kerma (ESAK) dose and organ doses and effective doses. Calibrated Thermoluminescence dosimeters (TLD-GR200A) were used. The mean patients’ doses were 0.46 mGy and 0.07 mGy for DHS and DCS procedures, respectively. The mean staff doses at the thyroid and chest were 4.69 mGy and 1.21 mGy per procedure. The mean organ and effective dose for patients and staff were higher in DHS compared to DCS. Orthopedic surgeons were exposed to unnecessary radiation doses due to the lack of protection measures. The radiation dose per hip procedure is within the safety limit and less than the previous studies

  2. Radiation apparatus with distance mapper for dose control

    International Nuclear Information System (INIS)

    Saunders, A.M.

    1990-01-01

    The patent describes apparatus for delivering a radiation dose. It comprises: radiation source means for producing a beam of ionizing gamma ray or x-ray radiation directed so as to deliver a dose of the radiation to an area of a target surface, a light source emitting a light beam in a direction transverse to the direction of the ionizing radiation beam, a photodetector, positioned to receive light scattered from the target surface, means for scanning the light beam over the area of the target surface, means for forming a three-dimensional surface profile map of the area of the target surface without movement of the radiation source means or the light source, and means responsive to the surface profile map for adjusting the dose of radiation from the radiation source over the area of the target surface, so that the radiation source means and the light source may be operated simultaneously

  3. Effects of low dose radiation and epigenetic regulation

    International Nuclear Information System (INIS)

    Jiao Benzheng; Ma Shumei; Yi Heqing; Kong Dejuan; Zhao Guangtong; Gao Lin; Liu Xiaodong

    2010-01-01

    Purpose: To conclude the relationship between epigenetics regulation and radiation responses, especially in low-dose area. Methods: The literature was examined for papers related to the topics of DNA methylation, histone modifications, chromatin remodeling and non-coding RNA modulation in low-dose radiation responses. Results: DNA methylation and radiation can regulate reciprocally, especially in low-dose radiation responses. The relationship between histone methylation and radiation mainly exists in the high-dose radiation area; histone deacetylase (HDAC) inhibitors show a promising application to enhance radiation sensitivity, no matter whether in low-dose or high-dose areas; the connection between γ-H2AX and LDR has been remained unknown, although γ-H2AX has been shown no radiation sensitivities with 1-15 Gy irradiation; histone ubiquitination play an important role in DNA damage repair mechanism. Moreover, chromatin remodeling has an integral role in DSB repair and the chromatin response, in general, may be precede DNA end resection. Finally, the effect of radiation on miRNA expression seems to vary according to cell type, radiation dose, and post-irradiation time point. Conclusion: Although the advance of epigenetic regulation on radiation responses, which we are managing to elucidate in this review, has been concluded, there are many questions and blind blots deserved to investigated, especially in low-dose radiation area. However, as progress on epigenetics, we believe that many new elements will be identified in the low-dose radiation responses which may put new sights into the mechanisms of radiation responses and radiotherapy. (authors)

  4. Dose planning and dose delivery in radiation therapy

    International Nuclear Information System (INIS)

    Knoeoes, T.

    1991-01-01

    A method has been developed for calibration of CT-numbers to volumetric electron density distributions using tissue substitutes of known elemental composition and experimentally determined electron density. This information have been used in a dose calculation method based on photon and electron interaction processes. The method utilizes a convolution integral between the photon fluence matrix and dose distribution kernels. Inhomogeneous media are accounted for using the theorems of Fano and O'Connor for scaling dose distribution kernels in proportion to electron density. For clinical application of a calculated dose plan, a method for prediction of accelerator output have been developed. The methods gives the number of monitor units that has to be given to obtain a certain absorbed dose to a point inside an irregular, inhomogeneous object. The method for verification of dose distributions outlined in this study makes it possible to exclude the treatment related variance contributions, making an objective evaluation of dose calculations with experiments feasible. The methods for electron density determination, dose calculation and prediction of accelerator output discussed in this study will all contribute to an increased accuracy in the mean absorbed dose to the target volume. However, a substantial gain in the accuracy for the spatial absorbed dose distribution will also follow, especially using CT for mapping of electron density together with the dose calculation algorithm. (au)

  5. A review of the uncertainties in internal radiation dose assessment for inhaled thorium

    International Nuclear Information System (INIS)

    Hewson, G.S.

    1989-01-01

    Present assessments of internal radiation dose to designated radiation workers in the mineral sands industry, calculated using ICRP 26/30 methodology and data, indicate that some workers approach and exceed statutory radiation dose limits. Such exposures are indicative of the need for a critical assessment of work and operational procedures and also of metabolic and dosimetric models used to estimate internal dose. This paper reviews past occupational exposure experience with inhaled thorium compounds, examines uncertainties in the underlying radiation protection models, and indicates the effect of alternative assumptions on the calculation of committed effective dose equivalent. The extremely low recommended inhalation limits for thorium in air do not appear to be well supported by studies on the health status of former thorium refinery workers who were exposed to thorium well in excess of presently accepted limits. The effect of cautious model assumptions is shown to result in internal dose assessments that could be up to an order of magnitude too high. It is concluded that the effect of such uncertainty constrains the usefulness of internal dose estimates as a reliable indicator of actual health risk. 26 refs., 5 figs., 3 tabs

  6. Analysis of occupational doses of radiation workers in medical institutions

    International Nuclear Information System (INIS)

    Sanaye, S.S.; Baburajan, Sujatha; Joshi, V.D.; Pawar, S.G.; Nalawade, S.K.; Raman, N.V.; Kher, R.K.

    2007-01-01

    Routine monitoring of occupational radiation workers is done for controlling the doses to the individuals and to demonstrate the compliance with occupational dose limits. One of the objective of personnel monitoring program is the assessment of the radiation safety of working area and trends of exposure histories of individuals or group of workers. Computerised dose registry of all monitored radiation workers along with their personnel data helps in analyzing these trends. This in turn helps the institutions in management of their radiation safety programs. In India, annual and life time occupational dose records are maintained as National Dose Registry in the Radiological Physics and Advisory Division, Bhabha Atomic Research Centre. This paper presents analysis of occupational dose data of monitored radiation workers in medical institutions in India during last five years (i.e. 2002-2006)

  7. Effect of low dose radiation on apoptosis in mouse spleen

    International Nuclear Information System (INIS)

    Chen Dong; Liu Jiamei; Chen Aijun; Liu Shuzheng

    1999-01-01

    Objective: To study the effect of whole body irradiation (WBI) with different doses of X-ray on apoptosis in mouse spleen. Methods: Time course changes and dose-effect relationship of apoptosis in mouse spleen induced by WBI were observed with transmission electron microscopy (TEM) qualitatively and TUNEL method semi-quantitatively. Results: Many typical apoptotic lymphocytes were found by TEM in mouse spleen after WBI with 2 Gy. No marked alterations of ultrastructure were found following WBI with 0.075 Gy. It was observed by TUNEL that the apoptosis of splenocytes increased after high dose radiation and decreased following low dose radiation (LDR). The dose-effect relationship of radiation-induced apoptosis showed a J-shaped curve. Conclusion: The effect of different doses of ionizing radiation on apoptosis in mouse spleen was distinct. And the decrease of apoptosis after LDR is considered a manifestation of radiation hormesis

  8. MONTEC, an interactive fortran program to simulate radiation dose and dose-rate responses of populations

    International Nuclear Information System (INIS)

    Perry, K.A.; Szekely, J.G.

    1983-09-01

    The computer program MONTEC was written to simulate the distribution of responses in a population whose members are exposed to multiple radiation doses at variable dose rates. These doses and dose rates are randomly selected from lognormal distributions. The individual radiation responses are calculated from three equations, which include dose and dose-rate terms. Other response-dose/rate relationships or distributions can be incorporated by the user as the need arises. The purpose of this documentation is to provide a complete operating manual for the program. This version is written in FORTRAN-10 for the DEC system PDP-10

  9. Follow up on a workloaded interventional radiologist's occupational radiation doses - a study case

    International Nuclear Information System (INIS)

    Ketner, D.; Ofer, A.; Engel, A.

    2004-01-01

    During many interventional procedures, patients' radiation doses are high, affecting radiologist's radiation doses. We checked occupational doses of a workloaded interventional radiologist during seven years

  10. Knowledge of medical imaging radiation dose and risk among doctors

    International Nuclear Information System (INIS)

    Brown, Nicholas; Jones, Lee

    2013-01-01

    The growth of computed tomography (CT) and nuclear medicine (NM) scans has revolutionised healthcare but also greatly increased population radiation doses. Overuse of diagnostic radiation is becoming a feature of medical practice, leading to possible unnecessary radiation exposures and lifetime-risks of developing cancer. Doctors across all medical specialties and experience levels were surveyed to determine their knowledge of radiation doses and potential risks associated with some diagnostic imaging. A survey relating to knowledge and understanding of medical imaging radiation was distributed to doctors at 14 major Queensland public hospitals, as well as fellows and trainees in radiology, emergency medicine and general practice. From 608 valid responses, only 17.3% correctly estimated the radiation dose from CT scans and almost 1 in 10 incorrectly believed that CT radiation is not associated with any increased lifetime risk of developing cancer. There is a strong inverse relationship between a clinician's experience and their knowledge of CT radiation dose and risks, even among radiologists. More than a third (35.7%) of doctors incorrectly believed that typical NM imaging either does not use ionising radiation or emits doses equal to or less than a standard chest radiograph. Knowledge of CT and NM radiation doses is poor across all specialties, and there is a significant inverse relationship between experience and awareness of CT dose and risk. Despite having a poor understanding of these concepts, most doctors claim to consider them prior to requesting scans and when discussing potential risks with patients.

  11. Model to estimate the local radiation doses to man from the atmospheric release of radionuclides (LWBR development program)

    International Nuclear Information System (INIS)

    Rider, J.L.; Beal, S.K.

    1977-04-01

    A model was developed to estimate the radiation dose commitments received by people in the vicinity of a facility that releases radionuclides into the atmosphere. This model considers dose commitments resulting from immersion in the plume, ingestion of contaminated food, inhalation of gaseous and suspended radioactivity, and exposure to ground deposits. The dose commitments from each of these pathways is explicitly considered for each radionuclide released into the atmosphere and for each daughter of each released nuclide. Using the release rate of only the parent radionuclide, the air and ground concentrations of each daughter are calculated for each position of interest. This is considered to be a significant improvement over other models in which the concentrations of daughter radionuclides must be approximated by separate releases

  12. Radiation dose to the patient in radionuclide studies

    International Nuclear Information System (INIS)

    Roedler, H.D.

    1981-01-01

    In medical radionuclide studies, the radiation risk has to be considered in addition to the general risk of administering a pharmaceutical. As radiation exposure is an essential factor in radiation risk estimation, some aspects of internal dose calculation, including radiation risk assessments, are treated. The formalism of current internal dose calculation is presented. The input data, especially the residence time and the absorbed dose per transformation, their origin and accuracy are discussed. Results of internal dose calculations for the ten most frequently used radionuclide studies are presented as somatically effective dose equivalents. The accuracy of internal dose calculation is treated in detail by considering the biokinetics of the radiopharmaceutical, the phantoms used for dose calculations, the absorbed dose per transformation, the administered activity, and the transfer of the dose, calculated for a phantom, to the patient. The internal dose calculated for a reference phantom may be assumed to be in accordance with the actual patient dose within a range described by a factor of about two to three. Finally, risk estimates for nuclear medicine procedures are quantified, being generally of sixth order. The radiation risk from the radioiodine test is comparably higher, but probably lower than calculated according to the UNSCEAR risk coefficients. However, further studies are needed to confirm these preliminary results and to improve the quantification of the radiation risk from the medical use of radionuclides. (author)

  13. Theoretic simulation for CMOS device on total dose radiation response

    International Nuclear Information System (INIS)

    He Baoping; Zhou Heqin; Guo Hongxia; He Chaohui; Zhou Hui; Luo Yinhong; Zhang Fengqi

    2006-01-01

    Total dose effect is simulated for C4007B, CC4007RH and CC4011 devices at different absorbed dose rate by using linear system theory. When irradiation response and dose are linear, total dose radiation and post-irradiation annealing at room temperature are determined for one random by choosing absorbed dose rate, and total dose effect at other absorbed dose rate can be predicted by using linear system theory. The simulating results agree with the experimental results at different absorbed dose rate. (authors)

  14. Energies, health, medicine. Low radiation doses; Energies, sante, medecine. Les faibles doses de rayonnement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This file concerns the biological radiation effects with a special mention for low radiation doses. The situation of knowledge in this area and the mechanisms of carcinogenesis are detailed, the different directions of researches are given. The radiation doses coming from medical examinations are given and compared with natural radioactivity. It constitutes a state of the situation on ionizing radiations, known effects, levels, natural radioactivity and the case of radon, medicine with diagnosis and radiotherapy. (N.C.)

  15. CARCINOGENIC EFFECTS OF LOW DOSES OF IONIZING RADIATION

    Science.gov (United States)

    Carcinogenic Effects of Low Doses of Ionizing RadiationR Julian Preston, Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711The form of the dose-response curve for radiation-induced cancers, particu...

  16. Study of genomic instability induced by low dose ionizing radiation

    International Nuclear Information System (INIS)

    Seoane, A.; Crudeli, C.; Dulout, F.

    2006-01-01

    The crews of commercial flights and services staff of radiology and radiotherapy from hospitals are exposed to low doses of ionizing radiation. Genomic instability includes those adverse effects observed in cells, several generations after the exposure occurred. The purpose of this study was to analyze the occurrence of genomic instability by very low doses of ionizing radiation [es

  17. Measuring radiation dose to patients undergoing fluoroscopically-guided interventions

    International Nuclear Information System (INIS)

    Lubis, L E; Badawy, M K

    2016-01-01

    The increasing prevalence and complexity of fluoroscopically guided interventions (FGI) raises concern regarding radiation dose to patients subjected to the procedure. Despite current evidence showing the risk to patients from the deterministic effects of radiation (e.g. skin burns), radiation induced injuries remain commonplace. This review aims to increase the awareness surrounding radiation dose measurement for patients undergoing FGI. A review of the literature was conducted alongside previous researches from the authors’ department. Studies pertaining to patient dose measurement, its formalism along with current advances and present challenges were reviewed. Current patient monitoring techniques (using available radiation dosimeters), as well as the inadequacy of accepting displayed dose as patient radiation dose is discussed. Furthermore, advances in real-time patient radiation dose estimation during FGI are considered. Patient dosimetry in FGI, particularly in real time, remains an ongoing challenge. The increasing occurrence and sophistication of these procedures calls for further advances in the field of patient radiation dose monitoring. Improved measuring techniques will aid clinicians in better predicting and managing radiation induced injury following FGI, thus improving patient care. (paper)

  18. The Influence of Organizational Commitment, Job Commitment and Job Satisfaction on Professionalism Perceived by Radiotechnologists Working in the Department of Radiation Oncology

    International Nuclear Information System (INIS)

    Gim, Yang Soo; Lee, Sun Young; Lee, Joon Seong; Gwak, Geun Tak; Park, Ju Gyeong; Lee, Seung Hoon; Hwang, Ho In; Cha, Seok Yong

    2012-01-01

    The study is to check the specialty of radiotherapists working in the department of radiation oncology and find job satisfaction, organizational commitment and job commitment having an effect on professional parts. After making analysis of the mutual relation, it is to provide radiotechnologists with making progress in the future. From March 2 to March 30, we had carried out a survey with email. It is possible to have 272 questionnaires answered in the survey. We make use of SPSS 13.0 for Windows to analyze the data collected for study. Frequency and a percentage are meant to show general characteristics, and t-test and ANOVA to do the difference between general properties and professionalism. Pearson's correlation coefficient also is meant to do the correlation of professionalism, organizational job commitment and job satisfaction, and multiple regression analysis to do the factor for a relevant variable to affect professionalism. There are subdivisions in the professionalism informing us of the self-regulation 17.74±2.32/3.55±46, a sense of calling 17.58±2.63/3.52±53, reference of the professional 17.14±2.39/3.43±48, service to the public 15.97±2.48/3.19±50, and autonomy 15.68±2.28/3.14±46. Grand mean turns out to be 83.89±7.63(Summation of items)/ 3.37±0.49(Numbers of items). When it comes to a statistical relation between general characteristics and professionalism, the statistics have it that these come within age (P 2 is 0.504. The results of the factors that influence professionalism working as radiotherapists in the department of radiation oncology have it that the more affective commitment, normative commitment, and job satisfaction we feel, the more professionalism we recognize. We think that the focus of professionalism is increased if getting the chances for radiotherapists to have little to do with developing opportunities given.

  19. The limiting dose rate and its importance in radiation protection

    International Nuclear Information System (INIS)

    Bakkiam, D.; Sonwani, Swetha; Arul Ananthakumar, A.; Mohankumar, Mary N.

    2012-01-01

    The concept of defining a low dose of ionizing radiation still remains unclear. Before attempting to define a low dose, it is more important to define a low-dose rate since effects at low dose-rates are different from those observed at higher dose-rates. Hence, it follows that low dose-rates rather than a low dose is an important criteria to determine radio-biological effects and risk factors i.e. stochastic health effects. Chromosomal aberrations induced by ionizing radiations are well fitted by quadratic model Y= áD + âD 2 + C with the linear coefficient of dose predominating for high LET radiations and low doses of low LET. At higher doses and dose rates of sparsely ionizing radiation, break pairs produced by inter-track action leads to the formation of exchange type aberrations and is dependent on dose rate. Whereas at lower doses and dose rates, intra-track action produces break pairs and resulting aberrations are in direct proportion to absorbed dose and independent of dose rate. The dose rate at which inter-track ceases to be observable and where intra-track action effectively becomes the sole contributor of lesion-pair formation is referred to as limiting dose rate (LDR). Once the LDR is reached further reduction in dose rates will not affect the slope of DR since breaks produced by independent charged particle tracks are widely separated in time to interact with each other for aberration yield. This linear dependency is also noticed for acute exposures at very low doses. Existing reports emphasizes the existence of LDR likely to be e6.3cGyh -1 . However no systematic studies have been conducted so far to determine LDR. In the present investigation DR curves were constructed for the dose rates 0.002 and 0.003 Gy/min and to define LDR at which a coefficient approaches zero. Extrapolation of limiting low dose rate data can be used to predict low dose effects regardless of dose rate and its definition ought to serve as a useful index for studies pertaining

  20. A Paradigm Shift in Low Dose Radiation Biology

    Directory of Open Access Journals (Sweden)

    Z. Alatas

    2015-08-01

    Full Text Available When ionizing radiation traverses biological material, some energy depositions occur and ionize directly deoxyribonucleic acid (DNA molecules, the critical target. A classical paradigm in radiobiology is that the deposition of energy in the cell nucleus and the resulting damage to DNA are responsible for the detrimental biological effects of radiation. It is presumed that no radiation effect would be expected in cells that receive no direct radiation exposure through nucleus. The risks of exposure to low dose ionizing radiation are estimated by extrapolating from data obtained after exposure to high dose radiation. However, the validity of using this dose-response model is controversial because evidence accumulated over the past decade has indicated that living organisms, including humans, respond differently to low dose radiation than they do to high dose radiation. Moreover, recent experimental evidences from many laboratories reveal the fact that radiation effects also occur in cells that were not exposed to radiation and in the progeny of irradiated cells at delayed times after radiation exposure where cells do not encounter direct DNA damage. Recently, the classical paradigm in radiobiology has been shifted from the nucleus, specifically the DNA, as the principal target for the biological effects of radiation to cells. The universality of target theory has been challenged by phenomena of radiation-induced genomic instability, bystander effect and adaptive response. The new radiation biology paradigm would cover both targeted and non-targeted effects of ionizing radiation. The mechanisms underlying these responses involve biochemical/molecular signals that respond to targeted and non-targeted events. These results brought in understanding that the biological response to low dose radiation at tissue or organism level is a complex process of integrated response of cellular targets as well as extra-cellular factors. Biological understanding of

  1. Radiation dose distributions due to sudden ejection of cobalt device.

    Science.gov (United States)

    Abdelhady, Amr

    2016-09-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Low dose radiation and plant growth

    International Nuclear Information System (INIS)

    Kim, Sung Jae; Lee, Hae Youn; Park, Hong Sook

    2001-03-01

    Ionizing radiation includes cosmic radiation, earth radiation, radionuclides for the medical purpose and nuclear industry, fallout radiation. From the experimental results of various radiation effects on seeds or seedlings, it was found that germination rate, development, respiration rate, reproduction and blooming were accelerated compared with the control. In mammal, hormesis phenomenon manifested itself in increased disease resistance, lifespan, and decreased rate of tumor incidence. In plants, it was shown that germination, sprouting, growth, development, blooming and resistance to disease were accelerated

  3. Low dose radiation and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Jae; Lee, Hae Youn; Park, Hong Sook

    2001-03-01

    Ionizing radiation includes cosmic radiation, earth radiation, radionuclides for the medical purpose and nuclear industry, fallout radiation. From the experimental results of various radiation effects on seeds or seedlings, it was found that germination rate, development, respiration rate, reproduction and blooming were accelerated compared with the control. In mammal, hormesis phenomenon manifested itself in increased disease resistance, lifespan, and decreased rate of tumor incidence. In plants, it was shown that germination, sprouting, growth, development, blooming and resistance to disease were accelerated.

  4. Evaluation of Patient Radiation Dose during Orthopedic Surgery

    International Nuclear Information System (INIS)

    Osman, H; Elzaki, A.; Sam, A.K.; Sulieman, A.

    2013-01-01

    The number of orthopedic procedures requiring the use of the fluoroscopic guidance has increased over the recent years. Consequently the patient exposed to un avoidable radiation doses. The aim of the current study was to evaluate patient radiation dose during these procedures.37 patients under went dynamic hip screw (DHS) and dynamic cannulated screw (DCS) were evaluated using calibrated Thermolumincent Dosimeters (TLDs), under carm fluoroscopic machines ,in three centers in Khartoum-Sudan. The mean Entrance Skin Dose (ESD) was 7.9 m Gy per procedure. The bone marrow and gonad organ exposed to significant doses. No correlation was found between ESD and Body Mass Index (BMI), or patient weight. Well correlation was found between kilo voltage applied and ESD. Orthopedic surgeries delivered lower radiation dose to patients than cardiac catheterization or hysterosalpingraphy (HSG) procedures. More study should be implemented to follow radiation dose before surgery and after surgery

  5. Biological influence from low dose and low-dose rate radiation

    International Nuclear Information System (INIS)

    Magae, Junji

    2007-01-01

    Although living organisms have defense mechanisms for radioadaptive response, the influence is considered to vary qualitatively and quantitatively for low dose and high dose, as well as for low-dose rate and high-dose rate. This article describes the bioresponse to low dose and low-dose rate. Among various biomolecules, DNA is the most sensitive to radiation, and accurate replication of DNA is an essential requirement for the survival of living organisms. Also, the influence of active enzymes resulted from the effect of radiation on enzymes in the body is larger than the direct influence of radiation on the body. After this, the article describes the carcinogenic risk by low-dose radiation, and then so-called Hormesis effect to create cancer inhibition effect by stimulating active physiology. (S.K.)

  6. Radiation dose of CT coronary angiography in clinical practice: Objective evaluation of strategies for dose optimization

    International Nuclear Information System (INIS)

    Yerramasu, Ajay; Venuraju, Shreenidhi; Atwal, Satvir; Goodman, Dennis; Lipkin, David; Lahiri, Avijit

    2012-01-01

    Background: CT coronary angiography (CTCA) is an evolving modality for the diagnosis of coronary artery disease. Radiation burden associated with CTCA has been a major concern in the wider application of this technique. It is important to reduce the radiation dose without compromising the image quality. Objectives: To estimate the radiation dose of CTCA in clinical practice and evaluate the effect of dose-saving algorithms on radiation dose and image quality. Methods: Effective radiation dose was measured from the dose-length product in 616 consecutive patients (mean age 58 ± 12 years; 70% males) who underwent clinically indicated CTCA at our institution over 1 year. Image quality was assessed subjectively using a 4-point scale and objectively by measuring the signal- and contrast-to-noise ratios in the coronary arteries. Multivariate linear regression analysis was used to identify factors independently associated with radiation dose. Results: Mean effective radiation dose of CTCA was 6.6 ± 3.3 mSv. Radiation dose was significantly reduced by dose saving algorithms such as 100 kV imaging (−47%; 95% CI, −44% to −50%), prospective gating (−35%; 95% CI, −29% to −40%) and ECG controlled tube current modulation (−23%; 95% CI, −9% to −34%). None of the dose saving algorithms were associated with a significant reduction in mean image quality or the frequency of diagnostic scans (P = non-significant for all comparisons). Conclusion: Careful application of radiation-dose saving algorithms in appropriately selected patients can reduce the radiation burden of CTCA significantly, without compromising the image quality.

  7. Occupational radiation dose in Indonesia 1981-1986

    International Nuclear Information System (INIS)

    Hiswara, E.; Ismono, A.

    1993-01-01

    Occupational radiation dose in Indonesia 1981-1986. This paper presents the occupational radiation dose in Indonesia during the period of 1981-1986. The highest collective dose accurated in 1983 was calculated to be 2.68 man-Sv, with the maximum mean dose per worker, who received dose more than zero, was around 11.07 mSv in the same year. In 1985, a relative collective dose from medical occupations of 1.88 man mSv for 10 6 population was estimated based on its total collective dose of 0.31 man-mSv. The total number of workers who received annual collective dose less than 5 mSv varied from 97.0% in 1981 to 99.5% in 1986. As a group, the industrial occupations has considerably higher risk in receiving a dose than others. (authors). 11 refs., 7 tabs

  8. Modeling of radiation doses from chronic aqueous releases

    International Nuclear Information System (INIS)

    Watts, J.R.

    1976-01-01

    A general model and corresponding computer code were developed to calculate personnel dose estimates from chronic releases via aqueous pathways. Potential internal dose pathways are consumption of water, fish, crustacean, and mollusk. Dose prediction from consumption of fish, crustacean, or mollusk is based on the calculated radionuclide content of the water and applicable bioaccumulation factor. 70-year dose commitments are calculated for whole body, bone, lower large intestine of the gastrointestinal tract, and six internal organs. In addition, the code identifies the largest dose contributor and the dose percentages for each organ-radionuclide combination in the source term. The 1974 radionuclide release data from the Savannah River Plant were used to evaluate the dose models. The dose predicted from the model was compared to the dose calculated from radiometric analysis of water and fish samples. The whole body dose from water consumption was 0.45 mrem calculated from monitoring data and 0.61 mrem predicted from the model. Tritium contributed 99 percent of this dose. The whole body dose from fish consumption was 0.20 mrem calculated from monitoring data and 0.14 mrem from the model. Cesium-134,137 was the principal contributor to the 70-year whole body dose from fish consumption

  9. Radiation dose rates from UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Friend, P.J. [Urenco, Capenhurst (United Kingdom)

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  10. Radiation Dose Risk and Diagnostic Benefit in Imaging Investigations

    OpenAIRE

    Dobrescu, Lidia; Rădulescu, Gheorghe-Cristian

    2015-01-01

    The paper presents many facets of medical imaging investigations radiological risks. The total volume of prescribed medical investigations proves a serious lack in monitoring and tracking of the cumulative radiation doses in many health services. Modern radiological investigations equipment is continuously reducing the total dose of radiation due to improved technologies, so a decrease in per caput dose can be noticed, but the increasing number of investigations has determined a net increase ...

  11. Radiation dose estimates for copper-64 citrate in man

    International Nuclear Information System (INIS)

    Crook, J.E.; Carlton, J.E.; Stabin, M.; Watson, E.

    1985-01-01

    Tumor imaging agents suitable for use with positron emission tomographs are constantly sought. We have performed studies with animal-tumor-bearing models that have demonstrated the rapid uptake of copper-64. The radiation dose estimates for man indicate that the intravenous administration of 7.0 mCi would result in radiation doses to the kidney of 9.8 to 10.5 rads with other organs receiving substantially less radiation. 5 refs., 3 tabs

  12. Radiation dose estimates for copper-64 citrate in man

    International Nuclear Information System (INIS)

    Crook, J.E.; Carlton, J.E.; Stabin, M.; Watson, E.

    1986-01-01

    Tumor imaging agents suitable for use with positron emission tomographs are constantly sought. The authors have performed studies with animal-tumor-bearing models that have demonstrated the rapid uptake of copper-64. The radiation dose estimates for man indicate that the intravenous administration of 7.0 mCi would result in radiation doses to the kidney of 9.8 to 10.5 rads with other organs receiving substantially less radiations. 5 references, 3 tables

  13. Patient radiation dose in conventional and xerographic cephalography

    International Nuclear Information System (INIS)

    Copley, R.L.; Glaze, S.A.; Bushong, S.C.; West, D.C.

    1979-01-01

    A comparison of the radiation doses for xeroradiographic and conventional film screen cephalography was made. Alderson tissue-equivalent phantoms were used for patient simulation. An optimum technique in terms of patient dose and image quality indicated that the dose for the Xerox process ranged from five to eleven times greater than that for the conventional process for entrance and exit exposures, respectively. This dose, however, falls within an acceptable range for other dental and medical radiation doses. It is recommended that conventional cephalography be used for routine purposes and that xeroradiography be reserved for situations requiring the increased image quality that the process affords

  14. Dose enhancement effects of X ray radiation in bipolar transistors

    International Nuclear Information System (INIS)

    Chen Panxun

    1997-01-01

    The author has presented behaviour degradation and dose enhancement effects of bipolar transistors in X ray irradiation environment. The relative dose enhancement factors of X ray radiation were measured in bipolar transistors by the experiment methods. The mechanism of bipolar device dose enhancement was investigated

  15. Natural radiation dose to Gammarus from Hudson river

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Wrenn, M.E.; Eisenbud, M.

    1979-01-01

    The purpose of this investigation is to evaluate the natural radiation dose rate to whole body and components of the Gammarus species, a zooplankton which occurs in the Hudson River among other places, and to compare the results with the upper limits of dose rates from man-made sources. The alpha dose rates to the exoskeleton and soft tissues are about 10 times the average alpha dose rate to the whole body, assuming uniform distribution of 226 Ra. The natural alpha radiation dose rate to Gammarus represents only about 5% of the total natural dose to the organism, i.e., 492 mrad/yr. The external dose rate due to 40 K, 238 U plus daughters and 232 Th plus daughters accumulated in the sediments comprise 91% of that total natural dose rate, the remaining percentage being due to natural internal beta emitters and cosmic radiation. Man-made sources can cause an external dose rate up to 224 mrad/yr, which comprises roughly 1/3 of the total dose rate (up to 716 mrad/yr; natural plus man-made) to the Gammarus of Hudson River in front of Indian Point Nuclear Power Station. However, in terms of dose-equivalent the natural sources of radiation would contribute more than 75% of the total dose to Gammarus

  16. The dose limits in radiation protection: foundations and evolution perspectives

    International Nuclear Information System (INIS)

    Lochard, J.

    1999-01-01

    The first part of this article is devoted to the evolution of dose limits in radiation protection since 1928. The second part tackles the difficulties to whom the ICRP system of limitation collides with. The notions of dose limits, ALARA principle are explained and the concept of dose constraints is introduced. (N.C.)

  17. Radiation doses in pediatric radiology: influence of regulations and standards

    International Nuclear Information System (INIS)

    Suleiman, O.H.

