WorldWideScience

Sample records for radiation dispersal devices

  1. New challenge for the radiation protection: devices for the radioactivity dispersion

    Mora, J. C.; Robles, B.; Cancio, C.

    2006-01-01

    In recent years the terrorist attacks produced in several countries have changed the mind of the security experts. This has also included the Radiation Protection aspects. Newly considered features have required the update of emergency response and preparedness, ad well as a greater emphasis on security. Within the Radiation Protection field has been introduced the radiological and nuclear terrorism definition. almost every organism and research centre involved in Radiation Protection is nowadays working on. The possible terrorist attack scenarios have already been defined and the use of an explosive to disperse radioactive material, known as a Radiation Dispersion Devices (RDD), has been specified as the most probable one. Studies to mitigate against the chance of attack and to mitigate the consequences of any attack with a RDD are complex, due to the innovation that introduce. This leads to a need to take some immediate preventative actions and to carry out additional R and D efforts. This document presents some considerations on the possible RDD design and behaviour in order to prevent and prepare against a possible attack. (Author) 17 refs

  2. Aerial Mobile Radiation Survey Following Detonation of a Radiological Dispersal Device.

    Sinclair, Laurel E; Fortin, Richard; Buckle, John L; Coyle, Maurice J; Van Brabant, Reid A; Harvey, Bradley J A; Seywerd, Henry C J; McCurdy, Martin W

    2016-05-01

    A series of experiments was conducted in 2012 at the Defence Research and Development Canada's Suffield Research Centre in Alberta, Canada, during which three radiological dispersal devices were detonated. The detonations released radioactive (140)La into the air, which was then carried by winds and detectable over distances of up to 2 km. The Nuclear Emergency Response group of Natural Resources Canada conducted airborne radiometric surveys shortly following the explosions to map the pattern of radioactivity deposited on the ground. The survey instrument suite was based on large volume NaI(Tl) scintillation gamma radiation detectors, which were situated in a basket mounted exterior to the helicopter and oriented end-to-end to maximize the sensitivity. A standard geophysical data treatment was used to subtract backgrounds and to correct the data to produce counts due to (140)La at the nominal altitude. Sensitivity conversion factors obtained from Monte Carlo simulations were then applied to express the measurements in terms of surface activity concentration in kBq m(-2). Integrated over the survey area, the results indicate that only 20 to 25% of the bomb's original inventory of radioactive material is deposited within a 1.5-km radius of ground zero. These results can be accommodated with a simple model for the RDD behavior and atmospheric dispersion.

  3. Comparative Study on Radiological Impact Due To Direct Exposure to a Radiological Dispersal Device Using A Sealed Radiation Source

    Margeanu, C.A.

    2011-01-01

    Nowadays, one of the most serious terrorist threats implies radiological dispersal devices (RDDs), the so-called dirty bombs, that combine a conventional explosive surrounded by an inflammatory material (like thermit) with radioactive material. The paper objective is to evaluate the radiological impact due to direct exposure to a RDD using a sealed radiation source (used for medical and industrial applications) as radioactive material. The simulations were performed for 60Co, 137Cs and 192Ir radiation sources. In order to model the contamination potential level and radiation exposure due to radioactive material spreading from RDD, Lawrence Livermore National Laboratory's HOTSPOT 2.07 computer code was used. The worst case scenario has been considered, calculations being performed for two radioactive material dispersion models, namely General radioactive Plume and General Explosion. Following parameters evolution with distance from the radiation source was investigated: total effective dose equivalent, time-integrated air concentration, ground surface deposition and ground shine dose rates. Comparisons between considered radiation sources and radioactive material dispersion models have been performed. The most drastic effects on population and the environment characterize 60Co sealed radiation source use in RDD.

  4. Main radiation protection actions for medical personnel as primary responders front of an event with radiological dispersive device

    Duque, Hildanielle Ramos

    2015-01-01

    After the terrorist attack in New York, USA, in 2001, there was a worldwide concern about possible attacks using radioactive material in conventional detonators, called as Radiological Dispersal Device (RDD) or 'dirty bomb'. Several studies have been and are being made to form a global knowledge about this type of event. As until now, fortunately, there has not been an event with RDD, the Goiania Radiological Accident in Brazil, 1987, is used as a reference for decision-making. Several teams with technical experts should act in an event with RDD, but the medical staffs who respond quickly to the event must be properly protected from the harmful effects of radiation. Based on the radiological protection experts performance during the Goiania accident and the knowledge from lessons learned of many radiological accidents worldwide, this work presents an adaptation of the radiation protection actions for an event with RDD that helps a medical team as primary responders. The following aspects are presented: the problem of radioactive contamination from the explosion of the device in underground environment, the actions of the first responders and evaluation of health radiation effects. This work was based on specialized articles and papers about radiological accidents and RDD; as well as personal communication and academic information of the Institute of Radiation Protection and Dosimetry. The radiation protection actions, adapted to a terrorist attack event with RDD, have as a scenario a subway station in the capital. The main results are: the use of the basic radiation protection principle of time because there is no condition to take care of a patient keeping distance or using a shielding; the use of full appropriate protection cloths for contaminating materials ensuring the physical safety of professionals, and the medical team monitoring at the end of a medical procedure, checking for surface contamination. The main conclusion is that all medical actions

  5. Radiation emitting devices act

    1970-01-01

    This Act, entitled the Radiation Emitting Devices Act, is concerned with the sale and importation of radiation emitting devices. Laws relating to the sale, lease or import, labelling, advertising, packaging, safety standards and inspection of these devices are listed as well as penalties for any person who is convicted of breaking these laws

  6. Radiation emitting devices regulations

    1970-01-01

    The Radiation Emitting Devices Regulations are the regulations referred to in the Radiation Emitting Devices Act and relate to the operation of devices. They include standards of design and construction, standards of functioning, warning symbol specifications in addition to information relating to the seizure and detention of machines failing to comply with the regulations. The radiation emitting devices consist of the following: television receivers, extra-oral dental x-ray equipment, microwave ovens, baggage inspection x-ray devices, demonstration--type gas discharge devices, photofluorographic x-ray equipment, laser scanners, demonstration lasers, low energy electron microscopes, high intensity mercury vapour discharge lamps, sunlamps, diagnostic x-ray equipment, ultrasound therapy devices, x-ray diffraction equipment, cabinet x-ray equipment and therapeutic x-ray equipment

  7. Radiation flux measuring device

    Corte, E.; Maitra, P.

    1977-01-01

    A radiation flux measuring device is described which employs a differential pair of transistors, the output of which is maintained constant, connected to a radiation detector. Means connected to the differential pair produce a signal representing the log of the a-c component of the radiation detector, thereby providing a signal representing the true root mean square logarithmic output. 3 claims, 2 figures

  8. Counterbalanced radiation detection device

    Platz, W.

    1986-01-01

    A counterbalanced radiation detection device is described which consists of: (a) a base; (b) a radiation detector having a known weight; (c) means connected with the radiation detector and the base for positioning the radiation detector in different heights with respect to the base; (d) electronic component means movably mounted on the base for counterbalancing the weight of the radiation detector; (e) means connected with the electronic component means and the radiation detector positioning means for positioning the electronic component means in different heights with respect to the base opposite to the heights of the radiation detector; (f) means connected with the radiation detector and the base for shifting the radiation detector horizontally with respect to the base; and (g) means connected with the electronic component means and the radiation detector shifting means for shifting the electronic component means horizontally with respect to the base in opposite direction to shifting of the radiation detector

  9. Dispersion interferometer for controlled fusion devices

    Drachev, V.P.; Krasnikov, Yu.I.; Bagryansky, P.A.

    1992-01-01

    A common feature in interferometry is the presence of two independent optical channels. Since wave phase in a medium depends on the geometrical path, polarization and radiation frequency, respectively, one can distinguish three types of interferometric schemes when the channels are geometrically separated, or separation occurs in polarizations or radiation frequencies. We have developed a measurement scheme based on a dispersion interferometer (DI) for plasma diagnostics in the experiments on controlled fusion. DI optical channels have the same geometrical path and are separated in radiation frequency. Use of a common optical path causes the main advantage of the DI technique - low sensitivity to vibrations of optical elements. The use of the DI technique for diagnostics of a laser spark in air and of arc discharges has shown its essential advantages as compared to classical interferometers. Interest in the DI technique from the viewpoint of its application in controlled fusion devices is determined also generated by the possibility of developing a compact multichannel interferometer not requiring a vibration isolation structure. (author) 14 refs., 3 figs

  10. Radiation ray measuring device

    Maekawa, Tatsuyuki; Ida, Masaki.

    1997-01-01

    The present invention provides a chained-radiation ray monitoring system which can be applied to an actual monitoring system of a nuclear power plant or the like. Namely, this device comprises a plurality of scintillation detectors. Each of the detectors has two light take-out ports for emitting light corresponding to radiation rays irradiated from the object of the measurement to optical fibers. In addition, incident light from the optical fiber by way of one of the light take-out optical ports is transmitted to the other of the ports and sent from the other optical port to the fibers. Plurality sets of measuring systems are provided in which each of the detectors are disposed corresponding to a plurality of objects to be measured. A signal processing device is (1) connected with optical fibers of plurality sets of measuring systems in conjunction, (2) detects the optical pulses inputted from the optical fibers to identify the detector from which the optical pulses are sent and (3) measures the amount of radiation rays detected by the identified detector. As a result, the device of the present invention can form a measuring system with redundancy. (I.S.)

  11. Radiation effects in optoelectronic devices

    Barnes, C.E.

    1977-03-01

    A summary is given of studies on radiation effects in light-emitting diodes, laser diodes, detectors, optical isolators and optical fibers. It is shown that the study of radiation damage in these devices can provide valuable information concerning the nature of the devices themselves, as well as methods of hardening these devices for applications in radiation environments

  12. Radiation monitoring device

    Sato, Toshifumi.

    1993-01-01

    The device of the present invention concerns a reactor start-up region monitor of a nuclear power plant. In an existent start-up region monitor, bias voltage is limited, if the reactor moves to a power region, in order to prevent degradation of radiation detectors. Accordingly, since the power is lower than an actual reactor power, the reactor power can not be monitored. The device of the present invention comprises a memory means for previously storing a Plateau's characteristic of the radiation detectors and a correction processing means for obtaining a correction coefficient in accordance with the Plateau's characteristic to correct and calculate the reactor power when the bias voltage is limited. With such a constitution, when the reactor power exceeds a predetermined value and the bias voltage is limited, the correction coefficient can be obtained by the memory means and the correction processing means. Corrected reactor power can also be obtained from the start-up region monitor by the correction coefficient. As a result, monitoring of the reactor power can be continued while preventing degradation of the radiation detector even if the bias voltage is limited. (I.S.)

  13. Radiological Dispersion Devices: are we prepared?

    Sohier, Alain [Decision Strategy Research Department (Radiation Protection Division), Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium)]. E-mail: asohier@sckcen.be; Hardeman, Frank [Decision Strategy Research Department (Radiation Protection Division), Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium)

    2006-07-01

    Already before the events of September 11th 2001 concern was raised about the spread of orphan sources and their potential use in Radiological Dispersion Devices by terrorist groups. Although most of the simulated scenarios foresee a rather limited direct health impact on the population, the affected region would suffer from the indirect consequences such as social disruption, cleanup requirements and economic costs. The nature of such a radiological attack would anyway be different compared to conventional radiological accidents, basically because it can happen anywhere at any time. Part of the response resides in a general preparedness scheme incorporating attacks with Radiological Dispersion Devices. Training of different potential intervention teams is essential. The response would consist of a prioritised list of actions adapted to the circumstances. As the psychosocial dimension of the crisis could be worse than the purely radiological one, an adapted communication strategy with the public aspect would be a key issue.

  14. Radiological Dispersion Devices: are we prepared?

    Sohier, Alain; Hardeman, Frank

    2006-01-01

    Already before the events of September 11th 2001 concern was raised about the spread of orphan sources and their potential use in Radiological Dispersion Devices by terrorist groups. Although most of the simulated scenarios foresee a rather limited direct health impact on the population, the affected region would suffer from the indirect consequences such as social disruption, cleanup requirements and economic costs. The nature of such a radiological attack would anyway be different compared to conventional radiological accidents, basically because it can happen anywhere at any time. Part of the response resides in a general preparedness scheme incorporating attacks with Radiological Dispersion Devices. Training of different potential intervention teams is essential. The response would consist of a prioritised list of actions adapted to the circumstances. As the psychosocial dimension of the crisis could be worse than the purely radiological one, an adapted communication strategy with the public aspect would be a key issue

  15. Radiation detection device

    Peschmann, Kristian.

    1982-01-01

    A radiation detector suitable for use in computer tomography device has an ionization chamber which comprises a high voltage electrode, a collector electrode, a high voltage source having two terminals, one connected to the high voltage electrode, current measuring means having two terminals, one connected to the high voltage source and the other to the collector electrode, and an auxilliary electrode near and parallel to the entrance window of the device, having one adjacent to the high voltage electrode and the other adjacent but not connected to the collector electrode. The auxilliary electrode is connected to the high voltage source. In this way the electric field between the high voltage and collector electrodes is made homogeneous in the vicinity of the auxilliary electrode, improving the measuring speed of the detector

  16. Underwater radiation measuring device

    Seki, Noriyuki; Suzuki, Yasuo

    1998-01-01

    The present invention provides a device for measuring, under water, radiation from spent fuels (long members to be detected) of nuclear power plants and reprocessing facilities. Namely, a detecting insertion tube (insertion tube) is disposed so as to be in parallel with axial direction of the long member to be detected stored underwater. A γ-ray detector is inserted to the inside of the insertion tube. A driving mechanism is disposed for moving the γ-ray detector in axial direction inside of the insertion tube. The driving mechanism preferably has a system that it moves the γ-ray detector by winding a detection signal cable around a driving drum. The driving mechanism is formed by inserting and securing a driving tube having screws formed on the side surface and inserting it into the insertion tube. It may have a system of moving the γ-ray detector together with the driving tube while engaging the teeth of a driving transfer mechanism with the screws of the driving tube. (I.S.)

  17. Radiation leaking protection device

    Sunami, Yoshio; Mitsumori, Kojiro

    1980-01-01

    Purpose: To prevent radioactivity from leaking outside of a reactor container by way of pipeways passing therethrough, by supplying pressurized fluid between each of a plurality of valves for separating the pipeways. Constitution: Pressurized fluid is supplied between each of a plurality of valves for separating pipeways. For instance, water in a purified water tank is pressurized by a pressure pump and the pressure of the pressurized water is controlled by a differential pressure detector, a pressure controller and a pressure control valve. In the case if a main steam pipe is ruptured outside of the reactor container or to be repaired, the separation valves are wholly closed and then the pressurizing device is actuated to supply pressurized water containing no radioactivity from the purified water tank to the position between the valves. The pressure in the pressurized water is controlled such that it is always higher by a predetermined level than the pressure in the reactor. This prevents the radioacitivity in the reactor core from leaking outside of the container passing through the valves, whereby radiation exposure in the working can be reduced and the circumferential contamination upon accident of pipeway rupture can be decreased. (Kawakami, Y.)

  18. Radiation effects in optoelectronic devices

    Barnes, C.E.; Wiczer, J.J.

    1984-05-01

    Purpose of this report is to provide not only a summary of radiation damage studies at Sandia National Laboratories, but also of those in the literature on the components of optoelectronic systems: light emitting diodes (LEDs), laser diodes, photodetectors, optical fibers, and optical isolators. This review of radiation damage in optoelectronic components is structured according to device type. In each section, a brief discussion of those device properties relevant to radiation effects is given

  19. Radiation sterilization of medical devices

    Kaluska, I.; Stuglik, Z.

    1996-01-01

    Overview of sterilization methods of medical devices has been given, with the special stress put on radiation sterilization. A typical validation program for radiation sterilization has been shown and also a comparison of European and ISO standards concerning radiation sterilization has been discussed. (author). 13 refs, 1 fig., 2 tabs

  20. Main radiation protection actions for medical personnel as primary responders front of an event with radiological dispersive device; Principais acoes de protecao radiologica para equipe medica como primeiros respondedores frente a um evento com dispositivo de dispersao radiologica

    Duque, Hildanielle Ramos

    2015-07-01

    After the terrorist attack in New York, USA, in 2001, there was a worldwide concern about possible attacks using radioactive material in conventional detonators, called as Radiological Dispersal Device (RDD) or 'dirty bomb'. Several studies have been and are being made to form a global knowledge about this type of event. As until now, fortunately, there has not been an event with RDD, the Goiania Radiological Accident in Brazil, 1987, is used as a reference for decision-making. Several teams with technical experts should act in an event with RDD, but the medical staffs who respond quickly to the event must be properly protected from the harmful effects of radiation. Based on the radiological protection experts performance during the Goiania accident and the knowledge from lessons learned of many radiological accidents worldwide, this work presents an adaptation of the radiation protection actions for an event with RDD that helps a medical team as primary responders. The following aspects are presented: the problem of radioactive contamination from the explosion of the device in underground environment, the actions of the first responders and evaluation of health radiation effects. This work was based on specialized articles and papers about radiological accidents and RDD; as well as personal communication and academic information of the Institute of Radiation Protection and Dosimetry. The radiation protection actions, adapted to a terrorist attack event with RDD, have as a scenario a subway station in the capital. The main results are: the use of the basic radiation protection principle of time because there is no condition to take care of a patient keeping distance or using a shielding; the use of full appropriate protection cloths for contaminating materials ensuring the physical safety of professionals, and the medical team monitoring at the end of a medical procedure, checking for surface contamination. The main conclusion is that all medical actions

  1. High Explosive Radiological Dispersion Device: Time and Distance Multiscale Study

    Sharon, A.; Sattinger, I.; Halevy, D.; Banaim, P.; Yaar, I.; Krantz, L.

    2014-01-01

    A wide range of explosion tests imitates different explosive RDD scenarios were conducted and aimed at increasing the preparedness for possible terrorism events, where radioactive (RA) materials disperse via an explosive charge. About 20 atmospheric dispersion tests were conducted using6-8 Ci of 99mTc which were coupled to TNT charges within the range of 0.2525 kg. Tests performed above different typical urban ground surfaces (in order to study the surface effect on the activity ground deposition pattern due to different in particles size distribution). We have used an efficient aerosolizing devices, means that most of the RA particles were initially created within the size of fine aerosols, mostly respirable. Ground activity measurements were performed both, around the dispersion point and up to few hundred meters downwind. Micrometeorology parameters (wind intensity and direction, potential temperature, relative humidity, solar radiation and atmospheric stability) were collected allowing comparisons topredictions of existing atmospheric dispersion models’1. Based on the experimental results, new model parameterizations were performed. Improvements in the models’ predictions were achieved and a set of thumb rules for first responders was formulated. This paper describes the project objectives, some of the experimental setups and results obtained. Post detonation nuclear forensic considerations can be made based upon results achieved

  2. Tunable radiation emitting semiconductor device

    2009-01-01

    A tunable radiation emitting semiconductor device includes at least one elongated structure at least partially fabricated from one or more semiconductor materials exhibiting a bandgap characteristic including one or more energy transitions whose energies correspond to photon energies of light

  3. Radiation shielding device

    Nakagawa, Takahiro; Yamagami, Makoto.

    1996-01-01

    A fixed shielding member made of a radiation shielding material is constituted in perpendicular to an opening formed on radiation shielding walls. The fixed shielding member has one side opened and has other side, the upper portion and the lower portion disposed in close contact with the radiation shielding walls. Movable shielding members made of a radiation shielding material are each disposed openably on both side of the fixed shielding member. The movable shielding member has a shaft as a fulcrum on one side thereof for connecting it to the radiation shielding walls. The other side has a handle attached for opening/closing the movable shielding member. Upon access of an operator, when each one of the movable shielding members is opened/closed on every time, leakage of linear or scattered radiation can be prevented. Even when both of the movable shielding members are opened simultaneously, the fixed shielding member and the movable shielding members form labyrinth to prevent leakage of linear radioactivity. (I.N.)

  4. Radiation dose rate measuring device

    Sorber, R.

    1987-01-01

    A portable device is described for in-field usage for measuring the dose rate of an ambient beta radiation field, comprising: a housing, substantially impervious to beta radiation, defining an ionization chamber and having an opening into the ionization chamber; beta radiation pervious electrically-conductive window means covering the opening and entrapping, within the ionization chamber, a quantity of gaseous molecules adapted to ionize upon impact with beta radiation particles; electrode means disposed within the ionization chamber and having a generally shallow concave surface terminating in a generally annular rim disposed at a substantially close spacing to the window means. It is configured to substantially conform to the window means to define a known beta radiation sensitive volume generally between the window means and the concave surface of the electrode means. The concave surface is effective to substantially fully expose the beta radiation sensitive volume to the radiation field over substantially the full ambient area faced by the window means

  5. Monolayer graphene dispersion and radiative cooling for high power LED

    Hsiao, Tun-Jen; Eyassu, Tsehaye; Henderson, Kimberly; Kim, Taesam; Lin, Chhiu-Tsu

    2013-10-01

    Molecular fan, a radiative cooling by thin film, has been developed and its application for compact electronic devices has been evaluated. The enhanced surface emissivity and heat dissipation efficiency of the molecular fan coating are shown to correlate with the quantization of lattice modes in active nanomaterials. The highly quantized G and 2D bands in graphene are achieved by our dispersion technique, and then incorporated in an organic-inorganic acrylate emulsion to form a coating assembly on heat sinks (for LED and CPU). This water-based dielectric layer coating has been formulated and applied on metal core printed circuit boards. The heat dissipation efficiency and breakdown voltage are evaluated by a temperature-monitoring system and a high-voltage breakdown tester. The molecular fan coating on heat dissipation units is able to decrease the equilibrium junction temperature by 29.1 ° C, while functioning as a dielectric layer with a high breakdown voltage (>5 kV). The heat dissipation performance of the molecular fan coating applied on LED devices shows that the coated 50 W LED gives an enhanced cooling of 20% at constant light brightness. The schematics of monolayer graphene dispersion, undispersed graphene platelet, and continuous graphene sheet are illustrated and discussed to explain the mechanisms of radiative cooling, radiative/non-radiative, and non-radiative heat re-accumulation.

  6. Monolayer graphene dispersion and radiative cooling for high power LED

    Hsiao, Tun-Jen; Eyassu, Tsehaye; Henderson, Kimberly; Kim, Taesam; Lin, Chhiu-Tsu

    2013-01-01

    Molecular fan, a radiative cooling by thin film, has been developed and its application for compact electronic devices has been evaluated. The enhanced surface emissivity and heat dissipation efficiency of the molecular fan coating are shown to correlate with the quantization of lattice modes in active nanomaterials. The highly quantized G and 2D bands in graphene are achieved by our dispersion technique, and then incorporated in an organic-inorganic acrylate emulsion to form a coating assembly on heat sinks (for LED and CPU). This water-based dielectric layer coating has been formulated and applied on metal core printed circuit boards. The heat dissipation efficiency and breakdown voltage are evaluated by a temperature-monitoring system and a high-voltage breakdown tester. The molecular fan coating on heat dissipation units is able to decrease the equilibrium junction temperature by 29.1 ° C, while functioning as a dielectric layer with a high breakdown voltage (>5 kV). The heat dissipation performance of the molecular fan coating applied on LED devices shows that the coated 50 W LED gives an enhanced cooling of 20% at constant light brightness. The schematics of monolayer graphene dispersion, undispersed graphene platelet, and continuous graphene sheet are illustrated and discussed to explain the mechanisms of radiative cooling, radiative/non-radiative, and non-radiative heat re-accumulation. (paper)

  7. Radiation sensitive solid state devices

    Shannon, J.M.; Ralph, J.E.

    1975-01-01

    A solid state radiation sensitive device is described employing JFETs as the sensitive elements. Two terminal construction is achieved by using a common conductor to capacitively couple to the JFET gate and to one of the source and drain connections. (auth)

  8. Radiation area monitor device and method

    Vencelj, Matjaz; Stowe, Ashley C.; Petrovic, Toni; Morrell, Jonathan S.; Kosicek, Andrej

    2018-01-30

    A radiation area monitor device/method, utilizing: a radiation sensor; a rotating radiation shield disposed about the radiation sensor, wherein the rotating radiation shield defines one or more ports that are transparent to radiation; and a processor operable for analyzing and storing a radiation fingerprint acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor. Optionally, the radiation sensor includes a gamma and/or neutron radiation sensor. The device/method selectively operates in: a first supervised mode during which a baseline radiation fingerprint is acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor; and a second unsupervised mode during which a subsequent radiation fingerprint is acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor, wherein the subsequent radiation fingerprint is compared to the baseline radiation fingerprint and, if a predetermined difference threshold is exceeded, an alert is issued.

  9. Radiation detector device for measuring ionizing radiation

    Brake, D. von der.

    1983-01-01

    The device contains a compensating filter circuit, which guarantees measurement of the radiation dose independent of the energy or independent of the energy and direction. The compensating filter circuit contains a carrier tube of a slightly absorbing metal with an order number not higher than 35, which surrounds a tubular detector and which carries several annular filter parts on its surface. (orig./HP) [de

  10. SU-F-P-24: Radiological Disperse Device

    Alam, R [NYC Dept of Health, NYC, NY (United States)

    2016-06-15

    Purpose: We are now living in a society of constant fear of terrorism. This topic is pertaining to give a general knowledge of what is a radiological dispersion device or RDD and in case of its detonation, what are the options open to public for a safe action in terms of reducing the exposure and knowing the proper steps. These RDD are also called dirty bombs. Methods: Compared to nuclear weapons, dirty bombs are easy to make. In order for a terrorist organization to construct and detonate a dirty bomb, it must acquire radioactive material by stealing it or buying it through legal or illegal channels. Possible RDD material could come from the millions of radioactive sources used in the industry, for medical purposes and in academic applications mainly for researches. These are, americium-{sup 241}, californium-{sup 252}, caesium-{sup 137}, cobalt-{sup 60}, iridium-{sup 192}, plutonium-{sup 238}, polonium-{sup 210}, radium-{sup 226} and strontium-{sup 90}. Results: Prompt detection of the type of radioactive material used will greatly assist advising people on the protective measures, like sheltering in place, or quickly leaving the immediate area. The effects of radiation are determined by:°the amount of radiation absorbed by body°the type of radiation °the distance from the radiation to an individual°the means of exposure absorbed by the skin, inhaled, or ingested; and length of time exposed. Conclusion: In any facility it is now much more important to keep a log list of all radioactive materials in use. In case there is a dirty bomb explosion, the chaos and economic cost could be enormous. The economic cost for the evaluation of the contamination, survey of people and surroundings and the after treatment, decontamination cost and effort will be a big challenge in any country. So awareness and preparation is the start to face this new type of challenge.

  11. Radiation analysis devices, radiation analysis methods, and articles of manufacture

    Roybal, Lyle Gene

    2010-06-08

    Radiation analysis devices include circuitry configured to determine respective radiation count data for a plurality of sections of an area of interest and combine the radiation count data of individual of sections to determine whether a selected radioactive material is present in the area of interest. An amount of the radiation count data for an individual section is insufficient to determine whether the selected radioactive material is present in the individual section. An article of manufacture includes media comprising programming configured to cause processing circuitry to perform processing comprising determining one or more correction factors based on a calibration of a radiation analysis device, measuring radiation received by the radiation analysis device using the one or more correction factors, and presenting information relating to an amount of radiation measured by the radiation analysis device having one of a plurality of specified radiation energy levels of a range of interest.

  12. Radiation environmental real-time monitoring and dispersion modeling

    Kovacik, A.; Bartokova, I.; Omelka, J.; Melicherova, T.

    2014-01-01

    The system of real-time radiation monitoring provided by MicroStep-MIS is a turn-key solution for measurement, acquisition, processing, reporting, archiving and displaying of various radiation data. At the level of measurements, the monitoring stations can be equipped with various devices from radiation probes, measuring the actual ambient gamma dose rate, to fully automated aerosol monitors, returning analysis results of natural and manmade radionuclides concentrations in the air. Using data gathered by our radiation probes RPSG-05 integrated into monitoring network of Crisis Management of the Slovak Republic and into monitoring network of Slovak Hydrometeorological Institute, we demonstrate its reliability and long-term stability of measurements. Data from RPSG-05 probes and GammaTracer probes, both of these types are used in the SHI network, are compared. The sensitivity of RPSG-05 is documented on data where changes of dose rate are caused by precipitation. Qualities of RPSG-05 probe are illustrated also on example of its use in radiation monitoring network in the United Arab Emirates. A more detailed information about radioactivity of the atmosphere can be obtained by using spectrometric detectors (e.g. scintillation detectors) which, besides gamma dose rate values, offer also a possibility to identify different radionuclides. However, this possibility is limited by technical parameters of detector like energetic resolution and detection efficiency in given geometry of measurement. A clearer information with less doubts can be obtained from aerosol monitors with a built-in silicon detector of alpha and beta particles and with an electrically cooled HPGe detector dedicated for gamma-ray spectrometry, which is performed during the sampling. Data from a complex radiation monitoring network can be used, together with meteorological data, in radiation dispersion model by MicroStep-MIS. This model serves for simulation of atmospheric propagation of radionuclides

  13. Training first responders on Radiological Dispersal Devices (RDDs) and Improvised Nuclear Devices (INDs) events

    Groves, Ken L.

    2008-01-01

    Full text: This paper will present an overview of the current training the author is presenting to First Responders (fire-fighters, emergency medical technicians, law enforcement and others) who may encounter either a Radiological Dispersal Device (RDD or Dirty Bomb) or an Improvised Nuclear Device (IND) as a part of their Emergency Response activities. The emphasis of the training is putting the radiological/nuclear material in perspective as compared with other Weapons of Mass Destruction (WMD) materials such as chemical and/or biological weapon agents. A goal of the training is to help this First Responder Community understand that under almost all conditions, they can perform their primary mission of 'putting out fires', rescuing and treating injured persons, and chasing 'bad guys' even in the presence of relatively large amount of radiological/nuclear contamination. The rare cases of high activity unshielded sources will be reviewed and explained. Current International guidance on dose 'limits' will be discussed. A discussion of the use of Time, Distance and Shielding as well as appropriate Personal Protective Clothing and how it will provide the needed protection while immediate actions take place early in an RDD/IND event, will take place. The use of appropriate radiation detection instrumentation, documented Standard Operating Procedures along with realistic training, drills and exercises are the key to a successful response to an RDD/IND event for this community of critical emergency responders. (author)

  14. Silicon solid state devices and radiation detection

    Leroy, Claude

    2012-01-01

    This book addresses the fundamental principles of interaction between radiation and matter, the principles of working and the operation of particle detectors based on silicon solid state devices. It covers a broad scope with respect to the fields of application of radiation detectors based on silicon solid state devices from low to high energy physics experiments including in outer space and in the medical environment. This book covers stateof- the-art detection techniques in the use of radiation detectors based on silicon solid state devices and their readout electronics, including the latest developments on pixelated silicon radiation detector and their application.

  15. Radiological dispersal device outdoor simulation test: Cesium chloride particle characteristics

    Lee, Sang Don, E-mail: lee.sangdon@epa.gov [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Snyder, Emily G.; Willis, Robert [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Fischer, Robert; Gates-Anderson, Dianne; Sutton, Mark [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Viani, Brian [Simbol Mining Corp., Pleasanton, CA 94566 (United States); Drake, John [U.S. Environmental Protection Agency, Cincinnati, OH 45268 (United States); MacKinney, John [U.S. Department of Homeland Security, Washington, DC 20528 (United States)

    2010-04-15

    Particles were generated from the detonation of simulated radiological dispersal devices (RDDs) using non-radioactive CsCl powder and explosive C4. The physical and chemical properties of the resulting particles were characterized. Two RDD simulation tests were conducted at Lawrence Livermore National Laboratory: one of the simulated RDDs was positioned 1 m above a steel plate and the other was partially buried in soil. Particles were collected with filters at a distance of 150 m from the origin of the RDD device, and particle mass concentrations were monitored to identify the particle plume intensity using real time particle samplers. Particles collected on filters were analyzed via computer-controlled scanning electron microscopy coupled with energy dispersive X-ray spectrometry (CCSEM/EDX) to determine their size distribution, morphology, and chemical constituents. This analysis showed that particles generated by the detonation of explosives can be associated with other materials (e.g., soil) that are in close proximity to the RDD device and that the morphology and chemical makeup of the particles change depending on the interactions of the RDD device with the surrounding materials.

  16. Radiological dispersal device outdoor simulation test: Cesium chloride particle characteristics

    Lee, Sang Don; Snyder, Emily G.; Willis, Robert; Fischer, Robert; Gates-Anderson, Dianne; Sutton, Mark; Viani, Brian; Drake, John; MacKinney, John

    2010-01-01

    Particles were generated from the detonation of simulated radiological dispersal devices (RDDs) using non-radioactive CsCl powder and explosive C4. The physical and chemical properties of the resulting particles were characterized. Two RDD simulation tests were conducted at Lawrence Livermore National Laboratory: one of the simulated RDDs was positioned 1 m above a steel plate and the other was partially buried in soil. Particles were collected with filters at a distance of 150 m from the origin of the RDD device, and particle mass concentrations were monitored to identify the particle plume intensity using real time particle samplers. Particles collected on filters were analyzed via computer-controlled scanning electron microscopy coupled with energy dispersive X-ray spectrometry (CCSEM/EDX) to determine their size distribution, morphology, and chemical constituents. This analysis showed that particles generated by the detonation of explosives can be associated with other materials (e.g., soil) that are in close proximity to the RDD device and that the morphology and chemical makeup of the particles change depending on the interactions of the RDD device with the surrounding materials.

  17. Fast Running Urban Dispersion Model for Radiological Dispersal Device (RDD) Releases: Model Description and Validation

    Gowardhan, Akshay [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Neuscamman, Stephanie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Donetti, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Walker, Hoyt [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Belles, Rich [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Eme, Bill [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Homann, Steven [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC)

    2017-05-24

    Aeolus is an efficient three-dimensional computational fluid dynamics code based on finite volume method developed for predicting transport and dispersion of contaminants in a complex urban area. It solves the time dependent incompressible Navier-Stokes equation on a regular Cartesian staggered grid using a fractional step method. It also solves a scalar transport equation for temperature and using the Boussinesq approximation. The model also includes a Lagrangian dispersion model for predicting the transport and dispersion of atmospheric contaminants. The model can be run in an efficient Reynolds Average Navier-Stokes (RANS) mode with a run time of several minutes, or a more detailed Large Eddy Simulation (LES) mode with run time of hours for a typical simulation. This report describes the model components, including details on the physics models used in the code, as well as several model validation efforts. Aeolus wind and dispersion predictions are compared to field data from the Joint Urban Field Trials 2003 conducted in Oklahoma City (Allwine et al 2004) including both continuous and instantaneous releases. Newly implemented Aeolus capabilities include a decay chain model and an explosive Radiological Dispersal Device (RDD) source term; these capabilities are described. Aeolus predictions using the buoyant explosive RDD source are validated against two experimental data sets: the Green Field explosive cloud rise experiments conducted in Israel (Sharon et al 2012) and the Full-Scale RDD Field Trials conducted in Canada (Green et al 2016).

  18. Radiation hardening of MOS devices by boron

    Danchenko, V.

    1975-01-01

    A novel technique is disclosed for radiation hardening of MOS devices and specifically for stabilizing the gate threshold potential at room temperature of a radiation subjected MOS field-effect device of the type having a semiconductor substrate, an insulating layer of oxide on the substrate, and a gate electrode disposed on the insulating layer. In the preferred embodiment, the novel inventive technique contemplates the introduction of boron into the insulating oxide, the boron being introduced within a layer of the oxide of about 100A to 300A thickness immediately adjacent the semiconductor-insulator interface. The concentration of boron in the oxide layer is preferably maintained on the order of 10 atoms/ cm 3 . The novel technique serves to reduce and substantially annihilate radiation induced positive gate charge accumulations, which accumulations, if not eliminated, would cause shifting of the gate threshold potential of a radiation subjected MOS device, and thus render the device unstable and/or inoperative. (auth)

  19. Method and device for controlling radiation

    Wilhelm, G.M.

    1979-01-01

    A device which will control radiation emanating from colour television sets is described. It consists of two transparent plates the same size as a television screen, with a thin layer of transparent mineral oil sealed between them. The device may be installed by the manufacturer or bought separately and installed by the user. (LL)

  20. Semiconductor radiation detectors. Device physics

    Lutz, G.

    2007-01-01

    Starting from basic principles, the author, whose own contributions to these developments have been significant, describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiation. This development was stimulated by requirements in elementary particle physics where it has led to important scientific discoveries. It has now spread to many other fields of science and technology. The book is written in a didactic way and includes an introduction to semiconductor physics. The working principles of semiconductor radiation detectors are explained in an intuitive way, followed by formal quantitative analysis. Broad coverage is also given to electronic signal readout and to the subject of radiation damage. The book is the first to comprehensively cover the semiconductor radiation detectors currently in use. It is useful as a teaching guide and as a reference work for research and applications. (orig.)

  1. The Swiss disaster management plan for coping with the aftermath of radiological dispersal devices - ''dirty bomb'' operational concept

    Stoffel, F.; Blaettler, M.; Leonardi, A.

    2009-01-01

    In 2007 the Swiss Federal Commission for NRBC Protection released a disaster management plan for coping with the aftermath of radiological dispersal devices. This paper summarises the basic concept and outlines the relevant bodies and agencies as well as their responsibilities. It also sets out the strategy to monitor radioactive contamination and the measures to prevent public radiation exposure. (orig.)

  2. Dispersive shock mediated resonant radiations in defocused nonlinear medium

    Bose, Surajit; Chattopadhyay, Rik; Bhadra, Shyamal Kumar

    2018-04-01

    We report the evolution of resonant radiation (RR) in a self-defocused nonlinear medium with two zero dispersion wavelengths. RR is generated from dispersive shock wave (DSW) front when the pump pulse is in non-solitonic regime close to first zero dispersion wavelength (ZDW). DSW is responsible for pulse splitting resulting in the generation of blue solitons when leading edge of the pump pulse hits the first ZDW. DSW also generates a red shifted dispersive wave (DW) in the presence of higher order dispersion coefficients. Further, DSW through cross-phase modulation with red shifted dispersive wave (DW) excites a localized radiation. The presence of zero nonlinearity point in the system restricts red-shift of RR and enhances the red shifting of DW. It also helps in the formation of DSW at shorter distance and squeezes the solitonic region beyond second zero dispersion point. Predicted results indicate that the spectral evolution depends on the product of Kerr nonlinearity and group velocity dispersion.

  3. Radiation detection device and a radiation detection method

    Blum, A.

    1975-01-01

    A radiation detection device is described including at least one scintillator in the path of radiation emissions from a distributed radiation source; a plurality of photodetectors for viewing each scintillator; a signal processing means, a storage means, and a data processing means that are interconnected with one another and connected to said photodetectors; and display means connected to the data processing means to locate a plurality of radiation sources in said distributed radiation source and to provide an image of the distributed radiation sources. The storage means includes radiation emission response data and location data from a plurality of known locations for use by the data processing means to derive a more accurate image by comparison of radiation responses from known locations with radiation responses from unknown locations. (auth)

  4. Device for detecting ionizing radiation

    Anatychuk, L.I.; Kharitonov, J.P.; Kusniruk, V.F.; Meir, V.A.; Melnik, A.P.; Ponomarev, V.S.; Skakodub, V.A.; Sokolov, A.D.; Subbotin, V.G.; Zhukovsky, A.N.

    1980-01-01

    The present invention relates to ionizing radiation sensors, and , more particularly, to semiconductor spectrometers with thermoelectric cooling, and can most advantageously be used in mineral raw material exploration and evaluation under field conditions. The spectrometer comprises a vacuum chamber with an entrance window for passing the radiation therethrough. The vacuum chamber accommodates a thermoelectric cooler formed by a set of peltier elements. A heat conducting plate is mounted on the cold side of the thermoelectric cooler, and its hot side is provided with a radiator. Mounted on the heat conducting plate are sets of peltier elements, integral with the thermoelectric cooler and independent of one another. The peltier elements of these sets are stacked so as to develop the minimum temperature conditions on one set carrying a semiconductor detector and to provide the maximum refrigeration capacity conditions on the other set provided with the field-effect transistor mounted thereon

  5. Devices for obtaining information about radiation sources

    Tosswill, C.H.

    1981-01-01

    The invention provides a sensitive, fast high-resolution device for obtaining information about the distribution of gamma and X-radiation sources and provides a radiation detector useful in such a device. It comprises a slit collimator with a multiplicity of slits each with slit-defining walls of material and thickness to absorb beam components impinging on them. The slits extend further in one direction than the other. The detector for separately detecting beam components passing through the slits also provides data output signals. It comprises a plurality of radiation transducing portions which are not photoconductor elements each at the end of a slit. A positioner operates to change the transverse position of the slits and radiation transducing portions relative to the source, wherein each radiation transducing element is positioned within its respective slit between the slit defining walls. Full details and preferred embodiments are given. (U.K.)

  6. Radiation-curable coatings containing reactive pigment dispersants

    Ansel, R.E.

    1985-01-01

    Liquid coating compositions adapted to be cured by exposure to penetrating radiation are disclosed in which a liquid vehicle of coating viscosity having an ethylenically unsaturated portion comprising one or more polyethylenically unsaturated materials adapted to cure on radiation exposure, pigment dispersed in the vehicle, and an ethylenically unsaturated radiation-curable dispersant containing a carboxyl group for wetting the pigment and assisting in the stable dipsersion of the pigment in the vehicle. This dispersant is a half amide or half ester of an ethylenically unsaturated polycarboxylic acid anhydride, such as maleic anhydride, with an organic compound having a molecular weight of from 100 to 4000 and which contains a single hydroxy group or a single amino group as the sole reactive group thereof

  7. Electric moulding of dispersed lipid nanotubes into a nanofluidic device.

    Frusawa, Hiroshi; Manabe, Tatsuhiko; Kagiyama, Eri; Hirano, Ken; Kameta, Naohiro; Masuda, Mitsutoshi; Shimizu, Toshimi

    2013-01-01

    Hydrophilic nanotubes formed by lipid molecules have potential applications as platforms for chemical or biological events occurring in an attolitre volume inside a hollow cylinder. Here, we have integrated the lipid nanotubes (LNTs) by applying an AC electric field via plug-in electrode needles placed above a substrate. The off-chip assembly method has the on-demand adjustability of an electrode configuration, enabling the dispersed LNT to be electrically moulded into a separate film of parallel LNT arrays in one-step. The fluorescence resonance energy transfer technique as well as the digital microscopy visualised the overall filling of gold nanoparticles up to the inner capacity of an LNT film by capillary action, thereby showing the potential of this flexible film for use as a high-throughput nanofluidic device where not only is the endo-signalling and product in each LNT multiplied but also the encapsulated objects are efficiently transported and reacted.

  8. Post Blast Nuclear Forensics Of A Radiological Dispersion Device Scene

    Sharon, A.; Halevy, I; Sattinger, D; Admon, U; Banaim, P; Yaar, I.; Krantz, L.

    2014-01-01

    'Green Field' (GF) project conducting in Israel, between the years ’06-‘14, aimed at increasing the preparedness for outdoor terrorism events, where a radioactive (RA) material is dispersed by an explosive charge. Under the project framework a wide experimental program was established and conducted. The experimental plan included set of about 150 detonation tests that were done in order to close some gaps of knowledge mainly relating to the “source term” characterization. Experiments were done using wide range of different source term parameters. Among these are: explosive types, dispersed materials (both, stable simulants and short live radio isotopes), device geometries, ground surfaces, detonation heights and orientation, atmospheric stability situations etc. Field data collection and documentation used some of the “state of the art” detectors, cameras etc. Based on a comprehensive data analysis and complementary simulations, a methodology for post blast forensic using data collected from the close vicinity of the detention point was developed

  9. Radiation effects in charge coupled devices

    Williams, R.A.; Nelson, R.D.

    1975-01-01

    Charge coupled devices (CCD s) exhibit a number of advantages (low cost, low power, high bit density) in their several applications (serial memories, imagers, digital filters); however, fairly elementary theoretical considerations indicate that they will be very vulnerable to permanent radiation damage, by both neutrons and ionizing radiation, and to transient upset by pulsed ionizing radiation. Although studies of permanent ionizing-radiation damage in CCD's have been reported, little information has been published concerning their overall nuclear radiation vulnerability. This paper presents a fairly comprehensive experimental study of radiation effects in a 256-cell surface-channel, CCD shift-register. A limited amount of similar work is also presented for a 128-cell surface-channel device and a 130 cell peristaltic CCD shift register. The radiation effects phenomena discussed herein, include transient-ionizing-radiation responses, permanent ionizing- radiation damage to transfer efficiency, charge-carrying capacity and input transfer gate bias, and neutron damage to storage time--determined from dark current and charge-up time measurements

  10. Prospects of radiation sterilization of medical devices

    Hosobuchi, Kazunari

    1992-01-01

    Since radiation sterilization was first introduced in the United States in 1956 in the field of disposable medical devices, it has become an indispensable technique for sterilization because of the following reasons: (1) introduction into dialyzers, (2) introduction in medical device makers, (3) development of disposable medical devices associated with developing both high molecular chemistry and cool sterilization, (4) rationality of sterilization process, and (5) problems of sterilization with ethylene oxide gas. To promote the further development of radiation sterilization, the following items are considered necessary: (1) an increase in the number of facilities for radiation sterilization, (2) recommendation of the international standardization of sterilization method, (3) decrease in radiation doses associated with sterilization, (4) development of electron accelerators and bremsstrahlung equipments for radiation sources, and (5) simplification of sterilization process management. Factors precluding the development of radiation sterilization are: (1) development of other methods than radiation sterilization, (2) development of technique for sterile products, (3) high facility cost, (4) high irradiation cost, (5) benefits and limits of sterilization markets, and (6) influences of materials. (N.K.)

  11. Devices for obtaining information about radiation sources

    Tosswill, C.H.

    1981-01-01

    The invention provides a sensitive, fast, high-resolution device for obtaining information about the distribution of gamma and X-radiation sources and provides a radiation detector useful in such a device. It comprises a slit collimator with a multiplicity of slits each with slit-defining walls of material and thickness to absorb beam components impinging on them. The slits extend further in one transverse direction than the other. The detector for separately detecting beam components passing through the slits also provides data output signals. It comprises a plurality of radiation transducing portions, each at the end of a slit. A positioner changes the transverse position of the slits and radiation transducer (a photoconductor) relative to the source. Applications are in nuclear medicine and industry. Full details and preferred embodiments are given. (U.K.)

  12. An image scanning device using radiating energy

    Jacob, Daniel.

    1976-01-01

    Said invention relates to an image scanning device using radiating energy. More particularly, it relates to a device for generating a scanning beam of rectangular cross section from a γ or X-ray source. Said invention can be applied to radiographic units of the 'microdose' type used by airline staffs and others for the fast efficient inspection of luggage and parcels in view of detecting hidden things [fr

  13. Advanced Small Animal Conformal Radiation Therapy Device.

    Sharma, Sunil; Narayanasamy, Ganesh; Przybyla, Beata; Webber, Jessica; Boerma, Marjan; Clarkson, Richard; Moros, Eduardo G; Corry, Peter M; Griffin, Robert J

    2017-02-01

    We have developed a small animal conformal radiation therapy device that provides a degree of geometrical/anatomical targeting comparable to what is achievable in a commercial animal irradiator. small animal conformal radiation therapy device is capable of producing precise and accurate conformal delivery of radiation to target as well as for imaging small animals. The small animal conformal radiation therapy device uses an X-ray tube, a robotic animal position system, and a digital imager. The system is in a steel enclosure with adequate lead shielding following National Council on Radiation Protection and Measurements 49 guidelines and verified with Geiger-Mueller survey meter. The X-ray source is calibrated following AAPM TG-61 specifications and mounted at 101.6 cm from the floor, which is a primary barrier. The X-ray tube is mounted on a custom-made "gantry" and has a special collimating assembly system that allows field size between 0.5 mm and 20 cm at isocenter. Three-dimensional imaging can be performed to aid target localization using the same X-ray source at custom settings and an in-house reconstruction software. The small animal conformal radiation therapy device thus provides an excellent integrated system to promote translational research in radiation oncology in an academic laboratory. The purpose of this article is to review shielding and dosimetric measurement and highlight a few successful studies that have been performed to date with our system. In addition, an example of new data from an in vivo rat model of breast cancer is presented in which spatially fractionated radiation alone and in combination with thermal ablation was applied and the therapeutic benefit examined.

  14. Midinfrared radiation energy harvesting device

    Lin, Hong-Ren; Wang, Wei-Chih

    2017-07-01

    The International Energy Agency reports a 17.6% annual growth rate in sustainable energy production. However, sustainable power generation based on environmental conditions (wind and solar) requires an infrastructure that can handle intermittent power generation. An electromagnetic thermoelectric (EMTE) device to overcome the intermittency problems of current sustainable energy technologies, providing the continuous supply unachievable by photovoltaic cells with portability impossible for traditional thermoelectric (TE) generators, is proposed. The EMTE converts environmental electromagnetic waves to a voltage output without requiring additional input. A single cell of this TE-inspired broadband EMTE can generate a 19.50 nV output within a 7.2-μm2 area, with a verified linear scalability of the output voltage through cell addition. This idea leads to a challenge: the electrical polarity of each row of cells is the same but may require additional routing to combine output from each row. An innovative layout is proposed to overcome this issue through switching the electrical polarity every other row. In this scheme, the EM wave absorption spectrum is not altered, and a simple series connection can be implemented to boost the total voltage output by 1 order within a limited area.

  15. EMERGENCY RADIATION SURVEY DEVICE ONBOARD THE UAV

    S. Bogatov

    2013-08-01

    Full Text Available Radiation survey device (RSD on the base of unmanned aerial vehicle (UAV was developed as an equipment of rescue forces for radiation situation reconnaissance in case of emergency. RSD is multi range radiometer with spectrometer functions capable to work within gamma ray fields of dose rate 10–7 – 10–1 Sievert per hour. UAV md4-1000 (Microdrones GmbH, Germany was selected as the RSD carrier as a reliable vehicle with appropriate properties. Short description of RSD, UAV and developed software features as well as sensitivity assessments for different radiation sources are presented.

  16. Medical device for applying therapeutic radiation

    Tokita, K.M.; Haller, B.L.

    1986-01-01

    A device is described for applying therapeutic radiation from a preselected radiation source to a predetermined portion of a body comprising, in combination: a body member having: an external peripheral surface; a first end surface; and a second end surface spaced from the first end surface; the body member further comprising: at least first internal walls defining a first radiation source receiving channel means spaced a preselected distance from the peripheral surface, and having: a first portion extending from the second end surface to regions adjacent the first end surface; and a second portion extending from the first portion at the first end surface to the second end surface; and, the channel means communicating with regions external the body member at the second surface whereby the radiation source of a preselected intensity inserted at least along a preselected portion of the channel means is applied to the predetermined area of the body requiring therapeutic radiation treatment

  17. Radiation sensitive area detection device and method

    Carter, Daniel C. (Inventor); Hecht, Diana L. (Inventor); Witherow, William K. (Inventor)

    1991-01-01

    A radiation sensitive area detection device for use in conjunction with an X ray, ultraviolet or other radiation source is provided which comprises a phosphor containing film which releases a stored diffraction pattern image in response to incoming light or other electromagnetic wave. A light source such as a helium-neon laser, an optical fiber capable of directing light from the laser source onto the phosphor film and also capable of channelling the fluoresced light from the phosphor film to an integrating sphere which directs the light to a signal processing means including a light receiving means such as a photomultiplier tube. The signal processing means allows translation of the fluoresced light in order to detect the original pattern caused by the diffraction of the radiation by the original sample. The optical fiber is retained directly in front of the phosphor screen by a thin metal holder which moves up and down across the phosphor screen and which features a replaceable pinhole which allows easy adjustment of the resolution of the light projected onto the phosphor film. The device produces near real time images with high spatial resolution and without the distortion that accompanies prior art devices employing photomultiplier tubes. A method is also provided for carrying out radiation area detection using the device of the invention.

  18. Measuring ionizing radiation with a mobile device

    Michelsburg, Matthias; Fehrenbach, Thomas; Puente León, Fernando

    2012-02-01

    In cases of nuclear disasters it is desirable to know one's personal exposure to radioactivity and the related health risk. Usually, Geiger-Mueller tubes are used to assess the situation. Equipping everyone with such a device in a short period of time is very expensive. We propose a method to detect ionizing radiation using the integrated camera of a mobile consumer device, e.g., a cell phone. In emergency cases, millions of existing mobile devices could then be used to monitor the exposure of its owners. In combination with internet access and GPS, measured data can be collected by a central server to get an overview of the situation. During a measurement, the CMOS sensor of a mobile device is shielded from surrounding light by an attachment in front of the lens or an internal shutter. The high-energy radiation produces free electrons on the sensor chip resulting in an image signal. By image analysis by means of the mobile device, signal components due to incident ionizing radiation are separated from the sensor noise. With radioactive sources present significant increases in detected pixels can be seen. Furthermore, the cell phone application can make a preliminary estimate on the collected dose of an individual and the associated health risks.

  19. Being prepared for emergency situations involving radiological dispersion devices

    Hardemann, F.; Vandecasteele, C.; Sohier, A.

    2003-01-01

    Full text: The events of 11 September 2001 and the evolution of the public perception of terrorism in the aftermath have given rise to concern that one day some terrorist group might make use of Radiological Dispersion Devices (RDD). Perhaps due to the attention that this issue has received from the media, a recent enquiry among the Belgian population has shown that the risk of a terrorist attack on nuclear facilities is believed to be high, and that terrorism in general is one of the major preoccupations, largely preceding environmental or technological risks. As such, it is worthwhile considering the response to this threat, focussing an expected characteristics of RDD scenarios, measurement strategies and advice for first interventions. Preventive measures are beyond the scope of this contribution. The purpose is not to present a dedicated solution to the problem nor to present an exhaustive list of problems and hypotheses, but to launch a framework for discussion with other participants, in order to generate some broadly accepted and sound principles for the response the day it would be necessary. The 'dirty bomb' scenario shows many differences as compared to 'traditional' emergency scenarios. A non exhaustive series of examples is given below: a) the source term is unpredictable, both the isotopic composition and the range of activities, although some information on 'candidate sources' is available in public literature. b) The location of the accident may be anywhere; it has a large probability within urban or strategic areas. The 'heart' of the crisis will presumably be in the public domain, not in a nuclear facility. An attack may arise in areas not having any presence of nuclear facilities in the vicinity or even in non-nuclear countries, which implies little expertise to respond. c) One may live the combination of important damage by the explosion combined with the a priori unknown existence of a radioactive, biological or chemical risk. d) There will be

  20. Radiation response of vitamin A in aqueous dispersions

    Bhushan, B.; Kumta, U.S.

    1977-01-01

    The radiation destruction of vitamin A acetate was monitored in isooctane, coconut oil, and aqueous dispersions. The G(-vit. A), i.e., the number of vitamin A molecules destroyed per 100 eV of energy absorbed in lipid solvents and aqueous preparations, increased with the concentrations of vitamin A used. In the freely dissolved state, as in isooctane or coconut oil, the extent of destruction of vitamin A was more or less identical. However, a marked reduction in the radiation destruction of vitamin A was observed in aqueous dispersions at all concentrations except at 1 x 10 -4 M. Incorporation of sugars, starch, and egg albumin in aqueous preparations offered considerable protection to vitamin A from radiation damage which could be discerned even at the lowest concentration (1 x 10 -4 M). The protective influence of aqueous dispersion as noted for vitamin A was also observed for β-carotene, vitamin A alcohol, and ubiquinone-30. The significance of the above findings in radiation processing of foods has been discussed

  1. Federal Response Assets for a Radioactive Dispersal Device Incident

    Sullivan,T.

    2009-06-30

    If a large scale RDD event where to occur in New York City, the magnitude of the problem would likely exceed the capabilities of City and State to effectively respond to the event. New York State could request Federal Assistance if the United States President has not already made the decision to provide it. The United States Federal Government has a well developed protocol to respond to emergencies. The National Response Framework (NRF) describes the process for responding to all types of emergencies including RDD incidents. Depending on the location and type of event, the NRF involves appropriate Federal Agencies, e.g., Department of Homeland Security (DHS), the Department of Energy (DOE), Environmental Protection Agency (EPA), United States Coast Guard (USCG), Department of Defense (DOD), Department of Justice (DOJ), Department of Agriculture (USDA), and Nuclear Regulatory Commission (NRC). The Federal response to emergencies has been refined and improved over the last thirty years and has been tested on natural disasters (e.g. hurricanes and floods), man-made disasters (oil spills), and terrorist events (9/11). However, the system has never been tested under an actual RDD event. Drills have been conducted with Federal, State, and local agencies to examine the initial (early) phases of such an event (TopOff 2 and TopOff 4). The Planning Guidance for Protection and Recovery Following Radiological Dispersal Device (RDD) and Improvised Nuclear Device (IND) incidents issued by the Department of Homeland Security (DHS) in August 2008 has never been fully tested in an interagency exercise. Recently, another exercise called Empire 09 that was situated in Albany, New York was conducted. Empire 09 consists of 3 different exercises be held in May and June, 2009. The first exercise, May 2009, involved a table top exercise for phase 1 (0-48 hours) of the response to an RDD incident. In early June, a full-scale 3- day exercise was conducted for the mid-phase response (48

  2. Operation control device under radiation exposure

    Kimura, Kiichi; Murakami, Toichi.

    1994-01-01

    The device of the present invention performs smooth progress of operation by remote control for a plurality of operations in periodical inspections in controlled areas of a nuclear power plant, thereby reducing the operator's exposure dose. Namely, the device monitors the progressing state of the operation by displaying the progress of operation on a CRT of a centralized control device present in a low dose area remote from an operation field through an ITV camera disposed in the vicinity of the operation field. Further, operation sequence and operation instruction procedures previously inputted in the device are indicated to the operation field through an operation instruction outputting device (field CRT) in accordance with the progress of the operation steps. On the other hand, the operation progress can be aided by inputting information from the operation field such as start or completion of the operation steps. Further, the device of the present invention can monitor the change of operation circumstances and exposure dose of operators based on the information from a radiation dose measuring device disposed in the operation circumstance and to individual operators. (I.S.)

  3. Study of radiation effects on semiconductor devices

    Kuboyama, Satoshi; Shindou, Hiroyuki; Ikeda, Naomi; Iwata, Yoshiyuki; Murakami, Takeshi

    2004-01-01

    Fine structure of the recent semiconductor devices has made them more sensitive to the space radiation environment with trapped high-energy protons and heavy ions. A new failure mode caused by bulk damage had been reported on such devices with small structure, and its effect on commercial synchronous dynamic random access memory (SDRAMs) was analyzed from the irradiation test results performed at Heavy ion Medical Accelerator in Chiba (HIMAC). Single event upset (SEU) data of static random access memory (SRAMs) were also collected to establish the method of estimating the proton-induced SEU rate from the results of heavy ion irradiation tests. (authors)

  4. Radiation effects in LDD MOS devices

    Woodruff, R.L.; Adams, J.R.

    1987-01-01

    The purpose of this work is to investigate the response of lightly doped drain (LDD) n-channel transistors to ionizing radiation. Transistors were fabricated with conventional (non-LDD) and lightly doped drain (LDD) structures using both standard (non-hardened) and radiation hardened gate oxides. Characterization of the transistors began with a correlation of the total-dose effects due to 10 keV x-rays with Co-60 gamma rays. The authors find that for the gate oxides and transistor structures investigated in this work, 10 keV x-rays produce more fixed-charge guild-up in the gate oxide, and more interface charge than do Co-60 gamma rays. They determined that the radiation response of LDD transistors is similar to that of conventional (non-LDD) transistors. In addition, both standard and radiation-hardened transistors subjected to hot carrier stress before irradiation show a similar radiation response. After exposure to 1.0 x 10 6 rads(Si), non-hardened transistors show increased susceptibility to hot-carrier graduation, while the radiation-hardened transistors exhibit similar hot-carrier degradation to non-irradiated devices. The authors have demonstrated a fully-integrated radiation hardened process tht is solid to 1.0 x 10 6 rads(Si), and shows promise for achieving 1.0 x 10 7 rad(Si) total-dose capability

  5. X-ray energy-dispersive diffractometry using synchrotron radiation

    Buras, B.; Staun Olsen, J.; Gerward, L.

    1977-03-01

    In contrast to bremsstrahlung from X-ray tubes, synchrotron radiation is very intense, has a smooth spectrum, its polarization is well defined, and at DESY the range of useful photon energies can be extended to about 70 keV and higher. In addition the X-ray beam is very well collimated. Thus synchrotron radiation seems to be an ideal X-ray source for energy-dispersive diffractometry. This note briefly describes the experimental set up at DESY, shows examples of results, and presents the underlying 'philosophy' of the research programme. (Auth.)

  6. Response of the REWARD detection system to the presence of a Radiological Dispersal Device

    Luís, R.; Fleta, C.; Balbuena, J.; Baptista, M.; Barros, S.; Disch, C.; Jumilla, C.; Lozano, M.; Marques, J.G.; Vaz, P.

    2016-01-01

    The objective of the REWARD project consisted in building a mobile system for real time, wide area radiation surveillance, using a CdZnTe detector for gamma radiation and a neutron detector based on novel silicon technologies. The sensing unit includes a GPS system and a wireless communication interface to send the data remotely to a monitoring base station, where it will be analyzed in real time and correlated with historical data from the tag location, in order to generate an alarm when an abnormal situation is detected. The main objective of this work consisted in making predictions regarding the behavior of the REWARD system in the presence of a Radiological Dispersion Device (RDD), one of the reference scenarios foreseen for REWARD, using experimental data and the Monte Carlo simulation program MCNP6. Experimental tests were performed at the Fire Brigades Facilities in Rome and at the Naples Fire Brigades. The response of the REWARD detection system to the presence of an RDD is predicted and discussed. - Highlights: • A prototype mobile system for real-time, wide-area radiation surveillance was built. • Experimental measurements and Monte Carlo simulations were used to test the system. • The system is suitable to detect and identify radiation sources in threat scenarios.

  7. Radiation effects on custom MOS devices

    Harris, R.

    1999-05-01

    This Thesis consists of four chapters: The first is primarily for background information on the effects of radiation on MOS devices and the theory of wafer bonding; the second gives a full discussion of all practical work carried out for manufacture of Field Effect test Capacitors, the third discusses manufacture of vacuum insulator Field Effect Transistors (FET's) and the fourth discusses the testing of these devices. Using a thermally bonded field effect capacitor structure, a vacuum dielectric was studied for use in high radiation environments with a view to manufacturing a CMOS compatible, micro machined transistor. Results are given in the form of high frequency C-V curves before and after a 120 kGy(Si), 12 MRad(Si), dose from a Co 60 source showing a 1 Volt shift. The work is then extended to the design and manufacture of a micro machined, under-etch technique, Field Effect Transistor for use in high radiation areas. Results are shown for Threshold, Subthreshold and Transfer characteristics before and after irradiation up to a total dose of 100kGy or 10MRad. The conclusion from this work is that it should be possible to commercially manufacture practical vacuum dielectric field effect transistors which are radiation hard to at least 120 kGy(Si). (author)

  8. Effects of radiation on MOS structures and silicon devices

    Braeunig, D.; Fahrner, W.

    1983-02-01

    A comprehensive view of radiation effects on MOS structures and silicon devices is given. In the introduction, the interaction of radiation with semiconductor material is presented. In the next section, the electrical degradation of semiconductor devices due to this interaction is discussed. The commonly used hardening techniques are shown. The last section deals with testing of radiation hardness of devices. (orig.) [de

  9. A new device for energy-dispersive x-ray fluorescence

    Swoboda, Walter; Kanngiesser, Birgit; Beckhoff, Burkhard; Begemann, Klaus; Neuhaus, Hermann; Scheer, Jens

    1991-12-01

    A new measuring chamber for energy-dispersive x-ray fluorescence is presented, which allows excitation of the sample by three (commonly applied) modes: secondary target excitation, Barkla scattering, and Bragg reflection. In spite of the short distances required to obtain high intensities, the transmission of the radiator through the bulk matter of the chamber wall and the collimators could be kept negligibly small. In the case of Bragg reflection, the adjustment of all degrees of freedom of the crystal is performed independently and reproducibly under vacuum conditions. The device allows the choice of excitation mode optimized for the respective analytical problem. An experimental test using an environmental specimen shows the detection limits obtainable.

