WorldWideScience

Sample records for radiation dispersal devices

  1. New challenge for the radiation protection: devices for the radioactivity dispersion

    International Nuclear Information System (INIS)

    Mora, J. C.; Robles, B.; Cancio, C.

    2006-01-01

    In recent years the terrorist attacks produced in several countries have changed the mind of the security experts. This has also included the Radiation Protection aspects. Newly considered features have required the update of emergency response and preparedness, ad well as a greater emphasis on security. Within the Radiation Protection field has been introduced the radiological and nuclear terrorism definition. almost every organism and research centre involved in Radiation Protection is nowadays working on. The possible terrorist attack scenarios have already been defined and the use of an explosive to disperse radioactive material, known as a Radiation Dispersion Devices (RDD), has been specified as the most probable one. Studies to mitigate against the chance of attack and to mitigate the consequences of any attack with a RDD are complex, due to the innovation that introduce. This leads to a need to take some immediate preventative actions and to carry out additional R and D efforts. This document presents some considerations on the possible RDD design and behaviour in order to prevent and prepare against a possible attack. (Author) 17 refs

  2. Comparative Study on Radiological Impact Due To Direct Exposure to a Radiological Dispersal Device Using A Sealed Radiation Source

    International Nuclear Information System (INIS)

    Margeanu, C.A.

    2011-01-01

    Nowadays, one of the most serious terrorist threats implies radiological dispersal devices (RDDs), the so-called dirty bombs, that combine a conventional explosive surrounded by an inflammatory material (like thermit) with radioactive material. The paper objective is to evaluate the radiological impact due to direct exposure to a RDD using a sealed radiation source (used for medical and industrial applications) as radioactive material. The simulations were performed for 60Co, 137Cs and 192Ir radiation sources. In order to model the contamination potential level and radiation exposure due to radioactive material spreading from RDD, Lawrence Livermore National Laboratory's HOTSPOT 2.07 computer code was used. The worst case scenario has been considered, calculations being performed for two radioactive material dispersion models, namely General radioactive Plume and General Explosion. Following parameters evolution with distance from the radiation source was investigated: total effective dose equivalent, time-integrated air concentration, ground surface deposition and ground shine dose rates. Comparisons between considered radiation sources and radioactive material dispersion models have been performed. The most drastic effects on population and the environment characterize 60Co sealed radiation source use in RDD.

  3. Aerial Mobile Radiation Survey Following Detonation of a Radiological Dispersal Device.

    Science.gov (United States)

    Sinclair, Laurel E; Fortin, Richard; Buckle, John L; Coyle, Maurice J; Van Brabant, Reid A; Harvey, Bradley J A; Seywerd, Henry C J; McCurdy, Martin W

    2016-05-01

    A series of experiments was conducted in 2012 at the Defence Research and Development Canada's Suffield Research Centre in Alberta, Canada, during which three radiological dispersal devices were detonated. The detonations released radioactive (140)La into the air, which was then carried by winds and detectable over distances of up to 2 km. The Nuclear Emergency Response group of Natural Resources Canada conducted airborne radiometric surveys shortly following the explosions to map the pattern of radioactivity deposited on the ground. The survey instrument suite was based on large volume NaI(Tl) scintillation gamma radiation detectors, which were situated in a basket mounted exterior to the helicopter and oriented end-to-end to maximize the sensitivity. A standard geophysical data treatment was used to subtract backgrounds and to correct the data to produce counts due to (140)La at the nominal altitude. Sensitivity conversion factors obtained from Monte Carlo simulations were then applied to express the measurements in terms of surface activity concentration in kBq m(-2). Integrated over the survey area, the results indicate that only 20 to 25% of the bomb's original inventory of radioactive material is deposited within a 1.5-km radius of ground zero. These results can be accommodated with a simple model for the RDD behavior and atmospheric dispersion.

  4. Dispersion interferometer for controlled fusion devices

    International Nuclear Information System (INIS)

    Drachev, V.P.; Krasnikov, Yu.I.; Bagryansky, P.A.

    1992-01-01

    A common feature in interferometry is the presence of two independent optical channels. Since wave phase in a medium depends on the geometrical path, polarization and radiation frequency, respectively, one can distinguish three types of interferometric schemes when the channels are geometrically separated, or separation occurs in polarizations or radiation frequencies. We have developed a measurement scheme based on a dispersion interferometer (DI) for plasma diagnostics in the experiments on controlled fusion. DI optical channels have the same geometrical path and are separated in radiation frequency. Use of a common optical path causes the main advantage of the DI technique - low sensitivity to vibrations of optical elements. The use of the DI technique for diagnostics of a laser spark in air and of arc discharges has shown its essential advantages as compared to classical interferometers. Interest in the DI technique from the viewpoint of its application in controlled fusion devices is determined also generated by the possibility of developing a compact multichannel interferometer not requiring a vibration isolation structure. (author) 14 refs., 3 figs

  5. Monolayer graphene dispersion and radiative cooling for high power LED

    Science.gov (United States)

    Hsiao, Tun-Jen; Eyassu, Tsehaye; Henderson, Kimberly; Kim, Taesam; Lin, Chhiu-Tsu

    2013-10-01

    Molecular fan, a radiative cooling by thin film, has been developed and its application for compact electronic devices has been evaluated. The enhanced surface emissivity and heat dissipation efficiency of the molecular fan coating are shown to correlate with the quantization of lattice modes in active nanomaterials. The highly quantized G and 2D bands in graphene are achieved by our dispersion technique, and then incorporated in an organic-inorganic acrylate emulsion to form a coating assembly on heat sinks (for LED and CPU). This water-based dielectric layer coating has been formulated and applied on metal core printed circuit boards. The heat dissipation efficiency and breakdown voltage are evaluated by a temperature-monitoring system and a high-voltage breakdown tester. The molecular fan coating on heat dissipation units is able to decrease the equilibrium junction temperature by 29.1 ° C, while functioning as a dielectric layer with a high breakdown voltage (>5 kV). The heat dissipation performance of the molecular fan coating applied on LED devices shows that the coated 50 W LED gives an enhanced cooling of 20% at constant light brightness. The schematics of monolayer graphene dispersion, undispersed graphene platelet, and continuous graphene sheet are illustrated and discussed to explain the mechanisms of radiative cooling, radiative/non-radiative, and non-radiative heat re-accumulation.

  6. Monolayer graphene dispersion and radiative cooling for high power LED

    International Nuclear Information System (INIS)

    Hsiao, Tun-Jen; Eyassu, Tsehaye; Henderson, Kimberly; Kim, Taesam; Lin, Chhiu-Tsu

    2013-01-01

    Molecular fan, a radiative cooling by thin film, has been developed and its application for compact electronic devices has been evaluated. The enhanced surface emissivity and heat dissipation efficiency of the molecular fan coating are shown to correlate with the quantization of lattice modes in active nanomaterials. The highly quantized G and 2D bands in graphene are achieved by our dispersion technique, and then incorporated in an organic-inorganic acrylate emulsion to form a coating assembly on heat sinks (for LED and CPU). This water-based dielectric layer coating has been formulated and applied on metal core printed circuit boards. The heat dissipation efficiency and breakdown voltage are evaluated by a temperature-monitoring system and a high-voltage breakdown tester. The molecular fan coating on heat dissipation units is able to decrease the equilibrium junction temperature by 29.1 ° C, while functioning as a dielectric layer with a high breakdown voltage (>5 kV). The heat dissipation performance of the molecular fan coating applied on LED devices shows that the coated 50 W LED gives an enhanced cooling of 20% at constant light brightness. The schematics of monolayer graphene dispersion, undispersed graphene platelet, and continuous graphene sheet are illustrated and discussed to explain the mechanisms of radiative cooling, radiative/non-radiative, and non-radiative heat re-accumulation. (paper)

  7. Main radiation protection actions for medical personnel as primary responders front of an event with radiological dispersive device

    International Nuclear Information System (INIS)

    Duque, Hildanielle Ramos

    2015-01-01

    After the terrorist attack in New York, USA, in 2001, there was a worldwide concern about possible attacks using radioactive material in conventional detonators, called as Radiological Dispersal Device (RDD) or 'dirty bomb'. Several studies have been and are being made to form a global knowledge about this type of event. As until now, fortunately, there has not been an event with RDD, the Goiania Radiological Accident in Brazil, 1987, is used as a reference for decision-making. Several teams with technical experts should act in an event with RDD, but the medical staffs who respond quickly to the event must be properly protected from the harmful effects of radiation. Based on the radiological protection experts performance during the Goiania accident and the knowledge from lessons learned of many radiological accidents worldwide, this work presents an adaptation of the radiation protection actions for an event with RDD that helps a medical team as primary responders. The following aspects are presented: the problem of radioactive contamination from the explosion of the device in underground environment, the actions of the first responders and evaluation of health radiation effects. This work was based on specialized articles and papers about radiological accidents and RDD; as well as personal communication and academic information of the Institute of Radiation Protection and Dosimetry. The radiation protection actions, adapted to a terrorist attack event with RDD, have as a scenario a subway station in the capital. The main results are: the use of the basic radiation protection principle of time because there is no condition to take care of a patient keeping distance or using a shielding; the use of full appropriate protection cloths for contaminating materials ensuring the physical safety of professionals, and the medical team monitoring at the end of a medical procedure, checking for surface contamination. The main conclusion is that all medical actions

  8. High Explosive Radiological Dispersion Device: Time and Distance Multiscale Study

    International Nuclear Information System (INIS)

    Sharon, A.; Sattinger, I.; Halevy, D.; Banaim, P.; Yaar, I.; Krantz, L.

    2014-01-01

    A wide range of explosion tests imitates different explosive RDD scenarios were conducted and aimed at increasing the preparedness for possible terrorism events, where radioactive (RA) materials disperse via an explosive charge. About 20 atmospheric dispersion tests were conducted using6-8 Ci of 99mTc which were coupled to TNT charges within the range of 0.2525 kg. Tests performed above different typical urban ground surfaces (in order to study the surface effect on the activity ground deposition pattern due to different in particles size distribution). We have used an efficient aerosolizing devices, means that most of the RA particles were initially created within the size of fine aerosols, mostly respirable. Ground activity measurements were performed both, around the dispersion point and up to few hundred meters downwind. Micrometeorology parameters (wind intensity and direction, potential temperature, relative humidity, solar radiation and atmospheric stability) were collected allowing comparisons topredictions of existing atmospheric dispersion models’1. Based on the experimental results, new model parameterizations were performed. Improvements in the models’ predictions were achieved and a set of thumb rules for first responders was formulated. This paper describes the project objectives, some of the experimental setups and results obtained. Post detonation nuclear forensic considerations can be made based upon results achieved

  9. A new device for energy-dispersive x-ray fluorescence

    Science.gov (United States)

    Swoboda, Walter; Kanngiesser, Birgit; Beckhoff, Burkhard; Begemann, Klaus; Neuhaus, Hermann; Scheer, Jens

    1991-12-01

    A new measuring chamber for energy-dispersive x-ray fluorescence is presented, which allows excitation of the sample by three (commonly applied) modes: secondary target excitation, Barkla scattering, and Bragg reflection. In spite of the short distances required to obtain high intensities, the transmission of the radiator through the bulk matter of the chamber wall and the collimators could be kept negligibly small. In the case of Bragg reflection, the adjustment of all degrees of freedom of the crystal is performed independently and reproducibly under vacuum conditions. The device allows the choice of excitation mode optimized for the respective analytical problem. An experimental test using an environmental specimen shows the detection limits obtainable.

  10. Radiation-curable coatings containing reactive pigment dispersants

    International Nuclear Information System (INIS)

    Ansel, R.E.

    1985-01-01

    Liquid coating compositions adapted to be cured by exposure to penetrating radiation are disclosed in which a liquid vehicle of coating viscosity having an ethylenically unsaturated portion comprising one or more polyethylenically unsaturated materials adapted to cure on radiation exposure, pigment dispersed in the vehicle, and an ethylenically unsaturated radiation-curable dispersant containing a carboxyl group for wetting the pigment and assisting in the stable dipsersion of the pigment in the vehicle. This dispersant is a half amide or half ester of an ethylenically unsaturated polycarboxylic acid anhydride, such as maleic anhydride, with an organic compound having a molecular weight of from 100 to 4000 and which contains a single hydroxy group or a single amino group as the sole reactive group thereof

  11. Radiation emitting devices regulations

    International Nuclear Information System (INIS)

    1970-01-01

    The Radiation Emitting Devices Regulations are the regulations referred to in the Radiation Emitting Devices Act and relate to the operation of devices. They include standards of design and construction, standards of functioning, warning symbol specifications in addition to information relating to the seizure and detention of machines failing to comply with the regulations. The radiation emitting devices consist of the following: television receivers, extra-oral dental x-ray equipment, microwave ovens, baggage inspection x-ray devices, demonstration--type gas discharge devices, photofluorographic x-ray equipment, laser scanners, demonstration lasers, low energy electron microscopes, high intensity mercury vapour discharge lamps, sunlamps, diagnostic x-ray equipment, ultrasound therapy devices, x-ray diffraction equipment, cabinet x-ray equipment and therapeutic x-ray equipment

  12. Radiation environmental real-time monitoring and dispersion modeling

    International Nuclear Information System (INIS)

    Kovacik, A.; Bartokova, I.; Omelka, J.; Melicherova, T.

    2014-01-01

    The system of real-time radiation monitoring provided by MicroStep-MIS is a turn-key solution for measurement, acquisition, processing, reporting, archiving and displaying of various radiation data. At the level of measurements, the monitoring stations can be equipped with various devices from radiation probes, measuring the actual ambient gamma dose rate, to fully automated aerosol monitors, returning analysis results of natural and manmade radionuclides concentrations in the air. Using data gathered by our radiation probes RPSG-05 integrated into monitoring network of Crisis Management of the Slovak Republic and into monitoring network of Slovak Hydrometeorological Institute, we demonstrate its reliability and long-term stability of measurements. Data from RPSG-05 probes and GammaTracer probes, both of these types are used in the SHI network, are compared. The sensitivity of RPSG-05 is documented on data where changes of dose rate are caused by precipitation. Qualities of RPSG-05 probe are illustrated also on example of its use in radiation monitoring network in the United Arab Emirates. A more detailed information about radioactivity of the atmosphere can be obtained by using spectrometric detectors (e.g. scintillation detectors) which, besides gamma dose rate values, offer also a possibility to identify different radionuclides. However, this possibility is limited by technical parameters of detector like energetic resolution and detection efficiency in given geometry of measurement. A clearer information with less doubts can be obtained from aerosol monitors with a built-in silicon detector of alpha and beta particles and with an electrically cooled HPGe detector dedicated for gamma-ray spectrometry, which is performed during the sampling. Data from a complex radiation monitoring network can be used, together with meteorological data, in radiation dispersion model by MicroStep-MIS. This model serves for simulation of atmospheric propagation of radionuclides

  13. Radiation emitting devices act

    International Nuclear Information System (INIS)

    1970-01-01

    This Act, entitled the Radiation Emitting Devices Act, is concerned with the sale and importation of radiation emitting devices. Laws relating to the sale, lease or import, labelling, advertising, packaging, safety standards and inspection of these devices are listed as well as penalties for any person who is convicted of breaking these laws

  14. Radiation effects in optoelectronic devices

    International Nuclear Information System (INIS)

    Barnes, C.E.

    1977-03-01

    A summary is given of studies on radiation effects in light-emitting diodes, laser diodes, detectors, optical isolators and optical fibers. It is shown that the study of radiation damage in these devices can provide valuable information concerning the nature of the devices themselves, as well as methods of hardening these devices for applications in radiation environments

  15. Radiological Dispersion Devices: are we prepared?

    Energy Technology Data Exchange (ETDEWEB)

    Sohier, Alain [Decision Strategy Research Department (Radiation Protection Division), Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium)]. E-mail: asohier@sckcen.be; Hardeman, Frank [Decision Strategy Research Department (Radiation Protection Division), Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium)

    2006-07-01

    Already before the events of September 11th 2001 concern was raised about the spread of orphan sources and their potential use in Radiological Dispersion Devices by terrorist groups. Although most of the simulated scenarios foresee a rather limited direct health impact on the population, the affected region would suffer from the indirect consequences such as social disruption, cleanup requirements and economic costs. The nature of such a radiological attack would anyway be different compared to conventional radiological accidents, basically because it can happen anywhere at any time. Part of the response resides in a general preparedness scheme incorporating attacks with Radiological Dispersion Devices. Training of different potential intervention teams is essential. The response would consist of a prioritised list of actions adapted to the circumstances. As the psychosocial dimension of the crisis could be worse than the purely radiological one, an adapted communication strategy with the public aspect would be a key issue.

  16. Radiological Dispersion Devices: are we prepared?

    International Nuclear Information System (INIS)

    Sohier, Alain; Hardeman, Frank

    2006-01-01

    Already before the events of September 11th 2001 concern was raised about the spread of orphan sources and their potential use in Radiological Dispersion Devices by terrorist groups. Although most of the simulated scenarios foresee a rather limited direct health impact on the population, the affected region would suffer from the indirect consequences such as social disruption, cleanup requirements and economic costs. The nature of such a radiological attack would anyway be different compared to conventional radiological accidents, basically because it can happen anywhere at any time. Part of the response resides in a general preparedness scheme incorporating attacks with Radiological Dispersion Devices. Training of different potential intervention teams is essential. The response would consist of a prioritised list of actions adapted to the circumstances. As the psychosocial dimension of the crisis could be worse than the purely radiological one, an adapted communication strategy with the public aspect would be a key issue

  17. Dispersive shock mediated resonant radiations in defocused nonlinear medium

    Science.gov (United States)

    Bose, Surajit; Chattopadhyay, Rik; Bhadra, Shyamal Kumar

    2018-04-01

    We report the evolution of resonant radiation (RR) in a self-defocused nonlinear medium with two zero dispersion wavelengths. RR is generated from dispersive shock wave (DSW) front when the pump pulse is in non-solitonic regime close to first zero dispersion wavelength (ZDW). DSW is responsible for pulse splitting resulting in the generation of blue solitons when leading edge of the pump pulse hits the first ZDW. DSW also generates a red shifted dispersive wave (DW) in the presence of higher order dispersion coefficients. Further, DSW through cross-phase modulation with red shifted dispersive wave (DW) excites a localized radiation. The presence of zero nonlinearity point in the system restricts red-shift of RR and enhances the red shifting of DW. It also helps in the formation of DSW at shorter distance and squeezes the solitonic region beyond second zero dispersion point. Predicted results indicate that the spectral evolution depends on the product of Kerr nonlinearity and group velocity dispersion.

  18. Radiation analysis devices, radiation analysis methods, and articles of manufacture

    Science.gov (United States)

    Roybal, Lyle Gene

    2010-06-08

    Radiation analysis devices include circuitry configured to determine respective radiation count data for a plurality of sections of an area of interest and combine the radiation count data of individual of sections to determine whether a selected radioactive material is present in the area of interest. An amount of the radiation count data for an individual section is insufficient to determine whether the selected radioactive material is present in the individual section. An article of manufacture includes media comprising programming configured to cause processing circuitry to perform processing comprising determining one or more correction factors based on a calibration of a radiation analysis device, measuring radiation received by the radiation analysis device using the one or more correction factors, and presenting information relating to an amount of radiation measured by the radiation analysis device having one of a plurality of specified radiation energy levels of a range of interest.

  19. Radiation response of vitamin A in aqueous dispersions

    International Nuclear Information System (INIS)

    Bhushan, B.; Kumta, U.S.

    1977-01-01

    The radiation destruction of vitamin A acetate was monitored in isooctane, coconut oil, and aqueous dispersions. The G(-vit. A), i.e., the number of vitamin A molecules destroyed per 100 eV of energy absorbed in lipid solvents and aqueous preparations, increased with the concentrations of vitamin A used. In the freely dissolved state, as in isooctane or coconut oil, the extent of destruction of vitamin A was more or less identical. However, a marked reduction in the radiation destruction of vitamin A was observed in aqueous dispersions at all concentrations except at 1 x 10 -4 M. Incorporation of sugars, starch, and egg albumin in aqueous preparations offered considerable protection to vitamin A from radiation damage which could be discerned even at the lowest concentration (1 x 10 -4 M). The protective influence of aqueous dispersion as noted for vitamin A was also observed for β-carotene, vitamin A alcohol, and ubiquinone-30. The significance of the above findings in radiation processing of foods has been discussed

  20. The Swiss disaster management plan for coping with the aftermath of radiological dispersal devices - ''dirty bomb'' operational concept

    International Nuclear Information System (INIS)

    Stoffel, F.; Blaettler, M.; Leonardi, A.

    2009-01-01

    In 2007 the Swiss Federal Commission for NRBC Protection released a disaster management plan for coping with the aftermath of radiological dispersal devices. This paper summarises the basic concept and outlines the relevant bodies and agencies as well as their responsibilities. It also sets out the strategy to monitor radioactive contamination and the measures to prevent public radiation exposure. (orig.)

  1. Dispersive effects in radiation transport and radiation hydrodynamics in matter at high density

    International Nuclear Information System (INIS)

    Crowley, B.J.B.

    1983-01-01

    In a recent research program (reported in AWRE 0 20/82) I have investigated the generalisation of the equations of radiation hydrodynamics when electromagnetic radiation is assumed to obey a linear-response dispersion relation of the form nω=kc where the refractive index n depends on the frequency ω and/or wave number k. From the application of the Boltzmann-Liouville transport theory to photons in the short-wavelength (geometrical optics) limit, I derive the energy and momentum equations which, when combined with a classical (Euler-Lagrange-Navier-Stokes) treatment of a fluid material medium in LTE, yield a complete dynamical theory of linear interactions (+ stimulated processes) between incoherent (thermal) radiation and dense, locally isotropic matter. The theory includes an account of pondero-motive forces and electro (magneto) striction. Moreover, it is apparently capable of being generalised to non-linear interactions in which the refractive index depends on the local specific intensity of the radiation field, and, to some extent, to the treatment of high-frequency coherent radiation. The generalisation of various approximated forms of radiation-transport theory (esp. diffusion) has been considered in detail. Some problems remain however. One such is the treatment of anomalous dispersion. Current research work is concentrating on the interesting atomic physics aspects of electromagnetic (esp. radiative) properties of a dispersive material medium

  2. SU-F-P-24: Radiological Disperse Device

    Energy Technology Data Exchange (ETDEWEB)

    Alam, R [NYC Dept of Health, NYC, NY (United States)

    2016-06-15

    Purpose: We are now living in a society of constant fear of terrorism. This topic is pertaining to give a general knowledge of what is a radiological dispersion device or RDD and in case of its detonation, what are the options open to public for a safe action in terms of reducing the exposure and knowing the proper steps. These RDD are also called dirty bombs. Methods: Compared to nuclear weapons, dirty bombs are easy to make. In order for a terrorist organization to construct and detonate a dirty bomb, it must acquire radioactive material by stealing it or buying it through legal or illegal channels. Possible RDD material could come from the millions of radioactive sources used in the industry, for medical purposes and in academic applications mainly for researches. These are, americium-{sup 241}, californium-{sup 252}, caesium-{sup 137}, cobalt-{sup 60}, iridium-{sup 192}, plutonium-{sup 238}, polonium-{sup 210}, radium-{sup 226} and strontium-{sup 90}. Results: Prompt detection of the type of radioactive material used will greatly assist advising people on the protective measures, like sheltering in place, or quickly leaving the immediate area. The effects of radiation are determined by:°the amount of radiation absorbed by body°the type of radiation °the distance from the radiation to an individual°the means of exposure absorbed by the skin, inhaled, or ingested; and length of time exposed. Conclusion: In any facility it is now much more important to keep a log list of all radioactive materials in use. In case there is a dirty bomb explosion, the chaos and economic cost could be enormous. The economic cost for the evaluation of the contamination, survey of people and surroundings and the after treatment, decontamination cost and effort will be a big challenge in any country. So awareness and preparation is the start to face this new type of challenge.

  3. Hospital management of mass radiological casualties: reassessing exposures from contaminated victims of an exploded radiological dispersal device (RDD)

    International Nuclear Information System (INIS)

    Ansari, Armin; Harper, Frederick Taylor; Smith, James M.

    2005-01-01

    One of the key issues in the aftermath of an exploded radiological dispersal device from a terrorist event is that of the contaminated victim and the concern among healthcare providers for the harmful exposures they may receive in treating patients, especially if the patient has not been thoroughly decontaminated. This is critically important in the event of mass casualties from a nuclear or radiological incident because of the essential rapidity of acute medical decisions and that those who have life- or limb-threatening injuries may have treatment unduly delayed by a decontamination process that may be unnecessary for protecting the health and safety of the patient or the healthcare provider. To estimate potential contamination of those exposed in a radiological dispersal device event, results were used from explosive aerosolization tests of surrogate radionuclides detonated with high explosives at the Sandia National Laboratories. Computer modeling was also used to assess radiation dose rates to surgical personnel treating patients with blast injuries who are contaminated with any of a variety of common radionuclides. It is demonstrated that exceptional but plausible cases may require special precautions by the healthcare provider, even while managing life-threatening injuries of a contaminated victim from a radiological dispersal device event.

  4. Ultraviolet radiation induces dose-dependent pigment dispersion in crustacean chromatophores.

    Science.gov (United States)

    Gouveia, Glauce Ribeiro; Lopes, Thaís Martins; Neves, Carla Amorim; Nery, Luiz Eduardo Maia; Trindade, Gilma Santos

    2004-10-01

    Pigment dispersion in chromatophores as a response to UV radiation was investigated in two species of crustaceans, the crab Chasmagnathus granulata and the shrimp Palaemonetes argentinus. Eyestalkless crabs and shrimps maintained on either a black or a white background were irradiated with different UV bands. In eyestalkless crabs the significant minimal effective dose inducing pigment dispersion was 0.42 J/cm(2) for UVA and 2.15 J/cm(2) for UVB. Maximal response was achieved with 10.0 J/cm(2) UVA and 8.6 J/cm(2) UVB. UVA was more effective than UVB in inducing pigment dispersion. Soon after UV exposure, melanophores once again reached the initial stage of pigment aggregation after 45 min. Aggregated erythrophores of shrimps adapted to a white background showed significant pigment dispersion with 2.5 J/cm(2) UVA and 0.29 J/cm(2) UVC. Dispersed erythrophores of shrimps adapted to a black background did not show any significant response to UVA, UVB or UVC radiation. UVB did not induce any significant pigment dispersion in shrimps adapted to either a white or a black background. As opposed to the tanning response, which only protects against future UV exposure, the pigment dispersion response could be an important agent protecting against the harmful effects of UV radiation exposure.

  5. Radiation effects in optoelectronic devices

    International Nuclear Information System (INIS)

    Barnes, C.E.; Wiczer, J.J.

    1984-05-01

    Purpose of this report is to provide not only a summary of radiation damage studies at Sandia National Laboratories, but also of those in the literature on the components of optoelectronic systems: light emitting diodes (LEDs), laser diodes, photodetectors, optical fibers, and optical isolators. This review of radiation damage in optoelectronic components is structured according to device type. In each section, a brief discussion of those device properties relevant to radiation effects is given

  6. Radiation environmental real-time monitoring and dispersion modeling: A comprehensive solution

    International Nuclear Information System (INIS)

    Kovacik, A.; Bartokova, I.; Omelka, J.; Melicherova, T.

    2014-01-01

    The system of real-time radiation monitoring provided by MicroStep-MIS is a turn-key solution for measurement, acquisition, processing, reporting, archiving and displaying of various radiation data. At the level of measurements, the monitoring stations can be equipped with various devices from radiation probes, measuring the actual ambient gamma dose rate, to fully automated aerosol monitors, returning analysis results of natural and manmade radionuclides concentrations in the air. Using data gathered by our radiation probes RPSG-05 integrated into monitoring network of Crisis Management of the Slovak Republic and into monitoring network of Slovak Hydrometeorological Institute, we demonstrate its reliability and long-term stability of measurements. Data from RPSG-05 probes and GammaTracer probes, both of these types are used in the SHI network, are compared. The sensitivity of RPSG-05 is documented on data where changes of dose rate are caused by precipitation. Qualities of RPSG-05 probe are illustrated also on example of its use in radiation monitoring network in the United Arab Emirates. A more detailed information about radioactivity of the atmosphere can be obtained by using spectrometric detectors (e.g. scintillation detectors) which, besides gamma dose rate values, offer also a possibility to identify different radionuclides. However, this possibility is limited by technical parameters of detector like energetic resolution and detection efficiency in given geometry of measurement. A clearer information with less doubts can be obtained from aerosol monitors with a built-in silicon detector of alpha and beta particles and with an electrically cooled HPGe detector dedicated for gamma-ray spectrometry, which is performed during the sampling. Data from a complex radiation monitoring network can be used, together with meteorological data, in radiation dispersion model by MicroStep-MIS. This model serves for simulation of atmospheric propagation of radionuclides

  7. Radiation area monitor device and method

    Science.gov (United States)

    Vencelj, Matjaz; Stowe, Ashley C.; Petrovic, Toni; Morrell, Jonathan S.; Kosicek, Andrej

    2018-01-30

    A radiation area monitor device/method, utilizing: a radiation sensor; a rotating radiation shield disposed about the radiation sensor, wherein the rotating radiation shield defines one or more ports that are transparent to radiation; and a processor operable for analyzing and storing a radiation fingerprint acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor. Optionally, the radiation sensor includes a gamma and/or neutron radiation sensor. The device/method selectively operates in: a first supervised mode during which a baseline radiation fingerprint is acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor; and a second unsupervised mode during which a subsequent radiation fingerprint is acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor, wherein the subsequent radiation fingerprint is compared to the baseline radiation fingerprint and, if a predetermined difference threshold is exceeded, an alert is issued.

  8. Radiation flux measuring device

    International Nuclear Information System (INIS)

    Corte, E.; Maitra, P.

    1977-01-01

    A radiation flux measuring device is described which employs a differential pair of transistors, the output of which is maintained constant, connected to a radiation detector. Means connected to the differential pair produce a signal representing the log of the a-c component of the radiation detector, thereby providing a signal representing the true root mean square logarithmic output. 3 claims, 2 figures

  9. Radiological dispersal device outdoor simulation test: Cesium chloride particle characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Don, E-mail: lee.sangdon@epa.gov [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Snyder, Emily G.; Willis, Robert [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Fischer, Robert; Gates-Anderson, Dianne; Sutton, Mark [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Viani, Brian [Simbol Mining Corp., Pleasanton, CA 94566 (United States); Drake, John [U.S. Environmental Protection Agency, Cincinnati, OH 45268 (United States); MacKinney, John [U.S. Department of Homeland Security, Washington, DC 20528 (United States)

    2010-04-15

    Particles were generated from the detonation of simulated radiological dispersal devices (RDDs) using non-radioactive CsCl powder and explosive C4. The physical and chemical properties of the resulting particles were characterized. Two RDD simulation tests were conducted at Lawrence Livermore National Laboratory: one of the simulated RDDs was positioned 1 m above a steel plate and the other was partially buried in soil. Particles were collected with filters at a distance of 150 m from the origin of the RDD device, and particle mass concentrations were monitored to identify the particle plume intensity using real time particle samplers. Particles collected on filters were analyzed via computer-controlled scanning electron microscopy coupled with energy dispersive X-ray spectrometry (CCSEM/EDX) to determine their size distribution, morphology, and chemical constituents. This analysis showed that particles generated by the detonation of explosives can be associated with other materials (e.g., soil) that are in close proximity to the RDD device and that the morphology and chemical makeup of the particles change depending on the interactions of the RDD device with the surrounding materials.

  10. Radiological dispersal device outdoor simulation test: Cesium chloride particle characteristics

    International Nuclear Information System (INIS)

    Lee, Sang Don; Snyder, Emily G.; Willis, Robert; Fischer, Robert; Gates-Anderson, Dianne; Sutton, Mark; Viani, Brian; Drake, John; MacKinney, John

    2010-01-01

    Particles were generated from the detonation of simulated radiological dispersal devices (RDDs) using non-radioactive CsCl powder and explosive C4. The physical and chemical properties of the resulting particles were characterized. Two RDD simulation tests were conducted at Lawrence Livermore National Laboratory: one of the simulated RDDs was positioned 1 m above a steel plate and the other was partially buried in soil. Particles were collected with filters at a distance of 150 m from the origin of the RDD device, and particle mass concentrations were monitored to identify the particle plume intensity using real time particle samplers. Particles collected on filters were analyzed via computer-controlled scanning electron microscopy coupled with energy dispersive X-ray spectrometry (CCSEM/EDX) to determine their size distribution, morphology, and chemical constituents. This analysis showed that particles generated by the detonation of explosives can be associated with other materials (e.g., soil) that are in close proximity to the RDD device and that the morphology and chemical makeup of the particles change depending on the interactions of the RDD device with the surrounding materials.

  11. SOR/72-43 Radiation Emitting Devices Regulations

    International Nuclear Information System (INIS)

    1972-01-01

    These Regulations of 10 February 1972, supplemented by SOR/77-895, lay down the classes of radiation emitting devices for the purposes of the Radiation Emitting Devices Act. They lay down their standards of design and construction and warning sign specifications and provide for the procedure to be followed by inspectors of such devices. The devices include inter alia extra-oral dental x-ray equipment, baggage inspection x-ray devices, laser scanners, television receivers. (NEA)

  12. Silicon solid state devices and radiation detection

    CERN Document Server

    Leroy, Claude

    2012-01-01

    This book addresses the fundamental principles of interaction between radiation and matter, the principles of working and the operation of particle detectors based on silicon solid state devices. It covers a broad scope with respect to the fields of application of radiation detectors based on silicon solid state devices from low to high energy physics experiments including in outer space and in the medical environment. This book covers stateof- the-art detection techniques in the use of radiation detectors based on silicon solid state devices and their readout electronics, including the latest developments on pixelated silicon radiation detector and their application.

  13. Radiation ray measuring device

    International Nuclear Information System (INIS)

    Maekawa, Tatsuyuki; Ida, Masaki.

    1997-01-01

    The present invention provides a chained-radiation ray monitoring system which can be applied to an actual monitoring system of a nuclear power plant or the like. Namely, this device comprises a plurality of scintillation detectors. Each of the detectors has two light take-out ports for emitting light corresponding to radiation rays irradiated from the object of the measurement to optical fibers. In addition, incident light from the optical fiber by way of one of the light take-out optical ports is transmitted to the other of the ports and sent from the other optical port to the fibers. Plurality sets of measuring systems are provided in which each of the detectors are disposed corresponding to a plurality of objects to be measured. A signal processing device is (1) connected with optical fibers of plurality sets of measuring systems in conjunction, (2) detects the optical pulses inputted from the optical fibers to identify the detector from which the optical pulses are sent and (3) measures the amount of radiation rays detected by the identified detector. As a result, the device of the present invention can form a measuring system with redundancy. (I.S.)

  14. Radiation-Tolerance Assessment of a Redundant Wireless Device

    Science.gov (United States)

    Huang, Q.; Jiang, J.

    2018-01-01

    This paper presents a method to evaluate radiation-tolerance without physical tests for a commercial off-the-shelf (COTS)-based monitoring device for high level radiation fields, such as those found in post-accident conditions in a nuclear power plant (NPP). This paper specifically describes the analysis of radiation environment in a severe accident, radiation damages in electronics, and the redundant solution used to prolong the life of the system, as well as the evaluation method for radiation protection and the analysis method of system reliability. As a case study, a wireless monitoring device with redundant and diversified channels is evaluated by using the developed method. The study results and system assessment data show that, under the given radiation condition, performance of the redundant device is more reliable and more robust than those non-redundant devices. The developed redundant wireless monitoring device is therefore able to apply in those conditions (up to 10 M Rad (Si)) during a severe accident in a NPP.

  15. Radiation sterilization of medical devices

    International Nuclear Information System (INIS)

    Kaluska, I.; Stuglik, Z.

    1996-01-01

    Overview of sterilization methods of medical devices has been given, with the special stress put on radiation sterilization. A typical validation program for radiation sterilization has been shown and also a comparison of European and ISO standards concerning radiation sterilization has been discussed. (author). 13 refs, 1 fig., 2 tabs

  16. Training first responders on Radiological Dispersal Devices (RDDs) and Improvised Nuclear Devices (INDs) events

    International Nuclear Information System (INIS)

    Groves, Ken L.

    2008-01-01

    Full text: This paper will present an overview of the current training the author is presenting to First Responders (fire-fighters, emergency medical technicians, law enforcement and others) who may encounter either a Radiological Dispersal Device (RDD or Dirty Bomb) or an Improvised Nuclear Device (IND) as a part of their Emergency Response activities. The emphasis of the training is putting the radiological/nuclear material in perspective as compared with other Weapons of Mass Destruction (WMD) materials such as chemical and/or biological weapon agents. A goal of the training is to help this First Responder Community understand that under almost all conditions, they can perform their primary mission of 'putting out fires', rescuing and treating injured persons, and chasing 'bad guys' even in the presence of relatively large amount of radiological/nuclear contamination. The rare cases of high activity unshielded sources will be reviewed and explained. Current International guidance on dose 'limits' will be discussed. A discussion of the use of Time, Distance and Shielding as well as appropriate Personal Protective Clothing and how it will provide the needed protection while immediate actions take place early in an RDD/IND event, will take place. The use of appropriate radiation detection instrumentation, documented Standard Operating Procedures along with realistic training, drills and exercises are the key to a successful response to an RDD/IND event for this community of critical emergency responders. (author)

  17. Radiation monitoring device

    International Nuclear Information System (INIS)

    Sato, Toshifumi.