    2004-01-01

    The benefits of X-ray examinations contribute to the quality of modern medicine; however the risk of using X-rays, a carcinogen, has always been a concern. This concern is heightened for pediatric patients, who have a much greater sensitivity to the carcinogenic effects of radiation than adults. The principle of as low as reasonably achievable, or ALARA, is essential for minimizing the radiation dose patients receive, especially for pediatric patients. In order to keep radiation doses ALARA, one must know the dose patients receive. The determination of radiation dose in a standard way is therefore necessary so that these doses can be compared with practice, and for meaningful comparison against voluntary standards. In extreme situations, where public health needs may require mandatory standards, or regulations, the quantitative measurement and calculation of radiation dose becomes essential. How some radiation dose metrics and standards have evolved, including the value of different metrics such as entrance air kerma, organ dose, and effective dose will be presented. Recent pediatric X-ray studies, whether or not dedicated pediatric equipment is necessary, and recent initiatives by the Food and Drug Administration for pediatric population will be discussed. (orig.)

  18. Investigation of radiation skin dose in interventional cardiology

    International Nuclear Information System (INIS)

    Webster, C.M.; Horrocks, J.; Hayes, D.

    2001-01-01

    Background - The study investigated the radiation skin doses for interventional patients in cardiology; two procedures which have the highest radiation dose are Radiofrequency Catheter Ablation (RFCA) and Percutaneous Transluminal Coronary Angioplasty (PTCA). Methods and Results - 56 patients were randomly selected and investigated; 23 patients in the RFCA group and 33 in the PTCA group. Skin and effective dose were calculated from Dose Area Product (DAP). Thermoluminescent Dosimetry was the second method of dose measurement used. Patients were followed-up for a three month period to check for possible skin reactions resulting from the radiation dose during the procedure. Radiation skin doses in 14 patients were calculated to be more than 1 Gy, including three patients who received more than 2 Gy, the threshold dose for deterministic effects of radiation. 7 patients (12.5%) reported skin reactions as a result of the radiation received to their backs during the procedure. Mean DAP and estimated effective doses were 105 Gycm 2 and 22.5 mSv for RFCA, and 32 Gycm 2 and 6.2 mSv for PTCA procedures respectively. Conclusion - Complex procedures in Interventional Cardiology can exceed the threshold level for deterministic effects in the skin. (author)

  19. Assessment of dose level of ionizing radiation in army scrap

    International Nuclear Information System (INIS)

    Abdel Hamid, S. M.

    2010-12-01

    Radiation protection is the science of protecting people and the environment from the harmful effects of ionizing radiation, which includes both particle radiation and high energy radiation. Ionizing radiation is widely used in industry and medicine. Any human activity of nuclear technologies should be linked to the foundation of scientific methodology and baseline radiation culture to avoid risk of radiation and should be working with radioactive materials and expertise to understand, control practices in order to avoid risks that could cause harm to human and environment. The study was conducted in warehouses and building of Sudan air force Khartoum basic air force during September 2010. The goal of this study to estimate the radiation dose and measurement of radioactive contamination of aircraft scrap equipment and increase the culture of radiological safety as well as the concept of radiation protection. The results showed that there is no pollution observed in the contents of the aircraft and the spire part stores outside, levels of radiation dose for the all contents of the aircraft and spire part within the excitable level, except temperature sensors estimated radiation dose about 43 μSv/h outside of the shielding and 12 μSv/h inside the shielding that exceeded the internationally recommended dose level. One of the most important of the identification of eighteen (18) radiation sources used in temperature and fuel level sensors. These are separated from the scrap, collected and stored in safe place. (Author)

  20. Biological responses to low dose rate gamma radiation

    International Nuclear Information System (INIS)

    Magae, Junji; Ogata, Hiromitsu

    2003-01-01

    Linear non-threshold (LNT) theory is a basic theory for radioprotection. While LNT dose not consider irradiation time or dose-rate, biological responses to radiation are complex processes dependent on irradiation time as well as total dose. Moreover, experimental and epidemiological studies that can evaluate LNT at low dose/low dose-rate are not sufficiently accumulated. Here we analyzed quantitative relationship among dose, dose-rate and irradiation time using chromosomal breakage and proliferation inhibition of human cells as indicators of biological responses. We also acquired quantitative data at low doses that can evaluate adaptability of LNT with statistically sufficient accuracy. Our results demonstrate that biological responses at low dose-rate are remarkably affected by exposure time, and they are dependent on dose-rate rather than total dose in long-term irradiation. We also found that change of biological responses at low dose was not linearly correlated to dose. These results suggest that it is necessary for us to create a new model which sufficiently includes dose-rate effect and correctly fits of actual experimental and epidemiological results to evaluate risk of radiation at low dose/low dose-rate. (author)

  1. ''Low dose'' and/or ''high dose'' in radiation protection: A need to setting criteria for dose classification

    International Nuclear Information System (INIS)

    Sohrabi, M.

    1997-01-01

    The ''low dose'' and/or ''high dose'' of ionizing radiation are common terms widely used in radiation applications, radiation protection and radiobiology, and natural radiation environment. Reading the title, the papers of this interesting and highly important conference and the related literature, one can simply raise the question; ''What are the levels and/or criteria for defining a low dose or a high dose of ionizing radiation?''. This is due to the fact that the criteria for these terms and for dose levels between these two extreme quantities have not yet been set, so that the terms relatively lower doses or higher doses are usually applied. Therefore, setting criteria for classification of radiation doses in the above mentioned areas seems a vital need. The author while realizing the existing problems to achieve this important task, has made efforts in this paper to justify this need and has proposed some criteria, in particular for the classification of natural radiation areas, based on a system of dose limitation. (author)

  2. Global DNA methylation responses to low dose radiation exposure

    International Nuclear Information System (INIS)

    Newman, M.R.; Ormsby, R.J.; Blyth, B.J.; Sykes, P.J.; Bezak, E.

    2011-01-01

    Full text: High radiation doses cause breaks in the DNA which are considered the critical lesions in initiation of radiation-induced cancer. However, at very low radiation doses relevant for the general public, the induction of such breaks will be rare, and other changes to the DNA such as DNA methylation which affects gene expression may playa role in radiation responses. We are studying global DNA methylation after low dose radiation exposure to determine if low dose radiation has short- and/or long-term effects on chromatin structure. We developed a sensitive high resolution melt assay to measure the levels of DNA methylation across the mouse genome by analysing a stretch of DNA sequence within Long Interspersed Nuclear Elements-I (LINE I) that comprise a very large proportion of the mouse and human genomes. Our initial results suggest no significant short-term or longterm) changes in global NA methylation after low dose whole-body X-radiation of 10 J1Gyor 10 mGy, with a significant transient increase in NA methylation observed I day after a high dose of I Gy. If the low radiation doses tested are inducing changes in bal DNA methylation, these would appear to be smaller than the variation observed between the sexes and following the general stress of the sham-irradiation procedure itself. This research was funded by the Low Dose Radiation Research Program, Biological and Environmental Research, US DOE, Grant DE-FG02-05ER64104 and MN is the recipient of the FMCF/BHP Dose Radiation Research Scholarship.

  3. Radiation doses and possible radiation effects of low-level, chronic radiation in vegetation

    International Nuclear Information System (INIS)

    Rhoads, W.A.; Franks, L.A.

    1975-01-01

    Measurements were made of radiation doses in soil and vegetation in Pu-contaminated areas at the Nevada Test Site with the objective of investigating low-level, low-energy gamma radiation (with some beta radiation) effects at the cytological or morphological level in native shrubs. In this preliminary investigation, the exposure doses to shrubs at the approximate height of stem apical meristems were estimated from 35 to 140 R for a ten-year period. The gamma exposure dose estimated for the same period was 20.7 percent +- 6.4 percent of that recorded by the dosimeters used in several kinds of field instrument surveys. Hence, a survey instrument reading made at about 25 cm in the tops of shrubs should indicate about 1 / 5 the dosimeter-measured exposures. No cytology has yet been undertaken because of the drought since last winter. (auth)

  4. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Fidan, S.

    1977-01-01

    of dose rate (1–1014 rad s−1). Upon irradiation of the film, the profile of the radiation field is registered as a permanent colored image of the dose distribution. Unlike most other types of dyed plastic dose meters, the optical density produced by irradiation is in most cases stable for periods...... of many polymeric systems in industrial radiation processing. The result is that errors due to energy dependence of response of the radiation sensor are effectively reduced, since the spectral sensitivity of the dose meter matches that of the polymer of interest, over a wide range of photon and electron...

  5. Cancer risk of low dose/low dose rate radiation: a meta-analysis of cancer data of mammals exposed to low doses of radiation

    International Nuclear Information System (INIS)

    Ogata, Hiromitsu; Magae, Junji

    2008-01-01

    Full text: Linear No Threshold (LNT) model is a basic theory for radioprotection, but the adaptability of this hypothesis to biological responses at low doses or at low dose rates is not sufficiently investigated. Simultaneous consideration of the cumulative dose and the dose rate is necessary for evaluating the risk of long-term exposure to ionizing radiation at low dose. This study intends to examine several numerical relationships between doses and dose rates in biological responses to gamma radiation. Collected datasets on the relationship between dose and the incidence of cancer in mammals exposed to low doses of radiation were analysed using meta-regression models and modified exponential (MOE) model, which we previously published, that predicts irradiation time-dependent biological response at low dose rate ionizing radiation. Minimum doses of observable risk and effective doses with a variety of dose rates were calculated using parameters estimated by fitting meta-regression models to the data and compared them with other statistical models that find values corresponding to 'threshold limits'. By fitting a weighted regression model (fixed-effects meta-regression model) to the data on risk of all cancers, it was found that the log relative risk [log(RR)] increased as the total exposure dose increased. The intersection of this regression line with the x-axis denotes the minimum dose of observable risk. These estimated minimum doses and effective doses increased with decrease of dose rate. The goodness of fits of MOE-model depended on cancer types, but the total cancer risk is reduced when dose rates are very low. The results suggest that dose response curve for cancer risk is remarkably affected by dose rate and that dose rate effect changes as a function of dose rate. For scientific discussion on the low dose exposure risk and its uncertainty, the term 'threshold' should be statistically defined, and dose rate effects should be included in the risk

  6. Total dose and dose rate radiation characterization of EPI-CMOS radiation hardened memory and microprocessor devices

    International Nuclear Information System (INIS)

    Gingerich, B.L.; Hermsen, J.M.; Lee, J.C.; Schroeder, J.E.

    1984-01-01

    The process, circuit discription, and total dose radiation characteristics are presented for two second generation hardened 4K EPI-CMOS RAMs and a first generation 80C85 microprocessor. Total dose radiation performance is presented to 10M rad-Si and effects of biasing and operating conditions are discussed. The dose rate sensitivity of the 4K RAMs is also presented along with single event upset (SEU) test data

  7. Patient radiation doses from enteroclysis examinations

    International Nuclear Information System (INIS)

    Hart, D.; Wall, B.F.; Haggett, P.J.; Boardman, P.; Nolan, D.J.

    1994-01-01

    Data relating to patient dose have been acquired for enteroclysis examinations (small bowel enemas) performed at the John Radcliffe Hospital, Oxford, on 23 adult patients. Dose-area products, fluoroscopy times and the number of radiographs taken are used to compare the examination procedure at the Hospital with enteroclysis and barium follow-throughs performed elsewhere. The mean dose-area product for the 23 examinations was 6.8 Gy cm 2 and the mean effective dose was estimated to be 1.5 mSv. These doses are intermediate between those arising from barium meals and barium enemas performed in the same room. (author)

  8. measurement of high dose radiation using yellow perspex dosimeter

    International Nuclear Information System (INIS)

    Thamrin, M Thoyib; Sofyan, Hasnel

    1996-01-01

    Measurement of high dose radiation using yellow perspex dosemeter has been carried out. Dose range used was between 0.1 to 3.0 kGy. Measurement of dose rate against Fricke dosemeter as a standard dose meter From the irradiation of Fricke dosemeter with time variation of 3,6,9,12,15 and 18 minute, it was obtained average dose rate of 955.57 Gy/hour, linear equation of dose was Y= 2.333+15.776 X with its correlation factor r = 0.9999. Measurement result using yellow perspex show that correlation between net optical density and radiation dose was not linear with its equation was ODc exp. [Bo + In(dose).Bi] Value of Bo = -0.215 and Bi=0.5020. From the experiment it was suggested that routine dosimeter (yellow perspex) should be calibrated formerly against standard dosemeters

  9. Influence of enhanced fluid intake on reduction of committed dose after acute intake of tritiated water vapour by occupational workers at Narora Atomic Power Station, India

    International Nuclear Information System (INIS)

    Pawar, S.K.; Mitra, S.R.; Chand, Lal

    2001-01-01

    The study of acute exposure cases of male radiation workers to tritiated water vapour (HTO) in Narora Atomic Power Station, using the bi-exponential function has provided direct practical evidence that the committed dose following an HTO exposure is directly proportional to effective half-life which in turn is inversely proportional to the fluid intake. Urine samples from these workers apparently in good health, were collected and measured for tritium concentration in urine up to maximum of 163 days after the exposure. They were advised to increase their fluid intakes to accelerate the elimination of tritium for dose mitigation. Their fluid intakes reverted to normal levels in the later stage of the post exposure period. The non-linear regression analysis of the data of tritium concentration in urine showed an effective half-life of 1.5 to 3.8 days during the period of enhanced fluid intake, 3.4 to 6.9 days during the period of normal and slightly above normal fluid intake and 23.6 to 52.3 days due to elimination of metabolized organically bound tritium. This increase in elimination rate due to enhanced fluid intake directly resulted in dose mitigation of 45.1 to 76.0 percent in different subjects. (author)

  10. Audit of radiation dose during balloon mitral valvuloplasty procedure

    International Nuclear Information System (INIS)

    Livingstone, Roshan S; Chandy, Sunil; Peace, B S Timothy; George, Paul; John, Bobby; Pati, Purendra

    2006-01-01

    Radiation doses to patients during cardiological procedures are of concern in the present day scenario. This study was intended to audit the radiation dose imparted to patients during the balloon mitral valvuloplasty (BMV) procedure. Thirty seven patients who underwent the BMV procedure performed using two dedicated cardiovascular machines were included in the study. The radiation doses imparted to patients were measured using a dose area product (DAP) meter. The mean DAP value for patients who underwent the BMV procedure from one machine was 19.16 Gy cm 2 and from the other was 21.19 Gy cm 2 . Optimisation of exposure parameters and radiation doses was possible for one machine with the use of appropriate copper filters and optimised exposure parameters, and the mean DAP value after optimisation was 9.36 Gy cm 2

  11. Audit of radiation dose during balloon mitral valvuloplasty procedure

    Energy Technology Data Exchange (ETDEWEB)

    Livingstone, Roshan S [Department of Radiology, Christian Medical College, Vellore-632004, TN (India); Chandy, Sunil [Department of Cardiology, Christian Medical College, Vellore-632004, TN (India); Peace, B S Timothy [Department of Radiology, Christian Medical College, Vellore-632004, TN (India); George, Paul [Department of Cardiology, Christian Medical College, Vellore-632004, TN (India); John, Bobby [Department of Cardiology, Christian Medical College, Vellore-632004, TN (India); Pati, Purendra [Department of Cardiology, Christian Medical College, Vellore-632004, TN (India)

    2006-12-15

    Radiation doses to patients during cardiological procedures are of concern in the present day scenario. This study was intended to audit the radiation dose imparted to patients during the balloon mitral valvuloplasty (BMV) procedure. Thirty seven patients who underwent the BMV procedure performed using two dedicated cardiovascular machines were included in the study. The radiation doses imparted to patients were measured using a dose area product (DAP) meter. The mean DAP value for patients who underwent the BMV procedure from one machine was 19.16 Gy cm{sup 2} and from the other was 21.19 Gy cm{sup 2}. Optimisation of exposure parameters and radiation doses was possible for one machine with the use of appropriate copper filters and optimised exposure parameters, and the mean DAP value after optimisation was 9.36 Gy cm{sup 2}.

  12. Radiation doses to the embryo and fetus following intakes of radionuclides by the mother

    International Nuclear Information System (INIS)

    Stather, J.; Phipps, A.; Khursheed, A.

    1996-01-01

    In 1987 the International Commission on Radiological Protection set up a Task Group of Committee 2 charged with the responsibility for calculating radiation doses from incorporated radionuclides for all age groups in the population. This includes the development of models for calculating doses to the embryo and fetus following intakes of radionuclides by the mother. The development of models for calculating doses to the embryo and fetus is complex. Particular problems that have had to be addressed are the limited amount of human data available and the consequent need to use both the results of animal studies and chemical analogies; the varying rate of tissue and organ development in different species; the lack of detailed information on the distribution and retention of radionuclides in tissues of the embryo and fetus following intakes by the mother, either before or during gestation, and the radiation sensitivity of tissues of the embryo and fetus. In the development of dosimetric models for specific elements, human data have been used as far as is possible. Where this has not been available a generic modelling approach has been adopted. The models are being used to calculate doses to both mother and offspring for acute and chronic intakes, both before conception and at various times during gestation. Committed doses are being calculated as well as doses to birth. The results of preliminary dose calculations are considered. (author)

  13. Trends in doses to some UK radiation workers

    International Nuclear Information System (INIS)

    Best, R.J.; Kendall, G.M.; Pook, E.A.; Saunders, P.J.

    1990-01-01

    The NRPB runs a Personal Monitoring Service which issues dosemeters and keeps radiation dose records for over 10 000 workers. This database is a valuable source of information on occupational exposure to radiation though it is likely that in future the Central Index of Dose Information (CIDI) will provide more comprehensive statistics, albeit restricted to radiation workers in the sense of Ionising Radiation Regulations. This note describes doses incurred to the end of 1987 with some preliminary figures for 1988. It does not cover the same ground as earlier reports but gives more details of the structure of the monitored population by age and sex and examines evidence that mean radiation doses are decreasing with time. (author)

  14. Occupational Radiation Dose for Medical Workers at a University Hospital

    Directory of Open Access Journals (Sweden)

    M.H. Nassef

    2017-11-01

    Full Text Available Occupational radiation doses for medical workers from the departments of diagnostic radiology, nuclear medicine, and radiotherapy at the university hospital of King Abdul-Aziz University (KAU were measured and analysed. A total of 100 medical radiation workers were monitored to determine the status of their average annual effective dose. The analysis and the calibration procedures of this study were carried out at the Center for Radiation Protection and Training-KAU. The monitored workers were classified into subgroups, namely, medical staff/supervisors, technicians, and nurses, according to their responsibilities and specialties. The doses were measured using thermo luminescence dosimeters (TLD-100 (LiF:Mg,Ti placed over the lead apron at the chest level in all types of workers except for those in the cath lab, for whom the TLD was placed at the thyroid protective collar. For nuclear medicine, a hand dosimeter was used to measure the hand dose distribution. The annual average effective doses for diagnostic radiology, nuclear medicine, and radiotherapy workers were found to be 0.66, 1.56, and 0.28 mSv, respectively. The results of the measured annual dose were well below the international recommended dose limit of 20 mSv. Keywords: Occupational radiation dose, radiation workers, TLD, radiation protection

  15. Radiation dose in paediatric cardiac catheterisation: A systematic literature review

    International Nuclear Information System (INIS)

    Gould, R.; McFadden, S.L.; Hughes, C.M.

    2017-01-01

    Objectives: It is believed that children are more sensitive to ionising radiation than adults. This work reviewed the reported radiation dose estimates for paediatric cardiac catheterisation. A systematic literature review was performed by searching healthcare databases for studies reporting radiation dose using predetermined key words relating to children having cardiac catheterisation. The quality of publications was assessed using relevant Critical Appraisal Skills Programme questions and their reported radiation exposures were evaluated. Key findings: It is only in recent years that larger cohort observations have been undertaken. Although radiation dose from paediatric cardiac catheterisation has decreased in recent years, the literature indicated that it remains varied and potentially substantial. Conclusion: Standardisation of weight categories and procedure types such as those recommended by the PiDRL project could help compare current and future radiation dose estimates. - Highlights: • 31 articles reporting radiation dose from paediatric cardiac catheterisation were reviewed. • In recent years, larger cohorts (>1000) have been reported. • Radiation dose to children has been lowered in the last decade but remains varied. • Future dosimetry should be consistent for weight categories and procedure types.

  16. Effects of low dose radiation on tumor-bearing mice

    International Nuclear Information System (INIS)

    Feng Li; Hou Dianjun; Huang Shanying; Deng Daping; Wang Linchao; Cheng Yufeng

    2007-01-01

    Objective: To explore the effects of low-dose radiation on tumor-bearing mice and radiotherapy induced by low-dose radiation. Methods: Male Wistar mice were implanted with Walker-256 sarcoma cells in the right armpit. On day 4, the mice were given 75 mGy whole-body X-ray radiation. From the fifth day, tumor volume was measured, allowing for the creation of a graph depicting tumor growth. Lymphocytes activity in mice after whole-body X-ray radiation with LDR was determinned by FCM. Cytokines level were also determined by ELISA. Results: Compared with the radiotherapy group, tumor growth was significantly slower in the mice pre-exposed to low-dose radiation (P<0.05), after 15 days, the average tumor weight in the mice pre- exposed to low-dose radiation was also significantly lower (P<0.05). Lymphocytes activity and the expression of the CK in mice after whole-body y-ray radiation with LDR increased significantly. Conclusions: Low-dose radiation can markedly improve the immune function of the lymphocyte, inhibit the tumor growth, increase the resistant of the high-dose radiotherapy and enhance the effect of radiotherapy. (authors)

  17. Effective dose equivalents from external radiation due to Chernobyl accident

    International Nuclear Information System (INIS)

    Erkin, V.G.; Debedev, O.V.; Balonov, M.I.; Parkhomenko, V.I.

    1992-01-01

    Summarized data on measurements of individual dose of external γ-sources in 1987-1990 of population of western areas of Bryansk region were presented. Type of distribution of effective dose equivalent, its significance for various professional and social groups of population depending on the type of the house was discussed. Dependences connecting surface soil activity in the populated locality with average dose of external radiation sources were presented. Tendency of dose variation in 1987-1990 was shown

  18. Information from the National Institute of Radiation Protection about radiation doses and radiation risks at x-ray screening

    International Nuclear Information System (INIS)

    1975-05-01

    This report gives a specification of data concerning radiation doses and risks at x-ray investigations of lungs. The dose estimations are principally based on measurements performed in 1974 by the National Institute of Radiation Protection. The radiation doses at x-ray screening are of that magnitude that the risk for acute radiation injuries is non-existent. At these low doses it has not either been able to prove that the radiation gives long-range effects as changes in the genes or cancer of late appearance. At considerable higher doses, more than tens of thousands of millirads, a risk of cancer appearance at a small part of all irradiated persons has been proved, based on the assumption that the cancer risk is proportional to the radiation dose. Cancer can thus occure at low radiation doses too. Because of the mass radiography in Sweden 1974 about twenty cases of cancer may appear in the future. (M.S.)

  19. Biological effects of low doses of radiation at low dose rate

    International Nuclear Information System (INIS)

    1996-05-01

    The purpose of this report was to examine available scientific data and models relevant to the hypothesis that induction of genetic changes and cancers by low doses of ionizing radiation at low dose rate is a stochastic process with no threshold or apparent threshold. Assessment of the effects of higher doses of radiation is based on a wealth of data from both humans and other organisms. 234 refs., 26 figs., 14 tabs

  20. Radiation dose distributions due to sudden ejection of cobalt device

    International Nuclear Information System (INIS)

    Abdelhady, Amr

    2016-01-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. - Highlights: • This study aims to calculate the dose rate profiles after cobalt device ejection from open-pool-type reactor core. • MicroShield code was used to evaluate the dose rates inside the reactor control room. • McSKY code was used to evaluate the dose rates outside the reactor building. • The calculated dose rates for workers are higher than the permissible limits after 18 s from device ejection.

  1. Development of Plant Application Technique of Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jae Sung; Lim, Yong Taek (and others)

    2007-07-15

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources.

  2. Development of Plant Application Technique of Low Dose Radiation

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jae Sung; Lim, Yong Taek

    2007-07-01

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources

  3. Mean annual and collective radiation doses of Perm' province personnel

    International Nuclear Information System (INIS)

    Poplavskij, K.K.; Rotenberg, L.I.

    1978-01-01

    The average annual and collective doses of radiation received by personnel of radiologic facilities and by the population of the region under study as a whole are estimated. Tabular data on radiation loads are presented according to the age and sex of personnel and to the type of radiation sources used. The procedure employed in this study allows one to evaluate objectively the conditions of work with sources of ionizing radiation

  4. Tumour induction by small doses of ionised radiation

    International Nuclear Information System (INIS)

    Putten, L.M. van

    1980-01-01

    The effect of low doses of ionised radiation on tumour induction in animals is discussed. It is hypothesised that high doses of radiation can strongly advance tumour induction from the combination of a stimulated cell growth, as a reaction to massive cell killing, and damage to DNA in the cell nuclei. This effect has a limit below which the radiation dose causes a non-significant amount of dead cells. However in animals where through other reasons, a chronic growth stimulation already exists, only one effect, the damage of DNA, is necessary to induce tumours. A linear dose effect without a threshold level applies in these cases. Applying this hypothesis to man indicates that calculating low dose effects by linear extrapolation of high dose effects is nothing more than a reasonable approximation. (C.F.)

  5. Measurement of gamma radiation doses in nuclear power plant environment

    International Nuclear Information System (INIS)

    Bochvar, I.A.; Keirim-Markus, I.B.; Sergeeva, N.A.

    1976-01-01

    Considered are the problems of measuring gamma radiation dose values and the dose distribution in the nuclear power plant area with the aim of estimating the extent of their effect on the population. Presented are the dosimeters applied, their distribution throughout the controlled area, time of measurement. The distribution of gamma radiation doses over the controlled area and the dose alteration with the increase of the distance from the release source are shown. The results of measurements are investigated. The conclusion is made that operating nuclear power plants do not cause any increase in the gamma radiation dose over the area. Recommendations for clarifying the techniques for using dose-meters and decreasing measurement errors are given [ru

  6. Internal Dosimetry Monitoring- Detection Limits for a Selected Set of Radionuclides and Their Translation Into Committed Effective Dose

    International Nuclear Information System (INIS)

    Brandl, A.; Hrnecek, E.; Steger, F.

    2004-01-01

    To harmonize the practice of internal dosimetry monitoring across the country, the Austrian Standards Institute is currently drafting a new set of standards which are concerned with occupational incorporation monitoring of individuals handling non-sealed radioactive material. This set of standards is expected to consist of three parts discussing the general necessity and frequency, the requirements for monitoring institutions, and the determination and rigorous calculation of committed effective dose after incorporation of radioactive material, respectively. Considerations of the requirements for routine monitoring laboratories have led to an evaluation of the detection limits for routine monitoring equipment. For a selected set of radionuclides, these detection limits are investigated in detail. The main emphasis is placed on the decay chains of naturally occurring radionuclides showing some significant potential for being out of equilibrium due to chemical processes in certain mining industries. The radionuclides considered in this paper are 226Ra, 228Ra, 228Th, 232Th, 234U, 235U, and 238U. Given the routine monitoring intervals of the Austrian Standard, these detection limits are translated into information on committed effective dose. This paper investigates whether routine monitoring equipment is sufficient to ensure compliance with EC directive 96/29/Euratom for this selected set of radionuclides. (Author) 9 refs

  7. Knowledge of medical imaging radiation dose and risk among doctors.

    Science.gov (United States)

    Brown, Nicholas; Jones, Lee

    2013-02-01

    The growth of computed tomography (CT) and nuclear medicine (NM) scans has revolutionised healthcare but also greatly increased population radiation doses. Overuse of diagnostic radiation is becoming a feature of medical practice, leading to possible unnecessary radiation exposures and lifetime-risks of developing cancer. Doctors across all medical specialties and experience levels were surveyed to determine their knowledge of radiation doses and potential risks associated with some diagnostic imaging. A survey relating to knowledge and understanding of medical imaging radiation was distributed to doctors at 14 major Queensland public hospitals, as well as fellows and trainees in radiology, emergency medicine and general practice. From 608 valid responses, only 17.3% correctly estimated the radiation dose from CT scans and almost 1 in 10 incorrectly believed that CT radiation is not associated with any increased lifetime risk of developing cancer. There is a strong inverse relationship between a clinician's experience and their knowledge of CT radiation dose and risks, even among radiologists. More than a third (35.7%) of doctors incorrectly believed that typical NM imaging either does not use ionising radiation or emits doses equal to or less than a standard chest radiograph. Knowledge of CT and NM radiation doses is poor across all specialties, and there is a significant inverse relationship between experience and awareness of CT dose and risk. Despite having a poor understanding of these concepts, most doctors claim to consider them prior to requesting scans and when discussing potential risks with patients. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.

  8. Biological indicators for radiation absorbed dose: a review

    International Nuclear Information System (INIS)

    Paul, S.F.D.; Venkatachalam, P.; Jeevanram, R.K.

    1996-01-01

    Biological dosimetry has an important role to play in assessing the cumulative radiation exposure of persons working with radiation and also in estimating the true dose received during accidents involving external and internal exposure. Various biodosimetric methods have been tried to estimate radiation dose for the above purposes. Biodosimetric methods include cytogenetic, immunological and mutational assays. Each technique has certain advantages and disadvantages. We present here a review of each technique, the actual method used for detection of dose, the sensitivity of detection and its use in long term studies. (author)

  9. Ultraviolet Radiation Dose National Standard of México

    Science.gov (United States)

    Cardoso, R.; Rosas, E.

    2006-09-01

    We present the Ultraviolet (UV) Radiation Dose National Standard for México. The establishment of this measurement reference at Centro Nacional de Metrología (CENAM) eliminates the need of contacting foreign suppliers in the search for traceability towards the SI units when calibrating instruments at 365 nm. Further more, the UV Radiation Dose National Standard constitutes a highly accurate and reliable source for the UV radiation dose measurements performed in medical and cosmetic treatments as in the the food and pharmaceutics disinfection processes, among other.

  10. Radiation doses in buildings containing coal

    International Nuclear Information System (INIS)

    Somlai, J.; Kanyar, B.; Nenyei, A.; Nemeth, Z.; Nemeth, Cs.

    2001-01-01

    Using coal-slag with high concentration of 226 Ra as building material could result excess dose of people living in these dwellings. The gamma dose rate, the radon concentration and the radionuclide concentration of built-in slags were measured in kindergartens, schools and homes of three towns (Ajka, Tatabanya, Varpalota). The absorbed dose rates exceeded significantly the world average (80 nGy/h) and the annual dose reached 3-4 mSv in some cases. The dose coming from radon is significant in the case of slags, which did not originate from power plants but from smaller stoves and furnaces because in these cases the burning temperature is lower, so the radon emanation is higher. The dose in the latter cases could reach 10-20 mSv/year. (author)

  11. Dose/dose-rate responses of shrimp larvae to UV-B radiation

    International Nuclear Information System (INIS)

    Damkaer, D.M.

    1981-01-01

    Previous work indicated dose-rate thresholds in the effects of UV-B on the near-surface larvae of three shrimp species. Additional observations suggest that the total dose response varies with dose-rate. Below 0.002 Wm -2 sub([DNA]) irradiance no significant effect is noted in activity, development, or survival. Beyond that dose-rate threshold, shrimp larvae are significantly affected if the total dose exceeds about 85 Jm -2 sub([DNA]). Predictions cannot be made without both the dose-rate and the dose. These dose/dose-rate thresholds are compared to four-year mean dose/dose-rate solar UV-B irradiances at the experimental site, measured at the surface and calculated for 1 m depth. The probability that the shrimp larvae would receive lethal irradiance is low for the first half of the season of surface occurrence, even with a 44% increase in damaging UV radiation. (orig.)