  10. Hair treatment device for providing dispersed colors by light diffraction

    Lamartine, Bruce Carvell; Orler, Bruce E.; Sutton, Richard Matthew Charles; Song, Shuangqi

    2016-01-26

    Hair was coated with polymer-containing fluid and then hot pressed to form a composite of hair and a polymer film imprinted with a nanopattern. Polychromatic light incident on the nanopattern is diffracted into dispersed colored light.

  11. Evaluation of material dispersion using a nanosecond optical pulse radiator.

    Horiguchi, M; Ohmori, Y; Miya, T

    1979-07-01

    To study the material dispersion effects on graded-index fibers, a method for measuring the material dispersion in optical glass fibers has been developed. Nanosecond pulses in the 0.5-1.7-microm region are generated by a nanosecond optical pulse radiator and grating monochromator. These pulses are injected into a GeO(2)-P(2)0(5)-doped silica graded-index fiber. Relative time delay changes between different wavelengths are used to determine material dispersion, core glass refractive index, material group index, and optimum profile parameter of the graded-index fiber. From the measured data, the optimum profile parameter on the GeO(2)-P(2)O(5)-doped silica graded-index fiber could be estimated to be 1.88 at 1.27 microm of the material dispersion free wavelength region and 1.82 at 1.55 microm of the lowest-loss wavelength region in silica-based optical fiber waveguides.

  12. Radiological Dispersal Devices: Select Issues in Consequence Management

    2004-03-10

    goals, following which medical treatment of the radiation effects can be provided.10 Post- exposure medical therapy is designed to treat the consequences ...the approach that radiation related health effects can be extrapolated, i.e. the damage caused by radiation exposure CRS-3 8 For example, see Health...effort to determine the validity of these models, the federal government funds research into the health effects of radiation exposure through the

  13. Effect of ionizing radiation on cholesterol in aqueous dispersion

    Lakritz, L.; Maerker, G.

    1989-01-01

    Aqueous sodium stearate dispersions of cholesterol were irradiated at 0-2 degrees C with absorbed doses ranging from 2.5 to 50 kGy. The resulting mixture of cholesterol derivatives was isolated and examined for 7-ketocholesterol and cholesterol 5 alpha, 6 alpha-epoxide and 5 beta, 6 beta-epoxide content. Concentrations of all three compounds increased with dose, while the ratio of 7-ketocholesterol to total epoxides decreased with increasing dose. The ratio of 7-ketocholestrol to the epoxides was approximately 1 or below at all dose levels while the same ratio in autoxidations of cholesterol in dispersions was normally 6 or greater. The change in the keto/epoxide ratio may be a means for determining whether meat or other foods containing cholesterol have been subjected to ionizing radiation

  14. Dispersive effects in radiation transport and radiation hydrodynamics in matter at high density

    Crowley, B.J.B.

    1983-01-01

    In a recent research program (reported in AWRE 0 20/82) I have investigated the generalisation of the equations of radiation hydrodynamics when electromagnetic radiation is assumed to obey a linear-response dispersion relation of the form nω=kc where the refractive index n depends on the frequency ω and/or wave number k. From the application of the Boltzmann-Liouville transport theory to photons in the short-wavelength (geometrical optics) limit, I derive the energy and momentum equations which, when combined with a classical (Euler-Lagrange-Navier-Stokes) treatment of a fluid material medium in LTE, yield a complete dynamical theory of linear interactions (+ stimulated processes) between incoherent (thermal) radiation and dense, locally isotropic matter. The theory includes an account of pondero-motive forces and electro (magneto) striction. Moreover, it is apparently capable of being generalised to non-linear interactions in which the refractive index depends on the local specific intensity of the radiation field, and, to some extent, to the treatment of high-frequency coherent radiation. The generalisation of various approximated forms of radiation-transport theory (esp. diffusion) has been considered in detail. Some problems remain however. One such is the treatment of anomalous dispersion. Current research work is concentrating on the interesting atomic physics aspects of electromagnetic (esp. radiative) properties of a dispersive material medium

  15. Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials

    Ribis, J.; Bordas, E.; Trocellier, P.; Serruys, Y.; de Carlan, Y.; Legris, A.

    2015-12-01

    ODS materials constitute a new promising class of structural materials for advanced fission and fusion energy application. These Fe-Cr based ferritic steels contain ultra-high density of dispersion-strengthening nanoclusters conferring excellent mechanical properties to the alloy. Hence, guarantee the nanocluster stability under irradiation remain a critical issue. Nanoclusters are non-equilibrium multicomponent compounds (YTiCrO) forming through a complex nucleation pathway during the elaboration process. In this paper, it is proposed to observe the response of these nanoclusters when the system is placed far from equilibrium by means of ion beam. The results indicate that the Y, Ti, O and Cr atoms self-organized so that nanoclusters coarsened but maintain their non-equilibrium chemical composition. It is discussed that the radiation-sustained nanocluster metastability emerges from cooperative effects: radiation-induced Ostwald ripening, permanent creation of vacancies in the clusters, and fast Cr diffusion mediated by interstitials.

  16. Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials

    Ribis, J.; Bordas, E.; Trocellier, P.; Serruys, Y.; Carlan, Y. de; Legris, A.

    2015-01-01

    ODS materials constitute a new promising class of structural materials for advanced fission and fusion energy application. These Fe–Cr based ferritic steels contain ultra-high density of dispersion-strengthening nanoclusters conferring excellent mechanical properties to the alloy. Hence, guarantee the nanocluster stability under irradiation remain a critical issue. Nanoclusters are non-equilibrium multicomponent compounds (YTiCrO) forming through a complex nucleation pathway during the elaboration process. In this paper, it is proposed to observe the response of these nanoclusters when the system is placed far from equilibrium by means of ion beam. The results indicate that the Y, Ti, O and Cr atoms self-organized so that nanoclusters coarsened but maintain their non-equilibrium chemical composition. It is discussed that the radiation-sustained nanocluster metastability emerges from cooperative effects: radiation-induced Ostwald ripening, permanent creation of vacancies in the clusters, and fast Cr diffusion mediated by interstitials.

  17. SOR/72-43 Radiation Emitting Devices Regulations

    1972-01-01

    These Regulations of 10 February 1972, supplemented by SOR/77-895, lay down the classes of radiation emitting devices for the purposes of the Radiation Emitting Devices Act. They lay down their standards of design and construction and warning sign specifications and provide for the procedure to be followed by inspectors of such devices. The devices include inter alia extra-oral dental x-ray equipment, baggage inspection x-ray devices, laser scanners, television receivers. (NEA)

  18. Defining Design Limits of a Portable Radiation Dispersion Prevention System

    Kang Seong Woo; Yim, Man Sung [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    To the eyes of the general public, however, reducing the chance of such accident is not enough. A typical engineer views a risk as a combination of both consequences and likelihoods, whereas an ordinary person may only consider consequences. The implementations of better regulations, improved human operator actions, and installations of extra safety systems may reduce the chance of having uncontrolled accident practically to zero, yet the public still fears having nuclear reactors. One such barrier system is a portable suction-based radiation dispersion prevention system, called Integrated Portable Suction-Centrifugal Filtration System (IPS-CFS). To design such systems, detailed information about the radioactive source term at the release point to the environment must be available to draw design limits. The preliminary design limits of the IPS-CFS are presented in this paper. It may seem challenging to design a comprehensive radioactive dispersion system that can successfully prevent such extreme accident conditions, especially due to the releases from high pressure. However, as more technologies develop and more realistic source term analyses are performed, it may be possible to develop such a public relief technology. With the development of such technology that can effectively prevent the dispersion of the uncontrolled radioactive releases in case of another Fukushima-like accident, it will result in increased safety of the nuclear power plants for both the public and the workers and may contribute to the increase in the public acceptance of nuclear energy.

  19. Black/white hole radiation from dispersive theories

    Macher, Jean; Parentani, Renaud

    2009-01-01

    We study the fluxes emitted by black holes when using dispersive field theories. We work with stationary one-dimensional backgrounds which are asymptotically flat on both sides of the horizon. The asymptotic fluxes are governed by a 3x3 Bogoliubov transformation. The fluxes emitted by the corresponding white holes are regular and governed by the inverse transformation. We numerically compute the spectral properties of these fluxes for both sub- and superluminal quartic dispersion. The leading deviations with respect to the dispersionless flux are computed and shown to be governed by a critical frequency above which there is no radiation. Unlike the UV scale governing dispersion, its value critically depends on the asymptotic properties of the background. We also study the flux outside the robust regime. In particular we show that its low-frequency part remains almost thermal but with a temperature which significantly differs from the standard one. Applications to four-dimensional black holes and Bose-Einstein condensates are in preparation.

  20. Detection device of dangerous radiation for the living beings

    Lacoste, F.

    1991-01-01

    This invention is about a portable device able to measure dose rates or doses of gamma, ultraviolet and X radiation or charged particles. This device is composed of a radiation detector, a calculator of the accumulate dose and a memory to store the data. This device has a credit card format

  1. Experimental arrangement to measure dispersion in optical fiber devices

    Armas Rivera, Ivan [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias de la Electronica (Mexico); Beltran Perez, Georgina; Castillo Mixcoatl, Juan; Munoz Aguirre, Severino [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico Matematicas (Mexico); Zaca Moran, Placido, E-mail: ivan_rr1@hotmail.com [Benemerita Universidad Autonoma de Puebla, Fisicoquimica de Materiales ICUAP (Mexico)

    2011-01-01

    Dispersion is a quite important parameter in systems based on optical fiber, especially in pulsed emission lasers, where the temporal width is affected by such parameter. Therefore, it is necessary to consider the dispersion provoked by each component in the cavity. There are various experimental interferometric arrangements to evaluate this parameter. Generally, these systems modify the wavelength to obtain information about the n({lambda}) dependency, which is contained in the interferogram phase. However, this makes the system quite slow and it requires tunable and narrow bandwidth laser sources. In the present work, results obtained from an arrangement based on Mach-Zehnder interferometer where one of the arms is the optical fiber under study, while the reference one is air, are presented. In order to determine the n({lambda}) dependency, a wide spectrum light source was used in the wavelength range of interest. The phase information was evaluated from the interferometric signal measured by an optical spectrum analyzer.

  2. Experimental arrangement to measure dispersion in optical fiber devices

    Armas Rivera, Ivan; Beltran Perez, Georgina; Castillo Mixcoatl, Juan; Munoz Aguirre, Severino; Zaca Moran, Placido

    2011-01-01

    Dispersion is a quite important parameter in systems based on optical fiber, especially in pulsed emission lasers, where the temporal width is affected by such parameter. Therefore, it is necessary to consider the dispersion provoked by each component in the cavity. There are various experimental interferometric arrangements to evaluate this parameter. Generally, these systems modify the wavelength to obtain information about the n(λ) dependency, which is contained in the interferogram phase. However, this makes the system quite slow and it requires tunable and narrow bandwidth laser sources. In the present work, results obtained from an arrangement based on Mach-Zehnder interferometer where one of the arms is the optical fiber under study, while the reference one is air, are presented. In order to determine the n(λ) dependency, a wide spectrum light source was used in the wavelength range of interest. The phase information was evaluated from the interferometric signal measured by an optical spectrum analyzer.

  3. Ground deposition pattern of an explosive radiological dispersal device (RDD)

    Sharon, A.; Halevy, I.; Sattinger, D.; Berenstein, Z.; Neuman, R.; Banaim, P.; Pinhas, M.; Yaar, I.

    2014-01-01

    Activity deposition pattern of outdoor explosive RDD experiments were discussed and analyzed. In cases of fine, respirable size, aerosols dispersion, most of the activity deposited inside a circle of up to 4 fireball radii around the detonation point. About an order of magnitude less was deposited in the rest of the wide open area, in the downwind direction. The effects of different RA particles size distribution on the ground deposition pattern is still being studying under the framework of GF project

  4. Response of the REWARD detection system to the presence of a Radiological Dispersal Device

    Luis, R.; Baptista, M.; Barros, S.; Marques, J.; Vaz, P.; Balbuena, J.; Disch, C.; Fleta, C.; Jumilla, C.; Lozano, M.

    2015-01-01

    In recent years an increased international concern has emerged about the radiological and nuclear (RN) threats associated with the illicit trafficking of nuclear and radioactive materials that could be potentially used for terrorist attacks. The objective of the REWARD (Real Time Wide Area Radiation Surveillance System) project, co-funded by the European Union 7. Framework Programme Security, consisted in building a mobile system for real time, wide area radiation surveillance, using a CdZnTe detector for gamma radiation and a neutron detector based on novel silicon technologies. The sensing unit includes a GPS system and a wireless communication interface to send the data remotely to a monitoring base station, where it will be analyzed in real time and correlated with historical data from the tag location, in order to generate an alarm when an abnormal situation is detected. Due to its portability and accuracy, the system will be extremely useful in many different scenarios such as nuclear terrorism, lost radioactive sources, radioactive contamination or nuclear accidents. This paper shortly introduces the REWARD detection system, depicts some terrorist threat scenarios involving radioactive sources and special nuclear materials and summarizes the simulation work undertaken during the past three years in the framework of the REWARD project. The main objective consisted in making predictions regarding the behavior of the REWARD system in the presence of a Radiological Dispersion Device (RDD), one of the reference scenarios foreseen for REWARD, using the Monte Carlo simulation program MCNP6. The reference scenario is characterized in detail, from the i) radiological protection, ii) radiation detection requirements and iii) communications points of view. Experimental tests were performed at the Fire Brigades Facilities in Rome and at the Naples Fire Brigades, and the results, which validate the simulation work, are presented and analyzed. The response of the REWARD

  5. Response of the REWARD detection system to the presence of a Radiological Dispersal Device

    Luis, R.; Baptista, M.; Barros, S.; Marques, J.; Vaz, P. [IST - Campus Tecnologico e Nuclear, Estrada Nacional 10 - km 139.7, 2695-066, Bobadela LRS (Portugal); Balbuena, J.; Disch, C. [Physical Institut, University of Freiburg Hermann-Herder-Str. 3 D-79104 Freiburg (Germany); Fleta, C.; Jumilla, C.; Lozano, M. [Instituto de Microelectronica de Barcelona - IMB-CNM, CSIC, E-08193 Bellaterra, Barcelona (Spain)

    2015-07-01

    In recent years an increased international concern has emerged about the radiological and nuclear (RN) threats associated with the illicit trafficking of nuclear and radioactive materials that could be potentially used for terrorist attacks. The objective of the REWARD (Real Time Wide Area Radiation Surveillance System) project, co-funded by the European Union 7. Framework Programme Security, consisted in building a mobile system for real time, wide area radiation surveillance, using a CdZnTe detector for gamma radiation and a neutron detector based on novel silicon technologies. The sensing unit includes a GPS system and a wireless communication interface to send the data remotely to a monitoring base station, where it will be analyzed in real time and correlated with historical data from the tag location, in order to generate an alarm when an abnormal situation is detected. Due to its portability and accuracy, the system will be extremely useful in many different scenarios such as nuclear terrorism, lost radioactive sources, radioactive contamination or nuclear accidents. This paper shortly introduces the REWARD detection system, depicts some terrorist threat scenarios involving radioactive sources and special nuclear materials and summarizes the simulation work undertaken during the past three years in the framework of the REWARD project. The main objective consisted in making predictions regarding the behavior of the REWARD system in the presence of a Radiological Dispersion Device (RDD), one of the reference scenarios foreseen for REWARD, using the Monte Carlo simulation program MCNP6. The reference scenario is characterized in detail, from the i) radiological protection, ii) radiation detection requirements and iii) communications points of view. Experimental tests were performed at the Fire Brigades Facilities in Rome and at the Naples Fire Brigades, and the results, which validate the simulation work, are presented and analyzed. The response of the REWARD

  6. Medical Devices; General Hospital and Personal Use Devices; Classification of the Ultraviolet Radiation Chamber Disinfection Device. Final order.

    2015-11-20

    The Food and Drug Administration (FDA or the Agency) is classifying the ultraviolet (UV) radiation chamber disinfection device into class II (special controls). The special controls that will apply to the device are identified in this order and will be part of the codified language for the UV radiation chamber disinfection device classification. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device.

  7. International Standards for Radiation Sterilization of Medical Devices

    Miller, A.

    2007-01-01

    For a terminally sterilized medical device to be designated '' STERILE '', probability of finding the viable micro-organisms in the device shall be equal to or less than 1 x 10 -6 (EN 556-1:2001: Sterilization of medical devices - Requirements for medical devices to be designated '' STERILE '' - Part 1: Requirements for terminally sterilized medical devices). Author presents the main legal aspects of the international standards for radiation sterilization of medical devices

  8. The Economic Impact of a Radiological Dispersal Device (RDE)

    2009-03-01

    construction sites” 9 (Boyle, 2002). In the Goiania case, the Cs-137 was acquired from an abandoned radiation- therapy unit when a private radiotherapy...Godiva Chocolatier 445292 Rocky Mountain Chocolate Factory 445292 Waggoner Chocolatier North American Industry Classification System (NAICS) Prior to

  9. Tm2+ luminescent materials for solar radiation conversion devices

    Van der Kolk, E.

    2015-01-01

    A solar radiation conversion device is described that comprises a luminescent Tm 2+ inorganic material for converting solar radiation of at least part of the UV and/or visible and/or infra red solar spectrum into infrared solar radiation, preferably said infrared solar radiation having a wavelength

  10. Hospital management of mass radiological casualties: reassessing exposures from contaminated victims of an exploded radiological dispersal device (RDD)

    Ansari, Armin; Harper, Frederick Taylor; Smith, James M.

    2005-01-01

    One of the key issues in the aftermath of an exploded radiological dispersal device from a terrorist event is that of the contaminated victim and the concern among healthcare providers for the harmful exposures they may receive in treating patients, especially if the patient has not been thoroughly decontaminated. This is critically important in the event of mass casualties from a nuclear or radiological incident because of the essential rapidity of acute medical decisions and that those who have life- or limb-threatening injuries may have treatment unduly delayed by a decontamination process that may be unnecessary for protecting the health and safety of the patient or the healthcare provider. To estimate potential contamination of those exposed in a radiological dispersal device event, results were used from explosive aerosolization tests of surrogate radionuclides detonated with high explosives at the Sandia National Laboratories. Computer modeling was also used to assess radiation dose rates to surgical personnel treating patients with blast injuries who are contaminated with any of a variety of common radionuclides. It is demonstrated that exceptional but plausible cases may require special precautions by the healthcare provider, even while managing life-threatening injuries of a contaminated victim from a radiological dispersal device event.

  11. Radiation Damage in Electronic Memory Devices

    Fetahović, Irfan; Pejović, Milić; Vujisić, Miloš

    2013-01-01

    This paper investigates the behavior of semiconductor memories exposed to radiation in order to establish their applicability in a radiation environment. The experimental procedure has been used to test radiation hardness of commercial semiconductor memories. Different types of memory chips have been exposed to indirect ionizing radiation by changing radiation dose intensity. The effect of direct ionizing radiation on semiconductor memory behavior has been analyzed by using Monte Carlo simula...

  12. Conducted and radiated noise in detection devices

    Moisa, D.

    2001-01-01

    Conducted and radiated noise is an external noise which affects the quality of the signals of the detectors. An external noise can be reduced, usually, by shielding. This was the situation with 'older fashion' devices which uses boxes and coaxial cables. As the devices becomes more complex, the shielding of the detectors is more and more difficult and the transmission lines evolves from coaxial cables to twisted pair cables which are no more shielded. In such situation, the conducted and radiated noise (C and R noise) becomes important. Due to complexity of a real detector, the main work is based on experiments with components and simulations of some specific problems, associated with CDC detector. The first experiment was done to understand how the C and R noise is propagated. The emission device was a set of coils (between 3 and 5 turns with diameter from 10 to 50 mm) feed by an 74S140 driver. A pulse of about 8 ns width was generated. A coil of reception of about the same physical characteristics was used to see the emitted pulse. When the two coils are separated by about 80 cm, the receiver generated no signal. But, if along the two coils, a conductive material is introduced (a wire for instance), the receiver senses a signal. This signal is not changed too much if the wire is or not connected to ground. The explanation is simple: the pulse in the emitting coil produces an EM pulse which spreads in space. If a conductive material is around, the EM energy is received by that conductor and it is propagated at tens of meters with small attenuation. When this energy reaches the end of the conductor, it is radiated in space. If some other conductors are around, the energy is received and propagated by that conductors. This experiment was done for about 20 kinds of conductors (different coax cables, twisted-pair ribbons, power cables, metallic bars) and with many coils (different diameters and numbers of turns). It was measured the pk-to-pk level, decay constant and

  13. Radiation Damage in Electronic Memory Devices

    Irfan Fetahović

    2013-01-01

    Full Text Available This paper investigates the behavior of semiconductor memories exposed to radiation in order to establish their applicability in a radiation environment. The experimental procedure has been used to test radiation hardness of commercial semiconductor memories. Different types of memory chips have been exposed to indirect ionizing radiation by changing radiation dose intensity. The effect of direct ionizing radiation on semiconductor memory behavior has been analyzed by using Monte Carlo simulation method. Obtained results show that gamma radiation causes decrease in threshold voltage, being proportional to the absorbed dose of radiation. Monte Carlo simulations of radiation interaction with material proved to be significant and can be a good estimation tool in probing semiconductor memory behavior in radiation environment.

  14. Radiation environmental real-time monitoring and dispersion modeling: A comprehensive solution

    Kovacik, A.; Bartokova, I.; Omelka, J.; Melicherova, T.

    2014-01-01

    The system of real-time radiation monitoring provided by MicroStep-MIS is a turn-key solution for measurement, acquisition, processing, reporting, archiving and displaying of various radiation data. At the level of measurements, the monitoring stations can be equipped with various devices from radiation probes, measuring the actual ambient gamma dose rate, to fully automated aerosol monitors, returning analysis results of natural and manmade radionuclides concentrations in the air. Using data gathered by our radiation probes RPSG-05 integrated into monitoring network of Crisis Management of the Slovak Republic and into monitoring network of Slovak Hydrometeorological Institute, we demonstrate its reliability and long-term stability of measurements. Data from RPSG-05 probes and GammaTracer probes, both of these types are used in the SHI network, are compared. The sensitivity of RPSG-05 is documented on data where changes of dose rate are caused by precipitation. Qualities of RPSG-05 probe are illustrated also on example of its use in radiation monitoring network in the United Arab Emirates. A more detailed information about radioactivity of the atmosphere can be obtained by using spectrometric detectors (e.g. scintillation detectors) which, besides gamma dose rate values, offer also a possibility to identify different radionuclides. However, this possibility is limited by technical parameters of detector like energetic resolution and detection efficiency in given geometry of measurement. A clearer information with less doubts can be obtained from aerosol monitors with a built-in silicon detector of alpha and beta particles and with an electrically cooled HPGe detector dedicated for gamma-ray spectrometry, which is performed during the sampling. Data from a complex radiation monitoring network can be used, together with meteorological data, in radiation dispersion model by MicroStep-MIS. This model serves for simulation of atmospheric propagation of radionuclides

  15. Frequency and Temperature Dependence of Fabrication Parameters in Polymer Dispersed Liquid Crystal Devices

    Torres, Juan C.; Vergaz, Ricardo; Barrios, David; Sánchez-Pena, José Manuel; Viñuales, Ana; Grande, Hans Jürgen; Cabañero, Germán

    2014-01-01

    A series of polymer dispersed liquid crystal devices using glass substrates have been fabricated and investigated focusing on their electrical properties. The devices have been studied in terms of impedance as a function of frequency. An electric equivalent circuit has been proposed, including the influence of the temperature on the elements into it. In addition, a relevant effect of temperature on electrical measurements has been observed. PMID:28788632

  16. Frequency and Temperature Dependence of Fabrication Parameters in Polymer Dispersed Liquid Crystal Devices

    Juan C. Torres

    2014-05-01

    Full Text Available A series of polymer dispersed liquid crystal devices using glass substrates have been fabricated and investigated focusing on their electrical properties. The devices have been studied in terms of impedance as a function of frequency. An electric equivalent circuit has been proposed, including the influence of the temperature on the elements into it. In addition, a relevant effect of temperature on electrical measurements has been observed.

  17. The effects of cosmic radiation on implantable medical devices

    Bradley, P.

    1996-01-01

    Metal oxide semiconductor (MOS) integrated circuits, with the benefits of low power consumption, represent the state of the art technology for implantable medical devices. Three significant sources of radiation are classified as having the ability to damage or alter the behavior of implantable electronics; Secondary neutron cosmic radiation, alpha particle radiation from the device packaging and therapeutic doses(up to 70 Gγ) of high energy radiation used in radiation oncology. The effects of alpha particle radiation from the packaging may be eliminated by the use of polyimide or silicone rubber die coatings. The relatively low incidence of therapeutic radiation incident on an implantable device and the use of die coating leaves cosmic radiation induced secondary neutron single event upset (SEU) as the main pervasive ionising radiation threat to the reliability of implantable devices. A theoretical model which predicts the susceptibility of a RAM cell to secondary neutron cosmic radiation induced SEU is presented. The model correlates well within the statistical uncertainty associated with both the theoretical and field estimate. The predicted Soft Error Rate (SER) is 4.8 x l0 -12 upsets/(bit hr) compared to an observed upset rate of 8.5 x 10 -12 upsets/(bit hr) from 20 upsets collected over a total of 284672 device days. The predicted upset rate may increase by up to 20% when consideration is given to patients flying in aircraft The upset rate is also consistent with the expected geographical variations of the secondary cosmic ray neutron flux, although insufficient upsets precluded a statistically significant test. This is the first clinical data set obtained indicating the effects of cosmic radiation on implantable devices. Importantly, it may be used to predict the susceptibility of future to the implantable device designs to the effects of cosmic radiation

  18. Near field resonant inductive coupling to power electronic devices dispersed in water

    Kuipers, J.; Bruning, H.; Bakker, S.; Rijnaarts, H.H.M.

    2012-01-01

    The purpose of this research was to investigate inductive coupling as a way to wirelessly power electronic devices dispersed in water. The most important parameters determining this efficiency are: (1) the coupling between transmitting and receiving coils, (2) the quality factors of the transmitting

  19. Terrestrial radiation effects in ULSI devices and electronic systems

    Ibe, Eishi H

    2014-01-01

    A practical guide on how mathematical approaches can be used to analyze and control radiation effects in semiconductor devices within various environments Covers faults in ULSI devices to failures in electronic systems caused by a wide variety of radiation fields, including electrons, alpha -rays, muons, gamma rays, neutrons and heavy ions. Readers will learn the environmental radiation features at the ground or avionics altitude. Readers will also learn how to make numerical models from physical insight and what kind of mathematical approaches should be implemented to analyze the radiation effects. A wide variety of mitigation techniques against soft-errors are reviewed and discussed. The author shows how to model sophisticated radiation effects in condensed matter in order to quantify and control them. The book provides the reader with the knowledge on a wide variety of radiation fields and their effects on the electronic devices and systems. It explains how electronic systems including servers and rout...

  20. Evaluation of an enclosed ultraviolet-C radiation device for decontamination of mobile handheld devices.

    Mathew, J Itty; Cadnum, Jennifer L; Sankar, Thriveen; Jencson, Annette L; Kundrapu, Sirisha; Donskey, Curtis J

    2016-06-01

    Mobile handheld devices used in health care settings may become contaminated with health care-associated pathogens. We demonstrated that an enclosed ultraviolet-C radiation device was effective in rapidly reducing methicillin-resistant Staphylococcus aureus, and with longer exposure times, Clostridium difficile spores, on glass slides and reducing contamination on in-use mobile handheld devices. Published by Elsevier Inc.

  1. The transient radiation effects and hardness of programmed device

    Du Chuanhua; Xu Xianguo; Zhao Hailin

    2014-01-01

    A review and summary of research and development in the investigation of transient ionizing radiation effects in device and cirviut is presented. The transient ionizing radiation effects in two type of programmed device, that's 32 bit Microcontroller and antifuse FPGA, were studied. The expeiment test data indicate: The transient ionizing radiation effects of 32 bit Microcontroller manifested self-motion restart and Latchup, the Latchup threshold was 5 × 10"7 Gy (Si)/s. The transient ionizing radiation effects of FPGA was reset, no Latchup. The relationship of circuit effects to physical mechanisms was analized. A new method of hardness in circiut design was put forward. (authors)

  2. Radiation dose distributions due to sudden ejection of cobalt device.

    Abdelhady, Amr

    2016-09-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Radiation detection and measurement concepts, methods and devices

    McGregor, Douglas

    2019-01-01

    This text on radiation detection and measurement is a response to numerous requests expressed by students at various universities, in which the most popularly used books do not provide adequate background material, nor explain matters in understandable terms. This work provides a modern overview of radiation detection devices and radiation measurement methods. The topics selected in the book have been selected on the basis of the author’s many years of experience designing radiation detectors and teaching radiation detection and measurement in a classroom environment.

  4. Adjustable radiation protection device of the fluoroscope DG 10

    Hoermann, D.

    1980-01-01

    In cooperation with the 'VEB Transformatoren- und Roentgenwerk Hermann Matern', Dresden, an adjustable radiation protection device has been developed. This supplementary equipment for fluoroscopes ensures a sufficient protection of the gonads against undesirable X radiation, can be handled easily and does not annoy patients, esp. children

  5. Radiation protection measuring device SSM-1

    Anon.

    1988-01-01

    Product information from the producer on a universal measuring instrument for alpha, beta and gamma radiation designed for stationary and field use by military, police and fire brigades. 4 figs. (qui)

  6. Improvement of a device for region radiation survey

    Poltinnikov, S.A.

    1978-01-01

    The electromechnanical device based on coding the turning angle of an automobile wheel by the number of electric pulses controlling the step motor of a film gate of gamma radiometer is proposed. The device is intended for automatizing recordings of gamma-radiation levels depending on a certain distance in a given terrain. The device has been tested at car speeds from 10 to 80 km/hr

  7. Transient radiation effects in GaAs semiconductor devices

    Chang, J.Y.; Stauber, M.; Ezzeddine, A.; Howard, J.W.; Constantine, A.G.; Becker, M.; Block, R.C.

    1988-01-01

    This paper describes an ongoing program to identify the response of GaAs devices to intense pulses of ionizing radiation. The program consists of experimental measurements at the Rensselaer Polytechnic Institute's RPI electron linear accelerator (Linac) on generic GaAs devices built by Grumman Tachonics Corporation and the analysis of these results through computer simulation with the circuit model code SPICE (including radiation effects incorporated in the variations TRISPICE and TRIGSPICE and the device model code PISCES IIB). The objective of this program is the observation of the basic response phenomena and the development of accurate simulation tools so that results of Linac irradiations tests can be understood and predicted

  8. Radiation-Tolerance Assessment of a Redundant Wireless Device

    Huang, Q.; Jiang, J.

    2018-01-01

    This paper presents a method to evaluate radiation-tolerance without physical tests for a commercial off-the-shelf (COTS)-based monitoring device for high level radiation fields, such as those found in post-accident conditions in a nuclear power plant (NPP). This paper specifically describes the analysis of radiation environment in a severe accident, radiation damages in electronics, and the redundant solution used to prolong the life of the system, as well as the evaluation method for radiation protection and the analysis method of system reliability. As a case study, a wireless monitoring device with redundant and diversified channels is evaluated by using the developed method. The study results and system assessment data show that, under the given radiation condition, performance of the redundant device is more reliable and more robust than those non-redundant devices. The developed redundant wireless monitoring device is therefore able to apply in those conditions (up to 10 M Rad (Si)) during a severe accident in a NPP.

  9. Using a Commercial Ethernet PHY Device in a Radiation Environment

    Parks, Jeremy; Arani, Michael; Arroyo, Roberto

    2014-01-01

    This work involved placing a commercial Ethernet PHY on its own power boundary, with limited current supply, and providing detection methods to determine when the device is not operating and when it needs either a reset or power-cycle. The device must be radiation-tested and free of destructive latchup errors. The commercial Ethernet PHY's own power boundary must be supplied by a current-limited power regulator that must have an enable (for power cycling), and its maximum power output must not exceed the PHY's input requirements, thus preventing damage to the device. A regulator with configurable output limits and short-circuit protection (such as the RHFL4913, rad hard positive voltage regulator family) is ideal. This will prevent a catastrophic failure due to radiation (such as a short between the commercial device's power and ground) from taking down the board's main power. Logic provided on the board will detect errors in the PHY. An FPGA (field-programmable gate array) with embedded Ethernet MAC (Media Access Control) will work well. The error detection includes monitoring the PHY's interrupt line, and the status of the Ethernet's switched power. When the PHY is determined to be non-functional, the logic device resets the PHY, which will often clear radiation induced errors. If this doesn't work, the logic device power-cycles the FPGA by toggling the regulator's enable input. This should clear almost all radiation induced errors provided the device is not latched up.

  10. BAKNET - Communication network for radiation monitoring devices

    Cohen, Y.; Wengrowicz, U.; Tirosh, D.; Barak, D.

    1997-01-01

    A system, based on a new concept of controlling and monitoring distributed radiation monitors, has been developed and approved at the NRCN. The system, named B AKNET Network , consists of a series of communication adapters connected to a main PC via an RS-485 communication network (see Fig. 1). The network's maximal length is 1200 meters and it enables connection of up to 128 adapters. The BAKNET adapters are designed to interface output signals of different types of stationary radiation monitors to a main PC. The BAKNET adapters' interface type includes: digital, analog, RS-232, and mixed output signals. This allows versatile interfacing of different stationary radiation monitors to the main computer. The connection to the main computer is via an RS-485 network, utilizing an identical communication protocol. The PC software, written in C ++ under MS-Windows, consists of two main programs. The first is the data collection program and the second is the Human Machine Interface (HMI). (authors)

  11. A fluence device for precise radiation dosimetry

    Arnott, R.G.T.; Peak, M.J.

    1979-01-01

    An instrument is described which has been designed to ensure precise positioning of samples and sensing devices in three dimensions at all times during irradiation procedures. The system, which is both robust and sensitive, overcomes difficulties experienced when slight variations in the positioning of a sample under irradiation results in large changes in fluence. (UK)

  12. Device for converting electromagnetic radiation energy into electrical energy and method of manufacturing such a device

    2007-01-01

    Device (10) for converting electromagnetic radiation energy into electrical energy, comprising at least a photovoltaic element (11) with a radiation-sensitive surface, wherein a covering layer (12) of a material comprising a silicon compound, to which a rare earth element has been added, is present

  13. Radiation dose distributions due to sudden ejection of cobalt device

    Abdelhady, Amr

    2016-01-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. - Highlights: • This study aims to calculate the dose rate profiles after cobalt device ejection from open-pool-type reactor core. • MicroShield code was used to evaluate the dose rates inside the reactor control room. • McSKY code was used to evaluate the dose rates outside the reactor building. • The calculated dose rates for workers are higher than the permissible limits after 18 s from device ejection.

  14. Dispersion characteristics of planar grating with arbitrary grooves for terahertz Smith-Purcell radiation

    Cao, Miaomiao; Li, Ke; Liu, Wenxin; Wang, Yong

    2015-01-01

    In this paper, a novel method of getting the dispersion relations in planar grating with arbitrary grooves for terahertz Smith-Purcell radiation is investigated analytically. The continuous profile of the groove is approximately replaced by a series of rectangular steps. By making use of field matches method and the continuity of transverse admittance, the universal dispersion equation for grating with arbitrarily shaped grooves is derived. By solving the dispersion equation in presence of electron beam, the growth rate is obtained directly and the dependence on beam parameters is analyzed. Comparisons of the dispersion characteristics among some special groove shapes have been made by numerical calculation. The results show that the rectangular-step approximation method provides a novel approach to obtain the universal dispersion relation for grating with arbitrary grooves for Smith-Purcell radiation

  15. Radiation environmental real-time monitoring and dispersion modelling

    Kovacik, Andrej; Bartokova, Ivana; Melicherova, Terezia; Omelka, Jozef

    2015-01-01

    The MicroStep-MIS system of real-time radiation monitoring, which provides a turn-key solution for measurement, acquisition, processing, reporting, archiving and displaying of various radiation data, is described and discussed in detail. The qualities, long-term stability of measurement and sensitivity of the RPSG-05 probe are illustrated on its use within the radiation monitoring network of the Slovak Hydrometeorological Institute and within the monitoring network in the United Arab Emirates. (orig.)

  16. Decontamination method and device for radiation contaminated product

    Morikawa, Kenji; Ohinata, Hiroshi; Omata, Kazuo; Sato, Toshihiko; Nakajima, Yoshihiko; Ichikawa, Seigo.

    1996-01-01

    In the present invention, radiation contaminated products generated during shot peening are decontaminated by a chelating agent, and the chelating agent is removed from the radiation contaminated products. Then the temperature of the radiation contaminated products is elevated by hot blowing at a temperature higher than a boiling point of the solvent. Then, a solvent is added to the radiation contaminated products and the solvent is evaporated abruptly. The solution of the chelating agent remained while being deposited thereto is removed by evaporation to remove it from the radiation contaminated products together with the solvent. With such procedures, all of the decontamination steps can be completed in one device without requiring a large space or not moving the radiation contaminated products on every step. (T.M.)

  17. Radiation damage assessment of Nb tunnel junction devices

    King, S.E.; Magno, R.; Maisch, W.G.

    1991-01-01

    This paper reports on the radiation hardness of a new technology using Josephson junctions that was explored by an irradiation using a fluence of 7.6 x 10 14 protons/cm 2 at an energy of 63 MeV from the U.C. Davis cyclotron. In what the authors believe is the first radiation assessment of Nb/Al 2 O 3 /Nb devices, the permanent damage in these devices was investigated. No permanent changes in the I-V characteristics of the junctions were observed indicating no significant level of material defects have occurred at this level of irradiation

  18. The research of nuclear experiment radiation environment wireless alarm device

    Wang Xiaoqiong; Wang Pan; Fang Fang

    2009-01-01

    This article introduces based on monolithic integrated circuit's nuclear experiment radiation environment wireless alarm device's software and hardware design. The system by G-M tube, high-pressured module, signal conditioning circuit, power source module, monolithic integrated circuit and wireless transmission module is composed. The device has low power consumption, high performance, high accuracy detection, easy maintenance, small size, simple operation, and other features, and has a broad application prospects. (authors)

  19. Ultraviolet radiation induces dose-dependent pigment dispersion in crustacean chromatophores.

    Gouveia, Glauce Ribeiro; Lopes, Thaís Martins; Neves, Carla Amorim; Nery, Luiz Eduardo Maia; Trindade, Gilma Santos

    2004-10-01

    Pigment dispersion in chromatophores as a response to UV radiation was investigated in two species of crustaceans, the crab Chasmagnathus granulata and the shrimp Palaemonetes argentinus. Eyestalkless crabs and shrimps maintained on either a black or a white background were irradiated with different UV bands. In eyestalkless crabs the significant minimal effective dose inducing pigment dispersion was 0.42 J/cm(2) for UVA and 2.15 J/cm(2) for UVB. Maximal response was achieved with 10.0 J/cm(2) UVA and 8.6 J/cm(2) UVB. UVA was more effective than UVB in inducing pigment dispersion. Soon after UV exposure, melanophores once again reached the initial stage of pigment aggregation after 45 min. Aggregated erythrophores of shrimps adapted to a white background showed significant pigment dispersion with 2.5 J/cm(2) UVA and 0.29 J/cm(2) UVC. Dispersed erythrophores of shrimps adapted to a black background did not show any significant response to UVA, UVB or UVC radiation. UVB did not induce any significant pigment dispersion in shrimps adapted to either a white or a black background. As opposed to the tanning response, which only protects against future UV exposure, the pigment dispersion response could be an important agent protecting against the harmful effects of UV radiation exposure.

  20. Radiation and repeated transoceanic dispersal of Schoeneae (Cyperaceae) through the southern hemisphere.

    Viljoen, Jan-Adriaan; Muasya, A Muthama; Barrett, Russell L; Bruhl, Jeremy J; Gibbs, Adele K; Slingsby, Jasper A; Wilson, Karen L; Verboom, G Anthony

    2013-12-01

    The broad austral distribution of Schoeneae is almost certainly a product of long-distance dispersal. Owing to the inadequacies of existing phylogenetic data and a lack of rigorous biogeographic analysis, relationships within the tribe remain poorly resolved and its pattern of radiation and dispersal uncertain. We employed an expanded sampling of taxa and markers and a rigorous analytic approach to address these limitations. We evaluated the roles of geography and ecology in stimulating the initial radiation of the group and its subsequent dispersal across the southern hemisphere. A dated tree was reconstructed using reversible-jump Markov chain Monte Carlo (MCMC) with a polytomy prior and molecular dating, applied to data from two nuclear and three cpDNA regions. Ancestral areas and habitats were inferred using dispersal-extinction-cladogenesis models. Schoeneae originated in Australia in the Paleocene. The existence of a "hard" polytomy at the base of the clade reflects the rapid divergence of six principal lineages ca. 50 Ma, within Australia. From this ancestral area, Schoeneae have traversed the austral oceans with remarkable frequency, a total of 29 distinct dispersal events being reported here. Dispersal rates between landmasses are not explicable in terms of the geographical distances separating them. Transoceanic dispersal generally involved habitat stasis. Although the role of dispersal in explaining global distribution patterns is now widely accepted, the apparent ease with which such dispersal may occur has perhaps been under-appreciated. In Schoeneae, transoceanic dispersal has been remarkably frequent, with ecological opportunity, rather than geography, being most important in dictating dispersal patterns.

  1. Device for the integral measurement of ionizing radiations

    Micheron, Francois.

    1980-01-01

    This invention relates to devices for the integral determination of ionizing radiations, particularly to the construction of a portable dosemeter. Portable measuring instruments have been suggested in the past, particularly dosemeters in which the discharge of a capacitor under the action of ionizing radiations is measured. Since the charge of a capacitor is not stable owing to dielectric imperfections, these measuring instruments have to be recalibrated at frequent intervals. To overcome this drawback, the invention suggests using the discharge of an electret, electrically charged to a pre-set initial value, under the action of ionizing radiations, as the transducer means of a dosemeter used in conjunction with display or warning systems [fr

  2. Radiation sensitive devices and systems for detection of radioactive materials and related methods

    Kotter, Dale K

    2014-12-02

    Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.

  3. Advanced devices and systems for radiation measurements

    Knoll, G.F.; Wehe, D.K.; He, Z.; Barrett, C.; Miyamoto, J.

    1996-06-01

    The authors' most recent work continues their long-standing efforts to develop semiconductor detectors based on the collection of only a single type of charge carrier. Their best results are an extension of the principle of coplanar electrodes first described by Paul Luke of Lawrence Berkeley Laboratory 18 months ago. This technique, described in past progress reports, has the effect of deriving an output signal from detectors that depends only on the motion of carriers close to one surface. Since nearly all of these carriers are of one type (electrons) that are attracted to that electrode, the net effect is to nearly eliminate the influence of hole motion on the properties of the output signal. The result is that the much better mobility of electrons in compound semiconductors materials such as CZT can now be exploited without the concurrent penalty of poor hole collection. They have also developed new techniques in conjunction with the coplanar electrode principle that extends the technique into a new dimension. By proper processing of signals from the opposite electrode (the cathode) from the coplanar surface, they are able to derive a signal that is a good indication of the depth of interaction at which the charge carriers were initially formed. They have been the first group to demonstrate this technique, and examples of separate pulse height spectra recorded at a variety of different depths of interaction are shown in several of the figures that follow. Obtaining depth information is one step in the direction of obtaining volumetric point-of-interaction information from the detector. If one could known the coordinates of each specific interaction, then corrections could be applied to account for the inhomogeneities that currently plague many room-temperature devices

  4. Reading device of a radiation image contained in a radioluminescent screen and tomography device containing it

    Allemand, R.; Cuzin, M.; Parot, P.

    1984-01-01

    The present invention is aimed at improving the random access time to a stimulable radioluminescent screen point (and consequently the reading time of the screen image); it is noticeably useful for longitudinal tomography. The reading device contains a source emitting a stimulation radiation beam towards the stimulable radioluminescent screen, a control mean of the stimulation radiation beam and a deflection mean which allows the beam to scan the screen surface. The device is characterized by the use of a very fast acousto-optical type deflection mean [fr

  5. Integral method for the calculation of Hawking radiation in dispersive media. I. Symmetric asymptotics

    Robertson, Scott; Leonhardt, Ulf

    2014-11-01

    Hawking radiation has become experimentally testable thanks to the many analog systems which mimic the effects of the event horizon on wave propagation. These systems are typically dominated by dispersion and give rise to a numerically soluble and stable ordinary differential equation only if the rest-frame dispersion relation Ω2(k ) is a polynomial of relatively low degree. Here we present a new method for the calculation of wave scattering in a one-dimensional medium of arbitrary dispersion. It views the wave equation as an integral equation in Fourier space, which can be solved using standard and efficient numerical techniques.

  6. Flexible, ferroelectric nanoparticle doped polymer dispersed liquid crystal devices for lower switching voltage and nanoenergy generation

    Nimmy John, V.; Varanakkottu, Subramanyan Namboodiri; Varghese, Soney

    2018-06-01

    Flexible polymer dispersed liquid crystal (F-PDLC) devices were fabricated using transparent conducting ITO/PET film. Polymerization induced phase separation (PIPS) method was used for pure and ferroelectric BaTiO3 (BTO) and ZnO doped PDLC devices. The distribution of nanoparticles in the PDLC and the formation of micro cavities were studied using field emission scanning electron microscopy (FESEM). It was observed that the addition of ferroelectric BTO nanoparticles has reduced the threshold voltage (Vth) and saturation voltage (Vsat) of FNP-PDLC by 85% and 41% respectively due to the spontaneous polarization of ferroelectric nanoparticles. The ferroelectric properties of BTO and ZnO in the fabricated devices were investigated using dynamic contact electrostatic force microscopy (DC EFM). Flexing the device can generate a potential due to the piezo-tribo electric effect of the ferroelectric nanomaterial doped in the PDLC matrix, which could be utilized as an energy generating system. The switching voltage after multiple flexing was also studied and found to be in par with non-flexing situations.

  7. Control device intended for a gamma radiation measuring instrument

    1976-01-01

    This invention concerns a monitoring device for a gamma radiation measuring instrument or radiation meter, in which the radiation to be measured brings about, inter alia, the ionisation of a gas and the generation of current pulses. The dial of this meter is generally calibrated in roentgens per hour, i.e. in radiation rate units. This instrument of very simple design is remarkable for its operating reliability. Preferably placed at the inlet to a radioactive area, it enables every user of a ratemeter to check, over the entire measuring range of this instrument, its proper operation prior to entering the area. To this effect, the monitoring device in question has a thick wall lead castle, having an internal cavity in which is mounted a radioactive source delivering a gamma radiation with given constant characteristics, through a measurement window closed by a calibrated plug. Lead doors articulated on the castle can be superimposed on this window to bring about a given attenuation of the radiation coming from the source and delivered to the exterior of the castle [fr

  8. Signal Processing Device (SPD) for networked radiation monitoring system

    Dharmapurikar, A.; Bhattacharya, S.; Mukhopadhyay, P.K.; Sawhney, A.; Patil, R.K.

    2010-01-01

    A networked radiation and parameter monitoring system with three tier architecture is being developed. Signal Processing Device (SPD) is a second level sub-system node in the network. SPD is an embedded system which has multiple input channels and output communication interfaces. It acquires and processes data from first level parametric sensor devices, and sends to third level devices in response to request commands received from host. It also performs scheduled diagnostic operations and passes on the information to host. It supports inputs in the form of differential digital signals and analog voltage signals. SPD communicates with higher level devices over RS232/RS422/USB channels. The system has been designed with main requirements of minimal power consumption and harsh environment in radioactive plants. This paper discusses the hardware and software design details of SPD. (author)

  9. Evaluation of stray radiofrequency radiation emitted by electrosurgical devices

    De Marco, M; Maggi, S

    2006-01-01

    Electrosurgery refers to the passage of a high-frequency, high-voltage electrical current through the body to achieve the desired surgical effects. At the same time, these procedures are accompanied by a general increase of the electromagnetic field in an operating room that may expose both patients and personnel to relatively high levels of radiofrequency radiation. In the first part of this study, we have taken into account the radiation emitted by different monopolar electrosurgical devices, evaluating the electromagnetic field strength delivered by an electrosurgical handle and straying from units and other electrosurgical accessories. As a summary, in the worst case a surgeon's hands are exposed to a continuous and pulsed RF wave whose magnetic field strength is 0.75 A m -1 (E-field 400 V m -1 ). Occasionally stray radiation may exceed ICNIRP's occupational exposure guidelines, especially close to the patient return plate. In the second part of this paper, we have analysed areas of particular concern to prevent electromagnetic interference with some life-support devices (ventilators and electrocardiographic devices), which have failed to operate correctly. Most clinically relevant interference occurred when an electrosurgery device was used within 0.3 m of medical equipment. In the appendix, we suggest some practical recommendations intended to minimize the potential for electromagnetic hazards due to therapeutic application of RF energy

  10. Modeling of laser radiation transport in powder beds with high-dispersive metal particles

    Kharanzhevskiy, Evgeny, E-mail: eh@udsu.ru [Udmurt State University, 426034 Universitetskaya St., 1, Izhevsk (Russian Federation); Kostenkov, Sergey [Udmurt State University, 426034 Universitetskaya St., 1, Izhevsk (Russian Federation)

    2014-02-15

    Highlights: ► Transport of laser energy in dispersive powder beds was numerically simulated. ► The results of simulating are compared with physicals experiments. ► We established the dependence of the extinction coefficient from powder properties. ► A confirmation of a geometric optic approach for monodisperse powders was proposed. -- Abstract: Two-dimensional transfer of laser radiation in a high-dispersive powder heterogeneous media is numerically calculated. The size of particles is comparable with the wave length of laser radiation so the model takes into account all known physical effects that are occurred on the vacuum–metal surface interface. It is shown that in case of small particles size both morphology of powder particles and porosity of beds influence on absorptance by the solid phase and laser radiation penetrate deep into the area of geometric shadow. Intensity of laser radiation may be described as a function corresponded to the Beer–Lambert–Bouguer law.

  11. Modeling of laser radiation transport in powder beds with high-dispersive metal particles

    Kharanzhevskiy, Evgeny; Kostenkov, Sergey

    2014-01-01

    Highlights: ► Transport of laser energy in dispersive powder beds was numerically simulated. ► The results of simulating are compared with physicals experiments. ► We established the dependence of the extinction coefficient from powder properties. ► A confirmation of a geometric optic approach for monodisperse powders was proposed. -- Abstract: Two-dimensional transfer of laser radiation in a high-dispersive powder heterogeneous media is numerically calculated. The size of particles is comparable with the wave length of laser radiation so the model takes into account all known physical effects that are occurred on the vacuum–metal surface interface. It is shown that in case of small particles size both morphology of powder particles and porosity of beds influence on absorptance by the solid phase and laser radiation penetrate deep into the area of geometric shadow. Intensity of laser radiation may be described as a function corresponded to the Beer–Lambert–Bouguer law

  12. Apparatus for minimizing radiation exposure and improving resolution in radiation imaging devices

    Ashe, J.B.; Williams, G.H.; Sypal, K.L.

    1978-01-01

    A collimator is disclosed for minimizing radiation exposure and improving resolution in radiation imaging devices. The collimator provides a penetrating beam of radiation from a source thereof, which beam is substantially non-diverging in at least one direction. In the preferred embodiment, the collimator comprises an elongated sandwich assembly of a plurality of layers of material exhibiting relatively high radiation attenuation characteristics, which attenuating layers are spaced apart and separated from one another by interleaved layers of material exhibiting relatively low radiation attenuation characteristics. The sandwich assembly is adapted for lengthwise disposition and orientation between a radiation source and a target or receiver such that the attenuating layers are parallel to the desired direction of the beam with the interleaved spacing layers providing direct paths for the radiation

  13. Kalman filtration of radiation monitoring data from atmospheric dispersion of radioactive materials

    Drews, M.; Lauritzen, B.; Madsen, H.

    2004-01-01

    A Kalman filter method using off-site radiation monitoring data is proposed as a tool for on-line estimation of the source term for short-range atmospheric dispersion of radioactive materials. The method is based on the Gaussian plume model, in which the plume parameters including the source term...

  14. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  15. Dosimetric studies for gamma radiation validation of medical devices

    Soliman, Y.S.; Beshir, W.B.; Abdel-Fattah, A.A.; Abdel-Rehim, F.

    2013-01-01

    The delivery and validation of a specified dose to medical devices are key concerns to operators of gamma radiation facilities. The objective of the present study was to characterize the industrial gamma radiation facility and map the dose distribution inside the product-loading pattern during the validation and routine control of the sterilization process using radiochromic films. Cardboard phantoms were designed to achieve the homogeneity of absorbed doses. The uncertainty of the dose delivered during validation of the sterilization process was assessed. - Highlights: ► Using γ-rays for sterilization of hollow fiber dialyzers and blood tubing sets according to ISO 11137, 2006. ► Dosimetry studies of validations of γ-irradiation facility and sterilized medical devices. ► Places of D min and D max have been determined using FWT-60 films. ► Determining the target minimum doses required to meet the desired SAL of 10 −6 for the two products.

  16. The radiation protective devices for interventional procedures using computed tomography

    Iida, Hiroji; Chabatake, Mitsuhiro; Shimizu, Mitsuru; Tamura, Sakio

    2002-01-01

    A scattered dose and a surface dose from phantom measurements during interventional procedures with computed tomography (IVR-CT) were evaluated. To reduce the personnel exposure in IVR-CT, the new protective devices were developed and its effect evaluated. Two radiation protection devices were experimentally made using a lead vinyl sheet with lead equivalent 0.125 mmPb. The first device is a lead curtain which shields the space of CT-gantry and phantom for the CT examination. The second device is a lead drape which shields on the phantom surface adjacent to the scanning plane for the CT-fluoroscopy. Scattered dose and phantom surface dose were measured with an abdominal phantom during Cine-CT (130 kV, 150 mA, 5 seconds, 10 mm section thickness). They were measured by using ionization chamber dosimeter. They were measured with and without a lead curtain and a lead drape. Scattered dose rate was measured at distance of 50-150 cm from the scanning plane. And, surface dose was measured at distance of 4-21 cm from the scanning plane on the phantom. On operator's standing position, scattered dose rates were from 8.4 to 11.6 μGy/sec at CT examination. The lead curtain and the lead drape reduced scattered dose rate at distance of 50 cm from the scanning plane by 66% and 58.3% respectively. Surface dose rate were 118 μGy/sec at distance of 5 cm from the scanning plane at CT-fluoroscopy. The lead drape reduced the surface dose by 60.5%. High scattered exposure to personnel may occur during interventional procedures using CT. They were considerably reduced during CT-arteriography by attaching the lead curtain in CT equipment. And they were substantially reduced during CT-fluoroscopy by placing the lead drape adjacent to the scanning plane, in addition, operator's hand would be protected from unnecessary radiation scattered by phantom. It was suggested that the scattered exposure to personnel could be sufficiently reduced by using radiation protection devices in IVR-CT. The

  17. Radioactivity concentration measuring device for radiation waste containing vessel

    Goto, Tetsuo.

    1994-01-01

    The device of the present invention can precisely and accurately measure a radioactive concentration of radioactive wastes irrespective of the radioactivity concentration distribution. Namely, a Ge detector having a collimator and a plurality of radiation detectors are placed at the outside of the radioactive waste containing vessel in such a way that it can rotate and move vertically relative to the vessel. The plurality of radiation detectors detect radiation coefficient signals at an assumed segment unit of a predetermined length in vertical direction and for every predetermined angle unit in the rotational direction. A weight measuring device determines the weight of the vessel. A computer calculates an average density of radioactivity for the region filled with radioactivity based on the determined net weight and radiation coefficient signals assuming that the volume of the radioactivity is constant. In addition, the computer calculates the amount of radioactivity in the assumed segment by conducting γ -ray absorption compensation calculation for the material in the vessel. Each of the amount of radioactivity is integrated to determine the amount of radioactivity in the vessel. (I.S.)

  18. Radiation damage and rate limitations in tracking devices

    Gilchriese, M.G.D.

    1984-01-01

    In this note the author briefly discusses radiation damage to wire chambers and silicon strip devices and the electronics that may be associated with each of these. Scintillating fibers and CCD's are not discussed although the former appears to be a potentially radiation-resistant detector. In order to calculate radiation levels and rates the author assumed the following: an inelastic cross section of 100 mb at the SSC - six charged particles per unit of rapidity - photons and neutrons do not contribute to the background (photon conversions are negligible with a thin Be beam pipe) - beam gas interactions and beam losses (except during injection when I assume that the detector is ''off'') are negligible. This is discussed in a later section. - 1 Rad = 3.5 x 10 7 minimum ionizing particlescm 2

  19. RADIATION PERFORMANCE OF GAN AND INAS/GAAS QUANTUM DOT BASED DEVICES SUBJECTED TO NEUTRON RADIATION

    Dhiyauddin Ahmad Fauzi

    2017-05-01

    Full Text Available In addition to their useful optoelectronics functions, gallium nitride (GaN and quantum dots (QDs based structures are also known for their radiation hardness properties. With demands on such semiconductor material structures, it is important to investigate the differences in reliability and radiation hardness properties of these two devices. For this purpose, three sets of GaN light-emitting diode (LED and InAs/GaAs dot-in-a well (DWELL samples were irradiated with thermal neutron of fluence ranging from 3×1013 to 6×1014 neutron/cm2 in PUSPATI TRIGA research reactor. The radiation performances for each device were evaluated based on the current-voltage (I-V and capacitance-voltage (C-V electrical characterisation method. Results suggested that the GaN based sample is less susceptible to electrical changes due to the thermal neutron radiation effects compared to the QD based sample.

  20. Integral method for the calculation of Hawking radiation in dispersive media. II. Asymmetric asymptotics.

    Robertson, Scott

    2014-11-01

    Analog gravity experiments make feasible the realization of black hole space-times in a laboratory setting and the observational verification of Hawking radiation. Since such analog systems are typically dominated by dispersion, efficient techniques for calculating the predicted Hawking spectrum in the presence of strong dispersion are required. In the preceding paper, an integral method in Fourier space is proposed for stationary 1+1-dimensional backgrounds which are asymptotically symmetric. Here, this method is generalized to backgrounds which are different in the asymptotic regions to the left and right of the scattering region.

  1. Ultraviolet Radiation Induces Dose-Dependent Pigment Dispersion in Crustacean Chromatophores

    Gouveia, Glauce Ribeiro; Lopes, Thaís Martins; Neves, Carla Amorim; Nery, Luiz Eduardo Maia; Trindade, Gilma Santos

    2004-01-01

    Pigment dispersion in chromatophores as a response to UV radiation was investigated in two species of crustaceans, the crab Chasmagnathus granulata and the shrimp Palaemonetes argentinus. Eyestalkless crabs and shrimps maintained on either a black or a white background were irradiated with different UV bands. In eyestalkless crabs the significant minimal effective dose inducing pigment dispersion was 0.42 J/cm2 for UVA and 2.15 J/cm2 for UVB. Maximal response was achieved with 10.0 J/cm...

  2. An Intercomparison of Model Predictions for an Urban Contamination Resulting from the Explosion of a Radiological Dispersal Device

    Hwang, Won Tae; Jeong, Hyo Jun; Kim, Eun Han; Han, Moon Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-03-15

    The METRO-K is a model for a radiological dose assessment due to a radioactive contamination in the Korean urban environment. The model has been taken part in the Urban Remediation Working Group within the IAEA's (International Atomic Energy Agency) EMRAS (Environmental Modeling for Radiation Safety) program. The Working Croup designed for the intercomparison of radioactive contamination to be resulted from the explosion of a radiological dispersal device in a hypothetical city. This paper dealt intensively with a part among a lot of predictive results which had been performed in the EMRAS program. The predictive results of three different models (METRO-K, RESRAD-RDD, CPHR) were submitted to the Working Group. The gap of predictive results was due to the difference of mathematical modeling approaches, parameter values, understanding of assessors. Even if final results (for example, dose rates from contaminated surfaces which might affect to a receptor) are similar, the understanding on the contribution of contaminated surfaces showed a great difference. Judging from the authors, it is due to the lack of understanding and information on radioactive terrors as well as the social and cultural gaps which assessors have been experienced. Therefore, it can be known that the experience of assessors and their subjective judgements might be important factors to get reliable results. If the acquisition of a little additional information is possible, it was identified that the METRO-K might be a useful tool for decision support against contamination resulting from radioactive terrors by improving the existing model.

  3. An Intercomparison of Model Predictions for an Urban Contamination Resulting from the Explosion of a Radiological Dispersal Device

    Hwang, Won Tae; Jeong, Hyo Jun; Kim, Eun Han; Han, Moon Hee

    2009-01-01

    The METRO-K is a model for a radiological dose assessment due to a radioactive contamination in the Korean urban environment. The model has been taken part in the Urban Remediation Working Group within the IAEA's (International Atomic Energy Agency) EMRAS (Environmental Modeling for Radiation Safety) program. The Working Croup designed for the intercomparison of radioactive contamination to be resulted from the explosion of a radiological dispersal device in a hypothetical city. This paper dealt intensively with a part among a lot of predictive results which had been performed in the EMRAS program. The predictive results of three different models (METRO-K, RESRAD-RDD, CPHR) were submitted to the Working Group. The gap of predictive results was due to the difference of mathematical modeling approaches, parameter values, understanding of assessors. Even if final results (for example, dose rates from contaminated surfaces which might affect to a receptor) are similar, the understanding on the contribution of contaminated surfaces showed a great difference. Judging from the authors, it is due to the lack of understanding and information on radioactive terrors as well as the social and cultural gaps which assessors have been experienced. Therefore, it can be known that the experience of assessors and their subjective judgements might be important factors to get reliable results. If the acquisition of a little additional information is possible, it was identified that the METRO-K might be a useful tool for decision support against contamination resulting from radioactive terrors by improving the existing model.

  4. Problematic radiation protective devices for X-ray diagnostics

    Beck, A.; Nanko, N.; Bruggmoser, G.; Eble, M.

    1988-01-01

    The authors report experimental test results of radiation safety glasses with a lead equivalence of 0.5 mm Pb. The glasses were tested on a phantom, with various radiation projections, for their shielding effect with regard to the eye lens. The protective effect at AP projection was 90%, which corresponds to the data given by the manufacturer. But in most cases of interventional radiology, the examiner's eyes are exposed to lateral radiation, due to the positioning of the monitor. In these cases, reflected radiation at the side of the glasses facing the eye may induce a dose to the lens that can be fourfold the dose received without wearing the glasses, so that wearing these glasses may enhance the hazard. Another protective device tested was lead-coated gloves. The manufacturer promises a protective effect of 50% at 100 kV. The experimental test data, obtained by taking into account technical characteristics of angiographic components, confirm a radiation shielding of about 20%. (orig./HP) [de

  5. Black hole radiation with modified dispersion relation in tunneling paradigm: free-fall frame

    Wang, Peng; Yang, Haitang; Ying, Shuxuan [Sichuan University, Center for Theoretical Physics, College of Physical Science and Technology, Chengdu (China)

    2016-01-15

    Due to the exponential high gravitational red shift near the event horizon of a black hole, it might appear that the Hawking radiation would be highly sensitive to some unknown high energy physics. To study the effects of any unknown physics at the Planck scale on the Hawking radiation, the dispersive field theory models have been proposed, which are variations of Unruh's sonic black hole analogy. In this paper, we use the Hamilton-Jacobi method to investigate the dispersive field theory models. The preferred frame is the free-fall frame of the black hole. The dispersion relation adopted agrees with the relativistic one at low energy but is modified near the Planck mass m{sub p}. The corrections to the Hawking temperature are calculated for massive and charged particles to O(m{sub p}{sup -2}) and neutral and massless particles with λ = 0 to all orders. The Hawking temperature of radiation agrees with the standard one at the leading order. After the spectrum of radiation near the horizon is obtained, we use the brick wall model to compute the thermal entropy of a massless scalar field near the horizon of a 4D spherically symmetric black hole and a 2D one. Finally, the luminosity of a Schwarzschild black hole is calculated by using the geometric optics approximation. (orig.)