    1993-01-01

    The device of the present invention concerns a reactor start-up region monitor of a nuclear power plant. In an existent start-up region monitor, bias voltage is limited, if the reactor moves to a power region, in order to prevent degradation of radiation detectors. Accordingly, since the power is lower than an actual reactor power, the reactor power can not be monitored. The device of the present invention comprises a memory means for previously storing a Plateau's characteristic of the radiation detectors and a correction processing means for obtaining a correction coefficient in accordance with the Plateau's characteristic to correct and calculate the reactor power when the bias voltage is limited. With such a constitution, when the reactor power exceeds a predetermined value and the bias voltage is limited, the correction coefficient can be obtained by the memory means and the correction processing means. Corrected reactor power can also be obtained from the start-up region monitor by the correction coefficient. As a result, monitoring of the reactor power can be continued while preventing degradation of the radiation detector even if the bias voltage is limited. (I.S.)

  18. Radiation effects in charge coupled devices

    International Nuclear Information System (INIS)

    Williams, R.A.; Nelson, R.D.

    1975-01-01

    Charge coupled devices (CCD s) exhibit a number of advantages (low cost, low power, high bit density) in their several applications (serial memories, imagers, digital filters); however, fairly elementary theoretical considerations indicate that they will be very vulnerable to permanent radiation damage, by both neutrons and ionizing radiation, and to transient upset by pulsed ionizing radiation. Although studies of permanent ionizing-radiation damage in CCD's have been reported, little information has been published concerning their overall nuclear radiation vulnerability. This paper presents a fairly comprehensive experimental study of radiation effects in a 256-cell surface-channel, CCD shift-register. A limited amount of similar work is also presented for a 128-cell surface-channel device and a 130 cell peristaltic CCD shift register. The radiation effects phenomena discussed herein, include transient-ionizing-radiation responses, permanent ionizing- radiation damage to transfer efficiency, charge-carrying capacity and input transfer gate bias, and neutron damage to storage time--determined from dark current and charge-up time measurements

  19. Counterbalanced radiation detection device

    International Nuclear Information System (INIS)

    Platz, W.

    1986-01-01

    A counterbalanced radiation detection device is described which consists of: (a) a base; (b) a radiation detector having a known weight; (c) means connected with the radiation detector and the base for positioning the radiation detector in different heights with respect to the base; (d) electronic component means movably mounted on the base for counterbalancing the weight of the radiation detector; (e) means connected with the electronic component means and the radiation detector positioning means for positioning the electronic component means in different heights with respect to the base opposite to the heights of the radiation detector; (f) means connected with the radiation detector and the base for shifting the radiation detector horizontally with respect to the base; and (g) means connected with the electronic component means and the radiation detector shifting means for shifting the electronic component means horizontally with respect to the base in opposite direction to shifting of the radiation detector

  20. Response of the REWARD detection system to the presence of a Radiological Dispersal Device

    International Nuclear Information System (INIS)

    Luís, R.; Fleta, C.; Balbuena, J.; Baptista, M.; Barros, S.; Disch, C.; Jumilla, C.; Lozano, M.; Marques, J.G.; Vaz, P.

    2016-01-01

    The objective of the REWARD project consisted in building a mobile system for real time, wide area radiation surveillance, using a CdZnTe detector for gamma radiation and a neutron detector based on novel silicon technologies. The sensing unit includes a GPS system and a wireless communication interface to send the data remotely to a monitoring base station, where it will be analyzed in real time and correlated with historical data from the tag location, in order to generate an alarm when an abnormal situation is detected. The main objective of this work consisted in making predictions regarding the behavior of the REWARD system in the presence of a Radiological Dispersion Device (RDD), one of the reference scenarios foreseen for REWARD, using experimental data and the Monte Carlo simulation program MCNP6. Experimental tests were performed at the Fire Brigades Facilities in Rome and at the Naples Fire Brigades. The response of the REWARD detection system to the presence of an RDD is predicted and discussed. - Highlights: • A prototype mobile system for real-time, wide-area radiation surveillance was built. • Experimental measurements and Monte Carlo simulations were used to test the system. • The system is suitable to detect and identify radiation sources in threat scenarios.

  1. Prospects of radiation sterilization of medical devices

    International Nuclear Information System (INIS)

    Hosobuchi, Kazunari

    1992-01-01

    Since radiation sterilization was first introduced in the United States in 1956 in the field of disposable medical devices, it has become an indispensable technique for sterilization because of the following reasons: (1) introduction into dialyzers, (2) introduction in medical device makers, (3) development of disposable medical devices associated with developing both high molecular chemistry and cool sterilization, (4) rationality of sterilization process, and (5) problems of sterilization with ethylene oxide gas. To promote the further development of radiation sterilization, the following items are considered necessary: (1) an increase in the number of facilities for radiation sterilization, (2) recommendation of the international standardization of sterilization method, (3) decrease in radiation doses associated with sterilization, (4) development of electron accelerators and bremsstrahlung equipments for radiation sources, and (5) simplification of sterilization process management. Factors precluding the development of radiation sterilization are: (1) development of other methods than radiation sterilization, (2) development of technique for sterile products, (3) high facility cost, (4) high irradiation cost, (5) benefits and limits of sterilization markets, and (6) influences of materials. (N.K.)

  2. Radiation hardening of MOS devices by boron

    International Nuclear Information System (INIS)

    Danchenko, V.

    1975-01-01

    A novel technique is disclosed for radiation hardening of MOS devices and specifically for stabilizing the gate threshold potential at room temperature of a radiation subjected MOS field-effect device of the type having a semiconductor substrate, an insulating layer of oxide on the substrate, and a gate electrode disposed on the insulating layer. In the preferred embodiment, the novel inventive technique contemplates the introduction of boron into the insulating oxide, the boron being introduced within a layer of the oxide of about 100A to 300A thickness immediately adjacent the semiconductor-insulator interface. The concentration of boron in the oxide layer is preferably maintained on the order of 10 atoms/ cm 3 . The novel technique serves to reduce and substantially annihilate radiation induced positive gate charge accumulations, which accumulations, if not eliminated, would cause shifting of the gate threshold potential of a radiation subjected MOS device, and thus render the device unstable and/or inoperative. (auth)

  3. Radiation detection device and a radiation detection method

    International Nuclear Information System (INIS)

    Blum, A.

    1975-01-01

    A radiation detection device is described including at least one scintillator in the path of radiation emissions from a distributed radiation source; a plurality of photodetectors for viewing each scintillator; a signal processing means, a storage means, and a data processing means that are interconnected with one another and connected to said photodetectors; and display means connected to the data processing means to locate a plurality of radiation sources in said distributed radiation source and to provide an image of the distributed radiation sources. The storage means includes radiation emission response data and location data from a plurality of known locations for use by the data processing means to derive a more accurate image by comparison of radiation responses from known locations with radiation responses from unknown locations. (auth)

  4. The effects of cosmic radiation on implantable medical devices

    International Nuclear Information System (INIS)

    Bradley, P.

    1996-01-01

    Metal oxide semiconductor (MOS) integrated circuits, with the benefits of low power consumption, represent the state of the art technology for implantable medical devices. Three significant sources of radiation are classified as having the ability to damage or alter the behavior of implantable electronics; Secondary neutron cosmic radiation, alpha particle radiation from the device packaging and therapeutic doses(up to 70 Gγ) of high energy radiation used in radiation oncology. The effects of alpha particle radiation from the packaging may be eliminated by the use of polyimide or silicone rubber die coatings. The relatively low incidence of therapeutic radiation incident on an implantable device and the use of die coating leaves cosmic radiation induced secondary neutron single event upset (SEU) as the main pervasive ionising radiation threat to the reliability of implantable devices. A theoretical model which predicts the susceptibility of a RAM cell to secondary neutron cosmic radiation induced SEU is presented. The model correlates well within the statistical uncertainty associated with both the theoretical and field estimate. The predicted Soft Error Rate (SER) is 4.8 x l0 -12 upsets/(bit hr) compared to an observed upset rate of 8.5 x 10 -12 upsets/(bit hr) from 20 upsets collected over a total of 284672 device days. The predicted upset rate may increase by up to 20% when consideration is given to patients flying in aircraft The upset rate is also consistent with the expected geographical variations of the secondary cosmic ray neutron flux, although insufficient upsets precluded a statistically significant test. This is the first clinical data set obtained indicating the effects of cosmic radiation on implantable devices. Importantly, it may be used to predict the susceptibility of future to the implantable device designs to the effects of cosmic radiation

  5. Medical Devices; General Hospital and Personal Use Devices; Classification of the Ultraviolet Radiation Chamber Disinfection Device. Final order.

    Science.gov (United States)

    2015-11-20

    The Food and Drug Administration (FDA or the Agency) is classifying the ultraviolet (UV) radiation chamber disinfection device into class II (special controls). The special controls that will apply to the device are identified in this order and will be part of the codified language for the UV radiation chamber disinfection device classification. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device.

  6. Effects of radiation on MOS structures and silicon devices

    International Nuclear Information System (INIS)

    Braeunig, D.; Fahrner, W.

    1983-02-01

    A comprehensive view of radiation effects on MOS structures and silicon devices is given. In the introduction, the interaction of radiation with semiconductor material is presented. In the next section, the electrical degradation of semiconductor devices due to this interaction is discussed. The commonly used hardening techniques are shown. The last section deals with testing of radiation hardness of devices. (orig.) [de

  7. Advanced Small Animal Conformal Radiation Therapy Device.

    Science.gov (United States)

    Sharma, Sunil; Narayanasamy, Ganesh; Przybyla, Beata; Webber, Jessica; Boerma, Marjan; Clarkson, Richard; Moros, Eduardo G; Corry, Peter M; Griffin, Robert J

    2017-02-01

    We have developed a small animal conformal radiation therapy device that provides a degree of geometrical/anatomical targeting comparable to what is achievable in a commercial animal irradiator. small animal conformal radiation therapy device is capable of producing precise and accurate conformal delivery of radiation to target as well as for imaging small animals. The small animal conformal radiation therapy device uses an X-ray tube, a robotic animal position system, and a digital imager. The system is in a steel enclosure with adequate lead shielding following National Council on Radiation Protection and Measurements 49 guidelines and verified with Geiger-Mueller survey meter. The X-ray source is calibrated following AAPM TG-61 specifications and mounted at 101.6 cm from the floor, which is a primary barrier. The X-ray tube is mounted on a custom-made "gantry" and has a special collimating assembly system that allows field size between 0.5 mm and 20 cm at isocenter. Three-dimensional imaging can be performed to aid target localization using the same X-ray source at custom settings and an in-house reconstruction software. The small animal conformal radiation therapy device thus provides an excellent integrated system to promote translational research in radiation oncology in an academic laboratory. The purpose of this article is to review shielding and dosimetric measurement and highlight a few successful studies that have been performed to date with our system. In addition, an example of new data from an in vivo rat model of breast cancer is presented in which spatially fractionated radiation alone and in combination with thermal ablation was applied and the therapeutic benefit examined.

  8. Dispersion characteristics of planar grating with arbitrary grooves for terahertz Smith-Purcell radiation

    International Nuclear Information System (INIS)

    Cao, Miaomiao; Li, Ke; Liu, Wenxin; Wang, Yong

    2015-01-01

    In this paper, a novel method of getting the dispersion relations in planar grating with arbitrary grooves for terahertz Smith-Purcell radiation is investigated analytically. The continuous profile of the groove is approximately replaced by a series of rectangular steps. By making use of field matches method and the continuity of transverse admittance, the universal dispersion equation for grating with arbitrarily shaped grooves is derived. By solving the dispersion equation in presence of electron beam, the growth rate is obtained directly and the dependence on beam parameters is analyzed. Comparisons of the dispersion characteristics among some special groove shapes have been made by numerical calculation. The results show that the rectangular-step approximation method provides a novel approach to obtain the universal dispersion relation for grating with arbitrary grooves for Smith-Purcell radiation

  9. Black/white hole radiation from dispersive theories

    International Nuclear Information System (INIS)

    Macher, Jean; Parentani, Renaud

    2009-01-01

    We study the fluxes emitted by black holes when using dispersive field theories. We work with stationary one-dimensional backgrounds which are asymptotically flat on both sides of the horizon. The asymptotic fluxes are governed by a 3x3 Bogoliubov transformation. The fluxes emitted by the corresponding white holes are regular and governed by the inverse transformation. We numerically compute the spectral properties of these fluxes for both sub- and superluminal quartic dispersion. The leading deviations with respect to the dispersionless flux are computed and shown to be governed by a critical frequency above which there is no radiation. Unlike the UV scale governing dispersion, its value critically depends on the asymptotic properties of the background. We also study the flux outside the robust regime. In particular we show that its low-frequency part remains almost thermal but with a temperature which significantly differs from the standard one. Applications to four-dimensional black holes and Bose-Einstein condensates are in preparation.

  10. Detection device of dangerous radiation for the living beings

    International Nuclear Information System (INIS)

    Lacoste, F.

    1991-01-01

    This invention is about a portable device able to measure dose rates or doses of gamma, ultraviolet and X radiation or charged particles. This device is composed of a radiation detector, a calculator of the accumulate dose and a memory to store the data. This device has a credit card format

  11. Radiation sensitive devices and systems for detection of radioactive materials and related methods

    Science.gov (United States)

    Kotter, Dale K

    2014-12-02

    Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.

  12. Radiation and repeated transoceanic dispersal of Schoeneae (Cyperaceae) through the southern hemisphere.

    Science.gov (United States)

    Viljoen, Jan-Adriaan; Muasya, A Muthama; Barrett, Russell L; Bruhl, Jeremy J; Gibbs, Adele K; Slingsby, Jasper A; Wilson, Karen L; Verboom, G Anthony

    2013-12-01

    The broad austral distribution of Schoeneae is almost certainly a product of long-distance dispersal. Owing to the inadequacies of existing phylogenetic data and a lack of rigorous biogeographic analysis, relationships within the tribe remain poorly resolved and its pattern of radiation and dispersal uncertain. We employed an expanded sampling of taxa and markers and a rigorous analytic approach to address these limitations. We evaluated the roles of geography and ecology in stimulating the initial radiation of the group and its subsequent dispersal across the southern hemisphere. A dated tree was reconstructed using reversible-jump Markov chain Monte Carlo (MCMC) with a polytomy prior and molecular dating, applied to data from two nuclear and three cpDNA regions. Ancestral areas and habitats were inferred using dispersal-extinction-cladogenesis models. Schoeneae originated in Australia in the Paleocene. The existence of a "hard" polytomy at the base of the clade reflects the rapid divergence of six principal lineages ca. 50 Ma, within Australia. From this ancestral area, Schoeneae have traversed the austral oceans with remarkable frequency, a total of 29 distinct dispersal events being reported here. Dispersal rates between landmasses are not explicable in terms of the geographical distances separating them. Transoceanic dispersal generally involved habitat stasis. Although the role of dispersal in explaining global distribution patterns is now widely accepted, the apparent ease with which such dispersal may occur has perhaps been under-appreciated. In Schoeneae, transoceanic dispersal has been remarkably frequent, with ecological opportunity, rather than geography, being most important in dictating dispersal patterns.

  13. X-ray energy-dispersive diffractometry using synchrotron radiation

    International Nuclear Information System (INIS)

    Buras, B.; Staun Olsen, J.; Gerward, L.

    1977-03-01

    In contrast to bremsstrahlung from X-ray tubes, synchrotron radiation is very intense, has a smooth spectrum, its polarization is well defined, and at DESY the range of useful photon energies can be extended to about 70 keV and higher. In addition the X-ray beam is very well collimated. Thus synchrotron radiation seems to be an ideal X-ray source for energy-dispersive diffractometry. This note briefly describes the experimental set up at DESY, shows examples of results, and presents the underlying 'philosophy' of the research programme. (Auth.)

  14. Fast Running Urban Dispersion Model for Radiological Dispersal Device (RDD) Releases: Model Description and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Gowardhan, Akshay [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Neuscamman, Stephanie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Donetti, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Walker, Hoyt [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Belles, Rich [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Eme, Bill [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Homann, Steven [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC)

    2017-05-24

    Aeolus is an efficient three-dimensional computational fluid dynamics code based on finite volume method developed for predicting transport and dispersion of contaminants in a complex urban area. It solves the time dependent incompressible Navier-Stokes equation on a regular Cartesian staggered grid using a fractional step method. It also solves a scalar transport equation for temperature and using the Boussinesq approximation. The model also includes a Lagrangian dispersion model for predicting the transport and dispersion of atmospheric contaminants. The model can be run in an efficient Reynolds Average Navier-Stokes (RANS) mode with a run time of several minutes, or a more detailed Large Eddy Simulation (LES) mode with run time of hours for a typical simulation. This report describes the model components, including details on the physics models used in the code, as well as several model validation efforts. Aeolus wind and dispersion predictions are compared to field data from the Joint Urban Field Trials 2003 conducted in Oklahoma City (Allwine et al 2004) including both continuous and instantaneous releases. Newly implemented Aeolus capabilities include a decay chain model and an explosive Radiological Dispersal Device (RDD) source term; these capabilities are described. Aeolus predictions using the buoyant explosive RDD source are validated against two experimental data sets: the Green Field explosive cloud rise experiments conducted in Israel (Sharon et al 2012) and the Full-Scale RDD Field Trials conducted in Canada (Green et al 2016).

  15. Optical Cherenkov radiation in an As2S3 slot waveguide with four zero-dispersion wavelengths

    DEFF Research Database (Denmark)

    Wang, Shaofei; Hu, Jungao; Guo, Hairun

    2013-01-01

    , dispersion profiles with four zero dispersion wavelengths are found to produce a phase-matching nonlinear process leading to a broadband resonant radiation. The broadband OCR investigated in the chalcogenide waveguide may find applications in on-chip wavelength conversion and near-infrared pulse generation.......We propose an approach for an efficient generation of optical Cherenkov radiation (OCR) in the near-infrared by tailoring the waveguide dispersion for a zero group-velocity mismatching between the radiation and the pump soliton. Based on an As2S3 slot waveguide with subwavelength dimensions...

  16. Measuring ionizing radiation with a mobile device

    Science.gov (United States)

    Michelsburg, Matthias; Fehrenbach, Thomas; Puente León, Fernando

    2012-02-01

    In cases of nuclear disasters it is desirable to know one's personal exposure to radioactivity and the related health risk. Usually, Geiger-Mueller tubes are used to assess the situation. Equipping everyone with such a device in a short period of time is very expensive. We propose a method to detect ionizing radiation using the integrated camera of a mobile consumer device, e.g., a cell phone. In emergency cases, millions of existing mobile devices could then be used to monitor the exposure of its owners. In combination with internet access and GPS, measured data can be collected by a central server to get an overview of the situation. During a measurement, the CMOS sensor of a mobile device is shielded from surrounding light by an attachment in front of the lens or an internal shutter. The high-energy radiation produces free electrons on the sensor chip resulting in an image signal. By image analysis by means of the mobile device, signal components due to incident ionizing radiation are separated from the sensor noise. With radioactive sources present significant increases in detected pixels can be seen. Furthermore, the cell phone application can make a preliminary estimate on the collected dose of an individual and the associated health risks.

  17. Devices for obtaining information about radiation sources

    International Nuclear Information System (INIS)

    Tosswill, C.H.

    1981-01-01

    The invention provides a sensitive, fast high-resolution device for obtaining information about the distribution of gamma and X-radiation sources and provides a radiation detector useful in such a device. It comprises a slit collimator with a multiplicity of slits each with slit-defining walls of material and thickness to absorb beam components impinging on them. The slits extend further in one direction than the other. The detector for separately detecting beam components passing through the slits also provides data output signals. It comprises a plurality of radiation transducing portions which are not photoconductor elements each at the end of a slit. A positioner operates to change the transverse position of the slits and radiation transducing portions relative to the source, wherein each radiation transducing element is positioned within its respective slit between the slit defining walls. Full details and preferred embodiments are given. (U.K.)

  18. Devices for obtaining information about radiation sources

    International Nuclear Information System (INIS)

    Tosswill, C.H.

    1981-01-01

    The invention provides a sensitive, fast, high-resolution device for obtaining information about the distribution of gamma and X-radiation sources and provides a radiation detector useful in such a device. It comprises a slit collimator with a multiplicity of slits each with slit-defining walls of material and thickness to absorb beam components impinging on them. The slits extend further in one transverse direction than the other. The detector for separately detecting beam components passing through the slits also provides data output signals. It comprises a plurality of radiation transducing portions, each at the end of a slit. A positioner changes the transverse position of the slits and radiation transducer (a photoconductor) relative to the source. Applications are in nuclear medicine and industry. Full details and preferred embodiments are given. (U.K.)

  19. Radiation sensitive area detection device and method

    Science.gov (United States)

    Carter, Daniel C. (Inventor); Hecht, Diana L. (Inventor); Witherow, William K. (Inventor)

    1991-01-01

    A radiation sensitive area detection device for use in conjunction with an X ray, ultraviolet or other radiation source is provided which comprises a phosphor containing film which releases a stored diffraction pattern image in response to incoming light or other electromagnetic wave. A light source such as a helium-neon laser, an optical fiber capable of directing light from the laser source onto the phosphor film and also capable of channelling the fluoresced light from the phosphor film to an integrating sphere which directs the light to a signal processing means including a light receiving means such as a photomultiplier tube. The signal processing means allows translation of the fluoresced light in order to detect the original pattern caused by the diffraction of the radiation by the original sample. The optical fiber is retained directly in front of the phosphor screen by a thin metal holder which moves up and down across the phosphor screen and which features a replaceable pinhole which allows easy adjustment of the resolution of the light projected onto the phosphor film. The device produces near real time images with high spatial resolution and without the distortion that accompanies prior art devices employing photomultiplier tubes. A method is also provided for carrying out radiation area detection using the device of the invention.

  20. Method and device for controlling radiation

    International Nuclear Information System (INIS)

    Wilhelm, G.M.

    1979-01-01

    A device which will control radiation emanating from colour television sets is described. It consists of two transparent plates the same size as a television screen, with a thin layer of transparent mineral oil sealed between them. The device may be installed by the manufacturer or bought separately and installed by the user. (LL)

  1. Radiation dose rate measuring device

    International Nuclear Information System (INIS)

    Sorber, R.

    1987-01-01

    A portable device is described for in-field usage for measuring the dose rate of an ambient beta radiation field, comprising: a housing, substantially impervious to beta radiation, defining an ionization chamber and having an opening into the ionization chamber; beta radiation pervious electrically-conductive window means covering the opening and entrapping, within the ionization chamber, a quantity of gaseous molecules adapted to ionize upon impact with beta radiation particles; electrode means disposed within the ionization chamber and having a generally shallow concave surface terminating in a generally annular rim disposed at a substantially close spacing to the window means. It is configured to substantially conform to the window means to define a known beta radiation sensitive volume generally between the window means and the concave surface of the electrode means. The concave surface is effective to substantially fully expose the beta radiation sensitive volume to the radiation field over substantially the full ambient area faced by the window means

  2. Terrestrial radiation effects in ULSI devices and electronic systems

    CERN Document Server

    Ibe, Eishi H

    2014-01-01

    A practical guide on how mathematical approaches can be used to analyze and control radiation effects in semiconductor devices within various environments Covers faults in ULSI devices to failures in electronic systems caused by a wide variety of radiation fields, including electrons, alpha -rays, muons, gamma rays, neutrons and heavy ions. Readers will learn the environmental radiation features at the ground or avionics altitude. Readers will also learn how to make numerical models from physical insight and what kind of mathematical approaches should be implemented to analyze the radiation effects. A wide variety of mitigation techniques against soft-errors are reviewed and discussed. The author shows how to model sophisticated radiation effects in condensed matter in order to quantify and control them. The book provides the reader with the knowledge on a wide variety of radiation fields and their effects on the electronic devices and systems. It explains how electronic systems including servers and rout...

  3. Radiation detection device

    International Nuclear Information System (INIS)

    Peschmann, Kristian.

    1982-01-01

    A radiation detector suitable for use in computer tomography device has an ionization chamber which comprises a high voltage electrode, a collector electrode, a high voltage source having two terminals, one connected to the high voltage electrode, current measuring means having two terminals, one connected to the high voltage source and the other to the collector electrode, and an auxilliary electrode near and parallel to the entrance window of the device, having one adjacent to the high voltage electrode and the other adjacent but not connected to the collector electrode. The auxilliary electrode is connected to the high voltage source. In this way the electric field between the high voltage and collector electrodes is made homogeneous in the vicinity of the auxilliary electrode, improving the measuring speed of the detector

  4. Ultraviolet Radiation Induces Dose-Dependent Pigment Dispersion in Crustacean Chromatophores

    OpenAIRE

    Gouveia, Glauce Ribeiro; Lopes, Thaís Martins; Neves, Carla Amorim; Nery, Luiz Eduardo Maia; Trindade, Gilma Santos

    2004-01-01

    Pigment dispersion in chromatophores as a response to UV radiation was investigated in two species of crustaceans, the crab Chasmagnathus granulata and the shrimp Palaemonetes argentinus. Eyestalkless crabs and shrimps maintained on either a black or a white background were irradiated with different UV bands. In eyestalkless crabs the significant minimal effective dose inducing pigment dispersion was 0.42 J/cm2 for UVA and 2.15 J/cm2 for UVB. Maximal response was achieved with 10.0 J/cm...

  5. Tunable radiation emitting semiconductor device

    NARCIS (Netherlands)

    2009-01-01

    A tunable radiation emitting semiconductor device includes at least one elongated structure at least partially fabricated from one or more semiconductor materials exhibiting a bandgap characteristic including one or more energy transitions whose energies correspond to photon energies of light

  6. Radiation sensitive solid state devices

    International Nuclear Information System (INIS)

    Shannon, J.M.; Ralph, J.E.

    1975-01-01

    A solid state radiation sensitive device is described employing JFETs as the sensitive elements. Two terminal construction is achieved by using a common conductor to capacitively couple to the JFET gate and to one of the source and drain connections. (auth)

  7. International Standards for Radiation Sterilization of Medical Devices

    International Nuclear Information System (INIS)

    Miller, A.

    2007-01-01

    For a terminally sterilized medical device to be designated '' STERILE '', probability of finding the viable micro-organisms in the device shall be equal to or less than 1 x 10 -6 (EN 556-1:2001: Sterilization of medical devices - Requirements for medical devices to be designated '' STERILE '' - Part 1: Requirements for terminally sterilized medical devices). Author presents the main legal aspects of the international standards for radiation sterilization of medical devices

  8. Space and military radiation effects in silicon-on-insulator devices

    International Nuclear Information System (INIS)

    Schwank, J.R.

    1996-09-01

    Advantages in transient ionizing and single-event upset (SEU) radiation hardness of silicon-on-insulator (SOI) technology spurred much of its early development. Both of these advantages are a direct result of the reduced charge collection volume inherent to SOI technology. The fact that SOI transistor structures do not include parasitic n-p-n-p paths makes them immune to latchup. Even though considerable improvement in transient and single-event radiation hardness can be obtained by using SOI technology, there are some attributes of SOI devices and circuits that tend to limit their overall hardness. These attributes include the bipolar effect that can ultimately reduce the hardness of SOI ICs to SEU and transient ionizing radiation, and charge buildup in buried and sidewall oxides that can degrade the total-dose hardness of SOI devices. Nevertheless, high-performance SOI circuits can be fabricated that are hardened to both space and nuclear radiation environments, and radiation-hardened systems remain an active market for SOI devices. The effects of radiation on SOI MOS devices are reviewed

  9. Black hole radiation with modified dispersion relation in tunneling paradigm: Static frame

    Directory of Open Access Journals (Sweden)

    Jun Tao

    2017-09-01

    Full Text Available To study possible deviations from the Hawking's prediction, we assume that the dispersion relations of matter fields are modified at high energies and use the Hamilton–Jacobi method to investigate the corresponding effects on the Hawking radiation in this paper. The preferred frame is the static frame of the black hole. The dispersion relation adopted agrees with the relativistic one at low energies but is modified near the Planck mass mp. We calculate the corrections to the Hawking temperature for massive and charged particles to O(mp−2 and massless and neutral particles to all orders. Our results suggest that the thermal spectrum of radiations near horizon is robust, e.g. corrections to the Hawking temperature are suppressed by mp. After the spectrum of radiations near the horizon is obtained, we use the brick wall model to compute the thermal entropy of a massless scalar field near the horizon of a 4D spherically symmetric black hole. We find that the subleading logarithmic term of the entropy does not depend on how the dispersion relations of matter fields are modified. Finally, the luminosities of black holes are computed by using the geometric optics approximation.

  10. Near field resonant inductive coupling to power electronic devices dispersed in water

    NARCIS (Netherlands)

    Kuipers, J.; Bruning, H.; Bakker, S.; Rijnaarts, H.H.M.

    2012-01-01

    The purpose of this research was to investigate inductive coupling as a way to wirelessly power electronic devices dispersed in water. The most important parameters determining this efficiency are: (1) the coupling between transmitting and receiving coils, (2) the quality factors of the transmitting

  11. Evaluation of material dispersion using a nanosecond optical pulse radiator.

    Science.gov (United States)

    Horiguchi, M; Ohmori, Y; Miya, T

    1979-07-01

    To study the material dispersion effects on graded-index fibers, a method for measuring the material dispersion in optical glass fibers has been developed. Nanosecond pulses in the 0.5-1.7-microm region are generated by a nanosecond optical pulse radiator and grating monochromator. These pulses are injected into a GeO(2)-P(2)0(5)-doped silica graded-index fiber. Relative time delay changes between different wavelengths are used to determine material dispersion, core glass refractive index, material group index, and optimum profile parameter of the graded-index fiber. From the measured data, the optimum profile parameter on the GeO(2)-P(2)O(5)-doped silica graded-index fiber could be estimated to be 1.88 at 1.27 microm of the material dispersion free wavelength region and 1.82 at 1.55 microm of the lowest-loss wavelength region in silica-based optical fiber waveguides.

  12. Radiation detector device for measuring ionizing radiation

    International Nuclear Information System (INIS)

    Brake, D. von der.

    1983-01-01

    The device contains a compensating filter circuit, which guarantees measurement of the radiation dose independent of the energy or independent of the energy and direction. The compensating filter circuit contains a carrier tube of a slightly absorbing metal with an order number not higher than 35, which surrounds a tubular detector and which carries several annular filter parts on its surface. (orig./HP) [de

  13. Particle interaction and displacement damage in silicon devices operated in radiation environments

    International Nuclear Information System (INIS)

    Leroy, Claude; Rancoita, Pier-Giorgio

    2007-01-01

    Silicon is used in radiation detectors and electronic devices. Nowadays, these devices achieving submicron technology are parts of integrated circuits of large to very large scale integration (VLSI). Silicon and silicon-based devices are commonly operated in many fields including particle physics experiments, nuclear medicine and space. Some of these fields present adverse radiation environments that may affect the operation of the devices. The particle energy deposition mechanisms by ionization and non-ionization processes are reviewed as well as the radiation-induced damage and its effect on device parameters evolution, depending on particle type, energy and fluence. The temporary or permanent damage inflicted by a single particle (single event effect) to electronic devices or integrated circuits is treated separately from the total ionizing dose (TID) effect for which the accumulated fluence causes degradation and from the displacement damage induced by the non-ionizing energy-loss (NIEL) deposition. Understanding of radiation effects on silicon devices has an impact on their design and allows the prediction of a specific device behaviour when exposed to a radiation field of interest

  14. Frequency and Temperature Dependence of Fabrication Parameters in Polymer Dispersed Liquid Crystal Devices

    Directory of Open Access Journals (Sweden)

    Juan C. Torres

    2014-05-01

    Full Text Available A series of polymer dispersed liquid crystal devices using glass substrates have been fabricated and investigated focusing on their electrical properties. The devices have been studied in terms of impedance as a function of frequency. An electric equivalent circuit has been proposed, including the influence of the temperature on the elements into it. In addition, a relevant effect of temperature on electrical measurements has been observed.

  15. Frequency and Temperature Dependence of Fabrication Parameters in Polymer Dispersed Liquid Crystal Devices

    Science.gov (United States)

    Torres, Juan C.; Vergaz, Ricardo; Barrios, David; Sánchez-Pena, José Manuel; Viñuales, Ana; Grande, Hans Jürgen; Cabañero, Germán

    2014-01-01

    A series of polymer dispersed liquid crystal devices using glass substrates have been fabricated and investigated focusing on their electrical properties. The devices have been studied in terms of impedance as a function of frequency. An electric equivalent circuit has been proposed, including the influence of the temperature on the elements into it. In addition, a relevant effect of temperature on electrical measurements has been observed. PMID:28788632

  16. Transient radiation effects in GaAs semiconductor devices

    International Nuclear Information System (INIS)

    Chang, J.Y.; Stauber, M.; Ezzeddine, A.; Howard, J.W.; Constantine, A.G.; Becker, M.; Block, R.C.

    1988-01-01

    This paper describes an ongoing program to identify the response of GaAs devices to intense pulses of ionizing radiation. The program consists of experimental measurements at the Rensselaer Polytechnic Institute's RPI electron linear accelerator (Linac) on generic GaAs devices built by Grumman Tachonics Corporation and the analysis of these results through computer simulation with the circuit model code SPICE (including radiation effects incorporated in the variations TRISPICE and TRIGSPICE and the device model code PISCES IIB). The objective of this program is the observation of the basic response phenomena and the development of accurate simulation tools so that results of Linac irradiations tests can be understood and predicted

  17. Radiation dose distributions due to sudden ejection of cobalt device.

    Science.gov (United States)

    Abdelhady, Amr

    2016-09-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The transient radiation effects and hardness of programmed device

    International Nuclear Information System (INIS)

    Du Chuanhua; Xu Xianguo; Zhao Hailin

    2014-01-01

    A review and summary of research and development in the investigation of transient ionizing radiation effects in device and cirviut is presented. The transient ionizing radiation effects in two type of programmed device, that's 32 bit Microcontroller and antifuse FPGA, were studied. The expeiment test data indicate: The transient ionizing radiation effects of 32 bit Microcontroller manifested self-motion restart and Latchup, the Latchup threshold was 5 × 10"7 Gy (Si)/s. The transient ionizing radiation effects of FPGA was reset, no Latchup. The relationship of circuit effects to physical mechanisms was analized. A new method of hardness in circiut design was put forward. (authors)

  19. Radiation dose distributions due to sudden ejection of cobalt device

    International Nuclear Information System (INIS)

    Abdelhady, Amr

    2016-01-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. - Highlights: • This study aims to calculate the dose rate profiles after cobalt device ejection from open-pool-type reactor core. • MicroShield code was used to evaluate the dose rates inside the reactor control room. • McSKY code was used to evaluate the dose rates outside the reactor building. • The calculated dose rates for workers are higher than the permissible limits after 18 s from device ejection.

  20. Tm2+ luminescent materials for solar radiation conversion devices

    NARCIS (Netherlands)

    Van der Kolk, E.

    2015-01-01

    A solar radiation conversion device is described that comprises a luminescent Tm 2+ inorganic material for converting solar radiation of at least part of the UV and/or visible and/or infra red solar spectrum into infrared solar radiation, preferably said infrared solar radiation having a wavelength

  1. Radiation effects on custom MOS devices

    International Nuclear Information System (INIS)

    Harris, R.

    1999-05-01

    This Thesis consists of four chapters: The first is primarily for background information on the effects of radiation on MOS devices and the theory of wafer bonding; the second gives a full discussion of all practical work carried out for manufacture of Field Effect test Capacitors, the third discusses manufacture of vacuum insulator Field Effect Transistors (FET's) and the fourth discusses the testing of these devices. Using a thermally bonded field effect capacitor structure, a vacuum dielectric was studied for use in high radiation environments with a view to manufacturing a CMOS compatible, micro machined transistor. Results are given in the form of high frequency C-V curves before and after a 120 kGy(Si), 12 MRad(Si), dose from a Co 60 source showing a 1 Volt shift. The work is then extended to the design and manufacture of a micro machined, under-etch technique, Field Effect Transistor for use in high radiation areas. Results are shown for Threshold, Subthreshold and Transfer characteristics before and after irradiation up to a total dose of 100kGy or 10MRad. The conclusion from this work is that it should be possible to commercially manufacture practical vacuum dielectric field effect transistors which are radiation hard to at least 120 kGy(Si). (author)

  2. Modeling of laser radiation transport in powder beds with high-dispersive metal particles

    Energy Technology Data Exchange (ETDEWEB)

    Kharanzhevskiy, Evgeny, E-mail: eh@udsu.ru [Udmurt State University, 426034 Universitetskaya St., 1, Izhevsk (Russian Federation); Kostenkov, Sergey [Udmurt State University, 426034 Universitetskaya St., 1, Izhevsk (Russian Federation)

    2014-02-15

    Highlights: ► Transport of laser energy in dispersive powder beds was numerically simulated. ► The results of simulating are compared with physicals experiments. ► We established the dependence of the extinction coefficient from powder properties. ► A confirmation of a geometric optic approach for monodisperse powders was proposed. -- Abstract: Two-dimensional transfer of laser radiation in a high-dispersive powder heterogeneous media is numerically calculated. The size of particles is comparable with the wave length of laser radiation so the model takes into account all known physical effects that are occurred on the vacuum–metal surface interface. It is shown that in case of small particles size both morphology of powder particles and porosity of beds influence on absorptance by the solid phase and laser radiation penetrate deep into the area of geometric shadow. Intensity of laser radiation may be described as a function corresponded to the Beer–Lambert–Bouguer law.