  12. Radiation dose assessment in space missions. The MATROSHKA experiment

    International Nuclear Information System (INIS)

    Reitz, Guenther

    2010-01-01

    The exact determination of radiation dose in space is a demanding and challenging task. Since January 2004, the International Space Station is equipped with a human phantom which is a key part of the MATROSHKA Experiment. The phantom is furnished with thousands of radiation sensors for the measurement of depth dose distribution, which has enabled the organ dose calculation and has demonstrated that personal dosemeter at the body surface overestimates the effective dose during extra-vehicular activity by more than a factor two. The MATROSHKA results serve to benchmark models and have therefore a large impact on the extrapolation of models to outer space. (author)

  13. Radiation Doses Received by the Irish Population 2014

    International Nuclear Information System (INIS)

    O'Connor, C.; Currivan, L.; Cunningham, N.; Kelleher, K.; Lewis, M.; Long, S.; McGinnity, P.; Smith, V.; McMahon, C.

    2014-06-01

    People are constantly exposed to a variety of sources of both natural and artificial radioactivity. The radiation dose received by the population from such sources is periodically estimated by the Radiological Protection Institute of Ireland RPII. This report is an update of a population dose assessment undertaken in 2008 and includes the most recent data available on the principal radiation exposure pathways. Wherever possible the collective dose and the resulting average annual dose to an individual living in Ireland, based on the most recently published figure for the population of Ireland, have been calculated for each of the pathways of exposure

  14. Radiation Dose for Equipment in the LHC Arcs

    CERN Document Server

    Wittenburg, K; Spickermann, T

    1998-01-01

    Collisions of protons with residual gas molecules or the beam screen installed in the vacuum chamber are the main sources for the radiation dose in the LHC arcs. The dose due to proton-gas collisions depends on gas pressure, energy and intensity of the circulating beam. The dose is about equally distributed along the arc and has been calculated in previous papers. Collisions of particles with the beam screen will take place where the beam size is largest - close to focusing quadrupole magnets. For this paper the radiation doses due to particles hitting the beam screen in a quadrupole were calculated with the shower codes GEANT3.21 and FLUKA96.

  15. Low doses of radiation: epidemiological investigations

    International Nuclear Information System (INIS)

    Dikiy, N.P.; Dovbnya, A.N.; Medvedeva, E.P.

    2013-01-01

    Influence of small dozes of radiation was investigated with the help epidemiologic evidence. Correlation analysis, regression analysis and frequency analysis were used for investigating morbidity of various cancer illnesses. The pollution of the environment and the fallout of radionuclides in 1962 and 1986 years have an influence upon morbidity of cancer. Influence of small dozes of radiation on health of the population is multifactorial. Therefore depending on other adverse external conditions the influence of radiation in small dozes can be increased or is weakened. Such character of influence of radiation in small dozes proposes the differentiated approach at realization of preventive measures. Especially it concerns regions with favorable ecological conditions.

  16. Natural background radiation and population dose in China

    Energy Technology Data Exchange (ETDEWEB)

    Guangzhi, C. (Ministry of Public Health, Beijing, BJ (China)); Ziqiang, P.; Zhenyum, H.; Yin, Y.; Mingqiang, G.

    On the basis of analyzing the data for the natural background radiation level in China, the typical values for indoor and outdoor terrestrial gamma radiation and effective dose equivalents from radon and thoron daughters are recommended. The annual effective dose equivalent from natural radiation to the inhabitant is estimated to be 2.3 mSv, in which 0.54 mSv is from terrestrial gamma radiation and about 0,8 mSv is from radon and its short-lived daughters. 55 Refs.

  17. The development of remote wireless radiation dose monitoring system

    International Nuclear Information System (INIS)

    Lee, Jin-woo; Jeong, Kyu-hwan; Kim, Jong-il; Im, Chae-wan

    2015-01-01

    Internet of things (IoT) technology has recently shown a large flow of IT trends in human life. In particular, our lives are now becoming integrated with a lot of items around the 'smart-phone' with IoT, including Bluetooth, Near Field Communication (NFC), Beacons, WiFi, and Global Positioning System (GPS). Our project focuses on the interconnection of radiation dosimetry and IoT technology. The radiation workers at a nuclear facility should hold personal dosimeters such as a Thermo-Luminescence Dosimeter (TLD), an Optically Stimulated Luminescence Dosimeter (OSL), pocket ionization chamber dosimeters, an Electronic Personal Dosimeter (EPD), or an alarm dosimeter on their body. Some of them have functions that generate audible or visible alarms to radiation workers in a real working area. However, such devices used in radiation fields these days have no functions for communicating with other areas or the responsible personnel in real time. In particular, when conducting a particular task in a high dose area, or a number of repair works within a radiation field, radiation dose monitoring is important for the health of the workers and the work efficiency. Our project aims at the development of a remote wireless radiation dose monitoring system (RWRD) that can be used to monitor the radiation dose in a nuclear facility for radiation workers and a radiation protection program In this project, a radiation dosimeter is the detection device for personal radiation dose, a smart phone is the mobile wireless communication tool, and, Beacon is the wireless starter for the detection, communication, and position of the worker using BLE (Bluetooth Low Energy). In this report, we report the design of the RWRD and a demonstration case in a real radiation field. (authors)

  18. The development of remote wireless radiation dose monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-woo [KAERI - Korea Atomic Energy Research Institute, Jeongup-si (Korea, Republic of); Chonbuk National University, Jeonjoo-Si (Korea, Republic of); Jeong, Kyu-hwan [KINS - Korea Institute of Nuclear Safety, Daejeon-Si (Korea, Republic of); Kim, Jong-il [Chonbuk National University, Jeonjoo-Si (Korea, Republic of); Im, Chae-wan [REMTECH, Seoul-Si (Korea, Republic of)

    2015-07-01

    Internet of things (IoT) technology has recently shown a large flow of IT trends in human life. In particular, our lives are now becoming integrated with a lot of items around the 'smart-phone' with IoT, including Bluetooth, Near Field Communication (NFC), Beacons, WiFi, and Global Positioning System (GPS). Our project focuses on the interconnection of radiation dosimetry and IoT technology. The radiation workers at a nuclear facility should hold personal dosimeters such as a Thermo-Luminescence Dosimeter (TLD), an Optically Stimulated Luminescence Dosimeter (OSL), pocket ionization chamber dosimeters, an Electronic Personal Dosimeter (EPD), or an alarm dosimeter on their body. Some of them have functions that generate audible or visible alarms to radiation workers in a real working area. However, such devices used in radiation fields these days have no functions for communicating with other areas or the responsible personnel in real time. In particular, when conducting a particular task in a high dose area, or a number of repair works within a radiation field, radiation dose monitoring is important for the health of the workers and the work efficiency. Our project aims at the development of a remote wireless radiation dose monitoring system (RWRD) that can be used to monitor the radiation dose in a nuclear facility for radiation workers and a radiation protection program In this project, a radiation dosimeter is the detection device for personal radiation dose, a smart phone is the mobile wireless communication tool, and, Beacon is the wireless starter for the detection, communication, and position of the worker using BLE (Bluetooth Low Energy). In this report, we report the design of the RWRD and a demonstration case in a real radiation field. (authors)

  19. Health hazards of low doses of ionizing radiations. Vo. 1

    International Nuclear Information System (INIS)

    El-Naggar, M.A.

    1996-01-01

    Exposure to high doses of ionizing radiation results in clinical manifestations of several disease entities that may be fatal. The onset and severity of these acute radiation syndromes are deterministic in relation to dose magnitude. Exposure to ionizing radiations at low doses and low dose rates could initiate certain damage in critical molecules of the cell, that may develop in time into serious health effects. The incidence of such delayed effects in low, and is only detectable through sophisticated epidemiological models carried out on large populations. The radiation damage induced in critical molecules of cells may develop by stochastic biochemical mechanisms of repair, residual damage, adaptive response, cellular transformation, promotion and progression into delayed health effects, the most important of which is carcinogenesis. The dose response relationship of probabilistic stochastic delayed effects of radiation at low doses and low dose rates, is very complex indeed. The purpose of this review is to provide a comprehensive understanding of the underlying mechanisms, the factors involved, and the uncertainties encountered. Contrary to acute deterministic effects, the occurrence of probabilistic delayed effects of radiation remains to be enigmatic. 7 figs

  20. Reducing ionizing radiation doses during cardiac interventions in pregnant women.

    Science.gov (United States)

    Orchard, Elizabeth; Dix, Sarah; Wilson, Neil; Mackillop, Lucy; Ormerod, Oliver

    2012-09-01

    There is concern over ionizing radiation exposure in women who are pregnant or of child-bearing age. Due to the increasing prevalence of congenital and acquired heart disease, the number of women who require cardiac interventions during pregnancy has increased. We have developed protocols for cardiac interventions in pregnant women and women of child-bearing age, aimed at substantially reducing both fluoroscopy duration and radiation doses. Over five years, we performed cardiac interventions on 15 pregnant women, nine postpartum women and four as part of prepregnancy assessment. Fluoroscopy times were minimized by simultaneous use of intracardiac echocardiography, and by using very low frame rates (2/second) during fluoroscopy. The procedures most commonly undertaken were closure of atrial septal defect (ASD) or patent foramen ovale (PFO) in 16 women, coronary angiograms in seven, right and left heart catheters in three and two stent placements. The mean screening time for all patients was 2.38 minutes (range 0.48-13.7), the median radiation dose was 66 (8.9-1501) Gy/cm(2). The median radiation dose to uterus was 1.92 (0.59-5.47) μGy, and the patient estimated dose was 0.24 (0.095-0.80) mSv. Ionizing radiation can be used safely in the management of severe cardiac structural disease in pregnancy, with very low ionizing radiation dose to the mother and extremely low exposure to the fetus. With experience, ionizing radiation doses at our institution have been reduced.

  1. Estimation of Radionuclide Concentrations and Average Annual Committed Effective Dose due to Ingestion for the Population in the Red River Delta, Vietnam.

    Science.gov (United States)

    Van, Tran Thi; Bat, Luu Tam; Nhan, Dang Duc; Quang, Nguyen Hao; Cam, Bui Duy; Hung, Luu Viet

    2018-02-16

    Radioactivity concentrations of nuclides of the 232 Th and 238 U radioactive chains and 40 K, 90 Sr, 137 Cs, and 239+240 Pu were surveyed for raw and cooked food of the population in the Red River delta region, Vietnam, using α-, γ-spectrometry, and liquid scintillation counting techniques. The concentration of 40 K in the cooked food was the highest compared to those of other radionuclides ranging from (23 ± 5) (rice) to (347 ± 50) Bq kg -1 dw (tofu). The 210 Po concentration in the cooked food ranged from its limit of detection (LOD) of 5 mBq kg -1  dw (rice) to (4.0 ± 1.6) Bq kg -1  dw (marine bivalves). The concentrations of other nuclides of the 232 Th and 238 U chains in the food were low, ranging from LOD of 0.02 Bq kg -1  dw to (1.1 ± 0.3) Bq kg -1  dw. The activity concentrations of 90 Sr, 137 Cs, and 239+240 Pu in the food were minor compared to that of the natural radionuclides. The average annual committed effective dose to adults in the study region was estimated and it ranged from 0.24 to 0.42 mSv a -1 with an average of 0.32 mSv a -1 , out of which rice, leafy vegetable, and tofu contributed up to 16.2%, 24.4%, and 21.3%, respectively. The committed effective doses to adults due to ingestion of regular diet in the Red River delta region, Vietnam are within the range determined in other countries worldwide. This finding suggests that Vietnamese food is safe for human consumption with respect to radiation exposure.

  2. Radiation doses to patients in haemodynamic procedures

    Energy Technology Data Exchange (ETDEWEB)

    Canadillas-Perdomo, B; Catalan-Acosta, A; Hernandez-Armas, J [Servicio de Fisica Medica, Hospital Universitario de Canarias, La Laguna, Tenerife (Spain); Perez-Martin, C [Servicio de Ingenieria Biomedica, Hospital Universitario de Canarias, La Laguna, Tenerife (Spain); Armas-Trujillo, D de [Servicio de Cardiologia, Hospital Universitario de Canarias, La Laguna, Tenerife (Spain)

    2001-03-01

    Interventional radio-cardiology gives high doses to patients due to high values of fluoroscopy times and large series of radiographic images. The main objective of the present work is the determination of de dose-area product (DAP) in patients of three different types of cardiology procedures with X-rays. The effective doses were estimated trough the organ doses values measured with thermoluminescent dosimeters (TLDs-100), suitable calibrated, placed in a phantom type Rando which was submitted to the same radiological conditions corresponding to the procedures made on patients. The values for the effective doses in the procedures CAD Seldinger was 6.20 mSv on average and 1.85mSv for pacemaker implants. (author)

  3. Radiation doses to patients in haemodynamic procedures

    International Nuclear Information System (INIS)

    Canadillas-Perdomo, B.; Catalan-Acosta, A.; Hernandez-Armas, J.; Perez-Martin, C.; Armas-Trujillo, D. de

    2001-01-01

    Interventional radio-cardiology gives high doses to patients due to high values of fluoroscopy times and large series of radiographic images. The main objective of the present work is the determination of de dose-area product (DAP) in patients of three different types of cardiology procedures with X-rays. The effective doses were estimated trough the organ doses values measured with thermoluminescent dosimeters (TLDs-100), suitable calibrated, placed in a phantom type Rando which was submitted to the same radiological conditions corresponding to the procedures made on patients. The values for the effective doses in the procedures CAD Seldinger was 6.20 mSv on average and 1.85mSv for pacemaker implants. (author)

  4. Doses and biological effect of ionizing radiation

    International Nuclear Information System (INIS)

    Hrynkiewicz, A.

    1993-01-01

    The aim of the monograph is to review practical aspects of dosimetry. The work describes basic units which are used in dosimetry and natural as well as industrial sources of ionizing radiation. Information given in the monograph help in assessment of the radiation risk. 8 refs, 15 tabs

  5. Biological effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1994-01-01

    Few weeks ago, when the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) submitted to the U.N. General Assembly the UNSCEAR 1994 report, the international community had at its disposal a broad view of the biological effects of low doses of ionizing radiation. The 1994 report (272 pages) specifically addressed the epidemiological studies of radiation carcinogenesis and the adaptive responses to radiation in cells and organisms. The report was aimed to supplement the UNSCEAR 1993 report to the U.N. General Assembly- an extensive document of 928 pages-which addressed the global levels of radiation exposing the world population, as well as some issues on the effects of ionizing radiation, including: mechanisms of radiation oncogenesis due to radiation exposure, influence of the level of dose and dose rate on stochastic effects of radiation, hereditary effects of radiation effects on the developing human brain, and the late deterministic effects in children. Those two UNSCEAR reports taken together provide an impressive overview of current knowledge on the biological effects of ionizing radiation. This article summarizes the essential issues of both reports, although it cannot cover all available information. (Author)

  6. Radiation dose to Sri Lankan infants from Caesium-137 in contaminated milk

    International Nuclear Information System (INIS)

    Hewamanna, R.; Dias, M.P.

    1999-01-01

    The radiation dose to infants due to ingestion of milk containing the maximum limit of radioactivity in milk powder imported to Sri Lanka has been calculated. The radioactivity of Cs-137 was used as an index of fission products for setting radioactivity limits. The computation for milk powder was based on an average daily intake of 125 g by infants, (a critical group of population) during the first year after birth. The recommended dose commitment to the general public is 1 mSv/y. The maximum permissible limit of 20 Bq/kg of Cs-137 in milk powder as stipulated by the Atomic Energy Authority for milk powder imported to Sri Lanka would yield a dose equivalent of 12.6 micro seivert/y from Cs-137

  7. CANCER RISKS ATTRIBUTABLE TO LOW DOSES OF IONIZING RADIATION - ASSESSING WHAT WE REALLY KNOW?

    Science.gov (United States)

    Cancer Risks Attributable to Low Doses of Ionizing Radiation - What Do We Really Know?AbstractHigh doses of ionizing radiation clearly produce deleterious consequences in humans including, but not exclusively, cancer induction. At very low radiation doses the situatio...

  8. Studying and measuring the gamma radiation doses in Homs city

    International Nuclear Information System (INIS)

    Sofaan, A. H.

    2001-01-01

    The gamma radiation dose was measured in Homs city by using many portable dosimeters (electronic dosimeter and Geiger-Muller). The measurements were carried out in the indoor and outdoor buildings, for different time period, through one year (1999-2000). High purity germanium detector with low back ground radiation (HpGe) was used to determine radiation element contained in some building and the surrounding soil. The statistical analysis laws were applied to make sure that the measured dose distribution around average value is normal distribution. The measurement indicates that the gamma indoor dose varies from 312μSv/y to 511μSv/y, with the average annual dose of 385μSv/y. However the gamma outdoor dose rate varies from 307μSv/y to 366μSv/y with an average annual dose 385μSv/y. The annual outdoor gamma radiation dose is about %16 lower than the outdoor dose in Homs City. These measurements have indicated that environmental gamma doses in Homs City are relatively low. This is because that most of the soils and rocks in the area are limestone. (author)

  9. Natural radiation level and doses to population in Anhui province

    International Nuclear Information System (INIS)

    1985-01-01

    The absorbed dose rates in air 1 m above the ground from natural radiation and terrestrial gamma radiation in Anhui Province were surveyed. One measurement was made in every area of 90 km 2 . The absorbed dose rates in air from terrestrial radiation range from 54 to 90 nGy.h -1 with an average of 70 nGy.h -1 . The ratios of indoors-to-outdoors and of roads-to-outdoors are 1.5 and 0.9 respectively. The annual effective dose equivalent from external radiation is 0.68-1.05 mSv. The population-weighted average values for mountain area, plain, hilly land, and the Changjiang River basin as well as the annual collective effective dose equivalent were calculated

  10. establishment of background radiation dose rate in the vicinity

    African Journals Online (AJOL)

    nb

    radiation dose rate data prior to commencement of uranium mining activities. Twenty stations in seven ... and geological structures of soil and rocks. (Florou and Kritids 1992, ... Selection of Sampling Points and location of. Field Dosimeters.

  11. The Spanish National Dose Registry and Spanish radiation passbooks

    International Nuclear Information System (INIS)

    Hernandez, A.; Martin, A.; Villanueva, I.; Amor, I.; Butragueno, J.L.

    2001-01-01

    The Spanish National Dose Registry (BDN) is the Nuclear Safety Council's (CSN) national database of occupational exposure to radiation. Each month BDN receives records of individual external doses from approved dosimetry services. The dose records include information regarding the occupational activities of exposed workers. The dose information and the statistical analysis prepared by the BDN are a useful tool for effective operational protection of occupationally exposed workers and a support for the CSN in the development and application of the ALARA principle. The Spanish radiation passbook was introduced in 1990 and since then CSN, as regulatory authority, has required that all outside workers entering controlled areas should have radiation passbooks. Nowadays, CSN has implemented improvements in the Spanish radiation Passbooks, taking into account previous experience and Directive 96/29/EURATOM. (author)

  12. Online Radiation Dose Measurement System for ATLAS experiment

    CERN Document Server

    Mandić, I; The ATLAS collaboration

    2012-01-01

    Particle detectors and readout electronics in the high energy physics experiment ATLAS at the Large Hadron Collider at CERN operate in radiation field containing photons, charged particles and neutrons. The particles in the radiation field originate from proton-proton interactions as well as from interactions of these particles with material in the experimental apparatus. In the innermost parts of ATLAS detector components will be exposed to ionizing doses exceeding 100 kGy. Energetic hadrons will also cause displacement damage in silicon equivalent to fluences of several times 10e14 1 MeV-neutrons per cm2. Such radiation doses can have severe influence on the performance of detectors. It is therefore very important to continuously monitor the accumulated doses to understand the detector performance and to correctly predict the lifetime of radiation sensitive components. Measurements of doses are important also to verify the simulations and represent a crucial input into the models used for predicting future ...

  13. Multidisciplinary European Low Dose Initiative (MELODI). Strategic research agenda for low dose radiation risk research

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzer, M. [Federal Office for Radiation Protection, BfS, Department of Radiation Protection and Health, Neuherberg (Germany); Auvinen, A. [University of Tampere, Tampere (Finland); STUK, Helsinki (Finland); Cardis, E. [ISGlobal, Barcelona Institute for Global Health, Barcelona (Spain); Durante, M. [Institute for Fundamental Physics and Applications, TIFPA, Trento (Italy); Harms-Ringdahl, M. [Stockholm University, Centre for Radiation Protection Research, Stockholm (Sweden); Jourdain, J.R. [Institute for Radiological Protection and Nuclear Safety, IRSN, Fontenay-aux-roses (France); Madas, B.G. [MTA Centre for Energy Research, Environmental Physics Department, Budapest (Hungary); Ottolenghi, A. [University of Pavia, Physics Department, Pavia (Italy); Pazzaglia, S. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome (Italy); Prise, K.M. [Queens University Belfast, Belfast (United Kingdom); Quintens, R. [Belgian Nuclear Research Centre, SCK-CEN, Mol (Belgium); Sabatier, L. [French Atomic Energy Commission, CEA, Paris (France); Bouffler, S. [Public Health England, PHE, Chilton (United Kingdom)

    2018-03-15

    MELODI (Multidisciplinary European Low Dose Initiative) is a European radiation protection research platform with focus on research on health risks after exposure to low-dose ionising radiation. It was founded in 2010 and currently includes 44 members from 18 countries. A major activity of MELODI is the continuous development of a long-term European Strategic Research Agenda (SRA) on low-dose risk for radiation protection. The SRA is intended to identify priorities for national and European radiation protection research programs as a basis for the preparation of competitive calls at the European level. Among those key priorities is the improvement of health risk estimates for exposures close to the dose limits for workers and to reference levels for the population in emergency situations. Another activity of MELODI is to ensure the availability of European key infrastructures for research activities, and the long-term maintenance of competences in radiation research via an integrated European approach for training and education. The MELODI SRA identifies three key research topics in low dose or low dose-rate radiation risk research: (1) dose and dose rate dependence of cancer risk, (2) radiation-induced non-cancer effects and (3) individual radiation sensitivity. The research required to improve the evidence base for each of the three key topics relates to three research lines: (1) research to improve understanding of the mechanisms contributing to radiogenic diseases, (2) epidemiological research to improve health risk evaluation of radiation exposure and (3) research to address the effects and risks associated with internal exposures, differing radiation qualities and inhomogeneous exposures. The full SRA and associated documents can be downloaded from the MELODI website (http://www.melodi-online.eu/sra.html). (orig.)

  14. KERMA-based radiation dose management system for real-time patient dose measurement

    Science.gov (United States)

    Kim, Kyo-Tae; Heo, Ye-Ji; Oh, Kyung-Min; Nam, Sang-Hee; Kang, Sang-Sik; Park, Ji-Koon; Song, Yong-Keun; Park, Sung-Kwang

    2016-07-01

    Because systems that reduce radiation exposure during diagnostic procedures must be developed, significant time and financial resources have been invested in constructing radiation dose management systems. In the present study, the characteristics of an existing ionization-based system were compared to those of a system based on the kinetic energy released per unit mass (KERMA). Furthermore, the feasibility of using the KERMA-based system for patient radiation dose management was verified. The ionization-based system corrected the effects resulting from radiation parameter perturbations in general radiography whereas the KERMA-based system did not. Because of this difference, the KERMA-based radiation dose management system might overestimate the patient's radiation dose due to changes in the radiation conditions. Therefore, if a correction factor describing the correlation between the systems is applied to resolve this issue, then a radiation dose management system can be developed that will enable real-time measurement of the patient's radiation exposure and acquisition of diagnostic images.

  15. An international intercomparison of absorbed dose measurements for radiation therapy

    International Nuclear Information System (INIS)

    Taiman Kadni; Noriah Mod Ali

    2002-01-01

    Dose intercomparison on an international basis has become an important component of quality assurance measurement i.e. to check the performance of absorbed dose measurements in radiation therapy. The absorbed dose to water measurements for radiation therapy at the SSDL, MINT have been regularly compared through international intercomparison programmes organised by the IAEA Dosimetry Laboratory, Seibersdorf, Austria such as IAEA/WHO TLD postal dose quality audits and the Intercomparison of therapy level ionisation chamber calibration factors in terms of air kerma and absorbed dose to water calibration factors. The results of these intercomparison in terms of percentage deviations for Cobalt 60 gamma radiation and megavoltage x-ray from medical linear accelerators participated by the SSDL-MINT during the year 1985-2001 are within the acceptance limit. (Author)

  16. Assessment of cosmic radiation doses received by air crew

    International Nuclear Information System (INIS)

    McAulay, I.R.

    1998-01-01

    Cosmic radiation in the atmosphere is such a complex mixture of radiation type that it is difficult to get a single instrument which is suitable for such measurements. Passive devices such as film badges and track etch detectors have also been used, but again present difficulties of interpretation and requirements of multiple devices to accommodate the different types of radiation encountered. In summary, air crew are the occupational group most highly exposed to radiation. The radiation doses experienced by them are sufficiently high as to require assessment on a regular basis and possible control by appropriate rostering. There appears little possibility of the dose limit for workers being exceeded, except possibly in the case of pregnant female crew. This category of air crew should be the subject of special controls aimed at ensuring that the dose limits for the foetus should not be exceeded

  17. Iodine 131 therapy patients: radiation dose to staff

    International Nuclear Information System (INIS)

    Castronovo, F.P. Jr.; Beh, R.A.; Veilleux, N.M.

    1986-01-01

    Metastasis to the skeletal system from follicular thyroid carcinoma may be treated with an oral dose of 131 I-NaI. Radiation exposures to hospital personnel attending these patients were calculated as a function of administered dose, distance from the patient and time after administration. Routine or emergency patient handling tasks would not exceed occupational radiation protection guidelines for up to 30 min immediately after administration. The emergency handling of several patients presents the potential for exceeding these guidelines. (author)

  18. Monitoring of radiation exposure and registration of doses

    International Nuclear Information System (INIS)

    1996-01-01

    The guide defines the concepts relevant to the monitoring of radiation exposure and working conditions and provides guidelines for determining the necessity of monitoring and subsequently organizing it. In addition, instructions are given for reporting doses to the Dose Register of the Finnish Centre for Radiation and Nuclear Safety (STUK). Also the procedures are described for situations leading to exceptional exposures. (10 refs., 1 tab.)

  19. Painting Dose: The ART of Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Hannah J. [College of Physicians & Surgeons, Columbia University, New York, New York (United States); Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Zietman, Anthony L. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Harvard Medical School, Boston, Massachusetts (United States); Efstathiou, Jason A., E-mail: jefstathiou@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Harvard Medical School, Boston, Massachusetts (United States)

    2016-11-15

    The discovery of X rays in 1895 captivated society like no other scientific advance. Radiation instantly became the subject not only of numerous scientific papers but also of circus bazaars, poetry, fiction, costume design, comics, and marketing for household items. Its spread was “viral.” What is not well known, however, is its incorporation into visual art, despite the long tradition of medicine and surgery as a subject in art. Using several contemporary search methods, we identified 5 examples of paintings or sculpture that thematically feature radiation therapy. All were by artists with exhibited careers in art: Georges Chicotot, Marcel Duchamp, David Alfaro Siqueiros, Robert Pope, and Cookie Kerxton. Each artist portrays radiation differently, ranging from traditional healer, to mysterious danger, to futuristic propaganda, to the emotional challenges of undergoing cancer therapy. This range captures the complex role of radiation as both a therapy and a hazard. Whereas some of these artists are now world famous, none of these artworks are as well known as their surgical counterparts. The penetration of radiation into popular culture was rapid and pervasive; yet, its role as a thematic subject in art never fully caught on, perhaps because of a lack of understanding of the technology, radiation's intangibility, or even a suppressive effect of society's ambivalent relationship with it. These 5 artists have established a rich foundation upon which pop culture and art can further develop with time to reflect the extraordinary progress of modern radiation therapy.

  20. Painting Dose: The ART of Radiation

    International Nuclear Information System (INIS)

    Roberts, Hannah J.; Zietman, Anthony L.; Efstathiou, Jason A.

    2016-01-01

    The discovery of X rays in 1895 captivated society like no other scientific advance. Radiation instantly became the subject not only of numerous scientific papers but also of circus bazaars, poetry, fiction, costume design, comics, and marketing for household items. Its spread was “viral.” What is not well known, however, is its incorporation into visual art, despite the long tradition of medicine and surgery as a subject in art. Using several contemporary search methods, we identified 5 examples of paintings or sculpture that thematically feature radiation therapy. All were by artists with exhibited careers in art: Georges Chicotot, Marcel Duchamp, David Alfaro Siqueiros, Robert Pope, and Cookie Kerxton. Each artist portrays radiation differently, ranging from traditional healer, to mysterious danger, to futuristic propaganda, to the emotional challenges of undergoing cancer therapy. This range captures the complex role of radiation as both a therapy and a hazard. Whereas some of these artists are now world famous, none of these artworks are as well known as their surgical counterparts. The penetration of radiation into popular culture was rapid and pervasive; yet, its role as a thematic subject in art never fully caught on, perhaps because of a lack of understanding of the technology, radiation's intangibility, or even a suppressive effect of society's ambivalent relationship with it. These 5 artists have established a rich foundation upon which pop culture and art can further develop with time to reflect the extraordinary progress of modern radiation therapy.

  1. Evaluation of occupational and patient radiation doses in orthopedic surgery

    International Nuclear Information System (INIS)

    Sulieman, A.; Habiballah, B.; Abdelaziz, I.; Alzimami, K.; Osman, H.; Omer, H.; Sassi, S. A.