  6. Effects of radiator shapes on the bubble diving and dispersion of ultrasonic argon process.

    Liu, Xuan; Xue, Jilai; Zhao, Qiang; Le, Qichi; Zhang, Zhiqiang

    2018-03-01

    In this work, three ultrasonic radiators in different shapes have been designed in order to investigate the effects of radiator shapes on the argon bubble dispersion and diving as well as the degassing efficiency on magnesium melt. The radiator shape has a strong influence on the bubble diving and dispersion by ultrasound. A massive argon bubble slowly flows out from the radiator with the hemispherical cap, due to the covering hemispherical cap. Using a concave radiator can intensively crush the argon bubbles and drive them much deep into the water/melt, depending on the competition between the argon flow and opposite joint shear force from the concave surface. The evolution of wall bubbles involves the ultrasonic cavities carrying dissolved gas, migrating to the vessel wall, and escaping from the liquid. Hydrogen removal can be efficiently achieved using a concave radiator. The hydrogen content can be reduced from 22.3 μg/g down to 8.7 μg/g. Mechanical properties are significantly promoted, due to the structure refinement and efficient hydrogen removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Development of Quantum Devices and Algorithms for Radiation Detection and Radiation Signal Processing

    El Tokhy, M.E.S.M.E.S.

    2012-01-01

    The main functions of spectroscopy system are signal detection, filtering and amplification, pileup detection and recovery, dead time correction, amplitude analysis and energy spectrum analysis. Safeguards isotopic measurements require the best spectrometer systems with excellent resolution, stability, efficiency and throughput. However, the resolution and throughput, which depend mainly on the detector, amplifier and the analog-to-digital converter (ADC), can still be improved. These modules have been in continuous development and improvement. For this reason we are interested with both the development of quantum detectors and efficient algorithms of the digital processing measurement. Therefore, the main objective of this thesis is concentrated on both 1. Study quantum dot (QD) devices behaviors under gamma radiation 2. Development of efficient algorithms for handling problems of gamma-ray spectroscopy For gamma radiation detection, a detailed study of nanotechnology QD sources and infrared photodetectors (QDIP) for gamma radiation detection is introduced. There are two different types of quantum scintillator detectors, which dominate the area of ionizing radiation measurements. These detectors are QD scintillator detectors and QDIP scintillator detectors. By comparison with traditional systems, quantum systems have less mass, require less volume, and consume less power. These factors are increasing the need for efficient detector for gamma-ray applications such as gamma-ray spectroscopy. Consequently, the nanocomposite materials based on semiconductor quantum dots has potential for radiation detection via scintillation was demonstrated in the literature. Therefore, this thesis presents a theoretical analysis for the characteristics of QD sources and infrared photodetectors (QDIPs). A model of QD sources under incident gamma radiation detection is developed. A novel methodology is introduced to characterize the effect of gamma radiation on QD devices. The rate

  8. Radiation Characterization of Commercial GaN Devices

    Harris, Richard D.; Scheick, Leif Z.; Hoffman, James P.; Thrivikraman, Tushar; Jenabi, Masud; Gim, Yonggyu; Miyahira, Tetsuo

    2011-01-01

    Radiative feedback from primordial protostars and final mass of the first star Commercially available devices fabricated from GaN are beginning to appear from a number of different suppliers. Based on previous materials and prototype device studies, it is expected that these commercial devices will be quite tolerant to the types of radiation encountered in space. This expectation needs to be verified and the study described herein was undertaken for that purpose. All of the parts discussed in this report are readily available commercially. The parts chosen for study are all targeted for RF applications. Three different studies were performed: 1) a preliminary DDD/TID test of a variety of part types was performed by irradiating with 50 MeV protons, 2) a detailed DDD/TID study of one particular part type was performed by irradiating with 50 MeV protons, and 3) a SEB/SEGR test was performed on a variety of part types by irradiating with heavy ions. No significant degradation was observed in the tests performed in this study.

  9. Evaluating factors affecting the permeability of emulsions used to stabilize radioactive contamination from a radiological dispersal device.

    Fox, Garey A; Medina, Victor F

    2005-05-15

    Present strategies for alleviating radioactive contamination from a radiological dispersal device (RDD) or dirty bomb involve either demolishing and removing radioactive surfaces or abandoning portions of the area near the release point. In both cases, it is imperative to eliminate or reduce migration of the radioisotopes until the cleanup is complete or until the radiation has decayed back to acceptable levels. This research investigated an alternative strategy of using emulsions to stabilize radioactive particulate contamination. Emergency response personnel would coat surfaces with emulsions consisting of asphalt or tall oil pitch to prevent migration of contamination. The site can then be evaluated and cleaned up as needed. In order for this approach to be effective, the treatment must eliminate migration of the radioactive agents in the terror device. Water application is an environmental condition that could promote migration into the external environment. This research investigated the potential for water, and correspondingly contaminant, migration through two emulsions consisting of Topein, a resinous byproduct during paper manufacture. Topein C is an asphaltic-based emulsion and Topein S is a tall oil pitch, nonionic emulsion. Experiments included water adsorption/ mobilization studies, filtration tests, and image analysis of photomicrographs from an environmental scanning electron microscope (ESEM) and a stereomicroscope. Both emulsions were effective at reducing water migration. Conductivity estimates were on the order of 10(-80) cm s(-1) for Topein C and 10(-7) cm s(-1) for Topein S. Water mobility depended on emulsion flocculation and coalescence time. Photomicrographs indicate that Topein S consisted of greater and more interconnected porosity. Dilute foams of isolated spherical gas cells formed when emulsions were applied to basic surfaces. Gas cells rose to the surface and ruptured, leaving void spaces that penetrated throughout the emulsion. These

  10. Electromagnetic Radiation Efficiency of Body-Implanted Devices

    Nikolayev, Denys; Zhadobov, Maxim; Karban, Pavel; Sauleau, Ronan

    2018-02-01

    Autonomous wireless body-implanted devices for biotelemetry, telemedicine, and neural interfacing constitute an emerging technology providing powerful capabilities for medicine and clinical research. We study the through-tissue electromagnetic propagation mechanisms, derive the optimal frequency range, and obtain the maximum achievable efficiency for radiative energy transfer from inside a body to free space. We analyze how polarization affects the efficiency by exciting TM and TE modes using a magnetic dipole and a magnetic current source, respectively. Four problem formulations are considered with increasing complexity and realism of anatomy. The results indicate that the optimal operating frequency f for deep implantation (with a depth d ≳3 cm ) lies in the (108- 109 )-Hz range and can be approximated as f =2.2 ×107/d . For a subcutaneous case (d ≲3 cm ), the surface-wave-induced interference is significant: within the range of peak radiation efficiency (about 2 ×108 to 3 ×109 Hz ), the max-to-min ratio can reach a value of 6.5. For the studied frequency range, 80%-99% of radiation efficiency is lost due to the tissue-air wave-impedance mismatch. Parallel polarization reduces the losses by a few percent; this effect is inversely proportional to the frequency and depth. Considering the implantation depth, the operating frequency, the polarization, and the directivity, we show that about an order-of-magnitude efficiency improvement is achievable compared to existing devices.

  11. A study of radiation vulnerability of ferroelectric material and devices

    Coiec, Y.M.; Musseau, O.; Leray, J.L.

    1994-01-01

    The radiation effects on ferroelectric material and devices are presented, based on commercially available samples. After recalling the background, effects in ferroelectric PZT capacitors are presented, concerning dose, neutrons and fatigue associated with dose effects. Physical implications and interpretations are sketched. In a second stage, effects are studied at the complete non-volatile RAM device level. Vulnerability in dose, dose rate and neutron fluence of commercial 4 kbit ferroelectric RAM is addressed. 64 kbit results are mentioned in dose rate. These results are compared to previously published data from other manufacturers or laboratories and supplement them. In the appendix, equivalence between rad(Si) and rad (PZT) is discussed in the case of low energy ''10 keV Aracor'' x-rays and 60 Co gamma rays

  12. A study of radiation vulnerability of ferroelectric material and devices

    Coic, Y M; Musseau, O; Leray, J L [CEA Centre d` Etudes de Bruyeres-le-Chatel, 91 (France)

    1994-12-31

    The radiation effects on ferroelectric material and devices are presented, based on commercially available samples. After recalling the background, effects in ferroelectric PZT capacitors are presented, concerning dose, neutrons and fatigue associated with dose effects. Physical implications and interpretations are sketched. In a second stage, effects are studied at the complete non-volatile RAM device level. Vulnerability in dose, dose rate and neutron fluence of commercial 4 kbit ferroelectric RAM is addressed. 64 kbit results are mentioned in dose rate. These results are compared to previously published data from other manufacturers or laboratories and supplement them. In the appendix, equivalence between rad (Si) and rad (PZT) is discussed in the case of low energy ``10 keV Aracor`` s-rays and {sup 60}Co gamma rays. (author). 24 refs., 11 figs., 7 tabs.

  13. A study of radiation vulnerability of ferroelectric material and devices

    Coic, Y.M.; Musseau, O.; Leray, J.L.

    1994-01-01

    The radiation effects on ferroelectric material and devices are presented, based on commercially available samples. After recalling the background, effects in ferroelectric PZT capacitors are presented, concerning dose, neutrons and fatigue associated with dose effects. Physical implications and interpretations are sketched. In a second stage, effects are studied at the complete non-volatile RAM device level. Vulnerability in dose, dose rate and neutron fluence of commercial 4 kbit ferroelectric RAM is addressed. 64 kbit results are mentioned in dose rate. These results are compared to previously published data from other manufacturers or laboratories and supplement them. In the appendix, equivalence between rad (Si) and rad (PZT) is discussed in the case of low energy ''10 keV Aracor'' s-rays and 60 Co gamma rays. (author). 24 refs., 11 figs., 7 tabs

  14. Research on dose setting for radiation sterilization of medical device

    Zhang Tongcheng; Liu Qingfang; Zhong Hongliang; Mi Zhisu; Wang Chunlei; Jiang Jianping

    2002-01-01

    Objective: To establish the radiation sterilization dose for medical devices using data of bioburden on the medical device. Methods: Firstly determination of recovery ratio and correction coefficient of the microbiological test method was used according to ISO11737 standard, then determination of bioburden on the products, finally the dose setting was completed based on the Method 1 in ISO11137 standard. Results: Fifteen kinds of medical devices were tested. Bioburden range was from 8.6-97271.2 CFU/device, recovery ration range 54.6%-100%, correction co-efficiency range 1.00-1.83, D 10 distribution from 1.40 to 2.82 kGy, verification dose (dose at SAL = 10 -2 ) range 5.1-17.6 kGy and sterilization dose (dose at SAL 10 -6 ) range 17.5-32.5 kGy. Conclusion: One hundred samples of each kind of product were exposed to the pre-determined verification dose and then the sterility test was performed. Each sterility test showed positive number was not greater than two. This indicated that the sterilization dose established for each kind of product was statistically acceptable

  15. Electromagnetic radiation screening of semiconductor devices for long life applications

    Hall, T. C.; Brammer, W. G.

    1972-01-01

    A review is presented of the mechanism of interaction of electromagnetic radiation in various spectral ranges, with various semiconductor device defects. Previous work conducted in this area was analyzed as to its pertinence to the current problem. The task was studied of implementing electromagnetic screening methods in the wavelength region determined to be most effective. Both scanning and flooding type stimulation techniques are discussed. While the scanning technique offers a considerably higher yield of useful information, a preliminary investigation utilizing the flooding approach is first recommended because of the ease of implementation, lower cost and ability to provide go-no-go information in semiconductor screening.

  16. Theoretic simulation for CMOS device on total dose radiation response

    He Baoping; Zhou Heqin; Guo Hongxia; He Chaohui; Zhou Hui; Luo Yinhong; Zhang Fengqi

    2006-01-01

    Total dose effect is simulated for C4007B, CC4007RH and CC4011 devices at different absorbed dose rate by using linear system theory. When irradiation response and dose are linear, total dose radiation and post-irradiation annealing at room temperature are determined for one random by choosing absorbed dose rate, and total dose effect at other absorbed dose rate can be predicted by using linear system theory. The simulating results agree with the experimental results at different absorbed dose rate. (authors)

  17. Risks of carcinogenesis from electromagnetic radiation of mobile telephony devices.

    Yakymenko, I; Sidorik, E

    2010-07-01

    Intensive implementation of mobile telephony technology in everyday human life during last two decades has given a possibility for epidemiological estimation of long-term effects of chronic exposure of human organism to low-intensive microwave (MW) radiation. Latest epidemiological data reveal a significant increase in risk of development of some types of tumors in chronic (over 10 years) users of mobile phone. It was detected a significant increase in incidence of brain tumors (glioma, acoustic neuroma, meningioma), parotid gland tumor, seminoma in long-term users of mobile phone, especially in cases of ipsilateral use (case-control odds ratios from 1.3 up to 6.1). Two epidemiological studies have indicated a significant increase of cancer incidence in people living close to the mobile telephony base station as compared with the population from distant area. These data raise a question of adequacy of modern safety limits of electromagnetic radiation (EMR) exposure for humans. For today the limits were based solely on the conception of thermal mechanism of biological effects of RF/MW radiation. Meantime the latest experimental data indicate the significant metabolic changes in living cell under the low-intensive (non-thermal) EMR exposure. Among reproducible biological effects of low-intensive MWs are reactive oxygen species overproduction, heat shock proteins expression, DNA damages, apoptosis. The lack of generally accepted mechanism of biological effects of low-intensive non-ionizing radiation doesn't permit to disregard the obvious epidemiological and experimental data of its biological activity. Practical steps must be done for reasonable limitation of excessive EMR exposure, along with the implementation of new safety limits of mobile telephony devices radiation, and new technological decisions, which would take out the source of radiation from human brain.

  18. Micro-meteorological modelling in urban areas: pollutant dispersion and radiative effects modelling

    Milliez, Maya

    2006-01-01

    Atmospheric pollution and urban climate studies require to take into account the complex processes due to heterogeneity of urban areas and the interaction with the buildings. In order to estimate the impact of buildings on flow and pollutant dispersion, detailed numerical simulations were performed over an idealized urban area, with the three-dimensional model Mercure-Saturne, modelling both concentration means and their fluctuations. To take into account atmospheric radiation in built up areas and the thermal effects of the buildings, we implemented a three-dimensional radiative model adapted to complex geometry. This model, adapted from a scheme used for thermal radiation, solves the radiative transfer equation in a semi-transparent media, using the discrete ordinate method. The new scheme was validated with idealized cases and compared to a complete case. (author) [fr

  19. Organic materials and devices for detecting ionizing radiation

    Doty, F Patrick [Livermore, CA; Chinn, Douglas A [Livermore, CA

    2007-03-06

    A .pi.-conjugated organic material for detecting ionizing radiation, and particularly for detecting low energy fission neutrons. The .pi.-conjugated materials comprise a class of organic materials whose members are intrinsic semiconducting materials. Included in this class are .pi.-conjugated polymers, polyaromatic hydrocarbon molecules, and quinolates. Because of their high resistivities (.gtoreq.10.sup.9 ohmcm), these .pi.-conjugated organic materials exhibit very low leakage currents. A device for detecting and measuring ionizing radiation can be made by applying an electric field to a layer of the .pi.-conjugated polymer material to measure electron/hole pair formation. A layer of the .pi.-conjugated polymer material can be made by conventional polymer fabrication methods and can be cast into sheets capable of covering large areas. These sheets of polymer radiation detector material can be deposited between flexible electrodes and rolled up to form a radiation detector occupying a small volume but having a large surface area. The semiconducting polymer material can be easily fabricated in layers about 10 .mu.m to 100 .mu.m thick. These thin polymer layers and their associated electrodes can be stacked to form unique multi-layer detector arrangements that occupy small volume.

  20. Treatment of Cerenkov radiation from electric and magnetic charges in dispersive and dissipative media

    Saffouri, M.H.

    1982-07-01

    A rigorous treatment of the problem of Cerenkov radiation from fast moving electric and magnetic charges is presented. This is based on the rigorous solution of Maxwell's equations in a general dispersive medium possessing dielectric and magnetic properties and with, and without, dissipation. It is shown that the fields are completely determined by one scalar function. Expressions for the exact fields are obtained. From the asymptotic fields all the relevant properties of Cerenkov radiation are reproduced. In particular, it is shown that in the absence of dissipation the energy in each mode travels with the phase velocity of that mode. For a dissipative medium the electric field develops a longitudinal component and the energy propagates at an angle to the phase velocity. Application to the case of a Tachyon shows that it must emit Cerenkov radiation in vacuum. An estimate is given for the resulting linear density of emitted radiation. Finally, two suggestions are made for the experimental detection of magnetic charges and electric dipole moments of elementary particles based upon the Cerenkov radiation which they would emit in dispersive media. (author)

  1. Black hole radiation with modified dispersion relation in tunneling paradigm: Static frame

    Jun Tao

    2017-09-01

    Full Text Available To study possible deviations from the Hawking's prediction, we assume that the dispersion relations of matter fields are modified at high energies and use the Hamilton–Jacobi method to investigate the corresponding effects on the Hawking radiation in this paper. The preferred frame is the static frame of the black hole. The dispersion relation adopted agrees with the relativistic one at low energies but is modified near the Planck mass mp. We calculate the corrections to the Hawking temperature for massive and charged particles to O(mp−2 and massless and neutral particles to all orders. Our results suggest that the thermal spectrum of radiations near horizon is robust, e.g. corrections to the Hawking temperature are suppressed by mp. After the spectrum of radiations near the horizon is obtained, we use the brick wall model to compute the thermal entropy of a massless scalar field near the horizon of a 4D spherically symmetric black hole. We find that the subleading logarithmic term of the entropy does not depend on how the dispersion relations of matter fields are modified. Finally, the luminosities of black holes are computed by using the geometric optics approximation.

  2. Optical Cherenkov radiation in an As2S3 slot waveguide with four zero-dispersion wavelengths

    Wang, Shaofei; Hu, Jungao; Guo, Hairun

    2013-01-01

    , dispersion profiles with four zero dispersion wavelengths are found to produce a phase-matching nonlinear process leading to a broadband resonant radiation. The broadband OCR investigated in the chalcogenide waveguide may find applications in on-chip wavelength conversion and near-infrared pulse generation.......We propose an approach for an efficient generation of optical Cherenkov radiation (OCR) in the near-infrared by tailoring the waveguide dispersion for a zero group-velocity mismatching between the radiation and the pump soliton. Based on an As2S3 slot waveguide with subwavelength dimensions...

  3. Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael; Barnaby, Hugo

    2013-04-30

    For many decades, various radiation detecting material have been extensively researched, to find a better material or mechanism for radiation sensing. Recently, there is a growing need for a smaller and effective material or device that can perform similar functions of bulkier Geiger counters and other measurement options, which fail the requirement for easy, cheap and accurate radiation dose measurement. Here arises the use of thin film chalcogenide glass, which has unique properties of high thermal stability along with high sensitivity towards short wavelength radiation. The unique properties of chalcogenide glasses are attributed to the lone pair p-shell electrons, which provide some distinctive optical properties when compared to crystalline material. These qualities are derived from the energy band diagram and the presence of localized states in the band gap. Chalcogenide glasses have band tail states and localized states, along with the two band states. These extra states are primarily due to the lone pair electrons as well as the amorphous structure of the glasses. The localized states between the conductance band (CB) and valence band (VB) are primarily due to the presence of the lone pair electrons, while the band tail states are attributed to the Van der Waal's forces between layers of atoms [1]. Localized states are trap locations within the band gap where electrons from the valence band can hop into, in their path towards the conduction band. Tail states on the other hand are locations near the band gap edges and are known as Urbach tail states (Eu). These states are occupied with many electrons that can participate in the various transformations due to interaction with photons. According to Y. Utsugi et. al.[2], the electron-phonon interactions are responsible for the generation of the Urbach tails. These states are responsible for setting the absorption edge for these glasses and photons with energy near the band gap affect these states. We have

  4. The impact of communication materials on public responses to a radiological dispersal device (RDD) attack.

    Rogers, M Brooke; Amlôt, Richard; Rubin, G James

    2013-03-01

    It is a common assumption that, in the event of a chemical, biological, radiological, or nuclear (CBRN) attack, a well-prepared and informed public is more likely to follow official recommendations regarding the appropriate safety measures to take. We present findings from a UK study investigating the ability of crisis communication to influence perceptions of risk and behavioral intentions in the general public in response to CBRN terrorism. We conducted a focus group study involving a scenario presented in mock news broadcasts to explore levels of public knowledge, information needs, and intended behavioral reactions to an attack involving an overt radiological dispersal device (RDD), or dirty bomb. We used the findings from these focus groups to design messages for the public that could be presented in a short leaflet. We then tested the effects of the leaflet on reactions to the same scenario in 8 further focus groups. The impact of the new messages on levels of knowledge, information needs, and intended compliance with official recommendations was assessed. The provision of information increased the perceived credibility of official messages and increased reported levels of intended compliance with advice to return to normal/stop sheltering, attend a facility for assessment and treatment, and return to a previously contaminated area after decontamination of the environment has taken place. Should a real attack with an RDD occur, having pretested messages available to address common concerns and information needs should facilitate the public health response to the attack.

  5. Linear devices in combined high-level radiation environments

    van Vonno, N.W.

    1987-01-01

    The design of precision analog integrated circuits for use in combined high-level radiation environments has traditionally been on a full-custom basis. The use of semicustom design methods has become prevalent in digital devices, with standard cell libraries and gate arrays readily available from multiple vendors. This paper addresses the application of semicustom design techniques to analog parts. In all cases the emphasis is on bipolar technology, since this provides an optimal combination of precision and radiation hardness. A mixed mode analog/digital (A/D) cell family for implementing semicustom designs is described, together with the fabrication process used. Specific processing and design methods are used to provide circuit hardness against neutron, total gamma dose, and transient gamma environments. Semicustom mixed analog/digital design is seen as an appropriate methodology for implementation of medium-performance mixed mode functions for radiation-hardened applications. This leads to trade-offs in process complexity and performance. Full custom design remains necessary for demanding applications such as high-speed A/D conversion and associated sample/hold functions. An A/D cell family optimized for hardness is described, together with the bipolar process used to implement it

  6. High ionization radiation field remote visualization device - shielding requirements

    Fernandez, Antonio P. Rodrigues; Omi, Nelson M.; Silveira, Carlos Gaia da; Calvo, Wilson A. Pajero

    2011-01-01

    The high activity sources manipulation hot-cells use special and very thick leaded glass windows. This window provides a single sight of what is being manipulated inside the hot-cell. The use of surveillance cameras would replace the leaded glass window, provide other sights and show more details of the manipulated pieces, using the zoom capacity. Online distant manipulation may be implemented, too. The limitation is their low ionizing radiation resistance. This low resistance also limited the useful time of robots made to explore or even fix problematic nuclear reactor core, industrial gamma irradiators and high radioactive leaks. This work is a part of the development of a high gamma field remote visualization device using commercial surveillance cameras. These cameras are cheap enough to be discarded after the use for some hours of use in an emergency application, some days or some months in routine applications. A radiation shield can be used but it cannot block the camera sight which is the shield weakness. Estimates of the camera and its electronics resistance may be made knowing each component behavior. This knowledge is also used to determine the optical sensor type and the lens material, too. A better approach will be obtained with the commercial cameras working inside a high gamma field, like the one inside of the IPEN Multipurpose Irradiator. The goal of this work is to establish the radiation shielding needed to extend the camera's useful time to hours, days or months, depending on the application needs. (author)

  7. Response of Caenorhabditis elegans to wireless devices radiation exposure.

    Fasseas, Michael K; Fragopoulou, Adamantia F; Manta, Areti K; Skouroliakou, Aikaterini; Vekrellis, Konstantinos; Margaritis, Lukas H; Syntichaki, Popi

    2015-03-01

    To examine the impact of electromagnetic radiation, produced by GSM (Global System for Mobile communications) mobile phones, Wi-Fi (Wireless-Fidelity) routers and wireless DECT (Digital Enhanced Cordless Telecommunications) phones, on the nematode Caenorhabditis elegans. We exposed synchronized populations, of different developmental stages, to these wireless devices at E-field levels below ICNIRP's (International Commission on Non-Ionizing Radiation Protection) guidelines for various lengths of time. WT (wild-type) and aging- or stress-sensitive mutant worms were examined for changes in growth, fertility, lifespan, chemotaxis, short-term memory, increased ROS (Reactive Oxygen Species) production and apoptosis by using fluorescent marker genes or qRT-PCR (quantitative Reverse Transcription-Polymerase Chain Reaction). No statistically significant differences were found between the exposed and the sham/control animals in any of the experiments concerning lifespan, fertility, growth, memory, ROS, apoptosis or gene expression. The worm appears to be robust to this form of (pulsed) radiation, at least under the exposure conditions used.

  8. The use of ionising radiation screening devices in airports

    Lazo, T.

    2010-01-01

    Although the NEA generally focuses on radiological protection at nuclear power plants and related facilities, it also addresses other areas of radiological protection of interest to member countries. A particular subject of recent importance concerns the use of ionising radiation screening devices as part of airport security efforts. Modern body scanners can produce human images that can be used to detect weapons that may be hidden beneath a person's clothing. Heightened concerns over terrorist threats to airline flights have prompted many countries to consider the use, or expanded use of body scanners. The use of such devices raises a wide series of questions, some of which concern the radiological protection of those who might be scanned. As such, the Inter-Agency Committee on Radiation Safety (IACRS), an expert body in which the NEA works together with several other international organisations addressing radiological protection issues, recently developed a joint information paper laying out the key radiological protection and other issues that should be or have been considered when making decisions as to whether ionising radiation body scanners should be deployed in airports. This article provides an overview of the information paper. In assessing the possible use of X-ray body scanners, there are two significant radiological protection issues that may be of relevance with regard to the government decision whether their use is justified. First, although the individual exposures are very low, the exposure experienced by the scanned population as a whole will depend on whether all passengers are systematically scanned, or alternatively whether passengers are selected for scanning randomly or on the basis of specific criteria. The manner in which passengers would be selected would need to be known in order to appropriately assess the full radiological protection impact of scanner use. Second, the use of X-ray body scanners on sensitive groups, such as pregnant

  9. NASDA technician test real-time radiation monitoring device

    1997-01-01

    A technician from the National Space Development Agency of Japan (NASDA) tests the real-time radiation monitoring device on SPACEHAB at Kennedy Space Center in preparation for the STS-89 mission, slated to be the first Shuttle launch of 1998. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine-day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven-member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A.

  10. The influence of gamma radiation on polarization mode dispersion of fibers applied in communications

    Sekulić Rade S.

    2012-01-01

    Full Text Available The fiber optics technology is constantly being developed, and is becoming an essential component of contemporary communications, medicine and industry. Fibers, their connections and system components play a major role in optical signal transmission, telecommunications, power transmission, and sensing processes using fiber technology. The two main light propagation characteristics of an optical fiber are attenuation and dispersion. The possibility of controling these parameters is of utmost importance for obtaining the requested transmission quality. This paper reports on an investigation to determine the influence of gamma radiation of 60Co on the variation of optical fiber propagation parameters, such as polarization mode dispersion. In addition, it also considers chosen topics in the field of fiber optics technology.

  11. Sensor device for X-ray beam to evaluate the radiation focal spot

    Santos, Lara H.E. dos; Schiabel, Homero; Silva, Aderbal A.B. da; Marques, Paulo M.A.; Campos, Marcelo; Slaets, Annie F.F.

    1996-01-01

    A new electronic device to determine the position of the central ray of the radiation beam is proposed. The device aims to provide a perfect alignment of test objects used for evaluating focal spots with this reference axis

  12. Charge-coupled devices as positron sensitive detectors of x-radiation

    Volkov, G.S.; Zazhivikhin, V.V.; Zajtsev, V.I.; Mishevskij, V.O.

    1996-01-01

    Results of theoretical and experimental studies on the sensitivity and spatial resolution of devices with a charge link (CLD) within the X-radiation energy range are described. The areas of the device application are considered

  13. Accumulation capacitance frequency dispersion of III-V metal-insulator-semiconductor devices due to disorder induced gap states

    Galatage, R. V.; Zhernokletov, D. M.; Dong, H.; Brennan, B.; Hinkle, C. L.; Wallace, R. M.; Vogel, E. M.

    2014-01-01

    The origin of the anomalous frequency dispersion in accumulation capacitance of metal-insulator-semiconductor devices on InGaAs and InP substrates is investigated using modeling, electrical characterization, and chemical characterization. A comparison of the border trap model and the disorder induced gap state model for frequency dispersion is performed. The fitting of both models to experimental data indicate that the defects responsible for the measured dispersion are within approximately 0.8 nm of the surface of the crystalline semiconductor. The correlation between the spectroscopically detected bonding states at the dielectric/III-V interface, the interfacial defect density determined using capacitance-voltage, and modeled capacitance-voltage response strongly suggests that these defects are associated with the disruption of the III-V atomic bonding and not border traps associated with bonding defects within the high-k dielectric.

  14. Thermal and radiation losses in a linear device

    Rosenau, P.; Degani, D.

    1980-01-01

    An analysis is presented of the electron temperature in a linear device which includes the effect of thermal conduction, heat flux limit, radiation, and end plugs. It is found that the thermal conduction and the heat flux limit are dominant in the initial phase of cooling, while the later phase is almost completely controlled by radiation that spatially homogenizes the temperature distribution. In the case of bremsstrahlung, within the frame of the present model, the temperature decays to zero in a finite time. This process takes the form of a cooling wave that moves from the ends of the column to the center. Impurities cause a milder, exponential decay, which is still much faster than the algebraic conduction decay. The thermal effectiveness of the end plugs is described by a convective transfer coefficient h/sub p/. Its scaling law (in terms of the coupled plamsa-plug system) reveals that a very high plug-plasma density ratio provides a simple way to significantly retard the cooling

  15. On the rule of thumb for flipping the dispersion relation in BAW devices

    Jose, Sumy; Hueting, Raymond Josephus Engelbart; Jansman, Andreas

    2011-01-01

    High-performance solidly mounted bulk acoustic wave resonators (SMRs) can be obtained by employing frame region, if these exhibit type I dispersion. The commonly used piezoelectric material Aluminum Nitride is a type II material, for which type I dispersion can be enforced by increasing the top

  16. A spectrometer for X-ray energy-dispersive diffraction using synchrotron radiation

    Buras, B.; Gerward, L.; Staun Olsen, J.; Steenstrup, S.

    1981-10-01

    The paper describes a white-beam X-ray energy dispersive diffractometer using the synchroton radiation from the DORIS ESR. The following features of the instrument are discussed: Horizontal or vertical scattering plane, collimators, sample environment, remote control of gonimeter, data acquisition, energy-sensitive detectors using small-area and large-area detector crystals, modes of operation, powder and single crystal diffraction. An example is given from a high-pressure study of YbH 2 using a diamond anvil cell. (orig./HP)

  17. Radiation Stability of Nanoclusters in Nano-structured Oxide Dispersion Strengthened (ODS) Steels

    Certain, Alicia G.; Kuchibhatla, Satyanarayana; Shutthanandan, V.; Allen, T. R.

    2013-01-01

    Nanostructured oxide dispersion strengthened (ODS) steels are considered candidates for nuclear fission and fusion applications at high temperature and dose. The complex oxide nanoclusters in these alloys provide high-temperature strength and are expected to afford better radiation resistance. Proton, heavy ion, and neutron irradiations have been performed to evaluate cluster stability in 14YWT and 9CrODS steel under a range of irradiation conditions. Energy-filtered transmission electron microscopy and atom probe tomography were used in this work to analyze the evolution of the oxide population.

  18. A fast and simple approach for the estimation of a radiological source from localised measurements after the explosion of a radiological dispersal device

    Urso, L.; Kaiser, J.C.; Woda, C.; Helebrant, J.; Hulka, J.; Kuca, P.; Prouza, Z.

    2014-01-01

    After an explosion of a radiological dispersal device, decision-makers need to implement countermeasures as soon as possible to minimise the radiation-induced risks to the population. In this work, the authors present a tool, which can help providing information about the approximate size of source term and radioactive contamination based on a Gaussian Plume model with the use of available measurements for liquid or aerosolised radioactivity. For two-field tests, the source term and spatial distribution of deposited radioactivity are estimated. A sensitivity analysis of the dependence on deposition velocity is carried out. In case of weak winds, a diffusive process along the wind direction is retained in the model. (authors)

  19. Influence of UVB radiation on the lethal and sublethal toxicity of dispersed crude oil to planktonic copepod nauplii.

    Almeda, Rodrigo; Harvey, Tracy E; Connelly, Tara L; Baca, Sarah; Buskey, Edward J

    2016-06-01

    Toxic effects of petroleum to marine zooplankton have been generally investigated using dissolved petroleum hydrocarbons and in the absence of sunlight. In this study, we determined the influence of natural ultraviolet B (UVB) radiation on the lethal and sublethal toxicity of dispersed crude oil to naupliar stages of the planktonic copepods Acartia tonsa, Temora turbinata and Pseudodiaptomus pelagicus. Low concentrations of dispersed crude oil (1 μL L(-1)) caused a significant reduction in survival, growth and swimming activity of copepod nauplii after 48 h of exposure. UVB radiation increased toxicity of dispersed crude oil by 1.3-3.8 times, depending on the experiment and measured variables. Ingestion of crude oil droplets may increase photoenhanced toxicity of crude oil to copepod nauplii by enhancing photosensitization. Photoenhanced sublethal toxicity was significantly higher when T. turbinata nauplii were exposed to dispersant-treated oil than crude oil alone, suggesting that chemical dispersion of crude oil may promote photoenhanced toxicity to marine zooplankton. Our results demonstrate that acute exposure to concentrations of dispersed crude oil and dispersant (Corexit 9500) commonly found in the sea after oil spills are highly toxic to copepod nauplii and that natural levels of UVB radiation substantially increase the toxicity of crude oil to these planktonic organisms. Overall, this study emphasizes the importance of considering sunlight in petroleum toxicological studies and models to better estimate the impact of crude oil spills on marine zooplankton. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Reference neutron radiations. Part 2: Calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field

    2000-01-01

    ISO 8529 consists of the following parts, under the general title Reference neutron radiations: Part 1: Characteristics and methods of production; Part 2: Calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field; Part 3: Calibration of area and personal dosimeters and determination of response as a function of energy and angle of incidence. This Part 2. of ISO 8529 takes as its starting point the neutron sources described in ISO 8529-1. It specifies the procedures to be used for realizing the calibration conditions of radiation protection devices in neutron fields produced by these calibration sources, with particular emphasis on the corrections for extraneous effects (e.g., the neutrons scattered from the walls of the calibration room). In this part of ISO 8529, particular emphasis is placed on calibrations using radionuclide sources (clauses 4 to 6) due to their widespread application, with less details given on the use of accelerator and reactor sources (8.2 and 8.3). This part of ISO 8529 then leads to ISO 8529-3 which gives conversion coefficients and the general rules and procedures for calibration

  1. Resistive Memory Devices for Radiation Resistant Non-Volatile Memory

    National Aeronautics and Space Administration — Ionizing radiation in space can damage electronic equipment, corrupting data and even disabling computers. Radiation resistant (rad hard) strategies must be employed...

  2. Bill C-5, an act to amend the radiation emitting devices act

    1984-01-01

    This Act, entitled Bill C-5, allows for a series of amendments to the Radiation Emitting Devices Act. The amendments relate to regulations concerned with the sale, lease or import, labelling, advertising, packaging, safety standards and inspection of radiation emitting devices

  3. Radiation transmission type pipe wall thinning detection device and measuring instruments utilizing ionizing radiation

    Higashi, Yasuhiko

    2009-01-01

    We developed the device to detect thinning of pipe thorough heat insulation in Power Plant, etc, even while the plant is under operation. It is necessary to test many parts of many pipes for pipe wall thinning management, but it is difficult within a limited time of the routine test. This device consists of detector and radiation source, which can detect the pipe (less than 500 mm in external diameter, less than 50 mm in thickness) with 1.6%-reproducibility (in a few-minutes measurement), based on the attenuation rate. Operation is easy and effective without removing the heat insulation. We will expand this thinning detection system, and contribute the safety of the Plant. (author)

  4. Developments of radiation safety requirements for the management of radiation devices

    Lee, Hee Seock; Choi, Jin Ho; Cheong, Yuon Young

    2002-03-01

    The approach of the risk-informed regulatory options was studied to develop the radiation safety requirements for the managements for radiation devices. The task analysis, exposure, accident scenario development, risk analysis, and systematic approach for regulatory options was considered in full, based on the NRC report, 'NUREG/CR-6642', and the translation of its core part was conducted for ongoing research. In this methodology, the diamond tree that includes human factors, etc, additionally with normal event tree, was used. According to the analysis results of this approach, the risk analysis and the development of regulatory options were applied for the electron linear accelerators and the qualitative results were obtained. Because the field user groups were participated in this study could contribute to the basis establishment of the risk-informed regulation policy through securing consensus and inducing particle interests. It will make an important role of establishing the detail plan of ongoing research

  5. Developments of radiation safety requirements for the management of radiation devices

    Lee, Hee Seock [Pohang Accelerator Lab, Pohang (Korea, Republic of); Choi, Jin Ho [Gachun University of Medicine and science, Incheon (Korea, Republic of); Cheong, Yuon Young [Asan Medical Center, Seoul (Korea, Republic of)] (and others)

    2002-03-15

    The approach of the risk-informed regulatory options was studied to develop the radiation safety requirements for the managements for radiation devices. The task analysis, exposure, accident scenario development, risk analysis, and systematic approach for regulatory options was considered in full, based on the NRC report, 'NUREG/CR-6642', and the translation of its core part was conducted for ongoing research. In this methodology, the diamond tree that includes human factors, etc, additionally with normal event tree, was used. According to the analysis results of this approach, the risk analysis and the development of regulatory options were applied for the electron linear accelerators and the qualitative results were obtained. Because the field user groups were participated in this study could contribute to the basis establishment of the risk-informed regulation policy through securing consensus and inducing particle interests. It will make an important role of establishing the detail plan of ongoing research.

  6. Biological assay of chromatin dispersal simplified for determining absorbed dose of ionizing radiation; Ensayo biologico simplificado de dispersion de cromatina para la determinacion de dosis de radiacion ionizante

    Galaz, S.; Perez, G.; Stockert, J. C.; Blazquez-Castro, A.

    2011-07-01

    Currently, the production of nuclear halos chromatin dispersion methods is a good procedure for nuclear analysis by in situ hybridization (Wiegant et al., 1992, Gerdes et al. 1994), to detect apoptosis, DNA fragmentation and cell death rates in cell cultures (Fernandez et al., 2005, Enciso et al. 2006). It is customary to display the nuclear halos by fluorescence microscopy using propidium iodide, ethidium bromide or DAPI (Gerdes et al., 1994, Sestili et al. 2006). Using this technique based on a modified protocol of fast halo assay [FHA],(Sestili et al. 2006), has developed a simplified method to quantify the cytogenetic damage induced by ionizing radiation (dispersion test chromatin in agarose thin smear), which allows visualization of halos after staining for light microscopy or fluorescence and correlating the ratio: total area occuped by the halo nucleus / nucleus (halo-core index [IHN] ) with radiation dose.

  7. Superconducting (radiation hardened) magnets for mirror fusion devices

    Henning, C.D.; Dalder, E.N.C.; Miller, J.R.; Perkins, J.R.

    1983-01-01

    Superconducting magnets for mirror fusion have evolved considerably since the Baseball II magnet in 1970. Recently, the Mirror Fusion Test Facility (MFTF-B) yin-yang has been tested to a full field of 7.7 T with radial dimensions representative of a full scale reactor. Now the emphasis has turned to the manufacture of very high field solenoids (choke coils) that are placed between the tandem mirror central cell and the yin-yang anchor-plug set. For MFTF-B the choke coil field reaches 12 T, while in future devices like the MFTF-Upgrade, Fusion Power Demonstration and Mirror Advanced Reactor Study (MARS) reactor the fields are doubled. Besides developing high fields, the magnets must be radiation hardened. Otherwise, thick neutron shields increase the magnet size to an unacceptable weight and cost. Neutron fluences in superconducting magnets must be increased by an order of magnitude or more. Insulators must withstand 10 10 to 10 11 rads, while magnet stability must be retained after the copper has been exposed to fluence above 10 19 neutrons/cm 2

  8. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.

    Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F

    2012-03-07

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements.

  9. Neutronic, thermal-hydraulics and safety calculations of a Miniplate Irradiation Device (MID) of dispersion type fuel elements

    Domingos, Douglas Borges

    2010-01-01

    Neutronic, thermal-hydraulics and accident analysis calculations were developed to estimate the safety of a Miniplate Irradiation Device (MID) to be placed in the IEA-R1 reactor core. The irradiation device is used to receive miniplates of U 3 O 8 -Al and U 3 Si 2 - Al dispersion fuels, LEU type (19.75 % 235 U) with uranium densities of, respectively, 3.2 gU/cm 3 and 4.8 gU/cm 3 . The fuel miniplates will be irradiated to nominal 235 U burnup levels of 50% and 80%, in order to qualify the above high-density dispersion fuels to be used in the Brazilian Multipurpose Reactor (RMB), now in the conception phase. For the neutronic calculation, the computer codes CITATION and 2DB were utilized. The computer code FLOW was used to calculate the coolant flow rate in the irradiation device, allowing the determination of the fuel miniplate temperatures with the computer model MTRCR-IEA-R1. A postulated Loss of Coolant Accident (LOCA) was analyzed with the computer codes LOSS and TEMPLOCA, allowing the calculation of the fuel miniplate temperatures after the reactor pool draining. The calculations showed that the irradiation should occur without adverse consequences in the IEA-R1 reactor. (author)

  10. Charge transport and contact resistance in coplanar devices based on colloidal polyaniline dispersion

    Masillamani, A. M.; Peřinka, N.; Hajná, Milena; Stejskal, Jaroslav; Tondelier, D.; Bonnassieux, Y.; Vanel, J.-C.; Geffroy, B.; Mencaraglia, D.

    2016-01-01

    Roč. 54, č. 17 (2016), s. 1710-1716 ISSN 0887-6266 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : charge transport * colloidal dispersion * colloids Subject RIV: JI - Composite Materials Impact factor: 2.838, year: 2016

  11. Measurement of the dispersion of radiation from a steady cosmological source

    Lieu, Richard; Duan, Lingze; Kibble, T. W. B.

    2013-01-01

    The 'missing baryons' of the near universe are believed to be principally in a partially ionized state. Although passing electromagnetic waves are dispersed by the plasma, the effect has hitherto not been utilized as a means of detection because it is generally believed that a successful observation requires the background source to be highly variable, i.e., the class of sources that could potentially deliver a verdict is limited. We argue in two stages that this condition is not necessary. First, by modeling the fluctuations on macroscopic scales as interference between wave packets, we show that, in accordance with the ideas advanced by Einstein in 1917, both the behavior of photons as bosons (i.e., the intensity variance has contributions from Poisson and phase noise) and the van-Cittert-Zernike theorem are a consequence of wave-particle duality. Nevertheless, we then point out that, in general, the variance on some macroscopic timescale τ consists of (1) a main contributing term ∝1/τ, plus (2) a small negative term ∝1/τ 2 due to the finite size of the wave packets. If the radiation passes through a dispersive medium, this size will be enlarged well beyond its vacuum minimum value of Δt ≈ 1/Δν, leading to a more negative (2) term (while (1) remains unchanged), and hence a suppression of the variance wrt the vacuum scenario. The phenomenon, which is typically at a few parts in 10 5 level, enables one to measure cosmological dispersion in principle. Signal-to-noise estimates, along with systematic issues and how to overcome them, will be presented.

  12. Wavelength dispersive X-ray absorption fine structure imaging by parametric X-ray radiation

    Inagaki, Manabu; Sakai, Takeshi; Sato, Isamu; Hayakawa, Yasushi; Nogami, Kyoko; Tanaka, Toshinari; Hayakawa, Ken; Nakao, Keisuke

    2008-01-01

    The parametric X-ray radiation (PXR) generator system at Laboratory for Electron Beam Research and Application (LEBRA) in Nihon University is a monochromatic and coherent X-ray source with horizontal wavelength dispersion. The energy definition of the X-rays, which depends on the horizontal size of the incident electron beam on the generator target crystal, has been investigated experimentally by measuring the X-ray absorption near edge structure (XANES) spectra on Cu and CuO associated with conventional X-ray absorption imaging technique. The result demonstrated the controllability of the spectrum resolution of XANES by adjusting of the horizontal electron beam size on the target crystal. The XANES spectra were obtained with energy resolution of several eV at the narrowest case, which is in qualitative agreement with the energy definition of the PXR X-rays evaluated from geometrical consideration. The result also suggested that the wavelength dispersive X-ray absorption fine structure measurement associated with imaging technique is one of the promising applications of PXR. (author)

  13. Measurement of the dose by dispersed radiation in a lineal accelerator using thermoluminescent dosimeters of CaSO4:Dy

    Chavez C, N.; Torijano, E.; Azorin, J.; Herrera, A.

    2014-08-01

    The thermoluminescence (Tl) is based on the principle of the luminescent in a material when is heated below their incandescence temperature. Is a technique very used in dosimetry that is based on the property that have most of the crystalline materials regarding the storage of the energy that they absorb when are exposed to the ionizing radiations. When this material has been irradiated previously, the radioactive energy that contains is liberated in form of light. In general, the principles that govern the thermoluminescence are in essence the same of those responsible for all the luminescent processes and, this way, the thermoluminescence is one of the processes that are part of the luminescence phenomenon. For this work, the dispersed radiation was measured in the therapy area of the lineal accelerator of medical use type Elekta, using thermoluminescent dosimeters of CaSO 4 :Dy + Ptfe developed and elaborated in the Universidad Autonoma Metropolitana, Unidad Iztapalapa. With the dosimeters already characterized and calibrated, we proceeded to measure the dispersed radiation being a patient in treatment. The results showed values for the dispersed radiation the order of a third of the dose received by the patient on the treatment table at 30 cm of the direct beam and the order of a hundredth in the control area (4 m of the direct beam, approximately). The conclusion is that the thermoluminescent dosimeters of CaSO 4 : Dy + Ptfe are appropriate to measure dispersed radiation dose in radiotherapy. (author)

  14. Device for imaging an object by means of masks of spatially modulable electromagnetic radiation or corpuscular radiation of high energy

    Barrett, H.H.

    1979-01-01

    The radiogram of the thyroid is produced by means of a detector device operating similar to a scintillation camera. Between thyroid and detector device there is placed a mask having modulating areas, permeable and impermeable to radiation succeeding each other with decreasing extension. The scanning signal has got the shape of a radar signal with chirp modulation. The filtering unit used for it is a pulse compression filter. The image of the radiation energy distribution on the recording surface of the detector device is thus decoded and compressed to a number of image points giving the picture of the thyroid. (RW) [de

  15. Anomalous resonance-radiation energy-transfer rate in a scattering dispersive medium

    Shekhtman, V.L.

    1992-01-01

    This paper describes a generalization of the concept of group velocity as an energy-transfer rate in a dispersive medium with complex refractive index when the polaritons, which are energy carriers, undergo scattering, in contrast to the classical concept of the group velocity of free polaritons (i.e., without scattering in the medium). The concept of delay time from quantum multichannel-scattering, theory is used as the fundamental concept. Based on Maxwell's equations and the new mathematical Φ-function method, a consistent conceptual definition of group velocity in terms of the ratio of the coherent-energy flux density to the coherent-energy density is obtained for the first time, and a critical analysis of the earlier (Brillouin) understanding of energy-transfer rate is given in the light of radiation-trapping theory and the quantum theory of resonance scattering. The role of generalized group velocity is examined for the interpretation of the phenomenon of multiple resonance scattering, or radiation diffusion. The question of causality for the given problem is touched upon; a new relationship is obtained, called the microcausality condition, which limits the anomalous values of group velocity by way of the indeterminacy principle and the relativistic causality principle for macroscopic time intervals directly measurable in experiment, whereby attention is focused on the connection of the given microcausality condition and the well-known Wigner inequality for the time delay of spherical waves. 22 refs

  16. Study on the Hot Extrusion Process of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel Tubes

    Choi, Byoungkwon; Noh, Sanghoon; Kim, Kibaik; Kang, Suk Hoon; Chun, Youngbum; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ferritic/martensitic steel has a better thermal conductivity and swelling resistance than austenitic stainless steel. Unfortunately, the available temperature range of ferritic/martensitic steel is limited at up to 650 .deg. C. Oxide dispersion strengthened (ODS) steels have been developed as the most prospective core structural materials for next generation nuclear systems because of their excellent high strength and irradiation resistance. The material performances of this new alloy are attributed to the existence of uniformly distributed nano-oxide particles with a high density, which is extremely stable at high temperature in a ferritic/martensitic matrix. This microstructure can be very attractive in achieving superior mechanical properties at high temperatures, and thus, these favorable microstructures should be obtained through the controls of the fabrication process parameters during the mechanical alloying and hot consolidation procedures. In this study, a hot extrusion process for advanced radiation resistant ODS steel tube was investigated. ODS martensitic steel was designed to have high homogeneity, productivity, and reproducibility. Mechanical alloying and hot consolidation processes were employed to fabricate the ODS steels. A microstructure observation and creep rupture test were examined to investigate the effects of the optimized fabrication conditions. Advanced radiation resistant ODS steel has been designed to have homogeneity, productivity, and reproducibility. For these characteristics, modified mechanical alloying and hot consolidation processes were developed. Microstructure observation revealed that the ODS steel has uniformly distributed fine-grain nano-oxide particles. The fabrication process for the tubing is also being propelled in earnest.

  17. Study on the Hot Extrusion Process of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel Tubes

    Choi, Byoungkwon; Noh, Sanghoon; Kim, Kibaik; Kang, Suk Hoon; Chun, Youngbum; Kim, Tae Kyu

    2014-01-01

    Ferritic/martensitic steel has a better thermal conductivity and swelling resistance than austenitic stainless steel. Unfortunately, the available temperature range of ferritic/martensitic steel is limited at up to 650 .deg. C. Oxide dispersion strengthened (ODS) steels have been developed as the most prospective core structural materials for next generation nuclear systems because of their excellent high strength and irradiation resistance. The material performances of this new alloy are attributed to the existence of uniformly distributed nano-oxide particles with a high density, which is extremely stable at high temperature in a ferritic/martensitic matrix. This microstructure can be very attractive in achieving superior mechanical properties at high temperatures, and thus, these favorable microstructures should be obtained through the controls of the fabrication process parameters during the mechanical alloying and hot consolidation procedures. In this study, a hot extrusion process for advanced radiation resistant ODS steel tube was investigated. ODS martensitic steel was designed to have high homogeneity, productivity, and reproducibility. Mechanical alloying and hot consolidation processes were employed to fabricate the ODS steels. A microstructure observation and creep rupture test were examined to investigate the effects of the optimized fabrication conditions. Advanced radiation resistant ODS steel has been designed to have homogeneity, productivity, and reproducibility. For these characteristics, modified mechanical alloying and hot consolidation processes were developed. Microstructure observation revealed that the ODS steel has uniformly distributed fine-grain nano-oxide particles. The fabrication process for the tubing is also being propelled in earnest

  18. Origin, radiation, dispersion and allopatric hybridization in the chub Leuciscus cephalus.

    Durand, J D; Unlü, E; Doadrio, I; Pipoyan, S; Templeton, A R

    2000-08-22

    The phylogenetic relationships of 492 chub (Leuciscus cephalus) belonging to 89 populations across the species' range were assessed using 600 base pairs of cytochrome b. Furthermore, nine species belonging to the L. cephalus complex were also analysed (over the whole cytochrome b) in order to test potential allopatric hybridization with L. cephalus sensu stricto (i.e. the chub). Our results show that the chub includes four highly divergent lineages descending from a quick radiation that took place three million years ago. The geographical distribution of these lineages and results of the nested clade analysis indicated that the chub may have originated from Mesopotamia. Chub radiation probably occurred during an important vicariant event such as the isolation of numerous Turkish river systems, a consequence of the uplift of the Anatolian Plateau (formerly covered by a broad inland lake). Dispersion of these lineages arose from the changes in the European hydrographic network and, thus, the chub and endemic species of the L. cephalus complex met by secondary contacts. Our results show several patterns of introgression, from Leuciscus lepidus fully introgressed by chub mitochondrial DNA to Leuciscus borysthenicus where no introgression at all was detected. We assume that these hybridization events might constitute an important evolutionary process for the settlement of the chub in new environments in the Mediterranean area.

  19. Emergency response guidance for the first 48 hours after the outdoors detonation of an explosive radiological dispersal device

    Harper, Frederick Taylor; Musolino, Stephen V.

    2006-01-01

    Strategies and decisions to protect emergency responders, the public, and critical infrastructure against the effects of a radiological dispersal device detonated outdoors must be made in the planning stage, not in the early period just after an attack. This contrasts with planning for small-scale types of radiological or nuclear emergencies, or for a large-scale nuclear-power-type accident that evolves over many hours or days before radioactivity is released to the environment, such that its effects can be prospectively modeled and analyzed. By the time it is known an attack has occurred, most likely there will have been casualties, all the radioactive material will have been released, plume growth will be progressing, and there will be no time left for evaluating possible countermeasures. This paper offers guidance to planners, first responders, and senior decision makers to assist them in developing strategies for protective actions and operational procedures for the first 48 hours after an explosive radiological dispersal device has been detonated

  20. Hardening device, by inserts, of electronic component against radiation

    Val, C.

    1987-01-01

    The hardening device includes at least two materials, one with high atomic number with respect to the other. One of these materials is set as inserts in a layer of the other material. The hardening device is then made by stacking of such layers, the insert density varying from one layer to the other, making thus vary the atomic number resulting from the hardening device along its thickness, following a predefined law [fr

  1. Device for contamination monitoring against radiation contamination of people

    Rische, U.W.; Gerlach, R.

    1986-01-01

    The monitor has detector devices at an angle to each other made as a rigid component which can be rotated around a vertical axis in the angle between the joined detector devices. A reset drive which can be tensioned is provided at the axis of rotation. If it is in its rest position, a platform is situated as floor plate with a foot detector between the vertical detector devices. (orig./HP) [de

  2. New small devices for radiation detection: the Wee Pocket Chirper and the Portable Multichannel Analyzer

    Umbarger, C.J.

    1980-08-01

    Recent events have demonstrated the need for improved capability to monitor the exposure of workers to radiation and, in general, to identify and measure the many forms of radioactive materials found throughout the nuclear industry. Two radiation monitoring devices have been developed that are much smaller than existing instruments, yet exhibit superior performance and a longer battery life. The first instrument, the Wee Pocket Chirper, is a tiny, battery-powered warning device that chirps when exposed to radiation. The second instrument is a portable battery-powered, computer-based, multichannel analyzer that allows the user to examine radiation fields and to identify the types and amounts of radioactive materials present

  3. Radiation as a microbiological contamination control of drugs, cosmetics and medical devices

    Ishizeki, Chuichi

    1985-01-01

    This paper deals with current status of radiation sterilization or disinfection of drugs, cosmetics, their materials, and medical devices, and with quality control as a tool for securing microbiological safety, especially current status of sterilization tests. Ointment containing tetracyclin, steroid hormones, gelatin, and enzymes are presented as drug samples to be irradiated, and explanations for radiation sterilization of these drugs are provided. An outline of the application of radiation in cosmetics and medical devices is given. Issues are also provided from the viewpoint of safey and effectiveness of radiation sterilization. (Namekawa, K.)

  4. SINGLE-FACED GRAYQB{trademark} - A RADIATION MAPPING DEVICE

    Mayer, J.; Farfan, E.; Immel, D.; Phillips, M.; Bobbitt, J.; Plummer, J.

    2013-12-12

    GrayQb{trademark} is a novel technology that has the potential to characterize radioactively contaminated areas such as hot cells, gloveboxes, small and large rooms, hallways, and waste tanks. The goal of GrayQb{trademark} is to speed the process of decontaminating these areas, which reduces worker exposures and promotes ALARA considerations. The device employs Phosphorous Storage Plate (PSP) technology as its primary detector material. PSPs, commonly used for medical applications and non-destructive testing, can be read using a commercially available scanner. The goal of GrayQb{trademark} technology is to locate, quantify, and identify the sources of contamination. The purpose of the work documented in this report was to better characterize the performance of GrayQb{trademark} in its ability to present overlay images of the PSP image and the associated visual image of the location being surveyed. The results presented in this report are overlay images identifying the location of hot spots in both controlled and field environments. The GrayQb{trademark} technology has been mainly tested in a controlled environment with known distances and source characteristics such as specific known radionuclides, dose rates, and strength. The original concept for the GrayQb{trademark} device involved utilizing the six faces of a cube configuration and was designed to be positioned in the center of a contaminated area for 3D mapping. A smaller single-faced GrayQb{trademark}, dubbed GrayQb SF, was designed for the purpose of conducting the characterization testing documented in this report. This lighter 2D version is ideal for applications where entry ports are too small for a deployment of the original GrayQb™ version or where only a single surface is of interest. The shape, size, and weight of these two designs have been carefully modeled to account for most limitations encountered in hot cells, gloveboxes, and contaminated areas. GrayQb{trademark} and GrayQb{trademark} SF

  5. Basic mechanisms of radiation effects on electronic materials and devices

    Winokur, P.S.

    1989-01-01

    Many defense and nuclear reactor systems require complementary metal-oxide semiconductor integrated circuits that are tolerant to high levels of radiation. This radiation can result from space, hostile environments or nuclear reactor and accelerator beam environments. In addition, many techniques used to fabricate today's complex very-large-scale integration circuits expose the circuits to ionizing radiation during the process sequence. Whatever its origin, radiation can cause significant damage to integrated-circuit materials. This damage can lead to circuit performance degradation, logic upset, and even catastrophic circuit failure. This paper provides a brief overview of the basic mechanisms for radiation damage to silicon-based integrated circuits. Primary emphasis is on the effects of total-dose ionizing radiation on metal-oxide-semiconductor (MOS) structures

  6. Particle interaction and displacement damage in silicon devices operated in radiation environments

    Leroy, Claude; Rancoita, Pier-Giorgio

    2007-01-01

    Silicon is used in radiation detectors and electronic devices. Nowadays, these devices achieving submicron technology are parts of integrated circuits of large to very large scale integration (VLSI). Silicon and silicon-based devices are commonly operated in many fields including particle physics experiments, nuclear medicine and space. Some of these fields present adverse radiation environments that may affect the operation of the devices. The particle energy deposition mechanisms by ionization and non-ionization processes are reviewed as well as the radiation-induced damage and its effect on device parameters evolution, depending on particle type, energy and fluence. The temporary or permanent damage inflicted by a single particle (single event effect) to electronic devices or integrated circuits is treated separately from the total ionizing dose (TID) effect for which the accumulated fluence causes degradation and from the displacement damage induced by the non-ionizing energy-loss (NIEL) deposition. Understanding of radiation effects on silicon devices has an impact on their design and allows the prediction of a specific device behaviour when exposed to a radiation field of interest

  7. Disposal regulations and techniques applicable to devices using ionising radiation

    Vidal, J.P.

    1998-01-01

    L'office de Protection contre les rayonnement ionisants, being a government body under the supervision of Ministry of Health and Labour, among other different missions controls the compliance of radiation protection laws with the aim to guarantee the safe operation of equipment using ionising radiation sources. These regulations concerning competence of personnel, especially in the field of medicine or application of ionising radiation on humans, are restricted only to medical doctors (or dentists in their domain) by technical constraints dealing with design of equipment and its exploitation. At the same time regulations define conditions of permanent control in order to verify compliance of radiation protection laws

  8. Insights into the evolution of a cryptic radiation of bats: dispersal and ecological radiation of Malagasy Miniopterus (Chiroptera: Miniopteridae).

    Christidis, Les; Goodman, Steven M; Naughton, Kate; Appleton, Belinda

    2014-01-01

    The past decade has seen a proliferation of new species of Miniopterus bats (family Miniopteridae) recognized from Madagascar and the neighboring Comoros archipelago. The interspecific relationships of these taxa, their colonization history, and the evolution of this presumed adaptive radiation have not been sufficiently explored. Using the mitochondrial cytochrome-b gene, we present a phylogeny of the Malagasy members of this widespread Old World genus, based on 218 sequences, of which 82 are new and 136 derived from previous studies. Phylogenetic analyses recovered 18 clades, which divide into five primary lineages: (1) M. griveaudi; (2) M. mahafaliensis, M. sororculus and X3; (3) M. majori, M. gleni and M. griffithsi; (4) M. brachytragos; M. aelleniA, and M. aelleniB; and (5) M. manavi and M. petersoni recovered as sister species, which were in turn linked to a group comprising M. egeri and five genetically distinct populations referred to herein as P3, P4, P5, P6 and P7. Beast analysis indicated that the initial divergence within the Malagasy Miniopterus radiation took place 4.5 Myr; most species diverged between 4 and 2.5 Myr, and a secondary period was between 1.25 and 1 Myr. DNA K2P-distances between recognized taxa ranged from 12.9% to 2.5% and intraspecific variation was less than 1.8%. Of the 18 identified clades, Latin binomials are only associated with 11, which indicates much greater differentiation than currently recognized for Malagasy Miniopterus. These data are placed in a context of the dispersal history of this genus on the island and patterns of ecological diversity.

  9. Production of Fluconazole-Loaded Polymeric Micelles Using Membrane and Microfluidic Dispersion Devices

    Yu Lu

    2016-05-01

    Full Text Available Polymeric micelles with a controlled size in the range between 41 and 80 nm were prepared by injecting the organic phase through a microengineered nickel membrane or a tapered-end glass capillary into an aqueous phase. The organic phase was composed of 1 mg·mL−1 of PEG-b-PCL diblock copolymers with variable molecular weights, dissolved in tetrahydrofuran (THF or acetone. The pore size of the membrane was 20 μm and the aqueous/organic phase volumetric flow rate ratio ranged from 1.5 to 10. Block copolymers were successfully synthesized with Mn ranging from ~9700 to 16,000 g·mol−1 and polymeric micelles were successfully produced from both devices. Micelles produced from the membrane device were smaller than those produced from the microfluidic device, due to the much smaller pore size compared with the orifice size in a co-flow device. The micelles were found to be relatively stable in terms of their size with an initial decrease in size attributed to evaporation of residual solvent rather than their structural disintegration. Fluconazole was loaded into the cores of micelles by injecting the organic phase composed of 0.5–2.5 mg·mL−1 fluconazole and 1.5 mg·mL−1 copolymer. The size of the drug-loaded micelles was found to be significantly larger than the size of empty micelles.

  10. Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation

    Gayduchenko, I.; Kardakova, A.; Voronov, B.; Finkel, M.; Fedorov, G.; Jiménez, D.; Morozov, S.; Presniakov, M.; Goltsman, G.

    2015-01-01

    Demand for efficient terahertz radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. It was maintained that photothermoelectric effect under certain conditions results in strong response of such devices to terahertz radiation even at room temperature. In this work, we investigate different mechanisms underlying the response of asymmetric carbon nanotube (CNT) based devices to sub-terahertz and terahertz radiation. Our structures are formed with CNT networks instead of individual CNTs so that effects probed are more generic and not caused by peculiarities of an individual nanoscale object. We conclude that the DC voltage response observed in our structures is not only thermal in origin. So called diode-type response caused by asymmetry of the device IV characteristic turns out to be dominant at room temperature. Quantitative analysis provides further routes for the optimization of the device configuration, which may result in appearance of novel terahertz radiation detectors

  11. A survey of synchrotron radiation devices producing circular or variable polarization

    Kim, K.J.

    1990-01-01

    This paper reviews the properties and operating principles of the new types of synchrotron radiation devices that produce circular polarization, or polarization that can be modulated in arbitrary fashion

  12. New device for the radiation protection of the eye lens

    Csobaly, S.; Zarand, P.

    1980-01-01

    Lenses of 50 mm diameter and 2 mm width were ground from lead glass, equivalent to 2 mm of lead. In the case of X-radiations of different intensity and different filtering the finished glasses are equivalent to 0.73-0.78 mm of lead and they decrease the radiation exposition of the eye lens 15-fold. (L.E.)