  3. Modeling of laser radiation transport in powder beds with high-dispersive metal particles

    International Nuclear Information System (INIS)

    Kharanzhevskiy, Evgeny; Kostenkov, Sergey

    2014-01-01

    Highlights: ► Transport of laser energy in dispersive powder beds was numerically simulated. ► The results of simulating are compared with physicals experiments. ► We established the dependence of the extinction coefficient from powder properties. ► A confirmation of a geometric optic approach for monodisperse powders was proposed. -- Abstract: Two-dimensional transfer of laser radiation in a high-dispersive powder heterogeneous media is numerically calculated. The size of particles is comparable with the wave length of laser radiation so the model takes into account all known physical effects that are occurred on the vacuum–metal surface interface. It is shown that in case of small particles size both morphology of powder particles and porosity of beds influence on absorptance by the solid phase and laser radiation penetrate deep into the area of geometric shadow. Intensity of laser radiation may be described as a function corresponded to the Beer–Lambert–Bouguer law

  4. Development of Quantum Devices and Algorithms for Radiation Detection and Radiation Signal Processing

    International Nuclear Information System (INIS)

    El Tokhy, M.E.S.M.E.S.

    2012-01-01

    The main functions of spectroscopy system are signal detection, filtering and amplification, pileup detection and recovery, dead time correction, amplitude analysis and energy spectrum analysis. Safeguards isotopic measurements require the best spectrometer systems with excellent resolution, stability, efficiency and throughput. However, the resolution and throughput, which depend mainly on the detector, amplifier and the analog-to-digital converter (ADC), can still be improved. These modules have been in continuous development and improvement. For this reason we are interested with both the development of quantum detectors and efficient algorithms of the digital processing measurement. Therefore, the main objective of this thesis is concentrated on both 1. Study quantum dot (QD) devices behaviors under gamma radiation 2. Development of efficient algorithms for handling problems of gamma-ray spectroscopy For gamma radiation detection, a detailed study of nanotechnology QD sources and infrared photodetectors (QDIP) for gamma radiation detection is introduced. There are two different types of quantum scintillator detectors, which dominate the area of ionizing radiation measurements. These detectors are QD scintillator detectors and QDIP scintillator detectors. By comparison with traditional systems, quantum systems have less mass, require less volume, and consume less power. These factors are increasing the need for efficient detector for gamma-ray applications such as gamma-ray spectroscopy. Consequently, the nanocomposite materials based on semiconductor quantum dots has potential for radiation detection via scintillation was demonstrated in the literature. Therefore, this thesis presents a theoretical analysis for the characteristics of QD sources and infrared photodetectors (QDIPs). A model of QD sources under incident gamma radiation detection is developed. A novel methodology is introduced to characterize the effect of gamma radiation on QD devices. The rate

  5. Black hole radiation with modified dispersion relation in tunneling paradigm: free-fall frame

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Yang, Haitang; Ying, Shuxuan [Sichuan University, Center for Theoretical Physics, College of Physical Science and Technology, Chengdu (China)

    2016-01-15

    Due to the exponential high gravitational red shift near the event horizon of a black hole, it might appear that the Hawking radiation would be highly sensitive to some unknown high energy physics. To study the effects of any unknown physics at the Planck scale on the Hawking radiation, the dispersive field theory models have been proposed, which are variations of Unruh's sonic black hole analogy. In this paper, we use the Hamilton-Jacobi method to investigate the dispersive field theory models. The preferred frame is the free-fall frame of the black hole. The dispersion relation adopted agrees with the relativistic one at low energy but is modified near the Planck mass m{sub p}. The corrections to the Hawking temperature are calculated for massive and charged particles to O(m{sub p}{sup -2}) and neutral and massless particles with λ = 0 to all orders. The Hawking temperature of radiation agrees with the standard one at the leading order. After the spectrum of radiation near the horizon is obtained, we use the brick wall model to compute the thermal entropy of a massless scalar field near the horizon of a 4D spherically symmetric black hole and a 2D one. Finally, the luminosity of a Schwarzschild black hole is calculated by using the geometric optics approximation. (orig.)

  6. Evaluation of an enclosed ultraviolet-C radiation device for decontamination of mobile handheld devices.

    Science.gov (United States)

    Mathew, J Itty; Cadnum, Jennifer L; Sankar, Thriveen; Jencson, Annette L; Kundrapu, Sirisha; Donskey, Curtis J

    2016-06-01

    Mobile handheld devices used in health care settings may become contaminated with health care-associated pathogens. We demonstrated that an enclosed ultraviolet-C radiation device was effective in rapidly reducing methicillin-resistant Staphylococcus aureus, and with longer exposure times, Clostridium difficile spores, on glass slides and reducing contamination on in-use mobile handheld devices. Published by Elsevier Inc.

  7. Using a Commercial Ethernet PHY Device in a Radiation Environment

    Science.gov (United States)

    Parks, Jeremy; Arani, Michael; Arroyo, Roberto

    2014-01-01

    This work involved placing a commercial Ethernet PHY on its own power boundary, with limited current supply, and providing detection methods to determine when the device is not operating and when it needs either a reset or power-cycle. The device must be radiation-tested and free of destructive latchup errors. The commercial Ethernet PHY's own power boundary must be supplied by a current-limited power regulator that must have an enable (for power cycling), and its maximum power output must not exceed the PHY's input requirements, thus preventing damage to the device. A regulator with configurable output limits and short-circuit protection (such as the RHFL4913, rad hard positive voltage regulator family) is ideal. This will prevent a catastrophic failure due to radiation (such as a short between the commercial device's power and ground) from taking down the board's main power. Logic provided on the board will detect errors in the PHY. An FPGA (field-programmable gate array) with embedded Ethernet MAC (Media Access Control) will work well. The error detection includes monitoring the PHY's interrupt line, and the status of the Ethernet's switched power. When the PHY is determined to be non-functional, the logic device resets the PHY, which will often clear radiation induced errors. If this doesn't work, the logic device power-cycles the FPGA by toggling the regulator's enable input. This should clear almost all radiation induced errors provided the device is not latched up.

  8. Radiation detection and measurement concepts, methods and devices

    CERN Document Server

    McGregor, Douglas

    2019-01-01

    This text on radiation detection and measurement is a response to numerous requests expressed by students at various universities, in which the most popularly used books do not provide adequate background material, nor explain matters in understandable terms. This work provides a modern overview of radiation detection devices and radiation measurement methods. The topics selected in the book have been selected on the basis of the author’s many years of experience designing radiation detectors and teaching radiation detection and measurement in a classroom environment.

  9. Improvement of a device for region radiation survey

    International Nuclear Information System (INIS)

    Poltinnikov, S.A.

    1978-01-01

    The electromechnanical device based on coding the turning angle of an automobile wheel by the number of electric pulses controlling the step motor of a film gate of gamma radiometer is proposed. The device is intended for automatizing recordings of gamma-radiation levels depending on a certain distance in a given terrain. The device has been tested at car speeds from 10 to 80 km/hr

  10. Radiation effects on semiconductor devices in high energy heavy ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Belousov, Anton

    2014-10-20

    Radiation effects on semiconductor devices in GSI Helmholtz Center for Heavy Ion Research are becoming more and more significant with the increase of beam intensity due to upgrades. Moreover a new accelerator is being constructed on the basis of GSI within the project of facility for antiproton and ion research (FAIR). Beam intensities will be increased by factor of 100 and energies by factor of 10. Radiation fields in the vicinity of beam lines will increase more than 2 orders of magnitude and so will the effects on semiconductor devices. It is necessary to carry out a study of radiation effects on semiconductor devices considering specific properties of radiation typical for high energy heavy ion accelerators. Radiation effects on electronics in accelerator environment may be divided into two categories: short-term temporary effects and long-term permanent degradation. Both may become critical for proper operation of some electronic devices. This study is focused on radiation damage to CCD cameras in radiation environment of heavy ion accelerator. Series of experiments with irradiation of devices under test (DUTs) by secondary particles produced during ion beam losses were done for this study. Monte Carlo calculations were performed to simulate the experiment conditions and conditions expected in future accelerator. Corresponding comparisons and conclusions were done. Another device typical for accelerator facilities - industrial Ethernet switch was tested in similar conditions during this study. Series of direct irradiations of CCD and MOS transistors with heavy ion beams were done as well. Typical energies of the primary ion beams were 0.5-1 GeV/u. Ion species: from Na to U. Intensities of the beam up to 10{sup 9} ions/spill with spill length of 200-300 ns. Criteria of reliability and lifetime of DUTs in specific radiation conditions were formulated, basing on experimental results of the study. Predictions of electronic device reliability and lifetime were

  11. Radiation damage assessment of Nb tunnel junction devices

    International Nuclear Information System (INIS)

    King, S.E.; Magno, R.; Maisch, W.G.

    1991-01-01

    This paper reports on the radiation hardness of a new technology using Josephson junctions that was explored by an irradiation using a fluence of 7.6 x 10 14 protons/cm 2 at an energy of 63 MeV from the U.C. Davis cyclotron. In what the authors believe is the first radiation assessment of Nb/Al 2 O 3 /Nb devices, the permanent damage in these devices was investigated. No permanent changes in the I-V characteristics of the junctions were observed indicating no significant level of material defects have occurred at this level of irradiation

  12. Characteristics of withstanding radiation damage of InP crystals and devices

    International Nuclear Information System (INIS)

    Yamaguchi, Masafumi; Ando, Koshi

    1988-01-01

    Recently, the authors discovered that the characteristics of with standing radiation damage of InP crystals and devices (solar cells) are superior to those of Si and GaAs crystals and devices. Also the restoration phenomena at room temperature of radiation deterioration and the accelerated anneal phenomena by light irradiation and the injection of other minority, carriers in InP system devices were found. Such excellent characteristics suggested that InP devices are promising for the use in space. In this paper, taking an example of solar cells, the radiation resistance characteristics and their mechanism of InP crystals and devices are reported, based on the results of analysis by deep level transient spectroscopy and others. In InP solar cells, the high efficiency of photoelectric conversion was maintained even in the high dose irradiation of 1 MeV electron beam. As the carrier concentration in InP crystals is higher, they are stronger against radiation. With the increase of carrier concentration, the rate of anneal of radiation deterioration at room temperature increased. The accelerated anneal effect by minority carrier injection was remarkable in n + -p junction cells. The excellent characteristics of InP crystals are due to the formation of Frenkel defects of P and their instability. (K.I.)

  13. Treatment of Cerenkov radiation from electric and magnetic charges in dispersive and dissipative media

    International Nuclear Information System (INIS)

    Saffouri, M.H.

    1982-07-01

    A rigorous treatment of the problem of Cerenkov radiation from fast moving electric and magnetic charges is presented. This is based on the rigorous solution of Maxwell's equations in a general dispersive medium possessing dielectric and magnetic properties and with, and without, dissipation. It is shown that the fields are completely determined by one scalar function. Expressions for the exact fields are obtained. From the asymptotic fields all the relevant properties of Cerenkov radiation are reproduced. In particular, it is shown that in the absence of dissipation the energy in each mode travels with the phase velocity of that mode. For a dissipative medium the electric field develops a longitudinal component and the energy propagates at an angle to the phase velocity. Application to the case of a Tachyon shows that it must emit Cerenkov radiation in vacuum. An estimate is given for the resulting linear density of emitted radiation. Finally, two suggestions are made for the experimental detection of magnetic charges and electric dipole moments of elementary particles based upon the Cerenkov radiation which they would emit in dispersive media. (author)

  14. Effect of ionizing radiation on cholesterol in aqueous dispersion

    International Nuclear Information System (INIS)

    Lakritz, L.; Maerker, G.

    1989-01-01

    Aqueous sodium stearate dispersions of cholesterol were irradiated at 0-2 degrees C with absorbed doses ranging from 2.5 to 50 kGy. The resulting mixture of cholesterol derivatives was isolated and examined for 7-ketocholesterol and cholesterol 5 alpha, 6 alpha-epoxide and 5 beta, 6 beta-epoxide content. Concentrations of all three compounds increased with dose, while the ratio of 7-ketocholesterol to total epoxides decreased with increasing dose. The ratio of 7-ketocholestrol to the epoxides was approximately 1 or below at all dose levels while the same ratio in autoxidations of cholesterol in dispersions was normally 6 or greater. The change in the keto/epoxide ratio may be a means for determining whether meat or other foods containing cholesterol have been subjected to ionizing radiation

  15. Effects of radiator shapes on the bubble diving and dispersion of ultrasonic argon process.

    Science.gov (United States)

    Liu, Xuan; Xue, Jilai; Zhao, Qiang; Le, Qichi; Zhang, Zhiqiang

    2018-03-01

    In this work, three ultrasonic radiators in different shapes have been designed in order to investigate the effects of radiator shapes on the argon bubble dispersion and diving as well as the degassing efficiency on magnesium melt. The radiator shape has a strong influence on the bubble diving and dispersion by ultrasound. A massive argon bubble slowly flows out from the radiator with the hemispherical cap, due to the covering hemispherical cap. Using a concave radiator can intensively crush the argon bubbles and drive them much deep into the water/melt, depending on the competition between the argon flow and opposite joint shear force from the concave surface. The evolution of wall bubbles involves the ultrasonic cavities carrying dissolved gas, migrating to the vessel wall, and escaping from the liquid. Hydrogen removal can be efficiently achieved using a concave radiator. The hydrogen content can be reduced from 22.3 μg/g down to 8.7 μg/g. Mechanical properties are significantly promoted, due to the structure refinement and efficient hydrogen removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. An image scanning device using radiating energy

    International Nuclear Information System (INIS)

    Jacob, Daniel.

    1976-01-01

    Said invention relates to an image scanning device using radiating energy. More particularly, it relates to a device for generating a scanning beam of rectangular cross section from a γ or X-ray source. Said invention can be applied to radiographic units of the 'microdose' type used by airline staffs and others for the fast efficient inspection of luggage and parcels in view of detecting hidden things [fr

  17. Post Blast Nuclear Forensics Of A Radiological Dispersion Device Scene

    International Nuclear Information System (INIS)

    Sharon, A.; Halevy, I; Sattinger, D; Admon, U; Banaim, P; Yaar, I.; Krantz, L.

    2014-01-01

    'Green Field' (GF) project conducting in Israel, between the years ’06-‘14, aimed at increasing the preparedness for outdoor terrorism events, where a radioactive (RA) material is dispersed by an explosive charge. Under the project framework a wide experimental program was established and conducted. The experimental plan included set of about 150 detonation tests that were done in order to close some gaps of knowledge mainly relating to the “source term” characterization. Experiments were done using wide range of different source term parameters. Among these are: explosive types, dispersed materials (both, stable simulants and short live radio isotopes), device geometries, ground surfaces, detonation heights and orientation, atmospheric stability situations etc. Field data collection and documentation used some of the “state of the art” detectors, cameras etc. Based on a comprehensive data analysis and complementary simulations, a methodology for post blast forensic using data collected from the close vicinity of the detention point was developed

  18. Medical device for applying therapeutic radiation

    International Nuclear Information System (INIS)

    Tokita, K.M.; Haller, B.L.

    1986-01-01

    A device is described for applying therapeutic radiation from a preselected radiation source to a predetermined portion of a body comprising, in combination: a body member having: an external peripheral surface; a first end surface; and a second end surface spaced from the first end surface; the body member further comprising: at least first internal walls defining a first radiation source receiving channel means spaced a preselected distance from the peripheral surface, and having: a first portion extending from the second end surface to regions adjacent the first end surface; and a second portion extending from the first portion at the first end surface to the second end surface; and, the channel means communicating with regions external the body member at the second surface whereby the radiation source of a preselected intensity inserted at least along a preselected portion of the channel means is applied to the predetermined area of the body requiring therapeutic radiation treatment

  19. Operation control device under radiation exposure

    International Nuclear Information System (INIS)

    Kimura, Kiichi; Murakami, Toichi.

    1994-01-01

    The device of the present invention performs smooth progress of operation by remote control for a plurality of operations in periodical inspections in controlled areas of a nuclear power plant, thereby reducing the operator's exposure dose. Namely, the device monitors the progressing state of the operation by displaying the progress of operation on a CRT of a centralized control device present in a low dose area remote from an operation field through an ITV camera disposed in the vicinity of the operation field. Further, operation sequence and operation instruction procedures previously inputted in the device are indicated to the operation field through an operation instruction outputting device (field CRT) in accordance with the progress of the operation steps. On the other hand, the operation progress can be aided by inputting information from the operation field such as start or completion of the operation steps. Further, the device of the present invention can monitor the change of operation circumstances and exposure dose of operators based on the information from a radiation dose measuring device disposed in the operation circumstance and to individual operators. (I.S.)

  20. Apparatus for minimizing radiation exposure and improving resolution in radiation imaging devices

    International Nuclear Information System (INIS)

    Ashe, J.B.; Williams, G.H.; Sypal, K.L.

    1978-01-01

    A collimator is disclosed for minimizing radiation exposure and improving resolution in radiation imaging devices. The collimator provides a penetrating beam of radiation from a source thereof, which beam is substantially non-diverging in at least one direction. In the preferred embodiment, the collimator comprises an elongated sandwich assembly of a plurality of layers of material exhibiting relatively high radiation attenuation characteristics, which attenuating layers are spaced apart and separated from one another by interleaved layers of material exhibiting relatively low radiation attenuation characteristics. The sandwich assembly is adapted for lengthwise disposition and orientation between a radiation source and a target or receiver such that the attenuating layers are parallel to the desired direction of the beam with the interleaved spacing layers providing direct paths for the radiation

  1. Control device intended for a gamma radiation measuring instrument

    International Nuclear Information System (INIS)

    1976-01-01

    This invention concerns a monitoring device for a gamma radiation measuring instrument or radiation meter, in which the radiation to be measured brings about, inter alia, the ionisation of a gas and the generation of current pulses. The dial of this meter is generally calibrated in roentgens per hour, i.e. in radiation rate units. This instrument of very simple design is remarkable for its operating reliability. Preferably placed at the inlet to a radioactive area, it enables every user of a ratemeter to check, over the entire measuring range of this instrument, its proper operation prior to entering the area. To this effect, the monitoring device in question has a thick wall lead castle, having an internal cavity in which is mounted a radioactive source delivering a gamma radiation with given constant characteristics, through a measurement window closed by a calibrated plug. Lead doors articulated on the castle can be superimposed on this window to bring about a given attenuation of the radiation coming from the source and delivered to the exterior of the castle [fr

  2. Radiation Characterization of Commercial GaN Devices

    Science.gov (United States)

    Harris, Richard D.; Scheick, Leif Z.; Hoffman, James P.; Thrivikraman, Tushar; Jenabi, Masud; Gim, Yonggyu; Miyahira, Tetsuo

    2011-01-01

    Radiative feedback from primordial protostars and final mass of the first star Commercially available devices fabricated from GaN are beginning to appear from a number of different suppliers. Based on previous materials and prototype device studies, it is expected that these commercial devices will be quite tolerant to the types of radiation encountered in space. This expectation needs to be verified and the study described herein was undertaken for that purpose. All of the parts discussed in this report are readily available commercially. The parts chosen for study are all targeted for RF applications. Three different studies were performed: 1) a preliminary DDD/TID test of a variety of part types was performed by irradiating with 50 MeV protons, 2) a detailed DDD/TID study of one particular part type was performed by irradiating with 50 MeV protons, and 3) a SEB/SEGR test was performed on a variety of part types by irradiating with heavy ions. No significant degradation was observed in the tests performed in this study.

  3. EMERGENCY RADIATION SURVEY DEVICE ONBOARD THE UAV

    Directory of Open Access Journals (Sweden)

    S. Bogatov

    2013-08-01

    Full Text Available Radiation survey device (RSD on the base of unmanned aerial vehicle (UAV was developed as an equipment of rescue forces for radiation situation reconnaissance in case of emergency. RSD is multi range radiometer with spectrometer functions capable to work within gamma ray fields of dose rate 10–7 – 10–1 Sievert per hour. UAV md4-1000 (Microdrones GmbH, Germany was selected as the RSD carrier as a reliable vehicle with appropriate properties. Short description of RSD, UAV and developed software features as well as sensitivity assessments for different radiation sources are presented.

  4. Bill C-5, an act to amend the radiation emitting devices act

    International Nuclear Information System (INIS)

    1984-01-01

    This Act, entitled Bill C-5, allows for a series of amendments to the Radiation Emitting Devices Act. The amendments relate to regulations concerned with the sale, lease or import, labelling, advertising, packaging, safety standards and inspection of radiation emitting devices

  5. Main radiation protection actions for medical personnel as primary responders front of an event with radiological dispersive device; Principais acoes de protecao radiologica para equipe medica como primeiros respondedores frente a um evento com dispositivo de dispersao radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Duque, Hildanielle Ramos

    2015-07-01

    After the terrorist attack in New York, USA, in 2001, there was a worldwide concern about possible attacks using radioactive material in conventional detonators, called as Radiological Dispersal Device (RDD) or 'dirty bomb'. Several studies have been and are being made to form a global knowledge about this type of event. As until now, fortunately, there has not been an event with RDD, the Goiania Radiological Accident in Brazil, 1987, is used as a reference for decision-making. Several teams with technical experts should act in an event with RDD, but the medical staffs who respond quickly to the event must be properly protected from the harmful effects of radiation. Based on the radiological protection experts performance during the Goiania accident and the knowledge from lessons learned of many radiological accidents worldwide, this work presents an adaptation of the radiation protection actions for an event with RDD that helps a medical team as primary responders. The following aspects are presented: the problem of radioactive contamination from the explosion of the device in underground environment, the actions of the first responders and evaluation of health radiation effects. This work was based on specialized articles and papers about radiological accidents and RDD; as well as personal communication and academic information of the Institute of Radiation Protection and Dosimetry. The radiation protection actions, adapted to a terrorist attack event with RDD, have as a scenario a subway station in the capital. The main results are: the use of the basic radiation protection principle of time because there is no condition to take care of a patient keeping distance or using a shielding; the use of full appropriate protection cloths for contaminating materials ensuring the physical safety of professionals, and the medical team monitoring at the end of a medical procedure, checking for surface contamination. The main conclusion is that all medical actions

  6. An analysis of radiation effects on electronics and soi-mos devices as an alternative

    International Nuclear Information System (INIS)

    Ikraiam, F. A.

    2013-01-01

    The effects of radiation on semiconductors and electronic components are analyzed. The performance of such circuitry depends upon the reliability of electronic devices where electronic components will be unavoidably exposed to radiation. This exposure can be detrimental or even fatal to the expected function of the devices. Single event effects (SEE), in particular, which lead to sudden device or system failure and total dose effects can reduce the lifetime of electronic devices in such systems are discussed. Silicon-on-insulator (SOI) technology is introduced as an alternative for radiation-hardened devices. I-V Characteristics Curves for SOI-MOS devices subjected to a different total radiation doses are illustrated. In addition, properties of some semiconductor materials such as diamond, diamond-like carbon films, SiC, GaP, and AlGaN/GaN are compared with those of SOI devices. The recognition of the potential usefulness of SOI-MOS semiconductor materials for harsh environments is discussed. A summary of radiation effects, impacts and mitigation techniques is also presented. (authors)

  7. Decontamination method and device for radiation contaminated product

    International Nuclear Information System (INIS)

    Morikawa, Kenji; Ohinata, Hiroshi; Omata, Kazuo; Sato, Toshihiko; Nakajima, Yoshihiko; Ichikawa, Seigo.

    1996-01-01

    In the present invention, radiation contaminated products generated during shot peening are decontaminated by a chelating agent, and the chelating agent is removed from the radiation contaminated products. Then the temperature of the radiation contaminated products is elevated by hot blowing at a temperature higher than a boiling point of the solvent. Then, a solvent is added to the radiation contaminated products and the solvent is evaporated abruptly. The solution of the chelating agent remained while being deposited thereto is removed by evaporation to remove it from the radiation contaminated products together with the solvent. With such procedures, all of the decontamination steps can be completed in one device without requiring a large space or not moving the radiation contaminated products on every step. (T.M.)

  8. Radiation effects and soft errors in integrated circuits and electronic devices

    CERN Document Server

    Fleetwood, D M

    2004-01-01

    This book provides a detailed treatment of radiation effects in electronic devices, including effects at the material, device, and circuit levels. The emphasis is on transient effects caused by single ionizing particles (single-event effects and soft errors) and effects produced by the cumulative energy deposited by the radiation (total ionizing dose effects). Bipolar (Si and SiGe), metal-oxide-semiconductor (MOS), and compound semiconductor technologies are discussed. In addition to considering the specific issues associated with high-performance devices and technologies, the book includes th

  9. Adjustable radiation protection device of the fluoroscope DG 10

    International Nuclear Information System (INIS)

    Hoermann, D.

    1980-01-01

    In cooperation with the 'VEB Transformatoren- und Roentgenwerk Hermann Matern', Dresden, an adjustable radiation protection device has been developed. This supplementary equipment for fluoroscopes ensures a sufficient protection of the gonads against undesirable X radiation, can be handled easily and does not annoy patients, esp. children

  10. Response of the REWARD detection system to the presence of a Radiological Dispersal Device

    Energy Technology Data Exchange (ETDEWEB)

    Luis, R.; Baptista, M.; Barros, S.; Marques, J.; Vaz, P. [IST - Campus Tecnologico e Nuclear, Estrada Nacional 10 - km 139.7, 2695-066, Bobadela LRS (Portugal); Balbuena, J.; Disch, C. [Physical Institut, University of Freiburg Hermann-Herder-Str. 3 D-79104 Freiburg (Germany); Fleta, C.; Jumilla, C.; Lozano, M. [Instituto de Microelectronica de Barcelona - IMB-CNM, CSIC, E-08193 Bellaterra, Barcelona (Spain)

    2015-07-01

    In recent years an increased international concern has emerged about the radiological and nuclear (RN) threats associated with the illicit trafficking of nuclear and radioactive materials that could be potentially used for terrorist attacks. The objective of the REWARD (Real Time Wide Area Radiation Surveillance System) project, co-funded by the European Union 7. Framework Programme Security, consisted in building a mobile system for real time, wide area radiation surveillance, using a CdZnTe detector for gamma radiation and a neutron detector based on novel silicon technologies. The sensing unit includes a GPS system and a wireless communication interface to send the data remotely to a monitoring base station, where it will be analyzed in real time and correlated with historical data from the tag location, in order to generate an alarm when an abnormal situation is detected. Due to its portability and accuracy, the system will be extremely useful in many different scenarios such as nuclear terrorism, lost radioactive sources, radioactive contamination or nuclear accidents. This paper shortly introduces the REWARD detection system, depicts some terrorist threat scenarios involving radioactive sources and special nuclear materials and summarizes the simulation work undertaken during the past three years in the framework of the REWARD project. The main objective consisted in making predictions regarding the behavior of the REWARD system in the presence of a Radiological Dispersion Device (RDD), one of the reference scenarios foreseen for REWARD, using the Monte Carlo simulation program MCNP6. The reference scenario is characterized in detail, from the i) radiological protection, ii) radiation detection requirements and iii) communications points of view. Experimental tests were performed at the Fire Brigades Facilities in Rome and at the Naples Fire Brigades, and the results, which validate the simulation work, are presented and analyzed. The response of the REWARD

  11. Response of the REWARD detection system to the presence of a Radiological Dispersal Device

    International Nuclear Information System (INIS)

    Luis, R.; Baptista, M.; Barros, S.; Marques, J.; Vaz, P.; Balbuena, J.; Disch, C.; Fleta, C.; Jumilla, C.; Lozano, M.

    2015-01-01

    In recent years an increased international concern has emerged about the radiological and nuclear (RN) threats associated with the illicit trafficking of nuclear and radioactive materials that could be potentially used for terrorist attacks. The objective of the REWARD (Real Time Wide Area Radiation Surveillance System) project, co-funded by the European Union 7. Framework Programme Security, consisted in building a mobile system for real time, wide area radiation surveillance, using a CdZnTe detector for gamma radiation and a neutron detector based on novel silicon technologies. The sensing unit includes a GPS system and a wireless communication interface to send the data remotely to a monitoring base station, where it will be analyzed in real time and correlated with historical data from the tag location, in order to generate an alarm when an abnormal situation is detected. Due to its portability and accuracy, the system will be extremely useful in many different scenarios such as nuclear terrorism, lost radioactive sources, radioactive contamination or nuclear accidents. This paper shortly introduces the REWARD detection system, depicts some terrorist threat scenarios involving radioactive sources and special nuclear materials and summarizes the simulation work undertaken during the past three years in the framework of the REWARD project. The main objective consisted in making predictions regarding the behavior of the REWARD system in the presence of a Radiological Dispersion Device (RDD), one of the reference scenarios foreseen for REWARD, using the Monte Carlo simulation program MCNP6. The reference scenario is characterized in detail, from the i) radiological protection, ii) radiation detection requirements and iii) communications points of view. Experimental tests were performed at the Fire Brigades Facilities in Rome and at the Naples Fire Brigades, and the results, which validate the simulation work, are presented and analyzed. The response of the REWARD

  12. Reading device of a radiation image contained in a radioluminescent screen and tomography device containing it

    International Nuclear Information System (INIS)

    Allemand, R.; Cuzin, M.; Parot, P.

    1984-01-01

    The present invention is aimed at improving the random access time to a stimulable radioluminescent screen point (and consequently the reading time of the screen image); it is noticeably useful for longitudinal tomography. The reading device contains a source emitting a stimulation radiation beam towards the stimulable radioluminescent screen, a control mean of the stimulation radiation beam and a deflection mean which allows the beam to scan the screen surface. The device is characterized by the use of a very fast acousto-optical type deflection mean [fr

  13. Charge-coupled devices as positron sensitive detectors of x-radiation

    International Nuclear Information System (INIS)

    Volkov, G.S.; Zazhivikhin, V.V.; Zajtsev, V.I.; Mishevskij, V.O.

    1996-01-01

    Results of theoretical and experimental studies on the sensitivity and spatial resolution of devices with a charge link (CLD) within the X-radiation energy range are described. The areas of the device application are considered

  14. Influence of UVB radiation on the lethal and sublethal toxicity of dispersed crude oil to planktonic copepod nauplii.

    Science.gov (United States)

    Almeda, Rodrigo; Harvey, Tracy E; Connelly, Tara L; Baca, Sarah; Buskey, Edward J

    2016-06-01

    Toxic effects of petroleum to marine zooplankton have been generally investigated using dissolved petroleum hydrocarbons and in the absence of sunlight. In this study, we determined the influence of natural ultraviolet B (UVB) radiation on the lethal and sublethal toxicity of dispersed crude oil to naupliar stages of the planktonic copepods Acartia tonsa, Temora turbinata and Pseudodiaptomus pelagicus. Low concentrations of dispersed crude oil (1 μL L(-1)) caused a significant reduction in survival, growth and swimming activity of copepod nauplii after 48 h of exposure. UVB radiation increased toxicity of dispersed crude oil by 1.3-3.8 times, depending on the experiment and measured variables. Ingestion of crude oil droplets may increase photoenhanced toxicity of crude oil to copepod nauplii by enhancing photosensitization. Photoenhanced sublethal toxicity was significantly higher when T. turbinata nauplii were exposed to dispersant-treated oil than crude oil alone, suggesting that chemical dispersion of crude oil may promote photoenhanced toxicity to marine zooplankton. Our results demonstrate that acute exposure to concentrations of dispersed crude oil and dispersant (Corexit 9500) commonly found in the sea after oil spills are highly toxic to copepod nauplii and that natural levels of UVB radiation substantially increase the toxicity of crude oil to these planktonic organisms. Overall, this study emphasizes the importance of considering sunlight in petroleum toxicological studies and models to better estimate the impact of crude oil spills on marine zooplankton. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Review of radiation effects on ReRAM devices and technology

    Science.gov (United States)

    Gonzalez-Velo, Yago; Barnaby, Hugh J.; Kozicki, Michael N.

    2017-08-01

    A review of the ionizing radiation effects on resistive random access memory (ReRAM) technology and devices is presented in this article. The review focuses on vertical devices exhibiting bipolar resistance switching, devices that have already exhibited interesting properties and characteristics for memory applications and, in particular, for non-volatile memory applications. Non-volatile memories are important devices for any type of electronic and embedded system, as they are for space applications. In such applications, specific environmental issues related to the existence of cosmic rays and Van Allen radiation belts around the Earth contribute to specific failure mechanisms related to the energy deposition induced by such ionizing radiation. Such effects are important in non-volatile memory as the current leading technology, i.e. flash-based technology, is sensitive to the total ionizing dose (TID) and single-event effects. New technologies such as ReRAM, if competing with or complementing the existing non-volatile area of memories from the point of view of performance, also have to exhibit great reliability for use in radiation environments such as space. This has driven research on the radiation effects of such ReRAM technology, on both the conductive-bridge RAM as well as the valence-change memories, or OxRAM variants of the technology. Initial characterizations of ReRAM technology showed a high degree of resilience to TID, developing researchers’ interest in characterizing such resilience as well as investigating the cause of such behavior. The state of the art of such research is reviewed in this article.

  16. Exfoliating and Dispersing Few-Layered Graphene in Low-Boiling-Point Organic Solvents towards Solution-Processed Optoelectronic Device Applications.

    Science.gov (United States)

    Zhang, Lu; Miao, Zhongshuo; Hao, Zhen; Liu, Jun

    2016-05-06

    With normal organic surfactants, graphene can only be dispersed in water and cannot be dispersed in low-boiling-point organic solvents, which hampers its application in solution-processed organic optoelectronic devices. Herein, we report the exfoliation of graphite into graphene in low-boiling-point organic solvents, for example, methanol and acetone, by using edge-carboxylated graphene quantum dots (ECGQD) as the surfactant. The great capability of ECGQD for graphene dispersion is due to its ultralarge π-conjugated unit that allows tight adhesion on the graphene surface through strong π-π interactions, its edge-carboxylated structure that diminishes the steric effects of the oxygen-containing functional groups on the basal plane of ECGQD, and its abundance of carboxylic acid groups for solubility. The graphene dispersion in methanol enables the application of graphene:ECGQD as a cathode interlayer in polymer solar cells (PSCs). Moreover, the PSC device performance of graphene:ECGQD is better than that of Ca, the state-of-the-art cathode interlayer material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Integral method for the calculation of Hawking radiation in dispersive media. I. Symmetric asymptotics

    Science.gov (United States)

    Robertson, Scott; Leonhardt, Ulf

    2014-11-01

    Hawking radiation has become experimentally testable thanks to the many analog systems which mimic the effects of the event horizon on wave propagation. These systems are typically dominated by dispersion and give rise to a numerically soluble and stable ordinary differential equation only if the rest-frame dispersion relation Ω2(k ) is a polynomial of relatively low degree. Here we present a new method for the calculation of wave scattering in a one-dimensional medium of arbitrary dispersion. It views the wave equation as an integral equation in Fourier space, which can be solved using standard and efficient numerical techniques.

  18. Radiation as a microbiological contamination control of drugs, cosmetics and medical devices

    International Nuclear Information System (INIS)

    Ishizeki, Chuichi

    1985-01-01

    This paper deals with current status of radiation sterilization or disinfection of drugs, cosmetics, their materials, and medical devices, and with quality control as a tool for securing microbiological safety, especially current status of sterilization tests. Ointment containing tetracyclin, steroid hormones, gelatin, and enzymes are presented as drug samples to be irradiated, and explanations for radiation sterilization of these drugs are provided. An outline of the application of radiation in cosmetics and medical devices is given. Issues are also provided from the viewpoint of safey and effectiveness of radiation sterilization. (Namekawa, K.)

  19. Kalman filtration of radiation monitoring data from atmospheric dispersion of radioactive materials

    DEFF Research Database (Denmark)

    Drews, M.; Lauritzen, B.; Madsen, H.

    2004-01-01

    A Kalman filter method using off-site radiation monitoring data is proposed as a tool for on-line estimation of the source term for short-range atmospheric dispersion of radioactive materials. The method is based on the Gaussian plume model, in which the plume parameters including the source term...