    2014-08-01

    Orthopedists are exposed to considerable radiation dose during orthopedic surgeries procedures. The staff is not well trained in radiation protection aspects and its related risks. In Sudan, regular monitoring services are not provided for all staff in radiology or interventional personnel. It is mandatory to measure staff and patient exposure in order to radiology departments. The main objectives of this study are: to measure the radiation dose to patients and staff during (i) Dynamic Hip Screw (Dhs) and (i i) Dynamic Cannula Screw (Dcs); to estimate the risk of the aforementioned procedures and to evaluate entrance surface dose (ESD) and organ dose to specific radiosensitive patients organs. The measurements were performed in Medical Corps Hospital, Sudan. The dose was measured for unprotected organs of staff and patient as well as scattering radiation. Calibrated Thermoluminescence dosimeters (TLD-Gr-200) of lithium fluoride (LiF:Mg, Cu,P) were used for ESD measurements. TLD signal are obtained using automatic TLD Reader model (Plc-3). The mean patients doses were 0.46 mGy and 0.07 for Dhs and Dcs procedures, respectively. The mean staff doses at the thyroid and chest were 4.69 mGy and 1.21 mGy per procedure. The mean radiation dose for staff was higher in Dhs compared to Dcs. This can be attributed to the long fluoroscopic exposures due to the complication of the procedures. Efforts should be made to reduce radiation exposure to orthopedic patients, and operating surgeons especially those with high work load. Staff training and regular monitoring will reduce the radiation dose for both patients and staff. (Author)

  2. Evaluation of occupational and patient radiation doses in orthopedic surgery

    Energy Technology Data Exchange (ETDEWEB)

    Sulieman, A. [Salman bin Abdulaziz University, College of Applied Medical Sciences, Radiology and Medical Imaging Department, P.O. Box 422, Alkharj (Saudi Arabia); Habiballah, B.; Abdelaziz, I. [Sudan Univesity of Science and Technology, College of Medical Radiologic Sciences, P.O. Box 1908, Khartoum (Sudan); Alzimami, K. [King Saud University, College of Applied Medical Sciences, Radiological Sciences Department, P.O. Box 10219, 11433 Riyadh (Saudi Arabia); Osman, H. [Taif University, College of Applied Medical Science, Radiology Department, Taif (Saudi Arabia); Omer, H. [University of Dammam, Faculty of Medicine, Dammam (Saudi Arabia); Sassi, S. A., E-mail: Abdelmoneim_a@yahoo.com [Prince Sultan Medical City, Department of Medical Physics, Riyadh (Saudi Arabia)

    2014-08-15

    Orthopedists are exposed to considerable radiation dose during orthopedic surgeries procedures. The staff is not well trained in radiation protection aspects and its related risks. In Sudan, regular monitoring services are not provided for all staff in radiology or interventional personnel. It is mandatory to measure staff and patient exposure in order to radiology departments. The main objectives of this study are: to measure the radiation dose to patients and staff during (i) Dynamic Hip Screw (Dhs) and (i i) Dynamic Cannula Screw (Dcs); to estimate the risk of the aforementioned procedures and to evaluate entrance surface dose (ESD) and organ dose to specific radiosensitive patients organs. The measurements were performed in Medical Corps Hospital, Sudan. The dose was measured for unprotected organs of staff and patient as well as scattering radiation. Calibrated Thermoluminescence dosimeters (TLD-Gr-200) of lithium fluoride (LiF:Mg, Cu,P) were used for ESD measurements. TLD signal are obtained using automatic TLD Reader model (Plc-3). The mean patients doses were 0.46 mGy and 0.07 for Dhs and Dcs procedures, respectively. The mean staff doses at the thyroid and chest were 4.69 mGy and 1.21 mGy per procedure. The mean radiation dose for staff was higher in Dhs compared to Dcs. This can be attributed to the long fluoroscopic exposures due to the complication of the procedures. Efforts should be made to reduce radiation exposure to orthopedic patients, and operating surgeons especially those with high work load. Staff training and regular monitoring will reduce the radiation dose for both patients and staff. (Author)

  3. The health effects of low-dose ionizing radiation

    International Nuclear Information System (INIS)

    Dixit, A.N.; Dixit, Nishant

    2012-01-01

    It has been established by various researches, that high doses of ionizing radiation are harmful to health. There is substantial controversy regarding the effects of low doses of ionizing radiation despite the large amount of work carried out (both laboratory and epidemiological). Exposure to high levels of radiation can cause radiation injury, and these injuries can be relatively severe with sufficiently high radiation doses. Prolonged exposure to low levels of radiation may lead to cancer, although the nature of our response to very low radiation levels is not well known at this time. Many of our radiation safety regulations and procedures are designed to protect the health of those exposed to radiation occupationally or as members of the public. According to the linear no-threshold (LNT) hypothesis, any amount, however small, of radiation is potentially harmful, even down to zero levels. The threshold hypothesis, on the other hand, emphasizes that below a certain threshold level of radiation exposure, any deleterious effects are absent. At the same time, there are strong arguments, both experimental and epidemiological, which support the radiation hormesis (beneficial effects of low-level ionizing radiation). These effects cannot be anticipated by extrapolating from harmful effects noted at high doses. Evidence indicates an inverse relationship between chronic low-dose radiation levels and cancer incidence and/or mortality rates. Examples are drawn from: 1) state surveys for more than 200 million people in the United States; 2) state cancer hospitals for 200 million people in India; 3) 10,000 residents of Taipei who lived in cobalt-60 contaminated homes; 4) high-radiation areas of Ramsar, Iran; 5) 12 million person-years of exposed and carefully selected control nuclear workers; 6) almost 300,000 radon measurements of homes in the United States; and 7) non-smokers in high-radon areas of early Saxony, Germany. This evidence conforms to the hypothesis that

  4. Radiation dose exposure in patients affected by lymphoma undergoing repeat CT examinations: how to manage the radiation dose variability.

    Science.gov (United States)

    Paolicchi, Fabio; Bastiani, Luca; Guido, Davide; Dore, Antonio; Aringhieri, Giacomo; Caramella, Davide

    2018-03-01

    To assess the variability of radiation dose exposure in patients affected by lymphoma undergoing repeat CT (computed tomography) examinations and to evaluate the influence of different scan parameters on the overall radiation dose. A series of 34 patients (12 men and 22 women with a median age of 34.4 years) with lymphoma, after the initial staging CT underwent repeat follow-up CT examinations. For each patient and each repeat examination, age, sex, use of AEC system (Automated Exposure Control, i.e. current modulation), scan length, kV value, number of acquired scans (i.e. number of phases), abdominal size diameter and dose length product (DLP) were recorded. The radiation dose of just one venous phase was singled out from the DLP of the entire examination. All scan data were retrieved by our PACS (Picture Archiving and Communication System) by means of a dose monitoring software. Among the variables we considered, no significant difference of radiation dose was observed among patients of different ages nor concerning tube voltage. On the contrary the dose delivered to the patients varied depending on sex, scan length and usage of AEC. No significant difference was observed depending on the behaviour of technologists, while radiologists' choices had indirectly an impact on the radiation dose due to the different number of scans requested by each of them. Our results demonstrate that patients affected by lymphoma who undergo repeat whole body CT scanning may receive unnecessary overexposure. We quantified and analyzed the most relevant variables in order to provide a useful tool to manage properly CT dose variability, estimating the amount of additional radiation dose for every single significant variable. Additional scans, incorrect scan length and incorrect usage of AEC system are the most relevant cause of patient radiation exposure.

  5. Internal dose assessment in radiation accidents

    International Nuclear Information System (INIS)

    Toohey, R.E.

    2003-01-01

    Although numerous models have been developed for occupational and medical internal dosimetry, they may not be applicable to an accident situation. Published dose coefficients relate effective dose to intake, but if acute deterministic effects are possible, effective dose is not a useful parameter. Consequently, dose rates to the organs of interest need to be computed from first principles. Standard bioassay methods may be used to assess body contents, but, again, the standard models for bioassay interpretation may not be applicable because of the circumstances of the accident and the prompt initiation of decorporation therapy. Examples of modifications to the standard methodologies include adjustment of biological half-times under therapy, such as in the Goiania accident, and the same effect, complicated by continued input from contaminated wounds, in the Hanford 241 Am accident. (author)

  6. Pediatric radiation dose management in digital radiography

    International Nuclear Information System (INIS)

    Neitzel, U.

    2004-01-01

    Direct digital radiography (DR) systems based on flat-panel detectors offer improved dose management in pediatric radiography. Integration of X-ray generation and detection in one computer-controlled system provides better control and monitoring

  7. Cosmic radiation dose in aircraft - a neutron track etch detector

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia); Planinic, J. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia)], E-mail: planinic@ffos.hr

    2007-12-15

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect.

  8. Cosmic radiation dose in aircraft - a neutron track etch detector

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M.; Planinic, J.

    2007-01-01

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect

  9. Estimation of radiation dose in Sakkara area

    International Nuclear Information System (INIS)

    Hussein, A.Z.; Hussein, M.I.; Abd El-Hady, M.L.

    1998-01-01

    Radon levels seem to be relatively high in some deeply seated caves at various sites in Egypt, apparently due to the U and Th contents in the rocks lining the burial places that are situated deep in the ground. The Sakkara area was examined, and a survey of the exposure rates, effective doses, radon daughter concentrations, and annual doses is presented in the tabular form. (P.A.)

  10. Estimation of radiation dose in Sakkara area

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, A Z; Hussein, M I [National Centre for Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo (Egypt); Abd El-Hady, M L [Physics Department, Faculty of Science, El Minia University, El-Minia (Egypt)

    1999-12-31

    Radon levels seem to be relatively high in some deeply seated caves at various sites in Egypt, apparently due to the U and Th contents in the rocks lining the burial places that are situated deep in the ground. The Sakkara area was examined, and a survey of the exposure rates, effective doses, radon daughter concentrations, and annual doses is presented in the tabular form. (P.A.) 1 tab., 6 refs.

  11. Individual radiation doses. Annual report 1995

    International Nuclear Information System (INIS)

    Bergman, L.

    1995-05-01

    During the year we measured whole body doses on 10226 bearers, distributed as follows: 0-0,5 mSv on 8816 persons, 0,6-1,0 mSv on 693 persons, 1,1-5,0 on 678 persons, >5 mSv on 39 persons. At higher dose than 4 mSv/4 weeks, the reason to the irradiation will be investigated. 2 figs, 2 tabs

  12. Radiation dose modeling using IGRIP and Deneb/ERGO

    International Nuclear Information System (INIS)

    Vickers, D.S.; Davis, K.R.; Breazeal, N.L.; Watson, R.A.; Ford, M.S.

    1995-01-01

    The Radiological Environment Modeling System (REMS) quantifies dose to humans in radiation environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO (Ergonomics) simulation software products. These commercially available products are augmented with custom C code to provide the radiation exposure information to and collect the radiation dose information from the workcell simulations. The emphasis of this paper is on the IGRIP and Deneb/ERGO parts of REMS, since that represents the extension to existing capabilities developed by the authors. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these database files to compute and accumulate dose to human devices (Deneb's ERGO human) during simulated operations around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. REMS was developed because the proposed reduction in the yearly radiation exposure limit will preclude or require changes in many of the manual operations currently being utilized in the Weapons Complex. This is particularly relevant in the area of dismantlement activities at the Pantex Plant in Amarillo, TX. Therefore, a capability was needed to be able to quantify the dose associated with certain manual processes so that the benefits of automation could be identified and understood

  13. Measurement of radiation dose in dental radiology

    International Nuclear Information System (INIS)

    Helmrot, E.; Carlsson, G. A.

    2005-01-01

    Patient dose audit is an important tool for quality control and it is important to have a well-defined and easy to use method for dose measurements. In dental radiology, the most commonly used dose parameters for the setting of diagnostic reference levels (DRLs) are the entrance surface air kerma (ESAK) for intraoral examinations and dose width product (DWP) for panoramic examinations. DWP is the air kerma at the front side of the secondary collimator integrated over the collimator width and an exposure cycle. ESAK or DWP is usually measured in the absence of the patient but with the same settings of tube voltage (kV), tube current (mA) and exposure time as with the patient present. Neither of these methods is easy to use, and, in addition, DWP is not a risk related quantity. A better method of monitoring patient dose would be to use a dose area product (DAP) meter for all types of dental examinations. In this study, measurements with a DAP meter are reported for intraoral and panoramic examinations. The DWP is also measured with a pencil ionisation chamber and the product of DWP and the height H (DWP x H) of the secondary collimator (measured using film) was compared to DAP. The results show that it is feasible to measure DAP using a DAP meter for both intraoral and panoramic examinations. The DAP is therefore recommended for the setting of DRLs. (authors)

  14. Radiation doses from computed tomography in Australia

    International Nuclear Information System (INIS)

    Thomson, J.E.M.; Tingey, D.R.C.

    1996-01-01

    Recent surveys in the UK and New Zealand have shown that although the number of CT examinations small compared to conventional Radiology, CT contributes about 20% to the overall dose from diagnostic radiology. In view of these findings and the rapid increase in the number of CT facilities in recent years, a survey of the number of facilities, frequency of examination, techniques and patient doses has been performed. Australia, with 329 units is well endowed with CT equipment compared to European Countries and New Zealand. For many examinations a wide range was found in the number of slices and slice widths used and this led to a large spread in the corresponding doses. Assuming the practices of the non-responders are statistically similar to those who responded, some preliminary estimates of population doses can be made. There could be as many as 1.1 million CT examinations each year in Australia resulting in a per capur effectie dose of 0.36 mSv. Although the results of this survey are still subject to some refinement, they indicate that CT is a major, and possibly the dominant, contributor to doses from diagnostic radiology in Australia. (author)

  15. An epidemiological study for the reduction of population radiation dose

    International Nuclear Information System (INIS)

    Gamo, Makoto

    1989-01-01

    The correlation of tube voltage with patient exposure was studied using effective dose as an indicator of dose reduction in intraoral radiography. The results were as follows: l. The salivary gland tissues contributed the most to the effective dose of intraoral radiography. 2. In the 50 to 90 kV range, there was no appreciable correlation between tube voltage and effective dose. 3. Therefore, it was suggested that adjusting the tube voltage for maximum image quality does not effect radiation protection. 4. This study reconfirmed the fact that increases in voltages up to 90 kV reduce skin doses. (author)

  16. Radiation doses to personnel in clinics for gynecologic oncology

    International Nuclear Information System (INIS)

    Forsberg, B.; Spanne, P.

    1985-01-01

    Radium or Cesium is used for radiotherapy of gynecologic cancer at six clinics in Sweden. This report gives a survey of the radiation doses the personnel is exposed to. The measurement were performed using TL-dosimeters. The dose equivalents for different parts of the body at specific working moments was deduced as well as the effective dose equivalent and the collective dose equivalent. 1983 the total collective dose equivalent for the six clinics was 1.3 manSv, which corresponds to 3.9 manmSv/g equivalent mass of Radium used at the treatments. (With 11 tables and 10 figures) (L.E.)

  17. Radiation shielding and dose rate distribution for the building of the high dose rate accelerator

    International Nuclear Information System (INIS)

    Matsuda, Koji; Takagaki, Torao; Nakase, Yoshiaki; Nakai, Yohta.

    1984-03-01

    A high dose rate electron accelerator was established at Osaka Laboratory for Radiation Chemistry, Takasaki Establishment, JAERI in the fiscal year of 1975. This report shows the fundamental concept for the radiation shielding of the accelerator building and the results of their calculations which were evaluated through the model experiments. After the construction of the building, the leak radiation was measured in order to evaluate the calculating method of radiation shielding. Dose rate distribution of X-rays was also measured in the whole area of the irradiation room as a data base. (author)

  18. High-dose preoperative radiation for cancer of the rectum: Impact of radiation dose on patterns of failure and survival

    International Nuclear Information System (INIS)

    Ahmad, N.R.; Mohiuddin, M.; Marks, G.

    1993-01-01

    A variety of dose-time schedules are currently used for preoperative radiation therapy of rectal cancer. An analysis of patients treated with high-dose preoperative radiation therapy was undertaken to determine the influence of radiation dose on the patterns of failure, survival, and complications. Two hundred seventy-five patients with localized rectal cancer were treated with high-dose preoperative radiation therapy. One hundred fifty-six patients received 45 Gy (low-dose group). Since 1985, 119 patients with clinically unfavorable cancers were given a higher dose, 55 Gy using a shrinking field technique (high-dose group). All patients underwent curative resection. Median follow-up was 66 months in the low-dose group and 28 months in the high-dose group. Patterns of failure, survival, and complications were analyzed as a function of radiation dose. Fourteen percent of the total group developed a local recurrence; 20% in the low-dose group as compared with 6% in the high-dose group. The actuarial local recurrence rate at 5 years was 20% for the low-dose group and 8% for the high-dose group, and approached statistical significance with p = .057. For tethered/fixed tumors the actuarial local recurrence rates at 5 years were 28% and 9%, respectively, with p = .05. Similarly, for low-lying tumors (less than 6 cm from the anorectal junction) the rates were 24% and 9%, respectively, with p = .04. The actuarial rate of distant metastasis was 28% in the low-dose group and 20% in the high-dose group and was not significantly different. Overall actuarial 5-year survival for the total group of patients was 66%. No significant difference in survival was observed between the two groups, despite the higher proportion of unfavorable cancers in the high-dose group. The incidence of complications was 2%, equally distributed between the two groups. High-dose preoperative radiation therapy for rectal cancer results in excellent local control rates. 27 refs., 2 figs., 8 tabs

  19. Estimation of radiation dose received by the radiation workers during radiographic testing

    International Nuclear Information System (INIS)

    Mohammed, N. A. H. O.

    2013-08-01

    This study was conducted primarily to evaluate occupational radiation dose in industrial radiography during radiographic testing at Balil-Hadida, with the aim of building up baseline data on radiation exposure in the industrial radiography practice in Sudan. Dose measurements during radiographic testing were performed and compared with IAEA reference dose. In this research the doses measured by using hand held radiation survey meter and personal monitoring dosimeter. The results showed that radiation doses ranged between minimum (0.448 mSv/ 3 month) , and maximum (1.838 mSv / 3 month), with an average value (0.778 mSv/ 3 month), and the standard deviation 0.292 for the workers used gamma mat camera. The analysis of data showed that the radiation dose for all radiation worker are receives less than annual limit for exposed workers 20 mSv/ year and compare with other study found that the dose received while body doses ranging from 0.1 to 9.4 mSv/ year, work area design in all the radiography site followed the three standard rules namely putting radiation signs, reducing access to control area and making of boundaries. Thus the accidents arising from design faults not likely to occur at these site. Results suggest that adequate fundamental training of radiation workers in general radiography prior to industrial radiography work will further improve the standard of personnel radiation protection. (Author)

  20. Risks to health from radiation at low dose rates

    International Nuclear Information System (INIS)

    Gentner, N.E.; Osborne, R.V.

    1997-01-01

    Our focus is on whether, using a balance-of-evidence approach, it is possible to say that at a low enough dose, or at a sufficiently low dose rate, radiation risk reduces to zero in a population. We conclude that insufficient evidence exists at present to support such a conclusion. In part this reflects statistical limitations at low doses, and in part (although mechanisms unquestionably exist to protect us against much of the damage induced by ionizing radiation) the biological heterogeneity of human populations, which means these mechanisms do not act in all members of the population at all times. If it is going to be possible to demonstrate that low doses are less dangerous than we presently assume, the evidence, paradoxically, will likely come from studies of higher dose and dose rate scenarios than are encountered occupationally. (author)

  1. The Effect of NPP's Stack Height to Radiation Dose

    International Nuclear Information System (INIS)

    Pandi, Liliana Yetta; Rohman, Budi

    2003-01-01

    The purpose of dose calculation for accidents is to analyze the capability of NPP to maintain the safety of public and workers in case an accident occurs on the Plant in a site. This paper calculates the Loss of Coolant Accident in PWR plant. The calculation results shows that no risks of serious radiation exposure are given to the neighboring public even if such a large accident occurred, and the effect of stack height can be predicted by analysis of the calculation results. The whole dose is calculated for some location (100 m, 300 m, 500 m, 700 m, 900 m, 1500 m, and 2000 m) with three difference stack height i.e. 0 m, 40 m and 100 m. The result of the whole dose calculation is under permitted criteria for whole dose : 0.25 Sv and thyroid dose : 3.0 Sv. The calculation of radiation dose in this paper use EEDCDQ code

  2. Effect of low doses of ionizing radiation on human health

    International Nuclear Information System (INIS)

    Kovalenko, A.N.

    1990-01-01

    Data are reported on the possible mechanism of biological effects of low doses of ionizing radiation on the human body. The lesioning effect of this radiation resulted in some of the persons in the development of disorders of the function of information and vegetative-regulatory systems determined as a desintegration syndrome. This syndrome is manifested in unspecific neuro-vegetative disorders of the function of most important physiological and homeostatic system of the body leading to weakening of the processes of compensation and adaptation. This condition is characterized by an unspecific radiation syndrome as distinct from acute or chronic radiation disease which is a specific radiation syndrome

  3. The choice of food consumption rates for radiation dose assessments

    International Nuclear Information System (INIS)

    Simmonds, J.R.; Webb, G.A.M.

    1981-01-01

    The practical problem in estimating radiation doses due to radioactive contamination of food is the choice of the appropriate food intakes. To ensure compliance or to compare with dose equivalent limits, higher than average intake rates appropriate to critical groups should be used. However for realistic estimates of health detriment in the whole exposed population, average intake rates are more appropriate. (U.K.)

  4. Radiation doses from computed tomography practice in Johor Bahru, Malaysia

    International Nuclear Information System (INIS)

    Karim, M.K.A.; Hashim, S.; Bradley, D.A; Bakar, K.A.; Haron, M.R.; Kayun, Z.

    2016-01-01

    Radiation doses for Computed Tomography (CT) procedures have been reported, encompassing a total of 376 CT examinations conducted in one oncology centre (Hospital Sultan Ismail) and three diagnostic imaging departments (Hospital Sultanah Aminah, Hospital Permai and Hospital Sultan Ismail) at Johor hospital's. In each case, dose evaluations were supported by data from patient questionnaires. Each CT examination and radiation doses were verified using the CT EXPO (Ver. 2.3.1, Germany) simulation software. Results are presented in terms of the weighted computed tomography dose index (CTDI w ), dose length product (DLP) and effective dose (E). The mean values of CTDI w , DLP and E were ranged between 7.6±0.1 to 64.8±16.5 mGy, 170.2±79.2 to 943.3±202.3 mGy cm and 1.6±0.7 to 11.2±6.5 mSv, respectively. Optimization techniques in CT are suggested to remain necessary, with well-trained radiology personnel remaining at the forefront of such efforts. - Highlights: • We investigate radiation doses received by patients from CT scan examinations. • We compare data with current national diagnostic reference levels and other references. • Radiation doses from CT were influenced by CT parameter, scanning techniques and patient characteristics.

  5. Radiation Parameters of High Dose Rate Iridium -192 Sources

    Science.gov (United States)

    Podgorsak, Matthew B.

    A lack of physical data for high dose rate (HDR) Ir-192 sources has necessitated the use of basic radiation parameters measured with low dose rate (LDR) Ir-192 seeds and ribbons in HDR dosimetry calculations. A rigorous examination of the radiation parameters of several HDR Ir-192 sources has shown that this extension of physical data from LDR to HDR Ir-192 may be inaccurate. Uncertainty in any of the basic radiation parameters used in dosimetry calculations compromises the accuracy of the calculated dose distribution and the subsequent dose delivery. Dose errors of up to 0.3%, 6%, and 2% can result from the use of currently accepted values for the half-life, exposure rate constant, and dose buildup effect, respectively. Since an accuracy of 5% in the delivered dose is essential to prevent severe complications or tumor regrowth, the use of basic physical constants with uncertainties approaching 6% is unacceptable. A systematic evaluation of the pertinent radiation parameters contributes to a reduction in the overall uncertainty in HDR Ir-192 dose delivery. Moreover, the results of the studies described in this thesis contribute significantly to the establishment of standardized numerical values to be used in HDR Ir-192 dosimetry calculations.

  6. Mutation process at low or high radiation doses

    International Nuclear Information System (INIS)

    Abrahamson, S.; Wisconsin Univ., Madison

    1976-01-01

    A concise review is given of the status of research on the genetic effects of low-level radiation in general. The term ''low dose'' is defined and current theories on low dose are set out. Problems and their solutions are discussed. (author)

  7. The revision of dose limits for exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Hughes, D.

    1990-01-01

    The paper reviews the current dose limits for exposure to ionizing radiations and the risk factors on which they are based, and summarizes the revised risk factors and the draft proposals for new dose limits published by the International Commission on Radiological Protection. (author)

  8. Assessment of committed effective dose due to the ingestion of 210Po and 210Pb in consumed Lebanese fish affected by a phosphate fertilizer plant

    International Nuclear Information System (INIS)

    Aoun, M.; El Samad, O.; Bou Khozam, R.; Lobinski, R.

    2015-01-01

    Ingestion of radionuclides through seafood intake is a one of the sources contributing to the internal effective dose in the human organism. In order to evaluate the internal exposure and potential risks due to 210 Po and 210 Pb associated with fish consumption, these radionuclides were measured in commonly consumed fish species from a clean area and an area subjected to the impact of a Lebanese phosphate fertilizer plant. The highest concentration of 210 Pb was 98.7 Bq/kg fresh weight while 210 Po activity concentrations varied from 3.6 Bq/kg to 140 Bq/kg. A supplementary radiation exposure was detected; the highest committed effective dose due to 210 Po and 210 Pb was found to be 1110 μSv/y and 450 μSv/y, respectively. Moreover, the average mortality and morbidity risks due to the fish consuming were estimated. - Highlights: • Enrichment in 210 Po and 210 Pb in fish affected by a phosphate fertilizer plant. • Significant human exposure associated with the ingestion of fish. • Estimation of potential risks due to 210 Po and 210 Pb via fish consumption

  9. Environmental policy. Ambient radioactivity levels and radiation doses in 1996

    International Nuclear Information System (INIS)

    1997-10-01

    The report is intended as information for the German Bundestag and Bundesrat as well as for the general population interested in issues of radiological protection. The information presented in the report shows that in 1996, the radiation dose to the population was low and amounted to an average of 4 millisievert (mSv), with 60% contributed by natural radiation sources, and 40% by artificial sources. The major natural source was the radioactive gas radon in buildings. Anthropogenic radiation exposure almost exclusively resulted from application of radioactive substances and ionizing radiation in the medical field, for diagnostic purposes. There still is a potential for reducing radiation doses due to these applications. In the reporting year, there were 340 000 persons occupationally exposed to ionizing radiation. Only 15% of these received a dose different from zero, the average dose was 1.8 mSv. The data show that the anthropogenic radiation exposure emanating from the uses of atomic energy or applications of ionizing radiation in technology is very low. (orig./CB) [de

  10. Biological effects of very low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Evseev, V.S.

    1987-01-01

    The paper deals with a qualitative microdosimetric analysis of a new radiobiological phenomenon (physiological reaction of the cell as a whole to very low doses of ionizing radiations). The analysis is aimed at identifying the type of the primary interaction of radiation with the cell and finding its place in the cell

  11. Epidemiology and effects on health of low ionizing radiation doses

    International Nuclear Information System (INIS)

    Rodriguez Artalejo, F.; Andres Manzano, B. de; Rel Calero, J. del

    1997-01-01

    This article describes the concept and aims of epidemiology, its methods and contribution to the knowledge of the effects of low ionizing radiation doses on health. The advantages of epidemiological studies for knowing the consequences of living near nuclear facilities and the effects of occupational exposure to radiations are also described. (Author) 43 refs

  12. Assessment of pediatrics radiation dose from routine x-ray ...

    African Journals Online (AJOL)

    Background: Given the fact that children are more sensitive to ionizing radiation than adults,with an increased risk of developing radiation-induced cancer,special care should be taken when they undergo X-ray examinations. The main aim of the current study was to determine Entrance Surface Dose (ESD) to pediatric ...

  13. Malignant melanoma of the tongue following low-dose radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kalemeris, G.C.; Rosenfeld, L.; Gray, G.F. Jr.; Glick, A.D.

    1985-03-01

    A 47-year-old man had a spindly malignant melanoma of the tongue many years after low-dose radiation therapy for lichen planus. To our knowledge, only 12 melanomas of the tongue have been reported previously, and in none of these was radiation documented.

  14. Malignant melanoma of the tongue following low-dose radiation

    International Nuclear Information System (INIS)

    Kalemeris, G.C.; Rosenfeld, L.; Gray, G.F. Jr.; Glick, A.D.

    1985-01-01

    A 47-year-old man had a spindly malignant melanoma of the tongue many years after low-dose radiation therapy for lichen planus. To our knowledge, only 12 melanomas of the tongue have been reported previously, and in none of these was radiation documented

  15. Anticoagulation and high dose liver radiation. A preliminary report

    International Nuclear Information System (INIS)

    Lightdale, C.J.; Wasser, J.; Coleman, M.; Brower, M.; Tefft, M.; Pasmantier, M.

    1979-01-01

    Two groups of patients were observed for evidence of acute radiation hepatitis during high dose radiation to the liver. The first group of 18 patients with metastatic liver disease received an average of 4,050 rad to the whole liver. Half received anticoagulation with warfarin. One patient on anticoagulation developed evidence of acute radiation hepatitis while 2 patients did so without anticoagulation. Eleven patients with Hodgkin's disease received 4,000 rad to the left lobe of the liver during extended field radiation. Four of these 11 patients were anticoagulated to therapeutic range. Only one of the fully anticoagulated patients showed changes on liver scan consistent with radiation hepatitis whereas three did so without anticoagulation. No serious sequelae from anticoagulation occurred in either group. These preliminary data suggest that anticoagulation may be safely administered with high dose hepatic radiation and that further trials with anticoagulation are warranted

  16. A CONCEPTUAL FRAMEWORK FOR MANAGING RADIATION DOSE TO PATIENTS IN DIAGNOSTIC RADIOLOGY USING REFERENCE DOSE LEVELS.

    Science.gov (United States)

    Almén, Anja; Båth, Magnus

    2016-06-01

    The overall aim of the present work was to develop a conceptual framework for managing radiation dose in diagnostic radiology with the intention to support optimisation. An optimisation process was first derived. The framework for managing radiation dose, based on the derived optimisation process, was then outlined. The outset of the optimisation process is four stages: providing equipment, establishing methodology, performing examinations and ensuring quality. The optimisation process comprises a series of activities and actions at these stages. The current system of diagnostic reference levels is an activity in the last stage, ensuring quality. The system becomes a reactive activity only to a certain extent engaging the core activity in the radiology department, performing examinations. Three reference dose levels-possible, expected and established-were assigned to the three stages in the optimisation process, excluding ensuring quality. A reasonably achievable dose range is also derived, indicating an acceptable deviation from the established dose level. A reasonable radiation dose for a single patient is within this range. The suggested framework for managing radiation dose should be regarded as one part of the optimisation process. The optimisation process constitutes a variety of complementary activities, where managing radiation dose is only one part. This emphasises the need to take a holistic approach integrating the optimisation process in different clinical activities. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. A conceptual framework for managing radiation dose to patients in diagnostic radiology using reference dose levels

    International Nuclear Information System (INIS)

    Almen, Anja; Baath, Magnus

    2016-01-01

    The overall aim of the present work was to develop a conceptual framework for managing radiation dose in diagnostic radiology with the intention to support optimisation. An optimisation process was first derived. The framework for managing radiation dose, based on the derived optimisation process, was then outlined. The outset of the optimisation process is four stages: providing equipment, establishing methodology, performing examinations and ensuring quality. The optimisation process comprises a series of activities and actions at these stages. The current system of diagnostic reference levels is an activity in the last stage, ensuring quality. The system becomes a reactive activity only to a certain extent engaging the core activity in the radiology department, performing examinations. Three reference dose levels-possible, expected and established-were assigned to the three stages in the optimisation process, excluding ensuring quality. A reasonably achievable dose range is also derived, indicating an acceptable deviation from the established dose level. A reasonable radiation dose for a single patient is within this range. The suggested framework for managing radiation dose should be regarded as one part of the optimisation process. The optimisation process constitutes a variety of complementary activities, where managing radiation dose is only one part. This emphasises the need to take a holistic approach integrating the optimisation process in different clinical activities. (authors)

  18. Radiation dose to the lens and cataract formation

    International Nuclear Information System (INIS)

    Henk, J.M.; Whitelocke, R.A.F.; Warrington, A.P.; Bessell, E.M.

    1993-01-01

    The purpose of this work was to determine the radiation tolerance of the lens of the eye and the incidence of radiation-induced lens changes in patients treated by fractionated supervoltage radiation therapy for orbital tumors. Forty patients treated for orbital lymphoma and pseudotumor with tumor doses of 20--40 Gy were studied. The lens was partly shielded using lead cylinders in most cases. The dose to the germinative zone of the lens was estimated by measurements in a tissue equivalent phantom using both film densitometry and thermoluminescent dosimetry. Opthalmological examination was performed at 6 monthly intervals after treatment. The lead shield was found to reduce the dose to the germinative zone of the lens to between 36--50% of the tumor dose for Cobalt beam therapy, and to between 11--18% for 5 MeV x-rays. Consequently, the lens doses were in the range 4.5--30 Gy in 10--20 fractions. Lens opacities first appeared from between 3 and 9 years after irradiation. Impairment of visual acuity ensued in 74% of the patients who developed lens opacities. The incidence of lens changes was strongly dose-related. None was seen after doses of 5 Gy or lower, whereas doses of 16.5 Gy or higher were all followed by lens opacities which impaired visual acuity. The largest number of patients received a maximum lens dose of 15 Gy; in this group the actuarial incidence of lens opacities at 8 years was 57% with visual impairment in 38%. The adult lens can tolerate a total dose of 5 Gy during a fractionated course of supervoltage radiation therapy without showing any changes. Doses of 16.5 Gy or higher will almost invariably lead to visual impairment. The dose which causes a 50% probability of visual impairment is approximately 15 Gy. 10 refs., 4 figs., 1 tab

  19. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Lisjak, I.; Vekic, B.; Poje, M.; Planinic, J.