  13. Studies on the radiation resistances of bioburden for medical devices

    Sekiguchi, Masayuki; Tabei, Masae

    1997-01-01

    Radiation resistances of reference bacteria strains and the bioburden obtained from hypodermic needles were estimated with gamma- and electron- irradiators calibrated with NPL (National Physics Laboratory) alanine dosimeter. Radiation resistances of the TSB-bacteria suspension samples dried on glass test tubes showed about two times higher than those of the water-bacteria suspension dried on glass fiber paper or paper filter. Radiation resistances of the dried TSB-bacteria suspension samples irradiated by both gamma rays and electron beams were fluctuated. The overall increase ratio of radiation resistance was estimated by dividing D-values of TSB-bacteria suspension samples by that of water-bacteria suspension samples for individual bacteria. Then, the survival curve of hypodermic needle bioburden revised by the increase ratio was obtained, and which compared with that of standard distribution of radiation resistances of ISO(SDR). (author)

  14. Effect on the insulation material of a MOSFET device submitted to a standard diagnostic radiation beam

    De Magalhaes, C M S; Dos Santos, L A P; Souza, D do N; Maia, A F

    2010-01-01

    MOSFET electronic devices have been used for dosimetry in radiology and radiotherapy. Several communications show that due to the radiation exposure defects appear on the semiconductor crystal lattice. Actually, the structure of a MOSFET consists of three materials: a semiconductor, a metal and an insulator between them. The MOSFET is a quadripolar device with a common terminal: gate-source is the input; drain-source is the output. The gate controls the electrical current passing through semiconductor medium by the field effect because the silicon oxide acts as insulating material. The proposal of this work is to show some radiation effects on the insulator of a MOSFET device. A 6430 Keithley sub-femtoamp SourceMeter was used to verify how the insulating material layer in the structure of the device varies with the radiation exposure. We have used the IEC 61267 standard radiation X-ray beams generated from a Pantak industrial unit in the radiation energy range of computed tomography. This range was chosen because we are using the MOSFET device as radiation detector for dosimetry in computed tomography. The results showed that the behaviour of the electrical current of the device is different in the insulator and semiconductor structures.

  15. An analysis of radiation effects on electronics and soi-mos devices as an alternative

    Ikraiam, F. A.

    2013-01-01

    The effects of radiation on semiconductors and electronic components are analyzed. The performance of such circuitry depends upon the reliability of electronic devices where electronic components will be unavoidably exposed to radiation. This exposure can be detrimental or even fatal to the expected function of the devices. Single event effects (SEE), in particular, which lead to sudden device or system failure and total dose effects can reduce the lifetime of electronic devices in such systems are discussed. Silicon-on-insulator (SOI) technology is introduced as an alternative for radiation-hardened devices. I-V Characteristics Curves for SOI-MOS devices subjected to a different total radiation doses are illustrated. In addition, properties of some semiconductor materials such as diamond, diamond-like carbon films, SiC, GaP, and AlGaN/GaN are compared with those of SOI devices. The recognition of the potential usefulness of SOI-MOS semiconductor materials for harsh environments is discussed. A summary of radiation effects, impacts and mitigation techniques is also presented. (authors)

  16. Radiation from ingested wireless devices in bio-medical telemetry bands

    Chirwa, L.C.; Roy, S.; Cumming, D.R.S.

    2003-01-01

    The performance of wireless devices, using electrically small antennae, in the human intestine is investigated using the finite difference time domain method in recommended biomedical device telemetry bands. The radiation field intensity was found to depend on position but more strongly on frequency, with a transmission peak at 650 MHz.

  17. Characterization of Radiation Hardened Bipolar Linear Devices for High Total Dose Missions

    McClure, Steven S.; Harris, Richard D.; Rax, Bernard G.; Thorbourn, Dennis O.

    2012-01-01

    Radiation hardened linear devices are characterized for performance in combined total dose and displacement damage environments for a mission scenario with a high radiation level. Performance at low and high dose rate for both biased and unbiased conditions is compared and the impact to hardness assurance methodology is discussed.

  18. Risk evaluation of medical and industrial radiation devices

    Jones, E.D.; Cunningham, R.E.; Rathbun, P.A.

    1994-03-01

    In 1991, the NRC, Division of Industrial and Medical Nuclear Safety, began a program to evaluate the use of probabilistic risk assessment (PRA) in regulating medical devices. This program represents an initial step in an overall plant to evaluate the use of PRA in regulating the use of nuclear by-product materials. The NRC envisioned that the use of risk analysis techniques could assist staff in ensuring that the regulatory approach was standardized, understandable, and effective. Traditional methods of assessing risk in nuclear power plants may be inappropriate to use in assessing the use of by-product devices. The approaches used in assessing nuclear reactor risks are equipment-oriented. Secondary attention is paid to the human component, for the most part after critical system failure events have been identified. This paper describes the risk methodology developed by Lawrence Livermore National Laboratory (LLNL), initially intended to assess risks associated with the use of the Gamma Knife, a gamma stereotactic radiosurgical device. For relatively new medical devices such as the Gamma Knife, the challenge is to perform a risk analysis with very little quantitative data but with an important human factor component. The method described below provides a basic approach for identifying the most likely risk contributors and evaluating their relative importance. The risk analysis approach developed for the Gamma Knife and described in this paper should be applicable to a broader class of devices in which the human interaction with the device is a prominent factor. In this sense, the method could be a prototypical model of nuclear medical or industrial device risk analysis

  19. Analytical study of the relativistic dispersion: Application to the generation of the auroral kilometric radiation

    Le Queau, D.; Louarn, P.

    1989-01-01

    The measurements recently performed by the Viking spacecraft have shown that, in addition to being cold plasma depleted, the source regions of the Auroral Kilometric Radiation (A.K.R.) are characterized by a relatively denser, more energetic electron component. In order to properly study the Cyclotron Maser Instability (C.M.I.) which is thought to be responsible for the A.K.R. generation, it is thus necessary to include relativistic corrections in both the hermitian and the antihermitian parts of the dielectric tensor characterizing the linear properties of the plasma. Here one presents an analytical study of the corresponding dispersion equation which aims to describe stable and unstable waves having frequencies lying very close to the electronic gyrofrequency and propagating across the geomagnetic field with a perpendicular refractive index less than a few units (n perpendicular 1 and χ small), the growth rate could maximize at the cut-off frequency of the relativistic X mode. Moreover, for small χ, the relativistic X mode is connected to freely propagating modes which guarantees an easy access of the electromagnetic energy to free space

  20. Radiation effects and soft errors in integrated circuits and electronic devices

    Fleetwood, D M

    2004-01-01

    This book provides a detailed treatment of radiation effects in electronic devices, including effects at the material, device, and circuit levels. The emphasis is on transient effects caused by single ionizing particles (single-event effects and soft errors) and effects produced by the cumulative energy deposited by the radiation (total ionizing dose effects). Bipolar (Si and SiGe), metal-oxide-semiconductor (MOS), and compound semiconductor technologies are discussed. In addition to considering the specific issues associated with high-performance devices and technologies, the book includes th

  1. Radiation Testing, Characterization and Qualification Challenges for Modern Microelectronics and Photonics Devices and Technologies

    LaBel, Kenneth A.; Cohn, Lewis M.

    2008-01-01

    At GOMAC 2007, we discussed a selection of the challenges for radiation testing of modern semiconductor devices focusing on state-of-the-art memory technologies. This included FLASH non-volatile memories (NVMs) and synchronous dynamic random access memories (SDRAMs). In this presentation, we extend this discussion in device packaging and complexity as well as single event upset (SEU) mechanisms using several technology areas as examples including: system-on-a-chip (SOC) devices and photonic or fiber optic systems. The underlying goal is intended to provoke thought for understanding the limitations and interpretation of radiation testing results.

  2. Transient photoconductive gain in a-Si:H devices and its applications in radiation detection

    Lee, H.K.; Suh, T.S.; Choe, B.Y.; Shinn, K.S.; Perez-Mendez, V.

    1997-01-01

    Using the transient behavior of the photoconductive-gain mechanism, a signal gain in radiation detection with a-Si:H devices may be possible. The photoconductive gain mechanism in two types of hydrogenated amorphous silicon devices, p-i-n and n-i-n configurations, was investigated in connection with applications to radiation detection. Photoconductive gain was measured in two time scales: one for short pulses of visible light ( 2 . Various gain results are discussed in terms of the device structure, applied bias and dark-current density. (orig.)

  3. Emergency response activities and collecting damaged radiation devices from a war affected area in Croatia

    Subasic, Damir; Schaller, Antum

    1997-01-01

    A number of various devices containing ionizing radiation sources were in use in the area affected by the recent war in Croatia. In destruction caused by the war operations, a number of these devices were damaged, destroyed or even missed/lost. The actions undertaken to (re)collect these radiation sources, experience gained and lessons learned are reviewed. The importance of a well-organized national regulatory system is highlighted as a precondition for the efficient identification and safe collection of radiation sources which were under ruins. Experience from this event could be well applicable to similar situations caused by disasters and particularly for regulatory authorities who design emergency preparedness plans. (author)

  4. Exploring graphene field effect transistor devices to improve spectral resolution of semiconductor radiation detectors

    Harrison, Richard Karl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Jeffrey B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hamilton, Allister B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    Graphene, a planar, atomically thin form of carbon, has unique electrical and material properties that could enable new high performance semiconductor devices. Graphene could be of specific interest in the development of room-temperature, high-resolution semiconductor radiation spectrometers. Incorporating graphene into a field-effect transistor architecture could provide an extremely high sensitivity readout mechanism for sensing charge carriers in a semiconductor detector, thus enabling the fabrication of a sensitive radiation sensor. In addition, the field effect transistor architecture allows us to sense only a single charge carrier type, such as electrons. This is an advantage for room-temperature semiconductor radiation detectors, which often suffer from significant hole trapping. Here we report on initial efforts towards device fabrication and proof-of-concept testing. This work investigates the use of graphene transferred onto silicon and silicon carbide, and the response of these fabricated graphene field effect transistor devices to stimuli such as light and alpha radiation.

  5. 60Co gamma radiation effect on AlGaN//AlN/GaN HEMT devices

    Wang Yanping; Luo Yinhong; Wang Wei; Zhang Keying; Guo Hongxia; Guo Xiaoqiang; Wang Yuanming

    2013-01-01

    The testing techniques and experimental methods of the 60 Co gamma irradiation effect on AlGaN/AlN/GaN high electron mobility transistors (HEMTs) are established. The degradation of the electrical properties of the device under the actual radiation environment are analyzed theoretically, and studies of the total dose effects of gamma radiation on AlGaN/AlN/GaN HEMTs at three different radiation bias conditions are carried out. The degradation patterns of the main parameters of the AlGaN/AlN/GaN HEMTs at different doses are then investigated, and the device parameters that were sensitive to the gamma radiation induced damage and the total dose level induced device damage are obtained. (authors)

  6. Design and testing of an innovative solar radiation measurement device

    Badran, Omar; Al-Salaymeh, Ahmed; El-Tous, Yousif; Abdala, Wasfi

    2010-01-01

    After review of studies conducted on the solar radiation measuring systems, a new innovative instrument that would help in measuring the accurate solar radiation on horizontal surfaces has been designed and tested. An advanced instrument with ease of use and high precision that would enable the user to take the readings in terms of solar intensity (W/m 2 ) has been tested. Also, the innovative instrument can record instantaneous readings of the solar intensities as well as the averages value of the solar radiation flux during certain periods of time. The instrument based in its design on being programmed by programmable interfacing controller (PIC). Furthermore, the power supply circuit is fed by the solar energy cells and does not need an external power source.

  7. The Pocketable Electronic Devices in Radiation Oncology (PEDRO) Project

    De Bari, Berardino; Franco, P.; Niyazi, Maximilian

    2016-01-01

    ) members of the national radiation or clinical oncology associations of the countries involved in the study. The 15 items investigated diffusion of MEDs (smartphones and/or tablets), their impact on daily clinical activity, and the differences perceived by participants along time. Results: A total of 386...... in young professionals working in radiation oncology. Looking at these data, it is important to verify the consistency of information found within apps, in order to avoid potential errors eventually detrimental for patients. “Quality assurance” criteria should be specifically developed for medical apps...

  8. Simulation of physical processes in devices with non-magnetic, milk-dispersed secondary part

    Minkin Maksim

    2017-01-01

    Full Text Available At present, most machine-building enterprises focus on the problem of saving energy resources. The proposed system of air regeneration in industrial premises will allow to keep the air in the room at a comfortable temperature without removing it to the atmosphere. The second problem solved by this system is the prevention of pollutants entering the atmosphere. At the same time, the efficiency of this system is not inferior to analogs, and many of them even surpass. Energy costs are reduced by at least 30% because there is no need to use the system of regeneration of working elements. However, the development of this system requires the solution of a number of problems. One of the main problems is the control of the motion of particles in the corona discharge region. A number of differently directed forces act on a particle of a finely dispersed substance, which actually form the equation of motion of this particle. However, when composing the equation of particle motion, it is necessary to take into account the space charge in the outer region of the corona. With a fairly complex geometry of the core, it is impossible to take into account the influence of a volumetric charge analytically, and, consequently, the use of computer modeling tools is required. Another factor that needs to be taken into account is the appearance of an aerodynamic force arising from such a poorly understood phenomenon as the “ion wind” that appears in the presence of a corona discharge. The solution of the described problem will allow to create a system of air regeneration in industrial premises, allowing recirculation of polluted air without diversion into the atmosphere, which will reduce the cost of energy.

  9. New photonic devices for ultrafast pulse processing operating on the basis of the diffraction-dispersion analogy

    Torres-Company, Victor; Minguez-Vega, Gladys; Climent, Vicent; Lands, Jesus [GROC-UJI, Departament de Fisica, Universitat Jaume I, 12080 Castello (Spain); Andres, Pedro [Departament d' Optica, Universitat de Valencia, 46100 Burjassot (Spain)], E-mail: lancis@fca.uji.es

    2008-11-01

    The space-time analogy is a well-known topic within wave optics that brings together some results from beam diffraction and pulse dispersion. On the above basis, and taking as starting point some classical concepts in Optics, several photonic devices have been proposed during the last few years with application in rapidly evolving fields such as ultrafast (femtosecond) optics or RF and microwave signal processing. In this contribution, we briefly review the above ideas with particular emphasis in the generation of trains of ultrafast pulses from periodic modulation of the phase of a CW laser source. This is the temporal analogue of Fresnel diffraction by a pure phase grating. Finally, we extend the analogy to the partially coherent case, what enables us to design an original technique for wavelength-to-time mapping of the spectrum of a temporally stationary source. Results of laboratory experiments concerning the generation of user-defined radio-frequency waveforms and filtering of microwave signals will be shown. The devices are operated with low-cost incoherent sources.

  10. Radiation-resistant requirements analysis of device and control component for advanced spent fuel management process

    Song, Tai Gil; Park, G. Y.; Kim, S. Y.; Lee, J. Y.; Kim, S. H.; Yoon, J. S. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-02-01

    It is known that high levels of radiation can cause significant damage by altering the properties of materials. A practical understanding of the effects of radiation - how radiation affects various types of materials and components - is required to design equipment to operate reliably in a gamma radiation environment. When designing equipment to operate in a high gamma radiation environment, such as will be present in a nuclear spent fuel handling facility, several important steps should be followed. In order to active test of the advanced spent fuel management process, the radiation-resistant analysis of the device and control component for active test which is concerned about the radiation environment is conducted. Also the system design process is analysis and reviewed. In the foreign literature, 'threshold' values are generally reported. the threshold values are normally the dose required to begin degradation in a particular material property. The radiation effect analysis for the device of vol-oxidation and metalization, which are main device for the advanced spent fuel management process, is performed by the SCALE 4.4 code. 5 refs., 4 figs., 13 tabs. (Author)

  11. Probabilistic siting analysis of nuclear power plants emphasizing atmospheric dispersion of radioactive releases and radiation-induced health effects

    Savolainen, Ilkka

    1980-01-01

    A presentation is made of probabilistic evaluation schemes for nuclear power plant siting. Effects on health attributable to ionizing radiation are reviewed, for the purpose of assessment of the numbers of the most important health effect cases in light-water reactor accidents. The atmospheric dispersion of radioactive releases from nuclear power plants is discussed, and there is presented an environmental consequence assessment model in which the radioactive releases and atmospheric dispersion of the releases are treated by the application of probabilistic methods. In the model, the environmental effects arising from exposure to radiation are expressed as cumulative probability distributions and expectation values. The probabilistic environmental consequence assessment model has been applied to nuclear power plant site evaluation, including risk-benefit and cost-benefit analyses, and the comparison of various alternative sites. (author)

  12. Analysis of a Kalman filter based method for on-line estimation of atmospheric dispersion parameters using radiation monitoring data

    Drews, Martin; Lauritzen, Bent; Madsen, Henrik

    2005-01-01

    A Kalman filter method is discussed for on-line estimation of radioactive release and atmospheric dispersion from a time series of off-site radiation monitoring data. The method is based on a state space approach, where a stochastic system equation describes the dynamics of the plume model...... parameters, and the observables are linked to the state variables through a static measurement equation. The method is analysed for three simple state space models using experimental data obtained at a nuclear research reactor. Compared to direct measurements of the atmospheric dispersion, the Kalman filter...... estimates are found to agree well with the measured parameters, provided that the radiation measurements are spread out in the cross-wind direction. For less optimal detector placement it proves difficult to distinguish variations in the source term and plume height; yet the Kalman filter yields consistent...

  13. Radiation and detectors introduction to the physics of radiation and detection devices

    Cerrito, Lucio

    2017-01-01

    This textbook provides an introduction to radiation, the principles of interaction between radiation and matter, and the exploitation of those principles in the design of modern radiation detectors. Both radiation and detectors are given equal attention and their interplay is carefully laid out with few assumptions made about the prior knowledge of the student. Part I is dedicated to radiation, broadly interpreted in terms of energy and type, starting with an overview of particles and forces, an extended review of common natural and man-made sources of radiation, and an introduction to particle accelerators. Particular attention is paid to real life examples, which place the types of radiation and their energy in context. Dosimetry is presented from a modern, user-led point of view, and relativistic kinematics is introduced to give the basic knowledge needed to handle the more formal aspects of radiation dynamics and interaction. The explanation of the physics principles of interaction between radiation an...

  14. Device for introducing radiative pellets in a tube

    Michel, A.; Milesi, A.

    1983-01-01

    Fuel sheaths are filled through a device comprising a funnel-guide with a bore having a diameter and slightly higher than pellet diameter and slightly lower than fuel can inside diameter. The flaring part of the funnel is toward facing a pellet distributor placed in a containment cell. The fuel can is tightened and aligned for a close contact with the funnel-guide [fr

  15. Device for the radiation centering at electron emitters

    Panzer, S.; Ardenne, T. von; Jessat, K.; Bahr, G.

    1985-01-01

    The invention has been directed at a device for a simplified and reliable centering of electron beams at electron emitters in particular for welding and thermal surface modifications. The electron beam has been focussed relatively to an electron-optical lens. A movable masked electron detector has been arranged at the electron beam deflection plane. The electron detector is connected with an electronic data evaluation equipment

  16. Characteristics of withstanding radiation damage of InP crystals and devices

    Yamaguchi, Masafumi; Ando, Koshi

    1988-01-01

    Recently, the authors discovered that the characteristics of with standing radiation damage of InP crystals and devices (solar cells) are superior to those of Si and GaAs crystals and devices. Also the restoration phenomena at room temperature of radiation deterioration and the accelerated anneal phenomena by light irradiation and the injection of other minority, carriers in InP system devices were found. Such excellent characteristics suggested that InP devices are promising for the use in space. In this paper, taking an example of solar cells, the radiation resistance characteristics and their mechanism of InP crystals and devices are reported, based on the results of analysis by deep level transient spectroscopy and others. In InP solar cells, the high efficiency of photoelectric conversion was maintained even in the high dose irradiation of 1 MeV electron beam. As the carrier concentration in InP crystals is higher, they are stronger against radiation. With the increase of carrier concentration, the rate of anneal of radiation deterioration at room temperature increased. The accelerated anneal effect by minority carrier injection was remarkable in n + -p junction cells. The excellent characteristics of InP crystals are due to the formation of Frenkel defects of P and their instability. (K.I.)

  17. The solar ultraviolet B radiation protection provided by shading devices with regard to its diffuse component.

    Kudish, Avraham I; Harari, Marco; Evseev, Efim G

    2011-10-01

    The composition of the incident solar global ultraviolet B (UVB) radiation with regard to its beam and diffuse radiation fractions is highly relevant with regard to outdoor sun protection. This is especially true with respect to sun protection during leisure-time outdoor sun exposure at the shore and pools, where people tend to escape the sun under shade trees or different types of shading devices, e.g., umbrellas, overhangs, etc., believing they offer protection from the erythemal solar radiation. The degree of sun protection offered by such devices is directly related to the composition of the solar global UVB radiation, i.e., its beam and diffuse fractions. The composition of the incident solar global UVB radiation can be determined by measuring the global UVB (using Solar Light Co. Inc., Model 501A UV-Biometer) and either of its components. The beam component of the UVB radiation was determined by measuring the normal incidence beam radiation using a prototype, tracking instrument consisting of a Solar Light Co. Inc. Model 501A UV-Biometer mounted on an Eppley Solar Tracker Model St-1. The horizontal beam component of the global UVB radiation was calculated from the measured normal incidence using a simple geometric correlation and the diffuse component is determined as the difference between global and horizontal beam radiations. Horizontal and vertical surfaces positioned under a horizontal overhang/sunshade or an umbrella are not fully protected from exposure to solar global UVB radiation. They can receive a significant fraction of the UVB radiation, depending on their location beneath the shading device, the umbrella radius and the albedo (reflectance) of the surrounding ground surface in the case of a vertical surface. Shading devices such as an umbrella or horizontal overhang/shade provide relief from the solar global radiation and do block the solar global UVB radiation to some extent; nevertheless, a significant fraction of the solar global UVB

  18. Computing the spectrum of black hole radiation in the presence of high frequency dispersion: an analytical approach

    Corley, Steven

    1997-01-01

    We present a method for computing the spectrum of black hole radiation of a scalar field satisfying a wave equation with high frequency dispersion. The method involves a combination of Laplace transform and WKB techniques for finding approximate solutions to ordinary differential equations. The modified wave equation is obtained by adding a higher order derivative term suppressed by powers of a fundamental momentum scale $k_0$ to the ordinary wave equation. Depending on the sign of this new t...

  19. Peculiarities of the point radiation defects accumulation in the fine- and ultra-disperse metallic media

    Aliev, B.A.; Zajkin, Yu.A.; Potapov, A.S.

    2004-01-01

    Fine-dispersive powders are a samples of solid systems. In which under irradiation the particle surface layers defect structure changes and has mostly an effect on structural transformations. Theoretical calculations and experimental data show, that the increased interstitials atoms concentration near particles surface during irradiation by either electrons or gamma quanta with energy about 1 MeV give rise to intensive pores healing. At the same time as the dense surface layer formation the pores healing leads to the brachiate borders system formation. The borders serve as pathways for accelerated diffusion. Sintering process and a metal recrystallization are stimulating as well. Both processes lead to the ordered super-structure formation which contributes the additional contribution in an improvement of the mechanical properties of a metal. A liner sizes of the ordered net depend on both the powder sizes and the irradiation conditions. The especial interest present a conditions for such superstructure formation (when the particle sizes are becoming so small (∼1 μm), that effect has being resulted on a defect-formation in the whole volume of a powder particle). In the considered case the point radiation defects accumulation kinetics in the metallic particle is analyzed on the ground of the equation system for atomic concentrations both interstitial atoms and vacancies. The numerical solution of this equation system shows, that particles sizes decline leads to considerable micro-pores healing increase and improvement of conditions for net strengthening. In dependence on irradiation conditions (temperature, dose and dose rate) the forming super-structure could have micro- and nano-sizes

  20. Space and military radiation effects in silicon-on-insulator devices

    Schwank, J.R.

    1996-09-01

    Advantages in transient ionizing and single-event upset (SEU) radiation hardness of silicon-on-insulator (SOI) technology spurred much of its early development. Both of these advantages are a direct result of the reduced charge collection volume inherent to SOI technology. The fact that SOI transistor structures do not include parasitic n-p-n-p paths makes them immune to latchup. Even though considerable improvement in transient and single-event radiation hardness can be obtained by using SOI technology, there are some attributes of SOI devices and circuits that tend to limit their overall hardness. These attributes include the bipolar effect that can ultimately reduce the hardness of SOI ICs to SEU and transient ionizing radiation, and charge buildup in buried and sidewall oxides that can degrade the total-dose hardness of SOI devices. Nevertheless, high-performance SOI circuits can be fabricated that are hardened to both space and nuclear radiation environments, and radiation-hardened systems remain an active market for SOI devices. The effects of radiation on SOI MOS devices are reviewed

  1. Radiation Isotope Identification Device (RIIDs) Field Test and Evaluation Campaign

    Christopher Hodge, Raymond Keegan

    2007-01-01

    Handheld, backpack, and mobile sensors are elements of the Global Nuclear Detection System for the interdiction and control of illicit radiological and nuclear materials. They are used by the U.S. Department of Homeland Security (DHS) and other government agencies and organizations in various roles for border protection, law enforcement, and nonproliferation monitoring. In order to systematically document the operational performance of the common commercial off-the-shelf portable radiation detection systems, the DHS Domestic Nuclear Detection Office conducted a test and evaluation campaign conducted at the Nevada Test Site from January 18 to February 27, 2006. Named 'Anole', it was the first test of its kind in terms of technical design and test complexities. The Anole test results offer users information for selecting appropriate mission-specific portable radiation detection systems. The campaign also offered manufacturers the opportunity to submit their equipment for independent operationally relevant testing to subsequently improve their detector performance. This paper will present the design, execution, and methodologies of the DHS Anole portable radiation detection system test campaign

  2. Malfunction of cardiac devices after radiotherapy without direct exposure to ionizing radiation: mechanisms and experimental data.

    Zecchin, Massimo; Morea, Gaetano; Severgnini, Mara; Sergi, Elisabetta; Baratto Roldan, Anna; Bianco, Elisabetta; Magnani, Silvia; De Luca, Antonio; Zorzin Fantasia, Anna; Salvatore, Luca; Milan, Vittorino; Giannini, Gianrossano; Sinagra, Gianfranco

    2016-02-01

    Malfunctions of cardiac implantable electronical devices (CIED) have been described after high-energy radiation therapy even in the absence of direct exposure to ionizing radiation, due to diffusion of neutrons (n) causing soft errors in inner circuits. The purpose of the study was to analyse the effect of scattered radiation on different types and models of CIED and the possible sources of malfunctions. Fifty-nine explanted CIED were placed on an anthropomorphous phantom of tissue-equivalent material, and a high-energy photon (15 MV) radiotherapy course (total dose = 70 Gy) for prostate treatment was performed. All devices were interrogated before and after radiation. Radiation dose, the electromagnetic field, and neutron fluence at the CIED site were measured. Thirty-four pacemakers (PM) and 25 implantable cardioverter-defibrillators (ICD) were analysed. No malfunctions were detected before radiation. After radiation a software malfunction was evident in 13 (52%) ICD and 6 (18%) PM; no significant electromagnetic field or photon radiations were detected in the thoracic region. Neutron capture was demonstrated by the presence of the (198)Au((197)Au + n) or (192)Ir((191)Ir + n) isotope activation; it was significantly greater in ICD than in PM and non-significantly greater in damaged devices. A greater effect in St Jude PM (2/2 damaged), Boston (9/11), and St Jude ICD (3/6) and in older ICD models was observed; the year of production was not relevant in PM. High-energy radiation can cause different malfunctions on CIED, particularly ICD, even without direct exposure to ionizing radiation due to scattered radiation of neutrons produced by the linear accelerator. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  3. Protective device for organs exposed to medical X-radiation

    Zimmer, K.

    1978-01-01

    The protective device for male or female gonads consists of a protective screen made of hard lead coated with silicon caoutchouc, a flexible supporting arm, and a base plate on which the supporting arm for the protective screen is monted. The protective screen has got the shape of a dish resp. a pear-shaped contour for male resp. female persons. The base may be arranged on a Bucky table between the legs of the person to be examined by means of suction cups. (DG) [de

  4. Radiation Effects in III-V Nanowire Devices

    2016-09-01

    fabrication of an in-plane nanowire (NW) GaAs metal-oxide-semiconductor field- effect transistor (MOSFET) by focused -ion beam (FIB) etching and chemical...8725 John J. Kingman Road, MS 6201 Fort Belvoir, VA 22060-6201 T E C H N IC A L R E P O R T DTRA-TR-16-94 Radiation Effects in III-V...5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY

  5. The method of the correlation and dispersion defining of the total power components in the electric transport devices

    A. V. Nikitenko

    2013-04-01

    Full Text Available Purpose. Development and theoretical ground of the analytical method for the calculation of the active, reactive and total powers in the electric traction devices, taking into consideration the non-stationary character of the stochastic processes change of the voltage and current in the elements of these systems. Methodology. The mathematical methods of the random processes theory and the “discrete electrical engineering” methods are used for solving the main problem of this paper. Findings. The Method of the Correlation and Dispersion is developed for definition of the active power, the reactive power by Fryse and the total power of the devices in the elements of the electric traction system of the main-line railways. The method is based on the well-known concepts of auto- and inter-correlation functions of the random processes which govern the feeder voltages and the currents in the traction power supply subsystem as well as the currents and voltages of the electric rolling stock. The method developed in this paper allows estimating the powers of both stationary and non-stationary processes. This method can be used for the analysis of both the traction mode and the regenerative braking mode of the electric rolling stock. The total power components were calculated for the one of the feeder areas of the Prydniprovsk railway using this method. The results show the significant flow of the reactive power in the traction power supply system. This fact is also confirmed by the high values of the reactive power coefficient. Originality. Scientific novelty of the research is consisted in the following. Firstly, for defining the active and reactive powers in elements of the traction power supply system the new method (the Method of Correlation and Dispersion is created and grounded. This method is different from other existing methods because it takes into consideration the varying non-stationary character of the chance processes of the feeder and

  6. Heat resistant/radiation resistant cable and incore structure test device for FBR type reactor

    Tanimoto, Hajime; Shiono, Takeo; Sato, Yoshimi; Ito, Kazumi; Sudo, Shigeaki; Saito, Shin-ichi; Mitsui, Hisayasu.

    1995-01-01

    A heat resistant/radiation resistant coaxial cable of the present invention comprises an insulation layer, an outer conductor and a protection cover in this order on an inner conductor, in which the insulation layer comprises thermoplastic polyimide. In the same manner, a heat resistant/radiation resistant power cable has an insulation layer comprising thermoplastic polyimide on a conductor, and is provided with a protection cover comprising braid of alamide fibers at the outer circumference of the insulation layer. An incore structure test device for an FBR type reactor comprises the heat resistant/radiation resistant coaxial cable and/or the power cable. The thermoplastic polyimide can be extrusion molded, and has excellent radiation resistant by the extrusion, as well as has high dielectric withstand voltage, good flexibility and electric characteristics at high temperature. The incore structure test device for the FBR type reactor of the present invention comprising such a cable has excellent reliability and durability. (T.M.)

  7. Synchrotron radiation A general overview and a review of storage rings, research facilities, and insertion devices

    Winick, H.

    1989-01-01

    Synchrotron radiation, the electromagnetic radiation given off by electrons in circular motion, is revolutionizing many branches of science and technology by offering beams of vacuum ultraviolet light and x rays of immense flux and brightness. In the past decade there has been an explosion of interest in these applications leading activity to construct new research facilities based on advanced storage rings and insertion device sources. Applications include basic and applied research in biology, chemistry, medicine, and physics plus many areas of technology. In this article we present a general overview of the field of synchrotron radiation research, its history, the present status and future prospects of storage rings and research facilities, and the development of wiggler and undulator insertion devices as sources of synchrotron radiation

  8. Radiation hardness and qualification of semiconductor electronic devices for nuclear reactors

    Friant, A.; Payat, R.

    1984-05-01

    After a brief review of radiation effects in semiconductors and radiation damage in semiconductor devices, the problems of qualification of electronic equipment to be used in nuclear reactors are compared to those relative to nuclear weapons or space experiments. The conclusion is that data obtained at very high dose rates or under pulsed irradiation in weapons and space programs should not be directly applied to nuclear plant instrumentation. The need for a specific qualification of semiconductor devices appropriate for nuclear reactors is emphasized. Some irradiation studies at IRDI/DEIN (CEN-Saclay) are related [fr

  9. Utilization of photoconductive gain in a-Si:H devices for radiation detection

    Lee, H.K.; Drewery, J.S.; Hong, W.S.; Jing, T.; Kaplan, S.N.; Perez-Mendez, V.

    1995-05-01

    The photoconductive gain mechanism in a-Si:H was investigated in connection with applications to radiation detection. Various device types such as p-i-n, n-i-n and n-i-p-i-n structures were fabricated and tested. Photoconductive gain was measured in two time scales: one for short pulses of visible light ( 2 . Various gain results are discussed in terms of the device structure, applied bias and dark current

  10. Application of complex programmable logic devices in memory radiation effects test system

    Li Yonghong; He Chaohui; Yang Hailiang; He Baoping

    2005-01-01

    The application of the complex programmable logic device (CPLD) in electronics is emphatically discussed. The method of using software MAX + plus II and CPLD are introduced. A new test system for memory radiation effects is established by using CPLD devices-EPM7128C84-15. The old test system's function are realized and, moreover, a number of small scale integrated circuits are reduced and the test system's reliability is improved. (authors)

  11. Radiation effects on semiconductor devices in high energy heavy ion accelerators

    Belousov, Anton

    2014-10-20

    Radiation effects on semiconductor devices in GSI Helmholtz Center for Heavy Ion Research are becoming more and more significant with the increase of beam intensity due to upgrades. Moreover a new accelerator is being constructed on the basis of GSI within the project of facility for antiproton and ion research (FAIR). Beam intensities will be increased by factor of 100 and energies by factor of 10. Radiation fields in the vicinity of beam lines will increase more than 2 orders of magnitude and so will the effects on semiconductor devices. It is necessary to carry out a study of radiation effects on semiconductor devices considering specific properties of radiation typical for high energy heavy ion accelerators. Radiation effects on electronics in accelerator environment may be divided into two categories: short-term temporary effects and long-term permanent degradation. Both may become critical for proper operation of some electronic devices. This study is focused on radiation damage to CCD cameras in radiation environment of heavy ion accelerator. Series of experiments with irradiation of devices under test (DUTs) by secondary particles produced during ion beam losses were done for this study. Monte Carlo calculations were performed to simulate the experiment conditions and conditions expected in future accelerator. Corresponding comparisons and conclusions were done. Another device typical for accelerator facilities - industrial Ethernet switch was tested in similar conditions during this study. Series of direct irradiations of CCD and MOS transistors with heavy ion beams were done as well. Typical energies of the primary ion beams were 0.5-1 GeV/u. Ion species: from Na to U. Intensities of the beam up to 10{sup 9} ions/spill with spill length of 200-300 ns. Criteria of reliability and lifetime of DUTs in specific radiation conditions were formulated, basing on experimental results of the study. Predictions of electronic device reliability and lifetime were

  12. Device for forming the image of a radiation source

    Tosswill, C.H.

    1980-01-01

    An improvement can be made to the space resolution of systems providing the image of a radiation source by means of a slit collimator. In order to do so, a lateral movement of the collimator (with its detectors) is superimposed on the movement of the collimator, in a transversal direction in relation to the transmission direction through the collimator as well as in relation to the walls defining the slits. The total amplitude of the lateral movement is at least equal to the distance between centres of a slit and the following one. In the near field operating system, the lateral movement is a rectilinear movement perpendicular to the walls of the slits. In the distance field operating systems, it is an angular movement about an axis perpendicular to the direction of transmission through the slits [fr

  13. Study of radiation shielding requirements for n-MOS devices on the Exosat spacecraft. Final report

    1977-01-01

    The device-degradation and radiation-shielding problems presented by the probable use of an n-channel microprocessor integrated circuit of the 8080 type on the Exosat spacecraft of the European Space Agency, was studied. The radiation exposure likely for this device was calculated, using various assumptions for the amount of surrounding absorber, some being intentional shielding others being normal structure elements and device encapsulation. The conclusion was that this type of device could be used if careful engineering design and quality control were used. Mission doses vary between 5000 and 800 rads for various configurations and some patterns of MOS device will tolerate these doses. The use of specially thickened module covers was not recommended, a better method being upgrading device quality and applying internal (local) shielding when necessary and possibly modular addition of external plates in specific directions only. The result of this shielding philosophy would be much greater efficiency in weight use. The further development of a rads (reduction) per gram philosophy was strongly recommended. Throughout, the strong link between mission success and the choice (and control) of the correct MOS manufacturing technology is emphasized and some guidelines on control of manufactured MOS parts (n-channel and complementary type) with respect to tolerance to radiation are given

  14. Upgrade of of monitoring devices for radiation information

    Kim, Jung Taek; Park, Won Man; Kim, Jung Soo; Lee, Bong Jae; Jae Yoo Kyung

    1999-01-01

    The Radiation Monitoring System (RMS) in Hanaro of KAERI and NPPs of Korea, supplied by victoreen, sometimes has been stopped to use slow 486 PC (Personal computer) and not to be enough memory in main processing computer, IOCA and IOCB, for signal processing and storing. It is very difficult for operator to operate and maintain RMS, because of using an unfamiliar operating system, SCO Unix, of main computer. And also, ScanRad (TM) program for processing and storing radiation signal has Y2K problems and is able to lose and not to display measuring signals. Therefore it needs to upgrade the computer system in RMS. This study is upgrading the main computer, IOCA, in RMS of Hanaro to Pentium PC, and changing operating System to Window NT-based system. Therefore it needs to upgrade the computer system in RMS. This study is upgrading the main computer, IOCA, in RMS of Hanaro to Pentium PC, and changing Operating System to Window NT-based system. Therefore a performance of the computer system in RMS has been upgraded for operator to be useful. This study is going two steps. First, the main computer, IOCA a part of the whole computer system has been upgraded to Pentium PC, and changed to Window NT-based system. Second, all of the computer system in Hanaro RMS is going to be upgraded. This study has got the following results: a RS-232C serial communication program: between the upgraded IOCA and LCU (Local Control Unit) -- a serial communication test configurating two LCU serial --a parallel communication test configurating two LCU parallel: GUI program to present a radioactive information -- overview schematic display page -- detail display pages -- alarm and event pages -- trend pages and group trend pages.

  15. Upgrade of of monitoring devices for radiation information

    Kim, Jung Taek; Park, Won Man; Kim, Jung Soo; Lee, Bong Jae; Jae Yoo Kyung

    1999-01-01

    The Radiation Monitoring System (RMS) in Hanaro of KAERI and NPPs of Korea, supplied by victoreen, sometimes has been stopped to use slow 486 PC (Personal computer) and not to be enough memory in main processing computer, IOCA and IOCB, for signal processing and storing. It is very difficult for operator to operate and maintain RMS, because of using an unfamiliar operating system, SCO Unix, of main computer. And also, ScanRad (TM) program for processing and storing radiation signal has Y2K problems and is able to lose and not to display measuring signals. Therefore it needs to upgrade the computer system in RMS. This study is upgrading the main computer, IOCA, in RMS of Hanaro to Pentium PC, and changing operating System to Window NT-based system. Therefore it needs to upgrade the computer system in RMS. This study is upgrading the main computer, IOCA, in RMS of Hanaro to Pentium PC, and changing Operating System to Window NT-based system. Therefore a performance of the computer system in RMS has been upgraded for operator to be useful. This study is going two steps. First, the main computer, IOCA a part of the whole computer system has been upgraded to Pentium PC, and changed to Window NT-based system. Second, all of the computer system in Hanaro RMS is going to be upgraded. This study has got the following results: a RS-232C serial communication program: between the upgraded IOCA and LCU (Local Control Unit) -- a serial communication test configurating two LCU serial --a parallel communication test configurating two LCU parallel: GUI program to present a radioactive information -- overview schematic display page -- detail display pages -- alarm and event pages -- trend pages and group trend pages

  16. Effects of cosmic radiation on devices and embedded systems in aircrafts

    Prado, Adriane C.M.; Federico, Claudio A.; Pereira Junior, Evaldo C.F.; Goncalez, Odair L., E-mail: claudiofederico@ieav.cta.br, E-mail: odairlelisgoncalez@gmail.com, E-mail: adriane.acm@hotmail.com, E-mail: evaldocarlosjr@gmail.com [Instituto de Estudos Avancados (IEAV/DCTA), Sao Jose dos Campos, SP (Brazil)

    2013-07-01

    Modern avionics systems use new electronic technologies devices that, due to their high degree of sophistication and miniaturization, are more susceptible to the effects of ionizing radiation, particularly the effect called 'Single Event Effect' (SEE) produced by neutron. Studies regarding the effects of radiation on electronic systems for space applications, such as satellites and orbital stations, have already been in progress for several years. However, tolerance requirements and specific studies, focusing on testing dedicated to avionics, have caused concern and gained importance in the last decade as a result of the accidents attributed to SEE in aircraft. Due to the development of a higher ceiling, an increase in airflow and a greater autonomy of certain aircrafts, the problem regarding the control of ionizing radiation dose received by the pilots, the crew and sensitive equipment became important in the areas of occupational health, radiation protection and flight safety. This paper presents an overview of the effects of ionizing radiation on devices and embedded systems in aircrafts, identifying and classifying these effects in relation to their potential risks in each device class. The assessment of these effects in avionics is a very important and emerging issue nowadays, which is being discussed by groups of the international scientific community; however, in South America, groups working in this area are still unknown. Consequently, this work is a great contribution and significantly valuable to the area of aeronautical engineering and flight safety associated to the effects of radiation on electronic components embedded in aircraft. (author)

  17. Effects of cosmic radiation on devices and embedded systems in aircrafts

    Prado, Adriane C.M.; Federico, Claudio A.; Pereira Junior, Evaldo C.F.; Goncalez, Odair L.

    2013-01-01

    Modern avionics systems use new electronic technologies devices that, due to their high degree of sophistication and miniaturization, are more susceptible to the effects of ionizing radiation, particularly the effect called 'Single Event Effect' (SEE) produced by neutron. Studies regarding the effects of radiation on electronic systems for space applications, such as satellites and orbital stations, have already been in progress for several years. However, tolerance requirements and specific studies, focusing on testing dedicated to avionics, have caused concern and gained importance in the last decade as a result of the accidents attributed to SEE in aircraft. Due to the development of a higher ceiling, an increase in airflow and a greater autonomy of certain aircrafts, the problem regarding the control of ionizing radiation dose received by the pilots, the crew and sensitive equipment became important in the areas of occupational health, radiation protection and flight safety. This paper presents an overview of the effects of ionizing radiation on devices and embedded systems in aircrafts, identifying and classifying these effects in relation to their potential risks in each device class. The assessment of these effects in avionics is a very important and emerging issue nowadays, which is being discussed by groups of the international scientific community; however, in South America, groups working in this area are still unknown. Consequently, this work is a great contribution and significantly valuable to the area of aeronautical engineering and flight safety associated to the effects of radiation on electronic components embedded in aircraft. (author)

  18. Energy dispersive X-ray fluorescence analysis with Bragg polarized Mo radiation. Energiedispersive Roentgenfluoreszenzanalyse mit Bragg-polarisierter Mo Strahlung

    Gloeckl, H

    1983-01-01

    The aim of introducing energy dispersive analysis into X-ray fluorescence analysis is to suppress background from the Bremsstrahlung spectrum and the characteristic radiation without an undue reduction of the signal. The variant under consideration uses linearly polarization radiation obtained after a Bragg reflection,under delta = 90/sup 0/. In an introductory part, Bragg reflection, fluorescence and strong radiation are considered quantitatively with respect to counting statistics and detection limits. In the experimental part two combinations are describe, of a Ta crystal with a Cr tube and of a Mo crystal with a Mo tube. Details of adjustment, sample preparation and calibration and detection limits are given. The pros and cons of the Ta/Cr and the Mo/Mo are contrasted and proposals for further improvements are given.

  19. GIS-based tools to identify tradeoffs between waste management and remediation strategies from radiological dispersal device incidents

    Lemieux, P.; Wood, J.; Snyder, E. [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Boe, T. [Oak Ridge Inst. for Science and Education, Research Triangle Park, NC (United States); Schulthiesz, D.; Peake, T.; Ierardi, M. [U.S. Environmental Protection Agency, Washington, DC (United States); Hayes, C.; Rodgers, M. [Eastern Research Group, Inc., Morrisville, NC (United States)

    2011-07-01

    Management of waste and debris from the detonation of a Radiological Dispersal Device (RDD) will likely comprise a significant portion of the overall remediation effort and possibly contribute to a significant portion of the overall remediation costs. As part of the recent National Level Exercise, Liberty RadEx, that occurred in Philadelphia in April 2010, a methodology was developed by EPA to generate a first-order estimate of a waste inventory for the hypothetical RDD from the exercise scenario. Determination of waste characteristics and whether the generated waste is construction and demolition (C&D) debris, municipal solid waste (MSW), hazardous waste, mixed waste, or low level radioactive waste (LLRW), and characterization of the wastewater that is generated from the incident or subsequent cleanup activities will all influence the cleanup costs and timelines. Decontamination techniques, whether they involve chemical treatment, abrasive removal, or aqueous washing, will also influence the waste generated and associated cleanup costs and timelines. This paper describes the ongoing effort to develop a tool to support RDD planning and response activities by assessing waste quantities and characteristics as a function of potential mitigation strategies and targeted cleanup levels. (author)

  20. GIS-based tools to identify tradeoffs between waste management and remediation strategies from radiological dispersal device incidents

    Lemieux, P.; Wood, J.; Snyder, E.; Boe, T.; Schulthiesz, D.; Peake, T.; Ierardi, M.; Hayes, C.; Rodgers, M.

    2011-01-01

    Management of waste and debris from the detonation of a Radiological Dispersal Device (RDD) will likely comprise a significant portion of the overall remediation effort and possibly contribute to a significant portion of the overall remediation costs. As part of the recent National Level Exercise, Liberty RadEx, that occurred in Philadelphia in April 2010, a methodology was developed by EPA to generate a first-order estimate of a waste inventory for the hypothetical RDD from the exercise scenario. Determination of waste characteristics and whether the generated waste is construction and demolition (C&D) debris, municipal solid waste (MSW), hazardous waste, mixed waste, or low level radioactive waste (LLRW), and characterization of the wastewater that is generated from the incident or subsequent cleanup activities will all influence the cleanup costs and timelines. Decontamination techniques, whether they involve chemical treatment, abrasive removal, or aqueous washing, will also influence the waste generated and associated cleanup costs and timelines. This paper describes the ongoing effort to develop a tool to support RDD planning and response activities by assessing waste quantities and characteristics as a function of potential mitigation strategies and targeted cleanup levels. (author)

  1. Preliminary report on operational guidelines developed for use in emergency preparedness and response to a radiological dispersal device incident.

    Yu, C.; Cheng, J.-J.; Kamboj, S.; Domotor, S.; Wallo, A.; Environmental Science Division; DOE

    2006-12-15

    This report presents preliminary operational guidelines and supporting work products developed through the interagency Operational Guidelines Task Group (OGT). The report consolidates preliminary operational guidelines, all ancillary work products, and a companion software tool that facilitates their implementation into one reference source document. The report is intended for interim use and comment and provides the foundation for fostering future reviews of the operational guidelines and their implementation within emergency preparedness and response initiatives in the event of a radiological dispersal device (RDD) incident. The report principally focuses on the technical derivation and presentation of the operational guidelines. End-user guidance providing more details on how to apply these operational guidelines within planning and response settings is being considered and developed elsewhere. The preliminary operational guidelines are categorized into seven groups on the basis of their intended application within early, intermediate, and long-term recovery phases of emergency response. We anticipate that these operational guidelines will be updated and refined by interested government agencies in response to comments and lessons learned from their review, consideration, and trial application. This review, comment, and trial application process will facilitate the selection of a final set of operational guidelines that may be more or less inclusive of the preliminary operational guidelines presented in this report. These and updated versions of the operational guidelines will be made available through the OGT public Web site (http://ogcms.energy.gov) as they become finalized for public distribution and comment.

  2. Ionic Liquid Mediated Dispersion and Support of Functional Molecules on Cellulose Fibers for Stimuli-Responsive Chromic Paper Devices.

    Koga, Hirotaka; Nogi, Masaya; Isogai, Akira

    2017-11-22

    Functional molecules play a significant role in the development of high-performance composite materials. Functional molecules should be well dispersed (ideally dissolved) and supported within an easy-to-handle substrate to take full advantage of their functionality and ensure easy handling. However, simultaneously achieving the dissolution and support of functional molecules remains a challenge. Herein, we propose the combination of a nonvolatile ionic liquid and an easy-to-handle cellulose paper substrate for achieving this goal. First, the photochromic molecule, i.e., diarylethene, was dissolved in the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([bmim]NTf 2 ). Then, diarylethene/[bmim]NTf 2 was supported on cellulose fibers within the paper, through hydrogen bonding between [bmim] cations of the ionic liquid and the abundant hydroxyl groups of cellulose. The as-prepared paper composites exhibited reversible, rapid, uniform, and vivid coloration and bleaching upon ultraviolet and visible light irradiation. The photochromic performance was superior to that of the paper prepared in the absence of [bmim]NTf 2 . This concept could be applied to other functional molecules. For example, lithium perchlorate/[bmim] tetrafluoroborate supported within cellulose paper acted as a flexible electrolyte to provide a paper-based electrochromic device. These findings are expected to further the development of composite materials with high functionality and practicality.

  3. Support to triage and public risk perception considering long-term response to a Cs-137 radiological dispersive device scenario.

    Andrade, Cristiane Ps; Souza, Cláudio J; Camerini, Eduardo Sn; Alves, Isabela S; Vital, Hélio C; Healy, Matthew Jf; Ramos De Andrade, Edson

    2018-01-01

    A radiological dispersive device (RDD) spreads radioactive material, complicates the treatment of physical injuries, raises cancer risk, and induces disproportionate fear. Simulating such an event enables more effective and efficient utilization of the triage and treatment resources of staff, facilities, and space. Fast simulation can give detail on events in progress or future events. The resources for triage and treatment of contaminated trauma victims can differ for pure exposure individuals, while discouraging the "worried well" from presenting in the crisis phase by media announcement would relieve pressure on hospital facilities. The proposed methodology integrates capabilities from different platforms in a convergent way composed of three phases: (a) scenario simulation, (b) data generation, and (c) risk assessment for triage focused on follow-up epidemiological assessment. Simulations typically indicate that most of the affected population does not require immediate medical assistance. Medical triage for the few severely injured and the radiological triage to diminish the contamination with radioactivity will always be the priority. For this study, however, higher priorities should be given to individuals from radiological "warm" and "hot" zones as required by risk criteria. The proposed methodology could thus help to (a) filter and reduce the number of individuals to be attended, (b) optimize the prioritization of medical care, (c) reduce or prepare for future costs, (d) effectively locate the operational triage site to avoid possible contamination on the main facility, and (e) provide the scientific data needed to develop an adequate approach to risk and its proper communication.

  4. Science-based response planning guidance for the first 100 minutes of the response to a radiological dispersal device

    Musolino, S.V.; Harper, F.T.

    2016-01-01

    The first 100 minutes of a response to a radiological dispersal device are critical as this period will set the stage for how the overall response will be executed. First responders will be tasked with multiple activities such as confirming a radiological release, conducting lifesaving rescue operations, issuing protective actions, and beginning characterization of the scene. These activities need to take place as soon as the responders arrive on the scene (the first few minutes). The effectiveness of these early activities will define how well or how poorly the response will be in the emergency phase. The document which is under development provides guidance that can be used for planning an effective response to an RDD that will result in protection of the responders and the members of the public. The information is based on research and results of extensive experiments conducted by the Department of Energy National Laboratories. This guidance provides a realistic estimate of the possible consequences of an RDD detonation and delineates five missions and ten tactics that should be executed by the first responders and local response agencies in the first 100 minutes of a response. The guidance includes recommendations on how to execute the strategy, equipment requirements including personal protective equipment and public messaging

  5. The Measurement of Spectral Characteristics and Composition of Radiation in Atlas with MEDIPIX2-USB Devices

    Campbell, M.; Doležal, Z.; Greiffenberg, D.; Heijne, E.; Holy, T.; Idárraga, J.; Jakůbek, J.; Král, V.; Králík, M.; Lebel, C.; Leroy, C.; Llopart, X.; Lord, G.; Maneuski, D.; Ouellette, O.; Sochor, V.; Pospíšil, S.; Suk, M.; Tlustos, L.; Vykydal, Z.; Wilhelm, I.

    2008-06-01

    A network of devices to perform real-time measurements of the spectral characteristics and composition of radiation in the ATLAS detector and cavern during its operation is being built. This system of detectors will be a stand alone system fully capable of delivering real-time images of fluxes and spectral composition of different particle species including slow and fast neutrons. The devices are based on MEDIPIX2 pixel silicon detectors that will be operated via active USB cables and USB-Ethernet extenders through an Ethernet network by a PC located in the USA15 ATLAS control room. The installation of 14 devices inside ATLAS (detector and cavern) is in progress.

  6. The Measurement of Spectral Characteristics and Composition of Radiation in ATLAS with MEDIPIX2-USB Devices

    Campbell, M.; Greiffenberg, D.; Heijne, E.; Holy, T.; Idárraga, J.; Jakubek, J.; Král, V.; Králík, M.; Lebel, C.; Leroy, C.; Llopart, X.; Lord, G.; Maneuski, D.; Ouellette, O.; Sochor, V.; Prospísil, S.; Suk, M; Tlustos, L.; Vykydal, Z.; Wilhelm, I.

    2008-01-01

    A network of devices to perform real-time measurements of the spectral characteristics and composition of radiation in the ATLAS detector and cavern during its operation is being built. This system of detectors will be a stand alone system fully capable of delivering real-time images of fluxes and spectral composition of different particle species including slow and fast neutrons. The devices are based on MEDIPIX2 pixel silicon detectors that will be operated via active USB cables and USB-Ethernet extenders through an Ethernet network by a PC located in the USA15 ATLAS control room. The installation of 14 devices inside ATLAS (detector and cavern) is in progress.

  7. Asymmetric devices based on carbon nanotubes for terahertz-range radiation detection

    Fedorov, G. E., E-mail: gefedorov@mail.ru; Stepanova, T. S.; Gazaliev, A. Sh.; Gaiduchenko, I. A.; Kaurova, N. S.; Voronov, B. M.; Goltzman, G. N. [Moscow State Pedagogical University (Russian Federation)

    2016-12-15

    Various asymmetric detecting devices based on carbon nanotubes (CNTs) are studied. The asymmetry is understood as inhomogeneous properties along the conducting channel. In the first type of devices, an inhomogeneous morphology of the CNT grid is used. In the second type of devices, metals with highly varying work functions are used as the contact material. The relation between the sensitivity and detector configuration is analyzed. Based on the data obtained, approaches to the development of an efficient detector of terahertz radiation, based on carbon nanotubes are proposed.

  8. Application of Nd/sup 3+/-doped silica fibers to radiation sensing devices

    Imamura, K.; Suzuki, T.; Gozen, T.; Tanaka, H.; Okamoto, S.

    1987-01-01

    Applications of rare-earth-ion-doped optical fibers to radiation sensing devices have been studied. It was revealed that rare-earth-ion-doped optical fibers are highly sensitive to radioactive rays such as gamma ray and thermal neutron flux and that they have little dependence on ambient temperature and optical power. An experimental distributed radiation sensing system incorporating Nd/sup 3+/-doped optical fibers, radiation resistant optical fibers and an OTDR was made and tested. The results proved that the distributed sensing system is practically adaptable to the measurement of the radioactive rays

  9. Dose setting for radiation sterilization of disposable medical device, (3)

    Iwasaki, Yoshio; Hosobuchi, Kazunari.

    1985-01-01

    The microbial burden and dose setting for radiation sterilization of tampon for menstrual hygiene were examined, and the following results were obtained. 1. The maximum and minimum contaminants per a tampon were 100 and 0, and the average was 46.1. 2. The 91.2 % of the 125 strains isolated from the tampon was identified as bacilli by the microbiological and biochemical activities, and Bacillus pumilus compried 35.2 % of the strains. B. pumilus and B. megaterium spores indicated the highest radioresistance among those contaminants and both D-values were 0.22 Mrad. 3. The difference in the D-value was not found for the radioresistance of standard strain carried on a tampon and a glass fiber filter. 4. The sterilization dose (SD) was calculated to be 1.10 Mrad by the formula SD = D x log (No/N), while the SD was 0.90 and 0.76 Mrad, respectively, for the microbial burden informations and steility tests. From above ressults, it is supposed that the sterility assurance level in 10 -3 can be achieved by irradiating the dose less than 1 Mrad. (author)

  10. Research on the method of establishing the total radiation meter calibration device

    Gao, Jianqiang; Xia, Ming; Xia, Junwen; Zhang, Dong

    2015-10-01

    Pyranometer is an instrument used to measure the solar radiation, according to pyranometer differs as installation state, can be respectively measured total solar radiation, reflected radiation, or with the help of shading device for measuring scattering radiation. Pyranometer uses the principle of thermoelectric effect, inductive element adopts winding plating type multi junction thermopile, its surface is coated with black coating with high absorption rate. Hot junction in the induction surface, while the cold junction is located in the body, the cold and hot junction produce thermoelectric potential. In the linear range, the output signal is proportional to the solar irradiance. Traceability to national meteorological station, as the unit of the national legal metrology organizations, the responsibility is to transfer value of the sun and the earth radiation value about the national meteorological industry. Using the method of comparison, with indoor calibration of solar simulator, at the same location, standard pyranometer and measured pyranometer were alternately measured radiation irradiance, depending on the irradiation sensitivity standard pyranometer were calculated the radiation sensitivity of measured pyranometer. This paper is mainly about the design and calibration method of the pyranometer indoor device. The uncertainty of the calibration result is also evaluated.

  11. Radiation dermatitis caused by a bolus effect from an abdominal compression device

    Connor, Michael; Wei, Randy L.; Yu, Suhong; Sehgal, Varun [Department of Radiation Oncology, University of California, Irvine Medical Center, Orange, CA (United States); Klempner, Samuel J. [Department of Medicine, Division of Hematology/Oncology, University of California, Orange, CA (United States); Daroui, Parima, E-mail: pdaroui@uci.edu [Department of Radiation Oncology, University of California, Irvine Medical Center, Orange, CA (United States)

    2016-10-01

    American Association of Physicists in Medicine (AAPM) Task Group 176 evaluated the dosimetric effects caused by couch tops and immobilization devices. The report analyzed the extensive physics-based literature on couch tops, stereotactic body radiation therapy (SBRT) frames, and body immobilization bags, while noting the scarcity of clinical reports of skin toxicity because of external devices. Here, we present a clinical case report of grade 1 abdominal skin toxicity owing to an abdominal compression device. We discuss the dosimetric implications of the utilized treatment plan as well as post hoc alternative plans and quantify differences in attenuation and skin dose/build-up between the device, a lower-density alternative device, and an open field. The description of the case includes a 66-year-old male with HER2 amplified poorly differentiated distal esophageal adenocarcinoma treated with neoadjuvant chemo-radiation and the use of an abdominal compression device. Radiation was delivered using volumetric modulated arc therapy (VMAT) with 2 arcs using abdominal compression and image guidance. The total dose was 50.4 Gy delivered over 40 elapsed days. With 2 fractions remaining, the patient developed dermatitis in the area of the compression device. The original treatment plan did not include a contour of the device. Alternative post hoc treatment plans were generated, one to contour the device and a second with anterior avoidance. In conclusion, replanning with the device contoured revealed the bolus effect. The skin dose increased from 27 to 36 Gy. planned target volume (PTV) coverage at 45 Gy was reduced to 76.5% from 95.8%. The second VMAT treatment plan with an anterior avoidance sector and more oblique beam angles maintained PTV coverage and spared the anterior wall, however at the expense of substantially increased dose to lung. This case report provides an important reminder of the bolus effect from external devices such as abdominal compression. Special

  12. Radiation dermatitis caused by a bolus effect from an abdominal compression device

    Connor, Michael; Wei, Randy L.; Yu, Suhong; Sehgal, Varun; Klempner, Samuel J.; Daroui, Parima

    2016-01-01

    American Association of Physicists in Medicine (AAPM) Task Group 176 evaluated the dosimetric effects caused by couch tops and immobilization devices. The report analyzed the extensive physics-based literature on couch tops, stereotactic body radiation therapy (SBRT) frames, and body immobilization bags, while noting the scarcity of clinical reports of skin toxicity because of external devices. Here, we present a clinical case report of grade 1 abdominal skin toxicity owing to an abdominal compression device. We discuss the dosimetric implications of the utilized treatment plan as well as post hoc alternative plans and quantify differences in attenuation and skin dose/build-up between the device, a lower-density alternative device, and an open field. The description of the case includes a 66-year-old male with HER2 amplified poorly differentiated distal esophageal adenocarcinoma treated with neoadjuvant chemo-radiation and the use of an abdominal compression device. Radiation was delivered using volumetric modulated arc therapy (VMAT) with 2 arcs using abdominal compression and image guidance. The total dose was 50.4 Gy delivered over 40 elapsed days. With 2 fractions remaining, the patient developed dermatitis in the area of the compression device. The original treatment plan did not include a contour of the device. Alternative post hoc treatment plans were generated, one to contour the device and a second with anterior avoidance. In conclusion, replanning with the device contoured revealed the bolus effect. The skin dose increased from 27 to 36 Gy. planned target volume (PTV) coverage at 45 Gy was reduced to 76.5% from 95.8%. The second VMAT treatment plan with an anterior avoidance sector and more oblique beam angles maintained PTV coverage and spared the anterior wall, however at the expense of substantially increased dose to lung. This case report provides an important reminder of the bolus effect from external devices such as abdominal compression. Special

  13. Device Simulation of Monolithic Active Pixel Sensors: Radiation Damage Effects

    Fourches, N.T.

    2009-01-01

    Vertexing for the future International Linear Collider represents a challenging goal because of the high spatial resolution required with low material budget and high ionizing radiation tolerance. CMOS Monolithic Active Pixel Sensors (MAPS) represent a good potential solution for this purpose. Up to now many MAPS sensors have been developed. They are based on various architectures and manufactured in different processes. However, up so far, the sensor diode has not been the subject of extensive modelization and simulation. Published simulation studies of sensor-signal formation have been less numerous than measurements on real sensors. This is a cause for concern because such sensor is physically based on the partially depleted diode, in the vicinity of which the electric field collects the minority carriers generated by an incident MIP (minimum ionizing particle). Although the microscopic mechanisms are well known and modelled, the global physical mechanisms for signal formation are not very rigorously established. This is partly due to the presence of a predominant diffusion component in the charge transport. We present here simulations mainly based on the S-PISCES code, in which physical mechanisms affecting transport are taken into account. Diffusion, influence of residual carrier concentration due to the doping level in the sensitive volume, and more importantly charge trapping due to deep levels in the active (detecting) layer are studied together with geometric aspects. The effect of neutron irradiation is studied to assess the effects of deep traps. A comparison with available experimental data, obtained on processed MAPS before or after neutron irradiation will be introduced. Simulated reconstruction of the Minimum Ionizing Particle (MIP) point of impact in two dimensions is also investigated. For further steps, guidelines for process choices of next Monolithic Active Pixel Sensors are introduced. (authors)

  14. 77 FR 41417 - Regulatory Science Considerations for Medical Countermeasure Radiation Biodosimetry Devices

    2012-07-13

    ... scientific and technological challenges for performance validation of radiation biodosimetry devices. Date... participants (non-FDA employees) is through Bldg. 1 where routine security check procedures will be performed... this document. FDA will do its best to accommodate requests to make public comment. Individuals and...

  15. Radiation effects and hardness of semiconductor electronic devices for nuclear industry

    Payat, R.; Friant, A.

    1988-01-01

    After a brief review of industrial and nuclear specificity and radiation effects in electronics components (semiconductors) the need for a specific test methodology of semiconductor devices is emphasized. Some studies appropriate for nuclear industry at D. LETI/DEIN/CEN-SACLAY are related [fr

  16. Proceedings of the 3rd international workshop on radiation effects on semiconductor devices for space application

    1998-10-01

    This publication is the collection of the paper presented at the title workshop. The main purpose of the workshop is to bring the chance for exchange of information between scientists and engineers who work in the field of research and development of semiconductor devices used in strong radiation environment in space. The 27 of the presented papers are indexed individually. (J.P.N.)