  20. Evaluation of stray radiofrequency radiation emitted by electrosurgical devices

    International Nuclear Information System (INIS)

    De Marco, M; Maggi, S

    2006-01-01

    Electrosurgery refers to the passage of a high-frequency, high-voltage electrical current through the body to achieve the desired surgical effects. At the same time, these procedures are accompanied by a general increase of the electromagnetic field in an operating room that may expose both patients and personnel to relatively high levels of radiofrequency radiation. In the first part of this study, we have taken into account the radiation emitted by different monopolar electrosurgical devices, evaluating the electromagnetic field strength delivered by an electrosurgical handle and straying from units and other electrosurgical accessories. As a summary, in the worst case a surgeon's hands are exposed to a continuous and pulsed RF wave whose magnetic field strength is 0.75 A m -1 (E-field 400 V m -1 ). Occasionally stray radiation may exceed ICNIRP's occupational exposure guidelines, especially close to the patient return plate. In the second part of this paper, we have analysed areas of particular concern to prevent electromagnetic interference with some life-support devices (ventilators and electrocardiographic devices), which have failed to operate correctly. Most clinically relevant interference occurred when an electrosurgery device was used within 0.3 m of medical equipment. In the appendix, we suggest some practical recommendations intended to minimize the potential for electromagnetic hazards due to therapeutic application of RF energy

  1. RADIATION PERFORMANCE OF GAN AND INAS/GAAS QUANTUM DOT BASED DEVICES SUBJECTED TO NEUTRON RADIATION

    Directory of Open Access Journals (Sweden)

    Dhiyauddin Ahmad Fauzi

    2017-05-01

    Full Text Available In addition to their useful optoelectronics functions, gallium nitride (GaN and quantum dots (QDs based structures are also known for their radiation hardness properties. With demands on such semiconductor material structures, it is important to investigate the differences in reliability and radiation hardness properties of these two devices. For this purpose, three sets of GaN light-emitting diode (LED and InAs/GaAs dot-in-a well (DWELL samples were irradiated with thermal neutron of fluence ranging from 3×1013 to 6×1014 neutron/cm2 in PUSPATI TRIGA research reactor. The radiation performances for each device were evaluated based on the current-voltage (I-V and capacitance-voltage (C-V electrical characterisation method. Results suggested that the GaN based sample is less susceptible to electrical changes due to the thermal neutron radiation effects compared to the QD based sample.

  2. Radiation effects in LDD MOS devices

    International Nuclear Information System (INIS)

    Woodruff, R.L.; Adams, J.R.

    1987-01-01

    The purpose of this work is to investigate the response of lightly doped drain (LDD) n-channel transistors to ionizing radiation. Transistors were fabricated with conventional (non-LDD) and lightly doped drain (LDD) structures using both standard (non-hardened) and radiation hardened gate oxides. Characterization of the transistors began with a correlation of the total-dose effects due to 10 keV x-rays with Co-60 gamma rays. The authors find that for the gate oxides and transistor structures investigated in this work, 10 keV x-rays produce more fixed-charge guild-up in the gate oxide, and more interface charge than do Co-60 gamma rays. They determined that the radiation response of LDD transistors is similar to that of conventional (non-LDD) transistors. In addition, both standard and radiation-hardened transistors subjected to hot carrier stress before irradiation show a similar radiation response. After exposure to 1.0 x 10 6 rads(Si), non-hardened transistors show increased susceptibility to hot-carrier graduation, while the radiation-hardened transistors exhibit similar hot-carrier degradation to non-irradiated devices. The authors have demonstrated a fully-integrated radiation hardened process tht is solid to 1.0 x 10 6 rads(Si), and shows promise for achieving 1.0 x 10 7 rad(Si) total-dose capability

  3. Micro-meteorological modelling in urban areas: pollutant dispersion and radiative effects modelling

    International Nuclear Information System (INIS)

    Milliez, Maya

    2006-01-01

    Atmospheric pollution and urban climate studies require to take into account the complex processes due to heterogeneity of urban areas and the interaction with the buildings. In order to estimate the impact of buildings on flow and pollutant dispersion, detailed numerical simulations were performed over an idealized urban area, with the three-dimensional model Mercure-Saturne, modelling both concentration means and their fluctuations. To take into account atmospheric radiation in built up areas and the thermal effects of the buildings, we implemented a three-dimensional radiative model adapted to complex geometry. This model, adapted from a scheme used for thermal radiation, solves the radiative transfer equation in a semi-transparent media, using the discrete ordinate method. The new scheme was validated with idealized cases and compared to a complete case. (author) [fr

  4. Device for converting electromagnetic radiation energy into electrical energy and method of manufacturing such a device

    NARCIS (Netherlands)

    2007-01-01

    Device (10) for converting electromagnetic radiation energy into electrical energy, comprising at least a photovoltaic element (11) with a radiation-sensitive surface, wherein a covering layer (12) of a material comprising a silicon compound, to which a rare earth element has been added, is present

  5. Radioactivity concentration measuring device for radiation waste containing vessel

    International Nuclear Information System (INIS)

    Goto, Tetsuo.

    1994-01-01

    The device of the present invention can precisely and accurately measure a radioactive concentration of radioactive wastes irrespective of the radioactivity concentration distribution. Namely, a Ge detector having a collimator and a plurality of radiation detectors are placed at the outside of the radioactive waste containing vessel in such a way that it can rotate and move vertically relative to the vessel. The plurality of radiation detectors detect radiation coefficient signals at an assumed segment unit of a predetermined length in vertical direction and for every predetermined angle unit in the rotational direction. A weight measuring device determines the weight of the vessel. A computer calculates an average density of radioactivity for the region filled with radioactivity based on the determined net weight and radiation coefficient signals assuming that the volume of the radioactivity is constant. In addition, the computer calculates the amount of radioactivity in the assumed segment by conducting γ -ray absorption compensation calculation for the material in the vessel. Each of the amount of radioactivity is integrated to determine the amount of radioactivity in the vessel. (I.S.)

  6. The radiation protective devices for interventional procedures using computed tomography

    International Nuclear Information System (INIS)

    Iida, Hiroji; Chabatake, Mitsuhiro; Shimizu, Mitsuru; Tamura, Sakio

    2002-01-01

    A scattered dose and a surface dose from phantom measurements during interventional procedures with computed tomography (IVR-CT) were evaluated. To reduce the personnel exposure in IVR-CT, the new protective devices were developed and its effect evaluated. Two radiation protection devices were experimentally made using a lead vinyl sheet with lead equivalent 0.125 mmPb. The first device is a lead curtain which shields the space of CT-gantry and phantom for the CT examination. The second device is a lead drape which shields on the phantom surface adjacent to the scanning plane for the CT-fluoroscopy. Scattered dose and phantom surface dose were measured with an abdominal phantom during Cine-CT (130 kV, 150 mA, 5 seconds, 10 mm section thickness). They were measured by using ionization chamber dosimeter. They were measured with and without a lead curtain and a lead drape. Scattered dose rate was measured at distance of 50-150 cm from the scanning plane. And, surface dose was measured at distance of 4-21 cm from the scanning plane on the phantom. On operator's standing position, scattered dose rates were from 8.4 to 11.6 μGy/sec at CT examination. The lead curtain and the lead drape reduced scattered dose rate at distance of 50 cm from the scanning plane by 66% and 58.3% respectively. Surface dose rate were 118 μGy/sec at distance of 5 cm from the scanning plane at CT-fluoroscopy. The lead drape reduced the surface dose by 60.5%. High scattered exposure to personnel may occur during interventional procedures using CT. They were considerably reduced during CT-arteriography by attaching the lead curtain in CT equipment. And they were substantially reduced during CT-fluoroscopy by placing the lead drape adjacent to the scanning plane, in addition, operator's hand would be protected from unnecessary radiation scattered by phantom. It was suggested that the scattered exposure to personnel could be sufficiently reduced by using radiation protection devices in IVR-CT. The

  7. A fast and simple approach for the estimation of a radiological source from localised measurements after the explosion of a radiological dispersal device

    International Nuclear Information System (INIS)

    Urso, L.; Kaiser, J.C.; Woda, C.; Helebrant, J.; Hulka, J.; Kuca, P.; Prouza, Z.

    2014-01-01

    After an explosion of a radiological dispersal device, decision-makers need to implement countermeasures as soon as possible to minimise the radiation-induced risks to the population. In this work, the authors present a tool, which can help providing information about the approximate size of source term and radioactive contamination based on a Gaussian Plume model with the use of available measurements for liquid or aerosolised radioactivity. For two-field tests, the source term and spatial distribution of deposited radioactivity are estimated. A sensitivity analysis of the dependence on deposition velocity is carried out. In case of weak winds, a diffusive process along the wind direction is retained in the model. (authors)

  8. Dispersion bias, dispersion effect, and the aerosol-cloud conundrum

    International Nuclear Information System (INIS)

    Liu Yangang; Daum, Peter H; Guo Huan; Peng Yiran

    2008-01-01

    This work examines the influences of relative dispersion (the ratio of the standard deviation to the mean radius of the cloud droplet size distribution) on cloud albedo and cloud radiative forcing, derives an analytical formulation that accounts explicitly for the contribution from droplet concentration and relative dispersion, and presents a new approach to parameterize relative dispersion in climate models. It is shown that inadequate representation of relative dispersion in climate models leads to an overestimation of cloud albedo, resulting in a negative bias of global mean shortwave cloud radiative forcing that can be comparable to the warming caused by doubling CO 2 in magnitude, and that this dispersion bias is likely near its maximum for ambient clouds. Relative dispersion is empirically expressed as a function of the quotient between cloud liquid water content and droplet concentration (i.e., water per droplet), yielding an analytical formulation for the first aerosol indirect effect. Further analysis of the new expression reveals that the dispersion effect not only offsets the cooling from the Twomey effect, but is also proportional to the Twomey effect in magnitude. These results suggest that unrealistic representation of relative dispersion in cloud parameterization in general, and evaluation of aerosol indirect effects in particular, is at least in part responsible for several outstanding puzzles of the aerosol-cloud conundrum: for example, overestimation of cloud radiative cooling by climate models compared to satellite observations; large uncertainty and discrepancy in estimates of the aerosol indirect effect; and the lack of interhemispheric difference in cloud albedo.

  9. Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials

    Science.gov (United States)

    Ribis, J.; Bordas, E.; Trocellier, P.; Serruys, Y.; de Carlan, Y.; Legris, A.

    2015-12-01

    ODS materials constitute a new promising class of structural materials for advanced fission and fusion energy application. These Fe-Cr based ferritic steels contain ultra-high density of dispersion-strengthening nanoclusters conferring excellent mechanical properties to the alloy. Hence, guarantee the nanocluster stability under irradiation remain a critical issue. Nanoclusters are non-equilibrium multicomponent compounds (YTiCrO) forming through a complex nucleation pathway during the elaboration process. In this paper, it is proposed to observe the response of these nanoclusters when the system is placed far from equilibrium by means of ion beam. The results indicate that the Y, Ti, O and Cr atoms self-organized so that nanoclusters coarsened but maintain their non-equilibrium chemical composition. It is discussed that the radiation-sustained nanocluster metastability emerges from cooperative effects: radiation-induced Ostwald ripening, permanent creation of vacancies in the clusters, and fast Cr diffusion mediated by interstitials.

  10. Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials

    International Nuclear Information System (INIS)

    Ribis, J.; Bordas, E.; Trocellier, P.; Serruys, Y.; Carlan, Y. de; Legris, A.

    2015-01-01

    ODS materials constitute a new promising class of structural materials for advanced fission and fusion energy application. These Fe–Cr based ferritic steels contain ultra-high density of dispersion-strengthening nanoclusters conferring excellent mechanical properties to the alloy. Hence, guarantee the nanocluster stability under irradiation remain a critical issue. Nanoclusters are non-equilibrium multicomponent compounds (YTiCrO) forming through a complex nucleation pathway during the elaboration process. In this paper, it is proposed to observe the response of these nanoclusters when the system is placed far from equilibrium by means of ion beam. The results indicate that the Y, Ti, O and Cr atoms self-organized so that nanoclusters coarsened but maintain their non-equilibrium chemical composition. It is discussed that the radiation-sustained nanocluster metastability emerges from cooperative effects: radiation-induced Ostwald ripening, permanent creation of vacancies in the clusters, and fast Cr diffusion mediated by interstitials.

  11. Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation

    International Nuclear Information System (INIS)

    Gayduchenko, I.; Kardakova, A.; Voronov, B.; Finkel, M.; Fedorov, G.; Jiménez, D.; Morozov, S.; Presniakov, M.; Goltsman, G.

    2015-01-01

    Demand for efficient terahertz radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. It was maintained that photothermoelectric effect under certain conditions results in strong response of such devices to terahertz radiation even at room temperature. In this work, we investigate different mechanisms underlying the response of asymmetric carbon nanotube (CNT) based devices to sub-terahertz and terahertz radiation. Our structures are formed with CNT networks instead of individual CNTs so that effects probed are more generic and not caused by peculiarities of an individual nanoscale object. We conclude that the DC voltage response observed in our structures is not only thermal in origin. So called diode-type response caused by asymmetry of the device IV characteristic turns out to be dominant at room temperature. Quantitative analysis provides further routes for the optimization of the device configuration, which may result in appearance of novel terahertz radiation detectors

  12. Study of radiation effects on semiconductor devices

    International Nuclear Information System (INIS)

    Kuboyama, Satoshi; Shindou, Hiroyuki; Ikeda, Naomi; Iwata, Yoshiyuki; Murakami, Takeshi

    2004-01-01

    Fine structure of the recent semiconductor devices has made them more sensitive to the space radiation environment with trapped high-energy protons and heavy ions. A new failure mode caused by bulk damage had been reported on such devices with small structure, and its effect on commercial synchronous dynamic random access memory (SDRAMs) was analyzed from the irradiation test results performed at Heavy ion Medical Accelerator in Chiba (HIMAC). Single event upset (SEU) data of static random access memory (SRAMs) were also collected to establish the method of estimating the proton-induced SEU rate from the results of heavy ion irradiation tests. (authors)

  13. Measurement of the dose by dispersed radiation in a lineal accelerator using thermoluminescent dosimeters of CaSO4:Dy

    International Nuclear Information System (INIS)

    Chavez C, N.; Torijano, E.; Azorin, J.; Herrera, A.

    2014-08-01

    The thermoluminescence (Tl) is based on the principle of the luminescent in a material when is heated below their incandescence temperature. Is a technique very used in dosimetry that is based on the property that have most of the crystalline materials regarding the storage of the energy that they absorb when are exposed to the ionizing radiations. When this material has been irradiated previously, the radioactive energy that contains is liberated in form of light. In general, the principles that govern the thermoluminescence are in essence the same of those responsible for all the luminescent processes and, this way, the thermoluminescence is one of the processes that are part of the luminescence phenomenon. For this work, the dispersed radiation was measured in the therapy area of the lineal accelerator of medical use type Elekta, using thermoluminescent dosimeters of CaSO 4 :Dy + Ptfe developed and elaborated in the Universidad Autonoma Metropolitana, Unidad Iztapalapa. With the dosimeters already characterized and calibrated, we proceeded to measure the dispersed radiation being a patient in treatment. The results showed values for the dispersed radiation the order of a third of the dose received by the patient on the treatment table at 30 cm of the direct beam and the order of a hundredth in the control area (4 m of the direct beam, approximately). The conclusion is that the thermoluminescent dosimeters of CaSO 4 : Dy + Ptfe are appropriate to measure dispersed radiation dose in radiotherapy. (author)

  14. Radiation from ingested wireless devices in bio-medical telemetry bands

    OpenAIRE

    Chirwa, L.C.; Roy, S.; Cumming, D.R.S.

    2003-01-01

    The performance of wireless devices, using electrically small antennae, in the human intestine is investigated using the finite difference time domain method in recommended biomedical device telemetry bands. The radiation field intensity was found to depend on position but more strongly on frequency, with a transmission peak at 650 MHz.

  15. Effect on the insulation material of a MOSFET device submitted to a standard diagnostic radiation beam

    International Nuclear Information System (INIS)

    De Magalhaes, C M S; Dos Santos, L A P; Souza, D do N; Maia, A F

    2010-01-01

    MOSFET electronic devices have been used for dosimetry in radiology and radiotherapy. Several communications show that due to the radiation exposure defects appear on the semiconductor crystal lattice. Actually, the structure of a MOSFET consists of three materials: a semiconductor, a metal and an insulator between them. The MOSFET is a quadripolar device with a common terminal: gate-source is the input; drain-source is the output. The gate controls the electrical current passing through semiconductor medium by the field effect because the silicon oxide acts as insulating material. The proposal of this work is to show some radiation effects on the insulator of a MOSFET device. A 6430 Keithley sub-femtoamp SourceMeter was used to verify how the insulating material layer in the structure of the device varies with the radiation exposure. We have used the IEC 61267 standard radiation X-ray beams generated from a Pantak industrial unit in the radiation energy range of computed tomography. This range was chosen because we are using the MOSFET device as radiation detector for dosimetry in computed tomography. The results showed that the behaviour of the electrical current of the device is different in the insulator and semiconductor structures.

  16. Integral method for the calculation of Hawking radiation in dispersive media. II. Asymmetric asymptotics.

    Science.gov (United States)

    Robertson, Scott

    2014-11-01

    Analog gravity experiments make feasible the realization of black hole space-times in a laboratory setting and the observational verification of Hawking radiation. Since such analog systems are typically dominated by dispersion, efficient techniques for calculating the predicted Hawking spectrum in the presence of strong dispersion are required. In the preceding paper, an integral method in Fourier space is proposed for stationary 1+1-dimensional backgrounds which are asymptotically symmetric. Here, this method is generalized to backgrounds which are different in the asymptotic regions to the left and right of the scattering region.

  17. Device for the integral measurement of ionizing radiations

    International Nuclear Information System (INIS)

    Micheron, Francois.

    1980-01-01

    This invention relates to devices for the integral determination of ionizing radiations, particularly to the construction of a portable dosemeter. Portable measuring instruments have been suggested in the past, particularly dosemeters in which the discharge of a capacitor under the action of ionizing radiations is measured. Since the charge of a capacitor is not stable owing to dielectric imperfections, these measuring instruments have to be recalibrated at frequent intervals. To overcome this drawback, the invention suggests using the discharge of an electret, electrically charged to a pre-set initial value, under the action of ionizing radiations, as the transducer means of a dosemeter used in conjunction with display or warning systems [fr

  18. Radiation hardness and qualification of semiconductor electronic devices for nuclear reactors

    International Nuclear Information System (INIS)

    Friant, A.; Payat, R.

    1984-05-01

    After a brief review of radiation effects in semiconductors and radiation damage in semiconductor devices, the problems of qualification of electronic equipment to be used in nuclear reactors are compared to those relative to nuclear weapons or space experiments. The conclusion is that data obtained at very high dose rates or under pulsed irradiation in weapons and space programs should not be directly applied to nuclear plant instrumentation. The need for a specific qualification of semiconductor devices appropriate for nuclear reactors is emphasized. Some irradiation studies at IRDI/DEIN (CEN-Saclay) are related [fr

  19. Problematic radiation protective devices for X-ray diagnostics

    International Nuclear Information System (INIS)

    Beck, A.; Nanko, N.; Bruggmoser, G.; Eble, M.

    1988-01-01

    The authors report experimental test results of radiation safety glasses with a lead equivalence of 0.5 mm Pb. The glasses were tested on a phantom, with various radiation projections, for their shielding effect with regard to the eye lens. The protective effect at AP projection was 90%, which corresponds to the data given by the manufacturer. But in most cases of interventional radiology, the examiner's eyes are exposed to lateral radiation, due to the positioning of the monitor. In these cases, reflected radiation at the side of the glasses facing the eye may induce a dose to the lens that can be fourfold the dose received without wearing the glasses, so that wearing these glasses may enhance the hazard. Another protective device tested was lead-coated gloves. The manufacturer promises a protective effect of 50% at 100 kV. The experimental test data, obtained by taking into account technical characteristics of angiographic components, confirm a radiation shielding of about 20%. (orig./HP) [de

  20. Radiation dose measurements of the insertion devices using radiachromic film dosimeters

    International Nuclear Information System (INIS)

    Alderman, J.; Semones, E.; Job, P. K.

    2004-01-01

    The Advanced Photon Source (APS) uses Nd-Fe-B permanent magnets in the insertion devices to produce x-rays for scientific research [1,2]. Earlier investigations have exhibited varying degrees of demagnetization of these magnets [3] due to irradiation from electron beams [4,5,6], 60 Co γ-rays [5], and high-energy neutrons [7,8]. Radiation-induced demagnetization has been observed in the APS insertion devices [9] and was first measured in December of 2001. Partial demagnetization has also been observed in insertion devices at the European Synchrotron Radiation Facility (ESRF) [4,6], where Nd-Fe-B permanent magnets are also used. Growing concern for the lifetime of APS insertion devices, as well as the permanent magnets that will be used in next-generation, high-power light sources, like the FEL [10,11], resulted from the partial demagnetization observations made at both facilities. This concern in relation to radiation-induced demagnetization spurred a long-term project to measure and analyze the absorbed doses received by the APS insertion devices. The project required a reliable photon high-dose dosimetry technique capable of measuring absorbed doses greater than 10 6 rad, which was not readily available at the APS. Through a collaboration with the National Institute of Standards and Technology (NIST), one such technique using radiachromic films was considered, tested, and calibrated at the APS. This consequently led to the implementation of radiachromic film dosimetry for measuring the absorbed doses received by the insertion devices for each of the APS runs

  1. Electromagnetic Radiation Efficiency of Body-Implanted Devices

    Science.gov (United States)

    Nikolayev, Denys; Zhadobov, Maxim; Karban, Pavel; Sauleau, Ronan

    2018-02-01

    Autonomous wireless body-implanted devices for biotelemetry, telemedicine, and neural interfacing constitute an emerging technology providing powerful capabilities for medicine and clinical research. We study the through-tissue electromagnetic propagation mechanisms, derive the optimal frequency range, and obtain the maximum achievable efficiency for radiative energy transfer from inside a body to free space. We analyze how polarization affects the efficiency by exciting TM and TE modes using a magnetic dipole and a magnetic current source, respectively. Four problem formulations are considered with increasing complexity and realism of anatomy. The results indicate that the optimal operating frequency f for deep implantation (with a depth d ≳3 cm ) lies in the (108- 109 )-Hz range and can be approximated as f =2.2 ×107/d . For a subcutaneous case (d ≲3 cm ), the surface-wave-induced interference is significant: within the range of peak radiation efficiency (about 2 ×108 to 3 ×109 Hz ), the max-to-min ratio can reach a value of 6.5. For the studied frequency range, 80%-99% of radiation efficiency is lost due to the tissue-air wave-impedance mismatch. Parallel polarization reduces the losses by a few percent; this effect is inversely proportional to the frequency and depth. Considering the implantation depth, the operating frequency, the polarization, and the directivity, we show that about an order-of-magnitude efficiency improvement is achievable compared to existing devices.

  2. Effects of cosmic radiation on devices and embedded systems in aircrafts

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Adriane C.M.; Federico, Claudio A.; Pereira Junior, Evaldo C.F.; Goncalez, Odair L., E-mail: claudiofederico@ieav.cta.br, E-mail: odairlelisgoncalez@gmail.com, E-mail: adriane.acm@hotmail.com, E-mail: evaldocarlosjr@gmail.com [Instituto de Estudos Avancados (IEAV/DCTA), Sao Jose dos Campos, SP (Brazil)

    2013-07-01

    Modern avionics systems use new electronic technologies devices that, due to their high degree of sophistication and miniaturization, are more susceptible to the effects of ionizing radiation, particularly the effect called 'Single Event Effect' (SEE) produced by neutron. Studies regarding the effects of radiation on electronic systems for space applications, such as satellites and orbital stations, have already been in progress for several years. However, tolerance requirements and specific studies, focusing on testing dedicated to avionics, have caused concern and gained importance in the last decade as a result of the accidents attributed to SEE in aircraft. Due to the development of a higher ceiling, an increase in airflow and a greater autonomy of certain aircrafts, the problem regarding the control of ionizing radiation dose received by the pilots, the crew and sensitive equipment became important in the areas of occupational health, radiation protection and flight safety. This paper presents an overview of the effects of ionizing radiation on devices and embedded systems in aircrafts, identifying and classifying these effects in relation to their potential risks in each device class. The assessment of these effects in avionics is a very important and emerging issue nowadays, which is being discussed by groups of the international scientific community; however, in South America, groups working in this area are still unknown. Consequently, this work is a great contribution and significantly valuable to the area of aeronautical engineering and flight safety associated to the effects of radiation on electronic components embedded in aircraft. (author)

  3. Effects of cosmic radiation on devices and embedded systems in aircrafts

    International Nuclear Information System (INIS)

    Prado, Adriane C.M.; Federico, Claudio A.; Pereira Junior, Evaldo C.F.; Goncalez, Odair L.

    2013-01-01

    Modern avionics systems use new electronic technologies devices that, due to their high degree of sophistication and miniaturization, are more susceptible to the effects of ionizing radiation, particularly the effect called 'Single Event Effect' (SEE) produced by neutron. Studies regarding the effects of radiation on electronic systems for space applications, such as satellites and orbital stations, have already been in progress for several years. However, tolerance requirements and specific studies, focusing on testing dedicated to avionics, have caused concern and gained importance in the last decade as a result of the accidents attributed to SEE in aircraft. Due to the development of a higher ceiling, an increase in airflow and a greater autonomy of certain aircrafts, the problem regarding the control of ionizing radiation dose received by the pilots, the crew and sensitive equipment became important in the areas of occupational health, radiation protection and flight safety. This paper presents an overview of the effects of ionizing radiation on devices and embedded systems in aircrafts, identifying and classifying these effects in relation to their potential risks in each device class. The assessment of these effects in avionics is a very important and emerging issue nowadays, which is being discussed by groups of the international scientific community; however, in South America, groups working in this area are still unknown. Consequently, this work is a great contribution and significantly valuable to the area of aeronautical engineering and flight safety associated to the effects of radiation on electronic components embedded in aircraft. (author)

  4. Response of GaAs charge storage devices to transient ionizing radiation

    Science.gov (United States)

    Hetherington, D. L.; Klem, J. F.; Hughes, R. C.; Weaver, H. T.

    Charge storage devices in which non-equilibrium depletion regions represent stored charge are sensitive to ionizing radiation. This results since the radiation generates electron-hole pairs that neutralize excess ionized dopant charge. Silicon structures, such as dynamic RAM or CCD cells are particularly sensitive to radiation since carrier diffusion lengths in this material are often much longer than the depletion width, allowing collection of significant quantities of charge from quasi-neutral sections of the device. For GaAs the situation is somewhat different in that minority carrier diffusion lengths are shorter than in silicon, and although mobilities are higher, we expect a reduction of radiation sensitivity as suggested by observations of reduced quantum efficiency in GaAs solar cells. Dynamic memory cells in GaAs have potential increased retention times. In this paper, we report the response of a novel GaAs dynamic memory element to transient ionizing radiation. The charge readout technique is nondestructive over a reasonable applied voltage range and is more sensitive to stored charge than a simple capacitor.

  5. Nuclear radiation sensors and monitoring following a nuclear or radiological emergencies

    International Nuclear Information System (INIS)

    Bhatnagar, P.K.

    2009-01-01

    Management of Nuclear and Radiological Emergencies arising from Radiological Dispersive Device (RDD), Improvised Nuclear Devices (IND), Nuclear Reactors/Power plants and Nuclear War require measurement of ionizing radiations and radioactivity on an enhanced scale relative to the levels encountered in peaceful uses of ionizing radiations and radioactivity. It is heartening that since Hiroshima, Nagasaki nuclear disaster, the world has been quiet but since early 2000 there has been a fear of certain devices to be used by terrorists, which could lead to panic, and disaster due to dispersal of radioactivity by RDD, IND. Nuclear attack would lead to blast, thermal, initial nuclear radiation, nuclear fall out leading to gamma and neutron dose, dose rates in range from few R, R/h to kR, kR/h, and determinations of k Bq or higher order. Such situations have been visualized at national levels and National Disaster Management Authority NDMA has been established and Disaster Management Act 2005 has come into existence. NDMA has prepared guidelines for Nuclear and radiological emergency management highlighting preparedness, mitigation, response, capacity building, etc. Critical point in all these issues is detection of emergency, quick intimation to the concerned for action in shortest possible time. Upper most requirement by those involved in pursuing action, is radiation sensor based radiation monitors for personnel, area, and to assess contamination due to radioactivity.This presentation briefly describes the Indian scenario in the development of the radiation sensors and the sensor-based radiation monitors. (author)

  6. Nuclear radiation sensors and monitoring following a nuclear or radiological emergencies

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, P K [Defence Laboratory, Jodhpur (India)

    2009-01-15

    Management of Nuclear and Radiological Emergencies arising from Radiological Dispersive Device (RDD), Improvised Nuclear Devices (IND), Nuclear Reactors/Power plants and Nuclear War require measurement of ionizing radiations and radioactivity on an enhanced scale relative to the levels encountered in peaceful uses of ionizing radiations and radioactivity. It is heartening that since Hiroshima, Nagasaki nuclear disaster, the world has been quiet but since early 2000 there has been a fear of certain devices to be used by terrorists, which could lead to panic, and disaster due to dispersal of radioactivity by RDD, IND. Nuclear attack would lead to blast, thermal, initial nuclear radiation, nuclear fall out leading to gamma and neutron dose, dose rates in range from few R, R/h to kR, kR/h, and determinations of k Bq or higher order. Such situations have been visualized at national levels and National Disaster Management Authority NDMA has been established and Disaster Management Act 2005 has come into existence. NDMA has prepared guidelines for Nuclear and radiological emergency management highlighting preparedness, mitigation, response, capacity building, etc. Critical point in all these issues is detection of emergency, quick intimation to the concerned for action in shortest possible time. Upper most requirement by those involved in pursuing action, is radiation sensor based radiation monitors for personnel, area, and to assess contamination due to radioactivity.This presentation briefly describes the Indian scenario in the development of the radiation sensors and the sensor-based radiation monitors. (author)

  7. A spectrometer for X-ray energy-dispersive diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    Buras, B.; Gerward, L.; Staun Olsen, J.; Steenstrup, S.

    1981-10-01

    The paper describes a white-beam X-ray energy dispersive diffractometer using the synchroton radiation from the DORIS ESR. The following features of the instrument are discussed: Horizontal or vertical scattering plane, collimators, sample environment, remote control of gonimeter, data acquisition, energy-sensitive detectors using small-area and large-area detector crystals, modes of operation, powder and single crystal diffraction. An example is given from a high-pressure study of YbH 2 using a diamond anvil cell. (orig./HP)

  8. Federal Response Assets for a Radioactive Dispersal Device Incident

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan,T.

    2009-06-30

    If a large scale RDD event where to occur in New York City, the magnitude of the problem would likely exceed the capabilities of City and State to effectively respond to the event. New York State could request Federal Assistance if the United States President has not already made the decision to provide it. The United States Federal Government has a well developed protocol to respond to emergencies. The National Response Framework (NRF) describes the process for responding to all types of emergencies including RDD incidents. Depending on the location and type of event, the NRF involves appropriate Federal Agencies, e.g., Department of Homeland Security (DHS), the Department of Energy (DOE), Environmental Protection Agency (EPA), United States Coast Guard (USCG), Department of Defense (DOD), Department of Justice (DOJ), Department of Agriculture (USDA), and Nuclear Regulatory Commission (NRC). The Federal response to emergencies has been refined and improved over the last thirty years and has been tested on natural disasters (e.g. hurricanes and floods), man-made disasters (oil spills), and terrorist events (9/11). However, the system has never been tested under an actual RDD event. Drills have been conducted with Federal, State, and local agencies to examine the initial (early) phases of such an event (TopOff 2 and TopOff 4). The Planning Guidance for Protection and Recovery Following Radiological Dispersal Device (RDD) and Improvised Nuclear Device (IND) incidents issued by the Department of Homeland Security (DHS) in August 2008 has never been fully tested in an interagency exercise. Recently, another exercise called Empire 09 that was situated in Albany, New York was conducted. Empire 09 consists of 3 different exercises be held in May and June, 2009. The first exercise, May 2009, involved a table top exercise for phase 1 (0-48 hours) of the response to an RDD incident. In early June, a full-scale 3- day exercise was conducted for the mid-phase response (48

  9. Sensor device for X-ray beam to evaluate the radiation focal spot

    International Nuclear Information System (INIS)

    Santos, Lara H.E. dos; Schiabel, Homero; Silva, Aderbal A.B. da; Marques, Paulo M.A.; Campos, Marcelo; Slaets, Annie F.F.

    1996-01-01

    A new electronic device to determine the position of the central ray of the radiation beam is proposed. The device aims to provide a perfect alignment of test objects used for evaluating focal spots with this reference axis

  10. Research on the method of establishing the total radiation meter calibration device

    Science.gov (United States)

    Gao, Jianqiang; Xia, Ming; Xia, Junwen; Zhang, Dong

    2015-10-01

    Pyranometer is an instrument used to measure the solar radiation, according to pyranometer differs as installation state, can be respectively measured total solar radiation, reflected radiation, or with the help of shading device for measuring scattering radiation. Pyranometer uses the principle of thermoelectric effect, inductive element adopts winding plating type multi junction thermopile, its surface is coated with black coating with high absorption rate. Hot junction in the induction surface, while the cold junction is located in the body, the cold and hot junction produce thermoelectric potential. In the linear range, the output signal is proportional to the solar irradiance. Traceability to national meteorological station, as the unit of the national legal metrology organizations, the responsibility is to transfer value of the sun and the earth radiation value about the national meteorological industry. Using the method of comparison, with indoor calibration of solar simulator, at the same location, standard pyranometer and measured pyranometer were alternately measured radiation irradiance, depending on the irradiation sensitivity standard pyranometer were calculated the radiation sensitivity of measured pyranometer. This paper is mainly about the design and calibration method of the pyranometer indoor device. The uncertainty of the calibration result is also evaluated.

  11. Radiation damage and rate limitations in tracking devices

    International Nuclear Information System (INIS)

    Gilchriese, M.G.D.

    1984-01-01

    In this note the author briefly discusses radiation damage to wire chambers and silicon strip devices and the electronics that may be associated with each of these. Scintillating fibers and CCD's are not discussed although the former appears to be a potentially radiation-resistant detector. In order to calculate radiation levels and rates the author assumed the following: an inelastic cross section of 100 mb at the SSC - six charged particles per unit of rapidity - photons and neutrons do not contribute to the background (photon conversions are negligible with a thin Be beam pipe) - beam gas interactions and beam losses (except during injection when I assume that the detector is ''off'') are negligible. This is discussed in a later section. - 1 Rad = 3.5 x 10 7 minimum ionizing particlescm 2

  12. 60Co gamma radiation effect on AlGaN//AlN/GaN HEMT devices

    International Nuclear Information System (INIS)

    Wang Yanping; Luo Yinhong; Wang Wei; Zhang Keying; Guo Hongxia; Guo Xiaoqiang; Wang Yuanming

    2013-01-01

    The testing techniques and experimental methods of the 60 Co gamma irradiation effect on AlGaN/AlN/GaN high electron mobility transistors (HEMTs) are established. The degradation of the electrical properties of the device under the actual radiation environment are analyzed theoretically, and studies of the total dose effects of gamma radiation on AlGaN/AlN/GaN HEMTs at three different radiation bias conditions are carried out. The degradation patterns of the main parameters of the AlGaN/AlN/GaN HEMTs at different doses are then investigated, and the device parameters that were sensitive to the gamma radiation induced damage and the total dose level induced device damage are obtained. (authors)

  13. Device for imaging an object by means of masks of spatially modulable electromagnetic radiation or corpuscular radiation of high energy

    International Nuclear Information System (INIS)

    Barrett, H.H.

    1979-01-01

    The radiogram of the thyroid is produced by means of a detector device operating similar to a scintillation camera. Between thyroid and detector device there is placed a mask having modulating areas, permeable and impermeable to radiation succeeding each other with decreasing extension. The scanning signal has got the shape of a radar signal with chirp modulation. The filtering unit used for it is a pulse compression filter. The image of the radiation energy distribution on the recording surface of the detector device is thus decoded and compressed to a number of image points giving the picture of the thyroid. (RW) [de

  14. Reference neutron radiations. Part 2: Calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field

    International Nuclear Information System (INIS)

    2000-01-01

    ISO 8529 consists of the following parts, under the general title Reference neutron radiations: Part 1: Characteristics and methods of production; Part 2: Calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field; Part 3: Calibration of area and personal dosimeters and determination of response as a function of energy and angle of incidence. This Part 2. of ISO 8529 takes as its starting point the neutron sources described in ISO 8529-1. It specifies the procedures to be used for realizing the calibration conditions of radiation protection devices in neutron fields produced by these calibration sources, with particular emphasis on the corrections for extraneous effects (e.g., the neutrons scattered from the walls of the calibration room). In this part of ISO 8529, particular emphasis is placed on calibrations using radionuclide sources (clauses 4 to 6) due to their widespread application, with less details given on the use of accelerator and reactor sources (8.2 and 8.3). This part of ISO 8529 then leads to ISO 8529-3 which gives conversion coefficients and the general rules and procedures for calibration

  15. Commercial power silicon devices as possible routine dosimeters for radiation processing

    International Nuclear Information System (INIS)

    Fuochi, P.G.; Lavalle, M.; Gombia, E.; Mosca, R.; Kovacs, A.V.; Hargittai, P.; Vitanza, A.; Patti, A.