    2008-01-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10 B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 μSv/h and the TLD dosimeter registered the dose equivalent of 75 μSv or the average dose rate of 2.7 μSv/h; the neutron dosimeter gave the dose rate of 2.4 μSv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h; the neutron dosimeter gave the dose rate of 2.5 μSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data

  20. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Radolic, V. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Lisjak, I. [Croatia Airlines, Zagreb (Croatia); Vekic, B. [Rudjer Boskovic Institute, Zagreb (Croatia); Poje, M. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Planinic, J. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia)], E-mail: planinic@ffos.hr

    2008-02-15

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or {sup 10}B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 {mu}Sv/h and the TLD dosimeter registered the dose equivalent of 75 {mu}Sv or the average dose rate of 2.7 {mu}Sv/h; the neutron dosimeter gave the dose rate of 2.4 {mu}Sv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 {mu}Sv/h; the neutron dosimeter gave the dose rate of 2.5 {mu}Sv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data.

  1. Flight attendant radiation dose from solar particle events.

    Science.gov (United States)

    Anderson, Jeri L; Mertens, Christopher J; Grajewski, Barbara; Luo, Lian; Tseng, Chih-Yu; Cassinelli, Rick T

    2014-08-01

    Research has suggested that work as a flight attendant may be related to increased risk for reproductive health effects. Air cabin exposures that may influence reproductive health include radiation dose from galactic cosmic radiation and solar particle events. This paper describes the assessment of radiation dose accrued during solar particle events as part of a reproductive health study of flight attendants. Solar storm data were obtained from the National Oceanic and Atmospheric Administration Space Weather Prediction Center list of solar proton events affecting the Earth environment to ascertain storms relevant to the two study periods (1992-1996 and 1999-2001). Radiation dose from exposure to solar energetic particles was estimated using the NAIRAS model in conjunction with galactic cosmic radiation dose calculated using the CARI-6P computer program. Seven solar particle events were determined to have potential for significant radiation exposure, two in the first study period and five in the second study period, and over-lapped with 24,807 flight segments. Absorbed (and effective) flight segment doses averaged 6.5 μGy (18 μSv) and 3.1 μGy (8.3 μSv) for the first and second study periods, respectively. Maximum doses were as high as 440 μGy (1.2 mSv) and 20 flight segments had doses greater than 190 μGy (0.5 mSv). During solar particle events, a pregnant flight attendant could potentially exceed the equivalent dose limit to the conceptus of 0.5 mSv in a month recommended by the National Council on Radiation Protection and Measurements.

  2. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    Science.gov (United States)

    Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing

    2013-10-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests

  3. Radiation Dose-Response Relationships and Risk Assessment

    International Nuclear Information System (INIS)

    Strom, Daniel J.

    2005-01-01

    The notion of a dose-response relationship was probably invented shortly after the discovery of poisons, the invention of alcoholic beverages, and the bringing of fire into a confined space in the forgotten depths of ancient prehistory. The amount of poison or medicine ingested can easily be observed to affect the behavior, health, or sickness outcome. Threshold effects, such as death, could be easily understood for intoxicants, medicine, and poisons. As Paracelsus (1493-1541), the 'father' of modern toxicology said, 'It is the dose that makes the poison.' Perhaps less obvious is the fact that implicit in such dose-response relationships is also the notion of dose rate. Usually, the dose is administered fairly acutely, in a single injection, pill, or swallow; a few puffs on a pipe; or a meal of eating or drinking. The same amount of intoxicants, medicine, or poisons administered over a week or month might have little or no observable effect. Thus, before the discovery of ionizing radiation in the late 19th century, toxicology ('the science of poisons') and pharmacology had deeply ingrained notions of dose-response relationships. This chapter demonstrates that the notion of a dose-response relationship for ionizing radiation is hopelessly simplistic from a scientific standpoint. While useful from a policy or regulatory standpoint, dose-response relationships cannot possibly convey enough information to describe the problem from a quantitative view of radiation biology, nor can they address societal values. Three sections of this chapter address the concepts, observations, and theories that contribute to the scientific input to the practice of managing risks from exposure to ionizing radiation. The presentation begins with irradiation regimes, followed by responses to high and low doses of ionizing radiation, and a discussion of how all of this can inform radiation risk management. The knowledge that is really needed for prediction of individual risk is presented

  4. Low-dose radiation-induced endothelial cell retraction

    International Nuclear Information System (INIS)

    Kantak, S.S.; Onoda, J.M.; Diglio, C.A.; Harper Hospital, Detroit, MI

    1993-01-01

    The data presented here are representative of a series of studies designed to characterize low-dose radiation effects on pulmonary microvascular endothelium. Data suggest that post-irradiation lung injuries (e.g. oedema) may be induced with only a single fraction of therapeutic radiation, and thus microscopic oedema may initiate prior to the lethal effects of radiation on the microvascular endothelium, and much earlier than would be suggested by the time course for clinically-detectable oedema. (author)

  5. Radiation dose and cancer risk to children undergoing skull radiography

    International Nuclear Information System (INIS)

    Mazonakis, Michael; Damilakis, John; Raissaki, Maria; Gourtsoyiannis, Nicholas

    2004-01-01

    Background: Limited data exist in the literature concerning the patient-effective dose from paediatric skull radiography. No information has been provided regarding organ doses, patient dose during PA skull projection, risk of cancer induction and dose to comforters, i.e. individuals supporting children during exposure. Objective: To estimate patient-effective dose, organ doses, lifetime cancer mortality risk to children and radiation dose to comforters associated with skull radiography. Materials and methods: Data were collected from 136 paediatric examinations, including AP, PA and lateral skull radiographs. Entrance-surface dose (ESD) and dose to comforters were measured using thermoluminescent dosimeters. Patients were divided into the following age groups: 0.5-2, 3-7, 8-12 and 13-18 years. The patient-effective dose and corresponding organ doses were calculated using data from the NRPB and Monte Carlo techniques. The risk for fatal cancer induction was assessed using appropriate risk coefficients. Results: For AP, PA and lateral skull radiography, effective dose ranges were 8.8-25.4, 8.2-27.3 and 8.4-22.7 μSv respectively, depending upon the age of the child. For each skull projection, the organs receiving doses above 10 μGy are presented. The number of fatal cancers was found to be less than or equal to 2 per 1 million children undergoing a skull radiograph. The mean radiation dose absorbed by the hands of comforters was 13.4 μGy. Conclusions: The current study provides detailed tabular and graphical data on ESD, effective dose, organ doses and lifetime cancer mortality risk to children associated with AP, PA and lateral skull projections at all patient ages. (orig.)

  6. Natural radioactivity in groundwater and estimates of committed effective dose due to water ingestion in the state of Chihuahua (Mexico)

    International Nuclear Information System (INIS)

    Villalba, L.; Montero-Cabrera, M. E.; Manjon-Collado, G.; Colmenero-Sujo, L.; Renteria-Villalobos, M.; Cano-Jimenez, A.; Rodriguez-Pineda, A.; Davila-Rangel, I.; Quirino-Torres, L.; Herrera-Peraza, E. F.

    2006-01-01

    The activity concentration of 222 Rn, 226 Ra and total uranium in groundwater samples collected from wells distributed throughout the state of Chihuahua has been measured. The values obtained of total uranium activity concentration in groundwater throughout the state run from -1 . Generally, radium activity concentration was -1 , with some exceptions; in spring water of San Diego de Alcala, in contrast, the value reached ∼5.3 Bq l -1 . Radon activity concentration obtained throughout the state was from 1.0 to 39.8 Bq l -1 . A linear correlation between uranium and radon dissolved in groundwater of individual wells was observed near Chihuahua City. Committed effective dose estimates for reference individuals were performed, with results as high as 134 μSv for infants in Aldama city. In Aldama and Chihuahua cities the average and many individual wells showed activity concentration values of uranium exceeding the Mexican norm of drinking water quality. (authors)

  7. Decision of special monitoring time to minimize the difference of the committed effective dose evaluated from the different AMAD

    International Nuclear Information System (INIS)

    Lee, J. I.; Lee, T. Y.; Jang, S. Y.; Lee, J. K.

    2003-01-01

    The Committed Effective Doses (CEDs) per measured unit of activity in the bioassay compartments at any time (t) after an acute intake by the inhalation of a radionuclide with a different particle size (AMAD) were calculated and compared. As a result, the relative difference between the CEDs evaluated from the different AMAD is affected by the radionuclide, bioassay compartment, and the time (t) after intake. Therefore a special monitoring time to exclude or reduce the effect of AMAD was decided and presented in the evaluation for the CEDs following an acute intake by the inhalation of a radionuclide. If special monitoring is performed during this presented special time after intake, the relative difference of the evaluated CEDs resulted from AMAD can be excluded or reduced

  8. Alkaline earth metabolism: a model useful in calculating organ burdens, excretion rates and committed effective dose equivalent conversion factors

    International Nuclear Information System (INIS)

    Johnson, J.R.; Myers, R.C.

    1981-01-01

    Two mathematical models of alkaline earth metabolism in man have been developed from the postulates given in ICRP Publication 20. Both models have recycling between the organs and blood included explicitly, and the first one retains the power function used by the ICRP for diminution in mineral bone from being available for resorption by blood. In the second model, this diminution is represented by secondary compartments in mineral bone. Both models give good agreement with the retention functions developed in ICRP Publication 20. The second one has been incorporated into a larger model which includes the lung and G.I. tract. This overall model has been used to calculate organ burdens excretion rates, and committed effective dose equivalent factors for the more important radioisotopes of the alkaline earth elements for inhalation and ingestion exposures. (author)

  9. Does fast-neutron radiotherapy merely reduce the radiation dose

    International Nuclear Information System (INIS)

    Ando, Koichi

    1984-01-01

    We examined whether fast-neutron radiotherapy is superior to low-LET radiotherpy by comparing the relationship between cell survival and tumor control probabilities after exposure of tumor-bearing (species) to the two modalities. Analysis based on TCD 50 assay and lung colony assay indicated that single dose of fast neutron achieved animal cures at higher survival rates than other radiation modalities including single and fractionated γ-ray doses, fractionated doses of fast neutron, and the mixed-beam scheme with a sequence of N-γ-γ-γ-N. We conclude that fast-neutron radiotherapy cured animal tumors with lower cell killing rates other radiation modalities. (author)

  10. Therapeutic effects of low radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Trott, K.R. (Dept. of Radiation Biology, St. Bartholomew' s Medical College, London (United Kingdom))

    1994-01-01

    This editorial explores the scientific basis of radiotherapy with doses of < 1 Gy for various non-malignant conditions, in particular dose-effect relationships, risk-benefit considerations and biological mechanisms. A review of the literature, particularly clinical and experimental reports published more than 50 years ago was conducted to clarify the following problems. 1. The dose-response relationships for the therapeutic effects on three groups of conditions: non-malignant skin disease, arthrosis and other painful degenerative joint disorders and anti-inflammatory radiotherapy; 2. risks after radiotherapy and after the best alternative treatments; 3. the biological mechanisms of the different therapeutic effects. Radiotherapy is very effective in all three groups of disease. Few dose-finding studies have been performed, all demonstrating that the optimal doses are considerable lower than the generally recommended doses. In different conditions, risk-benefit analysis of radiotherapy versus the best alternative treatment yields very different results: whereas radiotherapy for acute postpartum mastitis may not be justified any more, the risk-benefit ratio of radiotherapy of other conditions and particularly so in dermatology and some anti-inflammatory radiotherapy appears to be more favourable than the risk-benefit ratio of the best alternative treatments. Radiotherapy can be very effective treatment for various non-malignant conditions such as eczema, psoriasis, periarthritis humeroscapularis, epicondylitis, knee arthrosis, hydradenitis, parotitis and panaritium and probably be associated with less acute and long-term side effects than similarly effective other treatments. Randomized clinical studies are required to find the optimal dosage which, at present, may be unnecessarily high.

  11. Monitoring of radiation exposure and registration of doses

    International Nuclear Information System (INIS)

    1993-01-01

    The Section 32 of the Finnish Radiation Act (592/91) defines the requirements to be applied to the monitoring of the radiation exposure and working conditions in Finland. The concepts relevant to the monitoring and guidelines for determining the necessity of the monitoring as well as its organizing are given in the guide. Instructions for reporting doses to the Dose Register of the Finnish Centre for Radiation and Nuclear Safety (STUK) are given, also procedures for situations leading to exceptional exposures are described. (9 refs.)

  12. CONDOS-II, Radiation Dose from Consumer Product Distribution Chain

    International Nuclear Information System (INIS)

    1984-01-01

    1 - Description of problem or function: This code was developed under sponsorship of the Nuclear Regulatory Commission to serve as a tool for assessing radiation doses that may be associated with consumer products that contain radionuclides. The code calculates radiation dose equivalents resulting from user-supplied scenarios of exposures to radionuclides contained in or released from sources that contain radionuclides. Dose equivalents may be calculated to total body, skin surface, skeletal bone, testes, ovaries, liver, kidneys, lungs, and maximally exposed segments of the gastrointestinal tract from exposures via (1) direct, external irradiation by photons (including Bremsstrahlung) emitted from the source, (2) external irradiation by photons during immersion in air containing photon-emitting radionuclides that have escaped from the source, (3) internal exposures by all radiations emitted by inhaled radionuclides that have escaped from the source, and (4) internal exposures by all radiations emitted by ingested radionuclides that have escaped from the source. 2 - Method of solution: Organ dose equivalents are approximated in two ways, depending on the exposure type. For external exposures, energy specific organ-to-skin-surface dose conversion ratios are used to approximate dose equivalents to specific organs from doses calculated to a point on the skin surface. The organ-to-skin ratios are incorporated in organ- and nuclide-specific dose rate factors, which are used to approximate doses during immersion in contaminated air. For internal exposures, 50 year dose equivalents are calculated using organ- and nuclide-specific, 50 year dose conversion factors. Doses from direct, external exposures are calculated using the energy-specific dose conversion ratios, user supplied exposure conditions, and photon flux approximations for eleven source geometries. Available source geometries include: point, shielded and unshielded; line, shielded and unshielded; disk, shielded

  13. Plants as warning signal for exposure to low dose radiation

    International Nuclear Information System (INIS)

    Rusli Ibrahim; Norhafiz Talib

    2012-01-01

    The stamen-hair system of Tradescantia for flower colour has proven to be one of the most suitable materials to study the frequency of mutations induced by low doses of various ionizing radiations and chemical mutagens. The system has also been used successfully for detecting mutagenic synergisms among chemical mutagens and ionizing radiations as well as for studying the variations of spontaneous mutation frequency. In this study of radiobiology, the main objective is to observe somatic mutation (occurrence of pink cells from blue cells) induced on stamen hairs of five Tradescantia sp. available in Malaysia after exposure to low doses of chronic gamma irradiation using Gamma Green House. Pink cells appeared only on Tradescantia Pallida Purpurea stamen hairs after 13 days of exposure to irradiation with different doses of gamma rays. The highest number of stamens with pink cells was recorded from flowers irradiated with the highest dose of 6.37 Gy with 0.07 Gy/ h of dose rate. The lowest number of stamens with pink cells was recorded with an average of 0.57, irradiated with the lowest dose of 0.91 Gy with 0.01 Gy/ h of dose rate. There were no pink cells observed on Tradescantia Spathaceae Discolor after exposure to different doses of gamma rays. Similar negative results were observed for the control experiments. The principal cells in this assay are the mitotic stamen hair cells developing in the young flower buds. After exposure to radiation, the heterozygous dominant blue character of the stamen hair cell is prevented, resulting in the appearance of the recessive pink color. Furthermore, no pink cell appears on all species of Tradescantia spathaceae after irradiated with different doses of gamma rays. The sensitivity of the Tradescantia has been used widely and has demonstrated the relation between radiation dose and frequency of mutation observed at low doses which can contribute to the effects of low doses and their consequences for human health. This system

  14. Assessment of effectiveness of geologic isolation systems. ARRRG and FOOD: computer programs for calculating radiation dose to man from radionuclides in the environment

    International Nuclear Information System (INIS)

    Napier, B.A.; Roswell, R.L.; Kennedy, W.E. Jr.; Strenge, D.L.

    1980-06-01

    The computer programs ARRRG and FOOD were written to facilitate the calculation of internal radiation doses to man from the radionuclides in the environment and external radiation doses from radionuclides in the environment. Using ARRRG, radiation doses to man may be calculated for radionuclides released to bodies of water from which people might obtain fish, other aquatic foods, or drinking water, and in which they might fish, swim or boat. With the FOOD program, radiation doses to man may be calculated from deposition on farm or garden soil and crops during either an atmospheric or water release of radionuclides. Deposition may be either directly from the air or from irrigation water. Fifteen crop or animal product pathways may be chosen. ARRAG and FOOD doses may be calculated for either a maximum-exposed individual or for a population group. Doses calculated are a one-year dose and a committed dose from one year of exposure. The exposure is usually considered as chronic; however, equations are included to calculate dose and dose commitment from acute (one-time) exposure. The equations for calculating internal dose and dose commitment are derived from those given by the International Commission on Radiological Protection (ICRP) for body burdens and Maximum Permissible Concentration (MPC) of each radionuclide. The radiation doses from external exposure to contaminated farm fields or shorelines are calculated assuming an infinite flat plane source of radionuclides. A factor of two is included for surface roughness. A modifying factor to compensate for finite extent is included in the shoreline calculations

  15. Assessment of effectiveness of geologic isolation systems. ARRRG and FOOD: computer programs for calculating radiation dose to man from radionuclides in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Roswell, R.L.; Kennedy, W.E. Jr.; Strenge, D.L.

    1980-06-01

    The computer programs ARRRG and FOOD were written to facilitate the calculation of internal radiation doses to man from the radionuclides in the environment and external radiation doses from radionuclides in the environment. Using ARRRG, radiation doses to man may be calculated for radionuclides released to bodies of water from which people might obtain fish, other aquatic foods, or drinking water, and in which they might fish, swim or boat. With the FOOD program, radiation doses to man may be calculated from deposition on farm or garden soil and crops during either an atmospheric or water release of radionuclides. Deposition may be either directly from the air or from irrigation water. Fifteen crop or animal product pathways may be chosen. ARRAG and FOOD doses may be calculated for either a maximum-exposed individual or for a population group. Doses calculated are a one-year dose and a committed dose from one year of exposure. The exposure is usually considered as chronic; however, equations are included to calculate dose and dose commitment from acute (one-time) exposure. The equations for calculating internal dose and dose commitment are derived from those given by the International Commission on Radiological Protection (ICRP) for body burdens and Maximum Permissible Concentration (MPC) of each radionuclide. The radiation doses from external exposure to contaminated farm fields or shorelines are calculated assuming an infinite flat plane source of radionuclides. A factor of two is included for surface roughness. A modifying factor to compensate for finite extent is included in the shoreline calculations.

  16. Assessment of patient radiation doses during routine diagnostic radiography examinations

    International Nuclear Information System (INIS)

    Adam, Asim Karam Aldden Adam

    2015-11-01

    Medical applications of radiation represent the largest source of exposure to general population. Accounting for 3.0 mSv against an estimated 2.4 mSv from a natural back ground in United States. The association of ionizing radiation an cancer risk is assumed to be continuos and graded over the entire range of exposure, The objective of this study is to evaluate the patient radiation doses in radiology departments in Khartoum state. A total of 840 patients ? during two in the following hospitals Khartoum Teaching Hospital (260 patients), Fedail specialized hospital ( 261 patients). National Ribat University hospital ( 189 patients) and Engaz hospital (130 patients). Patient doses were measured for 9 procedures. The Entrance surface Air Kerma (ESAK) was quantified using x-ray unit output by Unifiers xi dose rate meter( Un fore inc. Billdal. Sweden) and patient exposure parameters. The mean patient age. Weight and Body Mass index (BMI) were 42.6 year 58/4 kg and 212 kg/m respectively. The mean patient doses, kv and MAS and E.q was 0.35 mGy per procedures 59.9 volt 19.8 Ampere per second 0.32 Sv . Patient doses were comparable with previous studies. Patient radiation doses showed considerable difference between hospitals due to x- ray systems exposure settings and patient weight. Patient are exposed to unnecessary radiation.(Author)

  17. Dose received by radiation workers in Australia, 1991

    International Nuclear Information System (INIS)

    Morris, N.D.

    1994-07-01

    Exposure to radiation can cause genetic defects or cancer. People who use sources of radiation as part of their employment are potentially at a greater risk than others owing to the possibility of their being continually exposed to small radiation doses over a long period. In Australia, the National Health and Medical Research Council has established radiation protection standards and set annual effective dose limits for radiation workers in order to minimise the chance of adverse effects occurring. These standards are based on the the recommendations of the International Commission on Radiological Protection (ICRP 1990). In order to ensure that the prescribed limits are not exceeded and to ensure that doses are kept to a minimum, some sort of monitoring is necessary. The primary purpose of this report is to provide data on the distribution of effective doses for different occupational categories of radiation worker in Australia. The total collective effective dose was found to be of the order of 4.9 Sv for a total of 34750 workers. 9 refs., 16 tabs., 6 figs

  18. Radiation dose estimates for carbon-11-labelled PET tracers

    International Nuclear Information System (INIS)

    Aart, Jasper van der; Hallett, William A.; Rabiner, Eugenii A.; Passchier, Jan; Comley, Robert A.

    2012-01-01

    Introduction: Carbon-11-labelled positron emission tomography (PET) tracers commonly used in biomedical research expose subjects to ionising radiation. Dosimetry is the measurement of radiation dose, but also commonly refers to the estimation of health risk associated with ionising radiation. This review describes radiation dosimetry of carbon-11-labelled molecules in the context of current PET research and the most widely used regulatory guidelines. Methods: A MEDLINE literature search returned 42 articles; 32 of these were based on human PET data dealing with radiation dosimetry of carbon-11 molecules. Radiation burden expressed as effective dose and maximum absorbed organ dose was compared between tracers. Results: All but one of the carbon-11-labelled PET tracers have an effective dose under 9 μSv/MBq, with a mean of 5.9 μSv/MBq. Data show that serial PET scans in a single subject are feasible for the majority of radiotracers. Conclusion: Although differing in approach, the two most widely used regulatory frameworks (those in the USA and the EU) do not differ substantially with regard to the maximum allowable injected activity per PET study. The predictive validity of animal dosimetry models is critically discussed in relation to human dosimetry. Finally, empirical PET data are related to human dose estimates based on homogenous distribution, generic models and maximum cumulated activities. Despite the contribution of these models to general risk estimation, human dosimetry studies are recommended where continued use of a new PET tracer is foreseen.

  19. Dose received by radiation workers in Australia, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Morris, N D

    1994-07-01

    Exposure to radiation can cause genetic defects or cancer. People who use sources of radiation as part of their employment are potentially at a greater risk than others owing to the possibility of their being continually exposed to small radiation doses over a long period. In Australia, the National Health and Medical Research Council has established radiation protection standards and set annual effective dose limits for radiation workers in order to minimise the chance of adverse effects occurring. These standards are based on the the recommendations of the International Commission on Radiological Protection (ICRP 1990). In order to ensure that the prescribed limits are not exceeded and to ensure that doses are kept to a minimum, some sort of monitoring is necessary. The primary purpose of this report is to provide data on the distribution of effective doses for different occupational categories of radiation worker in Australia. The total collective effective dose was found to be of the order of 4.9 Sv for a total of 34750 workers. 9 refs., 16 tabs., 6 figs.

  20. Application of organ tolerance dose-constraints in clinical studies in radiation oncology

    International Nuclear Information System (INIS)

    Doerr, Wolfgang; Herrmann, Thomas; Baumann, Michael

    2014-01-01

    In modern radiation oncology, tolerance dose-constraints for organs at risk (OAR) must be considered for treatment planning, but particularly in order to design clinical studies. Tolerance dose tables, however, only address one aspect of the therapeutic ratio of any clinical study, i.e., the limitation of adverse events, but not the desired potential improvement in the tumor effect of a novel treatment strategy. A sensible application of ''tolerance doses'' in a clinical situation requires consideration of various critical aspects addressed here: definition of tolerance dose, specification of an endpoint/symptom, consideration of radiation quality and irradiation protocol, exposed volume and dose distribution, and patient-related factors of radiosensitivity. The currently most comprehensive estimates of OAR radiation tolerance are in the QUANTEC compilations (2010). However, these tolerance dose values must only be regarded as a rough orientation and cannot answer the relevant question for the patients, i.e., if the study can achieve a therapeutic advantage; this can obviously be answered only by the final scientific analysis of the study results. Despite all limitations, the design of clinical studies should currently refer to the QUANTEC values for appreciation of the risk of complications, if needed supplemented by one's own data or further information from the literature. The implementation of a consensus on the safety interests of the patients and on an application and approval process committed to progress in medicine, with transparent quality-assuring requirements with regard to the structural safeguarding of the study activities, plays a central role in clinical research in radiation oncology. (orig.) [de

  1. Evaluation of radiation doses delivered in different chest CT protocols

    International Nuclear Information System (INIS)

    Gorycki, Tomasz; Lasek, Iwona; Kamiński, Kamil; Studniarek, Michał

    2014-01-01

    There are differences in the reference diagnostic levels for the computed tomography (CT) of the chest as cited in different literature sources. The doses are expressed either in weighted CT dose index (CTDI VOL ) used to express the dose per slice, dose-length product (DLP), and effective dose (E). The purpose of this study was to assess the radiation dose used in Low Dose Computer Tomography (LDCT) of the chest in comparison with routine chest CT examinations as well as to compare doses delivered in low dose chest CT with chest X-ray doses. CTDI VOL and DLP doses were taken to analysis from routine CT chest examinations (64 MDCT TK LIGHT SPEED GE Medical System) performed in 202 adult patients with FBP reconstruction: 51 low dose, 106 helical, 20 angio CT, and 25 high resolution CT protocols, as well as 19 helical protocols with iterative ASIR reconstruction. The analysis of chest X-ray doses was made on the basis of reports from 44 examinations. Mean values of CTDI VOL and DLP were, respectively: 2.1 mGy and 85.1 mGy·cm, for low dose, 9.7 mGy and 392.3 mGy·cm for helical, 18.2 mGy and 813.9 mGy·cm for angio CT, 2.3 mGy and 64.4 mGy·cm for high resolution CT, 8.9 mGy. and 317.6 mGy·cm for helical ASIR protocols. Significantly lower CTDI VOL and DLP values were observed for low dose and high resolution CT versus the remaining CT protocols; doses delivered in CT ASIR protocols were also lower (80–81%). The ratio between medial doses in low dose CT and chest X-ray was 11.56. Radiation dose in extended chest LDCT with parameters allowing for identification of mediastinal structures and adrenal glands is still much lower than that in standard CT protocols. Effective doses predicted for LDCT may exceed those used in chest X-ray examinations by a factor of 4 to 12, depending on LDCT scan parameters. Our results, as well as results from other authors, suggest a possibility of reducing the dose by means of iterative reconstruction. Efforts towards further dose

  2. Gamma radiation dose from radionuclides in Kong Kong soil

    International Nuclear Information System (INIS)

    Leung, K.C.

    1990-01-01

    Calculations have been made of the γ dose rate at one metre above ground from the results of measurements of radionuclide concentrations in soil at various locations in Hong Kong and prior to the Chernobyl accident. The average dose rate is found to be 0.076 μGy h -1 , or 0.67 mGy year -1 . The contribution from fallout nuclides to the annual dose is shown to be small, at about 0.4% of the total. The calculated dose rate in this work is about 80% higher than the world average given by the United Nations Scientific Committee on the Effects of Atomic Radiation, in Ionizing Radiation: Sources and Biological Effects, Annex B (Exposure to natural radiation sources). A United Nations Publication, 1982. (author)

  3. Status of eye lens radiation dose monitoring in European hospitals

    International Nuclear Information System (INIS)

    Carinou, Eleftheria; Ginjaume, Merce; O’Connor, Una; Kopec, Renata; Sans Merce, Marta

    2014-01-01

    A questionnaire was developed by the members of WG12 of EURADOS in order to establish an overview of the current status of eye lens radiation dose monitoring in hospitals. The questionnaire was sent to medical physicists and radiation protection officers in hospitals across Europe. Specific topics were addressed in the questionnaire such as: knowledge of the proposed eye lens dose limit; monitoring and dosimetry issues; training and radiation protection measures. The results of the survey highlighted that the new eye lens dose limit can be exceeded in interventional radiology procedures and that eye lens protection is crucial. Personnel should be properly trained in how to use protective equipment in order to keep eye lens doses as low as reasonably achievable. Finally, the results also highlighted the need to improve the design of eye dosemeters in order to ensure satisfactory use by workers. (paper)

  4. Some human activities to decrease public radiation dose

    International Nuclear Information System (INIS)

    Pan Ziqiang; Guo Minqiang

    1994-01-01

    The necessity of studying the variations in radiation levels from the balance viewpoint is discussed. Some human activities may increase, while others may decrease, radiation dose to population. In 1988, China's investigation showed that travel by air caused a raise of population collective dose by 3.6 x 10 1 man·Sv, while travel by ship, train and vehicle lead to a drop of 5.36 x 10 2 man·Sv, and that dwellings of coal cinder brick decreased collective dose by 3.5 x 10 3 man·Sv, while buildings of reinforced concrete structure increased collective dose by 3.7 x 10 3 man·Sv. It is inadequate to only study those activities which may increase radiation levels

  5. Visualization of radiation dose big data acquired by monitoring posts

    International Nuclear Information System (INIS)

    Hashimoto, Takeyuki; Jumonji, Hiromichi

    2014-01-01

    Currently, in Fukushima Prefecture, 3625 radiation dose monitoring posts is available, and the radiation data is acquired every 10 minutes. However, an effective visualization of such an enormous amount of data has not been sufficiently performed. In this study, pull out the meaningful information from the big data, to achieve an effective visualization. By comparing the physical attenuation with the radiation dose changes, we can predict the trend of environment attenuation. We visualize the influence of the environment by plotting the results to the map. As a result, the difference in the increase or decrease depending on the location appeared. Under the influence of snow cover, a phenomenon that radiation dose is reduced in winter were also seen. We considered that these results will be effective for the policies of decontamination and the estimation of the amount of snow as water resources. (author)

  6. Dose Rate of Environmental Gamma Radiation in Java Island

    International Nuclear Information System (INIS)

    Gatot Suhariyono; Buchori; Dadong Iskandar

    2007-01-01

    The dose rate Monitoring of environmental gamma radiation at some locations in Java Island in the year 2005 / 2006 has been carried out. The dose rate measurement of gamma radiation is carried out by using the peripheral of Portable Gamma of Ray Spectrometer with detector of NaI(Tl), Merck Exploranium, Model GR-130- MINISPEC, while to determine its geographic position is used by the GPS (Global Positioning System), made in German corporation of GPS III Plus type. The division of measurement region was conducted by dividing Java Island become 66 parts with same distance, except in Jepara area that will built PLTN (Nuclear Energy Power), distance between measurement points is more closed. The results of dose rate measurement are in 66 locations in Java Island the range of (19.24 ± 4.05) nSv/hour until (150.78 ± 12.26) nSv/hour with mean (51.93 ± 36.53) nSv/h. The lowest dose rate was in location of Garut, while highest dose rate was in Ujung Lemah Abang, Jepara location. The data can be used for base line data of dose rate of environmental gamma radiation in Indonesia, specially in Java Island. The mean level of gamma radiation in Java monitoring area (0.46 mSv / year) was still lower than worldwide average effective dose rate of terrestrial gamma rays 0.5 mSv / year (report of UNSCEAR, 2000). (author)

  7. Circuit arrangement for indicating radiation dose rates

    International Nuclear Information System (INIS)

    Virag, Ernoe; Nyari, Istvan; Simon, Jozsef; Styevko, Mihaly; Krampe, Geza.