  17. Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device

    Kruczek, T.; Leyman, R.; Carnegie, D.; Bazieva, N.; Erbert, G.; Schulz, S.; Reardon, C.; Reynolds, S.; Rafailov, E. U.

    2012-08-01

    Generation of continuous wave radiation at terahertz (THz) frequencies from a heterodyne source based on quantum-dot (QD) semiconductor materials is reported. The source comprises an active region characterised by multiple alternating photoconductive and QD carrier trapping layers and is pumped by two infrared optical signals with slightly offset wavelengths, allowing photoconductive device switching at the signals' difference frequency ˜1 THz.

  18. Thermal management in MoS{sub 2} based integrated device using near-field radiation

    Peng, Jiebin [Department of Physics, National University of Singapore, Singapore 117546 (Singapore); Zhang, Gang, E-mail: zhangg@ihpc.a-star.edu.sg [Institute of High Performance Computing, A*STAR, Singapore 138632 (Singapore); Li, Baowen [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States)

    2015-09-28

    Recently, wafer-scale growth of monolayer MoS{sub 2} films with spatial homogeneity is realized on SiO{sub 2} substrate. Together with the latest reported high mobility, MoS{sub 2} based integrated electronic devices are expected to be fabricated in the near future. Owing to the low lattice thermal conductivity in monolayer MoS{sub 2}, and the increased transistor density accompanied with the increased power density, heat dissipation will become a crucial issue for these integrated devices. In this letter, using the formalism of fluctuation electrodynamics, we explored the near-field radiative heat transfer from a monolayer MoS{sub 2} to graphene. We demonstrate that in resonance, the maximum heat transfer via near-field radiation between MoS{sub 2} and graphene can be ten times higher than the in-plane lattice thermal conduction for MoS{sub 2} sheet. Therefore, an efficient thermal management strategy for MoS{sub 2} integrated device is proposed: Graphene sheet is brought into close proximity, 10–20 nm from MoS{sub 2} device; heat energy transfer from MoS{sub 2} to graphene via near-field radiation; this amount of heat energy then be conducted to contact due to ultra-high lattice thermal conductivity of graphene. Our work sheds light for developing cooling strategy for nano devices constructing with low thermal conductivity materials.

  19. Development of advanced materials and devices for nuclear radiation measurements

    Gadkari, S.C.

    2015-01-01

    Single crystals of technologically important materials are grown in the Crystal Technology Section of the Technical Physics Division, BARC. These crystals find applications as scintillators and dosimeters in nuclear radiation detection/measurements. Scintillator crystals of some advanced materials like cerium doped Gd 3 Ga 3 Al 2 O 12 , Lu 2 SiO 5 , YAIO 3 etc and some conventional materials such as Bi 4 Ge 3 O 12 , CsI:Tl, NaI:Tl, etc have been grown from melts using the Czochralski and Bridgman techniques. Portable gamma-ray spectrometers that work from a USB port of a laptop have been developed using the grown scintillator crystals. In recent years there has been a flurry of research activities on materials containing Li 6 , B 10 , etc that have large capture cross-sections for neutrons to develop solid state detectors for neutrons. For this purpose single crystals of cerium doped Li 6 Y(BO 3 ) 3 and silver doped Li 2 B 4 O 7 have been developed. Optical, thermo-luminescence, photo-luminescence and scintillation properties of these crystals have been investigated with a view to develop detectors and dosimeters. The Li 2 B 4 O 7 :Ag is a tissue equivalent material (Z eff = 7.3 close to 7.4 of tissue) useful in the personal and medical dosimetry applications. As the emission of Ag + lies in the UV region (267 nm), a customized TL measurement set-up has been developed using a solar blind PMT that enabled the measurement of very low doses below 5 μGy and linearity up to 100 Gy. Films of CsI:TI in the 10 nm to 3 μm thickness range were deposited on silicon substrates using the physical vapor deposition technique under vacuum conditions. The deposited films investigated using SEM and AFM revealed a columnar growth behavior with a preferential orientation along <200>. The growth of single crystals from melts, recent efforts in the development of detectors and results of experiments conducted to detect thermal neutrons are described. (author)

  20. Emergency response activities and collecting damaged radiation devices from a war affected area in Croatia

    Subasic, Damir; Schaller, Antum [APO-Hazardous Waste Management Agency, Zagreb (Croatia)

    1997-12-31

    A number of various devices containing ionizing radiation sources were in use in the area affected by the recent war in Croatia. In destruction caused by the war operations, a number of these devices were damaged, destroyed or even missed/lost. The actions undertaken to (re)collect these radiation sources, experience gained and lessons learned are reviewed. The importance of a well-organized national regulatory system is highlighted as a precondition for the efficient identification and safe collection of radiation sources which were under ruins. Experience from this event could be well applicable to similar situations caused by disasters and particularly for regulatory authorities who design emergency preparedness plans. (author) 4 refs., 1 tab.

  1. Simulating threshold voltage shift of MOS devices due to radiation in the low-dose range

    Wan Xin Heng; Gao Wen Yu; Huang Ru; Wang Yang Yuan

    2002-01-01

    An analytical MOSFET threshold voltage shift model due to radiation in the low-dose range has been developed for circuit simulations. Experimental data in the literature shows that the model predictions are in good agreement. It is simple in functional form and hence computationally efficient. It can be used as a basic circuit simulation tool for analysing MOSFET exposed to a nuclear environment up to about 1 Mrad(Si). In accordance with common believe, radiation induced absolute change of threshold voltage was found to be larger in irradiated PMOS devices. However, if the radiation sensitivity is defined in the way authors did it, the results indicated NMOS rather than PMOS devices are more sensitive, specially at low doses. This is important from the standpoint of their possible application in dosimetry

  2. Short term ionizing radiation impact on charge-coupled devices in radiation environment of high-intensity heavy ion accelerators

    Belousov, A.; Mustafin, E.; Ensinger, W.

    2012-01-01

    This paper presents a first approach on studies of the results of short term ionizing radiation impact on charge-coupled device (CCD) chips in conditions typical for high-intensity ion accelerator areas. Radiation effects on semiconductor devices are a topical issue for high-intensity accelerator projects. In particular it concerns CCD cameras that are widely used for beam profile monitoring and surveillance in high radiation environment. 65 CCD cameras are going to be installed in the FAIR machines. It is necessary to have good understanding of radiation effects and their contribution to measured signal in CCD chips. A phenomenon of single event upset (SEU) in CCD chips is studied in the following experiment. By SEU in CCD chip we mean an event when an ionizing particle hits the CCD matrix cell and produces electron-hole pairs that are then collected and converted to a signal that is higher than certain level defined by author. Practically, it means that a certain cell will appear as a bright pixel on the resulting image from a chip. (authors)

  3. Web software for the control and management of radiation protection devices in the Cadarache site

    Beltritti, F.

    2010-01-01

    This series of slides presents how to use a new software dedicated to the management of the periodical controls that have to be performed on the equipment involved in radiation protection. This software is ready to be dispatched on the CEA site of Cadarache. This software gives information on: the device to be controlled, the controls that have to be performed, the procedures to follow to make the test, the equipment necessary for the test particularly the need for radioactive sources, the maintenance of the device, the previous measurements and in the end the device's conformity. An evaluation of the conformity of all the devices present in a building or an area or of a particular type can be easily obtained. (A.C.)

  4. Reduction in radiation exposure to nursing personnel with the use of remote afterloading brachytherapy devices

    Grigsby, P.W.; Perez, C.A.; Eichling, J.; Purdy, J.; Slessinger, E.

    1991-01-01

    The radiation exposure to nursing personnel from patients with brachytherapy implants on a large brachytherapy service were reviewed. Exposure to nurses, as determined by TLD monitors, indicates a 7-fold reduction in exposure after the implementation of the use of remote afterloading devices. Quarterly TLD monitor data for six quarters prior to the use of remote afterloading devices demonstrate an average projected annual dose equivalent to the nurses of 152 and 154 mrem (1.5 mSv). After the implementation of the remote afterloading devices, the quarterly TLD monitor data indicate an average dose equivalent per nurse of 23 and 19 mrem (0.2 mSv). This is an 87% reduction in exposure to nurses with the use of these devices (p less than 0.01)

  5. Modeling UV Radiation Feedback from Massive Stars. II. Dispersal of Star-forming Giant Molecular Clouds by Photoionization and Radiation Pressure

    Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.

    2018-05-01

    UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, Σ0, such that the SFE increases from 4% to 51% as Σ0 increases from 13 to 1300 {M}ȯ {pc}}-2. Cloud destruction occurs within 2–10 Myr after the onset of radiation feedback, or within 0.6–4.1 freefall times (increasing with Σ0). Photoevaporation dominates the mass loss in massive, low surface density clouds, but because most photons are absorbed in an ionization-bounded Strömgren volume, the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to {{{Σ }}}0-0.74, and the ejection of neutrals substantially contributes to the disruption of low mass and/or high surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations.

  6. Total-dose radiation effects data for semiconductor devices. 1985 supplement. Volume 2, part A

    Martin, K.E.; Gauthier, M.K.; Coss, J.R.; Dantas, A.R.V.; Price, W.E.

    1986-05-01

    Steady-state, total-dose radiation test data, are provided in graphic format for use by electronic designers and other personnel using semiconductor devices in a radiation environment. The data were generated by JPL for various NASA space programs. This volume provides data on integrated circuits. The data are presented in graphic, tabular, and/or narrative format, depending on the complexity of the integrated circuit. Most tests were done using the JPL or Boeing electron accelerator (Dynamitron) which provides a steady-state 2.5 MeV electron beam. However, some radiation exposures were made with a cobalt-60 gamma ray source, the results of which should be regarded as only an approximate measure of the radiation damage that would be incurred by an equivalent electron dose

  7. Review of radiation effects on ReRAM devices and technology

    Gonzalez-Velo, Yago; Barnaby, Hugh J.; Kozicki, Michael N.

    2017-08-01

    A review of the ionizing radiation effects on resistive random access memory (ReRAM) technology and devices is presented in this article. The review focuses on vertical devices exhibiting bipolar resistance switching, devices that have already exhibited interesting properties and characteristics for memory applications and, in particular, for non-volatile memory applications. Non-volatile memories are important devices for any type of electronic and embedded system, as they are for space applications. In such applications, specific environmental issues related to the existence of cosmic rays and Van Allen radiation belts around the Earth contribute to specific failure mechanisms related to the energy deposition induced by such ionizing radiation. Such effects are important in non-volatile memory as the current leading technology, i.e. flash-based technology, is sensitive to the total ionizing dose (TID) and single-event effects. New technologies such as ReRAM, if competing with or complementing the existing non-volatile area of memories from the point of view of performance, also have to exhibit great reliability for use in radiation environments such as space. This has driven research on the radiation effects of such ReRAM technology, on both the conductive-bridge RAM as well as the valence-change memories, or OxRAM variants of the technology. Initial characterizations of ReRAM technology showed a high degree of resilience to TID, developing researchers’ interest in characterizing such resilience as well as investigating the cause of such behavior. The state of the art of such research is reviewed in this article.

  8. Intercomparison of dispersed radiation readings among film dosimetry, electronic and OSL with X-rays for low dose

    Andisco, D.; Blanco, S.; Bourel, V.; Schmidt, L.; Di Risio, C.

    2014-08-01

    One of the personal dosimetry methods more used for several decades is the dosimetry type film, characterized to possess readings with certain margin of trust. Today other methods exist that many times are presupposed more reliable due to the nature of the detection like the electronic dosimeters or the OSL (Optically Stimulated Luminescence) dosimetry. With the purpose of comparing different methods and to can determining the existent differences among each method has been carried out an intercomparison assay. The different dosimeters have been exposed to dispersed radiation generated by a Hemodynamics equipment of the type -arch in C- and a dispersing system of the primary beam. Film dosimeters have been used; OSL (In Light), OSL (Nano Dots) and Electronic with the purpose of knowing and to valorize the existent differences among its readings. Always, the intercomparison exercises have demonstrated to be an useful tool when establishing the measurement capacity and the quality of the results emitted by the laboratories of personal dosimetry services. Also, this type of assays allows obtaining quality indicators of the laboratory performance and they are habitual part of the procedures for accreditation of the same ones. The Optically Stimulated Luminescence is a technology that has grown in Argentina so much in the area of personal dosimetry as in dosimetry in vivo (radiotherapy area). In this intercomparison study, the answers corresponding to each technology were looked for oneself irradiation of the disperse type, that is to say, of very low energy. (Author)

  9. Improvements to a neutral radiation detection and position sensitive process and devices

    Charpak, Georges; Nguyen, N.H.; Policarpo, Armando.

    1977-01-01

    This invention aims to provide a neutral radiation position sensitive process and device providing a spatial radiation satisfactory for most medical applications and an energy radiation that cannot be reached by gas detectors based on proportional counters or by scintillation counters. Only solid state detectors can compete with respect to energy resolution. The detector described enables large areas to be covered which cannot be reached at accessible costs by solid state detectors. With this aim in view, the invention suggests an incident neutral radiation and position sensitive process, particularly soft gamma and X radiations, whereby photoelectrons are made to form by incident radiation action on gas atoms contained in an enclosure. By means of an electric field, the electrons are diverted towards a space undergoing an electric field high enough in value to create photons by exciting gas atoms and returning them to the de-excited state. The photons are collected, through a transparent window, on a layer of a material for converting such photons into scintillations in the near or visible UV spectrum and the barycentre of the scintillations is positioned on the layer, for instance by photomultipliers or ionization detectors. According to another aspect of the invention, it suggests a detection and position sensitive device comprising (generally downstream of a collimator with a grid of inlet holes) a leak tight containment fitted with an inlet window transparent to incident radiations, filled with a gas producing electrons by interaction with the incident radiation, and fitted with electrodes for generating an electric field to divert the electrons to a space for creating secondary photons [fr

  10. Radiation dose measurements of the insertion devices using radiachromic film dosimeters

    Alderman, J.; Semones, E.; Job, P. K.

    2004-01-01

    The Advanced Photon Source (APS) uses Nd-Fe-B permanent magnets in the insertion devices to produce x-rays for scientific research [1,2]. Earlier investigations have exhibited varying degrees of demagnetization of these magnets [3] due to irradiation from electron beams [4,5,6], 60 Co γ-rays [5], and high-energy neutrons [7,8]. Radiation-induced demagnetization has been observed in the APS insertion devices [9] and was first measured in December of 2001. Partial demagnetization has also been observed in insertion devices at the European Synchrotron Radiation Facility (ESRF) [4,6], where Nd-Fe-B permanent magnets are also used. Growing concern for the lifetime of APS insertion devices, as well as the permanent magnets that will be used in next-generation, high-power light sources, like the FEL [10,11], resulted from the partial demagnetization observations made at both facilities. This concern in relation to radiation-induced demagnetization spurred a long-term project to measure and analyze the absorbed doses received by the APS insertion devices. The project required a reliable photon high-dose dosimetry technique capable of measuring absorbed doses greater than 10 6 rad, which was not readily available at the APS. Through a collaboration with the National Institute of Standards and Technology (NIST), one such technique using radiachromic films was considered, tested, and calibrated at the APS. This consequently led to the implementation of radiachromic film dosimetry for measuring the absorbed doses received by the insertion devices for each of the APS runs

  11. Exfoliating and Dispersing Few-Layered Graphene in Low-Boiling-Point Organic Solvents towards Solution-Processed Optoelectronic Device Applications.

    Zhang, Lu; Miao, Zhongshuo; Hao, Zhen; Liu, Jun

    2016-05-06

    With normal organic surfactants, graphene can only be dispersed in water and cannot be dispersed in low-boiling-point organic solvents, which hampers its application in solution-processed organic optoelectronic devices. Herein, we report the exfoliation of graphite into graphene in low-boiling-point organic solvents, for example, methanol and acetone, by using edge-carboxylated graphene quantum dots (ECGQD) as the surfactant. The great capability of ECGQD for graphene dispersion is due to its ultralarge π-conjugated unit that allows tight adhesion on the graphene surface through strong π-π interactions, its edge-carboxylated structure that diminishes the steric effects of the oxygen-containing functional groups on the basal plane of ECGQD, and its abundance of carboxylic acid groups for solubility. The graphene dispersion in methanol enables the application of graphene:ECGQD as a cathode interlayer in polymer solar cells (PSCs). Moreover, the PSC device performance of graphene:ECGQD is better than that of Ca, the state-of-the-art cathode interlayer material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Response of GaAs charge storage devices to transient ionizing radiation

    Hetherington, D. L.; Klem, J. F.; Hughes, R. C.; Weaver, H. T.

    Charge storage devices in which non-equilibrium depletion regions represent stored charge are sensitive to ionizing radiation. This results since the radiation generates electron-hole pairs that neutralize excess ionized dopant charge. Silicon structures, such as dynamic RAM or CCD cells are particularly sensitive to radiation since carrier diffusion lengths in this material are often much longer than the depletion width, allowing collection of significant quantities of charge from quasi-neutral sections of the device. For GaAs the situation is somewhat different in that minority carrier diffusion lengths are shorter than in silicon, and although mobilities are higher, we expect a reduction of radiation sensitivity as suggested by observations of reduced quantum efficiency in GaAs solar cells. Dynamic memory cells in GaAs have potential increased retention times. In this paper, we report the response of a novel GaAs dynamic memory element to transient ionizing radiation. The charge readout technique is nondestructive over a reasonable applied voltage range and is more sensitive to stored charge than a simple capacitor.

  13. Commercial power silicon devices as possible routine dosimeters for radiation processing

    Fuochi, P.G.; Lavalle, M.; Gombia, E.; Mosca, R.; Kovacs, A.V.; Hargittai, P.; Vitanza, A.; Patti, A.

    2001-01-01

    The use of silicon devices as possible radiation dosimeters has been investigated in this study. A bipolar power transistor in TO126 plastic packaging has been selected. Irradiations, with doses in the range from 50 Gy up to 5 kGy, have been performed at room temperature using different radiation sources ( 60 Co g source, 2.5, 4 and 12 MeV electron accelerators). Few irradiations with g rays were also done at different temperatures. A physical parameter, T, related to the charge carrier lifetime, has been found to change as a function of irradiation dose. This change is radiation energy dependent. Long term stability of the electron irradiated transistors has been checked by means of a reliability test ('high temperature reverse bias', HTRB) at 150 deg. C for 1000 h. Deep level transient spectroscopy (DLTS) measurements have been performed on the irradiated devices to identify the recombination centres introduced by the radiation treatment. The results obtained confirm that these transistors could be used as routine radiation dosimeters in a certain dose range. More work needs to be done particularly with g rays in the low dose region (50-200 Gy) and with low energy electrons. (author)

  14. Evaluation of pelletron accelerator facility to study radiation effects on semiconductor devices

    Prakash, A. P. Gnana; Pushpa, N.; Praveen, K. C.; Naik, P. S.; Revannasiddaiah, D.

    2012-01-01

    In this paper we present the comprehensive results on the effects of different radiation on the electrical characteristics of different semiconductor devices like Si BJT, n-channel MOSFETs, 50 GHz and 200 GHz silicon-germanium heterojunction bipolar transistor (SiGe HBTs). The total dose effects of different radiation are compared in the same total dose ranging from 100 krad to 100 Mrad. We show that the irradiation time needed to reach very high total dose can be reduced by using Pelletron accelerator facilities instead of conventional irradiation facilities.

  15. Evaluation of pelletron accelerator facility to study radiation effects on semiconductor devices

    Prakash, A. P. Gnana; Pushpa, N.; Praveen, K. C.; Naik, P. S.; Revannasiddaiah, D. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore-570006, Karnataka (India)

    2012-06-05

    In this paper we present the comprehensive results on the effects of different radiation on the electrical characteristics of different semiconductor devices like Si BJT, n-channel MOSFETs, 50 GHz and 200 GHz silicon-germanium heterojunction bipolar transistor (SiGe HBTs). The total dose effects of different radiation are compared in the same total dose ranging from 100 krad to 100 Mrad. We show that the irradiation time needed to reach very high total dose can be reduced by using Pelletron accelerator facilities instead of conventional irradiation facilities.

  16. Discrete Event Simulation Model of the Polaris 2.1 Gamma Ray Imaging Radiation Detection Device

    2016-06-01

    release; distribution is unlimited DISCRETE EVENT SIMULATION MODEL OF THE POLARIS 2.1 GAMMA RAY IMAGING RADIATION DETECTION DEVICE by Andres T...ONLY (Leave blank) 2. REPORT DATE June 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE DISCRETE EVENT SIMULATION MODEL...modeled. The platform, Simkit, was utilized to create a discrete event simulation (DES) model of the Polaris. After carefully constructing the DES

  17. Development of microfluidic devices for biomedical applications of synchrotron radiation infrared microspectroscopy

    Birarda, Giovanni

    2011-01-01

    2009/2010 ABSTRACT DEVELOPMENT OF MICROFLUIDIC DEVICES FOR BIOMEDICAL APPLICATIONS OF SYNCHROTRON RADIATION INFRARED MICROSPECTROSCOPY by Birarda Giovanni The detection and measurement of biological processes in a complex living system is a discipline at the edge of Physics, Biology, and Engineering, with major scientific challenges, new technological applications and a great potential impact on dissection of phenomena occurring at tissue, cell, and sub cellular level. The ...

  18. New developments on the generation of arbitrary polarized radiation from insertion devices

    Elleaume, P.

    1991-01-01

    The complete description of the polarization of a beam of radiation is described in terms of the total energy and three polarization rates. The polarization characteristics from conventional undulators and wigglers is recalled. A presentation is made of some new insertion devices that were proposed and/or built to generate circular polarization and more generally to improve the control of polarization. They are the asymmetric and elliptical wigglers and the helical and crossed undulators

  19. Extreme Radiation Hardness and Space Qualification of AlGaN Optoelectronic Devices

    Sun, Ke-Xun; MacNeil, Lawrence; Balakrishnan, Kathik; Hultgren, Eric; Goebel, John; Bilenko, Yuri; Yang, Jinwei; Sun, Wenhong; Shatalov, Max; Hu, Xuhong; Gaska, Remis

    2010-01-01

    Unprecedented radiation hardness and environment robustness are required in the new generation of high energy density physics (HEDP) experiments and deep space exploration. National Ignition Facility (NIF) break-even shots will have a neutron yield of 10 15 or higher. The Europa Jupiter System Mission (EJSM) mission instruments will be irradiated with a total fluence of 10 12 protons/cm 2 during the space journey. In addition, large temperature variations and mechanical shocks are expected in these applications under extreme conditions. Hefty radiation and thermal shields are required for Si and GaAs based electronics and optoelectronics devices. However, for direct illumination and imaging applications, shielding is not a viable option. It is an urgent task to search for new semiconductor technologies and to develop radiation hard and environmentally robust optoelectronic devices. We will report on our latest systematic experimental studies on radiation hardness and space qualifications of AlGaN optoelectronic devices: Deep UV Light Emitting Diodes (DUV LEDs) and solarblind UV Photodiodes (PDs). For custom designed AlGaN DUV LEDs with a central emission wavelength of 255 nm, we have demonstrated its extreme radiation hardness up to 2 x 10 12 protons/cm 2 with 63.9 MeV proton beams. We have demonstrated an operation lifetime of over 26,000 hours in a nitrogen rich environment, and 23,000 hours of operation in vacuum without significant power drop and spectral shift. The DUV LEDs with multiple packaging styles have passed stringent space qualifications with 14 g random vibrations, and 21 cycles of 100K temperature cycles. The driving voltage, current, emission spectra and optical power (V-I-P) operation characteristics exhibited no significant changes after the space environmental tests. The DUV LEDs will be used for photoelectric charge management in space flights. For custom designed AlGaN UV photodiodes with a central response wavelength of 255 nm, we have

  20. Modeling of transient ionizing radiation effects in bipolar devices at high dose-rates

    FJELDLY, T.A.; DENG, Y.; SHUR, M.S.; HJALMARSON, HAROLD P.; MUYSHONDT, ARNOLDO

    2000-01-01

    To optimally design circuits for operation at high intensities of ionizing radiation, and to accurately predict their a behavior under radiation, precise device models are needed that include both stationary and dynamic effects of such radiation. Depending on the type and intensity of the ionizing radiation, different degradation mechanisms, such as photoelectric effect, total dose effect, or single even upset might be dominant. In this paper, the authors consider the photoelectric effect associated with the generation of electron-hole pairs in the semiconductor. The effects of low radiation intensity on p-II diodes and bipolar junction transistors (BJTs) were described by low-injection theory in the classical paper by Wirth and Rogers. However, in BJTs compatible with modem integrated circuit technology, high-resistivity regions are often used to enhance device performance, either as a substrate or as an epitaxial layer such as the low-doped n-type collector region of the device. Using low-injection theory, the transient response of epitaxial BJTs was discussed by Florian et al., who mainly concentrated on the effects of the Hi-Lo (high doping - low doping) epilayer/substrate junction of the collector, and on geometrical effects of realistic devices. For devices with highly resistive regions, the assumption of low-level injection is often inappropriate, even at moderate radiation intensities, and a more complete theory for high-injection levels was needed. In the dynamic photocurrent model by Enlow and Alexander. p-n junctions exposed to high-intensity radiation were considered. In their work, the variation of the minority carrier lifetime with excess carrier density, and the effects of the ohmic electric field in the quasi-neutral (q-n) regions were included in a simplified manner. Later, Wunsch and Axness presented a more comprehensive model for the transient radiation response of p-n and p-i-n diode geometries. A stationary model for high-level injection in p

  1. Optimal sizing and location of SVC devices for improvement of voltage profile in distribution network with dispersed photovoltaic and wind power plants

    Savić, Aleksandar; Đurišić, Željko

    2014-01-01

    Highlights: • Significant voltage variations in a distribution network with dispersed generation. • The use of SVC devices to improve the voltage profiles are an effective solution. • Number, size and location of SVC devices are optimized using genetic algorithm. • The methodology is presented on an example of a real distribution system in Serbia. - Abstract: Intermittent power generation of wind turbines and photovoltaic plants creates voltage disturbances in power distribution networks which may not be acceptable to the consumers. To control the deviations of the nodal voltages, it is necessary to use fast dynamic control of the reactive power in the distribution network. Implementation of the power electronic devices, such as Static Var Compensator (SVC), enables effective dynamic state as well as a static state of the nodal voltage control in the distribution network. This paper analyzed optimal sizing and location of SVC devices by using genetic algorithm, to improve nodal voltages profile in a distribution network with dispersed photovoltaic and wind power plants. Practical application of the developed methodology was tested on an example of a real distribution network

  2. Relative risk analysis in regulating the use of radiation-emitting medical devices. A preliminary application

    Jones, E.D.; Banks, W.W.; Altenbach, T.J.; Fischer, L.E. [Lawrence Livermore National Lab., CA (United States)

    1995-09-01

    This report describes a preliminary application of an analysis approach for assessing relative risks in the use of radiation- emitting medical devices. Results are presented on human-initiated actions and failure modes that are most likely to occur in the use of the Gamma Knife, a gamma irradiation therapy device. This effort represents an initial step in a US Nuclear Regulatory Commission (NRC) plan to evaluate the potential role of risk analysis in regulating the use of nuclear medical devices. For this preliminary application of risk assessment, the focus was to develop a basic process using existing techniques for identifying the most likely risk contributors and their relative importance. The approach taken developed relative risk rankings and profiles that incorporated the type and quality of data available and could present results in an easily understood form. This work was performed by the Lawrence Livermore National Laboratory for the NRC.

  3. Relative risk analysis in regulating the use of radiation-emitting medical devices. A preliminary application

    Jones, E.D.; Banks, W.W.; Altenbach, T.J.; Fischer, L.E.

    1995-09-01

    This report describes a preliminary application of an analysis approach for assessing relative risks in the use of radiation- emitting medical devices. Results are presented on human-initiated actions and failure modes that are most likely to occur in the use of the Gamma Knife, a gamma irradiation therapy device. This effort represents an initial step in a US Nuclear Regulatory Commission (NRC) plan to evaluate the potential role of risk analysis in regulating the use of nuclear medical devices. For this preliminary application of risk assessment, the focus was to develop a basic process using existing techniques for identifying the most likely risk contributors and their relative importance. The approach taken developed relative risk rankings and profiles that incorporated the type and quality of data available and could present results in an easily understood form. This work was performed by the Lawrence Livermore National Laboratory for the NRC

  4. Design of radiation-chemical devices with gamma source for sewage treatment

    Mendel'son, Eh.L.; Gol'din, V.A.; Breger, A.Kh.

    1981-01-01

    The semiempirical method of calculating conductivity of radiation- chemical devices (RCD) with γ-sources to purify domestic and industrial drainage waters and other processes in liquid phase systems which meet definite requirements based on taking into account the structure of the technological process, is suggested RCD of a new type is developed. It is coaxially cylindrical. A correcting coefficient which takes into account the difference in the actual time of keeping a current of drainage water in the device and its avaraged calculation value, conditioned by the longtitudinal transfer of a substance in the device, is determined. It is shown that the above RCD productivity can be considerably increased due to creating the structure of adisplacement current which provides the equality of absorbed doses in all its elements [ru

  5. Filter and window assemblies for high power insertion device synchrotron radiation sources

    Khounsary, A.M.; Viccaro, P.J.; Kuzay, T.M.

    1992-01-01

    The powerful beams of x-ray radiation generated by insertion devices at high power synchrotron facilities deposit substantial amounts of localized heat in the front end and optical components that they intercept. X-ray beams from undulator sources, in particular, are confined to very narrow solid angles and therefore impose very high absorbed heat fluxes. This paper is devoted to a detailed study of the design of windows for the Advanced Photon Source undulators and wigglers, emphasizing alternative design concepts, material considerations, and cooling techniques necessary for handling the high heat load of the insertion devices. Various designs are thermally and structurally analyzed by numerically simulating full-power operating conditions. This analysis also has relevance to the design and development of other beam line components which are subjected to the high heat loads of insertion devices

  6. Longitudinal evaluation of P-wave dispersion and P-wave maximum in children after transcatheter device closure of secundum atrial septal defect.

    Grignani, Robert Teodoro; Tolentino, Kim Martin; Rajgor, Dimple Dayaram; Quek, Swee Chye

    2015-06-01

    Transcatheter device closure of the secundum atrial septal defect (ASD) in children prevents atrial arrhythmias in older age. However, the benefits of favourable atrial electrocardiographic markers in these children remain elusive. We aimed to review the electrocardiographic markers of atrial activity in a longitudinal fashion. We retrospectively reviewed longitudinal data of all children who underwent transcatheter device closure at the National University Hospital between 2004 and 2013. The inclusion criteria included the presence of a secundum-type ASD with left to right shunt and evidence of increased right ventricular volume load (Q p/Q s ratio >1.5 and/or right ventricular dilatation). A total of 25 patients with a mean follow-up of 44.7 ± 33.47 (7.3-117.4) months were included. P maximum and P dispersion decreased at 2 months, P amplitude at 1 week and remained so until last follow-up. A positive trend was seen with a correlation coefficient of +0.12 for P maximum, +0.08 for P dispersion and 0.34 for P amplitude. There was a higher baseline P amplitude and P dispersion in patients who were older than 10 years and a non-significant trend to support an increase in both P maximum (71.0 ± 8.8 vs. 73.2 ± 12.7), P dispersion (17.0 ± 6.5 vs. 22.0 ± 11.3) and P amplitude (0.88 ± 0.25 vs. 1.02 ± 0.23) in patients with an ASD more than 15 mm compared with an ASD <15 mm. There is reduction in both P maximum and P dispersion as early as 2 months, which persisted on follow-up. Earlier closure may result in more favourable electrocardiographic results.

  7. Studies of radiation hardness of MOS devices for application in a linear collider vertex detector

    Wei, Qingyu

    2008-10-17

    The proposed International Linear Collider (ILC) together with the Large Hadron Collider (LHC) at CERN serve as a combined tool to explore the mysteries of the universe: the former is a precision machine and the latter can be considered as a finding machine. The key component of the ILC is the vertex detector that should be placed as close as possible to the Interaction Point (IP) and has better radiation tolerance against the dominant electron-positron pair production background from beam-beam interactions. A new generation of MOS-type Depleted-Field-Effect Transistor (MOSDEPFET) active pixel detectors has been proposed and developed by Semiconductor Labor Munich for Physics and for extraterrestrial Physics in order to meet the requirements of the vertex detector at the ILC. Since all MOS devices are susceptible to ionizing radiation, the main topic is focused on the radiation hardness of detectors, by which a series of physical processes are analyzed: e.g. surface damage due to ionizing radiation as well as damage mechanisms and their associated radiation effects. As a consequence, the main part of this thesis consists of a large number of irradiation experiments and the corresponding discussions. Finally, radiation hardness of the detectors should be improved through a set of concluded experiences that are based on a series of analysis of the characteristic parameters using different measurement techniques. The feasibility of the MOSDEPFET-based vertex detector is, therefore, predicted at ILC. (orig.)

  8. Studies of radiation hardness of MOS devices for application in a linear collider vertex detector

    Wei, Qingyu

    2008-01-01

    The proposed International Linear Collider (ILC) together with the Large Hadron Collider (LHC) at CERN serve as a combined tool to explore the mysteries of the universe: the former is a precision machine and the latter can be considered as a finding machine. The key component of the ILC is the vertex detector that should be placed as close as possible to the Interaction Point (IP) and has better radiation tolerance against the dominant electron-positron pair production background from beam-beam interactions. A new generation of MOS-type Depleted-Field-Effect Transistor (MOSDEPFET) active pixel detectors has been proposed and developed by Semiconductor Labor Munich for Physics and for extraterrestrial Physics in order to meet the requirements of the vertex detector at the ILC. Since all MOS devices are susceptible to ionizing radiation, the main topic is focused on the radiation hardness of detectors, by which a series of physical processes are analyzed: e.g. surface damage due to ionizing radiation as well as damage mechanisms and their associated radiation effects. As a consequence, the main part of this thesis consists of a large number of irradiation experiments and the corresponding discussions. Finally, radiation hardness of the detectors should be improved through a set of concluded experiences that are based on a series of analysis of the characteristic parameters using different measurement techniques. The feasibility of the MOSDEPFET-based vertex detector is, therefore, predicted at ILC. (orig.)

  9. Radiation leakage monitoring method and device from primary to secondary coolant systems in nuclear reactor

    Tajiri, Yoshiaki; Umehara, Toshihiro; Yamada, Masataka.

    1993-01-01

    The present invention monitors radiation leaked from any one of primary cooling systems to secondary cooling systems in a plurality of steam generators. That is, radiation monitoring means each corresponding to steam each generators are disposed to the upstream of a position where main steam pipes are joined. With such a constitution, since the detection object of each of radiation monitoring means is secondary coolants before mixing with secondary coolants of other secondary loops or dilution, lowering of detection accuracy can be avoided. Except for the abnormal case, that is, a case neither of radiation leakage nor of background change, the device is adapted as a convenient measuring system only with calculation performance. Once abnormality occurs, a loop having a value exceeding a standard value is identified by a single channel analyzer function. The amount of radiation leakage from the steam generator belonging to the specified loop is monitored quantitatively by a multichannel analyzer function. According to the method of the present invention, since specific spectrum analysis is conducted upon occurrence of abnormality, presence of radiation leakage and the scale thereof can be judged rapidly. (I.S.)

  10. Possibilities of radiation sterilization for re-usage of medical devices in the medical management

    Tabei, Masae; Kudo, Hisaaki; Katsumura, Yosuke

    2004-01-01

    The rule for re-usage of medical single-use devices was established in US in 2000 based on the concept of Managed Care (total management of medicare on cost, quality and patients' satisfaction) and 20-30% of those devices are re-used at present. The re-usage is conducted in not only US but also Canada, Denmark, UK, India, China etc. Standing on the viewpoint, this paper described and discussed the possibility of re-usage of the single-use devices now prohibited in Japan, possible re-sterilization, possible re-usage of hollow fiber-type hemodialyzer following γ-ray sterilization with consideration for D-values against bacteria and viruses, cost estimation of electron beam sterilization for re-usage, and radiation sterilization of waste water and plastic materials. Radiation sterilization for re-usage of medical devices was concluded possible if their materials and records for their usage processes are proper, and should be conducted in a large scale after sufficient examinations by industries/government/academia. (N.I.)

  11. Radiation effects in high-disperse metal media and their application in powder metallurgy

    Zaykin, Y.A.; Aliyev, B.A.

    2002-01-01

    Experimental and theoretical results showing up effects of metal powder radiation processing, such as powder grinding, chemical refinement, and changes in powder particle surface state, are discussed. It is shown that preliminary irradiation of metal powders leads to profound structural alterations at all further stages of their processing by conventional methods of powder metallurgy and eventually effects the properties of the resulting product

  12. Radionuclide dispersion calculation in environmental radiation monitoring system of the PAKS NPP

    Deme, S.; Janosy, J. S.; Lang, E.; Szabo, I. C.

    2003-01-01

    The new Environmental Radiation Monitoring System of the Paks NPP in Hungary consists of three radiation release measurement posts (placed into the two ventilation stacks of the four units and into the ventilation stack of the spent fuel intermediate storage building), 9 radiation monitoring stations and 11 gamma-radiation measurement posts placed more or less evenly around the plant. The basic goal of the Environmental Radiation Monitoring System is to provide complex and reliable information about the releases in all operating modes to facilitate the adequate estimation of the situation and to promote the decision making. Thanks to the astonishing development in the digital technology and to the state-of-the-art, up-to-date measurement techniques, a new level of confidence can be reached. Unpredictable radioactive leakage of the containment can be detected and the radiological situation of a relatively large area can be calculated and predicted. A very reliable system can be constructed withstanding earthquake and protected against single failure. Based on reliable and detailed measurement data, advanced simulation methodology and well-designed graphical user interface, an easy-to-use operator advisory system can be created to help the decision making in the very first and most difficult period of a nuclear accident. It is very important that the same system is used with the same features during the normal operation of the nuclear power plant, too; this means that the operators are able to get the necessary 'hands-on' training in order to be able to use the system during extreme stress and very unusual situations, too. Shaping the system in close cooperation with plant engineers and operators is indispensable in order to achieve the aforementioned goals. (authors)

  13. The use of fixatives for response to a radiation dispersal devise attack - a review of the current (2009) state-of-the-art

    Parra, R.R.; Medina, V.F.; Conca, J.L.

    2009-01-01

    Radiation dispersal devices (RDDs), or dirty bombs, are terrorist weapons designed to scatter radioactive materials in large urban areas. Although the main intent of a RDD is to produce general panic and chaos, other impacts such as health, environmental, property and economical damage may also occur. Although one certain method of reducing health risks from a RDD event is to remove the radioactive contaminants from the environment immediately, rapid cleanup after a RDD event may be impossible in many cases. However, preventing the migration of the radioactive contaminant is crucial. Although it may be necessary to allow the contaminant to remain in place, preventing its migration is still essential. Fixatives can reduce or eliminating migration potential of a contaminant introduced by a RDD. This paper reviews the significance of fixatives in response to a RDD event and some of the products which have been identified for such a purpose. Many of the products are promising for application. However, many reports lack quantitative information to allow for effective comparative evaluation. Further, key parameters, such as shelf life and product toxicity, are not typically evaluated. We recommend that standardized performance parameters be established to allow for better comparative evaluation.

  14. A comparison of ionizing radiation damage in CMOS devices from 60Co gamma rays, electrons and protons

    He Baoping; Yao Zhibin; Zhang Fengqi

    2009-01-01

    Radiation hardened CC4007RH and non-radiation hardened CC4011 devices were irradiated using 60 Co gamma rays, 1 MeV electrons and 1-9 MeV protons to compare the ionizing radiation damage of the gamma rays with the charged particles. For all devices examined, with experimental uncertainty, the radiation induced threshold voltage shifts (ΔV th ) generated by 60 Co gamma rays are equal to that of 1 MeV electron and 1-7 MeV proton radiation under 0 gate bias condition. Under 5 V gate bias condition, the distinction of threshold voltage shifts (ΔV th ) generated by 60 Co gamma rays and 1 MeV electrons irradiation are not large, and the radiation damage for protons below 9 MeV is always less than that of 60 Co gamma rays. The lower energy the proton has, the less serious the radiation damage becomes. (authors)

  15. Medical Device Recalls in Radiation Oncology: Analysis of US Food and Drug Administration Data, 2002-2015

    Connor, Michael J.; Tringale, Kathryn; Moiseenko, Vitali; Marshall, Deborah C.; Moore, Kevin; Cervino, Laura; Atwood, Todd; Brown, Derek; Mundt, Arno J.; Pawlicki, Todd; Recht, Abram; Hattangadi-Gluth, Jona A.

    2017-01-01

    Purpose: To analyze all recalls involving radiation oncology devices (RODs) from the US Food and Drug Administration (FDA)'s recall database, comparing these with non–radiation oncology device recalls to identify discipline-specific trends that may inform improvements in device safety. Methods and Materials: Recall data on RODs from 2002 to 2015 were sorted into 4 product categories (external beam, brachytherapy, planning systems, and simulation systems). Outcomes included determined cause of recall, recall class (severity), quantity in commerce, time until recall termination (date FDA determines recall is complete), and time since 510(k) approval. Descriptive statistics were performed with linear regression of time-series data. Results for RODs were compared with those for other devices by Pearson χ"2 test for categorical data and 2-sample Kolmogorov-Smirnov test for distributions. Results: There were 502 ROD recalls and 9534 other class II device recalls during 2002 to 2015. Most recalls were for external beam devices (66.7%) and planning systems (22.9%), and recall events peaked in 2011. Radiation oncology devices differed significantly from other devices in all recall outcomes (P≤.04). Recall cause was commonly software related (49% vs 10% for other devices). Recall severity was more often moderate among RODs (97.6% vs 87.2%) instead of severe (0.2% vs 4.4%; P<.001). Time from 510(k) market approval to recall was shorter among RODs (P<.001) and progressively shortened over time. Radiation oncology devices had fewer recalled devices in commerce than other devices (P<.001). Conclusions: Compared with other class II devices, RODs experience recalls sooner after market approval and are trending sooner still. Most of these recalls were moderate in severity, and software issues are prevalent. Comprehensive analysis of recall data can identify areas for device improvement, such as better system design among RODs.

  16. Medical Device Recalls in Radiation Oncology: Analysis of US Food and Drug Administration Data, 2002-2015

    Connor, Michael J. [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); University of California Irvine School of Medicine, Irvine, California (United States); Tringale, Kathryn; Moiseenko, Vitali; Marshall, Deborah C.; Moore, Kevin; Cervino, Laura; Atwood, Todd; Brown, Derek; Mundt, Arno J.; Pawlicki, Todd [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Recht, Abram [Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (United States); Hattangadi-Gluth, Jona A., E-mail: jhattangadi@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States)

    2017-06-01

    Purpose: To analyze all recalls involving radiation oncology devices (RODs) from the US Food and Drug Administration (FDA)'s recall database, comparing these with non–radiation oncology device recalls to identify discipline-specific trends that may inform improvements in device safety. Methods and Materials: Recall data on RODs from 2002 to 2015 were sorted into 4 product categories (external beam, brachytherapy, planning systems, and simulation systems). Outcomes included determined cause of recall, recall class (severity), quantity in commerce, time until recall termination (date FDA determines recall is complete), and time since 510(k) approval. Descriptive statistics were performed with linear regression of time-series data. Results for RODs were compared with those for other devices by Pearson χ{sup 2} test for categorical data and 2-sample Kolmogorov-Smirnov test for distributions. Results: There were 502 ROD recalls and 9534 other class II device recalls during 2002 to 2015. Most recalls were for external beam devices (66.7%) and planning systems (22.9%), and recall events peaked in 2011. Radiation oncology devices differed significantly from other devices in all recall outcomes (P≤.04). Recall cause was commonly software related (49% vs 10% for other devices). Recall severity was more often moderate among RODs (97.6% vs 87.2%) instead of severe (0.2% vs 4.4%; P<.001). Time from 510(k) market approval to recall was shorter among RODs (P<.001) and progressively shortened over time. Radiation oncology devices had fewer recalled devices in commerce than other devices (P<.001). Conclusions: Compared with other class II devices, RODs experience recalls sooner after market approval and are trending sooner still. Most of these recalls were moderate in severity, and software issues are prevalent. Comprehensive analysis of recall data can identify areas for device improvement, such as better system design among RODs.

  17. Gondwanian relicts and oceanic dispersal in a cosmopolitan radiation of euedaphic ground beetles.

    Andújar, Carmelo; Faille, Arnaud; Pérez-González, Sergio; Zaballos, Juan P; Vogler, Alfried P; Ribera, Ignacio

    2016-06-01

    Anillini are a tribe of minute, euedaphic ground beetles (Carabidae) characterized by the loss of eyes, loss of wings and high levels of local endemism. Despite their presumed low dispersal, they have a nearly cosmopolitan distribution, including isolated islands such as New Zealand and New Caledonia. We used a time calibrated molecular phylogeny to test, first, if the tribe as currently understood is monophyletic and, second, whether the time of divergence is compatible with an early vicariant diversification after the breakup of Gondwana. We sequenced portions of 6 mitochondrial and 3 nuclear genes for 66 specimens in 17 genera of Anillini plus 39 outgroups. The resulting phylogenetic tree was used to estimate the time of diversification using two independent calibration schemes, by applying molecular rates for the related genus Carabus or by dating the tree with fossil and geological information. Rates of molecular evolution and lineage ages were mostly concordant between both calibration schemes. The monophyly of Anillini was well-supported, and its age was consistent with a Gondwanian origin of the main lineages and an initial diversification at ca. 100Ma representing the split between the eyed Nesamblyops (New Zealand) and the remaining Anillini. The subsequent diversification, including the split of the Nearctic Anillinus and the subsequent splits of Palaearctic lineages, was dated to between 80 and 100Ma and thus was also compatible with a tectonic vicariant origin. On the contrary, the estimated age of the New Caledonian blind Orthotyphlus at ca. 30±20Ma was incompatible with a vicariant origin, suggesting the possibility of trans-oceanic dispersal in these endogean beetles. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Origin, radiation, dispersion and allopatric hybridization in the chub Leuciscus cephalus.

    Durand, J D; Unlü, E; Doadrio, I; Pipoyan, S; Templeton, A R

    2000-01-01

    The phylogenetic relationships of 492 chub (Leuciscus cephalus) belonging to 89 populations across the species' range were assessed using 600 base pairs of cytochrome b. Furthermore, nine species belonging to the L. cephalus complex were also analysed (over the whole cytochrome b) in order to test potential allopatric hybridization with L. cephalus sensu stricto (i.e. the chub). Our results show that the chub includes four highly divergent lineages descending from a quick radiation that took ...

  19. [Morphological structure of rat epiphysis exposed to electromagnetic radiation from communication devices].

    Yashchenko, S G; Rybalko, S Yu

    Pineal gland is one of the most important components of homeostasis - the supporting system of the body. It participates in the launch of stress responses, restriction of their development, prevention of adverse effects on the body. There was proved an impact of electromagnetic radiation on the epiphysis. However, morphological changes in the epiphysis under exposure to electromagnetic radiation of modern communication devices are studied not sufficiently. For the time present the population is daily exposed to electromagnetic radiation, including local irradiation on the brain. These date determined the task of this research - the study of the structure of rat pineal gland under the exposure to electromagnetic radiation from personal computers and mobile phones. These date determined the task of this research - the study of the structure of rat pineal gland under the exposure to electromagnetic radiation from personal computers and mobile phones. Performed transmission electron microscopy revealed signs of degeneration of dark and light pinealocytes. These signs were manifested in the development of a complex of general and specific morphological changes. There was revealed the appearance of signs of aging and depletion transmission electron microscopy both in light and dark pinealocytes. These signs were manifested in the accumulation of lipofuscin granules and electron-dense "brain sand", the disappearance of nucleoli, cytoplasm vacuolization and mitochondrial cristae enlightenment.

  20. Test results of the experimental laser device for potato tubers radiation treatment

    Anufrik, S.S.; Korzun, O.S.

    2007-01-01

    Results of 3 year investigation of the influence of the presowing low intensity laser radiation treatment of potato (Solanum tuberosum L.) tubers with the help of laser device with various spectral composition and exposition on plant growth, development and productivity and potato tubers quality and starch content in the conditions of the Republic of Belarus were presented. Presowing tubers treatment of potato cultivars Sante, Yavar and Arkhideya was realized by He-Ne, Ar-, Cu (in course of 3 and 5 minutes) and CO2 (in course of 5 seconds) lasers. Research results have shown that presowing treatment with CO2 laser promoted the higher (on 1,7-6,6%) potato germination capacity in comparison with the control variant without radiation treatment. Height of potato plants of Sante variety after radiation treatment fell behind the control ones. Haulm quantity per one plant and yield quality did not depend on radiation treatment Treatment with CO2 laser exercised the stimulatory action on productivity of Sante variety without changing the starch content in tubers. Tuber weight increased up to 0,4 kg (0,2 kg in the control variant). Similar effect for Arkhideya and Yavar varieties was obtained after Cu-laser treatment in course of 5 minutes. Radiation treatment with He-Ne laser caused the increased starch accumulation (on 0,4-0,6% in comparison with the control variant) in potato tubers of all studied varieties

  1. Improved Understanding of Space Radiation Effects on Exploration Electronics by Advanced Modeling of Nanoscale Devices and Novel Materials, Phase I

    National Aeronautics and Space Administration — Future NASA space exploration missions will use nanometer-scale electronic technologies which call for a shift in how radiation effects in such devices and materials...

  2. Irradiation technology Pt. 2. Research devices. Glossary on radiation technology. Besugarzastechnika 2. resz. Kiserleti berendezesek, sugartechnikai kislexikon

    Foeldiak, G; Stenger, V

    1982-01-01

    It is a textbook and manual of a training course held at the Budapest Technical University for operators of irradiation devices. Calculation methods of radiation technology (estimation of activity variation, space dependence of dose rates, shielding, efficiency) are presented. Instructions for laboratory exercises (dose and dose rate measurements, sterilization by irradiation, handling of irradiation devices) involved in the course given. Two laboratory irradiation devices (RH-GAMMA-30, produced in the Soviet Union and the K-120-type semi-large scale device of the Isotope Institute of the Hungarian Academy of Sciences are described in detail. Handling instructions for the two devices and radiation protection regulations are given. A brief glossary in the field of radiation technology is added.

  3. Aqueously Dispersed Silver Nanoparticle-Decorated Boron Nitride Nanosheets for Reusable, Thermal Oxidation-Resistant Surface Enhanced Raman Spectroscopy (SERS) Devices

    Lin, Yi; Bunker, Christopher E.; Fernandos, K. A. Shiral; Connell, John W.

    2012-01-01

    The impurity-free aqueous dispersions of boron nitride nanosheets (BNNS) allowed the facile preparation of silver (Ag) nanoparticle-decorated BNNS by chemical reduction of an Ag salt with hydrazine in the presence of BNNS. The resultant Ag-BNNS nanohybrids remained dispersed in water, allowing convenient subsequent solution processing. By using substrate transfer techniques, Ag-BNNS nanohybrid thin film coatings on quartz substrates were prepared and evaluated as reusable surface enhanced Raman spectroscopy (SERS) sensors that were robust against repeated solvent washing. In addition, because of the unique thermal oxidation-resistant properties of the BNNS, the sensor devices may be readily recycled by short-duration high temperature air oxidation to remove residual analyte molecules in repeated runs. The limiting factor associated with the thermal oxidation recycling process was the Ostwald ripening effect of Ag nanostructures.

  4. An Updated Comprehensive Risk Analysis for Radioisotopes Identified of High Risk to National Security in the Event of a Radiological Dispersion Device Scenario

    Robinson, Alexandra R.

    An updated global survey of radioisotope production and distribution was completed and subjected to a revised "down-selection methodology" to determine those radioisotopes that should be classified as potential national security risks based on availability and key physical characteristics that could be exploited in a hypothetical radiological dispersion device. The potential at-risk radioisotopes then were used in a modeling software suite known as Turbo FRMAC, developed by Sandia National Laboratories, to characterize plausible contamination maps known as Protective Action Guideline Zone Maps. This software also was used to calculate the whole body dose equivalent for exposed individuals based on various dispersion parameters and scenarios. Derived Response Levels then were determined for each radioisotope using: 1) target doses to members of the public provided by the U.S. EPA, and 2) occupational dose limits provided by the U.S. Nuclear Regulatory Commission. The limiting Derived Response Level for each radioisotope also was determined.

  5. Parasitic effects in superconducting quantum interference device-based radiation comb generators

    Bosisio, R., E-mail: riccardo.bosisio@nano.cnr.it [SPIN-CNR, Via Dodecaneso 33, 16146 Genova (Italy); NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy); Giazotto, F., E-mail: giazotto@sns.it [NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy); Solinas, P., E-mail: paolo.solinas@spin.cnr.it [SPIN-CNR, Via Dodecaneso 33, 16146 Genova (Italy)

    2015-12-07

    We study several parasitic effects on the implementation of a Josephson radiation comb generator based on a dc superconducting quantum interference device (SQUID) driven by an external magnetic field. This system can be used as a radiation generator similarly to what is done in optics and metrology, and allows one to generate up to several hundreds of harmonics of the driving frequency. First we take into account how the assumption of a finite loop geometrical inductance and junction capacitance in each SQUID may alter the operation of the devices. Then, we estimate the effect of imperfections in the fabrication of an array of SQUIDs, which is an unavoidable source of errors in practical situations. We show that the role of the junction capacitance is, in general, negligible, whereas the geometrical inductance has a beneficial effect on the performance of the device. The errors on the areas and junction resistance asymmetries may deteriorate the performance, but their effect can be limited to a large extent by a suitable choice of fabrication parameters.

  6. Emergency response activities and the collection of damaged radiation devices in the war areas of Croatia

    Subasic, D.; Schaller, A.

    1998-01-01

    Several kinds of devices containing sources of ionizing radiation had been in use in the areas of Croatia which were affected by the recent war, principally in industrial and medical applications. The greater share of these devices was constituted by 151 radioactive lightning conductors with a maximum individual activity of 19.5 GBq and some 8300 smoke detectors. In the destruction caused by the war, some of these devices were damaged, destroyed or lost. The actions undertaken to retrieve them and their sources are described, as well as the experience gained and lessons learned. The importance of a well organized national regulatory system is underscored as a precondition for the efficient identification and safe recovery of radiation sources lying amidst the ruins in the area affected by the war. The experience gained in these actions may be applicable to similar situations caused by natural disasters such as earthquakes, floods, hurricanes, etc. and of particular interest to regulatory authorities for the drawing up of emergency preparedness plans. (author)

  7. Medical Device Recalls in Radiation Oncology: Analysis of US Food and Drug Administration Data, 2002-2015.

    Connor, Michael J; Tringale, Kathryn; Moiseenko, Vitali; Marshall, Deborah C; Moore, Kevin; Cervino, Laura; Atwood, Todd; Brown, Derek; Mundt, Arno J; Pawlicki, Todd; Recht, Abram; Hattangadi-Gluth, Jona A

    2017-06-01

    To analyze all recalls involving radiation oncology devices (RODs) from the US Food and Drug Administration (FDA)'s recall database, comparing these with non-radiation oncology device recalls to identify discipline-specific trends that may inform improvements in device safety. Recall data on RODs from 2002 to 2015 were sorted into 4 product categories (external beam, brachytherapy, planning systems, and simulation systems). Outcomes included determined cause of recall, recall class (severity), quantity in commerce, time until recall termination (date FDA determines recall is complete), and time since 510(k) approval. Descriptive statistics were performed with linear regression of time-series data. Results for RODs were compared with those for other devices by Pearson χ 2 test for categorical data and 2-sample Kolmogorov-Smirnov test for distributions. There were 502 ROD recalls and 9534 other class II device recalls during 2002 to 2015. Most recalls were for external beam devices (66.7%) and planning systems (22.9%), and recall events peaked in 2011. Radiation oncology devices differed significantly from other devices in all recall outcomes (P≤.04). Recall cause was commonly software related (49% vs 10% for other devices). Recall severity was more often moderate among RODs (97.6% vs 87.2%) instead of severe (0.2% vs 4.4%; Panalysis of recall data can identify areas for device improvement, such as better system design among RODs. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Self-diffraction of continuous laser radiation in a disperse medium with absorbing particles

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.

    2013-01-01

    We study the self-action of light in a water suspension of absorbing subwavelength particles. Due to efficient accumulation of the light energy, this medium shows distinct non-linear properties even at moderate radiation power. In particular, by means of interference of two obliquely incident beams...... formation is shown to be thermal, which leads to the phase grating; a weak amplitude grating also emerges due to the particles' displacements caused by the light-induced gradient and photophoretic forces. These forces, together with the Brownian motion of the particles, are responsible for the grating...

  9. High temperature creep strength of Advanced Radiation Resistant Oxide Dispersion Strengthened Steels

    Noh, Sanghoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Austenitic stainless steel may be one of the candidates because of good strength and corrosion resistance at the high temperatures, however irradiation swelling well occurred to 120dpa at high temperatures and this leads the decrease of the mechanical properties and dimensional stability. Compared to this, ferritic/martensitic steel is a good solution because of excellent thermal conductivity and good swelling resistance. Unfortunately, the available temperature range of ferritic/martensitic steel is limited up to 650 .deg. C. ODS steel is the most promising structural material because of excellent creep and irradiation resistance by uniformly distributed nano-oxide particles with a high density which is extremely stable at the high temperature in ferritic/martensitic matrix. In this study, high temperature strength of advanced radiation resistance ODS steel was investigated for the core structural material of next generation nuclear systems. ODS martensitic steel was designed to have high homogeneity, productivity and reproducibility. Mechanical alloying, hot isostactic pressing and hot rolling processes were employed to fabricate the ODS steels, and creep rupture test as well as tensile test were examined to investigate the behavior at high temperatures. ODS steels were fabricated by a mechanical alloying and hot consolidation processes. Mechanical properties at high temperatures were investigated. The creep resistance of advanced radiation resistant ODS steels was more superior than those of ferritic/ martensitic steel, austenitic stainless steel and even a conventional ODS steel.

  10. Radiative heat transfer in the Na mist dispersion over the hot surface of liquid Na in the cooling system of nuclear reactor

    Kunitomo, T.; Shafey, H.M.

    1980-01-01

    The analysis has been carried out for the radiative heat transfer in the Na mist dispersion enclosed between the hot surface of liquid Na at temperature Tsub(n) and the cold surface of Na deposit at Tsub(c). The model selected for the present study represents the Na mist formed in a sodium cooled fast breeder reactor in which the condensed liquid particles are dispersed in the mixture of the Ar cover gas and the Na vapor. The analysis is based on replacing the inhomogeneous dispersing medium by three discrete homogeneous layers, and formulating the transfer equation for the monochromatic radiation in each layer according to the Chandrasekhar theory. The numerical calculations of the radiative qsub(r) and convective qsub(c) heat transfers have been performed for the wave length range lambda=1.6-30 μm and are compared. The qsub(r) has the same order of magnitude as the qsub(c) for all conditions of the mist dispersions. Both qsub(r) and qsub(c) increase by nearly equal rates with the increase of Tsub(H) and decrease by different rates with increasing Tsub(c). Variations of the particle diameter of the Na mist do not change substantially the qsub(r). Both qsub(r) and qsub(c) decrease slightly with the increase in the total thickness of the Na mist dispersion

  11. Study of bremsstrahlung dose fields in radiation shield and labyrinth devices of plants with LUEH-8/5B accelerator

    Vikulin, A.A.; Vanyushkin, B.M.; Garnyk, D.V.; Kon'kov, N.G.; Terent'ev, B.M.

    1980-01-01

    Measurement results of exposure dose rate (EDR) of radiation in fields of bremsstrahlung of radiation plants with LUEh-8/5B linear accelerator of electrons by means of DRG2-03 dose meter, intended for operative measuring EDR in high intense fields of γ-radiation of powerful radioisotopic plants, are presented. Dose meter design is described. Measurements of bremsstrahlung EDR have been carried out in the chamber of plant irradiation for radiation sterilizing medical items, as well as in the chamber of VNIIRT experimental plant. RUP-1 device has been used for measuring radiation EDR in a labyrinth behind 1.8 m thick shoulder by concrete [ru

  12. Intercomparison of radiation protection protection devices in a high-energy stray neutron field. Part III: Instrument response

    Silari, M.; Agosteo, S.; Beck, P.; Bedogni, R.; Cale, E.; Caresana, M.; Domingo, C.; Donadille, L.; Dubourg, N.; Esposito, A.; Fehrenbacher, G.; Fernández, F.; Ferrarini, M.; Fiechtner, A.; Fuchs, A.; García, M. J.; Golnik, N.; Gutermuth, F.; Khurana, S.; Klages, T.; Latocha, M.; Mares, V.; Mayer, S.; Radon, T.; Reithmeier, H.; Rollet, S.; Roos, H.; Rühm, W.; Sandri, S.; Schardt, D.; Simmer, G.; Spurný, František; Trompier, F.; Villa-Grasa, C.; Weitzenegger, E.; Wiegel, B.; Wielunski, M.; Wissmann, F.; Zechner, A.; Zielczyński, M.

    2009-01-01

    Roč. 44, 7-8 (2009), s. 673-691 ISSN 1350-4487 R&D Projects: GA AV ČR IAA100480902 Institutional research plan: CEZ:AV0Z10480505 Keywords : radiation protection devices * radiation field * detectors * dosemeters Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.973, year: 2009

  13. Determination of the permeability of α-, β- and γ-radiation in textile fabrics by Gamma-Scout device

    Gintibidze, N.; Mardaleishvili, Z.

    2009-01-01

    The goal of the present was the measurement of radiation permeability in textile fabrics by Gamma-Scout device and the comparison of the obtained results with the radiation background of the ambient air. The authors of this article have produced new fiber Fibron-3, which, according to theoretical calculations, reduces permeability of solar radiation. With this in mind, an experiment was performed. Three samples of the knitted cloth from Fibron-3 were taken, and the permeability of solar radiation in them was determined. The measurements were performed on Gamma-Scout device. The comparative analysis of the permeability of solar radiation in fabrics of different fibrous structure was performed. It was inferred that the degree of radiation permeability in fabrics depended on the thread thickness and the fiber structure. (author)

  14. Method and device for demounting in a radiation detector a photomultiplier tube

    Persyk, D.E.; Stoub, E.W.

    1986-01-01

    A device is described for demounting in a radiation detector a photomultiplier tube which is bonded with its scintillation crystal assembly by means of an elastic light transparent adhesive, comprising: (a) a music wire of about 0.01 to 0.03 inch diameter which forms a noose between its wire ends, the noose being provided for being placed aroung the bond; and (b) twisting means connected with both wire ends for twisting them such that the noose becomes smaller thereby sharing the bond

  15. On Radiated Performance Evaluation of Massive MIMO Devices in Multi-Probe Anechoic Chamber OTA Setups

    Kyösti, Pekka; Hentilä, Lassi; Fan, Wei

    2018-01-01

    Radiated testing of massive multiple-input-multipleoutput (MIMO) devices in fading radio channel conditions is expected to be essential in development of the fifth generation (5G) base stations (BS) and user equipment (UE) operating at or close to the millimetre wave (mm-wave) frequencies. In thi...... setup and find key design parameters by simulations. The results with the utilized channel models indicate that at 28 GHz up to 1616 planar arrays can be tested with range length of one meter and with at minimum eight active dual polarized probes....

  16. Structure of a radiate pseudocolony associated with an intrauterine contraceptive device

    O'Brien, P.K.; Lea, P.J.; Roth-Moyo, L.A.

    1985-01-01

    Transmission electron microscopy of a radiate pseudocolony associated with an intrauterine contraceptive device (IUCD) showed central bundles of extracellular fibers averaging 35 nm in diameter, surrounded by layered mantles of electron-dense, amorphous granular material. No bacterial, viral, or fungal structures were present. X-ray microanalysis revealed copper, sulfur, chloride, iron, and phosphorus; no calcium was found. It is postulated that these structures and histologically identical non-IUCD-associated granules from the female genital tract, as well as similar structures from other body locations, including those reported in colloid cysts of the third ventricle, are of lipofuscin origin

  17. Modeling of radiation-induced charge trapping in MOS devices under ionizing irradiation

    Petukhov, M. A., E-mail: m.a.petukhov@gmail.com; Ryazanov, A. I. [National Research Center Kurchatov Institute (Russian Federation)

    2016-12-15

    The numerical model of the radiation-induced charge trapping process in the oxide layer of a MOS device under ionizing irradiation is developed; the model includes carrier transport, hole capture by traps in different states, recombination of free electrons and trapped holes, kinetics of hydrogen ions which can be accumulated in the material during transistor manufacture, and accumulation and charging of interface states. Modeling of n-channel MOSFET behavior under 1 MeV photon irradiation is performed. The obtained dose dependences of the threshold voltage shift and its contributions from trapped holes and interface states are in good agreement with experimental data.