    2001-01-01

    The use of silicon devices as possible radiation dosimeters has been investigated in this study. A bipolar power transistor in TO126 plastic packaging has been selected. Irradiations, with doses in the range from 50 Gy up to 5 kGy, have been performed at room temperature using different radiation sources ( 60 Co g source, 2.5, 4 and 12 MeV electron accelerators). Few irradiations with g rays were also done at different temperatures. A physical parameter, T, related to the charge carrier lifetime, has been found to change as a function of irradiation dose. This change is radiation energy dependent. Long term stability of the electron irradiated transistors has been checked by means of a reliability test ('high temperature reverse bias', HTRB) at 150 deg. C for 1000 h. Deep level transient spectroscopy (DLTS) measurements have been performed on the irradiated devices to identify the recombination centres introduced by the radiation treatment. The results obtained confirm that these transistors could be used as routine radiation dosimeters in a certain dose range. More work needs to be done particularly with g rays in the low dose region (50-200 Gy) and with low energy electrons. (author)

  16. Radiation dermatitis caused by a bolus effect from an abdominal compression device

    International Nuclear Information System (INIS)

    Connor, Michael; Wei, Randy L.; Yu, Suhong; Sehgal, Varun; Klempner, Samuel J.; Daroui, Parima

    2016-01-01

    American Association of Physicists in Medicine (AAPM) Task Group 176 evaluated the dosimetric effects caused by couch tops and immobilization devices. The report analyzed the extensive physics-based literature on couch tops, stereotactic body radiation therapy (SBRT) frames, and body immobilization bags, while noting the scarcity of clinical reports of skin toxicity because of external devices. Here, we present a clinical case report of grade 1 abdominal skin toxicity owing to an abdominal compression device. We discuss the dosimetric implications of the utilized treatment plan as well as post hoc alternative plans and quantify differences in attenuation and skin dose/build-up between the device, a lower-density alternative device, and an open field. The description of the case includes a 66-year-old male with HER2 amplified poorly differentiated distal esophageal adenocarcinoma treated with neoadjuvant chemo-radiation and the use of an abdominal compression device. Radiation was delivered using volumetric modulated arc therapy (VMAT) with 2 arcs using abdominal compression and image guidance. The total dose was 50.4 Gy delivered over 40 elapsed days. With 2 fractions remaining, the patient developed dermatitis in the area of the compression device. The original treatment plan did not include a contour of the device. Alternative post hoc treatment plans were generated, one to contour the device and a second with anterior avoidance. In conclusion, replanning with the device contoured revealed the bolus effect. The skin dose increased from 27 to 36 Gy. planned target volume (PTV) coverage at 45 Gy was reduced to 76.5% from 95.8%. The second VMAT treatment plan with an anterior avoidance sector and more oblique beam angles maintained PTV coverage and spared the anterior wall, however at the expense of substantially increased dose to lung. This case report provides an important reminder of the bolus effect from external devices such as abdominal compression. Special

  17. Radiation dermatitis caused by a bolus effect from an abdominal compression device

    Energy Technology Data Exchange (ETDEWEB)

    Connor, Michael; Wei, Randy L.; Yu, Suhong; Sehgal, Varun [Department of Radiation Oncology, University of California, Irvine Medical Center, Orange, CA (United States); Klempner, Samuel J. [Department of Medicine, Division of Hematology/Oncology, University of California, Orange, CA (United States); Daroui, Parima, E-mail: pdaroui@uci.edu [Department of Radiation Oncology, University of California, Irvine Medical Center, Orange, CA (United States)

    2016-10-01

    American Association of Physicists in Medicine (AAPM) Task Group 176 evaluated the dosimetric effects caused by couch tops and immobilization devices. The report analyzed the extensive physics-based literature on couch tops, stereotactic body radiation therapy (SBRT) frames, and body immobilization bags, while noting the scarcity of clinical reports of skin toxicity because of external devices. Here, we present a clinical case report of grade 1 abdominal skin toxicity owing to an abdominal compression device. We discuss the dosimetric implications of the utilized treatment plan as well as post hoc alternative plans and quantify differences in attenuation and skin dose/build-up between the device, a lower-density alternative device, and an open field. The description of the case includes a 66-year-old male with HER2 amplified poorly differentiated distal esophageal adenocarcinoma treated with neoadjuvant chemo-radiation and the use of an abdominal compression device. Radiation was delivered using volumetric modulated arc therapy (VMAT) with 2 arcs using abdominal compression and image guidance. The total dose was 50.4 Gy delivered over 40 elapsed days. With 2 fractions remaining, the patient developed dermatitis in the area of the compression device. The original treatment plan did not include a contour of the device. Alternative post hoc treatment plans were generated, one to contour the device and a second with anterior avoidance. In conclusion, replanning with the device contoured revealed the bolus effect. The skin dose increased from 27 to 36 Gy. planned target volume (PTV) coverage at 45 Gy was reduced to 76.5% from 95.8%. The second VMAT treatment plan with an anterior avoidance sector and more oblique beam angles maintained PTV coverage and spared the anterior wall, however at the expense of substantially increased dose to lung. This case report provides an important reminder of the bolus effect from external devices such as abdominal compression. Special

  18. Radioactivity, radionuclides, radiation

    CERN Document Server

    Magill, Joseph

    2005-01-01

    RADIOACTIVITY – RADIONUCLIDES – RADIATION is suitable for a general audience interested in topical environmental and human health radiological issues such as radiation exposure in aircraft, food sterilisation, nuclear medicine, radon gas, radiation dispersion devices ("dirty bombs")… It leads the interested reader through the three Rs of nuclear science, to the forefront of research and developments in the field. The book is also suitable for students and professionals in the related disciplines of nuclear and radiochemistry, health physics, environmental sciences, nuclear and astrophysics. Recent developments in the areas of exotic decay modes (bound beta decay of ‘bare’ or fully ionized nuclei), laser transmutation, nuclear forensics, radiation hormesis and the LNT hypothesis are covered. Atomic mass data for over 3000 nuclides from the most recent (2003) evaluation are included.

  19. Transient photoconductive gain in a-Si:H devices and its applications in radiation detection

    International Nuclear Information System (INIS)

    Lee, H.K.; Suh, T.S.; Choe, B.Y.; Shinn, K.S.; Perez-Mendez, V.

    1997-01-01

    Using the transient behavior of the photoconductive-gain mechanism, a signal gain in radiation detection with a-Si:H devices may be possible. The photoconductive gain mechanism in two types of hydrogenated amorphous silicon devices, p-i-n and n-i-n configurations, was investigated in connection with applications to radiation detection. Photoconductive gain was measured in two time scales: one for short pulses of visible light ( 2 . Various gain results are discussed in terms of the device structure, applied bias and dark-current density. (orig.)

  20. The research of nuclear experiment radiation environment wireless alarm device

    International Nuclear Information System (INIS)

    Wang Xiaoqiong; Wang Pan; Fang Fang

    2009-01-01

    This article introduces based on monolithic integrated circuit's nuclear experiment radiation environment wireless alarm device's software and hardware design. The system by G-M tube, high-pressured module, signal conditioning circuit, power source module, monolithic integrated circuit and wireless transmission module is composed. The device has low power consumption, high performance, high accuracy detection, easy maintenance, small size, simple operation, and other features, and has a broad application prospects. (authors)

  1. Radiation-resistant requirements analysis of device and control component for advanced spent fuel management process

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tai Gil; Park, G. Y.; Kim, S. Y.; Lee, J. Y.; Kim, S. H.; Yoon, J. S. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-02-01

    It is known that high levels of radiation can cause significant damage by altering the properties of materials. A practical understanding of the effects of radiation - how radiation affects various types of materials and components - is required to design equipment to operate reliably in a gamma radiation environment. When designing equipment to operate in a high gamma radiation environment, such as will be present in a nuclear spent fuel handling facility, several important steps should be followed. In order to active test of the advanced spent fuel management process, the radiation-resistant analysis of the device and control component for active test which is concerned about the radiation environment is conducted. Also the system design process is analysis and reviewed. In the foreign literature, 'threshold' values are generally reported. the threshold values are normally the dose required to begin degradation in a particular material property. The radiation effect analysis for the device of vol-oxidation and metalization, which are main device for the advanced spent fuel management process, is performed by the SCALE 4.4 code. 5 refs., 4 figs., 13 tabs. (Author)

  2. Neutronic, thermal-hydraulics and safety calculations of a Miniplate Irradiation Device (MID) of dispersion type fuel elements

    International Nuclear Information System (INIS)

    Domingos, Douglas Borges

    2010-01-01

    Neutronic, thermal-hydraulics and accident analysis calculations were developed to estimate the safety of a Miniplate Irradiation Device (MID) to be placed in the IEA-R1 reactor core. The irradiation device is used to receive miniplates of U 3 O 8 -Al and U 3 Si 2 - Al dispersion fuels, LEU type (19.75 % 235 U) with uranium densities of, respectively, 3.2 gU/cm 3 and 4.8 gU/cm 3 . The fuel miniplates will be irradiated to nominal 235 U burnup levels of 50% and 80%, in order to qualify the above high-density dispersion fuels to be used in the Brazilian Multipurpose Reactor (RMB), now in the conception phase. For the neutronic calculation, the computer codes CITATION and 2DB were utilized. The computer code FLOW was used to calculate the coolant flow rate in the irradiation device, allowing the determination of the fuel miniplate temperatures with the computer model MTRCR-IEA-R1. A postulated Loss of Coolant Accident (LOCA) was analyzed with the computer codes LOSS and TEMPLOCA, allowing the calculation of the fuel miniplate temperatures after the reactor pool draining. The calculations showed that the irradiation should occur without adverse consequences in the IEA-R1 reactor. (author)

  3. Thixotropic gel-like composition and sterile blood-collecting and separating device

    International Nuclear Information System (INIS)

    Semersky, F.E.

    1980-01-01

    A thixotropic gel-like composition comprising liquid polybutadiene and an inorganic inert filler dispersed therein is adapted for use as a sealing barrier between separated phases of differing densities of a fluid in which said composition has at rest a density intermediate said differing densities, said gel-like composition being substantially resistant to sterilizing radiation. There is also disclosed a pre-packaged blood collecting and separating device which contains a mixture of liquid polybutadiene and an inorganic, inert filler, such as silica, as a thixotropic gel adapted at rest to form a sealing barrier between separated blood phases. The device and gel are subjected to sterilizing radiation to form a substantially sterile device, substantially free of backflow contamination without degradation of the physical properties of the gel. (author)

  4. Defining Design Limits of a Portable Radiation Dispersion Prevention System

    Energy Technology Data Exchange (ETDEWEB)

    Kang Seong Woo; Yim, Man Sung [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    To the eyes of the general public, however, reducing the chance of such accident is not enough. A typical engineer views a risk as a combination of both consequences and likelihoods, whereas an ordinary person may only consider consequences. The implementations of better regulations, improved human operator actions, and installations of extra safety systems may reduce the chance of having uncontrolled accident practically to zero, yet the public still fears having nuclear reactors. One such barrier system is a portable suction-based radiation dispersion prevention system, called Integrated Portable Suction-Centrifugal Filtration System (IPS-CFS). To design such systems, detailed information about the radioactive source term at the release point to the environment must be available to draw design limits. The preliminary design limits of the IPS-CFS are presented in this paper. It may seem challenging to design a comprehensive radioactive dispersion system that can successfully prevent such extreme accident conditions, especially due to the releases from high pressure. However, as more technologies develop and more realistic source term analyses are performed, it may be possible to develop such a public relief technology. With the development of such technology that can effectively prevent the dispersion of the uncontrolled radioactive releases in case of another Fukushima-like accident, it will result in increased safety of the nuclear power plants for both the public and the workers and may contribute to the increase in the public acceptance of nuclear energy.

  5. Signal Processing Device (SPD) for networked radiation monitoring system

    International Nuclear Information System (INIS)

    Dharmapurikar, A.; Bhattacharya, S.; Mukhopadhyay, P.K.; Sawhney, A.; Patil, R.K.

    2010-01-01

    A networked radiation and parameter monitoring system with three tier architecture is being developed. Signal Processing Device (SPD) is a second level sub-system node in the network. SPD is an embedded system which has multiple input channels and output communication interfaces. It acquires and processes data from first level parametric sensor devices, and sends to third level devices in response to request commands received from host. It also performs scheduled diagnostic operations and passes on the information to host. It supports inputs in the form of differential digital signals and analog voltage signals. SPD communicates with higher level devices over RS232/RS422/USB channels. The system has been designed with main requirements of minimal power consumption and harsh environment in radioactive plants. This paper discusses the hardware and software design details of SPD. (author)

  6. Exploring graphene field effect transistor devices to improve spectral resolution of semiconductor radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Richard Karl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Jeffrey B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hamilton, Allister B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    Graphene, a planar, atomically thin form of carbon, has unique electrical and material properties that could enable new high performance semiconductor devices. Graphene could be of specific interest in the development of room-temperature, high-resolution semiconductor radiation spectrometers. Incorporating graphene into a field-effect transistor architecture could provide an extremely high sensitivity readout mechanism for sensing charge carriers in a semiconductor detector, thus enabling the fabrication of a sensitive radiation sensor. In addition, the field effect transistor architecture allows us to sense only a single charge carrier type, such as electrons. This is an advantage for room-temperature semiconductor radiation detectors, which often suffer from significant hole trapping. Here we report on initial efforts towards device fabrication and proof-of-concept testing. This work investigates the use of graphene transferred onto silicon and silicon carbide, and the response of these fabricated graphene field effect transistor devices to stimuli such as light and alpha radiation.

  7. Dosimetric studies for gamma radiation validation of medical devices

    International Nuclear Information System (INIS)

    Soliman, Y.S.; Beshir, W.B.; Abdel-Fattah, A.A.; Abdel-Rehim, F.

    2013-01-01

    The delivery and validation of a specified dose to medical devices are key concerns to operators of gamma radiation facilities. The objective of the present study was to characterize the industrial gamma radiation facility and map the dose distribution inside the product-loading pattern during the validation and routine control of the sterilization process using radiochromic films. Cardboard phantoms were designed to achieve the homogeneity of absorbed doses. The uncertainty of the dose delivered during validation of the sterilization process was assessed. - Highlights: ► Using γ-rays for sterilization of hollow fiber dialyzers and blood tubing sets according to ISO 11137, 2006. ► Dosimetry studies of validations of γ-irradiation facility and sterilized medical devices. ► Places of D min and D max have been determined using FWT-60 films. ► Determining the target minimum doses required to meet the desired SAL of 10 −6 for the two products.

  8. Irradiation technology Pt. 2. Research devices. Glossary on radiation technology. Besugarzastechnika 2. resz. Kiserleti berendezesek, sugartechnikai kislexikon

    Energy Technology Data Exchange (ETDEWEB)

    Foeldiak, G; Stenger, V

    1982-01-01

    It is a textbook and manual of a training course held at the Budapest Technical University for operators of irradiation devices. Calculation methods of radiation technology (estimation of activity variation, space dependence of dose rates, shielding, efficiency) are presented. Instructions for laboratory exercises (dose and dose rate measurements, sterilization by irradiation, handling of irradiation devices) involved in the course given. Two laboratory irradiation devices (RH-GAMMA-30, produced in the Soviet Union and the K-120-type semi-large scale device of the Isotope Institute of the Hungarian Academy of Sciences are described in detail. Handling instructions for the two devices and radiation protection regulations are given. A brief glossary in the field of radiation technology is added.

  9. Accumulation capacitance frequency dispersion of III-V metal-insulator-semiconductor devices due to disorder induced gap states

    International Nuclear Information System (INIS)

    Galatage, R. V.; Zhernokletov, D. M.; Dong, H.; Brennan, B.; Hinkle, C. L.; Wallace, R. M.; Vogel, E. M.

    2014-01-01

    The origin of the anomalous frequency dispersion in accumulation capacitance of metal-insulator-semiconductor devices on InGaAs and InP substrates is investigated using modeling, electrical characterization, and chemical characterization. A comparison of the border trap model and the disorder induced gap state model for frequency dispersion is performed. The fitting of both models to experimental data indicate that the defects responsible for the measured dispersion are within approximately 0.8 nm of the surface of the crystalline semiconductor. The correlation between the spectroscopically detected bonding states at the dielectric/III-V interface, the interfacial defect density determined using capacitance-voltage, and modeled capacitance-voltage response strongly suggests that these defects are associated with the disruption of the III-V atomic bonding and not border traps associated with bonding defects within the high-k dielectric.

  10. Medical Device Recalls in Radiation Oncology: Analysis of US Food and Drug Administration Data, 2002-2015

    International Nuclear Information System (INIS)

    Connor, Michael J.; Tringale, Kathryn; Moiseenko, Vitali; Marshall, Deborah C.; Moore, Kevin; Cervino, Laura; Atwood, Todd; Brown, Derek; Mundt, Arno J.; Pawlicki, Todd; Recht, Abram; Hattangadi-Gluth, Jona A.

    2017-01-01

    Purpose: To analyze all recalls involving radiation oncology devices (RODs) from the US Food and Drug Administration (FDA)'s recall database, comparing these with non–radiation oncology device recalls to identify discipline-specific trends that may inform improvements in device safety. Methods and Materials: Recall data on RODs from 2002 to 2015 were sorted into 4 product categories (external beam, brachytherapy, planning systems, and simulation systems). Outcomes included determined cause of recall, recall class (severity), quantity in commerce, time until recall termination (date FDA determines recall is complete), and time since 510(k) approval. Descriptive statistics were performed with linear regression of time-series data. Results for RODs were compared with those for other devices by Pearson χ"2 test for categorical data and 2-sample Kolmogorov-Smirnov test for distributions. Results: There were 502 ROD recalls and 9534 other class II device recalls during 2002 to 2015. Most recalls were for external beam devices (66.7%) and planning systems (22.9%), and recall events peaked in 2011. Radiation oncology devices differed significantly from other devices in all recall outcomes (P≤.04). Recall cause was commonly software related (49% vs 10% for other devices). Recall severity was more often moderate among RODs (97.6% vs 87.2%) instead of severe (0.2% vs 4.4%; P<.001). Time from 510(k) market approval to recall was shorter among RODs (P<.001) and progressively shortened over time. Radiation oncology devices had fewer recalled devices in commerce than other devices (P<.001). Conclusions: Compared with other class II devices, RODs experience recalls sooner after market approval and are trending sooner still. Most of these recalls were moderate in severity, and software issues are prevalent. Comprehensive analysis of recall data can identify areas for device improvement, such as better system design among RODs.

  11. Medical Device Recalls in Radiation Oncology: Analysis of US Food and Drug Administration Data, 2002-2015

    Energy Technology Data Exchange (ETDEWEB)

    Connor, Michael J. [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); University of California Irvine School of Medicine, Irvine, California (United States); Tringale, Kathryn; Moiseenko, Vitali; Marshall, Deborah C.; Moore, Kevin; Cervino, Laura; Atwood, Todd; Brown, Derek; Mundt, Arno J.; Pawlicki, Todd [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Recht, Abram [Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (United States); Hattangadi-Gluth, Jona A., E-mail: jhattangadi@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States)

    2017-06-01

    Purpose: To analyze all recalls involving radiation oncology devices (RODs) from the US Food and Drug Administration (FDA)'s recall database, comparing these with non–radiation oncology device recalls to identify discipline-specific trends that may inform improvements in device safety. Methods and Materials: Recall data on RODs from 2002 to 2015 were sorted into 4 product categories (external beam, brachytherapy, planning systems, and simulation systems). Outcomes included determined cause of recall, recall class (severity), quantity in commerce, time until recall termination (date FDA determines recall is complete), and time since 510(k) approval. Descriptive statistics were performed with linear regression of time-series data. Results for RODs were compared with those for other devices by Pearson χ{sup 2} test for categorical data and 2-sample Kolmogorov-Smirnov test for distributions. Results: There were 502 ROD recalls and 9534 other class II device recalls during 2002 to 2015. Most recalls were for external beam devices (66.7%) and planning systems (22.9%), and recall events peaked in 2011. Radiation oncology devices differed significantly from other devices in all recall outcomes (P≤.04). Recall cause was commonly software related (49% vs 10% for other devices). Recall severity was more often moderate among RODs (97.6% vs 87.2%) instead of severe (0.2% vs 4.4%; P<.001). Time from 510(k) market approval to recall was shorter among RODs (P<.001) and progressively shortened over time. Radiation oncology devices had fewer recalled devices in commerce than other devices (P<.001). Conclusions: Compared with other class II devices, RODs experience recalls sooner after market approval and are trending sooner still. Most of these recalls were moderate in severity, and software issues are prevalent. Comprehensive analysis of recall data can identify areas for device improvement, such as better system design among RODs.

  12. Extreme Radiation Hardness and Space Qualification of AlGaN Optoelectronic Devices

    International Nuclear Information System (INIS)

    Sun, Ke-Xun; MacNeil, Lawrence; Balakrishnan, Kathik; Hultgren, Eric; Goebel, John; Bilenko, Yuri; Yang, Jinwei; Sun, Wenhong; Shatalov, Max; Hu, Xuhong; Gaska, Remis

    2010-01-01

    Unprecedented radiation hardness and environment robustness are required in the new generation of high energy density physics (HEDP) experiments and deep space exploration. National Ignition Facility (NIF) break-even shots will have a neutron yield of 10 15 or higher. The Europa Jupiter System Mission (EJSM) mission instruments will be irradiated with a total fluence of 10 12 protons/cm 2 during the space journey. In addition, large temperature variations and mechanical shocks are expected in these applications under extreme conditions. Hefty radiation and thermal shields are required for Si and GaAs based electronics and optoelectronics devices. However, for direct illumination and imaging applications, shielding is not a viable option. It is an urgent task to search for new semiconductor technologies and to develop radiation hard and environmentally robust optoelectronic devices. We will report on our latest systematic experimental studies on radiation hardness and space qualifications of AlGaN optoelectronic devices: Deep UV Light Emitting Diodes (DUV LEDs) and solarblind UV Photodiodes (PDs). For custom designed AlGaN DUV LEDs with a central emission wavelength of 255 nm, we have demonstrated its extreme radiation hardness up to 2 x 10 12 protons/cm 2 with 63.9 MeV proton beams. We have demonstrated an operation lifetime of over 26,000 hours in a nitrogen rich environment, and 23,000 hours of operation in vacuum without significant power drop and spectral shift. The DUV LEDs with multiple packaging styles have passed stringent space qualifications with 14 g random vibrations, and 21 cycles of 100K temperature cycles. The driving voltage, current, emission spectra and optical power (V-I-P) operation characteristics exhibited no significant changes after the space environmental tests. The DUV LEDs will be used for photoelectric charge management in space flights. For custom designed AlGaN UV photodiodes with a central response wavelength of 255 nm, we have

  13. Modeling of transient ionizing radiation effects in bipolar devices at high dose-rates

    International Nuclear Information System (INIS)

    FJELDLY, T.A.; DENG, Y.; SHUR, M.S.; HJALMARSON, HAROLD P.; MUYSHONDT, ARNOLDO

    2000-01-01

    To optimally design circuits for operation at high intensities of ionizing radiation, and to accurately predict their a behavior under radiation, precise device models are needed that include both stationary and dynamic effects of such radiation. Depending on the type and intensity of the ionizing radiation, different degradation mechanisms, such as photoelectric effect, total dose effect, or single even upset might be dominant. In this paper, the authors consider the photoelectric effect associated with the generation of electron-hole pairs in the semiconductor. The effects of low radiation intensity on p-II diodes and bipolar junction transistors (BJTs) were described by low-injection theory in the classical paper by Wirth and Rogers. However, in BJTs compatible with modem integrated circuit technology, high-resistivity regions are often used to enhance device performance, either as a substrate or as an epitaxial layer such as the low-doped n-type collector region of the device. Using low-injection theory, the transient response of epitaxial BJTs was discussed by Florian et al., who mainly concentrated on the effects of the Hi-Lo (high doping - low doping) epilayer/substrate junction of the collector, and on geometrical effects of realistic devices. For devices with highly resistive regions, the assumption of low-level injection is often inappropriate, even at moderate radiation intensities, and a more complete theory for high-injection levels was needed. In the dynamic photocurrent model by Enlow and Alexander. p-n junctions exposed to high-intensity radiation were considered. In their work, the variation of the minority carrier lifetime with excess carrier density, and the effects of the ohmic electric field in the quasi-neutral (q-n) regions were included in a simplified manner. Later, Wunsch and Axness presented a more comprehensive model for the transient radiation response of p-n and p-i-n diode geometries. A stationary model for high-level injection in p

  14. Characterization of Radiation Hardened Bipolar Linear Devices for High Total Dose Missions

    Science.gov (United States)

    McClure, Steven S.; Harris, Richard D.; Rax, Bernard G.; Thorbourn, Dennis O.

    2012-01-01

    Radiation hardened linear devices are characterized for performance in combined total dose and displacement damage environments for a mission scenario with a high radiation level. Performance at low and high dose rate for both biased and unbiased conditions is compared and the impact to hardness assurance methodology is discussed.

  15. Emergency response guidance for the first 48 hours after the outdoors detonation of an explosive radiological dispersal device

    International Nuclear Information System (INIS)

    Harper, Frederick Taylor; Musolino, Stephen V.

    2006-01-01

    Strategies and decisions to protect emergency responders, the public, and critical infrastructure against the effects of a radiological dispersal device detonated outdoors must be made in the planning stage, not in the early period just after an attack. This contrasts with planning for small-scale types of radiological or nuclear emergencies, or for a large-scale nuclear-power-type accident that evolves over many hours or days before radioactivity is released to the environment, such that its effects can be prospectively modeled and analyzed. By the time it is known an attack has occurred, most likely there will have been casualties, all the radioactive material will have been released, plume growth will be progressing, and there will be no time left for evaluating possible countermeasures. This paper offers guidance to planners, first responders, and senior decision makers to assist them in developing strategies for protective actions and operational procedures for the first 48 hours after an explosive radiological dispersal device has been detonated

  16. Asymmetric devices based on carbon nanotubes for terahertz-range radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, G. E., E-mail: gefedorov@mail.ru; Stepanova, T. S.; Gazaliev, A. Sh.; Gaiduchenko, I. A.; Kaurova, N. S.; Voronov, B. M.; Goltzman, G. N. [Moscow State Pedagogical University (Russian Federation)

    2016-12-15

    Various asymmetric detecting devices based on carbon nanotubes (CNTs) are studied. The asymmetry is understood as inhomogeneous properties along the conducting channel. In the first type of devices, an inhomogeneous morphology of the CNT grid is used. In the second type of devices, metals with highly varying work functions are used as the contact material. The relation between the sensitivity and detector configuration is analyzed. Based on the data obtained, approaches to the development of an efficient detector of terahertz radiation, based on carbon nanotubes are proposed.

  17. Electric moulding of dispersed lipid nanotubes into a nanofluidic device.

    Science.gov (United States)

    Frusawa, Hiroshi; Manabe, Tatsuhiko; Kagiyama, Eri; Hirano, Ken; Kameta, Naohiro; Masuda, Mitsutoshi; Shimizu, Toshimi

    2013-01-01

    Hydrophilic nanotubes formed by lipid molecules have potential applications as platforms for chemical or biological events occurring in an attolitre volume inside a hollow cylinder. Here, we have integrated the lipid nanotubes (LNTs) by applying an AC electric field via plug-in electrode needles placed above a substrate. The off-chip assembly method has the on-demand adjustability of an electrode configuration, enabling the dispersed LNT to be electrically moulded into a separate film of parallel LNT arrays in one-step. The fluorescence resonance energy transfer technique as well as the digital microscopy visualised the overall filling of gold nanoparticles up to the inner capacity of an LNT film by capillary action, thereby showing the potential of this flexible film for use as a high-throughput nanofluidic device where not only is the endo-signalling and product in each LNT multiplied but also the encapsulated objects are efficiently transported and reacted.

  18. Radiation Testing, Characterization and Qualification Challenges for Modern Microelectronics and Photonics Devices and Technologies

    Science.gov (United States)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2008-01-01

    At GOMAC 2007, we discussed a selection of the challenges for radiation testing of modern semiconductor devices focusing on state-of-the-art memory technologies. This included FLASH non-volatile memories (NVMs) and synchronous dynamic random access memories (SDRAMs). In this presentation, we extend this discussion in device packaging and complexity as well as single event upset (SEU) mechanisms using several technology areas as examples including: system-on-a-chip (SOC) devices and photonic or fiber optic systems. The underlying goal is intended to provoke thought for understanding the limitations and interpretation of radiation testing results.

  19. The solar ultraviolet B radiation protection provided by shading devices with regard to its diffuse component.

    Science.gov (United States)

    Kudish, Avraham I; Harari, Marco; Evseev, Efim G

    2011-10-01

    The composition of the incident solar global ultraviolet B (UVB) radiation with regard to its beam and diffuse radiation fractions is highly relevant with regard to outdoor sun protection. This is especially true with respect to sun protection during leisure-time outdoor sun exposure at the shore and pools, where people tend to escape the sun under shade trees or different types of shading devices, e.g., umbrellas, overhangs, etc., believing they offer protection from the erythemal solar radiation. The degree of sun protection offered by such devices is directly related to the composition of the solar global UVB radiation, i.e., its beam and diffuse fractions. The composition of the incident solar global UVB radiation can be determined by measuring the global UVB (using Solar Light Co. Inc., Model 501A UV-Biometer) and either of its components. The beam component of the UVB radiation was determined by measuring the normal incidence beam radiation using a prototype, tracking instrument consisting of a Solar Light Co. Inc. Model 501A UV-Biometer mounted on an Eppley Solar Tracker Model St-1. The horizontal beam component of the global UVB radiation was calculated from the measured normal incidence using a simple geometric correlation and the diffuse component is determined as the difference between global and horizontal beam radiations. Horizontal and vertical surfaces positioned under a horizontal overhang/sunshade or an umbrella are not fully protected from exposure to solar global UVB radiation. They can receive a significant fraction of the UVB radiation, depending on their location beneath the shading device, the umbrella radius and the albedo (reflectance) of the surrounding ground surface in the case of a vertical surface. Shading devices such as an umbrella or horizontal overhang/shade provide relief from the solar global radiation and do block the solar global UVB radiation to some extent; nevertheless, a significant fraction of the solar global UVB

  20. The influence of gamma radiation on polarization mode dispersion of fibers applied in communications

    Directory of Open Access Journals (Sweden)

    Sekulić Rade S.

    2012-01-01

    Full Text Available The fiber optics technology is constantly being developed, and is becoming an essential component of contemporary communications, medicine and industry. Fibers, their connections and system components play a major role in optical signal transmission, telecommunications, power transmission, and sensing processes using fiber technology. The two main light propagation characteristics of an optical fiber are attenuation and dispersion. The possibility of controling these parameters is of utmost importance for obtaining the requested transmission quality. This paper reports on an investigation to determine the influence of gamma radiation of 60Co on the variation of optical fiber propagation parameters, such as polarization mode dispersion. In addition, it also considers chosen topics in the field of fiber optics technology.

  1. Radiation terrorism: what society needs from the radiobiology-radiation protection and radiation oncology communities

    International Nuclear Information System (INIS)

    Coleman, C Norman; Parker, Gerald W

    2009-01-01

    Society's and individuals' concerns about the adverse effects from radiation are logically amplified many times when radiological terrorism is considered. The spectrum of events include industrial sabotage, the use of an explosive or non-explosive radiological dispersal device, the placement of a radiological exposure device in a public facility and the use of an improvised nuclear device. The consequences of an event relate to the physical and medical damage of the event itself, the financial impact, and the acute and long-term medical consequences, including fear of radiation-induced cancer. The magnitude of a state-sponsored nuclear event is so great that limited detailed response planning had been done in the past, as compared to the work now ongoing. Planning is done on the basis of scenario modelling. Medical response planning includes medical triage, distribution of victims to care by experienced physicians, developing medical countermeasures to mitigate or treat radiation injury, counselling and appropriately following exposed or potentially exposed people, and helping the local community develop confidence in their own response plan. Optimal response must be based on the best available science. This requires scientists who can define, prioritise and address the gaps in knowledge with the range of expertise from basic physics to biology to translational research to systems expertise to response planning to healthcare policy to communications. Not only are there unique needs and career opportunities, but there is also the opportunity for individuals to serve their communities and country with education regarding radiation effects and by formulating scientifically based government policy.

  2. Radiation terrorism: what society needs from the radiobiology-radiation protection and radiation oncology communities

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, C Norman [Office of Preparedness and Emergency Response, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (United States); Parker, Gerald W [Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (United States)

    2009-06-01

    Society's and individuals' concerns about the adverse effects from radiation are logically amplified many times when radiological terrorism is considered. The spectrum of events include industrial sabotage, the use of an explosive or non-explosive radiological dispersal device, the placement of a radiological exposure device in a public facility and the use of an improvised nuclear device. The consequences of an event relate to the physical and medical damage of the event itself, the financial impact, and the acute and long-term medical consequences, including fear of radiation-induced cancer. The magnitude of a state-sponsored nuclear event is so great that limited detailed response planning had been done in the past, as compared to the work now ongoing. Planning is done on the basis of scenario modelling. Medical response planning includes medical triage, distribution of victims to care by experienced physicians, developing medical countermeasures to mitigate or treat radiation injury, counselling and appropriately following exposed or potentially exposed people, and helping the local community develop confidence in their own response plan. Optimal response must be based on the best available science. This requires scientists who can define, prioritise and address the gaps in knowledge with the range of expertise from basic physics to biology to translational research to systems expertise to response planning to healthcare policy to communications. Not only are there unique needs and career opportunities, but there is also the opportunity for individuals to serve their communities and country with education regarding radiation effects and by formulating scientifically based government policy.

  3. A survey of synchrotron radiation devices producing circular or variable polarization

    International Nuclear Information System (INIS)

    Kim, K.J.

    1990-01-01

    This paper reviews the properties and operating principles of the new types of synchrotron radiation devices that produce circular polarization, or polarization that can be modulated in arbitrary fashion

  4. Short and long term ionizing radiation effects on charge-coupled devices in radiation environment of high-intensity heavy ion accelerators

    International Nuclear Information System (INIS)

    Belousov, A; Mustafin, E; Ensinger, W

    2012-01-01

    Radiation effects on semiconductor devices is a topical issue for high-intensity accelerator projects. In particular it concerns Charge-Coupled Device (CCD) cameras, which are widely used for beam profile monitoring and surveillance in high radiation environment. One should have a clear idea of short and long term radiation effects on such devices. To study these effects, a CCD camera was placed in positions less than half meter away from beam loss point. Primary heavy ion beam of 0.95GeV/n Uranium was dumped into a thick aluminium target creating high fluences of secondary particles (e.g., gammas, neutrons, protons). Effects of these particles on CCD camera were scored with LabView based acquisition software. Monte Carlo calculations with FLUKA code were performed to obtain fluence distributions for different particles and make relevant comparisons. Long term total ionising dose effects are represented by dark current increase, which was scored throughout experiment. Instant radiation effects are represented by creation of charge in CCD cells by ionising particles. Relation of this charge to beam intensity was obtained for different camera positions and fluences within 5 orders of magnitude ranges. With high intensities this charge is so high that it may dramatically influence data obtained from CCD camera used in high radiation environment. The linearity of described above relation confirms linear response of CCD to ionizing radiation. It gives an opportunity to find a new application to CCD cameras as beam loss monitors (BLM).

  5. Short term ionizing radiation impact on charge-coupled devices in radiation environment of high-intensity heavy ion accelerators

    International Nuclear Information System (INIS)

    Belousov, A.; Mustafin, E.; Ensinger, W.