    1981-01-01

    The invention presents a dosemeter electronic circuit arrangement indicating hazardous dose rate threshold. If the treshold is reached or exceeded, well distinguished sound and light alarm is turned on immidiately. Moreover, certain critical levels can also be indicated by making the intermittent singalling continuous. (A.L.)

  8. Online radiation dose measurement system for ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mandic, I.; Cindro, V.; Dolenc, I.; Gorisek, A.; Kramberger, G. [Jozef Stefan Institute, Jamova 39, Ljubljana (Slovenia); Mikuz, M. [Jozef Stefan Institute, Jamova 39, Ljubljana (Slovenia); Faculty of Mathematics and Physics, University of Ljubljana (Slovenia); Bronner, J.; Hartet, J. [Physikalisches Institut, Universitat Freiburg, Hermann-Herder-Str. 3, Freiburg (Germany); Franz, S. [CERN, Geneva (Switzerland)

    2009-07-01

    In experiments at Large Hadron Collider, detectors and electronics will be exposed to high fluxes of photons, charged particles and neutrons. Damage caused by the radiation will influence performance of detectors. It will therefore be important to continuously monitor the radiation dose in order to follow the level of degradation of detectors and electronics and to correctly predict future radiation damage. A system for online radiation monitoring using semiconductor radiation sensors at large number of locations has been installed in the ATLAS experiment. Ionizing dose in SiO{sub 2} will be measured with RadFETs, displacement damage in silicon in units of 1-MeV(Si) equivalent neutron fluence with p-i-n diodes. At 14 monitoring locations where highest radiation levels are expected the fluence of thermal neutrons will be measured from current gain degradation in dedicated bipolar transistors. The design of the system and tests of its performance in mixed radiation field is described in this paper. First results from this test campaign confirm that doses can be measured with sufficient sensitivity (mGy for total ionizing dose measurements, 10{sup 9} n/cm{sup 2} for NIEL (non-ionizing energy loss) measurements, 10{sup 12} n/cm{sup 2} for thermal neutrons) and accuracy (about 20%) for usage in the ATLAS detector

  9. Online radiation dose measurement system for ATLAS experiment

    International Nuclear Information System (INIS)

    Mandic, I.; Cindro, V.; Dolenc, I.; Gorisek, A.; Kramberger, G.; Mikuz, M.; Bronner, J.; Hartet, J.; Franz, S.

    2009-01-01

    In experiments at Large Hadron Collider, detectors and electronics will be exposed to high fluxes of photons, charged particles and neutrons. Damage caused by the radiation will influence performance of detectors. It will therefore be important to continuously monitor the radiation dose in order to follow the level of degradation of detectors and electronics and to correctly predict future radiation damage. A system for online radiation monitoring using semiconductor radiation sensors at large number of locations has been installed in the ATLAS experiment. Ionizing dose in SiO 2 will be measured with RadFETs, displacement damage in silicon in units of 1-MeV(Si) equivalent neutron fluence with p-i-n diodes. At 14 monitoring locations where highest radiation levels are expected the fluence of thermal neutrons will be measured from current gain degradation in dedicated bipolar transistors. The design of the system and tests of its performance in mixed radiation field is described in this paper. First results from this test campaign confirm that doses can be measured with sufficient sensitivity (mGy for total ionizing dose measurements, 10 9 n/cm 2 for NIEL (non-ionizing energy loss) measurements, 10 12 n/cm 2 for thermal neutrons) and accuracy (about 20%) for usage in the ATLAS detector

  10. Proposal of a dosemeter for skin beta radiation dose assessment

    International Nuclear Information System (INIS)

    Rosa, L.A.R. da; Caldas, L.V.E.

    1987-08-01

    Beta radiation is, undoubtedly, less penetrating than X or gamma radiation. Thus, beta radiation sources external to the human body do not cause a significant irradiation of its deeper tissues. However, in some cases, they may contribute in a very important way to the irradiation of the lens of the eyes and, mainly, of the skin. Specially, the hands and finger tips may receive a high dose. In this work some relevant aspects of the individual monitoring in beta radiation fields are discussed and the importance of monitoring this kind of radiation in some activities where the skin absorbed dose may be a limiting factor is evidenced. The main characteristics of the thermoluminescent (TL) response of ultra-thin CaSO 4 : Dy detectors (UT-CaSO 4 : Dy) in the detection of this kind of radiation are also studied. The irradiation are performed with 90 Sr 90 Y, 204 TI and 147 Pm sources. The reproducibility, linearity, dependence on the absorbed dose rate, optical fading, energy and angular dependences of the detector TL responce are investigated. Transmission factors for different thicknesses of tissue equivalent material are obtained for the TL detectors using the three available beta sources. Based on the results obtained, a dosemeter for skin beta radiation absorbed dose assessment with an energy dependence better than 12% is proposed. (Author) [pt

  11. Survey of environmental radiation dose rates in Tokushima prefecture

    International Nuclear Information System (INIS)

    Sakama, Minoru; Imura, Hiroyoshi; Akou, Natsuki; Takeuchi, Emi; Morihiro, Yukinori

    2004-01-01

    Survey of environmental radiation dose rates in Tokushima prefecture has been carried out using a portable NaI (Tl) scintillation survey meter and a CsI(Tl) pocket type one. To our knowledge, previous several surveys in Tokushima, for example by Abe et al. (1982) and Yoshino et al. (1991), have remained to report the environmental radiation dose rates merely about the major cities, that is Tokushima City and others along the Pacific. Up to now, there have been few efforts to survey the environmental radiation dose rates about mountain valleys in Tokushima. In this work, it is remarkable that we have for the first time made surveys of environmental radiation dose rates on the 6 routes across the Sanuki mountains and inside the pier of Onaruto Bridge, 'Naruto Uzu-no-michi', in the northern area of Tokushima. In the course of present surveys, the maximum value of the environmental radiation dose rates was 0.117±0.020 μGy/h at Higetouge in Sanuki City, and then it was found that the radiation dose rates across the Sanuki mountains tend to increase slightly with approaching Kagawa area from Tokushima one. Considering geological formation around the northern side of Sanuki mountains, there are mainly geological layers of granodiorite containing in the substantial amount of naturally occurring radionuclides, 40 K, U-series, and Th-series, than other geological rocks and it was found that the terrestrial gamma-rays have effect on the environmental radiation dose rates according to the geological formation. (author)

  12. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Kleiman, Norman Jay [Columbia University

    2013-11-30

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiation exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9

  13. Radiation doses to children with shunt-treated hydrocephalus

    Energy Technology Data Exchange (ETDEWEB)

    Holmedal, Lise J. [Helse Fonna, Department of Radiology, Stord Hospital, Stord (Norway); Friberg, Eva G.; Boerretzen, Ingelin; Olerud, Hilde [The Norwegian Radiation Protection Authority, Oesteraas (Norway); Laegreid, Liv [Haukeland University Hospital, Department of Paediatrics, Bergen (Norway); Rosendahl, Karen [University of Bergen, Department of Surgical Sciences, Radiology Section, Bergen (Norway); Great Ormond Street Hospital for Children, Department of Diagnostic Radiology, London (United Kingdom)

    2007-12-15

    Children with shunt-treated hydrocephalus are still followed routinely with frequent head CT scans. To estimate the effective dose, brain and lens doses from these examinations during childhood, and to assess dose variation per examination. All children born between 1983 and 1995 and treated for hydrocephalus between 1983 and 2002 were included. We retrospectively registered the number of examinations and the applied scan parameters. The effective dose was calculated using mean conversion factors from the CT dose index measured free in air, while doses to the lens and brain were estimated using tabulated CT dose index values measured in a head phantom. A total of 687 CT examinations were performed in 67 children. The mean effective dose, lens dose and brain dose to children over 6 months of age were 1.2 mSv, 52 mGy and 33 mGy, respectively, and the corresponding doses to younger children were 3.2 mSv, 60 mGy and 48 mGy. The effective dose per CT examination varied by a factor of 64. None of the children was exposed to doses known to cause deterministic effects. However, since the threshold for radiation-induced damage is not known with certainty, alternative modalities such as US and MRI should be used whenever possible. (orig.)

  14. Offsite radiation doses from Hanford Operations for the years 1983 through 1987: A comparison of results calculated by two methods

    International Nuclear Information System (INIS)

    Soldat, J.K.

    1989-10-01

    This report compares the results of the calculation of potential radiation doses to the public by two different environmental dosimetric systems for the years 1983 through 1987. Both systems project the environmental movement of radionuclides released with effluents from Hanford operations; their concentrations in air, water, and foods; the intake of radionuclides by ingestion and inhalation; and, finally, the potential radiation doses from radionuclides deposited in the body and from external sources. The first system, in use for the past decade at Hanford, calculates radiation doses in terms of 50-year cumulative dose equivalents to body organs and to the whole body, based on the methodology defined in ICRP Publication 2. This system uses a suite of three computer codes: PABLM, DACRIN, and KRONIC. In the new system, 50-year committed doses are calculated in accordance with the recommendations of the ICRP Publications 26 and 30, which were adopted by the US Department of Energy (DOE) in 1985. This new system calculates dose equivalent (DE) to individual organs and effective dose equivalent (EDE). The EDE is a risk-weighted DE that is designed to be an indicator of the potential health effects arising from the radiation dose. 16 refs., 1 fig., 38 tabs

  15. Occupational radiation doses in Portugal from 1994 to 1998

    International Nuclear Information System (INIS)

    Alves, J.G.; Martins, M.B.; Amaral, E.M.

    2000-01-01

    This work reports on the occupational radiation doses for external radiation received in 1994-1998 by the radiation workers monitored by the Radiological Protection and Nuclear Safety Department (DPRSN) in Portugal. Individual monitoring for external radiation is carried out in Portugal by DPRSN since the 60s, and the workers are monitored on a monthly or quarterly bases. In 1995 DPRSN monitored approximately 8000 people and was the only laboratory carrying out this sort of activity in Portugal. In 1998 the number of monitored people increased to nearly 8500 from 860 facilities, which leads us to state that the results shown in this work are well representative of the universe of radiation workers in Portugal. Until 1996, the dose measurement procedure was based only on film dosimetry and the results reported for the 1994-1995 period were obtained with this methodology. Since 1996, thermoluminescent dosimetry (TLD) was gradually introduced and since then an effort has been made to transfer the monitored workers from film to TLD. In 1998, both film and TLD dosimetry systems were running simultaneously, with average numbers of 4500 workers monitored with film dosimetry, while 4000 were monitored with TLD. The data presented from 1996 to 1998 were obtained with both methodologies. This work reports the annual mean effective doses received from external radiation, for the monitored and exposed workers in the different fields of activity, namely, industry, research laboratories, health and mining. The distribution of the annual effective dose by dose intervals is also reported. The collective annual dose by field of activity is estimated and the contribution to the total annual collective dose is determined. The collective dose estimates for the period 1994 to 1998 demonstrated that the health sector is the most representative exposed group in Portugal. (author)

  16. Emissions and doses from sources of ionising radiation in the Netherlands: radiation policy monitoring

    International Nuclear Information System (INIS)

    Eleveld, H.; Pruppers, M.

    2002-01-01

    In 1997 the Ministry of Housing, Spatial Planning and the Environment requested RIVM to develop an information system for policy monitoring. One of the motives was that the European Union requires that the competent authorities of each member state ensure that dose estimates due to practices involving exposure to ionising radiation are made as realistic as possible for the population as a whole and for reference groups in all places where such groups may occur. Emissions of radionuclides and radiation to the environment can be classified as follows: (1) emissions to the atmosphere, (2) emissions to the aquatic system and (3) emission of external radiation from radioactive materials and equipment that produces ionising radiation. Released radioactivity is dispersed via exposure pathways, such as the atmosphere, deposition on the ground and farmland products, drinking water, fish products, etc. This leads to radiation doses due to inhalation, ingestion and exposure to external radiation. To assess the possible radiation doses different kinds of models are applied, varying from simple multiplications with dispersion coefficients, transfer coefficients and dose conversion coefficients to complex dispersion models. In this paper an overview is given of the human-induced radiation doses in the Netherlands. Also, trends in and the effect of policy on the radiation dose of members of the public are investigated. This paper is based on an RIVM report published recently. A geographical distribution of radiation risks due to routine releases for a typical year in the Netherlands was published earlier

  17. A unique experiment. Measurement of radiation doses at Vinca

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-07-15

    For the first time in the history of the peaceful applications of atomic energy, an experiment was conducted to determine the exact levels of radiation exposure resulting from a reactor incident. The experiment was made at Vinca, Yugoslavia, wherein October 1958 six persons had been subjected to high doses of neutron and gamma radiation during a brief uncontrolled run of a zero-power reactor. One of them died but the other five were successfully treated at the Curie Hospital in Paris. In the case of four of them, the treatment involved the grafting of healthy bone marrow to counteract the effects of radiation on blood-forming tissues. It was recognized that if the effects produced on the irradiated persons could be related to the exact doses of radiation they had received, it would be possible to gain immensely valuable knowledge about the biological consequences of acute and high level radiation exposure on a quantitative basis. It was suggested to the Yugoslav authorities that a dosimetry experiment be conducted at Vinca. The most accurate modern techniques of dosimetry developed at the Oak Ridge National Laboratory were employed during the experiment. Simultaneous measurements of the neutron and gamma doses were made at points where the people had been located. At these points the effects of the radiation on the salt solution in the phantoms were studied. In particular, the energy distribution of the radiation was investigated.It was the ratio between the various components of the radiation that was of special interest in these measurements because this ratio itself would help in determining the exact doses. The dose of one of the components, viz. slow neutrons, had already been determined during the treatment of the patients. If the ratio of the components could be ascertained, the doses of the fast neutrons and gamma rays could also be established because the ratio would not be affected by the power level at which the reactor was operated

  18. Occupational radiation doses among diagnostic radiation workers in South Korea, 1996-2006

    International Nuclear Information System (INIS)

    Lee, W. J.; Cha, E. S.; Ha, M.; Jin, Y. W.; Hwang, S. S.; Kong, K. A.; Lee, S. W.; Lee, H. K.; Lee, K. Y.; Kim, H. J.

    2009-01-01

    This study details the distribution and trends of doses of occupational radiation among diagnostic radiation workers by using the national dose registry between 1996 and 2006 by the Korea Food and Drug Administration. Dose measurements were collected quarterly by the use of thermoluminescent dosemeter personal monitors. A total of 61 732 workers were monitored, including 18 376 radiologic technologists (30%), 13 762 physicians (22%), 9858 dentists (16%) and 6114 dental hygienists (9.9%). The average annual effective doses of all monitored workers decreased from 1.75 to 0.80 mSv over the study period. Among all diagnostic radiation workers, radiologic technologists received both the highest effective and collective doses. Male radiologic technologists aged 30-49 y composed the majority of workers receiving more than 5 mSv in a quarter. More intensive monitoring of occupational radiation exposure and investigation into its health effects on diagnostic radiation workers are required in South Korea. (authors)

  19. Errors and Uncertainties in Dose Reconstruction for Radiation Effects Research

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2008-04-14

    Dose reconstruction for studies of the health effects of ionizing radiation have been carried out for many decades. Major studies have included Japanese bomb survivors, atomic veterans, downwinders of the Nevada Test Site and Hanford, underground uranium miners, and populations of nuclear workers. For such studies to be credible, significant effort must be put into applying the best science to reconstructing unbiased absorbed doses to tissues and organs as a function of time. In many cases, more and more sophisticated dose reconstruction methods have been developed as studies progressed. For the example of the Japanese bomb survivors, the dose surrogate “distance from the hypocenter” was replaced by slant range, and then by TD65 doses, DS86 doses, and more recently DS02 doses. Over the years, it has become increasingly clear that an equal level of effort must be expended on the quantitative assessment of uncertainty in such doses, and to reducing and managing uncertainty. In this context, this paper reviews difficulties in terminology, explores the nature of Berkson and classical uncertainties in dose reconstruction through examples, and proposes a path forward for Joint Coordinating Committee for Radiation Effects Research (JCCRER) Project 2.4 that requires a reasonably small level of effort for DOSES-2008.

  20. Dose dependence on stochastic radiobiological effect in radiation risk estimation

    International Nuclear Information System (INIS)

    Komochkov, M.M.

    1999-01-01

    The analysis of the results in dose -- effect relationship observation has been carried out on the cell and organism levels, with the aim to obtain more precise data on the risk coefficients at low doses. The results are represented by two contrasting groups of dose dependence on effect: a downwards concave and a J-shaped curve. Both types of dependence are described by the equation solutions of an assumed unified protective mechanism, which comprises two components: constitutive and adaptive or inducible ones. The latest data analysis of the downwards concave dependence curves shows a considerable underestimation of radiation risk in all types of cancer, except leukemia, for a number of critical groups in a population, at low doses comparing to the ICRP recommendations. With the dose increase, the decrease of the effect value per dose unit is observed. It may be possibly related to the switching of the activity of the adaptive protective mechanism, with some threshold dose values being exceeded

  1. Management of pediatric radiation dose using Philips fluoroscopy systems DoseWise: perfect image, perfect sense

    International Nuclear Information System (INIS)

    Stueve, Dick

    2006-01-01

    Although image quality (IQ) is the ultimate goal for accurate diagnosis and treatment, minimizing radiation dose is equally important. This is especially true when pediatric patients are examined, because their sensitivity to radiation-induced cancer is two to three times greater than that of adults. DoseWise is an ALARA-based philosophy within Philips Medical Systems that is active at every level of product design. It encompasses a set of techniques, programs and practices that ensures optimal IQ while protecting people in the X-ray environments. DoseWise methods include management of the X-ray beam, less radiation-on time and more dose information for the operator. Smart beam management provides automatic customization of the X-ray beam spectrum, shape, and pulse frequency. The Philips-patented grid-controlled fluoroscopy (GCF) provides grid switching of the X-ray beam in the X-ray tube instead of the traditional generator switching method. In the examination of pediatric patients, DoseWise technology has been scientifically documented to reduce radiation dose to <10% of the dose of traditional continuous fluoroscopy systems. The result is improved IQ at a significantly lower effective dose, which contributes to the safety of patients and staff. (orig.)

  2. Radiation doses from dental radiography at private practioneers

    Energy Technology Data Exchange (ETDEWEB)

    Hylthen, J A

    1975-10-01

    This investigation was made in January 1975 together with a seminar group from the faculty of odontology in Stockholm. Every four private practising dentists in Stockholm and its environs were selected by haphazard to get an enquiry equipment etc. Every forty private practising dentists were then selected by haphazard to get a visit. 32 x-ray plants were investigated. The radiation doses showed a great spreading. The mean value of the radiation doses to the irradiated organs had been reduced about 5 times compared to a similar investigation, which was made in 1960. The use of long metal tubes and high-speed film gave the lowest dose values, while a short cone of bakelite and a low-speed film gave the highest dose values. Fluctuations in the dose values seemed also to depend on the technique. The reasons for this may be variations in the settings of the instruments and in the dark room technique.

  3. The 3D Radiation Dose Analysis For Satellite

    Science.gov (United States)

    Cai, Zhenbo; Lin, Guocheng; Chen, Guozhen; Liu, Xia

    2002-01-01

    the earth. These particles come from the Van Allen Belt, Solar Cosmic Ray and Galaxy Cosmic Ray. They have different energy and flux, varying with time and space, and correlating with solar activity tightly. These particles interact with electrical components and materials used on satellites, producing various space radiation effects, which will damage satellite to some extent, or even affect its safety. orbit. Space energy particles inject into components and materials used on satellites, and generate radiation dose by depositing partial or entire energy in them through ionization, which causes their characteristic degradation or even failure. As a consequence, the analysis and protection for radiation dose has been paid more attention during satellite design and manufacture. Designers of satellites need to analyze accurately the space radiation dose while satellites are on orbit, and use the results as the basis for radiation protection designs and ground experiments for satellites. can be calculated, using the model of the trapped proton and the trapped electron in the Van Allen Belt (AE8 and AP8). This is the 1D radiation dose analysis for satellites. Obviously, the mass shielding from the outside space to the computed point in all directions is regarded as a simple sphere shell. The actual structure of satellites, however, is very complex. When energy particles are injecting into a given equipment inside satellite from outside space, they will travel across satellite structure, other equipment, the shell of the given equipment, and so on, which depends greatly on actual layout of satellite. This complex radiation shielding has two characteristics. One is that the shielding masses for the computed point are different in different injecting directions. The other is that for different computed points, the shielding conditions vary in all space directions. Therefore, it is very difficult to tell the differences described above using the 1D radiation analysis, and

  4. Assessment of Committed Effective Dose due to consumption of Red Sea coral reef fishes collected from the local market (Sudan)

    International Nuclear Information System (INIS)

    Hassona, Rifaat K.; Sam, A.K.; Osman, O.I.; Sirelkhatim, D.A.; LaRosa, J.

    2008-01-01

    An assessment of Committed Effective Dose (CED) due to consumption of Red Sea fish containing 210 Po and 137 Cs was performed for 23 different marine fish samples collected from the local market at Port Sudan. The fish were classified according to their feeding habits into three categories: carnivores, herbivores, and omnivores. Measured activity concentrations of 210 Po were found in the ranges 0.25-6.42 (carnivores), 0.7-5 (omnivores) and 1.5-3.8 (herbivores) Bq/kg fresh weight. In the same study, activity concentrations of Cs-137 were determined to be in the ranges 0.1-0.46 (carnivores), 0.09-0.35 (omnivores) and 0.09-0.32 (herbivores) Bq/kg fresh weight, which were several times lower than those of 210 Po. Appropriate conversion factors were used to derive the CED, which was found to be 0.012, 0.01 and 0.01 (μSv/yr) in carnivores, omnivores and herbivores, respectively, for 137 Cs. This contributes about 0.4% of the total dose exclusively by ingestion of fish. For 210 Po, it was found to be 3.47, 4.81 and 4.14 (μSv/yr) in carnivores, omnivores and herbivores, respectively, which represents 99.6% of the total dose (exclusively by ingestion of fish). The results of CED calculations suggest that the dose received by the Sudanese population from the consumption of marine fish is rather small and that the contribution of 137 Cs is negligible compared to 210 Po

  5. Assessment of committed effective dose due to consumption of Red Sea coral reef fishes collected from the local market (Sudan)

    International Nuclear Information System (INIS)

    Hassona, R. K; Sam, A. K; Sirelkhatim, D. A.; Osman, O. I.; Larosa, J.

    2008-01-01

    An assessment of committed effective dose (CED) due to consumption of Red Sea fish containing ''2''1''0Po and ''1''3''7Cs was performed for 23 different marine fish samples collected from the local market at Port Sudan. The fish were classified according to their feeding habits into three categories: carnivores, herbivores, and omnivores. Measured activity concentrations of 2 ''1''0Po were found in the ranges 0.25-6.42 (carnivores), 0.7- 5 (omnivores) and 1.5-3.8 (herbivores) Bq/kg fresh weight. In the same study, activity concentrations of Cs-137 were determined to be in the ranges 0.1-0.46 (carnivores), 0.09-0.35 (omnivores) and 0.09-0.32 (herbivores) Bq/kg fresh weigh, which were several times lower than those of ''2''1''0Po. Appropriate conversion factors were used to derive the CED, which was found to be 0.012, 0.01 and 0.01 (μSv/Yr) in carnivores, omnivores and herbivores, respectively, for ''1'''3''7Cs. This contributes about 0.4% of the total dose exclusively by ingestion of fish. For ''2''1''0Po, it was found to be 3.47, 4.81and 4.14 (μSv/Yr) in carnivores, omnivores and herbivores, respectively, which represents 99.6% of the total dose (exclusively by ingestion of fish ). The results of CED calculations suggest that the dose received by the Sudanese population from the consumption of marine fish is rather small and that the contribution of ''1''3''7Cs is negligible compared to ''2''1''0Po.(Author)

  6. Assessment of Committed Effective Dose due to consumption of Red Sea coral reef fishes collected from the local market (Sudan).

    Science.gov (United States)

    Hassona, Rifaat K; Sam, A K; Osman, O I; Sirelkhatim, D A; LaRosa, J

    2008-04-15

    An assessment of Committed Effective Dose (CED) due to consumption of Red Sea fish containing (210)Po and (137)Cs was performed for 23 different marine fish samples collected from the local market at Port Sudan. The fish were classified according to their feeding habits into three categories: carnivores, herbivores, and omnivores. Measured activity concentrations of (210)Po were found in the ranges 0.25-6.42 (carnivores), 0.7-5 (omnivores) and 1.5-3.8 (herbivores) Bq/kg fresh weight. In the same study, activity concentrations of Cs-137 were determined to be in the ranges 0.1-0.46 (carnivores), 0.09-0.35 (omnivores) and 0.09-0.32 (herbivores) Bq/kg fresh weight, which were several times lower than those of (210)Po. Appropriate conversion factors were used to derive the CED, which was found to be 0.012, 0.01 and 0.01 (microSv/yr) in carnivores, omnivores and herbivores, respectively, for (137)Cs. This contributes about 0.4% of the total dose exclusively by ingestion of fish. For (210)Po, it was found to be 3.47, 4.81 and 4.14 (microSv/yr) in carnivores, omnivores and herbivores, respectively, which represents 99.6% of the total dose (exclusively by ingestion of fish). The results of CED calculations suggest that the dose received by the Sudanese population from the consumption of marine fish is rather small and that the contribution of (137)Cs is negligible compared to (210)Po.

  7. Assessment of Committed Effective Dose due to consumption of Red Sea coral reef fishes collected from the local market (Sudan)

    Energy Technology Data Exchange (ETDEWEB)

    Hassona, Rifaat K. [Sudan Atomic Energy Commission, Khartoum, P.O. Box 3001 (Sudan)], E-mail: rifaatk@yahoo.com; Sam, A.K. [Sudan Atomic Energy Commission, Khartoum, P.O. Box 3001 (Sudan); Osman, O.I. [Chemistry Department, Faculty of Science, University of Khartoum (Sudan); Sirelkhatim, D.A. [Sudan Atomic Energy Commission, Khartoum, P.O. Box 3001 (Sudan); LaRosa, J. [Formerly at IAEA Marine Environment Laboratory, 4 Quai Antoine 1er, MC 98000 (Monaco)

    2008-04-15

    An assessment of Committed Effective Dose (CED) due to consumption of Red Sea fish containing {sup 210}Po and {sup 137}Cs was performed for 23 different marine fish samples collected from the local market at Port Sudan. The fish were classified according to their feeding habits into three categories: carnivores, herbivores, and omnivores. Measured activity concentrations of {sup 210}Po were found in the ranges 0.25-6.42 (carnivores), 0.7-5 (omnivores) and 1.5-3.8 (herbivores) Bq/kg fresh weight. In the same study, activity concentrations of Cs-137 were determined to be in the ranges 0.1-0.46 (carnivores), 0.09-0.35 (omnivores) and 0.09-0.32 (herbivores) Bq/kg fresh weight, which were several times lower than those of {sup 210}Po. Appropriate conversion factors were used to derive the CED, which was found to be 0.012, 0.01 and 0.01 ({mu}Sv/yr) in carnivores, omnivores and herbivores, respectively, for {sup 137}Cs. This contributes about 0.4% of the total dose exclusively by ingestion of fish. For {sup 210}Po, it was found to be 3.47, 4.81 and 4.14 ({mu}Sv/yr) in carnivores, omnivores and herbivores, respectively, which represents 99.6% of the total dose (exclusively by ingestion of fish). The results of CED calculations suggest that the dose received by the Sudanese population from the consumption of marine fish is rather small and that the contribution of {sup 137}Cs is negligible compared to {sup 210}Po.

  8. Natural external radiation level and population dose in Hunan province

    International Nuclear Information System (INIS)

    1985-01-01

    A survey of the natural external radiation level in Hunan Province is reported. The measurements were performed with FD-71 scintillation radiometers. On the basis of measurements at about 1,600 locations, the contribution from cosmic radiation is found to be 3.0 x 10 -8 Gy.h -1 , and the average absorbed dose rates in air from terrestrial γ-radiation for outdoors, indoors and roads are determined to be 9.2, 13.1 and 9.0 x 10 -8 Gy.h -1 , respectively. The γ-radiation indoors is markedly higher than that outdoors by a factor of 1.42. The lowest γ-radiation level is found in the sedimentary plain around Donting Lake, while the highest absorbed dose rates in air from terrestrial radiation are observed in some areas with exposed granites. The indoor γ-radiation in brick houses is markedly higher than that in wooden houses. Tarred roads have evidently lower radiation level than sand-gravel roads or concrete roads. The annual effective dose equivalents to the population from cosmic and terrestrial sources are 0.256 and 0.756 mSv, respectively, with a total value of 1.012 mSv

  9. Radiation doses and radiation risk in foreign nuclear objects

    International Nuclear Information System (INIS)

    Tvehlov, Yu.

    2001-01-01

    Data on levels of irradiation on NPP operating in different regions of the world obtained from the data of the International Information System ISOE created by IAEA in association with the Nuclear Energetic Agency OECD are performed. Effect of commissioning new NPP, sacrifice of radiation situation at the Ignalina NPP in 1996, importance of the development and introduction of programs on perfecting of radiation protection and culture of safety are noted [ru

  10. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, So Ra; Min, Byung Il; Park, Kihyun; Yang, Byung Mo; Suh, Kyung Suk [Nuclear Environmental Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    The International Commission on Radiological Protection (ICRP) recommendations and the Federal Guidance Report (FGR) published by the U.S. Environmental Protection Agency (EPA) have been widely applied worldwide in the fields of radiation protection and dose assessment. The dose conversion coefficients of the ICRP and FGR are widely used for assessing exposure doses. However, before the coefficients are used, the user must thoroughly understand the derivation process of the coefficients to ensure that they are used appropriately in the evaluation. The ICRP provides recommendations to regulatory and advisory agencies, mainly in the form of guidance on the fundamental principles on which appropriate radiological protection can be based. The FGR provides federal and state agencies with technical information to assist their implementation of radiation protection programs for the U.S. population. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR is reviewed in this study. A thorough understanding of their background is essential for the proper use of dose conversion coefficients. The FGR dose assessment system was strongly influenced by the ICRP and the U.S. National Council on Radiation Protection and Measurements (NCRP), and is hence consistent with those recommendations. Moreover, the ICRP and FGR both used the scientific data reported by Biological Effects of Ionizing Radiation (BEIR) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as their primary source of information. The difference between the ICRP and FGR lies in the fact that the ICRP utilized information regarding a population of diverse races, whereas the FGR utilized data on the American population, as its goal was to provide guidelines for radiological protection in the US. The contents of this study are expected to be utilized as basic research material in the areas of radiation protection and dose assessment.