  18. Functionalization of polypropylene by radiation grafting of acryloyl chloride and sterification with disperse red

    Bucio, E.; Burillo, G.; Carreon, M.P.; Ogawa, T.

    2002-01-01

    Complete text of publication follows. A practical method for obtaining films containing functional groups on the surface, is the gamma ray-induced grafting of acryloyl or methacryloyl chloride on the films, followed by the reaction of hydroxy or amino groups of the functional compounds. Direct grafting of acrylates or methacrylates with bulky functional groups onto films of polyethylene, polypropylene, polycarbonate, etc, is often encounter difficulty in polymerization of bulky monomers, loss due to homopolymerization, etc. In this work, polypropylene (PP) films were irradiated by gamma rays of Co-60 (Gamma Beam 651 PT source) and grafted with acryloyl chloride; grafting was carried out by direct and phase vapor direct method, at a dose rate of 5.1 kGy/h, different acryloyl concentration on toluene, and doses from 1 to 5 kGy, at room temperature. The unreacted acryloyl chloride and its homopolymer were removed by chloroform extraction. The grafted poly(acryloyl chloride) was then reacted with Disperse Red 1,2-[4-(4-nitrophenylazo)-N-ethylphenylamino] ethanol. The grafted films were characterized by NMR, FTIR-ATR, Visible Spectroscopy, DSC, X-ray diffractometry, SEM, AFM, NMR of solids and Elemental Analysis. Scanning electron micrographs of fractured surfaces indicated that grafting took place not only on the surface of PP film, but the grafted polymer penetrated into the PP films. Thermochromic properties of the films were observed by FTIR and UV-VIS spectrophotometers at different temperatures. AFM showed depth profiles and average rough for samples with different percentage of graft

  19. A novel in vitro model for hematogenous spreading of S. aureus device biofilms demonstrating clumping dispersal as an advantageous dissemination mechanism

    Grønnemose, Rasmus Birkholm; Lindhardt Sæderup (Madsen), Kirstine; Kolmos, Hans Jørn

    2017-01-01

    Staphylococcus aureus is able to disseminate from vascular device biofilms to the blood and organs, resulting in life-threatening infections such as endocarditis. The mechanisms behind spreading are largely unknown, especially how the bacterium escapes immune effectors and antibiotics in the proc......Staphylococcus aureus is able to disseminate from vascular device biofilms to the blood and organs, resulting in life-threatening infections such as endocarditis. The mechanisms behind spreading are largely unknown, especially how the bacterium escapes immune effectors and antibiotics...... the ability to adhere to and initiate colonization of endothelial cell layers under flow. In vivo experiments showed that the released biofilm material reached the heart similarly as ordinary broth-grown bacteria, but also that clumps to some extend were trapped in the lungs. The clumping dispersal of S....... aureus from in vivo-like vascular biofilms and their specific properties demonstrated here help explain the pathophysiology associated with S. aureus bloodstream infections....

  20. A new XUV optical end-station to characterize compact and flexible photonic devices using synchrotron radiation

    Marcelli, A.; Mazuritskiy, M. I.; Dabagov, S. B.; Hampai, D.; Lerer, A. M.; Izotova, E. A.; D'Elia, A.; Turchini, S.; Zema, N.; Zuccaro, F.; de Simone, M.; Javad Rezvani, S.; Coreno, M.

    2018-03-01

    In this contribution we present the new experimental end-station to characterize XUV diffractive optics, such as Micro Channel Plates (MCPs) and other polycapillary optics, presently under commission at the Elettra synchrotron radiation laboratory (Trieste, Italy). To show the opportunities offered by these new optical devices for 3rd and 4th generation radiation sources, in this work we present also some patterns collected at different energies of the primary XUV radiation transmitted by MCP optical devices working in the normal incidence geometry.

  1. Tracer gas dispersion in ducts-study of a new compact device using arrays of sonic micro jets

    Silva, A.R. [Instituto Nacional de Engenharia e Tecnologia Industrial (INETI), Lisboa (Portugal); Afonso, C.F. [Faculdade de Engenharia, Universidade do Porto Departmento de Mecanica e Gestao Industrial, Porto (Portugal)

    2004-07-01

    One of the most feasible ways to measure duct airflows is by tracer gas techniques, especially for complex situations when the duct lengths are short as well as their access, which makes extremely difficult or impossible other methods to be implemented. One problem associated with the implementation of tracer gas technique when the ducts lengths are short is due to the impossibility of achieving complete mixing of the tracer with airflow and its sampling. In this work, the development of a new device for the injection of tracer gas in ducts is discussed as well as a new tracer-sampling device. The developed injection device has a compact tubular shape, with magnetic fixation to be easy to apply in duct walls. An array of sonic micro jets in counter current direction, with the possibility of angular movement according to its main axle ensures a complete mixing of the tracer in very short distances. The tracer-sampling device, with a very effective integration function, feeds the sampling system for analysis. Both devices were tested in a wind tunnel of approximately 21 m total length. The tests distances between injection and integration device considered were: X/Dh = 22; X/Dh = 4; X/Dh 2; and X/Dh = 1. For very short distances of X/Dh = 2 and X/Dh = 1, semi-empirical expressions were needed. A good reproducibility of airflow rate values was obtained. These preliminary tests showed that the practical implementation of tracer gas techniques in HVAC systems for measuring airflow rates with a very short mixing distance is possible with the devices developed. (author)

  2. Multiwalled carbon nanotubes and dispersed nanodiamond novel hybrids: Microscopic structure evolution, physical properties, and radiation resilience

    Gupta, S.; Farmer, J.

    2011-01-01

    We report the structure and physical properties of novel hybrids of multiwalled carbon nanotubes (MWCNTs) and ultradispersed diamond (UDD) forming nanocomposite ensemble that were subjected to 50, 100, and 10 3 kGy gamma ray doses and characterized using various analytical tools to investigate hierarchical defects evolution. This work is prompted by recent work on single-walled CNTs and UDD ensemble [Gupta et al., J. Appl. Phys. 107, 104308 (2010)] where radiation-induced microscopic defects seem to be stabilized by UDD. The present experiments show similar effects where these hybrids display only a minimal structural modification under the maximum dose. Quantitative analyses of multiwavelength Raman spectra revealed lattice defects induced by irradiation assessed through the variation in prominent D, G, and 2D bands. A minimal change in the position of D, G, and 2D bands and a marginal increase in intensity of the defect-induced double resonant Raman scattered D and 2D bands are some of the implications suggesting the radiation coupling. The in-plane correlation length (L a ) was also determined following Tunistra-Koenig relation from the ratio of D to G band (I D /I G ) besides microscopic stress. However, we also suggest the following taking into account of intrinsic defects of the constituents: (a) charge transfer arising at the interface due to the difference in electronegativity of MWCNT C sp 2 and UDD core (C sp 3 ) leading to phonon and electron energy renormalization; (b) misorientation of C sp 2 at the interface of MWCNT and UDD shell (C sp 2 ) resulting in structural disorder; (c) softening or violation of the q∼0 selection rule leading to D band broadening and a minimal change in G band intensity; and (d) normalized intensity of D and G bands with 2D band help to distinguish defect-induced double resonance phenomena. The MWCNT when combined with nanodiamond showed a slight decrease in their conductance further affected by irradiation pointing at

  3. A conceptual design of the set-up for solid state spectroscopy with free electron laser and insertion device radiation

    Makhov, V N

    2001-01-01

    The set-up for complex solid state spectroscopy with the use of enhanced properties of radiation from insertion devices and free electron lasers is proposed. Very high flux and pulsed properties of radiation from insertion devices and free electron lasers offer the possibility for the use of such powerful techniques as electron paramagnetic resonance (EPR) and optically detected magnetic resonance (ODMR) for the studies of excited states of electronic excitations or defects in solids. The power density of radiation can become high enough for one more method of exited-state spectroscopy: transient optical absorption spectroscopy. The set-up is supposed to combine the EPR/ODMR spectrometer, i.e. cryostat supplied with superconducting magnet and microwave system, and the optical channels for excitation (by radiation from insertion devices or free electron laser) and detection of luminescence (i.e. primary and secondary monochromators). The set-up can be used both for 'conventional' spectroscopy of solids (reflec...

  4. Adverse Events Involving Radiation Oncology Medical Devices: Comprehensive Analysis of US Food and Drug Administration Data, 1991 to 2015

    Connor, Michael J.; Marshall, Deborah C.; Moiseenko, Vitali; Moore, Kevin; Cervino, Laura; Atwood, Todd; Sanghvi, Parag; Mundt, Arno J.; Pawlicki, Todd; Recht, Abram; Hattangadi-Gluth, Jona A.

    2017-01-01

    Purpose: Radiation oncology relies on rapidly evolving technology and highly complex processes. The US Food and Drug Administration collects reports of adverse events related to medical devices. We sought to characterize all events involving radiation oncology devices (RODs) from the US Food and Drug Administration's postmarket surveillance Manufacturer and User Facility Device Experience (MAUDE) database, comparing these with non–radiation oncology devices. Methods and Materials: MAUDE data on RODs from 1991 to 2015 were sorted into 4 product categories (external beam, brachytherapy, planning systems, and simulation systems) and 5 device problem categories (software, mechanical, electrical, user error, and dose delivery impact). Outcomes included whether the device was evaluated by the manufacturer, adverse event type, remedial action, problem code, device age, and time since 510(k) approval. Descriptive statistics were performed with linear regression of time-series data. Results for RODs were compared with those for other devices by the Pearson χ"2 test for categorical data and 2-sample Kolmogorov-Smirnov test for distributions. Results: There were 4234 ROD and 4,985,698 other device adverse event reports. Adverse event reports increased over time, and events involving RODs peaked in 2011. Most ROD reports involved external beam therapy (50.8%), followed by brachytherapy (24.9%) and treatment planning systems (21.6%). The top problem types were software (30.4%), mechanical (20.9%), and user error (20.4%). RODs differed significantly from other devices in each outcome (P<.001). RODs were more likely to be evaluated by the manufacturer after an event (46.9% vs 33.0%) but less likely to be recalled (10.5% vs 37.9%) (P<.001). Device age and time since 510(k) approval were shorter among RODs (P<.001). Conclusions: Compared with other devices, RODs may experience adverse events sooner after manufacture and market approval. Close postmarket surveillance, improved

  5. Adverse Events Involving Radiation Oncology Medical Devices: Comprehensive Analysis of US Food and Drug Administration Data, 1991 to 2015

    Connor, Michael J. [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Department of Radiation Oncology, University of California Irvine School of Medicine, Irvine, California (United States); Marshall, Deborah C.; Moiseenko, Vitali; Moore, Kevin; Cervino, Laura; Atwood, Todd; Sanghvi, Parag; Mundt, Arno J.; Pawlicki, Todd [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Recht, Abram [Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (United States); Hattangadi-Gluth, Jona A., E-mail: jhattangadi@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States)

    2017-01-01

    Purpose: Radiation oncology relies on rapidly evolving technology and highly complex processes. The US Food and Drug Administration collects reports of adverse events related to medical devices. We sought to characterize all events involving radiation oncology devices (RODs) from the US Food and Drug Administration's postmarket surveillance Manufacturer and User Facility Device Experience (MAUDE) database, comparing these with non–radiation oncology devices. Methods and Materials: MAUDE data on RODs from 1991 to 2015 were sorted into 4 product categories (external beam, brachytherapy, planning systems, and simulation systems) and 5 device problem categories (software, mechanical, electrical, user error, and dose delivery impact). Outcomes included whether the device was evaluated by the manufacturer, adverse event type, remedial action, problem code, device age, and time since 510(k) approval. Descriptive statistics were performed with linear regression of time-series data. Results for RODs were compared with those for other devices by the Pearson χ{sup 2} test for categorical data and 2-sample Kolmogorov-Smirnov test for distributions. Results: There were 4234 ROD and 4,985,698 other device adverse event reports. Adverse event reports increased over time, and events involving RODs peaked in 2011. Most ROD reports involved external beam therapy (50.8%), followed by brachytherapy (24.9%) and treatment planning systems (21.6%). The top problem types were software (30.4%), mechanical (20.9%), and user error (20.4%). RODs differed significantly from other devices in each outcome (P<.001). RODs were more likely to be evaluated by the manufacturer after an event (46.9% vs 33.0%) but less likely to be recalled (10.5% vs 37.9%) (P<.001). Device age and time since 510(k) approval were shorter among RODs (P<.001). Conclusions: Compared with other devices, RODs may experience adverse events sooner after manufacture and market approval. Close postmarket surveillance

  6. SU-E-J-48: Development of An Abdominal Compression Device for Respiratory Correlated Radiation Therapy

    Kim, T; Kang, S; Kim, D; Suh, T; Kim, S

    2014-01-01

    Purpose: The aim of this study is to develop the abdominal compression device which could control pressure level according to the abdominal respiratory motion and evaluate its feasibility. Methods: In this study, we focused on developing the abdominal compression device which could control pressure level at any point of time so the developed device is possible to use a variety of purpose (gating technique or respiratory training system) while maintaining the merit of the existing commercial device. The compression device (air pad form) was designed to be able to compress the front and side of abdomen and the pressure level of the abdomen is controlled by air flow. Pressure level of abdomen (air flow) was determined using correlation data between external abdominal motion and respiratory volume signal measured by spirometer. In order to verify the feasibility of the device, it was necessary to confirm the correlation between the abdominal respiratory motion and respiratory volume signal and cooperation with respiratory training system also checked. Results: In the previous study, we could find that the correlation coefficient ratio between diaphragm and respiratory volume signal measured by spirometer was 0.95. In this study, we confirmed the correlation between the respiratory volume signal and the external abdominal motion measured by belt-transducer (correlation coefficient ratio was 0.92) and used the correlated respiratory volume data as an abdominal pressure level. It was possible to control the pressure level with negligible time delay and respiratory volume data based guiding waveforms could be properly inserted into the respiratory training system. Conclusion: Through this feasibility study, we confirmed the correlation between the respiratory volume signal and the external abdominal motion. Also initial assessment of the device and its compatibility with the respiratory training system were verified. Further study on application in respiratory gated

  7. Study of radiation-induced leakage current between adjacent devices in a CMOS integrated circuit

    Ding Lili; Guo Hongxia; Chen Wei; Fan Ruyu

    2012-01-01

    Radiation-induced inter-device leakage is studied using an analytical model and TCAD simulation.There were some different opinions in understanding the process of defect build-up in trench oxide and parasitic leakage path turning on from earlier studies.To reanalyze this problem and make it beyond argument,every possible variable is considered using theoretical analysis,not just the change of electric field or oxide thickness independently.Among all possible inter-device leakage paths,parasitic structures with N-well as both drain and source are comparatively more sensitive to the total dose effect when a voltage discrepancy exists between the drain and source region.Since N-well regions are commonly connected to the same power supply,these kinds of structures will not be a problem in a real CMOS integrated circuit.Generally speaking,conduction paths of inter-device leakage existing in a real integrated circuit and under real electrical circumstances are not very sensitive to the total ionizing dose effect.

  8. Automatic analysis of image quality control for Image Guided Radiation Therapy (IGRT) devices in external radiotherapy

    Torfeh, Tarraf

    2009-01-01

    On-board imagers mounted on a radiotherapy treatment machine are very effective devices that improve the geometric accuracy of radiation delivery. However, a precise and regular quality control program is required in order to achieve this objective. Our purpose consisted of developing software tools dedicated to an automatic image quality control of IGRT devices used in external radiotherapy: 2D-MV mode for measuring patient position during the treatment using high energy images, 2D-kV mode (low energy images) and 3D Cone Beam Computed Tomography (CBCT) MV or kV mode, used for patient positioning before treatment. Automated analysis of the Winston and Lutz test was also proposed. This test is used for the evaluation of the mechanical aspects of treatment machines on which additional constraints are carried out due to the on-board imagers additional weights. Finally, a technique of generating digital phantoms in order to assess the performance of the proposed software tools is described. Software tools dedicated to an automatic quality control of IGRT devices allow reducing by a factor of 100 the time spent by the medical physics team to analyze the results of controls while improving their accuracy by using objective and reproducible analysis and offering traceability through generating automatic monitoring reports and statistical studies. (author) [fr

  9. Radiation Engineering of PVP/PAAc Nanogel Dispersions for Ophthalmic Applications

    Hegazy, E.A.; Abd El-Rehim, H.A.; Swilem, A.E.

    2015-01-01

    Chemically cross-linked, pH sensitive, PVP/PAAc hydrogel NPs have been successfully prepared at high yields via γ radiation induced polymerization of AAc in an aqueous solution of PVP as a template polymer. The particle sizes of the PVP/PAAc nanogels at different pH values have been evaluated using DLS, and the morphology assessed using AFM and TEM. Smaller and more stable nanogel particles could be produced by irradiating a feed solution of 50–75 mol% AAc and using PVP with a high MW. The particle size increased as the feed concentration increased, and a suitable concentration for nanogel production ranged from 1% to 2%. PVP/PAAc nanogels that were pH sensitive were used to encapsulate pilocarpine where the AAc rich nanogels exhibited the highest loading efficiency. Factors affecting size and encapsulation efficiency were optimized to obtain nanogels that were sufficient to entrap the drug efficiently. The transmittance, mucoadhesion and rheological characteristics of nanogel particles were studied to evaluate their ocular applicability. An in vitro release study conducted in simulated tear fluid showed a relatively long sustained release of pilocarpine from the prepared PVP/PAAc nanogel particles when compared with pilocarpine in solution. In addition, it was interesting to evaluate the use of PVP/PAAc nanoparticulate hydrogels as a new strategy to overcome the problems associated with highly viscous polymeric materials, such as carbomer gel, that are used for dry eye treatment. The use of PVP/PAAc nanogels prepared at different compositions and irradiation doses was evaluated for dry eye syndrome application. The nanogel rheological properties and the nanogel interaction with mucin were investigated. Moreover, topical application of the prepared nanogel in a dry eye model in albino rabbits, induced by atropine sulphate 1% eye drops, was investigated. The use of AAc rich nanogels with a lower cross-linking degree (compared with the highly viscous carbomer

  10. Design and implementation of a device for measuring radiation energy of an electron accelerator

    Salhi, Heythem; Selmi, Samir

    2010-01-01

    Our work is part of a graduation project at the School of Technology and Computing, to obtain a master's degree in electrical engineering specialty industrial computer. Throughout the four-month internship at the National Center for Nuclear Science and Technology (CNSTN), we have learned to practice the knowledge acquired during the formative years and to manage our working time. Our job was to design and implementation of a device for measuring the energy of radiation. Our project meets the needs of users in the radio treatment Unit, which amount to automate measurement of radiation energy from the electron accelerator. This project has been beneficial on several levels: it was an opportunity to achieve better control of printed circuits, especially when they are dual layer and learning a new programming language that is actually BASIC. In human terms, this work has given us the opportunity to learn to manage our time, and learn teamwork. However, we are convinced that this project can be enhanced on various levels. It can be considered as a starting point of a contribution to the real-time measurement of the energy of radiation.

  11. Development of a daily dosimetric control for radiation therapy using an electronic portal imaging device (EPID)

    Saboori, Mohammadsaeed

    2015-01-01

    Electronic Portal Imaging Devices (EPIDs) can be used to perform dose measurements during radiation therapy treatments if dedicated calibration and correction procedures are applied. The purpose of this study was to provide a new calibration and correction model for an amorphous silicon (a-Si) EPID for use in transit dose verification of step-and-shoot intensity modulated radiation therapy (IMRT). A model was created in a commercial treatment planning system to calculate the nominal two-dimensional (2D) dose map of each radiation field at the EPID level. The EPID system was calibrated and correction factors were determined using a reference set-up, which consisted a patient phantom and an EPID phantom. The advantage of this method is that for the calibration, the actual beam spectrum is used to mimic a patient measurement. As proof-of-principle, the method was tested for the verification of two 7-field IMRT treatment plans with tumor sites in the head-and-neck and pelvic region. Predicted and measured EPID responses were successfully compared to the nominal data from treatment planning using dose difference maps and gamma analyses. Based on our result it can be concluded that this new method of 2D EPID dosimetry is a potential tool for simple patient treatment fraction dose verification.

  12. Ultraviolet spectral distribution and erythema-weighted irradiance from indoor tanning devices compared with solar radiation exposures.

    Sola, Yolanda; Baeza, David; Gómez, Miguel; Lorente, Jerónimo

    2016-08-01

    Concern regarding the impact of indoor tanning devices on human health has led to different regulations and recommendations, which set limits on erythema-weighted irradiance. Here, we analyze spectral emissions from 52 tanning devices in Spanish facilities and compare them with surface solar irradiance for different solar zenith angles. Whereas most of the devices emitted less UV-B radiation than the midday summer sun, the unweighted UV-A irradiance was 2-6 times higher than solar radiation. Moreover, the spectral distributions of indoor devices were completely different from that of solar radiation, differing in one order of magnitude at some UV-A wavelengths, depending on the lamp characteristics. In 21% of the devices tested, the erythema-weighted irradiance exceeded 0.3Wm(-2): the limit fixed by the European standard and the Spanish regulation. Moreover, 29% of the devices fall within the UV type 4 classification, for which medical advice is required. The high variability in erythema-weighted irradiance results in a wide range of exposure times to reach 1 standard erythemal dose (SED: 100Jm(-2)), with 62% of devices requiring exposures of UV-A dose during this time period would be from 1.4 to 10.3 times more than the solar UV-A dose. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Space Radiation Environment Prediction for VLSI microelectronics devices onboard a LEO Satellite using OMERE-Trad Software

    Sajid, Muhammad

    This tutorial/survey paper presents the assessment/determination of level of hazard/threat to emerging microelectronics devices in Low Earth Orbit (LEO) space radiation environment with perigee at 300 Km, apogee at 600Km altitude having different orbital inclinations to predict the reliability of onboard Bulk Built-In Current Sensor (BBICS) fabricated in 350nm technology node at OptMA Lab. UFMG Brazil. In this context, the various parameters for space radiation environment have been analyzed to characterize the ionizing radiation environment effects on proposed BBICS. The Space radiation environment has been modeled in the form of particles trapped in Van-Allen radiation belts(RBs), Energetic Solar Particles Events (ESPE) and Galactic Cosmic Rays (GCR) where as its potential effects on Device- Under-Test (DUT) has been predicted in terms of Total Ionizing Dose (TID), Single-Event Effects (SEE) and Displacement Damage Dose (DDD). Finally, the required mitigation techniques including necessary shielding requirements to avoid undesirable effects of radiation environment at device level has been estimated /determined with assumed standard thickness of Aluminum shielding. In order to evaluate space radiation environment and analyze energetic particles effects on BBICS, OMERE toolkit developed by TRAD was utilized.

  14. Short and long term ionizing radiation effects on charge-coupled devices in radiation environment of high-intensity heavy ion accelerators

    Belousov, A; Mustafin, E; Ensinger, W

    2012-01-01

    Radiation effects on semiconductor devices is a topical issue for high-intensity accelerator projects. In particular it concerns Charge-Coupled Device (CCD) cameras, which are widely used for beam profile monitoring and surveillance in high radiation environment. One should have a clear idea of short and long term radiation effects on such devices. To study these effects, a CCD camera was placed in positions less than half meter away from beam loss point. Primary heavy ion beam of 0.95GeV/n Uranium was dumped into a thick aluminium target creating high fluences of secondary particles (e.g., gammas, neutrons, protons). Effects of these particles on CCD camera were scored with LabView based acquisition software. Monte Carlo calculations with FLUKA code were performed to obtain fluence distributions for different particles and make relevant comparisons. Long term total ionising dose effects are represented by dark current increase, which was scored throughout experiment. Instant radiation effects are represented by creation of charge in CCD cells by ionising particles. Relation of this charge to beam intensity was obtained for different camera positions and fluences within 5 orders of magnitude ranges. With high intensities this charge is so high that it may dramatically influence data obtained from CCD camera used in high radiation environment. The linearity of described above relation confirms linear response of CCD to ionizing radiation. It gives an opportunity to find a new application to CCD cameras as beam loss monitors (BLM).

  15. Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices

    Kioupakis, Emmanouil; Yan, Qimin; Steiauf, Daniel; Van de Walle, Chris G

    2013-01-01

    Nitride light-emitting diodes are a promising solution for efficient solid-state lighting, but their performance at high power is affected by the efficiency-droop problem. Previous experimental and theoretical work has identified Auger recombination, a three-particle nonradiative carrier recombination mechanism, as the likely cause of the droop. In this work, we use first-principles calculations to elucidate the dependence of the radiative and Auger recombination rates on temperature, carrier density and quantum-well confinement. Our calculated data for the temperature dependence of the recombination coefficients are in good agreement with experiment and provide further validation on the role of Auger recombination in the efficiency reduction. Polarization fields and phase-space filling negatively impact device efficiency because they increase the operating carrier density at a given current density and increase the fraction of carriers lost to Auger recombination. (paper)

  16. U-turn type continuous irradiation method and device for radiation-irradiated capsule

    Kikuchi, Takayuki.

    1997-01-01

    A capsule to be irradiated is moved while being rotated in one of conveying shafts disposed in a reactor to conduct irradiation treatment. Then, the irradiated capsule is made U-turn in the reactor, inserted to the other conveying shaft and moved while being rotated to conduct irradiation treatment again, and then transported out of the reactor. The device comprises a rotational conveying shaft for moving the irradiated capsule while rotating it, a conveying gear for U-turning the irradiated capsule in the reactor and inserting it to the conveying shaft and a driving mechanism for synchronously rotating the conveying gear relative to the conveying shaft at a constant ratio. Mechanical time loss and manual operation time loss can be reduced upon loading and taking up of the irradiated capsule. Then, the amount of irradiation treatment per unit time is increased, and an optional neutron irradiation amount can be obtained thereby enabling to reduce operator's radiation exposure. (N.H.)

  17. The moisture content monitoring device for PuO2 using self neutron radiation

    Bulanenko, Valeriy I.; Sviridov, Victor; Frolov, Vladimir V.; Ryazanov, Boris G.; Talanov, Vladimir V.

    2003-01-01

    Solutions technology of plutonium dioxide powders production inevitably leads to free or chemically bound hydrogen to be present in these powders. This work is devoted to the nondestructive method of PuO 2 powder moisture measurement based on application of the effect of neutron moderation caused by water. Plutonium dioxide is fast neutron source, while 3 He counters located in the nickel and polyethylene annular reflectors surrounding PuO 2 serve as detectors. In the work wide range of issues are considered related to practical implementation of the moisture measurement method by detecting inherent neutron radiation of plutonium dioxide powder. The most practical design of the detector has been chosen, which include two 3 He detectors having different reflectors mounted to the device. The absolute error of measurement does not exceed 0.2wt% with confidence coefficient of 0.95. Duration of analysis ∼5 minutes. (author)

  18. Overview of a benefit/risk ratio optimized for a radiation emitting device used in non-destructive testing

    Maharaj, H.P., E-mail: H_P_Maharaj@hc-sc.gc.ca [Health Canada, Dept. of Health, Consumer and Clinical Radiaton Protection Bureau, Ottawa, Ontario (Canada)

    2016-03-15

    This paper aims to provide an overview of an optimized benefit/risk ratio for a radiation emitting device. The device, which is portable, hand-held, and open-beam x-ray tube based, is utilized by a wide variety of industries for purposes of determining elemental or chemical analyses of materials in-situ based on fluorescent x-rays. These analyses do not cause damage or permanent alteration of the test materials and are considered a non-destructive test (NDT). Briefly, the key characteristics, principles of use and radiation hazards associated with the Hay device are presented and discussed. In view of the potential radiation risks, a long term strategy that incorporates risk factors and guiding principles intended to mitigate the radiation risks to the end user was considered and applied. Consequently, an operator certification program was developed on the basis of an International Standards Organization (ISO) standard (ISO 20807:2004) and in collaboration with various stake holders and was implemented by a federal national NDT certification body several years ago. It comprises a written radiation safety examination and hands-on training with the x-ray device. The operator certification program was recently revised and the changes appear beneficial. There is a fivefold increase in operator certification (Levels 1 a nd 2) to date compared with earlier years. Results are favorable and promising. An operational guidance document is available to help mitigate radiation risks. Operator certification in conjunction with the use of the operational guidance document is prudent, and is recommended for end users of the x-ray device. Manufacturers and owners of the x-ray devices will also benefit from the operational guidance document. (author)

  19. Overview of a benefit/risk ratio optimized for a radiation emitting device used in non-destructive testing

    Maharaj, H.P.

    2016-01-01

    This paper aims to provide an overview of an optimized benefit/risk ratio for a radiation emitting device. The device, which is portable, hand-held, and open-beam x-ray tube based, is utilized by a wide variety of industries for purposes of determining elemental or chemical analyses of materials in-situ based on fluorescent x-rays. These analyses do not cause damage or permanent alteration of the test materials and are considered a non-destructive test (NDT). Briefly, the key characteristics, principles of use and radiation hazards associated with the Hay device are presented and discussed. In view of the potential radiation risks, a long term strategy that incorporates risk factors and guiding principles intended to mitigate the radiation risks to the end user was considered and applied. Consequently, an operator certification program was developed on the basis of an International Standards Organization (ISO) standard (ISO 20807:2004) and in collaboration with various stake holders and was implemented by a federal national NDT certification body several years ago. It comprises a written radiation safety examination and hands-on training with the x-ray device. The operator certification program was recently revised and the changes appear beneficial. There is a fivefold increase in operator certification (Levels 1 a nd 2) to date compared with earlier years. Results are favorable and promising. An operational guidance document is available to help mitigate radiation risks. Operator certification in conjunction with the use of the operational guidance document is prudent, and is recommended for end users of the x-ray device. Manufacturers and owners of the x-ray devices will also benefit from the operational guidance document. (author)

  20. Effect of radiofrequency radiation from Wi-Fi devices on mercury release from amalgam restorations.

    Paknahad, Maryam; Mortazavi, S M J; Shahidi, Shoaleh; Mortazavi, Ghazal; Haghani, Masoud

    2016-01-01

    Dental amalgam is composed of approximately 50% elemental mercury. Despite concerns over the toxicity of mercury, amalgam is still the most widely used restorative material. Wi-Fi is a rapidly using local area wireless computer networking technology. To the best of our knowledge, this is the first study that evaluates the effect of exposure to Wi-Fi signals on mercury release from amalgam restorations. Standard class V cavities were prepared on the buccal surfaces of 20 non-carious extracted human premolars. The teeth were randomly divided into 2 groups (n = 10). The control group was stored in non-environment. The specimens in the experimental groups were exposed to a radiofrequency radiation emitted from standard Wi Fi devices at 2.4 GHz for 20 min. The distance between the Wi-Fi router and samples was 30 cm and the router was exchanging data with a laptop computer that was placed 20 m away from the router. The concentration of mercury in the artificial saliva in the groups was evaluated by using a cold-vapor atomic absorption Mercury Analyzer System. The independent t test was used to evaluate any significant differences in mercury release between the two groups. The mean (±SD) concentration of mercury in the artificial saliva of the Wi-Fi exposed teeth samples was 0.056 ± .025 mg/L, while it was only 0.026 ± .008 mg/L in the non-exposed control samples. This difference was statistically significant (P =0.009). Exposure of patients with amalgam restorations to radiofrequency radiation emitted from conventional Wi-Fi devices can increase mercury release from amalgam restorations.

  1. Use of mobile device technology to continuously collect patient-reported symptoms during radiation therapy for head and neck cancer: A prospective feasibility study

    Aaron D. Falchook, MD

    2016-04-01

    Conclusions: A substantial percentage of patients used mobile devices to continuously report symptoms throughout a course of radiation therapy for head and neck cancer. Future studies should evaluate the impact of mobile device symptom reporting on improving patient outcomes.

  2. Radiation-induced interface state generation in MOS devices with reoxidised nitrided SiO2 gate dielectrics

    Lo, G.Q.; Shih, D.K.; Ting, W.; Kwong, D.L.

    1989-01-01

    In this letter, the radiation-induced interface state generation ΔD it in MOS devices with reoxidised nitrided gate oxides has been studied. The reoxidised nitrided oxides were fabricated by rapid thermal reoxidation (RTO) of rapidly thermal nitrided (RTN) SiO 2 . The devices were irradiated by exposure to X-rays at doses of 0.5-5.0 Mrad (Si). It is found that the RTO process improves the radiation hardness of RTN oxides in terms of interface state generation. The enhanced interface ''hardness'' of reoxidised nitrided oxides is attributed to the strainless interfacial oxide regrowth or reduction of hydrogen concentration during RTO of RTN oxides. (author)

  3. Evaluation of image quality for various electronic portal imaging devices in radiation therapy

    Son, Soon Yong; Choi, Kwan Woo [Dept. of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Kim, Jung Min [Dept. of College of Health Science, Radiologic Science, Korea University, Seoul (Korea, Republic of); and others

    2015-12-15

    In megavoltage (MV) radiotherapy, delivering the dose to the target volume is important while protecting the surrounding normal tissue. The purpose of this study was to evaluate the modulation transfer function (MTF), the noise power spectrum (NPS), and the detective quantum efficiency (DQE) using an edge block in megavoltage X-ray imaging (MVI). We used an edge block, which consists of tungsten with dimensions of 19 (thickness) × 10 (length) × 1 (width) cm3 and measured the pre-sampling MTF at 6 MV energy. Various radiation therapy (RT) devices such as TrueBeamTM (Varian), BEAMVIEWPLUS (Siemens), iViewGT (Elekta) and Clinac®iX (Varian) were used. As for MTF results, TrueBeamTM(Varian) flattening filter free(FFF) showed the highest values of 0.46 mm-1and1.40mm-1for MTF 0.5 and 0.1. In NPS, iViewGT (Elekta) showed the lowest noise distribution. In DQE, iViewGT (Elekta) showed the best efficiency at a peak DQE and 1 mm-1DQE of 0.0026 and 0.00014, respectively. This study could be used not only for traditional QA imaging but also for quantitative MTF, NPS, and DQE measurement for development of an electronic portal imaging device (EPID)

  4. Designing a Polymerase Chain Reaction Device Working with Radiation and Convection Heat Transfer

    Madadelahi, M.; Kalan, K.; Shamloo, A.

    2018-05-01

    Gene proliferation is vital for infectious and genetic diseases diagnosis from a blood sample, even before birth. In addition, DNA sequencing, genetic finger-print analyzing, and genetic mutation detecting can be mentioned as other procedures requiring gene reproduction. Polymerase chain reaction, briefly known as PCR, is a convenient and effective way to accomplish this task; where the DNA containing sample faces three temperature phases alternatively. These phases are known as denaturation, annealing, and elongation/extension which in this study -regarding the type of the primers and the target DNA sequence- are set to occur at 95, 58, and 72 degrees of Celsius. In this study, a PCR device has been designed and fabricated which uses radiation and convection heat transfer at the same time to set and control the mentioned thermal sections. A 300W incandescent light bulb able to immediately turn off and on along with two 8×8 cm DC fans, controlled by a microcontroller as well as PID and PD controller codes are used to monitor the applied thermal cycles. In designing the controller codes it has been concerned that they not only control the temperature over the set-points as well as possible, but also increase the temperature variation rate between each two phases. The temperature data were plotted and DNA samples were used to assess the device function.

  5. Radiation effects modeling and experimental data on I2L devices

    Long, D.M.; Repper, C.J.; Ragonese, L.J.; Yang, N.T.

    1976-01-01

    This paper reports on an Integrated Injection Logic (I 2 L) radiation effects model which includes radiation effects phenomena. Twenty-five individual current components were identified for an I 2 L logic gate by assuming wholly vertical or wholly horizontal current flow. Equations were developed for each component in terms of basic parameters such as doping profiles, distances, and diffusion lengths, and set up on a computer for specific logic cell configurations. For neutron damage, the model shows excellent agreement with experimental data. Reactor test results on GE I 2 L samples showed a neutron hardness level in the range of 6 x 10 12 to 3 x 10 13 n/cm 2 (1 MeV Eq), and cobalt-60 tests showed a total dose hardness of 6 x 10 4 to greater than 1 x 10 6 Rads(Si) (all device types at an injection current of 50 microamps per gate). It was found that significant hardness improvements could be achieved by: (a) diffusion profile variation, (b) utilizing a tight N + collar around the cell, and (c) locating the collector close to the injector. Flash X-ray tests showed a transient logic upset threshold of 1 x 10 9 Rads(Si)/sec for a 28 ns pulse, and a survival level greater than 2 x 10 12 Rads(Si)/sec

  6. The signature-based radiation-scanning approach to standoff detection of improvised explosive devices

    Brewer, R.L.; Dunn, W.L.; Heider, S.; Matthew, C.; Yang, X.

    2012-01-01

    The signature-based radiation-scanning technique for detection of improvised explosive devices is described. The technique seeks to detect nitrogen-rich chemical explosives present in a target. The technology compares a set of “signatures” obtained from a test target to a collection of “templates”, sets of signatures for a target that contain an explosive in a specific configuration. Interrogation of nitrogen-rich fertilizer samples, which serve as surrogates for explosives, is shown experimentally to be able to discriminate samples of 3.8 L and larger. - Highlights: ► Signature-based radiation-scanning techniques applied to detection of explosives. ► Nitrogen-rich fertilizer samples served as surrogate explosive samples. ► Signatures of a target compared to collections of templates of surrogate explosives. ► Figure-of-merit determined for neutron and neutron-induced gamma-ray signatures. ► Discrimination of surrogate explosive from inert samples of 3.8 L and larger.

  7. Effects of device scaling and geometry on MOS radiation hardness assurance

    Shaneyfelt, M.R.; Fleetwood, D.M.; Winokur, P.S.; Schwank, J.R.; Meisenheimer, T.L.

    1993-01-01

    In this work the authors investigate the effects of transistor scaling and geometry on radiation hardness. The total dose response is shown to depend strongly on transistor channel length. Specifically, transistors with shorter gate lengths tend to show more negative threshold-voltage shifts during irradiation than transistors with longer gate lengths. Similarly, transistors with longer gate lengths tend to show more positive threshold-voltage shifts during post-irradiation annealing than transistors with shorter gate lengths. These differences in radiation response, caused by differences in transistor size and geometry, will be important to factor into test-structure-to-IC correlations necessary to support cost-effective Qualified Manufacturers List (QML) hardness assurance. Transistors with minimum gate length (more negative ΔV th ) will have a larger effect on standby power supply current for an IC at high dose rates, such as in a weapon environment, where worst-case response is associated with negative threshold-voltage shifts during irradiation. On the other hand, transistors with maximum gate length (more positive ΔV th ) will have a larger effect on the timing parameters of an IC at low dose rates, such as in a space environment, where worst-case response is represented by positive threshold-voltage shifts after postirradiation anneal. The channel size and geometry effects they observe cannot be predicted from simple scaling models, but occur because of real differences in oxide-, interface-, and border-trap charge densities among devices of different sizes

  8. Radiation Hardness tests with neutron flux on different Silicon photomultiplier devices

    Cattaneo, P. W.; Cervi, T.; Menegolli, A.; Oddone, M.; Prata, M.; Prata, M. C.; Rossella, M.

    2017-07-01

    Radiation hardness is an important requirement for solid state readout devices operating in high radiation environments common in particle physics experiments. The MEG II experiment, at PSI, Switzerland, investigates the forbidden decay μ+ → e+ γ. Exploiting the most intense muon beam of the world. A significant flux of non-thermal neutrons (kinetic energy Ek>= 0.5 MeV) is present in the experimental hall produced along the beam-line and in the hall itself. We present the effects of neutron fluxes comparable to the MEG II expected doses on several Silicon Photomultiplier (SiPMs). The tested models are: AdvanSiD ASD-NUV3S-P50 (used in MEG II experiment), AdvanSiD ASD-NUV3S-P40, AdvanSiD ASD-RGB3S-P40, Hamamatsu and Excelitas C30742-33-050-X. The neutron source is the thermal Sub-critical Multiplication complex (SM1) moderated with water, located at the University of Pavia (Italy). We report the change of SiPMs most important electric parameters: dark current, dark pulse frequency, gain, direct bias resistance, as a function of the integrated neutron fluency.

  9. A NOVEL SUPPORT DEVICE FOR HEAD IMMOBILIZATION DURING RADIATION THERAPY THAT IS APPLICABLE TO BOTH CATS AND DOGS.

    Nemoto, Yuki; Maruo, Takuya; Fukuyama, Yasuhiro; Kawarai, Shinpei; Shida, Takuo; Nakayama, Tomohiro

    2015-01-01

    Repeatable head immobilization is important for minimizing positioning error during radiation therapy for veterinary patients with head neoplasms. The purpose of this retrospective cross-sectional study was to describe a novel technique for head immobilization (Device II) and compare this technique with a previously described technique (Device I). Device II provided additional support by incorporating three teeth (vs. two teeth with Device I). Between 2011 and 2013, both devices were applied in clinically affected cats (Device I, n = 17; Device II, n = 11) and dogs (Device I, n = 85; Device II, n = 22) of various breeds and sizes. The following data were recorded for each included patient: variability in the angle of the skull (roll, yaw, and pitch), coordinates of the isocenter, and distance from the reference mark to the tumor. Devices I and II differed for skull angle variability during the treatment of dogs (roll, P = 0.0007; yaw, P = 0.0018; pitch, P = 0.0384) and for yaw of during the treatment of cats (P patients. © 2015 American College of Veterinary Radiology.

  10. Mitochondrial and nuclear DNA sequences support a Cretaceous origin of Columbiformes and a dispersal-driven radiation in the Paleocene .

    Pereira, Sergio L; Johnson, Kevin P; Clayton, Dale H; Baker, Allan J

    2007-08-01

    Phylogenetic relationships among genera of pigeons and doves (Aves, Columbiformes) have not been fully resolved because of limited sampling of taxa and characters in previous studies. We therefore sequenced multiple nuclear and mitochondrial DNA genes totaling over 9000 bp from 33 of 41 genera plus 8 outgroup taxa, and, together with sequences from 5 other pigeon genera retrieved from GenBank, recovered a strong phylogenetic hypothesis for the Columbiformes. Three major clades were recovered with the combined data set, comprising the basally branching New World pigeons and allies (clade A) that are sister to Neotropical ground doves (clade B), and the Afro-Eurasian and Australasian taxa (clade C). None of these clades supports the monophyly of current families and subfamilies. The extinct, flightless dodo and solitaires (Raphidae) were embedded within pigeons and doves (Columbidae) in clade C, and monophyly of the subfamily Columbinae was refuted because the remaining subfamilies were nested within it. Divergence times estimated using a Bayesian framework suggest that Columbiformes diverged from outgroups such as Apodiformes and Caprimulgiformes in the Cretaceous before the mass extinction that marks the end of this period. Bayesian and maximum likelihood inferences of ancestral areas, accounting for phylogenetic uncertainty and divergence times, respectively, favor an ancient origin of Columbiformes in the Neotropical portion of what was then Gondwana. The radiation of modern genera of Columbiformes started in the Early Eocene to the Middle Miocene, as previously estimated for other avian groups such as ratites, tinamous, galliform birds, penguins, shorebirds, parrots, passerine birds, and toucans. Multiple dispersals of more derived Columbiformes between Australasian and Afro-Eurasian regions are required to explain current distributions.

  11. Manifestation of plasmonic response in the detection of sub-terahertz radiation by graphene-based devices

    Gayduchenko, I. A.; Fedorov, G. E.; Moskotin, M. V.; Yagodkin, D. I.; Seliverstov, S. V.; Goltsman, G. N.; Kuntsevich, A. Yu; Rybin, M. G.; Obraztsova, E. D.; Leiman, V. G.; Shur, M. S.; Otsuji, T.; Ryzhii, V. I.

    2018-06-01

    We report on the sub-terahertz (THz) (129–450 GHz) photoresponse of devices based on single layer graphene and graphene nanoribbons with asymmetric source and drain (vanadium and gold) contacts. Vanadium forms a barrier at the graphene interface, while gold forms an Ohmic contact. We find that at low temperatures (77 K) the detector responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. Graphene nanoribbon devices display a similar pattern, albeit with a lower responsivity.

  12. An assessment of the effects of radiation on permanent magnet material in the ALS [Advanced Light Source] insertion devices

    Hassenzahl, W.V.; Jenkins, T.M.; Namito, Y.; Nelson, W.R.; Swanson, W.P.

    1989-08-01

    Electrons that are lost from the beam during normal operation of a synchrotron radiation source and during a beam dump at the end of a run produce both ionizing radiation and neutrons. This radiation has the potential for damaging sensitive materials, in particular those that need to be very close to the beam. The wigglers and undulators for the Advanced Light Source (ALS) at LBL will use magnetic materials such as the very high performance neodymium-iron-boron, which will be as close as 1 cm away from the electron beam during operation. This material, which is preferred because of its high remanence, is known to be more sensitive to radiation than some other magnetic materials. Simple energy loss estimates and the EGS4 code were used to estimate the radiation levels in the ALS insertion devices in the regions of the magnetic materials. The radiation levels were estimated for both aluminum and stainless steel vacuum chambers to determine if one would provide significantly better shielding. We conclude that Nd-Fe-B can be used in the ALS insertion devices and that there is little difference in the radiation levels for aluminum and stainless vacuum vessels. 8 refs., 7 figs., 1 tab

  13. The 16 MeV - microtron at the Institute for Physics and Technology of Radiation Devices and its application

    Catana, D.; Panaitescu, I.; Axinescu, S.; Minea, R.

    1992-01-01

    The 17-orbit microtron at the Institute for Physics and Technology of Radiation Devices, Bucharest is described. The energy of electrons is 11 MeV in the first accelerating mode and 16 MeV in the second accelerating mode with a pulse beam power of about 400 Kw and a duty ratio of 10 -3 . (Author)

  14. Method and means of reducing erosion of components of plasma devices exposed to helium and hydrogen isotope radiation

    Kaminsky, M.S.; Das, S.K.; Rossing, T.D.

    1977-01-01

    Surfaces of components of plasma devices exposed to radiation by atoms or ions of helium or isotopes of hydrogen can be protected from damage due to blistering by shielding the surfaces with a structure formed by sintering a powder of aluminum or beryllium and its oxide or by coating the surfaces with such a sintered metal powder. 7 claims

  15. Radiation engineered multi-functional nanogels as nanoscale building blocks of useful biomedical devices

    Dispenza, C.

    2011-01-01

    Complete text of publication follows. Nanogels, or small particles formed by physically or chemically crosslinked polymer networks, represent a niche in the development of 'smart' nanoparticles for drug delivery and diagnostics. They offer unique advantages over other systems, including a large and flexible surface for multivalent bio-conjugation; an internal 3D aqueous environment for incorporation and protection of (bio)molecular drugs; the possibility to entrap active metal or mineral cores for imaging or phototherapeutic purposes; stimuli-responsiveness to achieve temporal and/or site control of the release function and biocompatibility. Moreover, conformability and flexibility make these nanoparticles able to penetrate through small pores and channels through shape modification. Major synthetic strategies for the preparation of nanogels belong to either micro-fabrication methodologies (photolithography, microfluidic, micromoulding) or to self-assembly approaches that exploit ionic, hydrophobic or covalent interactions. When dimensional control has been achieved through the recourse to 'soft templates', such as the internal aqueous phase droplets of inverse microemulsions, the use of surfactants, initiators and catalysts often require complex purification procedures. On the other hand, micro-fabrication methods, such as nanomoulding, are limited by the need of costly equipments. The availability of inexpensive and robust preparation methodologies is at the basis of the development of effective nanogel-based theragnostic devices. High energy radiation processing already demonstrated its potential for the production of nanogels in the late 90's, owing to the pioneeristic work of Rosiak and collaborators, but since no adequate efforts have been spent in developing a viable and robust technology to produce multi-functional nanogels for the benefit of several different nanotechnology application fields, such as sensing, medicine and multiple others. The design rules

  16. Evaluation of manufactured device for radiation therapy in head and neck cancer

    Kim, Tae Jun; Jin, Sun Sik; Kim, Dong Wook; Chung, Weon Kuu; Kim, Kyoung Tae

    2014-01-01

    We compared the set-up accuracy and right-left shoulder position variation of the manufactured device and other commercial shoulder-retractors in the head and neck radiation treatment. Six patients consist of three groups which were used three different Shoulder retractors. We measured position corrections of left and right Shoulder and the couch after the image guidance by using on board imager (OBI) for six head and neck patients who has the extended target to the neck node lower region. The position variation correction of left (right) Shoulder after image guidance were 1.07±3.99 mm (-4.35±2.09 mm), -0.37±5.91 mm (1.26±5.28 mm), -0.63±2.44 mm (0.25±1.61 mm) for group A, B and C. The vertical, lateral, longitudinal position and angular corrections of the couch after image guidance were -2.06±2.68, -1.11±8.15, 0.34±3.78 mm, and 0.51 ±0.77 degree for group A, -1.18±1.82, 0.94±2.13, -0.67±1.98 mm, and 0.91±1.04 degree for group B and 0.12±2.18, - 0.79±2.64, 0.79±2.64 mm, and 0.00±0.49 degree for group C. In this preliminary study, we found the positioning accuracy of the manufactured Shoulder retractor is comparable to other commercial Shoulder retractors. We expect that the reproducibility and accuracy of the patient set-up could be improved by using the home made Shoulder retractor in the head and neck radiation treatment

  17. Evaluation of manufactured device for radiation therapy in head and neck cancer

    Kim, Tae Jun; Jin, Sun Sik; Kim, Dong Wook; Chung, Weon Kuu; Kim, Kyoung Tae [Dept. of Radiation Oncology, Kyung Hee University Hospital at Gangdong, Seoul (Korea, Republic of)

    2014-06-15

    We compared the set-up accuracy and right-left shoulder position variation of the manufactured device and other commercial shoulder-retractors in the head and neck radiation treatment. Six patients consist of three groups which were used three different Shoulder retractors. We measured position corrections of left and right Shoulder and the couch after the image guidance by using on board imager (OBI) for six head and neck patients who has the extended target to the neck node lower region. The position variation correction of left (right) Shoulder after image guidance were 1.07±3.99 mm (-4.35±2.09 mm), -0.37±5.91 mm (1.26±5.28 mm), -0.63±2.44 mm (0.25±1.61 mm) for group A, B and C. The vertical, lateral, longitudinal position and angular corrections of the couch after image guidance were -2.06±2.68, -1.11±8.15, 0.34±3.78 mm, and 0.51 ±0.77 degree for group A, -1.18±1.82, 0.94±2.13, -0.67±1.98 mm, and 0.91±1.04 degree for group B and 0.12±2.18, - 0.79±2.64, 0.79±2.64 mm, and 0.00±0.49 degree for group C. In this preliminary study, we found the positioning accuracy of the manufactured Shoulder retractor is comparable to other commercial Shoulder retractors. We expect that the reproducibility and accuracy of the patient set-up could be improved by using the home made Shoulder retractor in the head and neck radiation treatment.

  18. Health hazards of uranium dust from radioactive battlefields of the Balkan conflicts, Eastern Afghanistan and Iraq after the Gulf wars. Lessons for civil protection in the terrorist scenario of radiological dispersion devices

    Durakovic, A.; Klimaschewski, F.

    2007-01-01

    Daly □ detector for ion counting. Results: The results demonstrate that contaminated subjects from Afghanistan contained total uranium concentrations over 100 times higher than the range of averages in the world. The results of the studies of uranium concentrations in the military personnel after GW II are conclusive proof of the presence of DU isotopic ratios in the contaminated veterans. In addition the results are further enhanced by the verified presence of the man made uranium 236 U in the urine of symptomatic veterans. The studies have identified a correlation between uranium contamination, multiorgan non-specific illnesses similar to those encountered in GWI and the Balkan conflicts. The contamination of the exposed population by the radioactive dust inhalation has been verified by the multidisciplinary scientific reports pointing to the inhalational pathway as a major route of entry in the body internal environment. The inhalation of both respirable and non-respirable radioactive particles leading to both somatic and genetic alterations warrants further investigation in the view of ever present risk of the mass casualties in the event of the terrorist use of radiation dispersion weapons. Conclusion: The current reality of the radiological battlefield in tactical warfare of a potential clandestine use of recently introduced radiological dispersing devices in the terrorist scenario presents a new dimension of the management of mass casualties. The sustained research of internal contamination with organotropic radio nuclides, and potential mass casualties exposed to inhalational radioactive dust necessitates further research in the mechanisms, pathogenesis and treatment of the internal contamination casualties. Only a multidisciplinary and multinational effort may contribute to better preparedness for managing the casualties in the terrorist scenario. Developing methodology of detection, radiation toxicology, pathogenesis, somatic and genetic damage have been

  19. Wearable device for monitoring momentary presence of intense x-ray and/or ultra-violet radiations

    Shriner, W.

    1981-01-01

    A credit-card-size clear-plastic-encased device can be worn or carried by a person to warn him of the momentary presence of dangerous intensities of ultra-violet and/or x-ray radiations. A base lamina (e.g. of cardboard) is coated with a material (e.g. zinc-cadmium sulfide or lead-barium sulfate) which fluoresces under such radiations. Numerals, letters, words or symbols are printed over the fluorescent coat with a material inhibitory to said radiations so that a warning message in dark print will appear on a light background when dangerous intensities of said radiations are present. An x-ray-warning area is covered with an ultra-violet absorbing screen so that said area will glow only under x-rays (Which rays will also activate the remaining ultra-violet-responsive area). The colors of the laminas and the coats are so selected that the messages are not visible when dangerous radiations are not present. If desired, only the message can be printed with fluorescent material so as to glow on a darker background. Optionally, step-layer attenuation devices can be added to indicate degrees of radiation; and reflecting surfaces can underlie the fluorescent coat to increase efficiency and/or sensitively

  20. Practical problems in radiation sterilization of medical devices made from plasticized PVC

    Beenen, J.H.

    1990-01-01

    The following three methods for sterilizing medical devices made from plasticised PVC are used in the Netherlands. 1. sterilization by steam, steam-air or superheated water. 2. sterilization by electron beam or gamma irradiation. 3. ethylene oxide sterilization. IV-bags, blood bags and other bag types for similar applications made from plasticized PVC are mostly sterilized by steam-air or super heated water, especially when filled or partly filled containers are considered. More complicated products or products with components that cannot resist steam sterilization of 121 0 C are sterilized by ethylene oxide or irradiation. These last two methods also are favoured for sterilizing empty bags where sticking of the surfaces at the sterilization temperature creates a serious handicap. Moreover, steam sterilization may cause a permanent opacity of some plastics. However, we have to add that due to developments in formulations steam sterilization of empty bags is going to be of an increasing importance. proven carcinogenity of the gas ethylene oxide, difficult deaeration and retention of the gas in plasticized PVC has increased the demand for better radiation resistant plastics as an alternative for steam sterilization. (author)

  1. Estimation of four-dimensional dose distribution using electronic portal imaging device in radiation therapy

    Mizoguchi, Asumi; Arimura, Hidetaka; Shioyama, Yoshiyuki

    2013-01-01

    We are developing a method to evaluate four-dimensional radiation dose distribution in a patient body based upon the animated image of EPID (electronic portal imaging device) which is an image of beam-direction at the irradiation. In the first place, we have obtained the image of the dose which is emitted from patient body at therapy planning using therapy planning CT image and dose evaluation algorism. In the second place, we have estimated the emission dose image at the irradiation using EPID animated image which is obtained at the irradiation. In the third place, we have got an affine transformation matrix including respiratory movement in the body by performing linear registration on the emission dose image at therapy planning to get the one at the irradiation. In the fourth place, we have applied the affine transformation matrix on the therapy planning CT image and estimated the CT image 'at irradiation'. Finally we have evaluated four-dimensional dose distribution by calculating dose distribution in the CT image 'at irradiation' which has been estimated for each frame of the EPID animated-image. This scheme may be useful for evaluating therapy results and risk management. (author)

  2. A Cs2LiYCl6:Ce-based advanced radiation monitoring device

    Budden, B.S.; Stonehill, L.C.; Dallmann, N.; Baginski, M.J.; Best, D.J.; Smith, M.B.; Graham, S.A.; Dathy, C.; Frank, J.M.; McClish, M.

    2015-01-01

    Cs 2 LiYCl 6 :Ce 3+ (CLYC) scintillator has gained recent interest because of its ability to perform simultaneous gamma spectroscopy and thermal neutron detection. Discrimination between the two incident particle types owes to the fundamentally unique emission waveforms, a consequence of the interaction and subsequent scintillation mechanisms within the crystal. Due to this dual-mode detector capability, CLYC was selected for the development of an Advanced Radiation Monitoring Device (ARMD), a compact handheld instrument for radioisotope identification and localization. ARMD consists of four 1 in.-right cylindrical CLYC crystals, custom readout electronics including a suitable multi-window application specific integrated circuit (ASIC), battery pack, proprietary software, and Android-based tablet for high-level analysis and display. We herein describe the motivation of the work and engineering design of the unit, and we explain the software embedded in the core module and for radioisotope analysis. We report an operational range of tens of keV to 8.5 MeV with approximately 5.3% gamma energy resolution at 662 keV, thermal neutron detection efficiency of 10%, battery lifetime of up to 10 h, manageable rates of 20 kHz; further, we describe in greater detail time to identify specific gamma source setups

  3. Radiation sterilization and volatile matter used for medical devices touching to blood

    Nakamura, Akitada; Sato, Michio; Igarashi, Yoshiaki; Yagami, Takeshi [National Inst. of Health Sciences, Tokyo (Japan); Yoshii, Fumio

    1998-02-01

    In this study, it was conducted by using chemical analysis and cell toxic test if any volatile matter actually on radiation, if any matter could be detected when its generating, if it stayed to a safe volume range, and so forth. Objective materials of this study focus the elements used for medical devices always touching blood having large effect on human bodies. In this fiscal year, because of many cases of sterilization after filling water and necessary gas-liquid equilibrium for quantitative method using a head space when actually using the materials for dialyzer, irradiation was conducted after filling water into the material, comparison of gas volume and evaluation of safety with those of conventional experiments. As a result, by {gamma}-ray irradiation, various matters are formed, and some volatile matters less than some ng level in present volume could be detected. However, from a standpoint of safety data and forming volume of the cell toxic test results, there were no matter anxious to safety. Furthermore, the present dialyzer and others are washed before using chemically, and its safety seems to be fully held. (G.K.)

  4. Radiation sterilization and volatile matter used for medical devices touching to blood

    Nakamura, Akitada; Sato, Michio; Igarashi, Yoshiaki; Yagami, Takeshi; Yoshii, Fumio

    1998-01-01

    In this study, it was conducted by using chemical analysis and cell toxic test if any volatile matter actually on radiation, if any matter could be detected when its generating, if it stayed to a safe volume range, and so forth. Objective materials of this study focus the elements used for medical devices always touching blood having large effect on human bodies. In this fiscal year, because of many cases of sterilization after filling water and necessary gas-liquid equilibrium for quantitative method using a head space when actually using the materials for dialyzer, irradiation was conducted after filling water into the material, comparison of gas volume and evaluation of safety with those of conventional experiments. As a result, by γ-ray irradiation, various matters are formed, and some volatile matters less than some ng level in present volume could be detected. However, from a standpoint of safety data and forming volume of the cell toxic test results, there were no matter anxious to safety. Furthermore, the present dialyzer and others are washed before using chemically, and its safety seems to be fully held. (G.K.)

  5. Organic Crystal Growth Facility (OCGF) and Radiation Monitoring Container Device (RMCD) Groups in

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured are activities of the Organic Crystal Growth Facility (OCGF) and Radiation Monitoring Container Device (RMCD) groups in the SL POCC during the IML-1 mission.

  6. Improving radiation hardness in space-based Charge-Coupled Devices through the narrowing of the charge transfer channel

    Hall, D. J.; Skottfelt, J.; Soman, M. R.; Bush, N.; Holland, A.

    2017-12-01

    Charge-Coupled Devices (CCDs) have been the detector of choice for imaging and spectroscopy in space missions for several decades, such as those being used for the Euclid VIS instrument and baselined for the SMILE SXI. Despite the many positive properties of CCDs, such as the high quantum efficiency and low noise, when used in a space environment the detectors suffer damage from the often-harsh radiation environment. High energy particles can create defects in the silicon lattice which act to trap the signal electrons being transferred through the device, reducing the signal measured and effectively increasing the noise. We can reduce the impact of radiation on the devices through four key methods: increased radiation shielding, device design considerations, optimisation of operating conditions, and image correction. Here, we concentrate on device design operations, investigating the impact of narrowing the charge-transfer channel in the device with the aim of minimising the impact of traps during readout. Previous studies for the Euclid VIS instrument considered two devices, the e2v CCD204 and CCD273, the serial register of the former having a 50 μm channel and the latter having a 20 μm channel. The reduction in channel width was previously modelled to give an approximate 1.6× reduction in charge storage volume, verified experimentally to have a reduction in charge transfer inefficiency of 1.7×. The methods used to simulate the reduction approximated the charge cloud to a sharp-edged volume within which the probability of capture by traps was 100%. For high signals and slow readout speeds, this is a reasonable approximation. However, for low signals and higher readout speeds, the approximation falls short. Here we discuss a new method of simulating and calculating charge storage variations with device design changes, considering the absolute probability of capture across the pixel, bringing validity to all signal sizes and readout speeds. Using this method, we

  7. Taking SiC Power Devices to the Final Frontier: Addressing Challenges of the Space Radiation Environment

    Lauenstein, Jean-Marie; Casey, Megan

    2017-01-01

    Silicon carbide power device technology has the potential to enable a new generation of aerospace power systems that demand high efficiency, rapid switching, and reduced mass and volume in order to expand space-based capabilities. For this potential to be realized, SiC devices must be capable of withstanding the harsh space radiation environment. Commercial SiC components exhibit high tolerance to total ionizing dose but to date, have not performed well under exposure to heavy ion radiation representative of the on-orbit galactic cosmic rays. Insertion of SiC power device technology into space applications to achieve breakthrough performance gains will require intentional development of components hardened to the effects of these highly-energetic heavy ions. This work presents heavy-ion test data obtained by the authors over the past several years for discrete SiC power MOSFETs, JFETs, and diodes in order to increase the body of knowledge and understanding that will facilitate hardening of this technology to space radiation effects. Specifically, heavy-ion irradiation data taken under different bias, temperature, and ion beam conditions is presented for devices from different manufacturers, and the emerging patterns discussed.

  8. A NOVEL, REMOVABLE, CERROBEND, BEAM-BLOCKING DEVICE FOR RADIATION THERAPY OF THE CANINE HEAD AND NECK: PILOT STUDY.

    Kent, Michael S; Berlato, Davide; Vanhaezebrouck, Isabelle; Gordon, Ira K; Hansen, Katherine S; Theon, Alain P; Holt, Randall W; Trestrail, Earl A

    2017-01-01

    Radiation therapy of the head and neck can result in mucositis and other acute affects in the oral cavity. This prospective pilot study evaluated a novel, intraoral, beam-blocking device for use during imaging and therapeutic procedures. The beam-blocking device was made from a metal alloy inserted into a coated frozen dessert mold (Popsicle® Mold, Cost Plus World Market, Oakland, CA). The device was designed so that it could be inserted into an outer shell, which in turn allowed it to be placed or removed depending on the need due to beam configuration. A Farmer type ionization chamber and virtual water phantom were used to assess effects of field size on transmission. Six large breed cadaver dogs, donated by the owner after death, were recruited for the study. Delivered dose at the dorsal and ventral surfaces of the device, with and without the alloy block in place, were measured using radiochromic film. It was determined that transmission was field size dependent with larger field sizes leading to decreased attenuation of the beam, likely secondary to scatter. The mean and median transmission on the ventral surface without the beam-blocking device was 0.94 [range 0.94-0.96]. The mean and median transmission with the beam-blocking device was 0.52 [range 0.50-0.57]. The mean and median increase in dose due to backscatter on the dorsal surface of the beam-blocking device was 0.04 [range 0.02-0.04]. Findings indicated that this novel device can help attenuate radiation dose ventral to the block in dogs, with minimal backscatter. © 2016 American College of Veterinary Radiology.