    2012-01-01

    This paper presents a first approach on studies of the results of short term ionizing radiation impact on charge-coupled device (CCD) chips in conditions typical for high-intensity ion accelerator areas. Radiation effects on semiconductor devices are a topical issue for high-intensity accelerator projects. In particular it concerns CCD cameras that are widely used for beam profile monitoring and surveillance in high radiation environment. 65 CCD cameras are going to be installed in the FAIR machines. It is necessary to have good understanding of radiation effects and their contribution to measured signal in CCD chips. A phenomenon of single event upset (SEU) in CCD chips is studied in the following experiment. By SEU in CCD chip we mean an event when an ionizing particle hits the CCD matrix cell and produces electron-hole pairs that are then collected and converted to a signal that is higher than certain level defined by author. Practically, it means that a certain cell will appear as a bright pixel on the resulting image from a chip. (authors)

  6. Metabolomic applications in radiation biodosimetry: exploring radiation effects through small molecules.

    Science.gov (United States)

    Pannkuk, Evan L; Fornace, Albert J; Laiakis, Evagelia C

    2017-10-01

    Exposure of the general population to ionizing radiation has increased in the past decades, primarily due to long distance travel and medical procedures. On the other hand, accidental exposures, nuclear accidents, and elevated threats of terrorism with the potential detonation of a radiological dispersal device or improvised nuclear device in a major city, all have led to increased needs for rapid biodosimetry and assessment of exposure to different radiation qualities and scenarios. Metabolomics, the qualitative and quantitative assessment of small molecules in a given biological specimen, has emerged as a promising technology to allow for rapid determination of an individual's exposure level and metabolic phenotype. Advancements in mass spectrometry techniques have led to untargeted (discovery phase, global assessment) and targeted (quantitative phase) methods not only to identify biomarkers of radiation exposure, but also to assess general perturbations of metabolism with potential long-term consequences, such as cancer, cardiovascular, and pulmonary disease. Metabolomics of radiation exposure has provided a highly informative snapshot of metabolic dysregulation. Biomarkers in easily accessible biofluids and biospecimens (urine, blood, saliva, sebum, fecal material) from mouse, rat, and minipig models, to non-human primates and humans have provided the basis for determination of a radiation signature to assess the need for medical intervention. Here we provide a comprehensive description of the current status of radiation metabolomic studies for the purpose of rapid high-throughput radiation biodosimetry in easily accessible biofluids and discuss future directions of radiation metabolomics research.

  7. New small devices for radiation detection: the Wee Pocket Chirper and the Portable Multichannel Analyzer

    International Nuclear Information System (INIS)

    Umbarger, C.J.

    1980-08-01

    Recent events have demonstrated the need for improved capability to monitor the exposure of workers to radiation and, in general, to identify and measure the many forms of radioactive materials found throughout the nuclear industry. Two radiation monitoring devices have been developed that are much smaller than existing instruments, yet exhibit superior performance and a longer battery life. The first instrument, the Wee Pocket Chirper, is a tiny, battery-powered warning device that chirps when exposed to radiation. The second instrument is a portable battery-powered, computer-based, multichannel analyzer that allows the user to examine radiation fields and to identify the types and amounts of radioactive materials present

  8. Radiative heat transfer in the Na mist dispersion over the hot surface of liquid Na in the cooling system of nuclear reactor

    International Nuclear Information System (INIS)

    Kunitomo, T.; Shafey, H.M.

    1980-01-01

    The analysis has been carried out for the radiative heat transfer in the Na mist dispersion enclosed between the hot surface of liquid Na at temperature Tsub(n) and the cold surface of Na deposit at Tsub(c). The model selected for the present study represents the Na mist formed in a sodium cooled fast breeder reactor in which the condensed liquid particles are dispersed in the mixture of the Ar cover gas and the Na vapor. The analysis is based on replacing the inhomogeneous dispersing medium by three discrete homogeneous layers, and formulating the transfer equation for the monochromatic radiation in each layer according to the Chandrasekhar theory. The numerical calculations of the radiative qsub(r) and convective qsub(c) heat transfers have been performed for the wave length range lambda=1.6-30 μm and are compared. The qsub(r) has the same order of magnitude as the qsub(c) for all conditions of the mist dispersions. Both qsub(r) and qsub(c) increase by nearly equal rates with the increase of Tsub(H) and decrease by different rates with increasing Tsub(c). Variations of the particle diameter of the Na mist do not change substantially the qsub(r). Both qsub(r) and qsub(c) decrease slightly with the increase in the total thickness of the Na mist dispersion

  9. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    Science.gov (United States)

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  10. Spectral phase shift and residual angular dispersion of an accousto-optic programme dispersive filter

    International Nuclear Information System (INIS)

    Boerzsoenyi, A.; Meroe, M.

    2010-01-01

    Complete text of publication follows. There is an increasing demand for active and precise dispersion control of ultrashort laser pulses. In chirped pulse amplification (CPA) laser systems, the dispersion of the optical elements of the laser has to be compensated at least to the fourth order to obtain high temporal contrast compressed pulses. Nowadays the most convenient device for active and programmable control of spectral phase and amplitude of broadband laser pulses is the acousto-optic programmable dispersive filter (AOPDF), claimed to be able to adjust the spectral phase up to the fourth order. Although it has been widely used, surprisingly enough there has been only a single, low resolution measurement reported on the accuracy of the induced spectral phase shift of the device. In our paper we report on the first systematic experiment aiming at the precise characterization of an AOPDF device. In the experiment the spectral phase shift of the AOPDF device was measured by spectrally and spatially resolved interferometry, which is especially powerful tool to determine small dispersion values with high accuracy. Besides the spectral phase dispersion, we measured both the propagation direction angular dispersion (PDAD) and the phase front angular dispersion (PhFAD). Although the two quantities are equal for plane waves, there may be noticeable difference for Gaussian pulses. PDAD was determined simply by focusing the beam on the slit of an imaging spectrograph, while PhFAD was measured by the use of an inverted Mach-Zehnder interferometer and an imaging spectrograph. In the measurements, the spectral phase shift and both types of angular dispersion have been recorded upon the systematic change of all the accessible functions of the acousto-optic programmable dispersive filter. The measured values of group delay dispersion (GDD) and third order dispersion (TOD) have been found to agree with the preset values within the error of the measurement (1 fs 2 and 10 fs 3

  11. Optimal sizing and location of SVC devices for improvement of voltage profile in distribution network with dispersed photovoltaic and wind power plants

    International Nuclear Information System (INIS)

    Savić, Aleksandar; Đurišić, Željko

    2014-01-01

    Highlights: • Significant voltage variations in a distribution network with dispersed generation. • The use of SVC devices to improve the voltage profiles are an effective solution. • Number, size and location of SVC devices are optimized using genetic algorithm. • The methodology is presented on an example of a real distribution system in Serbia. - Abstract: Intermittent power generation of wind turbines and photovoltaic plants creates voltage disturbances in power distribution networks which may not be acceptable to the consumers. To control the deviations of the nodal voltages, it is necessary to use fast dynamic control of the reactive power in the distribution network. Implementation of the power electronic devices, such as Static Var Compensator (SVC), enables effective dynamic state as well as a static state of the nodal voltage control in the distribution network. This paper analyzed optimal sizing and location of SVC devices by using genetic algorithm, to improve nodal voltages profile in a distribution network with dispersed photovoltaic and wind power plants. Practical application of the developed methodology was tested on an example of a real distribution network

  12. Biological assay of chromatin dispersal simplified for determining absorbed dose of ionizing radiation; Ensayo biologico simplificado de dispersion de cromatina para la determinacion de dosis de radiacion ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Galaz, S.; Perez, G.; Stockert, J. C.; Blazquez-Castro, A.

    2011-07-01

    Currently, the production of nuclear halos chromatin dispersion methods is a good procedure for nuclear analysis by in situ hybridization (Wiegant et al., 1992, Gerdes et al. 1994), to detect apoptosis, DNA fragmentation and cell death rates in cell cultures (Fernandez et al., 2005, Enciso et al. 2006). It is customary to display the nuclear halos by fluorescence microscopy using propidium iodide, ethidium bromide or DAPI (Gerdes et al., 1994, Sestili et al. 2006). Using this technique based on a modified protocol of fast halo assay [FHA],(Sestili et al. 2006), has developed a simplified method to quantify the cytogenetic damage induced by ionizing radiation (dispersion test chromatin in agarose thin smear), which allows visualization of halos after staining for light microscopy or fluorescence and correlating the ratio: total area occuped by the halo nucleus / nucleus (halo-core index [IHN] ) with radiation dose.

  13. Space Radiation Environment Prediction for VLSI microelectronics devices onboard a LEO Satellite using OMERE-Trad Software

    Science.gov (United States)

    Sajid, Muhammad

    This tutorial/survey paper presents the assessment/determination of level of hazard/threat to emerging microelectronics devices in Low Earth Orbit (LEO) space radiation environment with perigee at 300 Km, apogee at 600Km altitude having different orbital inclinations to predict the reliability of onboard Bulk Built-In Current Sensor (BBICS) fabricated in 350nm technology node at OptMA Lab. UFMG Brazil. In this context, the various parameters for space radiation environment have been analyzed to characterize the ionizing radiation environment effects on proposed BBICS. The Space radiation environment has been modeled in the form of particles trapped in Van-Allen radiation belts(RBs), Energetic Solar Particles Events (ESPE) and Galactic Cosmic Rays (GCR) where as its potential effects on Device- Under-Test (DUT) has been predicted in terms of Total Ionizing Dose (TID), Single-Event Effects (SEE) and Displacement Damage Dose (DDD). Finally, the required mitigation techniques including necessary shielding requirements to avoid undesirable effects of radiation environment at device level has been estimated /determined with assumed standard thickness of Aluminum shielding. In order to evaluate space radiation environment and analyze energetic particles effects on BBICS, OMERE toolkit developed by TRAD was utilized.

  14. Organic materials and devices for detecting ionizing radiation

    Science.gov (United States)

    Doty, F Patrick [Livermore, CA; Chinn, Douglas A [Livermore, CA

    2007-03-06

    A .pi.-conjugated organic material for detecting ionizing radiation, and particularly for detecting low energy fission neutrons. The .pi.-conjugated materials comprise a class of organic materials whose members are intrinsic semiconducting materials. Included in this class are .pi.-conjugated polymers, polyaromatic hydrocarbon molecules, and quinolates. Because of their high resistivities (.gtoreq.10.sup.9 ohmcm), these .pi.-conjugated organic materials exhibit very low leakage currents. A device for detecting and measuring ionizing radiation can be made by applying an electric field to a layer of the .pi.-conjugated polymer material to measure electron/hole pair formation. A layer of the .pi.-conjugated polymer material can be made by conventional polymer fabrication methods and can be cast into sheets capable of covering large areas. These sheets of polymer radiation detector material can be deposited between flexible electrodes and rolled up to form a radiation detector occupying a small volume but having a large surface area. The semiconducting polymer material can be easily fabricated in layers about 10 .mu.m to 100 .mu.m thick. These thin polymer layers and their associated electrodes can be stacked to form unique multi-layer detector arrangements that occupy small volume.

  15. Parasitic effects in superconducting quantum interference device-based radiation comb generators

    Energy Technology Data Exchange (ETDEWEB)

    Bosisio, R., E-mail: riccardo.bosisio@nano.cnr.it [SPIN-CNR, Via Dodecaneso 33, 16146 Genova (Italy); NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy); Giazotto, F., E-mail: giazotto@sns.it [NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy); Solinas, P., E-mail: paolo.solinas@spin.cnr.it [SPIN-CNR, Via Dodecaneso 33, 16146 Genova (Italy)

    2015-12-07

    We study several parasitic effects on the implementation of a Josephson radiation comb generator based on a dc superconducting quantum interference device (SQUID) driven by an external magnetic field. This system can be used as a radiation generator similarly to what is done in optics and metrology, and allows one to generate up to several hundreds of harmonics of the driving frequency. First we take into account how the assumption of a finite loop geometrical inductance and junction capacitance in each SQUID may alter the operation of the devices. Then, we estimate the effect of imperfections in the fabrication of an array of SQUIDs, which is an unavoidable source of errors in practical situations. We show that the role of the junction capacitance is, in general, negligible, whereas the geometrical inductance has a beneficial effect on the performance of the device. The errors on the areas and junction resistance asymmetries may deteriorate the performance, but their effect can be limited to a large extent by a suitable choice of fabrication parameters.

  16. Flexible, ferroelectric nanoparticle doped polymer dispersed liquid crystal devices for lower switching voltage and nanoenergy generation

    Science.gov (United States)

    Nimmy John, V.; Varanakkottu, Subramanyan Namboodiri; Varghese, Soney

    2018-06-01

    Flexible polymer dispersed liquid crystal (F-PDLC) devices were fabricated using transparent conducting ITO/PET film. Polymerization induced phase separation (PIPS) method was used for pure and ferroelectric BaTiO3 (BTO) and ZnO doped PDLC devices. The distribution of nanoparticles in the PDLC and the formation of micro cavities were studied using field emission scanning electron microscopy (FESEM). It was observed that the addition of ferroelectric BTO nanoparticles has reduced the threshold voltage (Vth) and saturation voltage (Vsat) of FNP-PDLC by 85% and 41% respectively due to the spontaneous polarization of ferroelectric nanoparticles. The ferroelectric properties of BTO and ZnO in the fabricated devices were investigated using dynamic contact electrostatic force microscopy (DC EFM). Flexing the device can generate a potential due to the piezo-tribo electric effect of the ferroelectric nanomaterial doped in the PDLC matrix, which could be utilized as an energy generating system. The switching voltage after multiple flexing was also studied and found to be in par with non-flexing situations.

  17. Study of radiation shielding requirements for n-MOS devices on the Exosat spacecraft. Final report

    International Nuclear Information System (INIS)

    1977-01-01

    The device-degradation and radiation-shielding problems presented by the probable use of an n-channel microprocessor integrated circuit of the 8080 type on the Exosat spacecraft of the European Space Agency, was studied. The radiation exposure likely for this device was calculated, using various assumptions for the amount of surrounding absorber, some being intentional shielding others being normal structure elements and device encapsulation. The conclusion was that this type of device could be used if careful engineering design and quality control were used. Mission doses vary between 5000 and 800 rads for various configurations and some patterns of MOS device will tolerate these doses. The use of specially thickened module covers was not recommended, a better method being upgrading device quality and applying internal (local) shielding when necessary and possibly modular addition of external plates in specific directions only. The result of this shielding philosophy would be much greater efficiency in weight use. The further development of a rads (reduction) per gram philosophy was strongly recommended. Throughout, the strong link between mission success and the choice (and control) of the correct MOS manufacturing technology is emphasized and some guidelines on control of manufactured MOS parts (n-channel and complementary type) with respect to tolerance to radiation are given

  18. Probabilistic siting analysis of nuclear power plants emphasizing atmospheric dispersion of radioactive releases and radiation-induced health effects

    International Nuclear Information System (INIS)

    Savolainen, Ilkka

    1980-01-01

    A presentation is made of probabilistic evaluation schemes for nuclear power plant siting. Effects on health attributable to ionizing radiation are reviewed, for the purpose of assessment of the numbers of the most important health effect cases in light-water reactor accidents. The atmospheric dispersion of radioactive releases from nuclear power plants is discussed, and there is presented an environmental consequence assessment model in which the radioactive releases and atmospheric dispersion of the releases are treated by the application of probabilistic methods. In the model, the environmental effects arising from exposure to radiation are expressed as cumulative probability distributions and expectation values. The probabilistic environmental consequence assessment model has been applied to nuclear power plant site evaluation, including risk-benefit and cost-benefit analyses, and the comparison of various alternative sites. (author)

  19. Developments of radiation safety requirements for the management of radiation devices

    International Nuclear Information System (INIS)

    Lee, Hee Seock; Choi, Jin Ho; Cheong, Yuon Young

    2002-03-01

    The approach of the risk-informed regulatory options was studied to develop the radiation safety requirements for the managements for radiation devices. The task analysis, exposure, accident scenario development, risk analysis, and systematic approach for regulatory options was considered in full, based on the NRC report, 'NUREG/CR-6642', and the translation of its core part was conducted for ongoing research. In this methodology, the diamond tree that includes human factors, etc, additionally with normal event tree, was used. According to the analysis results of this approach, the risk analysis and the development of regulatory options were applied for the electron linear accelerators and the qualitative results were obtained. Because the field user groups were participated in this study could contribute to the basis establishment of the risk-informed regulation policy through securing consensus and inducing particle interests. It will make an important role of establishing the detail plan of ongoing research

  20. Developments of radiation safety requirements for the management of radiation devices

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Seock [Pohang Accelerator Lab, Pohang (Korea, Republic of); Choi, Jin Ho [Gachun University of Medicine and science, Incheon (Korea, Republic of); Cheong, Yuon Young [Asan Medical Center, Seoul (Korea, Republic of)] (and others)

    2002-03-15

    The approach of the risk-informed regulatory options was studied to develop the radiation safety requirements for the managements for radiation devices. The task analysis, exposure, accident scenario development, risk analysis, and systematic approach for regulatory options was considered in full, based on the NRC report, 'NUREG/CR-6642', and the translation of its core part was conducted for ongoing research. In this methodology, the diamond tree that includes human factors, etc, additionally with normal event tree, was used. According to the analysis results of this approach, the risk analysis and the development of regulatory options were applied for the electron linear accelerators and the qualitative results were obtained. Because the field user groups were participated in this study could contribute to the basis establishment of the risk-informed regulation policy through securing consensus and inducing particle interests. It will make an important role of establishing the detail plan of ongoing research.

  1. Radiation Stability of Nanoclusters in Nano-structured Oxide Dispersion Strengthened (ODS) Steels

    International Nuclear Information System (INIS)

    Certain, Alicia G.; Kuchibhatla, Satyanarayana; Shutthanandan, V.; Allen, T. R.

    2013-01-01

    Nanostructured oxide dispersion strengthened (ODS) steels are considered candidates for nuclear fission and fusion applications at high temperature and dose. The complex oxide nanoclusters in these alloys provide high-temperature strength and are expected to afford better radiation resistance. Proton, heavy ion, and neutron irradiations have been performed to evaluate cluster stability in 14YWT and 9CrODS steel under a range of irradiation conditions. Energy-filtered transmission electron microscopy and atom probe tomography were used in this work to analyze the evolution of the oxide population.

  2. A new XUV optical end-station to characterize compact and flexible photonic devices using synchrotron radiation

    Science.gov (United States)

    Marcelli, A.; Mazuritskiy, M. I.; Dabagov, S. B.; Hampai, D.; Lerer, A. M.; Izotova, E. A.; D'Elia, A.; Turchini, S.; Zema, N.; Zuccaro, F.; de Simone, M.; Javad Rezvani, S.; Coreno, M.

    2018-03-01

    In this contribution we present the new experimental end-station to characterize XUV diffractive optics, such as Micro Channel Plates (MCPs) and other polycapillary optics, presently under commission at the Elettra synchrotron radiation laboratory (Trieste, Italy). To show the opportunities offered by these new optical devices for 3rd and 4th generation radiation sources, in this work we present also some patterns collected at different energies of the primary XUV radiation transmitted by MCP optical devices working in the normal incidence geometry.

  3. Medical Device Recalls in Radiation Oncology: Analysis of US Food and Drug Administration Data, 2002-2015.

    Science.gov (United States)

    Connor, Michael J; Tringale, Kathryn; Moiseenko, Vitali; Marshall, Deborah C; Moore, Kevin; Cervino, Laura; Atwood, Todd; Brown, Derek; Mundt, Arno J; Pawlicki, Todd; Recht, Abram; Hattangadi-Gluth, Jona A

    2017-06-01

    To analyze all recalls involving radiation oncology devices (RODs) from the US Food and Drug Administration (FDA)'s recall database, comparing these with non-radiation oncology device recalls to identify discipline-specific trends that may inform improvements in device safety. Recall data on RODs from 2002 to 2015 were sorted into 4 product categories (external beam, brachytherapy, planning systems, and simulation systems). Outcomes included determined cause of recall, recall class (severity), quantity in commerce, time until recall termination (date FDA determines recall is complete), and time since 510(k) approval. Descriptive statistics were performed with linear regression of time-series data. Results for RODs were compared with those for other devices by Pearson χ 2 test for categorical data and 2-sample Kolmogorov-Smirnov test for distributions. There were 502 ROD recalls and 9534 other class II device recalls during 2002 to 2015. Most recalls were for external beam devices (66.7%) and planning systems (22.9%), and recall events peaked in 2011. Radiation oncology devices differed significantly from other devices in all recall outcomes (P≤.04). Recall cause was commonly software related (49% vs 10% for other devices). Recall severity was more often moderate among RODs (97.6% vs 87.2%) instead of severe (0.2% vs 4.4%; Panalysis of recall data can identify areas for device improvement, such as better system design among RODs. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Overview of a benefit/risk ratio optimized for a radiation emitting device used in non-destructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Maharaj, H.P., E-mail: H_P_Maharaj@hc-sc.gc.ca [Health Canada, Dept. of Health, Consumer and Clinical Radiaton Protection Bureau, Ottawa, Ontario (Canada)

    2016-03-15

    This paper aims to provide an overview of an optimized benefit/risk ratio for a radiation emitting device. The device, which is portable, hand-held, and open-beam x-ray tube based, is utilized by a wide variety of industries for purposes of determining elemental or chemical analyses of materials in-situ based on fluorescent x-rays. These analyses do not cause damage or permanent alteration of the test materials and are considered a non-destructive test (NDT). Briefly, the key characteristics, principles of use and radiation hazards associated with the Hay device are presented and discussed. In view of the potential radiation risks, a long term strategy that incorporates risk factors and guiding principles intended to mitigate the radiation risks to the end user was considered and applied. Consequently, an operator certification program was developed on the basis of an International Standards Organization (ISO) standard (ISO 20807:2004) and in collaboration with various stake holders and was implemented by a federal national NDT certification body several years ago. It comprises a written radiation safety examination and hands-on training with the x-ray device. The operator certification program was recently revised and the changes appear beneficial. There is a fivefold increase in operator certification (Levels 1 a nd 2) to date compared with earlier years. Results are favorable and promising. An operational guidance document is available to help mitigate radiation risks. Operator certification in conjunction with the use of the operational guidance document is prudent, and is recommended for end users of the x-ray device. Manufacturers and owners of the x-ray devices will also benefit from the operational guidance document. (author)

  5. Overview of a benefit/risk ratio optimized for a radiation emitting device used in non-destructive testing

    International Nuclear Information System (INIS)

    Maharaj, H.P.

    2016-01-01

    This paper aims to provide an overview of an optimized benefit/risk ratio for a radiation emitting device. The device, which is portable, hand-held, and open-beam x-ray tube based, is utilized by a wide variety of industries for purposes of determining elemental or chemical analyses of materials in-situ based on fluorescent x-rays. These analyses do not cause damage or permanent alteration of the test materials and are considered a non-destructive test (NDT). Briefly, the key characteristics, principles of use and radiation hazards associated with the Hay device are presented and discussed. In view of the potential radiation risks, a long term strategy that incorporates risk factors and guiding principles intended to mitigate the radiation risks to the end user was considered and applied. Consequently, an operator certification program was developed on the basis of an International Standards Organization (ISO) standard (ISO 20807:2004) and in collaboration with various stake holders and was implemented by a federal national NDT certification body several years ago. It comprises a written radiation safety examination and hands-on training with the x-ray device. The operator certification program was recently revised and the changes appear beneficial. There is a fivefold increase in operator certification (Levels 1 a nd 2) to date compared with earlier years. Results are favorable and promising. An operational guidance document is available to help mitigate radiation risks. Operator certification in conjunction with the use of the operational guidance document is prudent, and is recommended for end users of the x-ray device. Manufacturers and owners of the x-ray devices will also benefit from the operational guidance document. (author)

  6. Thermal management in MoS{sub 2} based integrated device using near-field radiation

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jiebin [Department of Physics, National University of Singapore, Singapore 117546 (Singapore); Zhang, Gang, E-mail: zhangg@ihpc.a-star.edu.sg [Institute of High Performance Computing, A*STAR, Singapore 138632 (Singapore); Li, Baowen [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States)

    2015-09-28

    Recently, wafer-scale growth of monolayer MoS{sub 2} films with spatial homogeneity is realized on SiO{sub 2} substrate. Together with the latest reported high mobility, MoS{sub 2} based integrated electronic devices are expected to be fabricated in the near future. Owing to the low lattice thermal conductivity in monolayer MoS{sub 2}, and the increased transistor density accompanied with the increased power density, heat dissipation will become a crucial issue for these integrated devices. In this letter, using the formalism of fluctuation electrodynamics, we explored the near-field radiative heat transfer from a monolayer MoS{sub 2} to graphene. We demonstrate that in resonance, the maximum heat transfer via near-field radiation between MoS{sub 2} and graphene can be ten times higher than the in-plane lattice thermal conduction for MoS{sub 2} sheet. Therefore, an efficient thermal management strategy for MoS{sub 2} integrated device is proposed: Graphene sheet is brought into close proximity, 10–20 nm from MoS{sub 2} device; heat energy transfer from MoS{sub 2} to graphene via near-field radiation; this amount of heat energy then be conducted to contact due to ultra-high lattice thermal conductivity of graphene. Our work sheds light for developing cooling strategy for nano devices constructing with low thermal conductivity materials.

  7. Estimation of missing values in solar radiation data using piecewise interpolation methods: Case study at Penang city

    Science.gov (United States)

    Zainudin, Mohd Lutfi; Saaban, Azizan; Bakar, Mohd Nazari Abu

    2015-12-01

    The solar radiation values have been composed by automatic weather station using the device that namely pyranometer. The device is functions to records all the radiation values that have been dispersed, and these data are very useful for it experimental works and solar device's development. In addition, for modeling and designing on solar radiation system application is needed for complete data observation. Unfortunately, lack for obtained the complete solar radiation data frequently occur due to several technical problems, which mainly contributed by monitoring device. Into encountering this matter, estimation missing values in an effort to substitute absent values with imputed data. This paper aimed to evaluate several piecewise interpolation techniques likes linear, splines, cubic, and nearest neighbor into dealing missing values in hourly solar radiation data. Then, proposed an extendable work into investigating the potential used of cubic Bezier technique and cubic Said-ball method as estimator tools. As result, methods for cubic Bezier and Said-ball perform the best compare to another piecewise imputation technique.

  8. Underwater radiation measuring device

    International Nuclear Information System (INIS)

    Seki, Noriyuki; Suzuki, Yasuo

    1998-01-01

    The present invention provides a device for measuring, under water, radiation from spent fuels (long members to be detected) of nuclear power plants and reprocessing facilities. Namely, a detecting insertion tube (insertion tube) is disposed so as to be in parallel with axial direction of the long member to be detected stored underwater. A γ-ray detector is inserted to the inside of the insertion tube. A driving mechanism is disposed for moving the γ-ray detector in axial direction inside of the insertion tube. The driving mechanism preferably has a system that it moves the γ-ray detector by winding a detection signal cable around a driving drum. The driving mechanism is formed by inserting and securing a driving tube having screws formed on the side surface and inserting it into the insertion tube. It may have a system of moving the γ-ray detector together with the driving tube while engaging the teeth of a driving transfer mechanism with the screws of the driving tube. (I.S.)

  9. Medical and policy considerations for nuclear and radiation accidents, incidents and terrorism.

    Science.gov (United States)

    Gale, Robert Peter

    2017-11-01

    The purpose of this review is to address the increasing medical and public concern regarding the health consequences of radiation exposure, a concern shaped not only by fear of another Chernobyl or Fukushima nuclear power facility accident but also by the intentional use of a nuclear weapon, a radiological dispersion device, a radiological exposure device, or an improved nuclear device by rogue states such as North Korea and terrorist organizations such as Al Qaeda and ISIS. The United States has the medical capacity to respond to a limited nuclear or radiation accident or incident but an effective medical response to a catastrophic nuclear event is impossible. Dealing effectively with nuclear and radiation accidents or incidents requires diverse strategies, including policy decisions, public education, and medical preparedness. I review medical consequences of exposures to ionizing radiations, likely concomitant injuries and potential medical intervention. These data should help haematologists and other healthcare professionals understand the principles of medical consequences of nuclear terrorism. However, the best strategy is prevention.

  10. Radiation transmission type pipe wall thinning detection device and measuring instruments utilizing ionizing radiation

    International Nuclear Information System (INIS)

    Higashi, Yasuhiko

    2009-01-01

    We developed the device to detect thinning of pipe thorough heat insulation in Power Plant, etc, even while the plant is under operation. It is necessary to test many parts of many pipes for pipe wall thinning management, but it is difficult within a limited time of the routine test. This device consists of detector and radiation source, which can detect the pipe (less than 500 mm in external diameter, less than 50 mm in thickness) with 1.6%-reproducibility (in a few-minutes measurement), based on the attenuation rate. Operation is easy and effective without removing the heat insulation. We will expand this thinning detection system, and contribute the safety of the Plant. (author)

  11. Improvements to a neutral radiation detection and position sensitive process and devices

    International Nuclear Information System (INIS)

    Charpak, Georges; Nguyen, N.H.; Policarpo, Armando.

    1977-01-01

    This invention aims to provide a neutral radiation position sensitive process and device providing a spatial radiation satisfactory for most medical applications and an energy radiation that cannot be reached by gas detectors based on proportional counters or by scintillation counters. Only solid state detectors can compete with respect to energy resolution. The detector described enables large areas to be covered which cannot be reached at accessible costs by solid state detectors. With this aim in view, the invention suggests an incident neutral radiation and position sensitive process, particularly soft gamma and X radiations, whereby photoelectrons are made to form by incident radiation action on gas atoms contained in an enclosure. By means of an electric field, the electrons are diverted towards a space undergoing an electric field high enough in value to create photons by exciting gas atoms and returning them to the de-excited state. The photons are collected, through a transparent window, on a layer of a material for converting such photons into scintillations in the near or visible UV spectrum and the barycentre of the scintillations is positioned on the layer, for instance by photomultipliers or ionization detectors. According to another aspect of the invention, it suggests a detection and position sensitive device comprising (generally downstream of a collimator with a grid of inlet holes) a leak tight containment fitted with an inlet window transparent to incident radiations, filled with a gas producing electrons by interaction with the incident radiation, and fitted with electrodes for generating an electric field to divert the electrons to a space for creating secondary photons [fr

  12. Emergency response activities and collecting damaged radiation devices from a war affected area in Croatia

    International Nuclear Information System (INIS)

    Subasic, Damir; Schaller, Antum

    1997-01-01

    A number of various devices containing ionizing radiation sources were in use in the area affected by the recent war in Croatia. In destruction caused by the war operations, a number of these devices were damaged, destroyed or even missed/lost. The actions undertaken to (re)collect these radiation sources, experience gained and lessons learned are reviewed. The importance of a well-organized national regulatory system is highlighted as a precondition for the efficient identification and safe collection of radiation sources which were under ruins. Experience from this event could be well applicable to similar situations caused by disasters and particularly for regulatory authorities who design emergency preparedness plans. (author)

  13. Application of Nd/sup 3+/-doped silica fibers to radiation sensing devices

    International Nuclear Information System (INIS)

    Imamura, K.; Suzuki, T.; Gozen, T.; Tanaka, H.; Okamoto, S.

    1987-01-01

    Applications of rare-earth-ion-doped optical fibers to radiation sensing devices have been studied. It was revealed that rare-earth-ion-doped optical fibers are highly sensitive to radioactive rays such as gamma ray and thermal neutron flux and that they have little dependence on ambient temperature and optical power. An experimental distributed radiation sensing system incorporating Nd/sup 3+/-doped optical fibers, radiation resistant optical fibers and an OTDR was made and tested. The results proved that the distributed sensing system is practically adaptable to the measurement of the radioactive rays

  14. Radiation shielding device

    International Nuclear Information System (INIS)

    Nakagawa, Takahiro; Yamagami, Makoto.

    1996-01-01

    A fixed shielding member made of a radiation shielding material is constituted in perpendicular to an opening formed on radiation shielding walls. The fixed shielding member has one side opened and has other side, the upper portion and the lower portion disposed in close contact with the radiation shielding walls. Movable shielding members made of a radiation shielding material are each disposed openably on both side of the fixed shielding member. The movable shielding member has a shaft as a fulcrum on one side thereof for connecting it to the radiation shielding walls. The other side has a handle attached for opening/closing the movable shielding member. Upon access of an operator, when each one of the movable shielding members is opened/closed on every time, leakage of linear or scattered radiation can be prevented. Even when both of the movable shielding members are opened simultaneously, the fixed shielding member and the movable shielding members form labyrinth to prevent leakage of linear radioactivity. (I.N.)

  15. Evaluating factors affecting the permeability of emulsions used to stabilize radioactive contamination from a radiological dispersal device.

    Science.gov (United States)

    Fox, Garey A; Medina, Victor F

    2005-05-15

    Present strategies for alleviating radioactive contamination from a radiological dispersal device (RDD) or dirty bomb involve either demolishing and removing radioactive surfaces or abandoning portions of the area near the release point. In both cases, it is imperative to eliminate or reduce migration of the radioisotopes until the cleanup is complete or until the radiation has decayed back to acceptable levels. This research investigated an alternative strategy of using emulsions to stabilize radioactive particulate contamination. Emergency response personnel would coat surfaces with emulsions consisting of asphalt or tall oil pitch to prevent migration of contamination. The site can then be evaluated and cleaned up as needed. In order for this approach to be effective, the treatment must eliminate migration of the radioactive agents in the terror device. Water application is an environmental condition that could promote migration into the external environment. This research investigated the potential for water, and correspondingly contaminant, migration through two emulsions consisting of Topein, a resinous byproduct during paper manufacture. Topein C is an asphaltic-based emulsion and Topein S is a tall oil pitch, nonionic emulsion. Experiments included water adsorption/ mobilization studies, filtration tests, and image analysis of photomicrographs from an environmental scanning electron microscope (ESEM) and a stereomicroscope. Both emulsions were effective at reducing water migration. Conductivity estimates were on the order of 10(-80) cm s(-1) for Topein C and 10(-7) cm s(-1) for Topein S. Water mobility depended on emulsion flocculation and coalescence time. Photomicrographs indicate that Topein S consisted of greater and more interconnected porosity. Dilute foams of isolated spherical gas cells formed when emulsions were applied to basic surfaces. Gas cells rose to the surface and ruptured, leaving void spaces that penetrated throughout the emulsion. These

  16. Radiation effects and hardness of semiconductor electronic devices for nuclear industry

    International Nuclear Information System (INIS)

    Payat, R.; Friant, A.

    1988-01-01

    After a brief review of industrial and nuclear specificity and radiation effects in electronics components (semiconductors) the need for a specific test methodology of semiconductor devices is emphasized. Some studies appropriate for nuclear industry at D. LETI/DEIN/CEN-SACLAY are related [fr

  17. Ultraviolet spectral distribution and erythema-weighted irradiance from indoor tanning devices compared with solar radiation exposures.

    Science.gov (United States)

    Sola, Yolanda; Baeza, David; Gómez, Miguel; Lorente, Jerónimo

    2016-08-01

    Concern regarding the impact of indoor tanning devices on human health has led to different regulations and recommendations, which set limits on erythema-weighted irradiance. Here, we analyze spectral emissions from 52 tanning devices in Spanish facilities and compare them with surface solar irradiance for different solar zenith angles. Whereas most of the devices emitted less UV-B radiation than the midday summer sun, the unweighted UV-A irradiance was 2-6 times higher than solar radiation. Moreover, the spectral distributions of indoor devices were completely different from that of solar radiation, differing in one order of magnitude at some UV-A wavelengths, depending on the lamp characteristics. In 21% of the devices tested, the erythema-weighted irradiance exceeded 0.3Wm(-2): the limit fixed by the European standard and the Spanish regulation. Moreover, 29% of the devices fall within the UV type 4 classification, for which medical advice is required. The high variability in erythema-weighted irradiance results in a wide range of exposure times to reach 1 standard erythemal dose (SED: 100Jm(-2)), with 62% of devices requiring exposures of UV-A dose during this time period would be from 1.4 to 10.3 times more than the solar UV-A dose. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Utilization of photoconductive gain in a-Si:H devices for radiation detection

    International Nuclear Information System (INIS)

    Lee, H.K.; Drewery, J.S.; Hong, W.S.; Jing, T.; Kaplan, S.N.; Perez-Mendez, V.

    1995-05-01

    The photoconductive gain mechanism in a-Si:H was investigated in connection with applications to radiation detection. Various device types such as p-i-n, n-i-n and n-i-p-i-n structures were fabricated and tested. Photoconductive gain was measured in two time scales: one for short pulses of visible light ( 2 . Various gain results are discussed in terms of the device structure, applied bias and dark current

  19. Application of complex programmable logic devices in memory radiation effects test system

    International Nuclear Information System (INIS)

    Li Yonghong; He Chaohui; Yang Hailiang; He Baoping

    2005-01-01

    The application of the complex programmable logic device (CPLD) in electronics is emphatically discussed. The method of using software MAX + plus II and CPLD are introduced. A new test system for memory radiation effects is established by using CPLD devices-EPM7128C84-15. The old test system's function are realized and, moreover, a number of small scale integrated circuits are reduced and the test system's reliability is improved. (authors)

  20. Wavelength dispersive X-ray absorption fine structure imaging by parametric X-ray radiation

    International Nuclear Information System (INIS)

    Inagaki, Manabu; Sakai, Takeshi; Sato, Isamu; Hayakawa, Yasushi; Nogami, Kyoko; Tanaka, Toshinari; Hayakawa, Ken; Nakao, Keisuke

    2008-01-01

    The parametric X-ray radiation (PXR) generator system at Laboratory for Electron Beam Research and Application (LEBRA) in Nihon University is a monochromatic and coherent X-ray source with horizontal wavelength dispersion. The energy definition of the X-rays, which depends on the horizontal size of the incident electron beam on the generator target crystal, has been investigated experimentally by measuring the X-ray absorption near edge structure (XANES) spectra on Cu and CuO associated with conventional X-ray absorption imaging technique. The result demonstrated the controllability of the spectrum resolution of XANES by adjusting of the horizontal electron beam size on the target crystal. The XANES spectra were obtained with energy resolution of several eV at the narrowest case, which is in qualitative agreement with the energy definition of the PXR X-rays evaluated from geometrical consideration. The result also suggested that the wavelength dispersive X-ray absorption fine structure measurement associated with imaging technique is one of the promising applications of PXR. (author)

  1. Possibilities of radiation sterilization for re-usage of medical devices in the medical management

    International Nuclear Information System (INIS)

    Tabei, Masae; Kudo, Hisaaki; Katsumura, Yosuke

    2004-01-01

    The rule for re-usage of medical single-use devices was established in US in 2000 based on the concept of Managed Care (total management of medicare on cost, quality and patients' satisfaction) and 20-30% of those devices are re-used at present. The re-usage is conducted in not only US but also Canada, Denmark, UK, India, China etc. Standing on the viewpoint, this paper described and discussed the possibility of re-usage of the single-use devices now prohibited in Japan, possible re-sterilization, possible re-usage of hollow fiber-type hemodialyzer following γ-ray sterilization with consideration for D-values against bacteria and viruses, cost estimation of electron beam sterilization for re-usage, and radiation sterilization of waste water and plastic materials. Radiation sterilization for re-usage of medical devices was concluded possible if their materials and records for their usage processes are proper, and should be conducted in a large scale after sufficient examinations by industries/government/academia. (N.I.)