  11. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR

    International Nuclear Information System (INIS)

    Kim, So Ra; Min, Byung Il; Park, Kihyun; Yang, Byung Mo; Suh, Kyung Suk

    2016-01-01

    The International Commission on Radiological Protection (ICRP) recommendations and the Federal Guidance Report (FGR) published by the U.S. Environmental Protection Agency (EPA) have been widely applied worldwide in the fields of radiation protection and dose assessment. The dose conversion coefficients of the ICRP and FGR are widely used for assessing exposure doses. However, before the coefficients are used, the user must thoroughly understand the derivation process of the coefficients to ensure that they are used appropriately in the evaluation. The ICRP provides recommendations to regulatory and advisory agencies, mainly in the form of guidance on the fundamental principles on which appropriate radiological protection can be based. The FGR provides federal and state agencies with technical information to assist their implementation of radiation protection programs for the U.S. population. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR is reviewed in this study. A thorough understanding of their background is essential for the proper use of dose conversion coefficients. The FGR dose assessment system was strongly influenced by the ICRP and the U.S. National Council on Radiation Protection and Measurements (NCRP), and is hence consistent with those recommendations. Moreover, the ICRP and FGR both used the scientific data reported by Biological Effects of Ionizing Radiation (BEIR) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as their primary source of information. The difference between the ICRP and FGR lies in the fact that the ICRP utilized information regarding a population of diverse races, whereas the FGR utilized data on the American population, as its goal was to provide guidelines for radiological protection in the US. The contents of this study are expected to be utilized as basic research material in the areas of radiation protection and dose assessment

  12. Trend of patient radiation doses in medical examination in Japan

    International Nuclear Information System (INIS)

    Suzuki, Shoichi

    2013-01-01

    We have investigated radiation doses to patients in selected types of examinations in Japan since 1974 and have analyzed the trend of patient radiation doses during a period of 37 years. This study covered regular plain X-ray scanning (including mammography) and computed tomography (CT) scanning. Dose evaluation was performed in terms of entrance skin dose (ESD) for regular plain X-ray scanning, average glandular dose (AGD) for mammography, and volume CT dose index (CTDIvol) for CT scanning. Evaluation was performed in 26 orientations at 21 sites for regular plain X-rays, and for cranial, thoracic, and abdominal scans of children and adults for CT scanning. With the exception of chest X-rays, the dose during regular plain X-ray scanning had decreased by approximately 50% compared with scans performed in 1974. The dose during mammography had decreased to less than 10% of its former level. In scans performed in 2011, dose at all sites were within International Atomic Energy Authority (IAEA) guidance levels. The increasing use of multiple detectors in CT scanning devices was evident in CT scanning. A comparison of doses from cranial non-helical scans performed in 2007 and 2011 found that the latter were higher. An examination of changes in doses between 1997 and 2011 revealed that doses had tended to increase in cranial scans of adults, but had hardly changed at all in abdominal scans. Doses during CT scanning of children were around half those for adults in cranial, thoracic, and abdominal scans. We have ascertained changes in the doses to which patients have been exposed during X-ray scanning in Japan. (author)

  13. Radiation-dose consequences of acid rain

    International Nuclear Information System (INIS)

    Sheppard, S.C.; Sheppard, M.I.; Mitchell, J.H.

    1987-01-01

    Acid rain causes accelerated mobilization of many materials in soils. Natural and anthropogenic radionuclides, especially Ra and Cs, are among these materials. Generally, a decrease in soil pH by 1 unit will cause increases in mobility and plant uptake by factors of 2 to 7. Several simulation models were tested with most emphasis on an atmospherically driven soil model that predicts water and nuclide flow through a soil profile. We modelled a typical, acid rain sensitive soil using meterological data from Geraldton, Ontario. The results, within the range of effects on the soil expected from acidification, showed direct proportionality between the mobility of the nuclides and dose. Based on the literature available, a decrease in pH of 1 unit may increase the mobility of Ra and Cs by a factor or 2 or more. This will lead to increases in plant uptake and ultimate dose to man of about the same extent

  14. Chronic low dose radiation exposure and oxidative stress in radiation workers

    International Nuclear Information System (INIS)

    Ali, S.S.; Bhatt, M.B.; Kulkarni, MM.; Rajan, R.; Singh, B.B.; Venkataraman, G.

    1996-01-01

    Free radicals have been implicated in the pathogenesis of several human diseases. In this study free radical stress due to low dose chronic radiation exposures of radiation workers was examined as a possible atherogenic risk factor. Data on lipid profiles, lipid peroxidation and reduced glutathione content in blood indicated an absence of correlation with radiation doses up to 125 mSv. (author). 13 refs., 1 fig

  15. Biological impact of high-dose and dose-rate radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Maliev, V.; Popov, D. [Russian Academy of Science, Vladicaucas (Russian Federation); Jones, J.; Gonda, S. [NASA -Johnson Space Center, Houston (United States); Prasad, K.; Viliam, C.; Haase, G. [Antioxida nt Research Institute, Premier Micronutrient Corporation, Novato (United States); Kirchin, V. [Moscow State Veterinary and Biotechnology Acade my, Moscow (Russian Federation); Rachael, C. [University Space Research Association, Colorado (United States)

    2006-07-01

    Experimental anti-radiation vaccine is a power tool of immune - prophylaxis of the acute radiation disease. Existing principles of treatment of the acute radiation dis ease are based on a correction of developing patho-physiological and biochemical processes within the first days after irradiation. Protection from radiation is built on the general principles of immunology and has two main forms - active and passive immunization. Active immunization by the essential radiation toxins of specific radiation determinant (S.D.R.) group allows significantly reduce the lethality and increase duration of life among animals that are irradiated by lethal and sub-lethal doses of gamma radiation.The radiation toxins of S.D.R. group have antigenic properties that are specific for different forms of acute radiation disease. Development of the specific and active immune reaction after intramuscular injection of radiation toxins allows optimize a manifestation of a clinical picture and stabilize laboratory parameters of the acute radiation syndromes. Passive immunization by the anti-radiation serum or preparations of immune-globulins gives a manifestation of the radioprotection effects immediately after this kind of preparation are injected into organisms of mammals. Providing passive immunization by preparations of anti-radiations immune-globulins is possible in different periods of time after radiation. Providing active immunization by preparations of S.D.R. group is possible only to achieve a prophylaxis goal and form the protection effects that start to work in 18 - 35 days after an injection of biological active S.D.R. substance has been administrated. However active and passive immunizations by essential anti-radiation toxins and preparations of gamma-globulins extracted from a hyper-immune serum of a horse have significantly different medical prescriptions for application and depend on many factors like a type of radiation, a power of radiation, absorption doses, a time of

  16. Biological impact of high-dose and dose-rate radiation exposure

    International Nuclear Information System (INIS)

    Maliev, V.; Popov, D.; Jones, J.; Gonda, S.; Prasad, K.; Viliam, C.; Haase, G.; Kirchin, V.; Rachael, C.

    2006-01-01

    Experimental anti-radiation vaccine is a power tool of immune - prophylaxis of the acute radiation disease. Existing principles of treatment of the acute radiation dis ease are based on a correction of developing patho-physiological and biochemical processes within the first days after irradiation. Protection from radiation is built on the general principles of immunology and has two main forms - active and passive immunization. Active immunization by the essential radiation toxins of specific radiation determinant (S.D.R.) group allows significantly reduce the lethality and increase duration of life among animals that are irradiated by lethal and sub-lethal doses of gamma radiation.The radiation toxins of S.D.R. group have antigenic properties that are specific for different forms of acute radiation disease. Development of the specific and active immune reaction after intramuscular injection of radiation toxins allows optimize a manifestation of a clinical picture and stabilize laboratory parameters of the acute radiation syndromes. Passive immunization by the anti-radiation serum or preparations of immune-globulins gives a manifestation of the radioprotection effects immediately after this kind of preparation are injected into organisms of mammals. Providing passive immunization by preparations of anti-radiations immune-globulins is possible in different periods of time after radiation. Providing active immunization by preparations of S.D.R. group is possible only to achieve a prophylaxis goal and form the protection effects that start to work in 18 - 35 days after an injection of biological active S.D.R. substance has been administrated. However active and passive immunizations by essential anti-radiation toxins and preparations of gamma-globulins extracted from a hyper-immune serum of a horse have significantly different medical prescriptions for application and depend on many factors like a type of radiation, a power of radiation, absorption doses, a time of

  17. Millirems, microsieverts and radiation dose management

    International Nuclear Information System (INIS)

    Youell, F.P.

    1989-01-01

    Whilst the radiological impact of nuclear power stations on members of the public and station staff is under constant scrutiny, the generally low level of impact under normal operating conditions is not sufficiently appreciated. This paper sets down the radiological criteria against which the AGR stations have been designed and describes the measures taken to reduce the radiation exposure of members of the public and station staff. (author)

  18. Capture and analysis of radiation dose reports for radiology

    International Nuclear Information System (INIS)

    Midgley, S.M.

    2014-01-01

    Radiographic imaging systems can produce records of exposure and dose parameters for each patient. A variety of file formats are in use including plain text, bit map images showing pictures of written text and radiation dose structured reports as text or extended markup language files. Whilst some of this information is available with image data on the hospital picture archive and communication system, access is restricted to individual patient records, thereby making it difficult to locate multiple records for the same scan protocol. This study considers the exposure records and dose reports from four modalities. Exposure records for mammography and general radiography are utilized for repeat analysis. Dose reports for fluoroscopy and computed tomography (CT) are utilized to study the distribution of patient doses for each protocol. Results for dosimetric quantities measured by General Radiography, Fluoroscopy and CT equipment are summarised and presented in the Appendix. Projection imaging uses the dose (in air) area product and derived quantities including the dose to the reference point as a measure of the air kerma reaching the skin, ignoring movement of the beam for fluoroscopy. CT uses the dose indices CTDIvol and dose length product as a measure of the dose per axial slice, and to the scanned volume. Suitable conversion factors are identified and used to estimate the effective dose to an average size patient (for CT and fluoroscopy) and the entrance skin dose for fluoroscopy.

  19. We can do better than effective dose for estimating or comparing low-dose radiation risks

    International Nuclear Information System (INIS)

    Brenner, D.J.

    2012-01-01

    The effective dose concept was designed to compare the generic risks of exposure to different radiation fields. More commonly these days, it is used to estimate or compare radiation-induced cancer risks. For various reasons, effective dose represents flawed science: for instance, the tissue-specific weighting factors used to calculate effective dose are a subjective mix of different endpoints; and the marked and differing age and gender dependencies for different health detriment endpoints are not taken into account. This paper suggests that effective dose could be replaced with a new quantity, ‘effective risk’, which, like effective dose, is a weighted sum of equivalent doses to different tissues. Unlike effective dose, where the tissue-dependent weighting factors are a set of generic, subjective committee-defined numbers, the weighting factors for effective risk are simply evaluated tissue-specific lifetime cancer risks per unit equivalent dose. Effective risk, which has the potential to be age and gender specific if desired, would perform the same comparative role as effective dose, be just as easy to estimate, be less prone to misuse, be more directly understandable, and would be based on solid science. An added major advantage is that it gives the users some feel for the actual numerical values of the radiation risks they are trying to control.

  20. Radiation doses to the staff of a nuclear cardiology department

    International Nuclear Information System (INIS)

    Tsapaki, V.; Koutelou, M.; Theodorakos, A.; Kouzoumi, A.; Kitziri, S.; Tsiblouli, S.; Vardalaki, E.; Kyrozi, E.; Kouttou, S.

    2002-01-01

    The last years, new radiopharmaceuticals are used in a Nuclear Medicine (NM) Department. Nowadays, Single Photon Emission Computed Tomography (SPECT) is a method of routine imaging, a fact that has required increased levels of radioactivity in certain patient examinations. The staff that is more likely to receive the greatest radiation dose in a NM Department is the technologist who deals with performance of patient examination and injection of radioactive material and the nurse who is caring for the patients visiting the Department some of which being totally helpless. The fact that each NM Dept possesses equipment with certain specifications, deals with various kind of patients, has specific design and radiation protection measures which can differ from other NM Depts and uses various examination protocols, makes essential the need to investigate the radiation doses received by each member of the staff, so as to continuously monitor doses and take protective measures if required, control less experienced staff and ensure that radiation dose levels are kept as low as possible at all times. The purpose of the current study was to evaluate radiation dose to the nuclear cardiology department staff by thermoluminescent dosemeters (TLDs) placed on the the skin at thyroid and abdominal region as well as evaluating protection measures taken currently in the Dept

  1. Construction of data base for radiation safety assessment of low dose ionizing radiation

    International Nuclear Information System (INIS)

    Saigusa, Shin

    2001-01-01

    Data base with an electronic text on the safety assessment of low dose ionizing radiation have been constructed. The contents and the data base system were designed to provide useful information to Japanese citizens, radiation specialists, and decision makers for a scientific and reasonable understanding of radiation health effects, radiation risk assessment, and radiation protection. The data base consists of the following four essential parts, namely, ORIGINAL DESCRIPTION, DETAILED INFORMATION, TOPIC INFORMATION, and RELATED INFORMATION. The first two parts of the data base are further classified into following subbranches: Radiobiological effects, radiation risk assessment, and radiation exposure and protection. (author)

  2. Occupational radiation exposure to low doses of ionizing radiation and female breast cancer

    International Nuclear Information System (INIS)

    Adelina, P.; Bliznakov, V.; Bairacova, A.

    2003-01-01

    The aim of this study is to examine the relationship between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed and registered breast cancer [probability of causation - PC] among Bulgarian women who have used different ionizing radiation sources during their working experience. The National Institute of Health (NIH) in US has developed a method for estimating the probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed cancer. We have used this method. A group of 27 women with diagnosed breast cancer has been studied. 11 of them are former workers in NPP - 'Kozloduy', and 16 are from other sites using different sources of ionizing radiation. Analysis was performed for 14 women, for whom full personal data were available. The individual radiation dose for each of them is below 1/10 of the annual dose limit, and the highest cumulative dose for a period of 14 years of occupational exposure is 50,21 mSv. The probability of causation (PC) values in all analyzed cases are below 1%, which confirms the extremely low probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and occurring cases of breast cancer. (orig.)

  3. Review of European research trends of low dose radiation risk

    International Nuclear Information System (INIS)

    Iwasaki, Toshiyasu; Yoshida, Kazuo

    2010-01-01

    Large research projects on low dose radiation effects in Europe and US over the past decade have provided limited scientific knowledge which could underpin the validation of radiation protection systems. Recently in Europe, there have been repeated discussions and dialogues to improve the situation, and as the consequence, the circumstances surrounding low dose radiation risks are changing. In 2009, Multidisciplinary European Low Dose Initiative (MELODI) was established as a trans-national organization capable of ensuring appropriate governance of research in the pursuit of a long term shared vision, and Low Dose Research towards Multidisciplinary Integration (DoReMi) network was launched in 2010 to achieve fairly short term results in order to prove the validity of the MELODI approach. It is expected to be very effective and powerful activities to facilitate the reduction of uncertainties in the understanding of low dose risks, but the regulatory requests rushing the reinforcement of radiological protection regulations based on the precautional principles are more increasing. To develop reasonable radiological protection systems based on scientific evidences, we need to accelerate to collect scientific evidences which could directly underpin more appropriate radiation protection systems even in Japan. For the purpose, we Japan need to develop from an independent standpoint and share as a multidisciplinary vision a long term and holistic research strategy which enables to enhance Japanese advantages such as low dose rate facilities and animal facilities, as soon as possible. (author)

  4. Recent trend of radiation doses of medical workers

    Energy Technology Data Exchange (ETDEWEB)

    Anzai, I [Tokyo Univ. (Japan). Faculty of Medicine; Tanaka, M; Nakamura, S; Nawa, H; Nukazawa, A

    1981-10-01

    Radiation doses of medical workers in Japan between 1976 and 1979 were analysed based on the data provided by a film badge servicing company. Average annual radiation doses between April, 1978 and March, 1979 were 129 mrems for 2556 doctors, 108 mrems for 2074 radiographers, and 60 mrems for 1915 nurses. It was also suggested that the log-normal distribution could provide a good fit to the frequency distribution of radiation doses of these medical staffs. Time series data of monthly average doses during the period between April, 1976 and March, 1979 were analysed using a computer code named EPA that had been developed by the Japanese Economic Planning Agency. The EPA code separated the original time series data into three components, i.e., the trend and cycle factor, the seasonal factor and the irregular factor based on a multiplicative model. The results of analyses strongly suggested that there existed a significant common pattern among the trend factors of doctors, radiographers and nurses. The similar phenomenon was also observed about the seasonal factors. Some specific cases of medical workers who received considerably high radiation doses were studied, and it was pointed out that, in order to lower the doses of medical workers, the factors which are peculiar to each medical facility must be precisely examined in addition to the strengthening of general radiological protective measures.

  5. Impact of radiation technique, radiation fraction dose, and total cisplatin dose on hearing. Retrospective analysis of 29 medulloblastoma patients

    International Nuclear Information System (INIS)

    Scobioala, Sergiu; Kittel, Christopher; Ebrahimi, Fatemeh; Wolters, Heidi; Eich, Hans Theodor; Parfitt, Ross; Matulat, Peter; Am Zehnhoff-Dinnesen, Antoinette

    2017-01-01

    To analyze the incidence and degree of sensorineural hearing loss (SNHL) resulting from different radiation techniques, fractionation dose, mean cochlear radiation dose (D mean ), and total cisplatin dose. In all, 29 children with medulloblastoma (58 ears) with subclinical pretreatment hearing thresholds participated. Radiotherapy (RT) and cisplatin had been applied sequentially according to the HIT MED Guidance. Audiological outcomes up to the latest follow-up (median 2.6 years) were compared. Bilateral high-frequency SNHL was observed in 26 patients (90%). No significant differences were found in mean hearing threshold between left and right ears at any frequency. A significantly better audiological outcome (p < 0.05) was found after tomotherapy at the 6 kHz bone-conduction threshold (BCT) and left-sided 8 kHz air-conduction threshold (ACT) than after a combined radiotherapy technique (CT). Fraction dose was not found to have any impact on the incidence, degree, and time-to-onset of SNHL. Patients treated with CT had a greater risk of SNHL at high frequencies than tomotherapy patients even though D mean was similar. Increase in severity of SNHL was seen when the total cisplatin dose reached above 210 mg/m 2 , with the highest abnormal level found 8-12 months after RT regardless of radiation technique or fraction dose. The cochlear radiation dose should be kept as low as possible in patients who receive simultaneous cisplatin-based chemotherapy. The risk of clinically relevant HL was shown when D mean exceeds 45 Gy independent of radiation technique or radiation regime. Cisplatin ototoxicity was shown to have a dose-dependent effect on bilateral SNHL, which was more pronounced in higher frequencies. (orig.) [de

  6. Techniques and radiation dose in CT examinations of adult patients

    International Nuclear Information System (INIS)

    Elameen, S. E. A.

    2010-06-01

    The use of CT in medical diagnosis delivers radiation dose to patients that are higher than those from other radiological procedures. Lake of optimized protocols could be an additional source of increased dose. The aim of this study was to measure radiation doses in CT examination of the adults in three Sudanese hospitals. Details were obtained from approximately 160 CT examination carried out in 3 hospitals (3 CT scanners). Effective dose was calculated for each examination using CT dose indices. exposure related parameters and CT D1- to- effective dose conversion factors. CT air kerma index (CT D1) and dose length products (DLP) determined were below the established international reference dose levels. The mean effective doses in this study for the head, chest, and abdomen are 0.82, 3.7 and 5.4 mGy respectively. These values were observed that the effective dose per examination was lower in Sudan than in other countries. The report of a CT survey done in these centers indicates that the mean DLP values for adult patients were ranged from 272-460 mGy cm (head) 195-995 mGy cm (chest), 270-459 mGy cm (abdomen). There are a number of observed parameters that greatly need optimization, such as minimize the scan length, without missing any vital anatomical regions, modulation of exposure parameters (kV, mA, exposure time, and slice thickness) based on patient size and age. Another possible method is through use of contrast media only to optimize diagnostic yield. The last possible method is the use of radio protective materials for protection however, in order to achieve the above optimization strategies: there is great demand to educate CT personnel on the effects of scan parameter settings on radiation dose to patients and image quality required for accurate diagnosis. (Author)

  7. Radiation absorbed doses at radiographic examination of third molars

    International Nuclear Information System (INIS)

    Rehnmark-Larsson, S.; Stenstroem, B.; Julin, P.; Richter, S.; Huddinge University Hospital

    1981-01-01

    The radiation absorbed doses to critical organs, i.e. the thyroid and salivary glands and the gonadal region, were measured at radiographic examination of third molars. A tissue equivalent phantom was used together with ionization chamber detectors and TLDs. The greatest thyroid dose, 35 μGy, came from a mandibular disto-oblique projection with the circular tube collimator and Ultra-Speed film. The doses in different parts of the parotid gland from the disto-oblique mandibular projection with Ultra-Speed film ranged between 2.65 and 0.052 mGy. the corresponding doses in the submandibular gland were 1.74 mGy beneath the mandible and 0.458 mGy in the fovea. A rectangular tube collimator reduced the doses by approximately 50 %. The Ekta-Speed film requirted approximately 40 % lower exposure than the Ultra-Speed film. A horizontal radiation shield reduced the thyroid doses by between 12 and 46 % and the gonadal doses by between 50 and 95 %. The reduction effect from the shield was relatively greater when using the larger aperture of the tube collimator. Combinations of leaded aprons and soft leaded collars reduced the thyroid doses between 15 and 42 % and the gonadal doses by two orders of magnitude. (Authors)

  8. Building shielding effects on radiation doses from routine radionuclide releases

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1977-01-01

    In calculating population doses from the release of radionuclides to the atmosphere, it is usually assumed that man spends all of his time outdoors standing on a smooth infinite plane. Realistically, however, man spends most of the time indoors, so that substantial reductions in radiation doses may result compared with the usual estimates. Calculational models were developed to study the effects of building structures on radiation doses from routine releases of radionuclides to the atmosphere. Both internal dose from inhaled radionuclides and external photon dose from airborne and surface-deposited radionuclides are considered. The effect of building structures is described quantitatively by a dose reduction factor, which is the ratio of the dose inside a structure to the corresponding dose with no structure present. The internal dose from inhaled radionuclides is proportional to the radionuclide concentration in the air. Assuming that the outdoor airborne concentration is constant with time, the time-dependence of the indoor airborne concentration in terms of the structure air ventilation rate, the deposition velocities for radionuclides on the inside floor, walls, and ceiling, and the radioactive decay constant, were calculated

  9. Doses in radiation accidents investigated by chromosome aberration analysis XVI: A review of cases investigated, 1985

    International Nuclear Information System (INIS)

    Lloyd, D.C.; Edwards, A.A.; Prosser, J.S.; Moquet, J.E.; Finnon, P.

    1986-04-01

    During 1985, 28 cases of suspected overexposure to ionising radiation were referred to NRPB for investigation by cytogenetic analysis, and the results are presented in this report. Of the 28 cases, 17 were associated with industrial radiography, 9 from major nuclear organisations and 2 from research, education and health institutions. In 20 cases, no biological indication of overexposure was found. The remaining 8 cases all arose from industrial uses of radiation. The highest overexposure to a sealed source in 1985 ws about 0.4 Gy from an 192 Ir source that became detached from its winding mechanism. Two serious incidents involving unsealed sources are also described; an accidental ingestion of 125 I, for which cytogenetic analysis is of limited relevance, and an inhalation of droplets of tritiated water. The latter also produced a committed dose equivalent of about 0.4 Sv, the estimates from cytogenetic analysis and urine analysis being in good agreement. (author)

  10. Radiation effects on and dose enhancement of electronic materials

    International Nuclear Information System (INIS)

    Srour, J.R.; Long, D.M.

    1984-01-01

    This book describes radiation effects on and dose enhancement factors for electronic materials. Alteration of the electrical properties of solid-state devices and integrated circuits by impinging radiation is well-known. Such changes may cause an electronic subsystem to fail, thus there is currently great interest in devising methods for avoiding radiation-induced degradation. The development of radiation-hardened devices and circuits is an exciting approach to solving this problem for many applications, since it could minimize the need for shielding or other system hardening techniques. Part 1 describes the basic mechanisms of radiation effects on electronic materials, devices, and integrated circuits. Radiation effects in bulk silicon and in silicon devices are treated. Ionizing radiation effects in silicon dioxide films and silicon MOS devices are discussed. Single event phenomena are considered. Key literature references and a bibliography are provided. Part II provides tabulations of dose enhancement factors for electronic devices in x-ray and gamma-ray environments. The data are applicable to a wide range of semiconductor devices and selected types of capacitors. Radiation environments discussed find application in system design and in radiation test facilities

  11. Health Effects of Exposure to Low Dose of Radiation

    International Nuclear Information System (INIS)

    Alatas, Zubaidah

    2003-01-01

    Human beings are exposed to natural radiation from external sources include radionuclides in the earth and cosmic radiation, and by internal radiation from radionuclides, mainly uranium and thorium series, incorporated into the body. Living systems have adapted to the natural levels of radiation and radioactivity. But some industrial practices involving natural resources enhance these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Biological effects of ionizing radiation are the outcomes of physical and chemical processes that occur immediately after the exposure, then followed by biological process in the body. These processes will involve successive changes in the molecular, cellular, tissue and whole organism levels. Any dose of radiation, no matter how small, may produce health effects since even a single ionizing event can result in DNA damage. The damage to DNA in the nucleus is considered to be the main initiating event by which radiation causes damage to cells that results in the development of cancer and hereditary disease. It has also been indicated that cytogenetic damage can occur in cells that receive no direct radiation exposure, known as bystander effects. This paper reviews health risks of low dose radiation exposure to human body causing stochastic effects, i.e. cancer induction in somatic cells and hereditary disease in genetic cells. (author)

  12. Low dose radiation and diabetes mellitus

    International Nuclear Information System (INIS)

    Zhao Hongguang; Gong Shouliang; Cai Lu

    2006-01-01

    Induction of hormesis and adaptive response by low-dose radiatio (LDR) has been extensively indicated. It's mechanism may be related with the protective protein and antioxidants that LDR induced, which take effects on the diabetes mellitus (DM) and other diseases. This review will summarize available dat with emphasis on three points: the preventive effect of LDR on the development of diabetes, the therapeutic effect of LDR on diabetic complications and possible mechanisms by which LDR prevents the development of diabetes and diabetic complications. Finally, the perspectives of LDR clinical, diabetes-related implication are discussed. (authors)

  13. Biochemical and immunological responses to low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Shabon, M.H.; Sayed, Z.S.; Mahdy, E.M.; El-Gawish, M.A.; Shosha, W.

    2006-01-01

    Malondialdehyde, lactate dehydrogenase, iron concentration, IL-6 and IL-1b concentration, hemoglobin content, red cells, white cells and platelet counts were determined in seventy-two male albino rats divided into two main groups. The first one was subdivided into 7 subgroups; control and 6 irradiated subgroups with 0.1, 0.2, 0.3, 0.5, 0.7 and 1 Gy single dose of gamma radiation. The other was subdivided into 4 subgroups irradiated with fractionated doses of gamma radiation; three groups were irradiated with 0.3, 0.7 and 1 Gy (0.1 Gy/day) and the last subgroup with 1 Gy (0.2 Gy/day). All animals were sacrificed after three days of the last irradiation dose. The results revealed that all biochemical parameters were increased in rats exposed to fractionated doses more than the single doses. Hematological parameters were decreased in rats exposed to single doses more than the fractionated ones. In conclusion, the data of this study highlights the stimulatory effect of low ionizing radiation doses (= 1 Gy), whether single or fractionated, on some biochemical and immunological parameters

  14. Radiation dose to neonates on a Special Care Baby Unit

    International Nuclear Information System (INIS)

    Faulkner, K.; Barry, J.L.; Smalley, P.

    1989-01-01

    The skin entrance dose to neonates on a special care baby unit was estimated from a knowledge of the technique factors, X-ray tube output and backscatter factors. Normalized organ dose data were employed to estimate radiation dose to a number of critical organs. Methods of reducing radiation dose to neonates were investigated. Initially, this involved changing the radiographic technique factors and introducing a lead rubber adjustable collimator, placed on top of the incubator, in addition to light beam diaphragms on the X-ray tube. These modifications to the examination technique appeared to reduce average entrance dose per radiograph from 92 μGy, to 58 μGy, a reduction of 37%. Later, a rare-earth film-screen combination was introduced to replace existing fast calcium tungstate screens. This enabled average entrance dose per radiograph to be reduced to 39 μGy, a further reduction of 33%. The mean radiation dose to a neonate is mainly determined by the number of radiographs. (author)

  15. Radiation dose to neonates on a Special Care Baby Unit

    Energy Technology Data Exchange (ETDEWEB)

    Faulkner, K.; Barry, J.L.; Smalley, P.

    1989-03-01

    The skin entrance dose to neonates on a special care baby unit was estimated from a knowledge of the technique factors, X-ray tube output and backscatter factors. Normalized organ dose data were employed to estimate radiation dose to a number of critical organs. Methods of reducing radiation dose to neonates were investigated. Initially, this involved changing the radiographic technique factors and introducing a lead rubber adjustable collimator, placed on top of the incubator, in addition to light beam diaphragms on the X-ray tube. These modifications to the examination technique appeared to reduce average entrance dose per radiograph from 92 ..mu..Gy, to 58 ..mu..Gy, a reduction of 37%. Later, a rare-earth film-screen combination was introduced to replace existing fast calcium tungstate screens. This enabled average entrance dose per radiograph to be reduced to 39 ..mu..Gy, a further reduction of 33%. The mean radiation dose to a neonate is mainly determined by the number of radiographs.

  16. Radiation oncology: what can we achieve by optimized dose delivery?

    International Nuclear Information System (INIS)

    Lawrence, T.

    2003-01-01

    Spectacular technical advances have marked the last twenty years in radiation oncology. This revolution began with CT-based planning which was followed by 3D conformal therapy. The latter approach produced two important capabilities. The most obvious was that tumors could be viewed in their true location with respect to normal tissues and treated with beams that were not in the axial plane. A second equally important advance was the development of 3D planning tools such as dose volume histograms. These tools permitted quantitative comparison of treatment plans and have supported the development of models relating normal tissue irradiation to the risk of complication. The '3D hypothesis' - that 3D treatment planning would permit higher doses of radiation to be safely delivered-has been proven. Dose escalation studies have been successfully conducted in the lung (= 100 Gy), liver (= 90 Gy), brain (= 90 Gy), and prostate (= 78 Gy). Prospective phase II and phase III trials suggest improved outcome using these higher doses for tumors in the liver and prostate compared to doses considered acceptable in the 2D era. The next technical revolution is underway, with advances in '4D' radiotherapy (accounting fully for organ motion) and in intensity-modulated radiation therapy (IMRT) to further improve the conformality and accuracy of treatment. Proton therapy will improve dose distributions still further. These improved dose distributions can be combined with more accurate tumor delineation provided by functional imaging to offer the potential for additional dose escalation without toxicity and for improved tumor control. These developments permit us to ask if we are approaching the limits of dose optimization and how (if?) research in radiation delivery should proceed

  17. TLD DRD dose discrepancy: role of beta radiation fields

    International Nuclear Information System (INIS)

    Munish Kumar; Pradhan, S.M.; Bihari, R.R.; Bakshi, A.K.; Chougaonkar, M.P.; Babu, D.A.R.; Gupta, Anil

    2014-01-01

    Ionization chamber based direct reading/pocket dosimeters (DRDs), are used along with the legal dosimeters (thermoluminescent dosimeters-TLDs) for day to day monitoring and control of radiation doses received by radiation workers. The DRDs are routinely used along with the passive dosimeters (TLDs) in nuclear industry at different radiation installations where radiation levels could vary significantly and the possibility of receiving doses beyond investigation levels by radiation workers is not ruled out. Recently, recommendations for dealing with discrepancies between personal dosimeter systems used in parallel were issued by ISO. The present study was performed to measure the response of ionization chamber based pocket dosimeters to various beta sources having energy (E max ) ranging from 0.224 MeV-3.54 MeV. It is expected that the above study will be useful in resolving the disparity between TLD and DRD doses at those radiation installations where radiation workers are likely to be exposed simultaneously from photons and beta particles

  18. Impact of Drug Therapy, Radiation Dose, and Dose Rate on Renal Toxicity Following Bone Marrow Transplantation

    International Nuclear Information System (INIS)

    Cheng, Jonathan C.; Schultheiss, Timothy E.; Wong, Jeffrey Y.C.