  9. BNLs Synchrotron-radiation Research Hub for Characterizing Detection Materials and Devices for the NA-22 Community

    Camarda, G. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bolotnikov, A. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cui, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hossain, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roy, U. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yang, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Vanier, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); McDowell, Alastair [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rosen, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Labrum, Joseph [Univ. of California, Berkeley, CA (United States)

    2017-03-01

    The goal of this project is to obtain and characterize scintillators, emerging- and commercial-compoundsemiconductor radiation- detection materials and devices provided by vendors and research organizations. The focus of our proposed research is to clarify the role of the deleterious defects and impurities responsible for the detectors' non-uniformity in scintillating crystals, commercial semiconductor radiation-detector materials, and in emerging R&D ones. Some benefits of this project addresses the need for fabricating high-performance scintillators and compound-semiconductor radiation-detectors with the proven potential for large-scale manufacturing. The findings help researchers to resolve the problems of non-uniformities in scintillating crystals, commercial semiconductor radiation-detector materials, and in emerging R&D ones.

  10. The use of models to help in the decision making process related to response after an RDD (Radiological dispersion device) event

    Saint Yves, Thalis Leon de Avila; Lauria, Dejanira da Costa; Maia, Arlei; Andrade, Edson Ramos de

    2011-01-01

    Since the terrorist attacks on September 11, 2001, the assessment of radiological impacts for the public and the environment due to radionuclides being scattered by a radiological malevolent event has been a central focus. Models and computational codes have been developed and hypothetical scenarios have been formulated for establishing priority of countermeasures and protective actions; determining of generic operational guidelines; and assessment of risks for exposure population. In this study, a likely scenario was considered for evaluation of radiation exposures after a hypothetical radiological explosion of a 137 Cs device event in an urban environment. Joining to that, the main goal of this study is evaluating the usefulness of the sequential use of two codes for assessment of radiological consequence, and supporting decision making related to a RDD. A summary of the approaches of the two different codes, of their key inputs and outputs are presented. (author)

  11. Standard Practice for Minimizing Dosimetry Errors in Radiation Hardness Testing of Silicon Electronic Devices Using Co-60 Sources

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers recommended procedures for the use of dosimeters, such as thermoluminescent dosimeters (TLD's), to determine the absorbed dose in a region of interest within an electronic device irradiated using a Co-60 source. Co-60 sources are commonly used for the absorbed dose testing of silicon electronic devices. Note 1—This absorbed-dose testing is sometimes called “total dose testing” to distinguish it from “dose rate testing.” Note 2—The effects of ionizing radiation on some types of electronic devices may depend on both the absorbed dose and the absorbed dose rate; that is, the effects may be different if the device is irradiated to the same absorbed-dose level at different absorbed-dose rates. Absorbed-dose rate effects are not covered in this practice but should be considered in radiation hardness testing. 1.2 The principal potential error for the measurement of absorbed dose in electronic devices arises from non-equilibrium energy deposition effects in the vicinity o...

  12. A new method for polychromatic X-ray μLaue diffraction on a Cu pillar using an energy-dispersive pn-junction charge-coupled device

    Abboud, A.; Send, S.; Pashniak, N.; Pietsch, U. [Department of Physics, University of Siegen, Siegen 57072 (Germany); Kirchlechner, C. [Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf 40237 (Germany); Montanuniversität Leoben, Leoben 8700 (Austria); Micha, J. S.; Ulrich, O. [CEA-Grenoble/DRFMC/SprAM, 17 rue des Martyrs, Grenoble Cedex 9, F-38054 (France); Strüder, L. [PNSensor GmbH, Munich 80803 (Germany); Keckes, J. [Montanuniversität Leoben, Leoben 8700 (Austria); Material Center Leoben Forschungs GmbH, Leoben 8700 (Austria)

    2014-11-15

    μLaue diffraction with a polychromatic X-ray beam can be used to measure strain fields and crystal orientations of micro crystals. The hydrostatic strain tensor can be obtained once the energy profile of the reflections is measured. However, this remains a challenge both on the time scale and reproducibility of the beam position on the sample. In this review, we present a new approach to obtain the spatial and energy profiles of Laue spots by using a pn-junction charge-coupled device, an energy-dispersive area detector providing 3D resolution of incident X-rays. The morphology and energetic structure of various Bragg peaks from a single crystalline Cu micro-cantilever used as a test system were simultaneously acquired. The method facilitates the determination of the Laue spots’ energy spectra without filtering the white X-ray beam. The synchrotron experiment was performed at the BM32 beamline of ESRF using polychromatic X-rays in the energy range between 5 and 25 keV and a beam size of 0.5 μm × 0.5 μm. The feasibility test on the well known system demonstrates the capabilities of the approach and introduces the “3D detector method” as a promising tool for material investigations to separate bending and strain for technical materials.

  13. Box model of radionuclide dispersion and radiation risk estimation for population in case of radioactivity release from nuclear submarine number-sign 601 dumped in the Kara Sea

    Yefimov, E.I.; Pankratov, D.V.; Ignatiev, S.V.

    1997-01-01

    When ships with nuclear reactors or nuclear materials aboard suffer shipwreck or in the case of burial or dumping of radioactive wastes, atmospheric fallout, etc., radionuclides may be released and spread in the sea, contaminating the sea water and the sea bottom. When a nuclear submarine (NS) is dumped this spread of activity may occur due to gradual core destruction by corrosion over many years. The objective of this paper is to develop a mathematical model of radionuclide dispersion and to assess the population dose and radiation risk for radionuclide release from the NS No. 601, with Pb-Bi coolant that was dumped in the Kara Sea

  14. Evaluation of initial setup errors of two immobilization devices for lung stereotactic body radiation therapy (SBRT).

    Ueda, Yoshihiro; Teshima, Teruki; Cárdenes, Higinia; Das, Indra J

    2017-07-01

    The aim of this study was to investigate the accuracy and efficacy of two commonly used commercial immobilization systems for stereotactic body radiation therapy (SBRT) in lung cancer. This retrospective study assessed the efficacy and setup accuracy of two immobilization systems: the Elekta Body Frame (EBF) and the Civco Body Pro-Lok (CBP) in 80 patients evenly divided for each system. A cone beam CT (CBCT) was used before each treatment fraction for setup correction in both devices. Analyzed shifts were applied for setup correction and CBCT was repeated. If a large shift (>5 mm) occurred in any direction, an additional CBCT was employed for verification after localization. The efficacy of patient setup was analyzed for 105 sessions (48 with the EBF, 57 with the CBP). Result indicates that the CBCT was repeated at the 1 st treatment session in 22.5% and 47.5% of the EBF and CBP cases, respectively. The systematic errors {left-right (LR), anterior-posterior (AP), cranio-caudal (CC), and 3D vector shift: (LR 2 + AP 2 + CC 2 ) 1/2 (mm)}, were {0.5 ± 3.7, 2.3 ± 2.5, 0.7 ± 3.5, 7.1 ± 3.1} mm and {0.4 ± 3.6, 0.7 ± 4.0, 0.0 ± 5.5, 9.2 ± 4.2} mm, and the random setup errors were {5.1, 3.0, 3.5, 3.9} mm and {4.6, 4.8, 5.4, 5.3} mm for the EBF and the CBP, respectively. The 3D vector shift was significantly larger for the CBP (P patient comfort could dictate the use of CBP system with slightly reduced accuracy. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  15. Total dose and dose rate radiation characterization of EPI-CMOS radiation hardened memory and microprocessor devices

    Gingerich, B.L.; Hermsen, J.M.; Lee, J.C.; Schroeder, J.E.

    1984-01-01

    The process, circuit discription, and total dose radiation characteristics are presented for two second generation hardened 4K EPI-CMOS RAMs and a first generation 80C85 microprocessor. Total dose radiation performance is presented to 10M rad-Si and effects of biasing and operating conditions are discussed. The dose rate sensitivity of the 4K RAMs is also presented along with single event upset (SEU) test data

  16. Ionizing secondary radiation generated by analog radiological and digital coronary cine angiographic equipment. Influence of external protection devices

    Ramirez N, Alfredo; Farias Ch, Eric; Silva J, Ana Maria; Leyton L, Fernando; Oyarzun C, Carlos; Ugalde P, Hector; Dussaillant, Gaston; Cumsille G, Angel

    2000-01-01

    Exposure to ionizing radiation is a know hazard of radiological procedures. Aim: to compare the emission of secondary ionizing radiation from two coronary angiographic equipments, one with digital and the other with analog image generation. To evaluate the effectiveness of external radiological protection devices. Material and methods: environmental and fluoroscopy generated radiation in the cephalic region of the patient was measured during diagnostic coronary angiographies. Ionizing radiation generated in anterior left oblique protection (ALO) and anterior right oblique protection (ARO) were measured with and without leaded protections. In 19 patients (group 1), a digital equipment was used and in 21 (group 2), an analog equipment. Results: header radiation for group 1 and 2 was 1194±337 and 364±222 μGray/h respectively (p≤0.001). During fluoroscopy and with leaded protection generated radiation for groups 1 and 2 was 612±947 and 70±61μGray/h respectively (p≤0.001). For ALO projection, generated for groups 1 and 2 was 105±47 and 71±192 μGray/h respectively (p≤0.001). During filming the radiation for ALO projection for groups 1 and 2 was 7252±9569 and 1671±2038 μGray/h respectively (p=0.03). Out of the protection zone, registered radiation during fluoroscopy for groups 1 and 2 was 2800±1741 and 1318±954 μGray/h respectively (p≤0.001); during filming, the figures were 15500±5840 and 18961±10599 μGray/h respectively (NS). Conclusions: digital radiological equipment has a lower level of ionizing radiation emission than the analog equipment

  17. Evaluation of the Stryker S2 IM Nail Distal Targeting Device for reduction of radiation exposure: a case series study.

    Anastopoulos, George; Ntagiopoulos, Panagiotis G; Chissas, Dionisios; Loupasis, George; Asimakopoulos, Antonios; Athanaselis, Eustratios; Megas, Panagiotis

    2008-10-01

    Distal locking is one challenging step during intramedullary nailing of femoral shaft fractures that can lead to an increase of radiation exposure. In the present study, the authors describe a technique for the distal locking of femoral nails, implementing a new targeting device in an attempt to reduce radiation exposure and operational time. Over a 2-year period, 127 consecutive cases of femoral shaft fractures were included in the study. All cases were treated with nailing of femoral shaft fractures with an unslotted reamed antegrade femoral nail and distal locking was performed with the use of a proximally mounted aiming device. Mean duration of the procedure was 63.5 18.1 min while the duration for distal locking was 6.6 +/- 2.6 min. In all successful cases, exposure from intraoperative fluoroscopy was 17.2 +/- 7.4 s for the whole operative procedure, and for distal locking was 2 shots, 1.35 s (range, 0.9-2.2 s) and 1.9 mGy (range, 1.1-2.9 mGy). Five cases (3.9%) were unsuccessful, but overall no intraoperative complications were encountered from the application of this technique. The ability of the device to correspond to the level of nail deformation and to properly identify the distal holes, reduced exposure to radiation compared to other published reports, and should be considered as a valuable tool for distal locking of femoral fractures.

  18. Tissue kerma vs distance relationships for initial nuclear radiation from the atomic devices detonated over Hiroshima and Nagasaki

    Kerr, G.D.; Pace, J.V. III; Scott, W.H. Jr.

    1983-06-01

    Initial nuclear radiation is comprised of prompt neutrons and prompt primary gammas from an exploding nuclear device, prompt secondary gammas produced by neutron interactions in the environment, and delayed neutrons and delayed fission-product gammas from the fireball formed after the nuclear device explodes. These various components must all be considered in establishing tissue kerma vs distance relationships which describe the decrease of initial nuclear radiation with distance in Hiroshima and in Nagasaki. The tissue kerma at ground evel from delayed fission-product gammas and delayed neutrons was investigated using the NUIDEA code developed by Science Applications, Inc. This code incorporates very detailed models which can take into account such features as the rise of the fireball, the rapid radioactive decay of fission products in it, and the perturbation of the atmosphere by the explosion. Tissue kerma vs distance relationships obtained by summing results of these current state-of-the-art calculations will be discussed. Our results clearly show that the prompt secondary gammas and delayed fission-product gammas are the dominant components of total tissue kerma from initial nuclear radiation in the cases of the atomic (or pure-fission) devices detonated over Hiroshima and Nagasaki

  19. WE-D-BRE-01: A Sr-90 Irradiation Device for the Study of Cutaneous Radiation Injury

    Dorand, JE; Bourland, JD [Department of Radiation Oncology and Department of Physics, Wake Forest University, Winston-Salem, NC (United States); Burnett, LR [KeraNetics, LLC, Winston-Salem, NC (United States); Tytell, M [Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC (United States)

    2014-06-15

    Purpose: To determine dosimetric character for a custom-built Sr-90 beta irradiator designed for the study of Cutaneous Radiation Injury (CRI) in a porcine animal model. In the event of a radiological accident or terrorist event, Sr-90, a fission by-product, will likely be produced. CRI is a main concern due to the low energy and superficial penetration in tissue of beta particles from Sr-90. Seven 100 mCi plaque Sr-90 radiation sources within a custom-built irradiation device create a 40 mm diameter region of radiation-induced skin injury as part of a larger project to study the efficacy of a topical keratin-based product in CRI healing. Methods: A custom-built mobile irradiation device was designed and implemented for in vivo irradiations. Gafchromic™ EBT3 radiochromic film and a PTW Markus chamber type 23343 were utilized for dosimetric characterization of the beta fluence at the surface produced by this device. Films were used to assess 2-dimensional dose distribution and percent depth dose characteristics of the radiation field. Ion chamber measurements provided dose rate data within the field. Results: The radiation field produced by the irradiation device is homogeneous with high uniformity (∼5%) and symmetry (∼3%) with a steep dose fall-off with depth from the surface. Dose rates were determined to be 3.8 Gy/min and 3.3 Gy/min for film and ion chamber measurements, respectively. A dose rate of 3.4 Gy/min was used to calculate irradiation times for in vivo irradiations. Conclusion: The custom-built irradiation device enables the use of seven Sr-90 beta sources in an array to deliver a 40 mm diameter area of homogeneous skin dose with a dose rate that is useful for research purposes and clinically relevant for the induction of CRI. Doses of 36 and 42 Gy successfully produce Grade III CRI and are used in the study of the efficacy of KeraStat™. This project has been funded in whole or in part with Federal funds from the Biomedical Advanced Research and

  20. An angle-resolved, wavelength-dispersive x-ray fluorescence spectrometer for depth profile analysis of ion-implanted semiconductors using synchrotron radiation

    Schmitt, W.; Hormes, J.; Kuetgens, U.; Gries, W. H.

    1992-01-01

    An apparatus for angle-resolved, wavelength-dispersive x-ray fluorescence spectroscopy with synchrotron radiation has been built and tested at the beam line BN2 of the Bonn electron stretcher and accelerator (ELSA). The apparatus is to be used for nondestructive depth profile analysis of ion-implanted semiconductors as part of the multinational Versailles Project of Advanced Materials and Standards (VAMAS) project on ion-implanted reference materials. In particular, the centroid depths of depth profiles of various implants is to be determined by use of the angle-resolved signal ratio technique. First results of measurements on implants of phosphorus (100 keV, 1016 cm-2) and sulfur (200 keV, 1014 cm-2) in silicon wafers using ``white'' synchrotron radiation are presented and suggest that it should be generally possible to measure the centroid depth of an implant at dose densities as low as 1014 cm-2. Some of the apparative and technical requirements are discussed which are peculiar to the use of synchrotron radiation in general and to the use of nonmonochromatized radiation in particular.

  1. An angle-resolved, wavelength-dispersive x-ray fluorescence spectrometer for depth profile analysis of ion-implanted semiconductors using synchrotron radiation

    Schmitt, W.; Hormes, J.; Kuetgens, U.; Gries, W.H.

    1992-01-01

    An apparatus for angle-resolved, wavelength-dispersive x-ray fluorescence spectroscopy with synchrotron radiation has been built and tested at the beam line BN2 of the Bonn electron stretcher and accelerator (ELSA). The apparatus is to be used for nondestructive depth profile analysis of ion-implanted semiconductors as part of the multinational Versailles Project of Advanced Materials and Standards (VAMAS) project on ion-implanted reference materials. In particular, the centroid depths of depth profiles of various implants is to be determined by use of the angle-resolved signal ratio technique. First results of measurements on implants of phosphorus (100 keV, 10 16 cm -2 ) and sulfur (200 keV, 10 14 cm -2 ) in silicon wafers using ''white'' synchrotron radiation are presented and suggest that it should be generally possible to measure the centroid depth of an implant at dose densities as low as 10 14 cm -2 . Some of the apparative and technical requirements are discussed which are peculiar to the use of synchrotron radiation in general and to the use of nonmonochromatized radiation in particular

  2. Conceptual radiation shielding design of superconducting tokamak fusion device by PHITS

    Sukegawa, Atsuhiko M.; Kawasaki, Hiromitsu; Okuno, Koichi

    2010-01-01

    A complete 3D neutron and photon transport analysis by Monte Carlo transport code system PHITS (Particle and Heavy Ion Transport code System) have been performed for superconducting tokamak fusion device such as JT-60 Super Advanced (JT-60SA). It is possible to make use of PHITS in the port streaming analysis around the devices for the tokamak fusion device, the duct streaming analysis in the building where the device is installed, and the sky shine analysis for the site boundary. The neutron transport analysis by PHITS makes it clear that the shielding performance of the superconducting tokamak fusion device with the cryostat is improved by the graphical results. From the standpoint of the port streaming and the duct streaming, it is necessary to calculate by 3D Monte Carlo code such as PHITS for the neutronics analysis of superconducting tokamak fusion device. (author)

  3. Radiative corrections to the Coulomb law and model of dense quantum plasmas: Dispersion of longitudinal waves in magnetized quantum plasmas

    Andreev, Pavel A.

    2018-04-01

    Two kinds of quantum electrodynamic radiative corrections to electromagnetic interactions and their influence on the properties of highly dense quantum plasmas are considered. Linear radiative correction to the Coulomb interaction is considered. Its contribution in the spectrum of the Langmuir waves is presented. The second kind of radiative corrections are related to the nonlinearity of the Maxwell equations for the strong electromagnetic field. Their contribution in the spectrum of transverse waves of magnetized plasmas is briefly discussed. At the consideration of the Langmuir wave spectrum, we included the effect of different distributions of the spin-up and spin-down electrons revealing in the Fermi pressure shift.

  4. Toad radiation reveals into-India dispersal as a source of endemism in the Western Ghats-Sri Lanka biodiversity hotspot

    Bossuyt Franky

    2009-06-01

    Full Text Available Abstract Background High taxonomic level endemism in the Western Ghats-Sri Lanka biodiversity hotspot has been typically attributed to the subcontinent's geological history of long-term isolation. Subsequent out of – and into India dispersal of species after accretion to the Eurasian mainland is therefore often seen as a biogeographic factor that 'diluted' the composition of previously isolated Indian biota. However, few molecular studies have focussed on into-India dispersal as a possible source of endemism on the subcontinent. Using c. 6000 base pairs of mitochondrial and nuclear DNA, we investigated the evolutionary history and biogeography of true toads (Bufonidae, a group that colonized the Indian Subcontinent after the Indo-Asia collision. Results Contrary to previous studies, Old World toads were recovered as a nested clade within New World Bufonidae, indicating a single colonization event. Species currently classified as Ansonia and Pedostibes were both recovered as being non-monophyletic, providing evidence for the independent origin of torrential and arboreal ecomorphs on the Indian subcontinent and in South-East Asia. Our analyses also revealed a previously unrecognized adaptive radiation of toads containing a variety of larval and adult ecomorphs. Molecular dating estimates and biogeographic analyses indicate that the early diversification of this clade happened in the Western Ghats and Sri Lanka during the Late Oligocene to Early Miocene. Conclusion Paleoclimate reconstructions have shown that the Early Neogene of India was marked by major environmental changes, with the transition from a zonal- to the current monsoon-dominated climate. After arrival in the Western Ghats-Sri Lanka hotspot, toads diversified in situ, with only one lineage able to successfully disperse out of these mountains. Consequently, higher taxonomic level endemism on the Indian Subcontinent is not only the result of Cretaceous isolation, but also of invasion

  5. MO-G-304-04: Generating Well-Dispersed Representations of the Pareto Front for Multi-Criteria Optimization in Radiation Treatment Planning

    Kirlik, G; Zhang, H [University of Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: To present a novel multi-criteria optimization (MCO) solution approach that generates well-dispersed representation of the Pareto front for radiation treatment planning. Methods: Different algorithms have been proposed and implemented in commercial planning software to generate MCO plans for external-beam radiation therapy. These algorithms consider convex optimization problems. We propose a grid-based algorithm to generate well-dispersed treatment plans over Pareto front. Our method is able to handle nonconvexity in the problem to deal with dose-volume objectives/constraints, biological objectives, such as equivalent uniform dose (EUD), tumor control probability (TCP), normal tissue complication probability (NTCP), etc. In addition, our algorithm is able to provide single MCO plan when clinicians are targeting narrow bounds of objectives for patients. In this situation, usually none of the generated plans were within the bounds and a solution is difficult to identify via manual navigation. We use the subproblem formulation utilized in the grid-based algorithm to obtain a plan within the specified bounds. The subproblem aims to generate a solution that maps into the rectangle defined by the bounds. If such a solution does not exist, it generates the solution closest to the rectangle. We tested our method with 10 locally advanced head and neck cancer cases. Results: 8 objectives were used including 3 different objectives for primary target volume, high-risk and low-risk target volumes, and 5 objectives for each of the organs-at-risk (OARs) (two parotids, spinal cord, brain stem and oral cavity). Given tight bounds, uniform dose was achieved for all targets while as much as 26% improvement was achieved in OAR sparing comparing to clinical plans without MCO and previously proposed MCO method. Conclusion: Our method is able to obtain well-dispersed treatment plans to attain better approximation for convex and nonconvex Pareto fronts. Single treatment plan can

  6. Setup reproducibility in radiation therapy for lung cancer: a comparison between T-bar and expanded foam immobilization devices

    Halperin, Ross; Roa, Wilson; Field, Melissa; Hanson, John; Murray, Brad

    1999-01-01

    Purpose: Physiologic and non-physiologic tumor motion complicates the use of tight margins in three-dimensional (3D) conformal radiotherapy. Setup reproducibility is an important non-physiologic cause of tumor motion. The objective of this study is to evaluate and compare patient setup reproducibility using the reusable T-bar and the disposable expanded foam immobilization device (EFID) in radiation therapy for lung cancer. Methods and Materials: Two hundred forty-four portal films were taken from 16 prospectively accrued patients treated for lung cancer. Patients were treated with either a pair of anterior and posterior parallel opposing fields (POF), or a combination of POF and a three-field isocentric technique. Each patient was treated in a supine position using either the T-bar setup or EFID. Six patients were treated in both devices over their treatment courses. Field placement analysis was used to evaluate 3D setup reproducibility, by comparing positions of bony landmarks relative to the radiation field edges in digitized simulator and portal images. Anterior-posterior, lateral, and longitudinal displacements, as well as field rotations along coronal and sagittal planes were measured. Statistical analyses of variance were applied to the deviations among portal films of all patients and the subgroup treated with both immobilization methods. Results: For the T-bar immobilization device, standard deviations of the setup reproducibility were 5.1, 3.7, and 5.1 mm in the anterior-posterior, lateral, and longitudinal dimensions, respectively. Rotations in the coronal plane and the sagittal plane were 0.9 deg. and 1.0 deg. , respectively. For the EFID, corresponding standard deviations of set up reproducibility were 3.6 mm, 5.3 mm, 5.4 mm, 0.7 deg. and 1.4 deg. , respectively. There was no statistically significant difference (p = 0.22) in the 3D setup reproducibility between T-bar and EFID. Subgroup analysis for the patients who were treated with both

  7. Numbers and dispersion of repopulating hematopoietic cell clones in radiation chimeras as functions of injected cell dose

    Micklem, H.S.; Lennon, J.E.; Ansell, J.D.; Gray, R.A.

    1987-01-01

    Lethally irradiated mice were repopulated with low (10(5)), medium (10(6)) or high (10(7)) doses of congenic bone marrow cells. Marrow donors were heterozygous for the X-chromosome-encoded allozyme marker phosphoglycerate kinase (PGK-1). A second allozyme marker, phosphoglucose isomerase (GPI-1), distinguished between donor and radioresistant host cells. Use of these markers allowed the numbers and dispersion of repopulating hematopoietic clones to be estimated by binomial statistics. The number of major repopulating clones was related to the injected cell dose in a linear fashion, the inferred frequency of clonogenic cells in donor bone marrow being about 1:40,000. In high-dose recipients, the clones grew locally, with little or no dispersion between bones. Low-dose recipients, in contrast, carried widely dispersed clones; these tended to become reduced in number with increasing time after repopulation. Most of the (few) bone marrow clones present in low-dose recipients were also present in the thymus. In contrast, only about 10% of bone marrow clones in high-dose recipients were substantially represented in the thymus at any one time--about 16 clones in each lobe

  8. Acoustofluidics: Theory and simulation of streaming and radiation forces at ultrasound resonances in microfluidic devices

    Bruus, Henrik

    2009-01-01

    fields, which are directly related to the acoustic radiation force on single particles and to the acoustic streaming of the liquid. For the radiation pressure effects, there is good agreement between theory and simulation, while the numeric results for the acoustic streaming effects are more problematic...

  9. Device for generation of transversal tomographic images of a body by penetrating radiation

    Hounsfield, G.N.

    1980-01-01

    An improvement of equipment for the examination of patients using penetrating radiation (e.g. gamma or X-ray radiation) is proposed, in particular of equipment as under US patent 3778614, which avoids undesirable patterns on the reconstructed image. The invention is explained by several models. (orig./PW)

  10. Estimating the Infrared Radiation Wavelength Emitted by a Remote Control Device Using a Digital Camera

    Catelli, Francisco; Giovannini, Odilon; Bolzan, Vicente Dall Agnol

    2011-01-01

    The interference fringes produced by a diffraction grating illuminated with radiation from a TV remote control and a red laser beam are, simultaneously, captured by a digital camera. Based on an image with two interference patterns, an estimate of the infrared radiation wavelength emitted by a TV remote control is made. (Contains 4 figures.)

  11. Evaluation of novel disposable, light-weight radiation protection devices in an interventional radiology setting: a randomized controlled trial.

    Uthoff, Heiko; Peña, Constantino; West, James; Contreras, Francisco; Benenati, James F; Katzen, Barry T

    2013-04-01

    Radiation exposure to interventionalists is increasing. The currently available standard radiation protection devices are heavy and do not protect the head of the operator. The aim of this study was to evaluate the effectiveness and comfort of caps and thyroid collars made of a disposable, light-weight, lead-free material (XPF) for occupational radiation protection in a clinical setting. Up to two interventional operators were randomized to wear a XPF or standard 0.5-mm lead-equivalent thyroid collars in 60 consecutive endovascular procedures requiring fluoroscopy. Simultaneously a XPF cap was worn by all operators. Radiation doses were measured using dosimeters placed outside and underneath the caps and thyroid collars. Wearing comfort was assessed at the end of each procedure on a visual analog scale (0-100 [100 = optimal]). Patient and procedure data did not differ between the XPF and standard protection groups. The cumulative radiation dose measured outside the cap was 15,700 μSv and outside the thyroid collars 21,240 μSv. Measured radiation attenuation provided by the XPF caps (n = 70), XPF thyroid collars (n = 40), and standard thyroid collars (n = 38) was 85.4% ± 25.6%, 79.7% ± 25.8% and 71.9% ± 34.2%, respectively (mean difference XPF vs standard thyroid collars, 7.8% [95% CI, -5.9% to 21.6%]; p = 0.258). The median XPF cap weight was 144 g (interquartile range, 128-170 g), and the XPF thyroid collars were 27% lighter than the standard thyroid collars (p disposable caps and thyroid collars made of XPF were assessed as being comfortable to wear, and they provide radiation protection similar to that of standard 0.5-mm lead-equivalent thyroid collars.

  12. Enhanced low dose rate radiation effect test on typical bipolar devices

    Liu Minbo; Chen Wei; Yao Zhibin; He Baoping; Huang Shaoyan; Sheng Jiangkun; Xiao Zhigang; Wang Zujun

    2014-01-01

    Two types of bipolar transistors and nine types bipolar integrated circuit were selected in the irradiation experiment at different "6"0Co γ dose rate. The base current of bipolar transistor and input bias current of amplifier and comparator was measured, low dose enhance factor of test device was obtained. The results show that bipolar device have enhanced low dose rate sensitivity, enhancement factor of bipolar integrated circuit was bigger than that of transistor, and enhanced low dose rate sensitivity greatly varied with different structure and process of bipolar device. (authors)

  13. Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers

    Ramsay, Jacob Søndergaard; Dupont, Sune Vestergaard Lund; Johansen, Mikkel Willum

    2013-01-01

    Using femtosecond upconversion we investigate the time and wavelength structure of infrared supercontinuum generation. It is shown that radiation is scattered into higher order spatial modes (HOMs) when generating a supercontinuum using fibers that are not single-moded, such as a step-index ZBLAN...... fiber. As a consequence of intermodal scattering and the difference in group velocity for the modes, the supercontinuum splits up spatially and temporally. Experimental results indicate that a significant part of the radiation propagates in HOMs. Conventional simulations of super-continuum generation do...

  14. 75 FR 8375 - Device Improvements to Reduce Unnecessary Radiation Exposure From Medical Imaging; Public Meeting...

    2010-02-24

    ... hardware and software features should manufacturers build into CT and fluoroscopic devices in order to... ALARA concept (maintaining dose As Low As Reasonably Achievable) and utilize or provide for...

  15. Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers

    Ramsay, Jacob Søndergaard; Dupont, Sune Vestergaard Lund; Johansen, Mikkel Willum

    2013-01-01

    Using femtosecond upconversion we investigate the time and wavelength structure of infrared supercontinuum generation. It is shown that radiation is scattered into higher order spatial modes (HOMs) when generating a supercontinuum using fibers that are not single-moded, such as a step-index ZBLAN...... not include scattering into HOMs, and including this provides an extra degree of freedom for tailoring supercontinuum sources....

  16. Composite detector for mixed radiations based on CsI(Tl) and dispersions of small ZnSe(Te) crystals

    Ryzhikov, V.; Gal'chinetskii, L.; Katrunov, K.; Lisetskaya, E.; Gavriluk, V.; Zelenskaya, O.; Starzhynskiy, N.; Chernikov, V.

    2005-01-01

    A new large area detector of high-energy X-ray and β-radiation has been designed and studied. A composite material based on small-crystalline ZnSe(Te) was applied onto the wide surface of a light guide. An experimental specimen has been prepared, which showed β-sensitivity C β =5.5cm 2 . The spectrograms of a 90 Sr+ 90 Y β-source obtained with the specimen under study make it possible to evaluate the age of the source by the ratio of low- and high-energy regions of the spectrum. The combined detector (CD) comprises a single crystalline plate of ZnSe(Te) placed onto the output window of a scintillating transparent light guide made of CsI(Tl) in the shape of a truncated pyramid. The CsI(Tl) light guide is used to create an additional channel for detection of γ-radiation, as well as for protecting the photodiode from the penetrating radiation. It is shown that introduction of the light guide does not worsen the energy resolution characteristics of ZnSe(Te). Separate detection of α- and γ-radiation has been achieved under simultaneous excitation by 239 Pu (ZnSe(Te), R α =6%) and 241 Am (CsI(Tl), R γ =20%). The use of selective optical filters allows separation of the peaks of total absorption (p.t.a.) in the case of their superposition

  17. Cervix-to-rectum measuring device in a radiation applicator for use in the treatment of cervical cancer

    Fischell, D.R.; Mazique, J.C.

    1981-10-01

    A cervix-to-rectum measuring device to be used in the treatment of cervical cancer is described. It includes a handle and a probe pivotably connected to the handle for insertion in the rectum. The measuring device further includes means for coupling the handle to an intrauterine radiation applicator when the latter is positioned in the uterine cervix and the probe is inserted in the rectum to pivot the handle about the probe. A gear is provided which is adapted to pivot with the probe. A pinion pivotably connected to the handle meshes with the gear. A pointer fixed to the pinion is displaced in response to the pivoting of the handle about the probe, and this displacement can be read from a scale on the handle, providing an indication of the cervix-to-rectum distance. Official Gazette of the U.S. Patent and Trademark Office

  18. Standard practice for application of thermoluminescence-dosimetry (TLD) systems for determining absorbed dose in radiation-hardness testing of electronic devices. ASTM standard

    1998-05-01

    This practice is under the jurisdiction of ASTM Committee E-10 on Nuclear Technology and Applications and is the direct responsibility of Subcommittee E10.07 on Radiation Dosimetry for Radiation Effects on Materials and Devices. Current edition approved Jun. 10, 1997. Published May 1998. Originally published as E 668-78. Last previous edition E 668-93

  19. Non-Destructive Detection and Separation of Radiation Damaged Cells in Miniaturized, Inexpensive Device, Phase I

    National Aeronautics and Space Administration — There is a clear and well-identified need for rapid, efficient, non-destructive detection and isolation of radiation damaged cells. Available commercial technologies...

  20. Comparison of horizontal and vertical noise power spectrum in measurements by using various electronic portal imaging devices in radiation therapy

    Kim, Ki Won [Dept. of Radiology, Kyung Hee University Hospital at Gang-dong, Seoul (Korea, Republic of); Choi, Kwan Woo [Dept. of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Jeong, Hoi Woun [Dept. of Radiological Technology, Baekseok Culture University, Cheonan (Korea, Republic of); Jang, Seo Goo [Dept. of Medical Science, Soonchunhyang University, Asan (Korea, Republic of); Kwon, Kyung Tae [Dept. of Radiological Technology, Dongnam Health University, Suwon (Korea, Republic of); Son, Soon Yong [Dept. of Radiological Technology, Wonkwang Health Science University, Iksan (Korea, Republic of); Son, Jin Hyun; Min, Jung Whan [Dept. of Radiological Technology, Shingu University, Sungnam (Korea, Republic of)

    2016-06-15

    The quality assurance (QA) is very important for diagnostic field and radiation therapy field to evaluate the characteristic of devices. The purpose of this study was to compare different NPS methodologies results which are measuring NPS with regard to horizontal and vertical directions by using megavoltage X-ray energies. The NPS evaluation methods were applied to the International Electro-technical Commission standard (IEC 62220-1). The electronic portal imaging devices (EPID) devices such as Siemens BEAMVIEWPLUS, Elekta iViewGT and Varian ClinacR iX aS1000 were used. NPS data were expressed by corresponding each frequency about average of noise value corresponding the each frequency, and NPS were evaluated quantitatively by totaling up the noise values of average frequency which are on horizontal and vertical directions. In NPS results for Elekta iViewGT, NPS of horizontal and vertical by using 4 methods were indicated the difference of 3-5% between horizontal and vertical direction. In the results of Siemens BEAMVIEWPLUS and Varian ClinacR iX aS1000, the NPS of horizontal and vertical direction were indicated the difference of 15% when averaging the whole values. This study were evaluated the NPS of each devices by totaling up the noise values of average frequency which are on horizontal and vertical directions suggesting the quantitative evaluation method using the data.

  1. Deposition of tellurium films by decomposition of electrochemically-generated H{sub 2}Te: application to radiative cooling devices

    Engelhard, T.; Jones, E.D.; Viney, I. [Coventry Univ. (United Kingdom). Centre for Data Storage Mater.; Mastai, Y.; Hodes, G. [Department of Materials and Interfaces, Weizmann Institute of Science, 76100, Rehovot (Israel)

    2000-07-17

    The preparation of homogenous, large area thin layers of tellurium on thin polyethylene foils is described. The tellurium was formed by room temperature decomposition of electrochemically generated H{sub 2}Te. Pre-treatment of the polyethylene substrates with KMnO{sub 4} to give a Mn-oxide layer was found to improve the Te adhesion and homogeneity. Optical characterization of the layers was performed using UV/VIS/NIR spectroscopy. Such coatings have favorable characteristics for use as solar radiation shields in radiative cooling devices. The simplicity of generation of the very unstable H{sub 2}Te was also exploited to demonstrate formation of size-quantized CdTe nanocrystals. (orig.)

  2. Operating devices for radiation protection: acceptable deviations from legal metrology point of view

    Soukup, T.

    2008-01-01

    The objective of this paper is to draw attention to possible discrepancies in the measuring the quantities of ionizing radiation mainly in natural environment, that cannot be explained by faulty gauges. In addition I would like to draw the attention to these issue radiation protection researchers, document that uncertainties in estimating the impact of exposure and transfer them into the language of used meters tolerances. (authors)

  3. Evaluation of stability of polymeric insulation materials in radiation fields and development of radiation stable PVC and polypropylene for medical devices

    Gonzalez, M.E.; Docters, A.S.

    1999-01-01

    Radiation stability of polypropylene and polyvinylchloride medical products of local origin was evaluated, establishing their functionality by appropriate methods. A device for a mechanical test of syringes and another device for puncture testing of plastic films were constructed and tested. Shelf-life anticipation of irradiated products was examined by treating to high doses and in other cases by storing irradiated products at high temperatures. In both cases negative results would anticipate no functionality for real time aged products. Radiation stability improvement was tried by incorporating light protectors and antioxidants into polypropylene homopolymer. A composition with added light protector was obtained that did not discolor and that kept mechanical stability during aging. Polyvinylchloride tubing was examined and found stable in comparison with imported materials. A non-discoloring product could not be obtained. Evaluation of local commercial polyvinylchloride insulations of wires similar to the wires used in the conveyor system of the Irradiation Facility of Ezeiza Atomic Center suggested that the limit of 50 % reduction in elongation to break in relation to control samples as an indication of failure is too conservative, because this limit was reached much earlier than the actual period of use of installed wires. (author)

  4. Thermodynamic limits to the conversion of blackbody radiation by quantum systems. [with application to solar energy conversion devices

    Buoncristiani, A. M.; Smith, B. T.; Byvik, C. E.

    1982-01-01

    Using general thermodynamic arguments, we analyze the conversion of the energy contained in the radiation from a blackbody to useful work by a quantum system. We show that the energy available for conversion is bounded above by the change in free energy in the incident and reradiated fields and that this free energy change depends upon the temperature of the receiving device. Universal efficiency curves giving the ultimate thermodynamic conversion efficiency of the quantum system are presented in terms of the blackbody temperature and the temperature and threshold energy of the quantum system. Application of these results is made to a variety of systems including biological photosynthetic, photovoltaic, and photoelectrochemical systems.

  5. Investigations of the phase transition in V3O5 using energy dispersive X-ray diffraction and synchrotron radiation white beam X-ray topography

    Asbrink, S.; Gerward, L.; Staun Olsen, J.

    1985-01-01

    The reversible first order phase transition in V 3 O 5 at T t =155 0 C has been studied using a specially constructed oven, where the temperature can be kept constant within a few hundredths of a degree for several hours. Energy dispersive diffraction measurements have beem made in a temperature region around the phase transition with the fixed crystal method and the θ/2θ scanning method. White beam X-ray topographs have been obtained from the same crystal in the same temperature region using synchrotron radiation. The integrated intensities of the strong h 0 0 reflections show anomalies that are correlated with the corresponding X-ray topographs. Thus, an unexpected increase of crystal perfection is observed a few hundredths of a degree below T t . The energy dependence of the intensity maximum at T t for strong reflections has been determined and semi-quantitatively explained on the basis of extinction theory. (orig.)

  6. Emulating Dynamic Radio Channels for Radiated Testing of Massive MIMO Devices

    Kyösti, Pekka; Hentilä, Lassi; Kyröläinen, Jukka

    2018-01-01

    This paper discusses a multi-probe anechoic chamber based (MPAC) setup, capable of reconstructing non-stationary radio propagation environments for testing of mm-wave and massive MIMO devices. The test setup is aimed for evaluation of end to end performance of devices, including hybrid beamforming...... operations of antenna arrays and base band processing, in highly time variant channel conditions. In this work we present simulated comparison of an ideal reference radio channel model and corresponding model implemented with limited resources of MPAC components. We give a qualitative analysis of the results...... with non-line of sight (NLOS) channel models, without quantitative evaluation. The example device under test (DUT) is a 8x8 planar array with half wavelength inter-element spacing....

  7. MO-C-BRB-05: Translating NIH funding to a [potential] clinical device in breast cancer radiation therapy

    Yu, C.

    2015-01-01

    Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, and the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic collaboration

  8. MO-C-BRB-05: Translating NIH funding to a [potential] clinical device in breast cancer radiation therapy

    Yu, C. [Univ Maryland School of Medicine (United States)

    2015-06-15

    Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, and the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic collaboration

  9. Approval of devices and facilities using ionizing radiations for medical purposes

    1977-01-01

    This Order made by the Ministers of Health and Social Security, Agriculture and Labour amends a previous Decree of 23 April 1969 in particular concerning the classification of medical or dental radiodiagnostic devices subject to approval. The technical conditions to be complied with for such devices and facilities have also been amended. Finally, it is provided that, as regards facilities with heavy equipment subject to licensing (Act of 31 December 1970), approval is subject to compliance with the licensing conditions and is requested together with the application for a licence. (NEA) [fr

  10. Acoustofluidics: theory and simulation of radiation forces at ultrasound resonances in microfluidic devices

    Barnkob, Rune; Bruus, Henrik

    2009-01-01

    Theoretical analysis is combined with numerical simulations to optimize designs and functionalities of acoustofluidic devices, i.e. microfluidic devices in which ultrasound waves are used to anipulate biological particles. The resonance frequencies and corresponding modes of the acoustic fields...... are calculated for various specific geometries of glass/silicon chips containing water-filled microchannels. A special emphasis is put on taking the surrounding glass/silicon material into account, thus going beyond the traditional transverse half-wavelength picture. For the resonance frequencies, where...

  11. Process and devices of detection of hard electromagnetic or particle radiations using a superconducting element

    Drukier, A.K.; Valette, Claude; Waysand, Georges.

    1975-01-01

    The invention relates to processes and systems for the detection of hard electromagnetic or particle radiations and the sensors fitted to these systems. 'Hard radiations' means those whose energy is greater than a variable threshold, depending on the applications, but always more than 5 keV. The use of these sensors and the associated systems can therefore be envisaged in radiography and also in emission gammagraphy in the biological, anatomic and medical fields. In these processes, in order to detect a photon or a radiation particle, use is made of the transition phenomenon of a homogeneous grain of superconducting material of the first kind, from the metastable superconducting state to the normal state, under the effect of a photoelectron ejected by the impact of the photon or of the particle on the grain of superconducting material [fr

  12. Device for measuring absorption of radiation in a slice of a body

    Kowalski, G.

    1978-01-01

    In third-generation computer tomography apparatus measuring values must be intermediately stored partly for the total scanning time in order to enable processing of all measuring values with a given projection angle. This involves high expenditures for storage means. Moreover, the applied dose is larger than required for obtaining the measuring value per se. The invention consists in that there is provided a shield which moves with the radiator but whose direction does not change in space during the measurement, but does change relative to the radiation beam. As a result, it is achieved that all measuring values with a given projection angle can be obtained within a part of the scanning time, the said part corresponding to the ratio between the opening angle of the radiation beam and the total scanning time. As a result, the cost of intermediate storage as well as the patient dose can be reduced

  13. Eye safety related to near infrared radiation exposure to biometric devices.

    Kourkoumelis, Nikolaos; Tzaphlidou, Margaret

    2011-03-01

    Biometrics has become an emerging field of technology due to its intrinsic security features concerning the identification of individuals by means of measurable biological characteristics. Two of the most promising biometric modalities are iris and retina recognition, which primarily use nonionizing radiation in the infrared region. Illumination of the eye is achieved by infrared light emitting diodes (LEDs). Even if few LED sources are capable of causing direct eye damage as they emit incoherent light, there is a growing concern about the possible use of LED arrays that might pose a potential threat. Exposure to intense coherent infrared radiation has been proven to have significant effects on living tissues. The purpose of this study is to explore the biological effects arising from exposing the eye to near infrared radiation with reference to international legislation.

  14. Automatic gamma radiation scanning device and feed mechanism for plural sample holders

    Byrd, W.J.

    1976-01-01

    Apparatus is disclosed for measuring the level of gamma radiation contained in a plurality of biological samples which are located on the fibrous sheet member carried by a sample holder. The apparatus is adapted to count the radiation level of the number of closely spaced samples located in rows and columns on the sheet by automatically sequencing through the individual samples within the rows and to advance the holder to bring successive rows into proximity with the detector. The detector is moved from sample to sample within the rows, although a number of detectors can be employed. A plurality of sample holders are automatically advanced to the detector. 25 claims, 5 drawing figures

  15. Nano scale Devices for Rectification of High Frequency Radiation from the Infrared through the Visible: A New Approach

    Miskovsky, N.M.; Cutler, P.H.; Miskovsky, N.M.; Cutler, P.H.; Lerne, P.B.; Mayer, A.; Weiss, B.L.; Willis, B.; Sullivan, T.E.

    2012-01-01

    We present a new and viable method for optical rectification. This approach has been demonstrated both theoretically and experimentally and is the basis fot the development of devices to rectify radiation through the visible. This technique for rectification is based not on conventional material or temperature asymmetry as used in MIM (metal/insulator/metal) or Schottky diodes, but on a purely sharp geometric property of the antenna. This sharp tip or edge with a collector anode constitutes a tunnel junction. In these devices the rectenna (consisting of the antenna and the tunnel junction) acts as the absorber of the incident radiation and the rectifier. Using current nano fabrication techniques and the selective atomic layer deposition (ALD) process, junctions of 1?nm can be fabricated, which allow for rectification of frequencies up to the blue portion of the spectrum. To assess the viability of our approach, we review the development of nano antenna structures and tunnel junctions capable of operating in the visible region. In addition, we review the detailed process of rectification and present methodologies for analysis of diode data. Finally, we present operational designs for an optical rectenna and its fabrication and discuss outstanding problems and future work.

  16. Nanoscale Devices for Rectification of High Frequency Radiation from the Infrared through the Visible: A New Approach

    N. M. Miskovsky

    2012-01-01

    Full Text Available We present a new and viable method for optical rectification. This approach has been demonstrated both theoretically and experimentally and is the basis fot the development of devices to rectify radiation through the visible. This technique for rectification is based not on conventional material or temperature asymmetry as used in MIM (metal/insulator/metal or Schottky diodes, but on a purely sharp geometric property of the antenna. This sharp “tip” or edge with a collector anode constitutes a tunnel junction. In these devices the rectenna (consisting of the antenna and the tunnel junction acts as the absorber of the incident radiation and the rectifier. Using current nanofabrication techniques and the selective atomic layer deposition (ALD process, junctions of 1 nm can be fabricated, which allow for rectification of frequencies up to the blue portion of the spectrum. To assess the viability of our approach, we review the development of nanoantenna structures and tunnel junctions capable of operating in the visible region. In addition, we review the detailed process of rectification and present methodologies for analysis of diode data. Finally, we present operational designs for an optical rectenna and its fabrication and discuss outstanding problems and future work.

  17. 47 CFR 2.1091 - Radiofrequency radiation exposure evaluation: mobile devices.

    2010-10-01

    ... transmission of a signal. In general, maximum average power levels must be used to determine compliance. (3) If... workers that can be easily re-located, such as wireless devices associated with a personal computer, are... Satellite Communications Services, the General Wireless Communications Service, the Wireless Communications...

  18. Impact on reproducibility of the treatment position by improving immobilization device in image guided radiation therapy

    Morita, Yuko; Sasaki, Junichi; Shiomi, Hiroya; Oh, Ryoongjin; Inoue, Toshihiko; Tajiri, Shingo

    2012-01-01

    The immobilization device for treatment becomes important to obtain fixation and reproducibility of the treatment position. It was confirmed that reproducibility of the treatment position obtains higher accuracy by the method of using immobilization device. We divided into three terms by the methods of immobilization. An infrared reflective marker performs the setup of a position at the start of treatment, and setup of the patient in a fixed implement is performed by ExacTrac. Difference between coordinates of the immobilization device and the patient position was calculated by the vector in three directions. We estimated the position error index (PE index ) by using the square root of the sum of square of each vectors, and evaluated the amount of differences of patient position at three terms. Mean and standard deviation of index values were 9.53±7.21, 8.50±5.93, and 6.42±3.80 at each three terms. With every passing year, the amount of gap and difference of the patient fixation has decreased. By the improvement of the use of the immobilization device, gap and difference of fixation has decreased. Accordingly, we could obtain better accuracy of fixation. (author)

  19. Radiation hormesis using an x-ray radiography device. The fourth report. Radiation hormesis of salad rocket

    Sakuma, Atsushi; Nakayama, Miho

    2006-01-01

    Radiation hormesis was studied for salad rocket plant (Eruca vesicaria sp.sativa), using different energies of X-ray (100 kV and 10 MV). To get the optimum dose for plant to provide the highest growth, the dose for the seeds was changed from 0 to 3000 mGy using 100 kV of X-ray. The highest growth of the plant was found for the dose of 600 mGy. When the seeds were irradiated to 600 mGy with 100 kV and 10 MV X-rays, in both cases, the growth of the irradiated seeds was higher than those without irradiation, where P-values were 0.0112 and 0.0214, respectively. In the case of 600 mGy irradiation, there was not any significant change in the plant growth between the seeds irradiated with 10 MV and 100 kV X-ray (P=0.862). (author)

  20. Method and device for the examination of a body by penetrating radiation

    Gibbons, D.J.

    1975-01-01

    This radiological method of examination of the tomographical section of a body uses radiation between 0.2 and 2.0 MeV which is deflected in the body. The body is irradiated with a thin, parallel beam of rays emitted by a radiation source. On the side of the body opposite to the radiation source, three circular banks for detectors are arranged in a plane. The plane is crossed perpendicularly by the axis of the incident beam while the detector banks are arranged concentrically with regard to the point of intersection of the beam and the plane. The angle of deflection of a scattered ray from the axis of the incident beam can thus be registered by one of the detectors. The energy of the deflected beam can also be measured so that the distance between the centre of deflection in the body and the plane of the detector banks can be determined using the Compton scattering equation. The detectors used for the determination of the radiation energy contain Li-drifted Si or Ge, or CdTe. (HP/AK) [de

  1. QUANTUM ELECTRONIC DEVICES: Superconducting Nb3Sn point contact in the submillimeter range of electromagnetic radiation

    Belenov, É. M.; Danileĭko, M. V.; Derkach, V. E.; Romanenko, V. I.; Uskov, A. V.

    1988-05-01

    An investigation was made of the influence of submillimeter radiation emitted by an HCN laser operating at a frequency νl = 891 GHz on a superconducting point contact made of Nb3Sn. Three steps of the electric current were recorded. The experimental results indicated that such a contact could be used for frequency multiplication up to 3 THz.

  2. RD50 Status Report 2008 - Radiation hard semiconductor devices for very high luminosity colliders

    Balbuena, Juan Pablo; Campabadal, Francesca; Díez, Sergio; Fleta, Celeste; Lozano, Manuel; Pellegrini, Giulio; Rafí, Joan Marc; Ullán, Miguel; Creanza, Donato; De Palma, Mauro; Fedele, Francesca; Manna, Norman; Kierstead, Jim; Li, Zheng; Buda, Manuela; Lazanu, Sorina; Pintilie, Lucian; Pintilie, Ioana; Popa, Andreia-Ioana; Lazanu, Ionel; Collins, Paula; Fahrer, Manuel; Glaser, Maurice; Joram, Christian; Kaska, Katharina; La Rosa, Alessandro; Mekki, Julien; Moll, Michael; Pacifico, Nicola; Pernegger, Heinz; Goessling, Claus; Klingenberg, Reiner; Weber, Jens; Wunstorf, Renate; Roeder, Ralf; Stolze, Dieter; Uebersee, Hartmut; Cihangir, Selcuk; Kwan, Simon; Spiegel, Leonard; Tan, Ping; Bruzzi, Mara; Focardi, Ettore; Menichelli, David; Scaringella, Monica; Breindl, Michael; Eckert, Simon; Köhler, Michael; Kuehn, Susanne; Parzefall, Ulrich; Wiik, Liv; Bates, Richard; Blue, Andrew; Buttar, Craig; Doherty, Freddie; Eklund, Lars; Bates, Alison G; Haddad, Lina; Houston, Sarah; James, Grant; Mathieson, Keith; Melone, J; OShea, Val; Parkes, Chris; Pennicard, David; Buhmann, Peter; Eckstein, Doris; Fretwurst, Eckhart; Hönniger, Frank; Khomenkov, Vladimir; Klanner, Robert; Lindström, Gunnar; Pein, Uwe; Srivastava, Ajay; Härkönen, Jaakko; Lassila-Perini, Katri; Luukka, Panja; Mäenpää, Teppo; Tuominen, Eija; Tuovinen, Esa; Eremin, Vladimir; Ilyashenko, Igor; Ivanov, Alexandr; Kalinina, Evgenia; Lebedev, Alexander; Strokan, Nikita; Verbitskaya, Elena; Barcz, Adam; Brzozowski, Andrzej; Kaminski, Pawel; Kozlowski, Roman; Kozubal, Michal; Luczynski, Zygmunt; Pawlowski, Marius; Surma, Barbara; Zelazko, Jaroslaw; de Boer, Wim; Dierlamm, Alexander; Frey, Martin; Hartmann, Frank; Zhukov, Valery; Barabash, L; Dolgolenko, A; Groza, A; Karpenko, A; Khivrich, V; Lastovetsky, V; Litovchenko, P; Polivtsev, L; Campbell, Duncan; Chilingarov, Alexandre; Fox, Harald; Hughes, Gareth; Jones, Brian Keith; Sloan, Terence; Samadashvili, Nino; Tuuva, Tuure; Affolder, Anthony; Allport, Phillip; Bowcock, Themis; Casse, Gianluigi; Vossebeld, Joost; Cindro, Vladimir; Dolenc, Irena; Kramberger, Gregor; Mandic, Igor; Mikuž, Marko; Zavrtanik, Marko; Zontar, Dejan; Gil, Eduardo Cortina; Grégoire, Ghislain; Lemaitre, Vincent; Militaru, Otilia; Piotrzkowski, Krzysztof; Kazuchits, Nikolai; Makarenko, Leonid; Charron, Sébastien; Genest, Marie-Helene; Houdayer, Alain; Lebel, Celine; Leroy, Claude; Aleev, Andrey; Golubev, Alexander; Grigoriev, Eugene; Karpov, Aleksey; Martemianov, Alxander; Rogozhkin, Sergey; Zaluzhny, Alexandre; Andricek, Ladislav; Beimforde, Michael; Macchiolo, Anna; Moser, Hans-Günther; Nisius, Richard; Richter, Rainer; Gorelov, Igor; Hoeferkamp, Martin; Metcalfe, Jessica; Seidel, Sally; Toms, Konstantin; Hartjes, Fred; Koffeman, Els; van der Graaf, Harry; Visschers, Jan; Kuznetsov, Andrej; Sundnes Løvlie, Lars; Monakhov, Edouard; Svensson, Bengt G; Bisello, Dario; Candelori, Andrea; Litovchenko, Alexei; Pantano, Devis; Rando, Riccardo; Bilei, Gian Mario; Passeri, Daniele; Petasecca, Marco; Pignatel, Giorgio Umberto; Bernardini, Jacopo; Borrello, Laura; Dutta, Suchandra; Fiori, Francesco; Messineo, Alberto; Bohm, Jan; Mikestikova, Marcela; Popule, Jiri; Sicho, Petr; Tomasek, Michal; Vrba, Vaclav; Broz, Jan; Dolezal, Zdenek; Kodys, Peter; Tsvetkov, Alexej; Wilhelm, Ivan; Chren, Dominik; Horazdovsky, Tomas; Kohout, Zdenek; Pospisil, Stanislav; Solar, Michael; Sopko, Vít; Sopko, Bruno; Uher, Josef; Horisberger, Roland; Radicci, Valeria; Rohe, Tilman; Bolla, Gino; Bortoletto, Daniela; Giolo, Kim; Miyamoto, Jun; Rott, Carsten; Roy, Amitava; Shipsey, Ian; Son, SeungHee; Demina, Regina; Korjenevski, Sergey; Grillo, Alexander; Sadrozinski, Hartmut; Schumm, Bruce; Seiden, Abraham; Spence, Ned; Hansen, Thor-Erik; Artuso, Marina; Borgia, Alessandra; Lefeuvre, Gwenaelle; Guskov, J; Marunko, Sergey; Ruzin, Arie; Tylchin, Tamir; Boscardin, Maurizio; Dalla Betta, Gian - Franco; Gregori, Paolo; Piemonte, Claudio; Ronchin, Sabina; Zen, Mario; Zorzi, Nicola; Garcia, Carmen; Lacasta, Carlos; Marco, Ricardo; Marti i Garcia, Salvador; Minano, Mercedes; Soldevila-Serrano, Urmila; Gaubas, Eugenijus; Kadys, Arunas; Kazukauskas, Vaidotas; Sakalauskas, Stanislavas; Storasta, Jurgis; Vidmantis Vaitkus, Juozas; CERN. Geneva. The LHC experiments Committee; LHCC

    2010-01-01

    The objective of the CERN RD50 Collaboration is the development of radiation hard semiconductor detectors for very high luminosity colliders, particularly to face the requirements of a possible upgrade scenario of the LHC.This document reports the status of research and main results obtained after the sixth year of activity of the collaboration.

  3. Solid-state device for detecting and locating the points of impact of ionizing radiation

    Rougeot, H.; Roziere, G.

    1979-01-01

    A semiconductor body contains microscopic passages in which multiplication of the free electrons appearing at the entrances to said passages, under the effect of the incident ionizing radiation, takes place. A conductive film forms a surface barrier in conjunction with the semiconductor body which is endowed with the property of secondary emission with an emission coefficient better than unity

  4. Ultraviolet radiation after exposure to a low-fluence IPL home-use device

    Thaysen-Petersen, Daniel; Erlendsson, Andres M; Nash, J F

    2015-01-01

    The prevailing advice is to avoid sun exposure after intense pulsed light (IPL) hair removal. However, no systematic evaluation of ultraviolet radiation (UVR) after IPL hair removal exits. Therefore, we investigated the occurrence of side effects in subjects receiving solar-simulated UVR after...

  5. RD50 Status Report 2009/2010 - Radiation hard semiconductor devices for very high luminosity colliders

    Moll, Michael

    2012-01-01

    The objective of the CERN RD50 Collaboration is the development of radiation hard semiconductor detectors for very high luminosity colliders, particularly to face the requirements for the upgrade of the LHC detectors. This document reports on the status of research and main results obtained in the years 2009 and 2010.

  6. Biological in situ Dose Painting for Image-Guided Radiation Therapy Using Drug-Loaded Implantable Devices

    Cormack, Robert A.; Sridhar, Srinivas; Suh, W. Warren; D'Amico, Anthony V.; Makrigiorgos, G. Mike

    2010-01-01

    Purpose: Implantable devices routinely used for increasing spatial accuracy in modern image-guided radiation treatments (IGRT), such as fiducials or brachytherapy spacers, encompass the potential for in situ release of biologically active drugs, providing an opportunity to enhance the therapeutic ratio. We model this new approach for two types of treatment. Methods and Materials: Radiopaque fiducials used in IGRT, or prostate brachytherapy spacers ('eluters'), were assumed to be loaded with radiosensitizer for in situ drug slow release. An analytic function describing the concentration of radiosensitizer versus distance from eluters, depending on diffusion-elimination properties of the drug in tissue, was developed. Tumor coverage by the drug was modeled for tumors typical of lung stereotactic body radiation therapy treatments for various eluter dimensions and drug properties. Six prostate 125 I brachytherapy cases were analyzed by assuming implantation of drug-loaded spacers. Radiosensitizer-induced subvolume boost was simulated from which biologically effective doses for typical radiosensitizers were calculated in one example. Results: Drug distributions from three-dimensional arrangements of drug eluters versus eluter size and drug properties were tabulated. Four radiosensitizer-loaded fiducials provide adequate radiosensitization for ∼4-cm-diameter lung tumors, thus potentially boosting biologically equivalent doses in centrally located stereotactic body treated lesions. Similarly, multiple drug-loaded spacers provide prostate brachytherapy with flexible shaping of 'biologically equivalent doses' to fit requirements difficult to meet by using radiation alone, e.g., boosting a high-risk region juxtaposed to the urethra while respecting normal tissue tolerance of both the urethra and the rectum. Conclusions: Drug loading of implantable devices routinely used in IGRT provides new opportunities for therapy modulation via biological in situ dose painting.

  7. The Pocketable Electronic Devices in Radiation Oncology (PEDRO) Project: How the Use of Tools in Medical Decision Making is Changing?

    De Bari, Berardino; Franco, Pierfrancesco; Niyazi, Maximilian; Cornetto, Andrea Peruzzo; Qvortrup, Camilla; Martin, Arturo Navarro; Cacicedo, Jon; Fernandez, Gonçalo; Louro, Luís Vasco; Lestrade, Laëtitia; Ciammella, Patrizia; Greto, Daniela; Checkrine, Tarik; Youssef, Elkholti; Filippi, Andrea Riccardo; Poulsen, Laurids Østergaard; Alongi, Filippo

    2016-04-01

    To analyze the impact of mobile electronic devices (MEDs) and apps in the daily clinical activity of young radiation or clinical oncologists in 5 Western European countries (Italy, Germany, Spain, Portugal, and Denmark). A web-based questionnaire was sent to 462 young (≤40 years) members of the national radiation or clinical oncology associations of the countries involved in the study. The 15 items investigated diffusion of MEDs (smartphones and/or tablets), their impact on daily clinical activity, and the differences perceived by participants along time. A total of 386 (83.5%) of the 462 correctly filled questionnaires were statistically evaluated. Up to 65% of respondents declared to use an electronic device during their clinical activity. Conversely, 72% considered low to moderate impact of smartphones/tables on their daily practice. The daily use significantly increased from 2009 to 2012: users reporting a use ≥6 times/d raised from 5% to 39.9%. Professional needs fulfillment was declared by less than 68% of respondents and compliance to apps indications by 66%. Significant differences were seen among the countries, in particular concerning the feeling of usefulness of MEDs in the daily clinical life. The perception of the need of a comprehensive Web site containing a variety of applications (apps) for clinical use significantly differed among countries in 2009, while it was comparable in 2012. This survey showed a large diffusion of MEDs in young professionals working in radiation oncology. Looking at these data, it is important to verify the consistency of information found within apps, in order to avoid potential errors eventually detrimental for patients. "Quality assurance" criteria should be specifically developed for medical apps and a comprehensive Web site gathering all reliable applications and tools might be useful for daily clinical practice. © The Author(s) 2015.

  8. A device for the application of uniaxial strain to single crystal samples for use in synchrotron radiation experiments

    Gannon, L. [Clarendon Laboratory, University of Oxford Physics Department, Parks Road, Oxford OX1 3PU (United Kingdom); Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE (United Kingdom); Bosak, A. [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Burkovsky, R. G. [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Peter the Great Saint-Petersburg Polytechnic University, 29 Politekhnicheskaya, 195251, St.-Petersburg (Russian Federation); Nisbet, G.; Hoesch, M., E-mail: Moritz.Hoesch@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE (United Kingdom); Petrović, A. P. [DPMC-MaNEP, Université de Genève, Quai Ernest-Ansermet 24, 1211 Genève 4 (Switzerland)

    2015-10-15

    We present the design, construction, and testing of a straining device compatible with many different synchrotron radiation techniques, in a wide range of experimental environments (including low temperature, high field and ultra-high vacuum). The device has been tested by X-ray diffraction on single crystal samples of quasi-one-dimensional Cs{sub 2}Mo{sub 6}Se{sub 6} and K{sub 2}Mo{sub 6}Se{sub 6}, in which microscopic strains up to a Δc/c = 0.12% ± 0.01% change in the c lattice parameters have been achieved. We have also used the device in an inelastic X-ray scattering experiment, to probe the strain-dependent speed of sound ν along the c axis. A reduction Δν/ν of up to −3.8% was obtained at a strain of Δc/c = 0.25% in K{sub 2}Mo{sub 6}Se{sub 6}.