  2. Response of Caenorhabditis elegans to wireless devices radiation exposure.

    Science.gov (United States)

    Fasseas, Michael K; Fragopoulou, Adamantia F; Manta, Areti K; Skouroliakou, Aikaterini; Vekrellis, Konstantinos; Margaritis, Lukas H; Syntichaki, Popi

    2015-03-01

    To examine the impact of electromagnetic radiation, produced by GSM (Global System for Mobile communications) mobile phones, Wi-Fi (Wireless-Fidelity) routers and wireless DECT (Digital Enhanced Cordless Telecommunications) phones, on the nematode Caenorhabditis elegans. We exposed synchronized populations, of different developmental stages, to these wireless devices at E-field levels below ICNIRP's (International Commission on Non-Ionizing Radiation Protection) guidelines for various lengths of time. WT (wild-type) and aging- or stress-sensitive mutant worms were examined for changes in growth, fertility, lifespan, chemotaxis, short-term memory, increased ROS (Reactive Oxygen Species) production and apoptosis by using fluorescent marker genes or qRT-PCR (quantitative Reverse Transcription-Polymerase Chain Reaction). No statistically significant differences were found between the exposed and the sham/control animals in any of the experiments concerning lifespan, fertility, growth, memory, ROS, apoptosis or gene expression. The worm appears to be robust to this form of (pulsed) radiation, at least under the exposure conditions used.

  3. Heat resistant/radiation resistant cable and incore structure test device for FBR type reactor

    International Nuclear Information System (INIS)

    Tanimoto, Hajime; Shiono, Takeo; Sato, Yoshimi; Ito, Kazumi; Sudo, Shigeaki; Saito, Shin-ichi; Mitsui, Hisayasu.

    1995-01-01

    A heat resistant/radiation resistant coaxial cable of the present invention comprises an insulation layer, an outer conductor and a protection cover in this order on an inner conductor, in which the insulation layer comprises thermoplastic polyimide. In the same manner, a heat resistant/radiation resistant power cable has an insulation layer comprising thermoplastic polyimide on a conductor, and is provided with a protection cover comprising braid of alamide fibers at the outer circumference of the insulation layer. An incore structure test device for an FBR type reactor comprises the heat resistant/radiation resistant coaxial cable and/or the power cable. The thermoplastic polyimide can be extrusion molded, and has excellent radiation resistant by the extrusion, as well as has high dielectric withstand voltage, good flexibility and electric characteristics at high temperature. The incore structure test device for the FBR type reactor of the present invention comprising such a cable has excellent reliability and durability. (T.M.)

  4. The use of ionising radiation screening devices in airports

    International Nuclear Information System (INIS)

    Lazo, T.

    2010-01-01

    Although the NEA generally focuses on radiological protection at nuclear power plants and related facilities, it also addresses other areas of radiological protection of interest to member countries. A particular subject of recent importance concerns the use of ionising radiation screening devices as part of airport security efforts. Modern body scanners can produce human images that can be used to detect weapons that may be hidden beneath a person's clothing. Heightened concerns over terrorist threats to airline flights have prompted many countries to consider the use, or expanded use of body scanners. The use of such devices raises a wide series of questions, some of which concern the radiological protection of those who might be scanned. As such, the Inter-Agency Committee on Radiation Safety (IACRS), an expert body in which the NEA works together with several other international organisations addressing radiological protection issues, recently developed a joint information paper laying out the key radiological protection and other issues that should be or have been considered when making decisions as to whether ionising radiation body scanners should be deployed in airports. This article provides an overview of the information paper. In assessing the possible use of X-ray body scanners, there are two significant radiological protection issues that may be of relevance with regard to the government decision whether their use is justified. First, although the individual exposures are very low, the exposure experienced by the scanned population as a whole will depend on whether all passengers are systematically scanned, or alternatively whether passengers are selected for scanning randomly or on the basis of specific criteria. The manner in which passengers would be selected would need to be known in order to appropriately assess the full radiological protection impact of scanner use. Second, the use of X-ray body scanners on sensitive groups, such as pregnant

  5. Emergency response activities and collecting damaged radiation devices from a war affected area in Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Subasic, Damir; Schaller, Antum [APO-Hazardous Waste Management Agency, Zagreb (Croatia)

    1997-12-31

    A number of various devices containing ionizing radiation sources were in use in the area affected by the recent war in Croatia. In destruction caused by the war operations, a number of these devices were damaged, destroyed or even missed/lost. The actions undertaken to (re)collect these radiation sources, experience gained and lessons learned are reviewed. The importance of a well-organized national regulatory system is highlighted as a precondition for the efficient identification and safe collection of radiation sources which were under ruins. Experience from this event could be well applicable to similar situations caused by disasters and particularly for regulatory authorities who design emergency preparedness plans. (author) 4 refs., 1 tab.

  6. Determination of the permeability of α-, β- and γ-radiation in textile fabrics by Gamma-Scout device

    International Nuclear Information System (INIS)

    Gintibidze, N.; Mardaleishvili, Z.

    2009-01-01

    The goal of the present was the measurement of radiation permeability in textile fabrics by Gamma-Scout device and the comparison of the obtained results with the radiation background of the ambient air. The authors of this article have produced new fiber Fibron-3, which, according to theoretical calculations, reduces permeability of solar radiation. With this in mind, an experiment was performed. Three samples of the knitted cloth from Fibron-3 were taken, and the permeability of solar radiation in them was determined. The measurements were performed on Gamma-Scout device. The comparative analysis of the permeability of solar radiation in fabrics of different fibrous structure was performed. It was inferred that the degree of radiation permeability in fabrics depended on the thread thickness and the fiber structure. (author)

  7. Synchrotron radiation A general overview and a review of storage rings, research facilities, and insertion devices

    International Nuclear Information System (INIS)

    Winick, H.

    1989-01-01

    Synchrotron radiation, the electromagnetic radiation given off by electrons in circular motion, is revolutionizing many branches of science and technology by offering beams of vacuum ultraviolet light and x rays of immense flux and brightness. In the past decade there has been an explosion of interest in these applications leading activity to construct new research facilities based on advanced storage rings and insertion device sources. Applications include basic and applied research in biology, chemistry, medicine, and physics plus many areas of technology. In this article we present a general overview of the field of synchrotron radiation research, its history, the present status and future prospects of storage rings and research facilities, and the development of wiggler and undulator insertion devices as sources of synchrotron radiation

  8. Linear devices in combined high-level radiation environments

    International Nuclear Information System (INIS)

    van Vonno, N.W.

    1987-01-01

    The design of precision analog integrated circuits for use in combined high-level radiation environments has traditionally been on a full-custom basis. The use of semicustom design methods has become prevalent in digital devices, with standard cell libraries and gate arrays readily available from multiple vendors. This paper addresses the application of semicustom design techniques to analog parts. In all cases the emphasis is on bipolar technology, since this provides an optimal combination of precision and radiation hardness. A mixed mode analog/digital (A/D) cell family for implementing semicustom designs is described, together with the fabrication process used. Specific processing and design methods are used to provide circuit hardness against neutron, total gamma dose, and transient gamma environments. Semicustom mixed analog/digital design is seen as an appropriate methodology for implementation of medium-performance mixed mode functions for radiation-hardened applications. This leads to trade-offs in process complexity and performance. Full custom design remains necessary for demanding applications such as high-speed A/D conversion and associated sample/hold functions. An A/D cell family optimized for hardness is described, together with the bipolar process used to implement it

  9. Radiation leaking protection device

    International Nuclear Information System (INIS)

    Sunami, Yoshio; Mitsumori, Kojiro

    1980-01-01

    Purpose: To prevent radioactivity from leaking outside of a reactor container by way of pipeways passing therethrough, by supplying pressurized fluid between each of a plurality of valves for separating the pipeways. Constitution: Pressurized fluid is supplied between each of a plurality of valves for separating pipeways. For instance, water in a purified water tank is pressurized by a pressure pump and the pressure of the pressurized water is controlled by a differential pressure detector, a pressure controller and a pressure control valve. In the case if a main steam pipe is ruptured outside of the reactor container or to be repaired, the separation valves are wholly closed and then the pressurizing device is actuated to supply pressurized water containing no radioactivity from the purified water tank to the position between the valves. The pressure in the pressurized water is controlled such that it is always higher by a predetermined level than the pressure in the reactor. This prevents the radioacitivity in the reactor core from leaking outside of the container passing through the valves, whereby radiation exposure in the working can be reduced and the circumferential contamination upon accident of pipeway rupture can be decreased. (Kawakami, Y.)

  10. Measurement of the dispersion of radiation from a steady cosmological source

    International Nuclear Information System (INIS)

    Lieu, Richard; Duan, Lingze; Kibble, T. W. B.

    2013-01-01

    The 'missing baryons' of the near universe are believed to be principally in a partially ionized state. Although passing electromagnetic waves are dispersed by the plasma, the effect has hitherto not been utilized as a means of detection because it is generally believed that a successful observation requires the background source to be highly variable, i.e., the class of sources that could potentially deliver a verdict is limited. We argue in two stages that this condition is not necessary. First, by modeling the fluctuations on macroscopic scales as interference between wave packets, we show that, in accordance with the ideas advanced by Einstein in 1917, both the behavior of photons as bosons (i.e., the intensity variance has contributions from Poisson and phase noise) and the van-Cittert-Zernike theorem are a consequence of wave-particle duality. Nevertheless, we then point out that, in general, the variance on some macroscopic timescale τ consists of (1) a main contributing term ∝1/τ, plus (2) a small negative term ∝1/τ 2 due to the finite size of the wave packets. If the radiation passes through a dispersive medium, this size will be enlarged well beyond its vacuum minimum value of Δt ≈ 1/Δν, leading to a more negative (2) term (while (1) remains unchanged), and hence a suppression of the variance wrt the vacuum scenario. The phenomenon, which is typically at a few parts in 10 5 level, enables one to measure cosmological dispersion in principle. Signal-to-noise estimates, along with systematic issues and how to overcome them, will be presented.

  11. Malfunction of cardiac devices after radiotherapy without direct exposure to ionizing radiation: mechanisms and experimental data.

    Science.gov (United States)

    Zecchin, Massimo; Morea, Gaetano; Severgnini, Mara; Sergi, Elisabetta; Baratto Roldan, Anna; Bianco, Elisabetta; Magnani, Silvia; De Luca, Antonio; Zorzin Fantasia, Anna; Salvatore, Luca; Milan, Vittorino; Giannini, Gianrossano; Sinagra, Gianfranco

    2016-02-01

    Malfunctions of cardiac implantable electronical devices (CIED) have been described after high-energy radiation therapy even in the absence of direct exposure to ionizing radiation, due to diffusion of neutrons (n) causing soft errors in inner circuits. The purpose of the study was to analyse the effect of scattered radiation on different types and models of CIED and the possible sources of malfunctions. Fifty-nine explanted CIED were placed on an anthropomorphous phantom of tissue-equivalent material, and a high-energy photon (15 MV) radiotherapy course (total dose = 70 Gy) for prostate treatment was performed. All devices were interrogated before and after radiation. Radiation dose, the electromagnetic field, and neutron fluence at the CIED site were measured. Thirty-four pacemakers (PM) and 25 implantable cardioverter-defibrillators (ICD) were analysed. No malfunctions were detected before radiation. After radiation a software malfunction was evident in 13 (52%) ICD and 6 (18%) PM; no significant electromagnetic field or photon radiations were detected in the thoracic region. Neutron capture was demonstrated by the presence of the (198)Au((197)Au + n) or (192)Ir((191)Ir + n) isotope activation; it was significantly greater in ICD than in PM and non-significantly greater in damaged devices. A greater effect in St Jude PM (2/2 damaged), Boston (9/11), and St Jude ICD (3/6) and in older ICD models was observed; the year of production was not relevant in PM. High-energy radiation can cause different malfunctions on CIED, particularly ICD, even without direct exposure to ionizing radiation due to scattered radiation of neutrons produced by the linear accelerator. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  12. Analysis of a Kalman filter based method for on-line estimation of atmospheric dispersion parameters using radiation monitoring data

    DEFF Research Database (Denmark)

    Drews, Martin; Lauritzen, Bent; Madsen, Henrik

    2005-01-01

    A Kalman filter method is discussed for on-line estimation of radioactive release and atmospheric dispersion from a time series of off-site radiation monitoring data. The method is based on a state space approach, where a stochastic system equation describes the dynamics of the plume model...... parameters, and the observables are linked to the state variables through a static measurement equation. The method is analysed for three simple state space models using experimental data obtained at a nuclear research reactor. Compared to direct measurements of the atmospheric dispersion, the Kalman filter...... estimates are found to agree well with the measured parameters, provided that the radiation measurements are spread out in the cross-wind direction. For less optimal detector placement it proves difficult to distinguish variations in the source term and plume height; yet the Kalman filter yields consistent...

  13. Design and finite element simulation of vacuum systems for insertion devices in Indus-2 storage ring

    International Nuclear Information System (INIS)

    Yadav, D.P.; Bais, Vijay; Sridhar, R.; Dhimole, Vivek K.; Nitesh, Suthar; Rawal, B.R.; Chogaonkar, Swati

    2015-01-01

    Indus-2 is a 2.5 GeV, 300 mA, Synchrotron Radiation Source (SRS) located at Raja Ramanna Centre for Advanced Technology, Indore. As part of insertion device (ID) development programme two new devices namely, APPLE-2 (Advanced Planar Polarized Light Emitter) type Undulator (also known as U-3 Undulator) and 5 Tesla superconducting wavelength shifter (SWLS) are being developed. APPLE-2 will generate variably polarized synchrotron radiation (SR) required for carrying out magnetic circular dichroism (MCD) and magnetic linear dichroism (MLD) experiments and SWLS will generate synchrotron radiation (SR) with critical photon energy of about 20.8 keV for Energy Dispersive XRD beam line. This paper describes design details and finite element analysis results of various simulations carried out for the vacuum systems of these IDs

  14. A comparison of ionizing radiation damage in CMOS devices from 60Co gamma rays, electrons and protons

    International Nuclear Information System (INIS)

    He Baoping; Yao Zhibin; Zhang Fengqi

    2009-01-01

    Radiation hardened CC4007RH and non-radiation hardened CC4011 devices were irradiated using 60 Co gamma rays, 1 MeV electrons and 1-9 MeV protons to compare the ionizing radiation damage of the gamma rays with the charged particles. For all devices examined, with experimental uncertainty, the radiation induced threshold voltage shifts (ΔV th ) generated by 60 Co gamma rays are equal to that of 1 MeV electron and 1-7 MeV proton radiation under 0 gate bias condition. Under 5 V gate bias condition, the distinction of threshold voltage shifts (ΔV th ) generated by 60 Co gamma rays and 1 MeV electrons irradiation are not large, and the radiation damage for protons below 9 MeV is always less than that of 60 Co gamma rays. The lower energy the proton has, the less serious the radiation damage becomes. (authors)

  15. Generalized dispersive wave emission in nonlinear fiber optics.

    Science.gov (United States)

    Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G

    2013-01-15

    We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.

  16. Modelling the long-term consequences of a hypothetical dispersal of radioactivity in an urban area including remediation alternatives

    DEFF Research Database (Denmark)

    Thiessen, K.M.; Andersson, Kasper Grann; Batandjieva, B.

    2009-01-01

    The Urban Remediation Working Group of the International Atomic Energy Agency's EMRAS (Environmental Modelling for Radiation Safety) program was organized to address issues of remediation assessment modelling for urban areas contaminated with dispersed radionuclides. The present paper describes...... the second of two modelling exercises. This exercise was based on a hypothetical dispersal of radioactivity in an urban area from a radiological dispersal device, with reference surface contamination at selected sites used as the primary input information. Modelling endpoints for the exercise included...... radionuclide concentrations and external dose rates at specified locations, contributions to the dose rates from individual surfaces, and annual and cumulative external doses to specified reference individuals. Model predictions were performed for a "no action" situation (with no remedial measures...

  17. Research on dose setting for radiation sterilization of medical device

    International Nuclear Information System (INIS)

    Zhang Tongcheng; Liu Qingfang; Zhong Hongliang; Mi Zhisu; Wang Chunlei; Jiang Jianping

    2002-01-01

    Objective: To establish the radiation sterilization dose for medical devices using data of bioburden on the medical device. Methods: Firstly determination of recovery ratio and correction coefficient of the microbiological test method was used according to ISO11737 standard, then determination of bioburden on the products, finally the dose setting was completed based on the Method 1 in ISO11137 standard. Results: Fifteen kinds of medical devices were tested. Bioburden range was from 8.6-97271.2 CFU/device, recovery ration range 54.6%-100%, correction co-efficiency range 1.00-1.83, D 10 distribution from 1.40 to 2.82 kGy, verification dose (dose at SAL = 10 -2 ) range 5.1-17.6 kGy and sterilization dose (dose at SAL 10 -6 ) range 17.5-32.5 kGy. Conclusion: One hundred samples of each kind of product were exposed to the pre-determined verification dose and then the sterility test was performed. Each sterility test showed positive number was not greater than two. This indicated that the sterilization dose established for each kind of product was statistically acceptable

  18. Longitudinal evaluation of P-wave dispersion and P-wave maximum in children after transcatheter device closure of secundum atrial septal defect.

    Science.gov (United States)

    Grignani, Robert Teodoro; Tolentino, Kim Martin; Rajgor, Dimple Dayaram; Quek, Swee Chye

    2015-06-01

    Transcatheter device closure of the secundum atrial septal defect (ASD) in children prevents atrial arrhythmias in older age. However, the benefits of favourable atrial electrocardiographic markers in these children remain elusive. We aimed to review the electrocardiographic markers of atrial activity in a longitudinal fashion. We retrospectively reviewed longitudinal data of all children who underwent transcatheter device closure at the National University Hospital between 2004 and 2013. The inclusion criteria included the presence of a secundum-type ASD with left to right shunt and evidence of increased right ventricular volume load (Q p/Q s ratio >1.5 and/or right ventricular dilatation). A total of 25 patients with a mean follow-up of 44.7 ± 33.47 (7.3-117.4) months were included. P maximum and P dispersion decreased at 2 months, P amplitude at 1 week and remained so until last follow-up. A positive trend was seen with a correlation coefficient of +0.12 for P maximum, +0.08 for P dispersion and 0.34 for P amplitude. There was a higher baseline P amplitude and P dispersion in patients who were older than 10 years and a non-significant trend to support an increase in both P maximum (71.0 ± 8.8 vs. 73.2 ± 12.7), P dispersion (17.0 ± 6.5 vs. 22.0 ± 11.3) and P amplitude (0.88 ± 0.25 vs. 1.02 ± 0.23) in patients with an ASD more than 15 mm compared with an ASD <15 mm. There is reduction in both P maximum and P dispersion as early as 2 months, which persisted on follow-up. Earlier closure may result in more favourable electrocardiographic results.

  19. Estimation of missing values in solar radiation data using piecewise interpolation methods: Case study at Penang city

    International Nuclear Information System (INIS)

    Zainudin, Mohd Lutfi; Saaban, Azizan; Bakar, Mohd Nazari Abu

    2015-01-01

    The solar radiation values have been composed by automatic weather station using the device that namely pyranometer. The device is functions to records all the radiation values that have been dispersed, and these data are very useful for it experimental works and solar device’s development. In addition, for modeling and designing on solar radiation system application is needed for complete data observation. Unfortunately, lack for obtained the complete solar radiation data frequently occur due to several technical problems, which mainly contributed by monitoring device. Into encountering this matter, estimation missing values in an effort to substitute absent values with imputed data. This paper aimed to evaluate several piecewise interpolation techniques likes linear, splines, cubic, and nearest neighbor into dealing missing values in hourly solar radiation data. Then, proposed an extendable work into investigating the potential used of cubic Bezier technique and cubic Said-ball method as estimator tools. As result, methods for cubic Bezier and Said-ball perform the best compare to another piecewise imputation technique

  20. Estimation of missing values in solar radiation data using piecewise interpolation methods: Case study at Penang city

    Energy Technology Data Exchange (ETDEWEB)

    Zainudin, Mohd Lutfi, E-mail: mdlutfi07@gmail.com [School of Quantitative Sciences, UUMCAS, Universiti Utara Malaysia, 06010 Sintok, Kedah (Malaysia); Institut Matematik Kejuruteraan (IMK), Universiti Malaysia Perlis, 02600 Arau, Perlis (Malaysia); Saaban, Azizan, E-mail: azizan.s@uum.edu.my [School of Quantitative Sciences, UUMCAS, Universiti Utara Malaysia, 06010 Sintok, Kedah (Malaysia); Bakar, Mohd Nazari Abu, E-mail: mohdnazari@perlis.uitm.edu.my [Faculty of Applied Science, Universiti Teknologi Mara, 02600 Arau, Perlis (Malaysia)

    2015-12-11

    The solar radiation values have been composed by automatic weather station using the device that namely pyranometer. The device is functions to records all the radiation values that have been dispersed, and these data are very useful for it experimental works and solar device’s development. In addition, for modeling and designing on solar radiation system application is needed for complete data observation. Unfortunately, lack for obtained the complete solar radiation data frequently occur due to several technical problems, which mainly contributed by monitoring device. Into encountering this matter, estimation missing values in an effort to substitute absent values with imputed data. This paper aimed to evaluate several piecewise interpolation techniques likes linear, splines, cubic, and nearest neighbor into dealing missing values in hourly solar radiation data. Then, proposed an extendable work into investigating the potential used of cubic Bezier technique and cubic Said-ball method as estimator tools. As result, methods for cubic Bezier and Said-ball perform the best compare to another piecewise imputation technique.

  1. Thermal and radiation losses in a linear device

    International Nuclear Information System (INIS)

    Rosenau, P.; Degani, D.

    1980-01-01

    An analysis is presented of the electron temperature in a linear device which includes the effect of thermal conduction, heat flux limit, radiation, and end plugs. It is found that the thermal conduction and the heat flux limit are dominant in the initial phase of cooling, while the later phase is almost completely controlled by radiation that spatially homogenizes the temperature distribution. In the case of bremsstrahlung, within the frame of the present model, the temperature decays to zero in a finite time. This process takes the form of a cooling wave that moves from the ends of the column to the center. Impurities cause a milder, exponential decay, which is still much faster than the algebraic conduction decay. The thermal effectiveness of the end plugs is described by a convective transfer coefficient h/sub p/. Its scaling law (in terms of the coupled plamsa-plug system) reveals that a very high plug-plasma density ratio provides a simple way to significantly retard the cooling

  2. Taking SiC Power Devices to the Final Frontier: Addressing Challenges of the Space Radiation Environment

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan

    2017-01-01

    Silicon carbide power device technology has the potential to enable a new generation of aerospace power systems that demand high efficiency, rapid switching, and reduced mass and volume in order to expand space-based capabilities. For this potential to be realized, SiC devices must be capable of withstanding the harsh space radiation environment. Commercial SiC components exhibit high tolerance to total ionizing dose but to date, have not performed well under exposure to heavy ion radiation representative of the on-orbit galactic cosmic rays. Insertion of SiC power device technology into space applications to achieve breakthrough performance gains will require intentional development of components hardened to the effects of these highly-energetic heavy ions. This work presents heavy-ion test data obtained by the authors over the past several years for discrete SiC power MOSFETs, JFETs, and diodes in order to increase the body of knowledge and understanding that will facilitate hardening of this technology to space radiation effects. Specifically, heavy-ion irradiation data taken under different bias, temperature, and ion beam conditions is presented for devices from different manufacturers, and the emerging patterns discussed.

  3. Simulating threshold voltage shift of MOS devices due to radiation in the low-dose range

    CERN Document Server

    Wan Xin Heng; Gao Wen Yu; Huang Ru; Wang Yang Yuan

    2002-01-01

    An analytical MOSFET threshold voltage shift model due to radiation in the low-dose range has been developed for circuit simulations. Experimental data in the literature shows that the model predictions are in good agreement. It is simple in functional form and hence computationally efficient. It can be used as a basic circuit simulation tool for analysing MOSFET exposed to a nuclear environment up to about 1 Mrad(Si). In accordance with common believe, radiation induced absolute change of threshold voltage was found to be larger in irradiated PMOS devices. However, if the radiation sensitivity is defined in the way authors did it, the results indicated NMOS rather than PMOS devices are more sensitive, specially at low doses. This is important from the standpoint of their possible application in dosimetry

  4. Current state of commercial radiation detection equipment for homeland security applications

    International Nuclear Information System (INIS)

    Klann, R.T.; Shergur, J.; Mattesich, G.

    2009-01-01

    With the creation of the U.S. Department of Homeland Security (DHS) came the increased concern that terrorist groups would attempt to manufacture and use an improvised nuclear device or radiological dispersal device. As such, a primary mission of DHS is to protect the public against the use of these devices and to assist state and local responders in finding, locating, and identifying these types of devices and materials used to manufacture these devices. This assistance from DHS to state and local responders comes in the form of grant money to procure radiation detection equipment. In addition to this grant program, DHS has supported the development of American National Standards Institute standards for radiation detection equipment and has conducted testing of commercially available instruments. This paper identifies the types and kinds of commercially available equipment that can be used to detect and identify radiological material - for use in traditional search applications as well as primary and secondary screening of personnel, vehicles, and cargo containers. In doing so, key considerations for the conduct of operations are described as well as critical features of the instruments for specific applications. The current state of commercial instruments is described for different categories of detection equipment including personal radiation detectors, radioisotope identifiers, man-portable detection equipment, and radiation portal monitors. In addition, emerging technologies are also discussed, such as spectroscopic detectors and advanced spectroscopic portal monitors

  5. Design of radiation-chemical devices with gamma source for sewage treatment

    International Nuclear Information System (INIS)

    Mendel'son, Eh.L.; Gol'din, V.A.; Breger, A.Kh.

    1981-01-01

    The semiempirical method of calculating conductivity of radiation- chemical devices (RCD) with γ-sources to purify domestic and industrial drainage waters and other processes in liquid phase systems which meet definite requirements based on taking into account the structure of the technological process, is suggested RCD of a new type is developed. It is coaxially cylindrical. A correcting coefficient which takes into account the difference in the actual time of keeping a current of drainage water in the device and its avaraged calculation value, conditioned by the longtitudinal transfer of a substance in the device, is determined. It is shown that the above RCD productivity can be considerably increased due to creating the structure of adisplacement current which provides the equality of absorbed doses in all its elements [ru

  6. Modeling UV Radiation Feedback from Massive Stars. II. Dispersal of Star-forming Giant Molecular Clouds by Photoionization and Radiation Pressure

    Science.gov (United States)

    Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.

    2018-05-01

    UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, Σ0, such that the SFE increases from 4% to 51% as Σ0 increases from 13 to 1300 {M}ȯ {pc}}-2. Cloud destruction occurs within 2–10 Myr after the onset of radiation feedback, or within 0.6–4.1 freefall times (increasing with Σ0). Photoevaporation dominates the mass loss in massive, low surface density clouds, but because most photons are absorbed in an ionization-bounded Strömgren volume, the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to {{{Σ }}}0-0.74, and the ejection of neutrals substantially contributes to the disruption of low mass and/or high surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations.

  7. Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing

    Energy Technology Data Exchange (ETDEWEB)

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael; Barnaby, Hugo

    2013-04-30

    For many decades, various radiation detecting material have been extensively researched, to find a better material or mechanism for radiation sensing. Recently, there is a growing need for a smaller and effective material or device that can perform similar functions of bulkier Geiger counters and other measurement options, which fail the requirement for easy, cheap and accurate radiation dose measurement. Here arises the use of thin film chalcogenide glass, which has unique properties of high thermal stability along with high sensitivity towards short wavelength radiation. The unique properties of chalcogenide glasses are attributed to the lone pair p-shell electrons, which provide some distinctive optical properties when compared to crystalline material. These qualities are derived from the energy band diagram and the presence of localized states in the band gap. Chalcogenide glasses have band tail states and localized states, along with the two band states. These extra states are primarily due to the lone pair electrons as well as the amorphous structure of the glasses. The localized states between the conductance band (CB) and valence band (VB) are primarily due to the presence of the lone pair electrons, while the band tail states are attributed to the Van der Waal's forces between layers of atoms [1]. Localized states are trap locations within the band gap where electrons from the valence band can hop into, in their path towards the conduction band. Tail states on the other hand are locations near the band gap edges and are known as Urbach tail states (Eu). These states are occupied with many electrons that can participate in the various transformations due to interaction with photons. According to Y. Utsugi et. al.[2], the electron-phonon interactions are responsible for the generation of the Urbach tails. These states are responsible for setting the absorption edge for these glasses and photons with energy near the band gap affect these states. We have

  8. 77 FR 41417 - Regulatory Science Considerations for Medical Countermeasure Radiation Biodosimetry Devices

    Science.gov (United States)

    2012-07-13

    ... scientific and technological challenges for performance validation of radiation biodosimetry devices. Date... participants (non-FDA employees) is through Bldg. 1 where routine security check procedures will be performed... this document. FDA will do its best to accommodate requests to make public comment. Individuals and...

  9. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    Science.gov (United States)

    Vaz, Pedro

    2015-11-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed.

  10. Wearable device for monitoring momentary presence of intense x-ray and/or ultra-violet radiations

    International Nuclear Information System (INIS)

    Shriner, W.

    1981-01-01

    A credit-card-size clear-plastic-encased device can be worn or carried by a person to warn him of the momentary presence of dangerous intensities of ultra-violet and/or x-ray radiations. A base lamina (e.g. of cardboard) is coated with a material (e.g. zinc-cadmium sulfide or lead-barium sulfate) which fluoresces under such radiations. Numerals, letters, words or symbols are printed over the fluorescent coat with a material inhibitory to said radiations so that a warning message in dark print will appear on a light background when dangerous intensities of said radiations are present. An x-ray-warning area is covered with an ultra-violet absorbing screen so that said area will glow only under x-rays (Which rays will also activate the remaining ultra-violet-responsive area). The colors of the laminas and the coats are so selected that the messages are not visible when dangerous radiations are not present. If desired, only the message can be printed with fluorescent material so as to glow on a darker background. Optionally, step-layer attenuation devices can be added to indicate degrees of radiation; and reflecting surfaces can underlie the fluorescent coat to increase efficiency and/or sensitively

  11. A study of radiation vulnerability of ferroelectric material and devices

    International Nuclear Information System (INIS)

    Coiec, Y.M.; Musseau, O.; Leray, J.L.

    1994-01-01

    The radiation effects on ferroelectric material and devices are presented, based on commercially available samples. After recalling the background, effects in ferroelectric PZT capacitors are presented, concerning dose, neutrons and fatigue associated with dose effects. Physical implications and interpretations are sketched. In a second stage, effects are studied at the complete non-volatile RAM device level. Vulnerability in dose, dose rate and neutron fluence of commercial 4 kbit ferroelectric RAM is addressed. 64 kbit results are mentioned in dose rate. These results are compared to previously published data from other manufacturers or laboratories and supplement them. In the appendix, equivalence between rad(Si) and rad (PZT) is discussed in the case of low energy ''10 keV Aracor'' x-rays and 60 Co gamma rays

  12. Evaluation of pelletron accelerator facility to study radiation effects on semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, A. P. Gnana; Pushpa, N.; Praveen, K. C.; Naik, P. S.; Revannasiddaiah, D. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore-570006, Karnataka (India)

    2012-06-05

    In this paper we present the comprehensive results on the effects of different radiation on the electrical characteristics of different semiconductor devices like Si BJT, n-channel MOSFETs, 50 GHz and 200 GHz silicon-germanium heterojunction bipolar transistor (SiGe HBTs). The total dose effects of different radiation are compared in the same total dose ranging from 100 krad to 100 Mrad. We show that the irradiation time needed to reach very high total dose can be reduced by using Pelletron accelerator facilities instead of conventional irradiation facilities.

  13. Evaluation of pelletron accelerator facility to study radiation effects on semiconductor devices

    International Nuclear Information System (INIS)

    Prakash, A. P. Gnana; Pushpa, N.; Praveen, K. C.; Naik, P. S.; Revannasiddaiah, D.

    2012-01-01

    In this paper we present the comprehensive results on the effects of different radiation on the electrical characteristics of different semiconductor devices like Si BJT, n-channel MOSFETs, 50 GHz and 200 GHz silicon-germanium heterojunction bipolar transistor (SiGe HBTs). The total dose effects of different radiation are compared in the same total dose ranging from 100 krad to 100 Mrad. We show that the irradiation time needed to reach very high total dose can be reduced by using Pelletron accelerator facilities instead of conventional irradiation facilities.

  14. Radiological Dispersal Devices: Select Issues in Consequence Management

    Science.gov (United States)

    2004-03-10

    goals, following which medical treatment of the radiation effects can be provided.10 Post- exposure medical therapy is designed to treat the consequences ...the approach that radiation related health effects can be extrapolated, i.e. the damage caused by radiation exposure CRS-3 8 For example, see Health...effort to determine the validity of these models, the federal government funds research into the health effects of radiation exposure through the

  15. Improving radiation hardness in space-based Charge-Coupled Devices through the narrowing of the charge transfer channel

    Science.gov (United States)

    Hall, D. J.; Skottfelt, J.; Soman, M. R.; Bush, N.; Holland, A.

    2017-12-01

    Charge-Coupled Devices (CCDs) have been the detector of choice for imaging and spectroscopy in space missions for several decades, such as those being used for the Euclid VIS instrument and baselined for the SMILE SXI. Despite the many positive properties of CCDs, such as the high quantum efficiency and low noise, when used in a space environment the detectors suffer damage from the often-harsh radiation environment. High energy particles can create defects in the silicon lattice which act to trap the signal electrons being transferred through the device, reducing the signal measured and effectively increasing the noise. We can reduce the impact of radiation on the devices through four key methods: increased radiation shielding, device design considerations, optimisation of operating conditions, and image correction. Here, we concentrate on device design operations, investigating the impact of narrowing the charge-transfer channel in the device with the aim of minimising the impact of traps during readout. Previous studies for the Euclid VIS instrument considered two devices, the e2v CCD204 and CCD273, the serial register of the former having a 50 μm channel and the latter having a 20 μm channel. The reduction in channel width was previously modelled to give an approximate 1.6× reduction in charge storage volume, verified experimentally to have a reduction in charge transfer inefficiency of 1.7×. The methods used to simulate the reduction approximated the charge cloud to a sharp-edged volume within which the probability of capture by traps was 100%. For high signals and slow readout speeds, this is a reasonable approximation. However, for low signals and higher readout speeds, the approximation falls short. Here we discuss a new method of simulating and calculating charge storage variations with device design changes, considering the absolute probability of capture across the pixel, bringing validity to all signal sizes and readout speeds. Using this method, we

  16. Aqueously Dispersed Silver Nanoparticle-Decorated Boron Nitride Nanosheets for Reusable, Thermal Oxidation-Resistant Surface Enhanced Raman Spectroscopy (SERS) Devices

    Science.gov (United States)

    Lin, Yi; Bunker, Christopher E.; Fernandos, K. A. Shiral; Connell, John W.

    2012-01-01

    The impurity-free aqueous dispersions of boron nitride nanosheets (BNNS) allowed the facile preparation of silver (Ag) nanoparticle-decorated BNNS by chemical reduction of an Ag salt with hydrazine in the presence of BNNS. The resultant Ag-BNNS nanohybrids remained dispersed in water, allowing convenient subsequent solution processing. By using substrate transfer techniques, Ag-BNNS nanohybrid thin film coatings on quartz substrates were prepared and evaluated as reusable surface enhanced Raman spectroscopy (SERS) sensors that were robust against repeated solvent washing. In addition, because of the unique thermal oxidation-resistant properties of the BNNS, the sensor devices may be readily recycled by short-duration high temperature air oxidation to remove residual analyte molecules in repeated runs. The limiting factor associated with the thermal oxidation recycling process was the Ostwald ripening effect of Ag nanostructures.