    2008-01-01

    Purpose: To demonstrate a radiation dose response and to determine the dosimetric and chemotherapeutic factors that influence the incidence of late renal toxicity following total body irradiation (TBI). Methods and Materials: A comprehensive retrospective review was performed of articles reporting late renal toxicity, along with renal dose, fractionation, dose rate, chemotherapy regimens, and potential nephrotoxic agents. In the final analysis, 12 articles (n = 1,108 patients), consisting of 24 distinct TBI/chemotherapy conditioning regimens were included. Regimens were divided into three subgroups: adults (age ≥18 years), children (age <18 years), and mixed population (both adults and children). Multivariate logistic regression was performed to identify dosimetric and chemotherapeutic factors significantly associated with late renal complications. Results: Individual analysis was performed on each population subgroup. For the purely adult population, the only significant variable was total dose. For the mixed population, the significant variables included total dose, dose rate, and the use of fludarabine. For the pediatric population, only the use of cyclosporin or teniposide was significant; no dose response was noted. A logistic model was generated with the exclusion of the pediatric population because of its lack of dose response. This model yielded the following significant variables: total dose, dose rate, and number of fractions. Conclusion: A dose response for renal damage after TBI was identified. Fractionation and low dose rates are factors to consider when delivering TBI to patients undergoing bone marrow transplantation. Drug therapy also has a major impact on kidney function and can modify the dose-response function

  19. Optimizing Radiation Doses for Computed Tomography Across Institutions: Dose Auditing and Best Practices.

    Science.gov (United States)

    Demb, Joshua; Chu, Philip; Nelson, Thomas; Hall, David; Seibert, Anthony; Lamba, Ramit; Boone, John; Krishnam, Mayil; Cagnon, Christopher; Bostani, Maryam; Gould, Robert; Miglioretti, Diana; Smith-Bindman, Rebecca

    2017-06-01

    Radiation doses for computed tomography (CT) vary substantially across institutions. To assess the impact of institutional-level audit and collaborative efforts to share best practices on CT radiation doses across 5 University of California (UC) medical centers. In this before/after interventional study, we prospectively collected radiation dose metrics on all diagnostic CT examinations performed between October 1, 2013, and December 31, 2014, at 5 medical centers. Using data from January to March (baseline), we created audit reports detailing the distribution of radiation dose metrics for chest, abdomen, and head CT scans. In April, we shared reports with the medical centers and invited radiology professionals from the centers to a 1.5-day in-person meeting to review reports and share best practices. We calculated changes in mean effective dose 12 weeks before and after the audits and meeting, excluding a 12-week implementation period when medical centers could make changes. We compared proportions of examinations exceeding previously published benchmarks at baseline and following the audit and meeting, and calculated changes in proportion of examinations exceeding benchmarks. Of 158 274 diagnostic CT scans performed in the study period, 29 594 CT scans were performed in the 3 months before and 32 839 CT scans were performed 12 to 24 weeks after the audit and meeting. Reductions in mean effective dose were considerable for chest and abdomen. Mean effective dose for chest CT decreased from 13.2 to 10.7 mSv (18.9% reduction; 95% CI, 18.0%-19.8%). Reductions at individual medical centers ranged from 3.8% to 23.5%. The mean effective dose for abdominal CT decreased from 20.0 to 15.0 mSv (25.0% reduction; 95% CI, 24.3%-25.8%). Reductions at individual medical centers ranged from 10.8% to 34.7%. The number of CT scans that had an effective dose measurement that exceeded benchmarks was reduced considerably by 48% and 54% for chest and abdomen, respectively. After

  20. Dyed grafted films for large-dose radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Rehim, F; El-Sawy, N M; Abdel-Fattah, A A [National Centre for Radiation Research and Technology, Cairo (Egypt)

    1993-07-01

    By radiation-induced polymerization of acrylic acid onto poly(ethylene-tetrafluoroethylene) (ET) copolymer film and reacting the resulted grafted film with both Rhodamine B (RB) and Malachite Green (MG), new dosimeter films have been developed for high-dose gamma radiation applications in the range of absorbed doses from 10 to 180 kGy. The radiation-induced color bleaching has been analysed with visible spectrophotometry, either at the maximum of the absorption band peaking at 559 nm (for ETRB) or that peaking at 627 nm (for ETMG). The effects of different conditions of absorbed dose rate, temperature and relative humidity during irradiation and post-irradiation storage on dosimeter performance are discussed. (author).

  1. Local dose enhancement in radiation therapy: Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Silva, Laura E. da; Nicolucci, Patricia

    2014-01-01

    The development of nanotechnology has boosted the use of nanoparticles in radiation therapy in order to achieve greater therapeutic ratio between tumor and healthy tissues. Gold has been shown to be most suitable to this task due to the high biocompatibility and high atomic number, which contributes to a better in vivo distribution and for the local energy deposition. As a result, this study proposes to study, nanoparticle in the tumor cell. At a range of 11 nm from the nanoparticle surface, results have shown an absorbed dose 141 times higher for the medium with the gold nanoparticle compared to the water for an incident energy spectrum with maximum photon energy of 50 keV. It was also noted that when only scattered radiation is interacting with the gold nanoparticles, the dose was 134 times higher compared to enhanced local dose that remained significant even for scattered radiation. (author)

  2. Dose-volume considerations in stereotaxic brain radiation therapy

    International Nuclear Information System (INIS)

    Houdek, P.V.; Schwade, J.G.; Pisciotta, V.J.; Medina, A.J.; Lewin, A.A.; Abitbol, A.A.; Serago, C.F.

    1988-01-01

    Although brain radiation therapy experience suggests that a gain in the therapeutic ratio may be achieved by optimizing the dose-volume relationship, no practical system for quantitative assessment of dose-volume data has been developed. This presentation describes the rationale for using the integral dose function for this purpose and demonstrates that with the use of a conventional treatment planning computer and a series of computed tomographic scans, first-order optimization of the dose-volume function can be accomplished in two steps: first, high-dose volume is minimized by selecting an appropriate treatment technique and tumor margin, and then dosage is maximized by calculating the brain tolerance dose as a function of the irradiated volume

  3. Radiation doses connected with tunnel excavation at Kvanefjeld

    International Nuclear Information System (INIS)

    Soerensen, A.

    1980-12-01

    The results of measurements of calculations of radiation doses in connection with the tunnel work in Kvanefjeld is presented. Doses from external gamma radiaton were measured by means of TL-dosemeters. Doses from inhalation of radon and thoron daughters where calculated on the basis of measured concentrations at the working places and record keeping of the working time of each employee. The same procedure was used for estimating doses from inhaled ore dust. The conversion from dust exposure to effective dose equivalent is based on the DAC-values from ICRP 30. The highest recorded dose to an individual employed during both of the two working periods (within 13 months) was approximately 1100 mrem. (A.S.)

  4. New technology development for radiation dose measurement and evaluation based on the operational quantity

    International Nuclear Information System (INIS)

    Kim, Jang Lyul; Kim, B. H.; Lee, J. I.; Lim, K. S.; Song, M. Y.; Joo, G. S.; Kim, S. I.; Chang, I. S.

    2012-04-01

    · Development of optically stimulated luminescence (OSL) technique for multi-purpose radiation dosimetry - Development of a semi-automatic type OSL measurement system · Number of sample holders: 10 ea · Development of a built-in type reference radiation irradiation system using 50 kV-1 mA X-rays of the maximum dose rate of 230 mGy/s - Development of an automatic diameter control system and crystal growth system for making a new OSL material: LiMgF 3 : X, LiAlO 2 : C - Development of a procedure of retrospective accident dosimetry · Establishment of Practical Technology for Internal Dose Assessment - Development of the technology to the internal dose assessment for an injection of radionuclides and intercomparison on the evaluation results of the committed effective dose between the estimators of Korea · Construction of workplace monitoring technique by quantification of neutron fields - Preparation of the neutron spectra DB of various neutron fields and production of those dosimetric data: 29 kinds of neutron fields using a thermal neutron irradiator, a proton accelerator and a neutron generator - Neutron monitoring procedure at workplace using neutron fluence spectra

  5. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    Science.gov (United States)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  6. A trial of radiation dose prescription based on dose-cell survival formula

    International Nuclear Information System (INIS)

    Allen, E.P.

    1984-01-01

    Radiation treatment has been prescribed for 379 basal cell carcinomata on the basis of a selected equivalent single dose derived from the standard multi-target dose-cell survival formula using values of m = 2 and Do = 130 rads for orthovoltage x-rays. The results suggest that the approach provides a flexible and acceptable alternative to prescription by total dose or by Nominal Standard Dose. It is submitted that Total Dose is an inadequate expression of radiobiological effects: that the NSD and related systems are valuable measures of the ability of normal tissues to recover from radiation damage: and that a parallel measure of the degree of tumour depopulation has become necessary to allow further progress in alternative fractionation schedules

  7. Study of national registration systems for health records of radiation workers. National radiation dose registration system

    International Nuclear Information System (INIS)

    Nakagawa, Haruo; Kanda, Keiji

    1999-01-01

    A national radiation dose registration system is proposed in this paper. In Japan, only one radiation dose registration system is partly effective. It is applied for workers in nuclear power plants which are under control of regulatory laws for nuclear reactors. The total system was proposed previously by the Committee for Compensation Claims of Nuclear Accidents. The reason for the delay in establishing a registration system for all radiation workers is supposedly a lack of effort to adjust differences among items in radiation protection laws and the promotion of public acceptance to atomic power. Items about dose recordings, record keeping and dose-record reporting in all of the radiation regulatory laws are compared to each other, and items were extracted for revision. (author)

  8. The principles of dose limitation in radiation protection

    International Nuclear Information System (INIS)

    Kaul, A.

    1988-01-01

    The aim of radiation protection is to protect individuals, their offspring and the population as a whole against harmful effects from ionizing radiation and radioactive substances. Harmful effects may be either somatic, i.e. occurring in the exposed person himself/herself, or hereditary, i.e. occurring in the exposed person's offspring. Successful radiation protection involves (a) protective measures based on the results of research into the biological and biophysical effects of radiation and (b) ensuring that activities necessitating exposure are justified and that the degree of exposure is minimal. This benefit/risk principle ceases to apply if a radiation source is out of control, since the main aim is then to introduce risk limitation measures, provided that these are of positive net benefit to the individual and the population as a whole. This paper discusses the principles of dose limitation as a function of exposure conditions, i.e. controlled or uncontrolled exposure to a source of radiation

  9. Radiation dose of staff during positron emission tomography study

    Energy Technology Data Exchange (ETDEWEB)

    Hachiya, Takenori; Shoji, Yasuaki; Hagami, Eiichi; Aizawa, Yasuo; Onodera, Hiroshi; Kan, Mikio; Sasaki, Nobuo; Toyoshima, Eiji; Sugawara, Shigeki

    1989-04-01

    In this paper, the radiation dose of the PET staff including blood sampling operators (medical doctors), PET operators (radio technologists), nurses, blood analysts (medical technologists), radiochemists and cyclotron operators in the cyclotron-PET unit was evaluated. The dose was measured using the film-badges for whole body and TLD ring-badges for fingers. These data were obtained from June, 1986 to May, 1987. In the average dose per month, those with the highest dose were radiochemists. The whole body dose was 1.08 mSv (108 mrem) for /gamma/-ray, 520 /mu/Sv (52 mrem) for /beta/-ray and the dose for fingers, 7.6mSv (760 mrem). The total dose per year both for /gamma/ and /beta/-ray was 19.2 mSv (1.92 rem) for whole body and 91.2 mSv (9.12 rem) for fingers. The staff with the lowest whole body dose for /gamma/-ray per month was blood analysts whose dose was 30 /mu/Sv (3 mrem). For the staff consisting of doctors, radiotechnologists and nurses, the whole body dose per month was 70-170/mu/Sv (7-17 mrem) for /gamma/-ray, 20 /mu/Sv (2 mrem) for /beta/-ray and the dose for fingers per month was 210-540 /mu/Sv (21-54 mrem). For cyclotron operators, the dose was 90 /mu/Sv (9 mrem) for /gamma/-ray, 30 /mu/Sv (3 mrem) for /beta/-ray and the dose for fingers was 160 /mu/Sv (16 mrem). For cyclotron operators and radiochemists, the whole body dose for the neutron ray was measured by solid state nuclear track detector (SSNTD), but the dose was found to be negligible. (author).

  10. Low dose ionizing radiation exposure and cardiovascular disease mortality: cohort study based on Canadian national dose registry of radiation workers

    International Nuclear Information System (INIS)

    Zielinski, J. M.; Band, P. R.; Ashmore, P. J.; Jiang, H.; Shilnikova, N. S.; Tait, V. K.; Krewski, D.

    2009-01-01

    The purpose of our study was to assess the risk of cardiovascular disease (CVD) mortality in a Canadian cohort of 337 397 individuals (169 256 men and 168 141 women) occupationally exposed to ionizing radiation and included in the National Dose Registry (NDR) of Canada. Material and Methods: Exposure to high doses of ionizing radiation, such as those received during radiotherapy, leads to increased risk of cardiovascular diseases. The emerging evidence of excess risk of CVDs after exposure to doses well below those previously considered as safe warrants epidemiological studies of populations exposed to low levels of ionizing radiation. In the present study, the cohort consisted of employees at nuclear power stations (nuclear workers) as well as medical, dental and industrial workers. The mean whole body radiation dose was 8.6 mSv for men and 1.2 mSv for women. Results: During the study period (1951 - 1995), as many as 3 533 deaths from cardiovascular diseases have been identified (3 018 among men and 515 among women). In the cohort, CVD mortality was significantly lower than in the general population of Canada. The cohort showed a significant dose response both among men and women. Risk estimates of CVD mortality in the NDR cohort, when expressed as excess relative risk per unit dose, were higher than those in most other occupational cohorts and higher than in the studies of Japanese atomic bomb survivors. Conclusions: The study has demonstrated a strong positive association between radiation dose and the risk of CVD mortality. Caution needs to be exercised when interpreting these results, due to the potential bias introduced by dosimetry uncertainties, the possible record linkage errors, and especially by the lack of adjustment for non-radiation risk factors. (authors)

  11. Radiation dose reduction in parasinus CT by spectral shaping

    Energy Technology Data Exchange (ETDEWEB)

    May, Matthias S.; Brand, Michael; Lell, Michael M.; Uder, Michael; Wuest, Wolfgang [University Hospital Erlangen, Department of Radiology, Erlangen (Germany); Sedlmair, Martin; Allmendinger, Thomas [Siemens Healthcare GmbH, Forchheim (Germany)

    2017-02-15

    Spectral shaping aims to narrow the X-ray spectrum of clinical CT. The aim of this study was to determine the image quality and the extent of radiation dose reduction that can be achieved by tin prefiltration for parasinus CT. All scans were performed with a third generation dual-source CT scanner. A study protocol was designed using 100 kV tube voltage with tin prefiltration (200 mAs) that provides image noise levels comparable to a low-dose reference protocol using 100 kV without spectral shaping (25 mAs). One hundred consecutive patients were prospectively enrolled and randomly assigned to the study or control group. All patients signed written informed consent. The study protocol was approved by the local Institutional Review Board and applies to the HIPAA. Subjective and objective image quality (attenuation values, image noise, and contrast-to-noise ratio (CNR)) were assessed. Radiation exposure was assessed as volumetric CT dose index, and effective dose was estimated. Mann-Whitney U test was performed for radiation exposure and for image noise comparison. All scans were of diagnostic image quality. Image noise in air, in the retrobulbar fat, and in the eye globe was comparable between both groups (all p > 0.05). CNR{sub eye} {sub globe/air} did not differ significantly between both groups (p = 0.7). Radiation exposure (1.7 vs. 2.1 mGy, p < 0.01) and effective dose (0.055 vs. 0.066 mSv, p < 0.01) were significantly reduced in the study group. Radiation dose can be further reduced by 17% for low-dose parasinus CT by tin prefiltration maintaining diagnostic image quality. (orig.)

  12. Radiation dose reduction in parasinus CT by spectral shaping

    International Nuclear Information System (INIS)

    May, Matthias S.; Brand, Michael; Lell, Michael M.; Uder, Michael; Wuest, Wolfgang; Sedlmair, Martin; Allmendinger, Thomas

    2017-01-01

    Spectral shaping aims to narrow the X-ray spectrum of clinical CT. The aim of this study was to determine the image quality and the extent of radiation dose reduction that can be achieved by tin prefiltration for parasinus CT. All scans were performed with a third generation dual-source CT scanner. A study protocol was designed using 100 kV tube voltage with tin prefiltration (200 mAs) that provides image noise levels comparable to a low-dose reference protocol using 100 kV without spectral shaping (25 mAs). One hundred consecutive patients were prospectively enrolled and randomly assigned to the study or control group. All patients signed written informed consent. The study protocol was approved by the local Institutional Review Board and applies to the HIPAA. Subjective and objective image quality (attenuation values, image noise, and contrast-to-noise ratio (CNR)) were assessed. Radiation exposure was assessed as volumetric CT dose index, and effective dose was estimated. Mann-Whitney U test was performed for radiation exposure and for image noise comparison. All scans were of diagnostic image quality. Image noise in air, in the retrobulbar fat, and in the eye globe was comparable between both groups (all p > 0.05). CNR_e_y_e _g_l_o_b_e_/_a_i_r did not differ significantly between both groups (p = 0.7). Radiation exposure (1.7 vs. 2.1 mGy, p < 0.01) and effective dose (0.055 vs. 0.066 mSv, p < 0.01) were significantly reduced in the study group. Radiation dose can be further reduced by 17% for low-dose parasinus CT by tin prefiltration maintaining diagnostic image quality. (orig.)

  13. Evaluation of occupational radiation dose of extremities on hysterosalpingography

    International Nuclear Information System (INIS)

    Filipov, D.; Kotowski, S.T.A.

    2017-01-01

    In the Hysterosalpingography (HSG) exam there is always a professional present with their hands very close to the radiation field. Based on CNEN, individuals occupationally exposed to radiation have equivalent dose limit values for the extremities (500 mSv / year). The objective of the study was to verify the equivalent dose in the hand region of an IOE (Occupationally Exposed Individual) that performs the HSG test and to compare it with the CNEN limit and with similar studies. A humanoid phantom was used to simulate the patient and an ionization chamber, which was placed in the place commonly occupied by the professional. The equivalent hand dose result (∼ 30 mSv / year) equals 6% of the CNEN annual dose limit, but is close to most studies using fluoroscopes. Therefore, the optimization of radiological protection is necessary to reduce these results

  14. Onyx as radiation detector for high doses

    International Nuclear Information System (INIS)

    Teixeira, Maria Inês; Souza, Divanizia N.; Caldas, Linda V.E.

    2011-01-01

    A study of the thermoluminescent (TL) characteristics of white, black and stripped onyx samples is reported in this work. Onyx is a variety of chalcedony, a form of quartz. The onyx stone is considered nobler than marble. The irradiations were performed using a Gamma-Cell 220 system ( 60 Co). The TL emission curves presented two peaks around 150 °C and 210 °C for all samples. The dose–response curves showed a sublinear behavior between 0.5 Gy and 5 kGy, and the lower detection limit for the white onyx pellets was 1.5 mGy. The main dosimetric characteristics were studied, and the material showed good performance for high dose dosimetry.

  15. Radiation dose to physicians’ eye lens during interventional radiology

    International Nuclear Information System (INIS)

    Bahruddin, N A; Hashim, S; Karim, M K A; Ang, W C; Salehhon, N; Sabarudin, A; Bakar, K A

    2016-01-01

    The demand of interventional radiology has increased, leading to significant risk of radiation where eye lens dose assessment becomes a major concern. In this study, we investigate physicians' eye lens doses during interventional procedures. Measurement were made using TLD-100 (LiF: Mg, Ti) dosimeters and was recorded in equivalent dose at a depth of 0.07 mm, Hp(0.07). Annual Hp(0.07) and annual effective dose were estimated using workload estimation for a year and Von Boetticher algorithm. Our results showed the mean Hp(0.07) dose of 0.33 mSv and 0.20 mSv for left and right eye lens respectively. The highest estimated annual eye lens dose was 29.33 mSv per year, recorded on left eye lens during fistulogram procedure. Five physicians had exceeded 20 mSv dose limit as recommended by international commission of radiological protection (ICRP). It is suggested that frequent training and education on occupational radiation exposure are necessary to increase knowledge and awareness of the physicians’ thus reducing dose during the interventional procedure. (paper)

  16. Update on radiation safety and dose reduction in pediatric neuroradiology

    Energy Technology Data Exchange (ETDEWEB)

    Mahesh, Mahadevappa [Johns Hopkins University School of Medicine, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States)

    2015-09-15

    The number of medical X-ray imaging procedures is growing exponentially across the globe. Even though the overall benefit from medical X-ray imaging procedures far outweighs any associated risks, it is crucial to take all necessary steps to minimize radiation risks to children without jeopardizing image quality. Among the X-ray imaging studies, except for interventional fluoroscopy procedures, CT studies constitute higher dose and therefore draw considerable scrutiny. A number of technological advances have provided ways for better and safer CT imaging. This article provides an update on the radiation safety of patients and staff and discusses dose optimization in medical X-ray imaging within pediatric neuroradiology. (orig.)

  17. Update on radiation safety and dose reduction in pediatric neuroradiology

    International Nuclear Information System (INIS)

    Mahesh, Mahadevappa

    2015-01-01

    The number of medical X-ray imaging procedures is growing exponentially across the globe. Even though the overall benefit from medical X-ray imaging procedures far outweighs any associated risks, it is crucial to take all necessary steps to minimize radiation risks to children without jeopardizing image quality. Among the X-ray imaging studies, except for interventional fluoroscopy procedures, CT studies constitute higher dose and therefore draw considerable scrutiny. A number of technological advances have provided ways for better and safer CT imaging. This article provides an update on the radiation safety of patients and staff and discusses dose optimization in medical X-ray imaging within pediatric neuroradiology. (orig.)

  18. Radiation processing and high-dose dosimetry at ANSTO

    International Nuclear Information System (INIS)

    Gant, G.J.; Saunders, M.; Banos, C.; Mo, L.; Davies, J.; Evans, O.

    2001-01-01

    The Radiation Technology group at ANSTO is part of the Physics Division and provides services and advice in the areas of gamma irradiation and high-dose dosimetry. ANSTO's irradiation facilities are designed for maximum dose uniformity and provide a precision irradiation service unique in Australia. Radiation Technology makes and sells reference and transfer standard dosimeters which are purchased by users and suppliers of commercial irradiation services in Australia and the Asia-Pacific region. A calibration service is also provided for dosimeters purchased from other suppliers

  19. Late effects of low-dose ionizing radiation on man

    International Nuclear Information System (INIS)

    Brilliant, M.D.; Vorob'ev, A.I.; Gogin, E.E.

    1987-01-01

    One of the most important problems, being stated before the medicine by the accident, which took place in Chernobyl in 1986- the problem of the so-called ionizing radiation low dose effect on a man's organism, is considered because a lot of people were subjected to low dose action. The concept of low doses of radiaion action and specificity of its immediate action in comparison with high dose action is considered. One of the most important poit while studying low dose action is the necessity to develop a system including all irradiated people and dosimetry, and espicially to study frequencies and periods of tumor appearance in different irradiated tissues. The results obtained when examining people who survived the atomic explosion in Japan and on the Marshall islands are analyzed. They testify to the fact that radiation affets more tissues than the clinical picture about the acute radiation sickness tells, and that tumors developing in them many years after radiation action tell about radiosensitivity in some tissues

  20. Radiation dose from Chernobyl forests: assessment using the 'forestpath' model

    International Nuclear Information System (INIS)

    Schell, W.R.; Linkov, I.; Belinkaia, E.; Rimkevich, V.; Zmushko, Yu.; Lutsko, A.; Fifield, F.W.; Flowers, A.G.; Wells, G.

    1996-01-01

    Contaminated forests can contribute significantly to human radiation dose for a few decades after initial contamination. Exposure occurs through harvesting the trees, manufacture and use of forest products for construction materials and paper production, and the consumption of food harvested from forests. Certain groups of the population, such as wild animal hunters and harvesters of berries, herbs and mushrooms, can have particularly large intakes of radionuclides from natural food products. Forestry workers have been found to receive radiation doses several times higher than other groups in the same area. The generic radionuclide cycling model 'forestpath' is being applied to evaluate the human radiation dose and risks to population groups resulting from living and working near the contaminated forests. The model enables calculations to be made to predict the internal and external radiation doses at specific times following the accident. The model can be easily adjusted for dose calculations from other contamination scenarios (such as radionuclide deposition at a low and constant rate as well as complex deposition patterns). Experimental data collected in the forests of Southern Belarus are presented. These data, together with the results of epidemiological studies, are used for model calibration and validation

  1. Patient radiation exposure and dose tracking: a perspective.

    Science.gov (United States)

    Rehani, Madan M

    2017-07-01

    Much of the emphasis on radiation protection about 2 decades ago accrued from the need for protection of radiation workers and collective doses to populations from medical exposures. With the realization that individual patient doses were rising and becoming an issue, the author had propagated the concept of a smart card for radiation exposure history of individual patients. During the last 7 years, much has happened wherein radiation exposure and the dose history of individual patients has become a reality in many countries. In addition to dealing with overarching questions, such as "Why track, what to track, and how to track?," this review elaborates on a number of points such as attitudes toward tracking, review of practices in large parts of the world, description of various elements for exposure and dose tracking, how to use the information available from tracking, achievements and stumbling blocks in implementation to date, templates for implementation of tracking at different levels of health care, the role of picture archiving and communication systems and eHealth, the role of tracking in justification and optimization of protection, comments on cumulative dose, how referrers can use this information, current provisions in international standards, and future actions.

  2. Medical effects of low doses of ionising radiation

    International Nuclear Information System (INIS)

    Coggle, J.E.

    1990-01-01

    Ionising radiation is genotoxic and causes biological effects via a chain of events involving DNA strand breaks and 'multiply damaged sites' as critical lesions that lead to cell death. The acute health effects of radiation after doses of a few gray, are due to such cell death and consequent disturbance of cell population kinetics. Because of cellular repair and repopulation there is generally a threshold dose of about 1-2 Gy below which such severe effects are not inducible. However, more subtle, sub-lethal mutational DNA damage in somatic cells of the body and the germ cells of the ovary and testis cause the two major low dose health risks -cancer induction and genetic (heritable) effects. This paper discusses some of the epidemiological and experimental evidence regarding radiation genetic effects, carcinogenesis and CNS teratogenesis. It concludes that current risk estimates imply that about 3% of all cancers; 1% of genetic disorders and between 0% and 0.3% of severe mental subnormality in the UK is attributable to the ubiquitous background radiation. The health risks associated with the medical uses of radiation are smaller, whilst the nuclear industry causes perhaps 1% of the health detriment attributable to background doses. (author)

  3. Environmental policy. Ambient radioactivity levels and radiation doses in 1998

    International Nuclear Information System (INIS)

    1999-11-01

    The report contains information on the natural (background) radiation exposure (chapter II), the natural radiation exposure as influenced by anthropogenic effects (chapter III), the anthropogenic radiation exposure (chapter IV), and the radiation doses to the environment and the population emanating from the Chernobyl fallout (chapter V). The natural radiation exposure is specified referring to the contributions from cosmic and terrestrial background radiation and intake of natural radioactive substances. Changes of the natural environment resulting from anthropogenic effects (technology applications) inducing an increase in concentration of natural radioactive substances accordingly increase the anthropogenic radiation exposure. Indoor air radon concentration in buildings for instance is one typical example of anthropogenic increase of concentration of natural radioactivity, primarily caused by the mining industry or by various materials processing activities, which may cause an increase in the average radiation dose to the population. Measurements so far show that indoor air concentration of radon exceeds a level of 200 Bq/m 3 in less than 2% of the residential buildings; the EUropean Commission therefore recommends to use this concentration value as a maximum value for new residential buildings. Higher concentrations are primarily measured in areas with relevant geological conditions and abundance of radon, or eg. in mining areas. (orig./CB) [de

  4. Radiation safety program in a high dose rate brachytherapy facility

    International Nuclear Information System (INIS)

    Rodriguez, L.V.; Hermoso, T.M.; Solis, R.C.

    2001-01-01

    The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. Several accidents, however, have been reported involving high dose-rate brachytherapy system. These events, together with the desire to address the concerns of radiation workers, and the anticipated adoption of the International Basic Safety Standards for Protection Against Ionizing Radiation (IAEA, 1996), led to the development of the radiation safety program at the Department of Radiotherapy, Jose R. Reyes Memorial Medical Center and at the Division of Radiation Oncology, St. Luke's Medical Center. The radiation safety program covers five major aspects: quality control/quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. Measures for evaluation of effectiveness of the program include decreased unnecessary exposures of patients and staff, improved accuracy in treatment delivery and increased department efficiency due to the development of staff vigilance and decreased anxiety. The success in the implementation required the participation and cooperation of all the personnel involved in the procedures and strong management support. This paper will discuss the radiation safety program for a high dose rate brachytherapy facility developed at these two institutes which may serve as a guideline for other hospitals intending to install a similar facility. (author)

  5. Calibration of high-dose radiation facilities (Handbook)

    International Nuclear Information System (INIS)

    Gupta, B.L.; Bhat, R.M.

    1986-01-01

    In India at present several high intensity radiation sources are used. There are 135 teletheraphy machines and 65 high intensity cobalt-60 sources in the form of gamma chambers (2.5 Ci) and PANBIT (50 Ci). Several food irradiation facilities and a medical sterilization plant ISOMED are also in operation. The application of these high intensity sources involve a wide variation of dose from 10 Gy to 100 kGy. Accurate and reproducible radiation dosimetry is essential in the use of these sources. This handbook is especially compiled for calibration of high-dose radiation facilities. The first few chapters discuss such topics as interaction of radiation with matter, radiation chemistry, radiation processing, commonly used high intensity radiation sources and their special features, radiation units and dosimetry principles. In the chapters which follow, chemical dosimeters are discussed in detail. This discussion covers Fricke dosimeter, FBX dosimeter, ceric sulphate dosimeter, free radical dosimetry, coloured indicators for irrdiation verification. A final chapter is devoted to practical hints to be followed in calibration work. (author)

  6. Reduction of the dose of ionizing radiation: progressions in TC

    International Nuclear Information System (INIS)

    Orlacchio, A.; Costanzo, E.; Chegai, F.; Simonetti, G.

    2014-01-01

    The optimization of the dose of ionizing radiation in CT, it is a very important matter that can be reach avoiding unnecessary examinations, using un appropriate report KV / mAs reducing the rotation time, determining the field of study, using a high pitch using equipment that provide systems with dose reduction, through proper education of the staff that interacts with machinery and using radioprotective compounds.

  7. Sensors of absorbed dose of ionizing radiation based on mosfet

    Directory of Open Access Journals (Sweden)

    Perevertaylo V. L.

    2010-10-01

    Full Text Available The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created.

  8. Radiation Dose from Voiding Cystourethrography (VCUG) Examination in Children

    International Nuclear Information System (INIS)

    Siriwiladluk, T.; Krisanachinda, A.

    2012-01-01

    Introduction: The purpose of this study is to determine entrance skin dose (ESD) from fluoroscopy and radiography procedures in voiding cystourethrography (VCUG) studies of pediatric patients by dose-area product (DAP) recording. Methods: Radiation doses received by 70 patients underwent VCUG procedures were determined by the DAP Meter, Wellh?fer Dosimetrie GmbH, Germany) directly coupled to the x-ray tube window (Philips Omni Diagnost Eleva) and an electrometer connected to a co