  9. Comparison of noise power spectrum methodologies in measurements by using various electronic portal imaging devices in radiation therapy

    Son, Soon Yong [Dept. of Radiological Technology, Wonkwang Health Science University, Iksan (Korea, Republic of); Choi, Kwan Woo [Dept. of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Jeong, Hoi Woun [Dept. of Radiological Technology, Baekseok Culture University College, Cheonan (Korea, Republic of); Kwon, Kyung Tae [Dep. of Radiological Technology, Dongnam Health University, Suwon (Korea, Republic of); Kim, Ki Won [Dept. of Radiology, Kyung Hee University Hospital at Gang-dong, Seoul (Korea, Republic of); Lee, Young Ah; Son, Jin Hyun; Min, Jung Whan [Shingu University College, Sungnam (Korea, Republic of)

    2016-03-15

    The noise power spectrum (NPS) is one of the most general methods for measuring the noise amplitude and the quality of an image acquired from a uniform radiation field. The purpose of this study was to compare different NPS methodologies by using megavoltage X-ray energies. The NPS evaluation methods in diagnostic radiation were applied to therapy using the International Electro-technical Commission standard (IEC 62220-1). Various radiation therapy (RT) devices such as TrueBeamTM(Varian), BEAMVIEWPLUS(Siemens), iViewGT(Elekta) and ClinacR iX (Varian) were used. In order to measure the region of interest (ROI) of the NPS, we used the following four factors: the overlapping impact, the non-overlapping impact, the flatness and penumbra. As for NPS results, iViewGT(Elekta) had the higher amplitude of noise, compared to BEAMVIEWPLUS (Siemens), TrueBeamTM(Varian) flattening filter, ClinacRiXaS1000(Varian) and TrueBeamTM(Varian) flattening filter free. The present study revealed that various factors could be employed to produce megavoltage imaging (MVI) of the NPS and as a baseline standard for NPS methodologies control in MVI.

  10. Definition and production of calibration standard neutron sources for radiation protection device calibration

    De Matos, E.

    1987-01-01

    To improve the characterization of radioprotection devices performances, it would be advisable to calibrate these devices in neutron spectra which are nearly like those met in practice (nuclear reactors, plutonium technology laboratories...). The purpose of this work is, in a first time, to choose the nature and the dimensions of the different shields used to achieve broad typical neutron spectra extending to lower energies from a 14.8 MeV neutron beam. The second step is the evaluation of spectral distribution and calculation of associated dosimetric quantities. For that, several spectrometric techniques are employed: on one hand, activation detectors and Bonner spheres method named rough spectrometry; on the other hand, an accurate spectrometry which uses recoil proton counters. The dosimetric quantities, especially the value of kerma deduced from these spectra must be in good agreement with those measured with a tissue equivalent ionization chamber [fr

  11. Characterizing effects of radiation on forward and reverse saturation characteristics of N-channel devices

    Jaafar Ali, M.N.; Bhuva, B.; Kerns, S.; Maher, M.; Lawrence, R.

    1999-01-01

    The forward and reverse characteristics of an N-channel device during the saturation mode of operation are used to determine the extent of damage non-uniformity along the channel. The non-uniformity at low total dose exposures is caused by bulk oxide trap. At higher doses, non-uniformity are dominated by interface traps. The unmatched forward and reverse characteristics will be a major problem for memory circuits for advanced technologies. (authors)

  12. The decision making criteria on radiation protection of population in the cases of an accidental plutonium dispersion into environment

    Savkin, M.N.; Titov, A.V.

    2000-01-01

    Intervention criteria for radiation protection of general public in the case of accidental plutonium release have been elaborated on the basis of experimental radiobiological studies of affects of incorporated plutonium and of long duration medical observation for nuclear workers in Russia and the requirements of the national Radiation Safety Standards. Generic and operational levels for decision-making are given for early and late phases following the accident. Criteria for decision making are established in terms of upper and lower generic and operational levels (UL/LL). Criteria for urgent evacuation in the early stage directed on preventing of serious deterministic effects are defined as projected absorbed dose rate for lung 2x10 -2 Gy/day (UL) and 3x10 -3 Gy/day (LL). The UL corresponds to intake of 300 kBq of 239 Pu and mortal consequences during the first year after the accident as a result of acute interstitial pneumonite. The LL corresponds to intake of 40 kBq of 239 Pu and the threshold of serious radiological effects (disablement as a result of pneumosclerosis) and high level of stochastic effects - cancer of lung. Other basic countermeasures are intended on to be directed mitigation of long term radiological consequences. That is why criteria for them are defined in terms of protected equivalent dose for lungs or avertable effective dose. Criteria for sheltering and individual protection of respiratory tract correspond to committed equivalent dose due to intake during two days 200 mSv (UL) and 20 mSv (LL). Temporary relocation (1-2 years) is recommended if averted monthly effective dose is 30 mSv (UL) and 10 mSv (LL). Permanent relocation is justified if averted life-time effective dose is 1000 mSv (UL) and 200 mSv (LL). Operational levels in terms of density of soil contamination by plutonium are calculated for practical application of the dose criteria. (author)

  13. Neutronic, thermal-hydraulics and safety calculations of a Miniplate Irradiation Device (MID) of dispersion type fuel elements; Calculos neutronicos, termo-hidraulicos e de seguranca de um dispositivo para Irradiacao de miniplacas (DIM) de elementos combustiveis tipo dispersao

    Domingos, Douglas Borges

    2010-07-01

    Neutronic, thermal-hydraulics and accident analysis calculations were developed to estimate the safety of a Miniplate Irradiation Device (MID) to be placed in the IEA-R1 reactor core. The irradiation device is used to receive miniplates of U{sub 3}O{sub 8}-Al and U{sub 3}Si{sub 2}- Al dispersion fuels, LEU type (19.75 % {sup 235}U) with uranium densities of, respectively, 3.2 gU/cm{sup 3} and 4.8 gU/cm{sup 3}. The fuel miniplates will be irradiated to nominal {sup 235}U burnup levels of 50% and 80%, in order to qualify the above high-density dispersion fuels to be used in the Brazilian Multipurpose Reactor (RMB), now in the conception phase. For the neutronic calculation, the computer codes CITATION and 2DB were utilized. The computer code FLOW was used to calculate the coolant flow rate in the irradiation device, allowing the determination of the fuel miniplate temperatures with the computer model MTRCR-IEA-R1. A postulated Loss of Coolant Accident (LOCA) was analyzed with the computer codes LOSS and TEMPLOCA, allowing the calculation of the fuel miniplate temperatures after the reactor pool draining. The calculations showed that the irradiation should occur without adverse consequences in the IEA-R1 reactor. (author)

  14. Neutronic, thermal-hydraulics and accident analysis calculations for an irradiation device to be used in the qualification process of dispersion fuels in the IEA-R1 research reactor

    Domingos, Douglas Borges; Silva, Antonio Teixeira e; Umbehaun, Pedro Ernesto; Silva, Jose Eduardo Rosa da; Conti, Thadeu das Neves; Yamaguchi, Mitsuo [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)], e-mail: douglasborgesdomingos@yahoo.com.br

    2009-07-01

    Neutronic, thermal-hydraulics and accident analysis calculations were developed to estimate the safety of an irradiation device placed in the IEA-R1 reactor core. The irradiation device will be used to receive miniplates of U{sub 3}O{sub 8}-Al e U{sub 3}Si{sub 2}-Al dispersion fuels, LEU type (19.9% of {sup 235}U), with uranium densities of, respectively, 3.0 gU/cm{sup 3} and 4.8gU/cm{sup 3}. The fuel miniplates will be irradiated to nominal {sup 235}U burnup levels of 50% and 80%, in order to qualify the above high-density dispersion fuels to be used in the Brazilian Multipurpose Reactor, now in the conception phase. For the neutronic calculation, the computer code CITATION was utilized. The computer code FLOW was used to calculate the coolant flow rate in the irradiation device, allowing the determination of the fuel miniplate temperatures with the computer model MTRCR-IEA-R1. A postulated Loss of Coolant Accident (LOCA) was analyzed with the computer codes LOSS and TEMPLOCA, allowing the calculation of the fuel miniplate temperatures after the reactor pool draining. The calculations showed that the irradiation of the fuel miniplates will happen without any adverse consequence in the IEA-R1 reactor. (author)

  15. Control method and device for automatic drift stabilization in radiation detection

    Berthold, F.; Kubisiak, H.

    1979-01-01

    In the automatic control circuit individual electron peaks in the detectors, e.g. NaI crystals or proportional counters, are used. These peaks exhibit no drift dependence; they may be produced in the detectors in different ways. The control circuit may be applied in nuclear radiation measurement techniques, photometry, gamma cameras and for measuring the X-ray fine structure with proportional counters. (DG) [de

  16. Device for monitoring X-ray radiation and method of using same

    Schaffer, D. L.

    1985-01-01

    Each of a plurality of thermoluminescent detectors (TLD's) is secured to one of a plurality of slides, which are removably mounted in a like plurality of pockets formed in a generally wallet-sized carrier to open on one edge thereof. One additional TLD is secured in a recess in one corner of the carrier to be exposed to all X-ray radiation which falls upon the carrier. Each slide is releasably secured in its associated pocket by means which prevents accidental removal of the side from the pocket. Whenever the owner of the carrier is subjected to an X-ray examination, he or she removes from the carrier one of the slides having thereon an unused TLD, and by a means of adhesive on the back of the slide adheres the associated TLD directly in the path of the X-ray radiation to which the patient is subjected during the examination. After the examination the slide is returned to its pocket in the carrier. Periodically the used TLD elements, as well as the non-removable TLD element, can be processed in a conventional manner to determine the total amount of radiation recorded by the respective elements. In one embodiment the removable slides are housed in lead-lined pockets and beneath a lead-lined, hinged cover member

  17. Radiation

    2013-01-01

    The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter

  18. Quality control devices for intraoperative gamma probes: physical, technical and radiation protection aspects

    Varela, C.; Diaz, M.; Salvador, F.J.; Hernandez, M.; Jimenez, P.

    2008-01-01

    Now a day, radio guided surgery -a novelty in Nuclear Medicine- is increasingly used. The clinical efficiency of these procedures requires the existence of well-trained professionals and implementation of quality assurance programs. It is essential for achieving the main objective, which is an effective and safe surgical procedure, a reliable performance of the detection device. Probes' parameters must remain within the acceptance limits, so they should be checked periodically. NEMA Standards Publication NU 3-2004 'Performance Measurement and Quality Control Guidelines for Non-Imaging Intraoperative Gamma Probes' recommends 13 tests; although only 3 of them -sensibility in air, visual inspection and power source check- are considered as steadiness tests. Space resolution in a scatter medium is also a test that needs to be carried out. These tests are considerably complex since open radioactive sources are used into a liquid medium in most of the procedures. The immersion of the probe and of the radioactive sources in each case represents both risks of radioactive contamination, and of damages to the equipment. On the other hand, tests in air demand a good reproducibility. Since they are recommended be carried out before any surgery procedure, they also should be easy and quick. This paper presents 3 devices with its accessories for acceptance and quality control tests of intraoperative gamma probes. They were designed and built taking into consideration important aspects of radiological protection to handle the calibration sources and probes, both in air and into a scatter medium. These devices are designed to fit any kind of probe. Regulatory bodies as part of their instrument audits can also use them. (author)

  19. Luminescence of BaCl2:Eu2+ particles dispersed in the NaCl host excited by synchrotron radiation

    Pushak, A.S.; Savchyn, P.V.; Vistovskyy, V.V.; Demkiv, T.M.; Dacyuk, J.R.; Myagkota, S.V.; Voloshinovskii, A.S.

    2013-01-01

    BaCl 2 :Eu 2+ microcrystals embedded in the NaCl host have been obtained in the NaCl–BaCl 2 (1 mol%)–EuCl 3 (0.02 mol%) crystalline system. The influence of the annealing conditions on the formation of such particles has been studied. In particular, long-term annealing (at 200 °S during 100 h) promotes the microcrystals formation in the NaCl–BaCl 2 –Eu crystalline system. The subsequent heat treatment (annealed at 600 °S during 72 h and quenched to room temperature) is shown to lead to the destruction of the majority of these particles. The luminescent-kinetic properties of BaCl 2 :Eu 2+ microcrystals have been studied upon the ultra-violet excitation by the synchrotron radiation. The X-ray excited luminescence has been measured in order to estimate the distribution of europium ions between microcrystals and the NaCl host. The excitation mechanisms of Eu 2+ ions in the NaCl–BaCl 2 –Eu crystalline system are discussed. - Highlights: ► The formation of BaCl 2 :Eu 2+ microcrystals of 1–100 μm size embedded in the NaCl host is revealed. ► Annealing at 600 °C leads to the destruction of significant number of embedded microcrystals. ► The luminescent parameters of microcrystals is similar to ones of single crystal analogs.

  20. Real-time and on-site γ-ray radiation response testing system for semiconductor devices and its applications

    Mu, Yifei, E-mail: Y.Mu@student.liverpool.ac.uk [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Zhao, Ce Zhou, E-mail: cezhou.zhao@xjtlu.edu.cn [Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123 (China); Qi, Yanfei, E-mail: yanfei.qi01@xjtlu.edu.cn [Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123 (China); Lam, Sang, E-mail: s.lam@xjtlu.edu.cn [Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123 (China); Zhao, Chun, E-mail: garyzhao@ust.hk [Nano and Advanced Materials Institute, Hong Kong University of Science and Technology, Kowloon (Hong Kong); Lu, Qifeng, E-mail: qifeng@liverpool.ac.uk [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Cai, Yutao, E-mail: yutao.cai@xjtlu.edu.cn [Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123 (China); Mitrovic, Ivona Z., E-mail: ivona@liverpool.ac.uk [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Taylor, Stephen, E-mail: s.taylor@liverpool.ac.uk [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Chalker, Paul R., E-mail: pchalker@liverpool.ac.uk [Center for Materials and Structures, School of Engineering, University of Liverpool, Liverpool L69 3GH (United Kingdom)

    2016-04-01

    The construction of a turnkey real-time and on-site radiation response testing system for semiconductor devices is reported. Components of an on-site radiation response probe station, which contains a 1.11 GBq Cs{sup 137} gamma (γ)-ray source, and equipment of a real-time measurement system are described in detail for the construction of the whole system. The real-time measurement system includes a conventional capacitance–voltage (C–V) and stress module, a pulse C–V and stress module, a conventional current–voltage (I–V) and stress module, a pulse I–V and stress module, a DC on-the-fly (OTF) module and a pulse OTF module. Electrical characteristics of MOS capacitors or MOSFET devices are measured by each module integrated in the probe station under continuous γ-ray exposure and the measurement results are presented. The dose rates of different gate dielectrics are calculated by a novel calculation model based on the Cs{sup 137} γ-ray source placed in the probe station. For the sake of operators’ safety, an equivalent dose rate of 70 nSv/h at a given operation distance is indicated by a dose attenuation model in the experimental environment. HfO{sub 2} thin films formed by atomic layer deposition are employed to investigate the radiation response of the high-κ material by using the conventional C–V and pulse C–V modules. The irradiation exposure of the sample is carried out with a dose rate of 0.175 rad/s and ±1 V bias in the radiation response testing system. Analysis of flat-band voltage shifts (ΔV{sub FB}) of the MOS capacitors suggests that the on-site and real-time/pulse measurements detect more serious degradation of the HfO{sub 2} thin films compared with the off-site irradiation and conventional measurement techniques.

  1. Radiation hormesis of radish using an X-ray photography device

    Sakuma, Atsushi [Asahikawa Kousei Hospital, Hokkaido (Japan)

    2000-07-01

    Radiation hormesis was studied at an X-ray photography room. Seed of radish (Kaiwaredaikon) was irradiated by X-ray, from 10 to 3000 mGy. Since the growth of plant was the highest around 500 mGy, 100 seeds were irradiated at a dose of 500 mGy. Fifty seeds were selected and the growth rate was measured after 1 and 2 weeks. After 2 weeks, the growth of the seeds irradiated (129{+-}5 mm) was found to be higher than those without irradiation (115{+-}5 mm). (author)

  2. Axial and radial preliminary results of the neutron radiation from miniature plasma focus devices

    Moreno, J.; Silva, P.; Soto, L. [Comision Chilena de Energia Nuclear, Santiago (Chile)

    2004-07-01

    As first step of a program to design a repetitive pulsed neutron generator for applications, two miniature plasma foci have been designed and constructed at the Chilean commission of nuclear energy. The devices operate at an energy level of the order of tens of joules (PF-50 J, 160 nF capacitor bank, 20-35 kV, 32-100 J, {approx} 150 ns time to peak current) and hundred of joules (PF-400 J, 880 nF, 20-35 kV, 176-539 J, {approx} 300 ns time to peak current). Neutron emission has been obtained in both devices operating in deuterium. A specific technique was necessary to develop in order to detect neutron pulsed of 10{sup 4} neutrons per shot. The maximum total neutron yield measured was of the order of 10{sup 6} and 10{sup 4} neutrons per shot in the PF-400 J and PF-50 J respectively. Axial and radial measurements of the neutron emission are presented and the anisotropy is evaluated in this work. The neutrons are measured by pairs of silver activation counters, {sup 3}He detectors and scintillator-photomultiplier detectors. (authors)

  3. A technician from NASDA test the real-time radiation monitoring device on SPACEHAB in preparation fo

    1997-01-01

    A technician from the National Space Development Agency of Japan (NASDA) tests the real-time radiation monitoring device on SPACEHAB at Kennedy Space Center in preparation for the STS-89 mission, slated to be the first Shuttle launch of 1998. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine-day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven-member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A.

  4. Development of new photon detection device for Cherenkov and fluorescence radiation

    Tinti A.

    2013-06-01

    Full Text Available Recent progress on the development of a new solid state detector allowed the use of finely pixelled photocathodes obtained from silicon semiconductors. SiPM detectors seem to be an ideal tool for the detection of Cherenkov and fluorescence light in spite of their not yet resolved criticism for operating temperature and intrinsic noise. The main disadvantage of SiPM in this case is the poor sensitivity in the wavelength range 300-400 nm, where the Cherenkov light and fluorescence radiation are generated. We report on the possibility to realize a new kind of pixelled photodetector based on the use of silicon substrate with carbon nanotube compounds, more sensitive to the near UV radiation. Also if at the very beginning, the development of such detector appears very promising and useful for astroparticle physics, both in the ground based arrays and in the space experiments. The detectors are ready to be operated in conditions of measurements without signal amplification.

  5. Evaluating the Efficiency of the Device in Shielding Scattered Radiation during Treatment of Carcinoma of the Penis

    Gim, Yang Soo; Lee, Sun Young; Lim, Suk Gun; Gwak, Geun Tak; Park, Ju Gyeong; Lee, Seung Hoon; Hwang, Ho In; Cha, Sook Yong [Dept. of Radiation Oncology, Chonbuk National University Hoispital, Jeonju (Korea, Republic of)

    2009-03-15

    We evaluated the device that was created for maintaining the patient's setup and protecting the testicles from scattered radiation during treatment of carcinoma of the penis. The phantom testicles were made of vaseline cotton gauze and the device consisted of 5 mm of acryl box and 4 mm of lead shielding. 3 x 3 cm{sup 2}, 4 x 4 cm{sup 2}, 5 x 5 cm{sup 2}, 6 x 6 cm{sup 2}, 7 x 7 cm{sup 2} field sizes were used for this study and measurement was made at 4, 5, 6, 7, 8, 10 cm from the lower edge of the field for 10 times with lead shielding and without the shielding respectively. 200 cGy was delivered using 6 MV photons. The scatted radiation without lead shielding at 4, 5, 6, 7, 8, 10 cm from the lower edge of the field were 14.8-4.7 cGy with 3 x 3 cm{sup 2}, 15.7-5.2 cGy with 4 x 4 cm{sup 2}, 17.6-5.5 cGy with 5 x 5 cm{sup 2}, 19.9-6.6 cGy with 6 x 6 cm{sup 2}, 22.2-7.6 cGy with 7 x 7 cm{sup 2} and the measured dose without lead shielding were 7.1-2.6 cGy with 3 x 3 cm{sup 2}, 8.9-3.6 cGy with 4 x 4 cm{sup 2}, 12.3-4.8 cGy with 5 x 5 cm{sup 2}, 14.6-5.0 cGy with 6 x 6 cm{sup 2} and 21.1-6.4 cGy with 7 x 7 cm{sup 2}. As shown above, the scatted radiation decreased after using lead shielding. Depending of the range of field sizes, the resulting difference between without shielding values and with shielding values were: 7.8-1.1 cGy at 4 cm, 5.1-1.2 cGy at 5 cm, 3.8-1.1 cGy at 6 cm, 3.4-1.7 cGy at 7 cm, 2.8-1.7 cGy at 8 cm, 2.4-2.5 cGy at 9 cm and 2.1-1.8 cGy at 10 cm. In the situation as described above, the range in values depending on the distance was 7.8-1.1 cGy with 3 x 3 cm{sup 2}, 6.9-1.6 cGy with 4 x 4 cm{sup 2}, 5.3-0.8 cGy with 5 x 5 cm{sup 2}, 5.3-1.5 cGy with 6 x 6 cm{sup 2} and 1.1-1.8 cGy with 7 x 7 cm{sup 2}. Using the device we created to shield the testicles from scattered radiation during treatment of carcinoma of the penis, we have found that scattered radiation to the testicles is decreased by the phantom testicles, and by increasing the distance

  6. Two dimensional CCD [charged coupled device] arrays as parallel detectors in electron energy loss and x-ray wavelength dispersive spectroscopy

    Zaluzec, N.J.

    1988-08-01

    Parallel detection systems for spectroscopy have generally been based upon linear detector arrays. Replacing the linear arrays with two dimensional systems yields more complicated devices; however, there are corresponding benefits which can be realized for both x-ray and electron energy loss spectroscopy. The operational design of these systems, as well as preliminary results from the construction of such a device used for electron spectroscopy, are presented. 10 refs., 8 figs

  7. Theoretical study of the thermal radiation of rough surfaces. Development of a device for the measurement of emissivity, and application to AISI 316 stainless steel

    Heinisch, Bruno

    1982-01-01

    Within the frame of the study of heat transfers by radiation, this research thesis addresses the theoretical and experimental determination of the directional monochromatic emissivity. After some theoretical recalls, the author presents models for a direct calculation of emissivity, which in fact calculate bidirectional reflectivity by using laws of physical optics. An experimental device has been developed for the direct measurement of directional monochromatic emissivity of materials in the infrared (wavelength from 2 to 15 microns) in a polarised radiation. This device uses double beam with double modulation. Experimental results are presented for the 316 stainless steel [fr

  8. Method for on-state measurement, trend analysis and long-term monitoring of radiation exposures in the private environment, and device for implementing the process

    Jitschin, W.; Kalwar, K.

    1987-01-01

    Plans are made to carry out measurements by means of a radiation detector, to transmit the data to a data processing computer and to display the calculated data on one or several data output devices. The data output device can be a monitor of the computer, a television set, or an electronic printer. The computer can be a cheap, commercially available, programmable minicomputer, a home computer or a personal computer. (orig./HP) [de

  9. Photonic Integrated Circuit (PIC) Device Structures: Background, Fabrication Ecosystem, Relevance to Space Systems Applications, and Discussion of Related Radiation Effects

    Alt, Shannon

    2016-01-01

    Electronic integrated circuits are considered one of the most significant technological advances of the 20th century, with demonstrated impact in their ability to incorporate successively higher numbers transistors and construct electronic devices onto a single CMOS chip. Photonic integrated circuits (PICs) exist as the optical analog to integrated circuits; however, in place of transistors, PICs consist of numerous scaled optical components, including such "building-block" structures as waveguides, MMIs, lasers, and optical ring resonators. The ability to construct electronic and photonic components on a single microsystems platform offers transformative potential for the development of technologies in fields including communications, biomedical device development, autonomous navigation, and chemical and atmospheric sensing. Developing on-chip systems that provide new avenues for integration and replacement of bulk optical and electro-optic components also reduces size, weight, power and cost (SWaP-C) limitations, which are important in the selection of instrumentation for specific flight projects. The number of applications currently emerging for complex photonics systems-particularly in data communications-warrants additional investigations when considering reliability for space systems development. This Body of Knowledge document seeks to provide an overview of existing integrated photonics architectures; the current state of design, development, and fabrication ecosystems in the United States and Europe; and potential space applications, with emphasis given to associated radiation effects and reliability.

  10. Dosimetric properties of an amorphous silicon electronic portal imaging device for verification of dynamic intensity modulated radiation therapy

    Greer, Peter B.; Popescu, Carmen C.

    2003-01-01

    Dosimetric properties of an amorphous silicon electronic portal imaging device (EPID) for verification of dynamic intensity modulated radiation therapy (IMRT) delivery were investigated. The EPID was utilized with continuous frame-averaging during the beam delivery. Properties studied included effect of buildup, dose linearity, field size response, sampling of rapid multileaf collimator (MLC) leaf speeds, response to dose-rate fluctuations, memory effect, and reproducibility. The dependence of response on EPID calibration and a dead time in image frame acquisition occurring every 64 frames were measured. EPID measurements were also compared to ion chamber and film for open and wedged static fields and IMRT fields. The EPID was linear with dose and dose rate, and response to MLC leaf speeds up to 2.5 cm s-1 was found to be linear. A field size dependent response of up to 5% relative to d max ion-chamber measurement was found. Reproducibility was within 0.8% (1 standard deviation) for an IMRT delivery recorded at intervals over a period of one month. The dead time in frame acquisition resulted in errors in the EPID that increased with leaf speed and were over 20% for a 1 cm leaf gap moving at 1.0 cm s-1. The EPID measurements were also found to depend on the input beam profile utilized for EPID flood-field calibration. The EPID shows promise as a device for verification of IMRT, the major limitation currently being due to dead-time in frame acquisition

  11. X-ray radiation detectors of 'scintillator-photoreceiving device type' for industrial digital radiography with improved spatial resolution

    Ryzhykov, V.D.; Lysetska, O.K.; Opolonin, O.D.; Kozin, D.N.

    2003-01-01

    Main types of photo receivers used in X-ray digital radiography systems are luminescent screens that transfer the optical image onto charge collection instruments, which require cooling, and semiconductor silicon detectors, which limit the contrast sensitivity. We have developed and produced X-ray radiation detectors of 'scintillator-photoreceiving device' (S-PRD) type, which are integrally located on the inverse side of the photodiode (PD). The receiving-converting circuit (RCC) is designed for data conversion into digital form and their input into PC. Software is provided for RCC control and image visualization. Main advantages of these detectors are high industrial resolution (3-5 line pairs per mm), detecting activity up to 20 μm, controlled sensitivity, low weight and small size, imaging low (0.1-0.3 mrad) object dose in real time. In this work, main characteristics of 32-, 64- and 1024-channel detectors of S-PRD type were studied and compared for X-ray sensitivity with S-PD detectors. Images of the tested objects have been obtained. Recommendations are given on the use of different scintillation materials, depending upon the purpose of a digital radiographic system. The detectors operate in a broad energy range of ionizing radiation, hence the size of the controlled object is not limited. The system is sufficiently powerful to ensure frontal (through two walls) observation of pipelines with wall thickness up to 10 cm

  12. Impact of radiation history, gender and age on bone quality in sites for orthodontic skeletal anchorage device placement.

    Konermann, A; Appel, T; Wenghoefer, M; Sirokay, S; Dirk, C; Jäger, A; Götz, W

    2015-05-01

    Stability of orthodontic miniscrew implants is prerequisite to their success and durability in orthodontic treatment. As investigations revealed a positive correlation of miniscrew stability to periimplant bone quality, it has been the aim of this study to analyze the bone structure of resection preparations of human mandibles histologically by investigating the samples according to age, gender and exposure to radiotherapy. Inflammation- and tumor-free alveolar bone sections from human mandibles (n = 31) with previously diagnosed carcinoma, chronic osteomyelitis or cysts were analyzed histomorphologically and histomorphometrically as to the dimension of trabeculae in cancellous areas. Group A investigated the impact of a history of radiation therapy, group B of gender and group C contrasted biopsies from individuals aging under 60 or over 60 years. Statistics were performed using the Kruskal-Wallis-test. Radiation, gender and age did not significantly influence bone density. The mean bone density averaged 40.7 ± 15.0% of spongiosa for the total collective with a median age of 58.4 years ± 14.7 years. Our findings provide new information on bone quality, thus contributing to a more precise evaluation of the parameters affecting and those not affecting miniscrew implant stability. On the basis of these results, the formulation of clinical guidelines for risk assessment of therapeutic approaches in patients prior to insertion of orthodontic skeletal anchorage devices seems to be conceivable. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Rheological analysis of irradiated crosslinkable and scissionable polymers used for medical devices under different radiation conditions

    Satti, A. J.; Ressia, J. A.; Cerrada, M. L.; Andreucetti, N. A.; Vallés, E. M.

    2018-03-01

    The effects on different synthetic polymers of distinct types of radiation, gamma rays and electron beam, under different atmospheres are followed by changes in their viscoelastic behavior. Taking into account the two main radioinduced reactions, crosslinking and scissioning of polymeric chains, liquid polydimethylsiloxane has been used as example of crosslinkable polymer and semi crystalline polypropylene as example of scissionable polymer. Propylene - 1-hexene copolymers have been also evaluated, and the effects of both reactions were clearly noticed. Accordingly, samples of those aforementioned polymers have been irradiated with 60Co gamma irradiation in air and under vacuum, and also with electron beam, at similar doses. Sinusoidal dynamic oscillation experiments showed a significant increase in branching and crosslinking reactions when specimens are irradiated under vacuum, while scissioning reactions were observed for the different polymers when irradiation takes place under air with either gamma irradiation or electron beam.

  14. Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders

    Joram, C; Gregor, I; Dierlamm, A H; Wilson, F F; Sloan, T; Tuboltsev, Y V; Marone, M; Artuso, M; Cindro, V; Bruzzi, M; Bhardwaj, A; Bohm, J; Mikestikova, M; Walz, M; Breindl, M A; Ruzin, A; Marunko, S; Guskov, J; Haerkoenen, J J; Pospisil, S; Fadeyev, V; Makarenko, L; Kaminski, P; Zelazko, J; Pintilie, L; Radu, R; Nistor, S V; Ullan comes, M; Storasta, J V; Gaubas, E; Lacasta llacer, C; Kilminster, B J; Garutti, E; Buhmann, P; Khomenkov, V; Poehlsen, J A; Fernandez garcia, M; Buttar, C; Eklund, L M; Munoz sanchez, F J; Eremin, V; Aleev, A; Modi, B; Sicho, P; Gisen, A J; Nikolopoulos, K; Van beuzekom, M G; Kozlowski, R; Lozano fantoba, M; Leroy, C; Pernegger, H; Del burgo, R; Vila alvarez, I; Palomo pinto, F R; Lounis, A; Eremin, I; Fadeeva, N; Rogozhkin, S; Shivpuri, R K; Arsenovich, T; Ott, J; Abt, M; Loenker, J; Savic, N; Monaco, V; Visser, J; Lynn, D; Horazdovsky, T; Solar, M; Dervan, P J; Meng, L; Spencer, E N; Kazuchits, N; Brzozowski, A; Kozubal, M; Nistor, L C; Marti i garcia, S; Gomez camacho, J J; Fretwurst, E; Hoenniger, F; Schwandt, J; Hartmann, F; Marchiori, G; Maneuski, D; De capua, S; Williams, M R J; Mandic, I; Gadda, A; Preiss, J; Macchiolo, A; Nisius, R; Grinstein, S; Gonella, L; Wennloef, H L O; Slavicek, T; Masek, P; Casse, G; Flores, D; Tuuva, T; Jimenez ramos, M D C; Charron, S; Rubinskiy, I; Jansen, H; Eichhorn, T V; Matysek, M; Andersson-lindstroem, G; Donegani, E; Bomben, M; Oshea, V; Muenstermann, D; Holmkvist, C W; Oh, A; Lopez paz, I; Verbitskaya, E; Mitina, D; Grigoriev, E; Zaluzhnyy, A; Mikuz, M; Kramberger, G; Scaringella, M; Ranjeet, R; Jain, A; Luukka, P R; Tuominen, E M; Allport, P P; Cartiglia, N; Brigljevic, V; Kohout, Z; Quirion, D; Lauer, K; Collins, P; Gallrapp, C; Rohe, T V; Chauveau, J; Villani, E G; Fox, H; Parkes, C J; Nikitin, A; Spiegel, L G; Creanza, D M; Menichelli, D; Mcduff, H; Carna, M; Weers, M; Weigell, P; Bortoletto, D; Staiano, A; Bellan, R; Szumlak, T; Sopko, V; Pawlowski, M; Pintilie, I; Pellegrini, G; Rafi tatjer, J M; Moll, M; Eckstein, D; Klanner, R; Gomez, G; Gersabeck, M; Cobbledick, J L; Shepelev, A; Golubev, A; Apresyan, A; Lipton, R J; Borgia, A; Zavrtanik, M; Manna, N; Ranjan, K; Chhabra, S; Beyer, J; Korolkov, I; Heintz, U; Sadrozinski, H; Seiden, A; Surma, B; Esteban, S; Kazukauskas, V; Kalendra, V; Mekys, A; Nachman, B P; Tackmann, K; Steinbrueck, G; Pohlsen, T; Calderini, G; Svihra, P; Murray, D; Bolla, G; Zontar, D; Focardi, E; Seidel, S C; Winkler, A D; Altenheiner, S; Parzefall, U; Moser, H; Sopko, B; Buckland, M D; Vaitkus, J V; Ortlepp, T

    2002-01-01

    The requirements at the Large Hadron Collider (LHC) at CERN have pushed the present day silicon tracking detectors to the very edge of the current technology. Future very high luminosity colliders or a possible upgrade scenario of the LHC to a luminosity of 10$^{35}$ cm$^{-2}$s$^{-1}$ will require semiconductor detectors with substantially improved properties. Considering the expected total fluences of fast hadrons above 10$^{16}$ cm$^{-2}$ and a possible reduced bunch-crossing interval of $\\approx$10 ns, the detector must be ultra radiation hard, provide a fast and efficient charge collection and be as thin as possible.\\\\ We propose a research and development program to provide a detector technology, which is able to operate safely and efficiently in such an environment. Within this project we will optimize existing methods and evaluate new ways to engineer the silicon bulk material, the detector structure and the detector operational conditions. Furthermore, possibilities to use semiconductor materials othe...

  15. Use of mobile device technology to continuously collect patient-reported symptoms during radiation therapy for head and neck cancer: A prospective feasibility study.

    Falchook, Aaron D; Tracton, Gregg; Stravers, Lori; Fleming, Mary E; Snavely, Anna C; Noe, Jeanne F; Hayes, David N; Grilley-Olson, Juneko E; Weiss, Jared M; Reeve, Bryce B; Basch, Ethan M; Chera, Bhishamjit S

    2016-01-01

    Accurate assessment of toxicity allows for timely delivery of supportive measures during radiation therapy for head and neck cancer. The current paradigm requires weekly evaluation of patients by a provider. The purpose of this study is to evaluate the feasibility of monitoring patient reported symptoms via mobile devices. We developed a mobile application for patients to report symptoms in 5 domains using validated questions. Patients were asked to report symptoms using a mobile device once daily during treatment or more often as needed. Clinicians reviewed patient-reported symptoms during weekly symptom management visits and patients completed surveys regarding perceptions of the utility of the mobile application. The primary outcome measure was patient compliance with mobile device reporting. Compliance is defined as number of days with a symptom report divided by number of days on study. There were 921 symptom reports collected from 22 patients during treatment. Median reporting compliance was 71% (interquartile range, 45%-80%). Median number of reports submitted per patient was 34 (interquartile range, 21-53). Median number of reports submitted by patients per week was similar throughout radiation therapy and there was significant reporting during nonclinic hours. Patients reported high satisfaction with the use of mobile devices to report symptoms. A substantial percentage of patients used mobile devices to continuously report symptoms throughout a course of radiation therapy for head and neck cancer. Future studies should evaluate the impact of mobile device symptom reporting on improving patient outcomes.

  16. Radiation beans characterization and implantation for study of lead equivalent individual protection device used in radiodiagnostic practices

    Pereira, Leslie Silva

    2004-01-01

    The protective shielding (IPC) must be used by occupationally exposed professionals, patients and volunteers, in order to optimize the doses who receive due to radiological practices. International and national norms establish the methodology to be adopted for determination of the IPC attenuation. In this work, the IPC had been submitted to X-rays beams with known characteristics, standardized for determination of their attenuation equivalent thickness by comparison to an experimental lead attenuation slope. This comparison technique allowed insurance estimative of the IPC attenuation equivalent thickness in mm of lead. Thus, it was possible to verify the conformity of the attenuation equivalent thickness determined experimentally and the value of the thickness indicated by the manufacturer. To carry out this work, it was necessary the implementation of experimental setups stated in the specifics norms, the study of the X-rays beams original features and the determination of combined additional filters, in order to allow the X-ray equipment used operates in compliance with Norm IEC 61331-1 IEC. The radiation quality selected is characterized by a 100 kV voltage and a 0.25 mm of copper overall filtration. The implementation of this radiation quality it was carried through of its first and second HVL (Half Value Layer). Thus, a methodology according to the international Norms has been implemented in the laboratory. The results of the present work provide suitable and useful information about radiation beams features related to the determination techniques of the attenuation properties. Once implemented the procedures for conformity evaluation of the protection devices, it will be possible to carry out specific quality control tests, which will be helpful to manufacturers, customers, as well as authorities in the radiological protection and health areas. (author)

  17. Hydrodynamic disperser

    Bulatov, A.I.; Chernov, V.S.; Prokopov, L.I.; Proselkov, Yu.M.; Tikhonov, Yu.P.

    1980-01-15

    A hydrodynamic disperser is suggested which contains a housing, slit nozzles installed on a circular base arranged opposite from each other, resonators secured opposite the nozzle and outlet sleeve. In order to improve the effectiveness of dispersion by throttling the flow, each resonator is made in the form of a crimped plate with crimpings that decrease in height in a direction towards the nozzle.

  18. Particulate behavior in a controlled-profile pulverized coal-fired reactor: A study of coupled turbulent particle dispersion and thermal radiation transport. Final technical progress report

    Queiroz, M.; Webb, B.W.

    1996-06-01

    To aid in the evaluation and development of advanced coal-combustion models, comprehensive experimental data sets are needed containing information on both the condensed and gas phases. To address this need a series of test were initiated on a 300 kW laboratory-scale, coal-fired reactor at a single test condition using several types of instrumentation. Data collected on the reactor during the course of the test includes: gas, particle, and wall temperature profiles; radiant, total, and convective heat fluxes to the walls; particle size and velocity profiles; transmission measurements; and gas species concentrations. Solid sampling was also performed to determine carbon and total burnout. Along with the extensive experimental measurements, the particle dispersion and radiation submodels in the ACERC comprehensive 2D code were studied in detail and compared to past experimental measurements taken in the CPR. In addition to the presentation and discussion of the experimental data set, a detailed description of the measurement techniques used in collecting the data, including a discussion of the error associated with each type of measurement, is given.

  19. Minimising radiation exposure due to source assembly-related deficiencies in industrial gamma radiography exposure devices (IGREDs)

    Sivaraman, G.; Kannan, R.; Nandakumar, A.N.; Subrahmanya, M.J.; Murthy, B.K.S.

    2000-01-01

    Industrial radiographers receive higher doses as compared to radiation workers in medicine, agriculture, research, etc. Hence, it is essential that industrial gamma radiography exposure device (IGRED) be provided with efficient and effective safety systems in their design and operation to ensure smooth operation and minimise radiation exposures to the operators and public. Even though all these exposure devices have undergone stringent tests for radiographic exposure devices under international or national standards, certain deficiencies were noticed when scientists of Radiological Physics and Advisory Division (RPAD), carried out radiography equipment inspection of IGREDs. Some examples are briefly described here. The use of depleted Uranium pencil in some models led to the source pencil getting jammed due to formation of Uranium Oxide and bulging of the pencil. The solution was to replace the uranium pencil with high quality tungsten pencils or stainless steel clad pencils. In one type of pencils the source assembly would flare up after some use obstructing the smooth movement of the source assembly. The suggestion to subject the source assemblies to heat treatment solved the problem. In another type, the source pencil was getting corroded in high humid condition and affected the source movement. When the composition of the source pencil was changed it could withstand high humid condition. Another model had a hook type coupling between source assembly and drive cable. This often resulted in disengagement of the source assembly from the drive cable. Suggestions were made to change the coupling to ball and socket coupling for smooth functioning and for 'fail-safe' operation. During early days of the use of remote operated IGRED, in one particular model of the IGRED, the Iridium source wafers were directly loaded in a single encapsulation. Once the welding gave way and the source wafers got strewn. Subsequently, the source pellets/wafers were doubly encapsulated

  20. Prediction of Phase Behavior of Spray-Dried Amorphous Solid Dispersions: Assessment of Thermodynamic Models, Standard Screening Methods and a Novel Atomization Screening Device with Regard to Prediction Accuracy

    Aymeric Ousset

    2018-03-01

    Full Text Available The evaluation of drug–polymer miscibility in the early phase of drug development is essential to ensure successful amorphous solid dispersion (ASD manufacturing. This work investigates the comparison of thermodynamic models, conventional experimental screening methods (solvent casting, quench cooling, and a novel atomization screening device based on their ability to predict drug–polymer miscibility, solid state properties (Tg value and width, and adequate polymer selection during the development of spray-dried amorphous solid dispersions (SDASDs. Binary ASDs of four drugs and seven polymers were produced at 20:80, 40:60, 60:40, and 80:20 (w/w. Samples were systematically analyzed using modulated differential scanning calorimetry (mDSC and X-ray powder diffraction (XRPD. Principal component analysis (PCA was used to qualitatively assess the predictability of screening methods with regards to SDASD development. Poor correlation was found between theoretical models and experimentally-obtained results. Additionally, the limited ability of usual screening methods to predict the miscibility of SDASDs did not guarantee the appropriate selection of lead excipient for the manufacturing of robust SDASDs. Contrary to standard approaches, our novel screening device allowed the selection of optimal polymer and drug loading and established insight into the final properties and performance of SDASDs at an early stage, therefore enabling the optimization of the scaled-up late-stage development.

  1. Report by the work-group on 'safety of medical devices emitting ionizing radiations'. Articulation of radiation protection requirements of the 97/43/Euratom directive and IAEA recommendations with the essential requirements of the 93/42/CEE directive related to medical devices used in external radiotherapy

    2010-01-01

    As some dysfunctions and events had been reported in 2007 and 2008 in field of radiotherapy, this report aims at clarifying the articulation between the different European regulations concerning medical devices emitting ionizing radiations and radiation protection. The authors report a survey with device manufacturers, and analyze the content of the different regulations and recommendations. Then, the authors recommend and propose a set of actions related to the IAEA requirements and recommendations, to CE marking requirements, and to new radiation protection and safety requirements present in the Euratom directive

  2. Electromagnetic radiation from VDT units: study of the effectiveness of an active shielding device.

    Sisto, R; Casciardi, S; Giliberti, C; Moleti, A

    1999-01-01

    Measurements of extremely low frequency electromagnetic fields and low frequency magnetic fields emitted by a set of video display terminal (VDT) units are reported. The field values measured at the position normally occupied by the user are below the safety limits. This is because the field amplitudes decrease rapidly (following a 1/R3 law) with the distance from the source, as has been verified in this work. Measurements with a commercial shielding device consisting of small plastic balls filled with a water solution of rare earth elements were also performed. The only physical mechanism that could be hypothesized to produce an active suppression of the VDT field is that rare earth atoms, which probably were chosen due to their large magnetic moment, behave as oscillating magnetic dipoles capable of emitting a secondary magnetic field that, along some particular directions, has a phase that is opposite to that of the exciting field. Unfortunately, if one analyzes this mechanism quantitatively, it is easy to show that the secondary magnetic field is absolutely negligible, as was confirmed by experimental measurements performed in this study.

  3. Dispersion bias, dispersion effect, and the aerosol-cloud conundrum

    Liu Yangang; Daum, Peter H; Guo Huan; Peng Yiran

    2008-01-01

    This work examines the influences of relative dispersion (the ratio of the standard deviation to the mean radius of the cloud droplet size distribution) on cloud albedo and cloud radiative forcing, derives an analytical formulation that accounts explicitly for the contribution from droplet concentration and relative dispersion, and presents a new approach to parameterize relative dispersion in climate models. It is shown that inadequate representation of relative dispersion in climate models leads to an overestimation of cloud albedo, resulting in a negative bias of global mean shortwave cloud radiative forcing that can be comparable to the warming caused by doubling CO 2 in magnitude, and that this dispersion bias is likely near its maximum for ambient clouds. Relative dispersion is empirically expressed as a function of the quotient between cloud liquid water content and droplet concentration (i.e., water per droplet), yielding an analytical formulation for the first aerosol indirect effect. Further analysis of the new expression reveals that the dispersion effect not only offsets the cooling from the Twomey effect, but is also proportional to the Twomey effect in magnitude. These results suggest that unrealistic representation of relative dispersion in cloud parameterization in general, and evaluation of aerosol indirect effects in particular, is at least in part responsible for several outstanding puzzles of the aerosol-cloud conundrum: for example, overestimation of cloud radiative cooling by climate models compared to satellite observations; large uncertainty and discrepancy in estimates of the aerosol indirect effect; and the lack of interhemispheric difference in cloud albedo.

  4. Radiation properties of two types of luminous textile devices containing plastic optical fibers

    Selm, Bärbel; Rothmaier, Markus

    2007-05-01

    Luminous textiles have the potential to satisfy a need for thin and flexible light diffusers for treatment of intraoral cancerous tissue. Plastic optical fibers (POF) with diameters of 250 microns and smaller are used to make the textiles luminous. Usually light is supplied to the optical fiber at both ends. On the textile surface light emission occurs in a woven structure via damaged straight POFs, whereas the embroidered structure radiates the light out of macroscopically bent POFs. We compared the optical properties of these two types of textile diffusers using red light laser for the embroidery and light emitting diode (LED) for the woven structure as light sources, and found efficiencies for the luminous areas of the two samples of 19 % (woven) and 32 % (embroidery), respectively. It was shown that the efficiency can be greatly improved using an aluminium backing. Additional scattering layers lower the fluence rate by around 30 %. To analyse the homogeneity we took a photo of the illuminated surface using a 3CCD camera and found, for both textiles, a slightly skewed distribution of the dark and bright pixels. The interquartile range of brightness distribution of the embroidery is more than double as the woven structure.

  5. A Comparative Study of Ethylene Oxide and Radiation Sterilization of Medical Devices

    Brewer, J. H.; Keller, G. H.

    1967-01-01

    Both radiation and gas sterilization have been widely accepted for the ''cold'' sterilization of disposable medical supplies. Each of these methods offers certain advantages over the other but has characteristics which make it less satisfactory for specific items. This study is especially concerned with the effectiveness of various dosage levels and gassing cycles on known concentrations of test organisms, as well as similar studies on routine production lots on which presterilization counts were made. The experimental methods employ techniques which were developed for the National Aeronautics and Space Administration Planetary Quarantine Program and are now standard procedures for the sterilization and microbiological examination of space equipment. The results are much more meaningful than were obtained with techniques employed earlier. Good manufacturing practice and plant hygiene are essential for the practical application of both these sterilization methods in order that chosen dosage levels and cycles will ensure a factor of safety. Manufacturing methods to ensure a low microbiological count are described. Data is presented on the effect of composition of materials on retention and survival of contaminants and die-off of contaminants on handled materials and components before sterilization. Factors concerning the cost-effectiveness of the two methods and other engineering values are discussed. (author)

  6. Device convolution effects on the collective scattering signal of the E × B mode from Hall thruster experiments: 2D dispersion relation

    Cavalier, J.; Lemoine, N.; Bonhomme, G.; Tsikata, S.; Honoré, C.; Grésillon, D.

    2012-01-01

    The effect of the collective light scattering diagnostic transfer function is considered in the context of the dispersion relation of the unstable E×B mode previously reported. This transfer function is found to have a contribution to the measured frequencies and mode amplitudes which is more or less significant depending on the measurement wavenumbers and angles. After deconvolution, the experimental data are found to be possibly compatible with the idea that the mode frequency in the jet frame (after subtraction of the Doppler effect due to the plasma motion along the thruster axis) is independent of the orientation of the wave vector in the plane orthogonal to the local magnetic field.

  7. Comparison of two repositioning devices used during radiation therapy for Hodgkin's disease

    Bentel, Gunilla C.; Marks, Lawrence B.; Krishnamurthy, Rupa; Prosnitz, Leonard R.

    1997-01-01

    Purpose: Patients irradiated for Hodgkin's disease are fixed in an immobilization cradle to improve repositioning. In the early 1990s, we changed our cradle system from a 'short' upper torso cradle to an extended near-total body cradle that also includes the lower torso and thighs. In this study, we assess the impact of the extended cradle on the reproducibility of patient repositioning during irradiation of Hodgkin's disease. Methods and Materials: A total of 782 port films of 56 patients treated immediately before and after the change-over were studied to assess positioning reproducibility. Patients treated prior to 1993 were positioned in the short cradle, while those treated 1993 and later were positioned in the extended cradle. All treatment were delivered via anterior and posterior fields and treatment areas above and below the diaphragm were considered separately and together. All treatment fields were simulated and the field shape was designed on anterior and posterior radiographs. Discrepancies in field placement between the simulation radiographs and subsequent port films were noted by a radiation oncologist and requests for position adjustment (both translational and rotational shifts) were noted. The number, magnitude, and direction of any physician-requested position adjustment on port films were retrospectively reviewed. For the purpose of scoring the frequency of field misplacements, when an adjustment was noted on two port films taken during the same treatment session (i.e., a left shift on both an anterior and a posterior port film), it was scored as only one event. A two-tailed chi-square test was used to compare the differences in requested shifts in the two patient groups. Results: The study population consisted of 56 patients (31 short and 25 extended cradle) representing 92 treatment sites. A total of 782 port films representing 450 treatment setups were analyzed (292 above and 158 below the diaphragm). When all port films above the diaphragm

  8. Measurement of the radiation incident on ALS NdFeB permanent magnet insertion device structures and a determination of their lifetime

    Krebs, G.F.; Holmes, M.

    1997-05-01

    Measurements of the radiation incident on ALS insertion device NdFeB permanent magnet structures were carried out using thermoluminescence dosimeters. A plastic scintillator gamma telescope was utilized to unravel the various contributions to the integrated dose. Magnet lifetimes were calculated for various operational conditions

  9. Generalized dispersive wave emission in nonlinear fiber optics.

    Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G

    2013-01-15

    We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.

  10. Dispersion Forces

    Buhmann, Stefan Yoshi

    2012-01-01

    In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...

  11. Evaluation of usefulness of portal image using Electronic Portal Imaging Device (EPID) in the patients who received pelvic radiation therapy

    Kim, Woo Chul; Kim, Heon Jong; Park, Seong Young; Cho, Young Kap; Loh, John J. K.; Park, Won; Suh, Chang Ok; Kim, Gwi Eon

    1998-01-01

    To evaluate the usefulness of electronic portal imaging device through objective compare of the images acquired using an EPID and a conventional port film. From Apr. to Oct. 1997, a total of 150 sets of images from 20 patients who received radiation therapy in the pelvis area were evaluated in the Inha University Hospital and Severance Hospital. A dual image recording technique was devised to obtain both electronic portal images and port film images simultaneously with one treatment course. We did not perform double exposure. Five to ten images were acquired from each patient. All images were acquired from posteroanterior (PA) view except images from two patients. A dose rate of 100-300 MU/min and a 10-MV X-ray beam were used and 2-10 MUs were required to produce a verification image during treatment. Kodak diagnostic film with metal/film imaging cassette which was located on the top of the EPID detector was used for the port film. The source to detector distance was 140 cm. Eight anatomical landmarks (pelvic brim, sacrum, acetabulum, iliopectineal line, symphysis, ischium, obturator foramen, sacroiliac joint) were assessed. Four radiation oncologist joined to evaluate each image. The individual landmarks in the port film or in the EPID were rated-very clear (1), clear (2), visible (3), notclear (4), not visible (5). Using an video camera based EPID system, there was no difference of image quality between no enhanced EPID images and port film images. However, when we provided some change with window level for the portal image, the visibility of the sacrum and obturator foramen was improved in the portal images than in the port film images. All anatomical landmarks were more visible in the portal images than in the port film when we applied the CLAHE mode enhancement. The images acquired using an matrix ion chamber type EPID were also improved image quality after window level adjustment. The quality of image acquired using an electronic portal imaging device was

  12. Radioactivity, radionuclides, radiation

    Magill, Joseph

    2005-01-01

    RADIOACTIVITY – RADIONUCLIDES – RADIATION is suitable for a general audience interested in topical environmental and human health radiological issues such as radiation exposure in aircraft, food sterilisation, nuclear medicine, radon gas, radiation dispersion devices ("dirty bombs")… It leads the interested reader through the three Rs of nuclear science, to the forefront of research and developments in the field. The book is also suitable for students and professionals in the related disciplines of nuclear and radiochemistry, health physics, environmental sciences, nuclear and astrophysics. Recent developments in the areas of exotic decay modes (bound beta decay of ‘bare’ or fully ionized nuclei), laser transmutation, nuclear forensics, radiation hormesis and the LNT hypothesis are covered. Atomic mass data for over 3000 nuclides from the most recent (2003) evaluation are included.

  13. A Cs{sub 2}LiYCl{sub 6}:Ce-based advanced radiation monitoring device

    Budden, B.S. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Stonehill, L.C., E-mail: lauracs@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Dallmann, N. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Baginski, M.J.; Best, D.J. [SCI Technology, Inc., Huntsville, AL 35803 (United States); Smith, M.B.; Graham, S.A. [Bubble Technology Industries, Chalk River, ON, Canada K0J1J0 (Canada); Dathy, C.; Frank, J.M. [Saint-Gobain Crystals, Hiram, OH 44234 (United States); McClish, M. [Radiation Monitoring Devices, Inc., Watertown, MA 02472 (United States)

    2015-06-01

    Cs{sub 2}LiYCl{sub 6}:Ce{sup 3+} (CLYC) scintillator has gained recent interest because of its ability to perform simultaneous gamma spectroscopy and thermal neutron detection. Discrimination between the two incident particle types owes to the fundamentally unique emission waveforms, a consequence of the interaction and subsequent scintillation mechanisms within the crystal. Due to this dual-mode detector capability, CLYC was selected for the development of an Advanced Radiation Monitoring Device (ARMD), a compact handheld instrument for radioisotope identification and localization. ARMD consists of four 1 in.-right cylindrical CLYC crystals, custom readout electronics including a suitable multi-window application specific integrated circuit (ASIC), battery pack, proprietary software, and Android-based tablet for high-level analysis and display. We herein describe the motivation of the work and engineering design of the unit, and we explain the software embedded in the core module and for radioisotope analysis. We report an operational range of tens of keV to 8.5 MeV with approximately 5.3% gamma energy resolution at 662 keV, thermal neutron detection efficiency of 10%, battery lifetime of up to 10 h, manageable rates of 20 kHz; further, we describe in greater detail time to identify specific gamma source setups.

  14. Characterization of Personal Privacy Devices (PPD) radiation pattern impact on the ground and airborne segments of the local area augmentation system (LAAS) at GPS L1 frequency

    Alkhateeb, Abualkair M. Khair

    Personal Privacy Devices (PPDs) are radio-frequency transmitters that intentionally transmit in a frequency band used by other devices for the intent purpose of denying service to those devices. These devices have shown the potential to interfere with the ground and air sub-systems of the Local Area Augmentation Systems (LAAS), a GPS-based navigation aids at commercial airports. The Federal Aviation Administration (FAA) is concerned by the potential impact of these devices to GPS navigation aids at airports and has commenced an activity to determine the severity of this threat. In support of this situation, the research in this dissertation has been conducted under (FAA) Cooperative Agreement 2011-G-012, to investigate the impact of these devices on the LAAS. In order to investigate the impact of PPDs Radio Frequency Interference (RFI) on the ground and air sub-systems of the LAAS, the work presented in phase one of this research is intended to characterize the vehicle's impact on the PPD's Effective Isotropic Radiated Power (EIRP). A study was conceived in this research to characterize PPD performance by examining the on-vehicle radiation patterns as a function of vehicle type, jammer type, jammer location inside a vehicle and jammer orientation at each location. Phase two was to characterize the GPS Radiation Pattern on Multipath Limiting Antenna. MLA has to meet stringent requirements for acceptable signal detection and multipath rejection. The ARL-2100 is the most recent MLA antenna proposed to be used in the LAAS ground segment. The ground-based antenna's radiation pattern was modeled. This was achieved via (HFSS) a commercial-off the shelf CAD-based modeling code with a full-wave electromagnetic software simulation package that uses the Finite Element Analysis. Phase three of this work has been conducted to study the characteristics of the GPS Radiation Pattern on Commercial Aircraft. The airborne GPS antenna was modeled and the resulting radiation pattern on

  15. Dynamics of three-dimensional radiative structures during RMP assisted detached plasmas on the large helical device and its comparison with EMC3-EIRENE modeling

    Pandya, Shwetang N.; Peterson, Byron J.; Kobayashi, Masahiro; Ida, Katsumi; Mukai, Kiyofumi; Sano, Ryuichi; Miyazawa, Junichi; Tanaka, Hirohiko; Masuzaki, Suguru; Akiyama, Tsuyoshi; Motojima, Gen; Ohno, Noriyasu; LHD Experiment Group

    2016-04-01

    The resonant magnetic perturbation (RMP) island introduced in the stochastic edge of the large helical device (LHD) plasma plays an important role in the stabilization of the plasma detachment (Kobayashi et al 2013 Nucl. Fusion 53 093032). The plasma enters in the sustained detachment phase in the presence of an RMP once the line averaged density exceeds a critical value with a given input power. During detachment the enhanced radiation from the stochastic edge of the LHD undergoes several spatiotemporal changes which are studied quantitatively by an infrared imaging video bolometer (IRVB) diagnostic. The experimental results are compared qualitatively and quantitatively with the radiation predicted by the 3D transport simulation with fluid model, EMC3-EIRENE. A fair amount of qualitative agreement, before and after the detachment, is reported. The issue of overestimated radiation from the model is addressed by changing the free parameters in the EMC3-EIRENE code till the total radiation and the radiation profiles match closely, within a factor of two with the experimental observations. A better quantitative match between the model and the experiment is achieved at higher cross-field impurity diffusion coefficient and lower sputtering coefficient after the detachment. In this article a comparison, the first of its kind, is established between the quantified radiation from the experiments and the synthetic image obtained from the simulation code. This exercise is aimed towards validating the model assumptions against the experimentally measured radiation.

  16. A simple quality assurance test tool for the visual verification of light and radiation field congruent using electronic portal images device and computed radiography

    Njeh Christopher F

    2012-03-01

    Full Text Available Abstract Background The radiation field on most megavoltage radiation therapy units are shown by a light field projected through the collimator by a light source mounted inside the collimator. The light field is traditionally used for patient alignment. Hence it is imperative that the light field is congruent with the radiation field. Method A simple quality assurance tool has been designed for rapid and simple test of the light field and radiation field using electronic portal images device (EPID or computed radiography (CR. We tested this QA tool using Varian PortalVision and Elekta iViewGT EPID systems and Kodak CR system. Results Both the single and double exposure techniques were evaluated, with double exposure technique providing a better visualization of the light-radiation field markers. The light and radiation congruency could be detected within 1 mm. This will satisfy the American Association of Physicists in Medicine task group report number 142 recommendation of 2 mm tolerance. Conclusion The QA tool can be used with either an EPID or CR to provide a simple and rapid method to verify light and radiation field congruence.

  17. A simple quality assurance test tool for the visual verification of light and radiation field congruent using electronic portal images device and computed radiography

    Njeh, Christopher F; Caroprese, Blas; Desai, Pushkar

    2012-01-01

    The radiation field on most megavoltage radiation therapy units are shown by a light field projected through the collimator by a light source mounted inside the collimator. The light field is traditionally used for patient alignment. Hence it is imperative that the light field is congruent with the radiation field. A simple quality assurance tool has been designed for rapid and simple test of the light field and radiation field using electronic portal images device (EPID) or computed radiography (CR). We tested this QA tool using Varian PortalVision and Elekta iViewGT EPID systems and Kodak CR system. Both the single and double exposure techniques were evaluated, with double exposure technique providing a better visualization of the light-radiation field markers. The light and radiation congruency could be detected within 1 mm. This will satisfy the American Association of Physicists in Medicine task group report number 142 recommendation of 2 mm tolerance. The QA tool can be used with either an EPID or CR to provide a simple and rapid method to verify light and radiation field congruence

  18. Dosimetric verification of radiation therapy including intensity modulated treatments, using an amorphous-silicon electronic portal imaging device

    Chytyk-Praznik, Krista Joy

    Radiation therapy is continuously increasing in complexity due to technological innovation in delivery techniques, necessitating thorough dosimetric verification. Comparing accurately predicted portal dose images to measured images obtained during patient treatment can determine if a particular treatment was delivered correctly. The goal of this thesis was to create a method to predict portal dose images that was versatile and accurate enough to use in a clinical setting. All measured images in this work were obtained with an amorphous silicon electronic portal imaging device (a-Si EPID), but the technique is applicable to any planar imager. A detailed, physics-motivated fluence model was developed to characterize fluence exiting the linear accelerator head. The model was further refined using results from Monte Carlo simulations and schematics of the linear accelerator. The fluence incident on the EPID was converted to a portal dose image through a superposition of Monte Carlo-generated, monoenergetic dose kernels specific to the a-Si EPID. Predictions of clinical IMRT fields with no patient present agreed with measured portal dose images within 3% and 3 mm. The dose kernels were applied ignoring the geometrically divergent nature of incident fluence on the EPID. A computational investigation into this parallel dose kernel assumption determined its validity under clinically relevant situations. Introducing a patient or phantom into the beam required the portal image prediction algorithm to account for patient scatter and attenuation. Primary fluence was calculated by attenuating raylines cast through the patient CT dataset, while scatter fluence was determined through the superposition of pre-calculated scatter fluence kernels. Total dose in the EPID was calculated by convolving the total predicted incident fluence with the EPID-specific dose kernels. The algorithm was tested on water slabs with square fields, agreeing with measurement within 3% and 3 mm. The

  19. Chemical dispersants

    Rahsepar, Shokouhalsadat; Smit, Martijn P.J.; Murk, Albertinka J.; Rijnaarts, Huub H.M.; Langenhoff, Alette A.M.

    2016-01-01

    Chemical dispersants were used in response to the Deepwater Horizon oil spill in the Gulf of Mexico, both at the sea surface and the wellhead. Their effect on oil biodegradation is unclear, as studies showed both inhibition and enhancement. This study addresses the effect of Corexit on oil

  20. The equidosemeter ED-02 as a device for dose equivalent measurements in mixed neutron and photon radiation fields

    Abrosimov, A.I.; Alekseev, A.G.; Antipov, V.A.; Golovachik, V.T.

    1985-01-01

    The equidosemeter ED-02 is to be used for simultaneous measurements of the dose equivalent, absorbed dose, and mean quality factor of mixed radiations. The detector is a tissue equivalent spherical low-pressure proportional counter tube the signal of which is simultaneously recorded in two channels - a current channel and a pulse one. The current channel is linear and its response proportional to the absorbed dose. The pulse channel includes a nonlinear pulse amplitude converter the characteristic of which, taking into account the required dependence of the mean quality factor on linear energy transfer, has been chosen in such a way that in final counting the pulse channel response is proportional to the difference between dose equivalent and absorbed dose. On the basis of calculations of event spectra in the sensitive volume of the detector, the energy dependence of the dosemeter sensitivity is analysed for neutron energies up to 20 MeV. The characteristic of the nonlinear converter has been calculated on the basis of the construction parameters of the detector and optimized with respect to a representative sample of neutron spectra beyond the shields of nuclear plants. The heterogeneity of the detector, i.e. the difference between the atomic composition of wall and filling and the composition of soft biological tissue as well as the effect of the conducting coating of the case cathode, has been taken into consideration. Moreover, the test results of the device in mixed neutron-photon fields of 60 Co, 239 Pu-α-Be and 252 Cf radioisotope sources are presented. The main measuring error of dose characteristics is shown to be less than 20% in the dose range 1 x 10 -3 to 4 x 10 -3 Sv/h. (author)