  17. Radiation Detection System for Prevention of Radiological and Nuclear Terrorism

    International Nuclear Information System (INIS)

    Kwak, Sung-Woo; Yoo, Ho-Sik; Jang, Sung-Sun; Kim, Jae-Kwang; Kim, Jung-Soo

    2007-01-01

    After the September 11 terrorist attack, the threat of a potential for a radiological or nuclear terrorist attack became more apparent. The threats relating to radiological or nuclear materials include a Radiological Dispersion Device (RDD), an Improved Nuclear Device (IND) or a State Nuclear Device (such as a Soviet manufactured suitcase nuclear weapon). For more effective countermeasures against the disaster, multilayer protection concept - prevention of smuggling of radioactive or nuclear material into our country through seaports or airports, detection and prevention of the threat materials in transit on a road, and prevention of their entry into a target building - is recommended. Due to different surrounding circumstances of where detection system is deployed, different types of radiation detection systems are required. There have been no studies on characteristics of detection equipment required under Korean specific conditions. This paper provides information on technical requirements of radiation detection system to achieve multi-layer countermeasures for the purpose of protecting the public and environment against radiological and nuclear terrorism

  18. Coherent spontaneous radiation from highly bunched electron beams

    International Nuclear Information System (INIS)

    Berryman, K.W.; Crosson, E.R.; Ricci, K.N.

    1995-01-01

    Coherent spontaneous radiation has now been observed in several FELs, and is a subject of great importance to the design of self-amplified spontaneous emission (SASE) devices. We report observations of coherent spontaneous radiation in both FIREFLY and the mid-infrared FEL at the Stanford Picosecond FEL Center. Coherent emission has been observed at wavelengths as short as 5 microns, and enhancement over incoherent levels by as much as a factor of 4x10 4 has been observed at longer wavelengths. The latter behavior was observed at 45 microns in FIREFLY with short bunches produced by off-peak acceleration and dispersive compression. We present temporal measurements of the highly bunched electron distributions responsible for the large enhancements, using both transition radiation and energy-phase techniques

  19. A study of radiation vulnerability of ferroelectric material and devices

    Energy Technology Data Exchange (ETDEWEB)

    Coic, Y M; Musseau, O; Leray, J L [CEA Centre d` Etudes de Bruyeres-le-Chatel, 91 (France)

    1994-12-31

    The radiation effects on ferroelectric material and devices are presented, based on commercially available samples. After recalling the background, effects in ferroelectric PZT capacitors are presented, concerning dose, neutrons and fatigue associated with dose effects. Physical implications and interpretations are sketched. In a second stage, effects are studied at the complete non-volatile RAM device level. Vulnerability in dose, dose rate and neutron fluence of commercial 4 kbit ferroelectric RAM is addressed. 64 kbit results are mentioned in dose rate. These results are compared to previously published data from other manufacturers or laboratories and supplement them. In the appendix, equivalence between rad (Si) and rad (PZT) is discussed in the case of low energy ``10 keV Aracor`` s-rays and {sup 60}Co gamma rays. (author). 24 refs., 11 figs., 7 tabs.

  20. A study of radiation vulnerability of ferroelectric material and devices

    International Nuclear Information System (INIS)

    Coic, Y.M.; Musseau, O.; Leray, J.L.

    1994-01-01

    The radiation effects on ferroelectric material and devices are presented, based on commercially available samples. After recalling the background, effects in ferroelectric PZT capacitors are presented, concerning dose, neutrons and fatigue associated with dose effects. Physical implications and interpretations are sketched. In a second stage, effects are studied at the complete non-volatile RAM device level. Vulnerability in dose, dose rate and neutron fluence of commercial 4 kbit ferroelectric RAM is addressed. 64 kbit results are mentioned in dose rate. These results are compared to previously published data from other manufacturers or laboratories and supplement them. In the appendix, equivalence between rad (Si) and rad (PZT) is discussed in the case of low energy ''10 keV Aracor'' s-rays and 60 Co gamma rays. (author). 24 refs., 11 figs., 7 tabs

  1. A conceptual design of the set-up for solid state spectroscopy with free electron laser and insertion device radiation

    CERN Document Server

    Makhov, V N

    2001-01-01

    The set-up for complex solid state spectroscopy with the use of enhanced properties of radiation from insertion devices and free electron lasers is proposed. Very high flux and pulsed properties of radiation from insertion devices and free electron lasers offer the possibility for the use of such powerful techniques as electron paramagnetic resonance (EPR) and optically detected magnetic resonance (ODMR) for the studies of excited states of electronic excitations or defects in solids. The power density of radiation can become high enough for one more method of exited-state spectroscopy: transient optical absorption spectroscopy. The set-up is supposed to combine the EPR/ODMR spectrometer, i.e. cryostat supplied with superconducting magnet and microwave system, and the optical channels for excitation (by radiation from insertion devices or free electron laser) and detection of luminescence (i.e. primary and secondary monochromators). The set-up can be used both for 'conventional' spectroscopy of solids (reflec...

  2. Energy dispersive X-ray fluorescence analysis with Bragg polarized Mo radiation. Energiedispersive Roentgenfluoreszenzanalyse mit Bragg-polarisierter Mo Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Gloeckl, H

    1983-01-01

    The aim of introducing energy dispersive analysis into X-ray fluorescence analysis is to suppress background from the Bremsstrahlung spectrum and the characteristic radiation without an undue reduction of the signal. The variant under consideration uses linearly polarization radiation obtained after a Bragg reflection,under delta = 90/sup 0/. In an introductory part, Bragg reflection, fluorescence and strong radiation are considered quantitatively with respect to counting statistics and detection limits. In the experimental part two combinations are describe, of a Ta crystal with a Cr tube and of a Mo crystal with a Mo tube. Details of adjustment, sample preparation and calibration and detection limits are given. The pros and cons of the Ta/Cr and the Mo/Mo are contrasted and proposals for further improvements are given.

  3. Origin, radiation, dispersion and allopatric hybridization in the chub Leuciscus cephalus.

    Science.gov (United States)

    Durand, J D; Unlü, E; Doadrio, I; Pipoyan, S; Templeton, A R

    2000-08-22

    The phylogenetic relationships of 492 chub (Leuciscus cephalus) belonging to 89 populations across the species' range were assessed using 600 base pairs of cytochrome b. Furthermore, nine species belonging to the L. cephalus complex were also analysed (over the whole cytochrome b) in order to test potential allopatric hybridization with L. cephalus sensu stricto (i.e. the chub). Our results show that the chub includes four highly divergent lineages descending from a quick radiation that took place three million years ago. The geographical distribution of these lineages and results of the nested clade analysis indicated that the chub may have originated from Mesopotamia. Chub radiation probably occurred during an important vicariant event such as the isolation of numerous Turkish river systems, a consequence of the uplift of the Anatolian Plateau (formerly covered by a broad inland lake). Dispersion of these lineages arose from the changes in the European hydrographic network and, thus, the chub and endemic species of the L. cephalus complex met by secondary contacts. Our results show several patterns of introgression, from Leuciscus lepidus fully introgressed by chub mitochondrial DNA to Leuciscus borysthenicus where no introgression at all was detected. We assume that these hybridization events might constitute an important evolutionary process for the settlement of the chub in new environments in the Mediterranean area.

  4. Energy dispersive X-ray spectroscopy with microcalorimeters

    International Nuclear Information System (INIS)

    Hollerith, C.; Wernicke, D.; Buehler, M.; Feilitzsch, F. von; Huber, M.; Hoehne, J.; Hertrich, T.; Jochum, J.; Phelan, K.; Stark, M.; Simmnacher, B.; Weiland, W.; Westphal, W.

    2004-01-01

    Shrinking feature sizes in semiconductor device production as well as the use of new materials demand innovation in device technology and material analysis. X-ray spectrometers based on superconducting sensor technology are currently closing the gap between fast energy dispersive spectroscopy (EDS) and high-resolution wavelength dispersive spectroscopy (WDS). This work reports on the successful integration of iridium/gold transition edge sensors in the first industrially used microcalorimeter EDS. The POLARIS microcalorimeter system is installed at the failure analysis lab FA5 at Infineon Technologies AG in Neuperlach (Munich) and is used in routine analysis

  5. WE-D-BRE-01: A Sr-90 Irradiation Device for the Study of Cutaneous Radiation Injury

    Energy Technology Data Exchange (ETDEWEB)

    Dorand, JE; Bourland, JD [Department of Radiation Oncology and Department of Physics, Wake Forest University, Winston-Salem, NC (United States); Burnett, LR [KeraNetics, LLC, Winston-Salem, NC (United States); Tytell, M [Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC (United States)

    2014-06-15

    Purpose: To determine dosimetric character for a custom-built Sr-90 beta irradiator designed for the study of Cutaneous Radiation Injury (CRI) in a porcine animal model. In the event of a radiological accident or terrorist event, Sr-90, a fission by-product, will likely be produced. CRI is a main concern due to the low energy and superficial penetration in tissue of beta particles from Sr-90. Seven 100 mCi plaque Sr-90 radiation sources within a custom-built irradiation device create a 40 mm diameter region of radiation-induced skin injury as part of a larger project to study the efficacy of a topical keratin-based product in CRI healing. Methods: A custom-built mobile irradiation device was designed and implemented for in vivo irradiations. Gafchromic™ EBT3 radiochromic film and a PTW Markus chamber type 23343 were utilized for dosimetric characterization of the beta fluence at the surface produced by this device. Films were used to assess 2-dimensional dose distribution and percent depth dose characteristics of the radiation field. Ion chamber measurements provided dose rate data within the field. Results: The radiation field produced by the irradiation device is homogeneous with high uniformity (∼5%) and symmetry (∼3%) with a steep dose fall-off with depth from the surface. Dose rates were determined to be 3.8 Gy/min and 3.3 Gy/min for film and ion chamber measurements, respectively. A dose rate of 3.4 Gy/min was used to calculate irradiation times for in vivo irradiations. Conclusion: The custom-built irradiation device enables the use of seven Sr-90 beta sources in an array to deliver a 40 mm diameter area of homogeneous skin dose with a dose rate that is useful for research purposes and clinically relevant for the induction of CRI. Doses of 36 and 42 Gy successfully produce Grade III CRI and are used in the study of the efficacy of KeraStat™. This project has been funded in whole or in part with Federal funds from the Biomedical Advanced Research and

  6. Uranium Dispersion and Dosimetry (UDAD) Code

    International Nuclear Information System (INIS)

    Momeni, M.H.; Yuan, Y.; Zielen, A.J.

    1979-05-01

    The Uranium Dispersion and Dosimetry (UDAD) Code provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility. The UDAD Code incorporates the radiation dose from the airborne release of radioactive materials, and includes dosimetry of inhalation, ingestion, and external exposures. The removal of raioactive particles from a contaminated area by wind action is estimated, atmospheric concentrations of radioactivity from specific sources are calculated, and source depletion as a result of deposition, fallout, and ingrowth of radon daughters are included in a sector-averaged Gaussian plume dispersion model. The average air concentration at any given receptor location is assumed to be constant during each annual release period, but to increase from year to year because of resuspension. Surface contamination and deposition velocity are estimated. Calculation of the inhalation dose and dose rate to an individual is based on the ICRP Task Group Lung Model. Estimates of the dose to the bronchial epithelium of the lung from inhalation of radon and its short-lived daughters are calculated based on a dose conversion factor from the BEIR report. External radiation exposure includes radiation from airborne radionuclides and exposure to radiation from contaminated ground. Terrestrial food pathways include vegetation, meat, milk, poultry, and eggs. Internal dosimetry is based on ICRP recommendations. In addition, individual dose commitments, population dose commitments, and environmental dose commitments are computed. This code also may be applied to dispersion of any other pollutant

  7. Report by the work-group on 'safety of medical devices emitting ionizing radiations'. Articulation of radiation protection requirements of the 97/43/Euratom directive and IAEA recommendations with the essential requirements of the 93/42/CEE directive related to medical devices used in external radiotherapy

    International Nuclear Information System (INIS)

    2010-01-01

    As some dysfunctions and events had been reported in 2007 and 2008 in field of radiotherapy, this report aims at clarifying the articulation between the different European regulations concerning medical devices emitting ionizing radiations and radiation protection. The authors report a survey with device manufacturers, and analyze the content of the different regulations and recommendations. Then, the authors recommend and propose a set of actions related to the IAEA requirements and recommendations, to CE marking requirements, and to new radiation protection and safety requirements present in the Euratom directive

  8. Radiation-induced interface state generation in MOS devices with reoxidised nitrided SiO2 gate dielectrics

    International Nuclear Information System (INIS)

    Lo, G.Q.; Shih, D.K.; Ting, W.; Kwong, D.L.

    1989-01-01

    In this letter, the radiation-induced interface state generation ΔD it in MOS devices with reoxidised nitrided gate oxides has been studied. The reoxidised nitrided oxides were fabricated by rapid thermal reoxidation (RTO) of rapidly thermal nitrided (RTN) SiO 2 . The devices were irradiated by exposure to X-rays at doses of 0.5-5.0 Mrad (Si). It is found that the RTO process improves the radiation hardness of RTN oxides in terms of interface state generation. The enhanced interface ''hardness'' of reoxidised nitrided oxides is attributed to the strainless interfacial oxide regrowth or reduction of hydrogen concentration during RTO of RTN oxides. (author)

  9. New photonic devices for ultrafast pulse processing operating on the basis of the diffraction-dispersion analogy

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Company, Victor; Minguez-Vega, Gladys; Climent, Vicent; Lands, Jesus [GROC-UJI, Departament de Fisica, Universitat Jaume I, 12080 Castello (Spain); Andres, Pedro [Departament d' Optica, Universitat de Valencia, 46100 Burjassot (Spain)], E-mail: lancis@fca.uji.es

    2008-11-01

    The space-time analogy is a well-known topic within wave optics that brings together some results from beam diffraction and pulse dispersion. On the above basis, and taking as starting point some classical concepts in Optics, several photonic devices have been proposed during the last few years with application in rapidly evolving fields such as ultrafast (femtosecond) optics or RF and microwave signal processing. In this contribution, we briefly review the above ideas with particular emphasis in the generation of trains of ultrafast pulses from periodic modulation of the phase of a CW laser source. This is the temporal analogue of Fresnel diffraction by a pure phase grating. Finally, we extend the analogy to the partially coherent case, what enables us to design an original technique for wavelength-to-time mapping of the spectrum of a temporally stationary source. Results of laboratory experiments concerning the generation of user-defined radio-frequency waveforms and filtering of microwave signals will be shown. The devices are operated with low-cost incoherent sources.

  10. Filter and window assemblies for high power insertion device synchrotron radiation sources

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Viccaro, P.J.; Kuzay, T.M.

    1992-01-01

    The powerful beams of x-ray radiation generated by insertion devices at high power synchrotron facilities deposit substantial amounts of localized heat in the front end and optical components that they intercept. X-ray beams from undulator sources, in particular, are confined to very narrow solid angles and therefore impose very high absorbed heat fluxes. This paper is devoted to a detailed study of the design of windows for the Advanced Photon Source undulators and wigglers, emphasizing alternative design concepts, material considerations, and cooling techniques necessary for handling the high heat load of the insertion devices. Various designs are thermally and structurally analyzed by numerically simulating full-power operating conditions. This analysis also has relevance to the design and development of other beam line components which are subjected to the high heat loads of insertion devices

  11. Total-dose radiation effects data for semiconductor devices. 1985 supplement. Volume 2, part A

    International Nuclear Information System (INIS)

    Martin, K.E.; Gauthier, M.K.; Coss, J.R.; Dantas, A.R.V.; Price, W.E.

    1986-05-01

    Steady-state, total-dose radiation test data, are provided in graphic format for use by electronic designers and other personnel using semiconductor devices in a radiation environment. The data were generated by JPL for various NASA space programs. This volume provides data on integrated circuits. The data are presented in graphic, tabular, and/or narrative format, depending on the complexity of the integrated circuit. Most tests were done using the JPL or Boeing electron accelerator (Dynamitron) which provides a steady-state 2.5 MeV electron beam. However, some radiation exposures were made with a cobalt-60 gamma ray source, the results of which should be regarded as only an approximate measure of the radiation damage that would be incurred by an equivalent electron dose

  12. Radiation damage of metal uranium

    International Nuclear Information System (INIS)

    Mihajlovic, A.

    1965-01-01

    This report is concerned with the role of dispersion second phase in uranium and burnup rate. The role of dispersion phases in radiation stability of metal uranium was studies by three methods: variation of electric conductivity dependent on the neutron flux and temperature of pure uranium for different states of dispersion second phase; influence of dispersion phase on the radiation creep; transmission electron microscopy of fresh and irradiated uranium

  13. Theoretic simulation for CMOS device on total dose radiation response

    International Nuclear Information System (INIS)

    He Baoping; Zhou Heqin; Guo Hongxia; He Chaohui; Zhou Hui; Luo Yinhong; Zhang Fengqi

    2006-01-01

    Total dose effect is simulated for C4007B, CC4007RH and CC4011 devices at different absorbed dose rate by using linear system theory. When irradiation response and dose are linear, total dose radiation and post-irradiation annealing at room temperature are determined for one random by choosing absorbed dose rate, and total dose effect at other absorbed dose rate can be predicted by using linear system theory. The simulating results agree with the experimental results at different absorbed dose rate. (authors)

  14. ROSY - Rossendorf synchrotron radiation source

    International Nuclear Information System (INIS)

    Einfeld, D.; Matz, W.

    1993-11-01

    The electron energy of the storage ring will be 3 GeV and the emitted synchrotron radiation is in the hard X-ray region with a critical energy of the spectrum of E c =8,4 keV (λ c =0,14 nm). With a natural emittance of 28 π nm rad ROSY emits high brilliance radiation. Besides the radiation from bending magnets there will be the possibility for using radiation from wigglers and undulators. For the insertion devices 8 places are foreseen four of which are located in non-dispersion-free regions. The storage ring is of fourfold symmetry, has a circumference of 148 m and is designed in a modified FODO structure. An upgrade of ROSY with superconducting bending magnets in order to shift the spectrum to higher energy can easily be done. Part I contains the scientific case and a description of the planned use of the beam lines. Part II describes the design of the storage ring and its components in more detail. (orig.) [de

  15. A novel facility for ageing materials with narrow-band ultraviolet radiation exposure

    International Nuclear Information System (INIS)

    Kaerhae, Petri; Ruokolainen, Kimmo; Heikkilae, Anu; Kaunismaa, Merja

    2011-01-01

    A facility for exploring wavelength dependencies in ultraviolet (UV) radiation induced degradation in materials has been designed and constructed. The device is essentially a spectrograph separating light from a lamp to spectrally resolved UV radiation. It is based on a 1 kW xenon lamp and a flat-field concave holographic grating 10 cm in diameter. Radiation at the wavelength range 250-500 nm is dispersed onto the sample plane of 1.5 cm in height and 21 cm in width. The optical performance of the device has been characterized by radiometric measurements. Using the facility, test samples prepared of regular newspaper have been irradiated from 1 to 8 h. Color changes on the different locations of the aged samples have been quantified by color measurements. Yellowness indices computed from the color measurements demonstrate the capability of the facility in revealing wavelength dependencies of the material property changes in reasonable time frames.

  16. Computing the spectrum of black hole radiation in the presence of high frequency dispersion: an analytical approach

    OpenAIRE

    Corley, Steven

    1997-01-01

    We present a method for computing the spectrum of black hole radiation of a scalar field satisfying a wave equation with high frequency dispersion. The method involves a combination of Laplace transform and WKB techniques for finding approximate solutions to ordinary differential equations. The modified wave equation is obtained by adding a higher order derivative term suppressed by powers of a fundamental momentum scale $k_0$ to the ordinary wave equation. Depending on the sign of this new t...

  17. Anomalous resonance-radiation energy-transfer rate in a scattering dispersive medium

    International Nuclear Information System (INIS)

    Shekhtman, V.L.

    1992-01-01

    This paper describes a generalization of the concept of group velocity as an energy-transfer rate in a dispersive medium with complex refractive index when the polaritons, which are energy carriers, undergo scattering, in contrast to the classical concept of the group velocity of free polaritons (i.e., without scattering in the medium). The concept of delay time from quantum multichannel-scattering, theory is used as the fundamental concept. Based on Maxwell's equations and the new mathematical Φ-function method, a consistent conceptual definition of group velocity in terms of the ratio of the coherent-energy flux density to the coherent-energy density is obtained for the first time, and a critical analysis of the earlier (Brillouin) understanding of energy-transfer rate is given in the light of radiation-trapping theory and the quantum theory of resonance scattering. The role of generalized group velocity is examined for the interpretation of the phenomenon of multiple resonance scattering, or radiation diffusion. The question of causality for the given problem is touched upon; a new relationship is obtained, called the microcausality condition, which limits the anomalous values of group velocity by way of the indeterminacy principle and the relativistic causality principle for macroscopic time intervals directly measurable in experiment, whereby attention is focused on the connection of the given microcausality condition and the well-known Wigner inequality for the time delay of spherical waves. 22 refs

  18. Emergency response activities and the collection of damaged radiation devices in the war areas of Croatia

    International Nuclear Information System (INIS)

    Subasic, D.; Schaller, A.

    1998-01-01

    Several kinds of devices containing sources of ionizing radiation had been in use in the areas of Croatia which were affected by the recent war, principally in industrial and medical applications. The greater share of these devices was constituted by 151 radioactive lightning conductors with a maximum individual activity of 19.5 GBq and some 8300 smoke detectors. In the destruction caused by the war, some of these devices were damaged, destroyed or lost. The actions undertaken to retrieve them and their sources are described, as well as the experience gained and lessons learned. The importance of a well organized national regulatory system is underscored as a precondition for the efficient identification and safe recovery of radiation sources lying amidst the ruins in the area affected by the war. The experience gained in these actions may be applicable to similar situations caused by natural disasters such as earthquakes, floods, hurricanes, etc. and of particular interest to regulatory authorities for the drawing up of emergency preparedness plans. (author)

  19. A theoretical approach to calibrate radiation portal monitor (RPM) systems

    International Nuclear Information System (INIS)

    Nafee, Sherif S.; Abbas, Mahmoud I.

    2008-01-01

    Radiation portal monitor (RPM) systems are widely used at international border crossings, where they are applied to the task of detecting nuclear devices, special nuclear material, and radiation dispersal device materials that could appear at borders. The requirements and constraints on RPM systems deployed at high-volume border crossings are significantly different from those at weapons facilities or steel recycling plants, the former being required to rapidly detect localized sources of radiation with a very high detection probability and low false-alarm rate, while screening all of the traffic without impeding the flow of commerce [Chambers, W.H., Atwater, H.F., Fehlau, P.E., Hastings, R.D., Henry, C.N., Kunz, W.E., Sampson, T.E., Whittlesey, T.H., Worth, G.M., 1974. Portal Monitor for Diversion Safeguards. LA-5681, Los Alamos Scientific Laboratory, Los Alamos, NM]. In the present work, compact analytical formulae are derived and used to calibrate two RPM systems with isotropic radiating sources: (i) polyvinyltoluene (PVT) or plastic and (ii) thallium-doped crystalline sodium iodide, NaI(Tl), gamma-ray detector materials. The calculated efficiencies are compared to measured values reported in the literatures, showing very good agreement

  20. Manifestation of plasmonic response in the detection of sub-terahertz radiation by graphene-based devices

    Science.gov (United States)

    Gayduchenko, I. A.; Fedorov, G. E.; Moskotin, M. V.; Yagodkin, D. I.; Seliverstov, S. V.; Goltsman, G. N.; Kuntsevich, A. Yu; Rybin, M. G.; Obraztsova, E. D.; Leiman, V. G.; Shur, M. S.; Otsuji, T.; Ryzhii, V. I.

    2018-06-01

    We report on the sub-terahertz (THz) (129–450 GHz) photoresponse of devices based on single layer graphene and graphene nanoribbons with asymmetric source and drain (vanadium and gold) contacts. Vanadium forms a barrier at the graphene interface, while gold forms an Ohmic contact. We find that at low temperatures (77 K) the detector responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. Graphene nanoribbon devices display a similar pattern, albeit with a lower responsivity.

  1. Adverse Events Involving Radiation Oncology Medical Devices: Comprehensive Analysis of US Food and Drug Administration Data, 1991 to 2015

    International Nuclear Information System (INIS)

    Connor, Michael J.; Marshall, Deborah C.; Moiseenko, Vitali; Moore, Kevin; Cervino, Laura; Atwood, Todd; Sanghvi, Parag; Mundt, Arno J.; Pawlicki, Todd; Recht, Abram; Hattangadi-Gluth, Jona A.

    2017-01-01

    Purpose: Radiation oncology relies on rapidly evolving technology and highly complex processes. The US Food and Drug Administration collects reports of adverse events related to medical devices. We sought to characterize all events involving radiation oncology devices (RODs) from the US Food and Drug Administration's postmarket surveillance Manufacturer and User Facility Device Experience (MAUDE) database, comparing these with non–radiation oncology devices. Methods and Materials: MAUDE data on RODs from 1991 to 2015 were sorted into 4 product categories (external beam, brachytherapy, planning systems, and simulation systems) and 5 device problem categories (software, mechanical, electrical, user error, and dose delivery impact). Outcomes included whether the device was evaluated by the manufacturer, adverse event type, remedial action, problem code, device age, and time since 510(k) approval. Descriptive statistics were performed with linear regression of time-series data. Results for RODs were compared with those for other devices by the Pearson χ"2 test for categorical data and 2-sample Kolmogorov-Smirnov test for distributions. Results: There were 4234 ROD and 4,985,698 other device adverse event reports. Adverse event reports increased over time, and events involving RODs peaked in 2011. Most ROD reports involved external beam therapy (50.8%), followed by brachytherapy (24.9%) and treatment planning systems (21.6%). The top problem types were software (30.4%), mechanical (20.9%), and user error (20.4%). RODs differed significantly from other devices in each outcome (P<.001). RODs were more likely to be evaluated by the manufacturer after an event (46.9% vs 33.0%) but less likely to be recalled (10.5% vs 37.9%) (P<.001). Device age and time since 510(k) approval were shorter among RODs (P<.001). Conclusions: Compared with other devices, RODs may experience adverse events sooner after manufacture and market approval. Close postmarket surveillance, improved

  2. Adverse Events Involving Radiation Oncology Medical Devices: Comprehensive Analysis of US Food and Drug Administration Data, 1991 to 2015

    Energy Technology Data Exchange (ETDEWEB)

    Connor, Michael J. [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Department of Radiation Oncology, University of California Irvine School of Medicine, Irvine, California (United States); Marshall, Deborah C.; Moiseenko, Vitali; Moore, Kevin; Cervino, Laura; Atwood, Todd; Sanghvi, Parag; Mundt, Arno J.; Pawlicki, Todd [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Recht, Abram [Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (United States); Hattangadi-Gluth, Jona A., E-mail: jhattangadi@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States)

    2017-01-01

    Purpose: Radiation oncology relies on rapidly evolving technology and highly complex processes. The US Food and Drug Administration collects reports of adverse events related to medical devices. We sought to characterize all events involving radiation oncology devices (RODs) from the US Food and Drug Administration's postmarket surveillance Manufacturer and User Facility Device Experience (MAUDE) database, comparing these with non–radiation oncology devices. Methods and Materials: MAUDE data on RODs from 1991 to 2015 were sorted into 4 product categories (external beam, brachytherapy, planning systems, and simulation systems) and 5 device problem categories (software, mechanical, electrical, user error, and dose delivery impact). Outcomes included whether the device was evaluated by the manufacturer, adverse event type, remedial action, problem code, device age, and time since 510(k) approval. Descriptive statistics were performed with linear regression of time-series data. Results for RODs were compared with those for other devices by the Pearson χ{sup 2} test for categorical data and 2-sample Kolmogorov-Smirnov test for distributions. Results: There were 4234 ROD and 4,985,698 other device adverse event reports. Adverse event reports increased over time, and events involving RODs peaked in 2011. Most ROD reports involved external beam therapy (50.8%), followed by brachytherapy (24.9%) and treatment planning systems (21.6%). The top problem types were software (30.4%), mechanical (20.9%), and user error (20.4%). RODs differed significantly from other devices in each outcome (P<.001). RODs were more likely to be evaluated by the manufacturer after an event (46.9% vs 33.0%) but less likely to be recalled (10.5% vs 37.9%) (P<.001). Device age and time since 510(k) approval were shorter among RODs (P<.001). Conclusions: Compared with other devices, RODs may experience adverse events sooner after manufacture and market approval. Close postmarket surveillance

  3. An Intercomparison of Model Predictions for an Urban Contamination Resulting from the Explosion of a Radiological Dispersal Device

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Won Tae; Jeong, Hyo Jun; Kim, Eun Han; Han, Moon Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-03-15

    The METRO-K is a model for a radiological dose assessment due to a radioactive contamination in the Korean urban environment. The model has been taken part in the Urban Remediation Working Group within the IAEA's (International Atomic Energy Agency) EMRAS (Environmental Modeling for Radiation Safety) program. The Working Croup designed for the intercomparison of radioactive contamination to be resulted from the explosion of a radiological dispersal device in a hypothetical city. This paper dealt intensively with a part among a lot of predictive results which had been performed in the EMRAS program. The predictive results of three different models (METRO-K, RESRAD-RDD, CPHR) were submitted to the Working Group. The gap of predictive results was due to the difference of mathematical modeling approaches, parameter values, understanding of assessors. Even if final results (for example, dose rates from contaminated surfaces which might affect to a receptor) are similar, the understanding on the contribution of contaminated surfaces showed a great difference. Judging from the authors, it is due to the lack of understanding and information on radioactive terrors as well as the social and cultural gaps which assessors have been experienced. Therefore, it can be known that the experience of assessors and their subjective judgements might be important factors to get reliable results. If the acquisition of a little additional information is possible, it was identified that the METRO-K might be a useful tool for decision support against contamination resulting from radioactive terrors by improving the existing model.

  4. An Intercomparison of Model Predictions for an Urban Contamination Resulting from the Explosion of a Radiological Dispersal Device

    International Nuclear Information System (INIS)

    Hwang, Won Tae; Jeong, Hyo Jun; Kim, Eun Han; Han, Moon Hee

    2009-01-01

    The METRO-K is a model for a radiological dose assessment due to a radioactive contamination in the Korean urban environment. The model has been taken part in the Urban Remediation Working Group within the IAEA's (International Atomic Energy Agency) EMRAS (Environmental Modeling for Radiation Safety) program. The Working Croup designed for the intercomparison of radioactive contamination to be resulted from the explosion of a radiological dispersal device in a hypothetical city. This paper dealt intensively with a part among a lot of predictive results which had been performed in the EMRAS program. The predictive results of three different models (METRO-K, RESRAD-RDD, CPHR) were submitted to the Working Group. The gap of predictive results was due to the difference of mathematical modeling approaches, parameter values, understanding of assessors. Even if final results (for example, dose rates from contaminated surfaces which might affect to a receptor) are similar, the understanding on the contribution of contaminated surfaces showed a great difference. Judging from the authors, it is due to the lack of understanding and information on radioactive terrors as well as the social and cultural gaps which assessors have been experienced. Therefore, it can be known that the experience of assessors and their subjective judgements might be important factors to get reliable results. If the acquisition of a little additional information is possible, it was identified that the METRO-K might be a useful tool for decision support against contamination resulting from radioactive terrors by improving the existing model.

  5. Intercomparison of radiation protection protection devices in a high-energy stray neutron field. Part III: Instrument response

    Czech Academy of Sciences Publication Activity Database

    Silari, M.; Agosteo, S.; Beck, P.; Bedogni, R.; Cale, E.; Caresana, M.; Domingo, C.; Donadille, L.; Dubourg, N.; Esposito, A.; Fehrenbacher, G.; Fernández, F.; Ferrarini, M.; Fiechtner, A.; Fuchs, A.; García, M. J.; Golnik, N.; Gutermuth, F.; Khurana, S.; Klages, T.; Latocha, M.; Mares, V.; Mayer, S.; Radon, T.; Reithmeier, H.; Rollet, S.; Roos, H.; Rühm, W.; Sandri, S.; Schardt, D.; Simmer, G.; Spurný, František; Trompier, F.; Villa-Grasa, C.; Weitzenegger, E.; Wiegel, B.; Wielunski, M.; Wissmann, F.; Zechner, A.; Zielczyński, M.

    2009-01-01

    Roč. 44, 7-8 (2009), s. 673-691 ISSN 1350-4487 R&D Projects: GA AV ČR IAA100480902 Institutional research plan: CEZ:AV0Z10480505 Keywords : radiation protection devices * radiation field * detectors * dosemeters Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.973, year: 2009

  6. Standard Practice for Minimizing Dosimetry Errors in Radiation Hardness Testing of Silicon Electronic Devices Using Co-60 Sources

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers recommended procedures for the use of dosimeters, such as thermoluminescent dosimeters (TLD's), to determine the absorbed dose in a region of interest within an electronic device irradiated using a Co-60 source. Co-60 sources are commonly used for the absorbed dose testing of silicon electronic devices. Note 1—This absorbed-dose testing is sometimes called “total dose testing” to distinguish it from “dose rate testing.” Note 2—The effects of ionizing radiation on some types of electronic devices may depend on both the absorbed dose and the absorbed dose rate; that is, the effects may be different if the device is irradiated to the same absorbed-dose level at different absorbed-dose rates. Absorbed-dose rate effects are not covered in this practice but should be considered in radiation hardness testing. 1.2 The principal potential error for the measurement of absorbed dose in electronic devices arises from non-equilibrium energy deposition effects in the vicinity o...

  7. Risks of carcinogenesis from electromagnetic radiation of mobile telephony devices.

    Science.gov (United States)

    Yakymenko, I; Sidorik, E

    2010-07-01

    Intensive implementation of mobile telephony technology in everyday human life during last two decades has given a possibility for epidemiological estimation of long-term effects of chronic exposure of human organism to low-intensive microwave (MW) radiation. Latest epidemiological data reveal a significant increase in risk of development of some types of tumors in chronic (over 10 years) users of mobile phone. It was detected a significant increase in incidence of brain tumors (glioma, acoustic neuroma, meningioma), parotid gland tumor, seminoma in long-term users of mobile phone, especially in cases of ipsilateral use (case-control odds ratios from 1.3 up to 6.1). Two epidemiological studies have indicated a significant increase of cancer incidence in people living close to the mobile telephony base station as compared with the population from distant area. These data raise a question of adequacy of modern safety limits of electromagnetic radiation (EMR) exposure for humans. For today the limits were based solely on the conception of thermal mechanism of biological effects of RF/MW radiation. Meantime the latest experimental data indicate the significant metabolic changes in living cell under the low-intensive (non-thermal) EMR exposure. Among reproducible biological effects of low-intensive MWs are reactive oxygen species overproduction, heat shock proteins expression, DNA damages, apoptosis. The lack of generally accepted mechanism of biological effects of low-intensive non-ionizing radiation doesn't permit to disregard the obvious epidemiological and experimental data of its biological activity. Practical steps must be done for reasonable limitation of excessive EMR exposure, along with the implementation of new safety limits of mobile telephony devices radiation, and new technological decisions, which would take out the source of radiation from human brain.

  8. Temperature dependence of frequency dispersion in III–V metal-oxide-semiconductor C-V and the capture/emission process of border traps

    Energy Technology Data Exchange (ETDEWEB)

    Vais, Abhitosh, E-mail: Abhitosh.Vais@imec.be; Martens, Koen; DeMeyer, Kristin [Department of Electrical Engineering, KU Leuven, B-3000 Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Lin, Han-Chung; Ivanov, Tsvetan; Collaert, Nadine; Thean, Aaron [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Dou, Chunmeng [Frontier Research Center, Tokyo Institute of Technology, Yokohama 226-8502 (Japan); Xie, Qi; Maes, Jan [ASM International, B-3001 Leuven (Belgium); Tang, Fu; Givens, Michael [ASM International, Phoenix, Arizona 85034-7200 (United States); Raskin, Jean-Pierre [Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Universiteé Catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium)

    2015-08-03

    This paper presents a detailed investigation of the temperature dependence of frequency dispersion observed in capacitance-voltage (C-V) measurements of III-V metal-oxide-semiconductor (MOS) devices. The dispersion in the accumulation region of the capacitance data is found to change from 4%–9% (per decade frequency) to ∼0% when the temperature is reduced from 300 K to 4 K in a wide range of MOS capacitors with different gate dielectrics and III-V substrates. We show that such significant temperature dependence of C-V frequency dispersion cannot be due to the temperature dependence of channel electrostatics, i.e., carrier density and surface potential. We also show that the temperature dependence of frequency dispersion, and hence, the capture/emission process of border traps can be modeled by a combination of tunneling and a “temperature-activated” process described by a non-radiative multi-phonon model, instead of a widely believed single-step elastic tunneling process.

  9. Development of microfluidic devices for biomedical applications of synchrotron radiation infrared microspectroscopy

    OpenAIRE

    Birarda, Giovanni

    2011-01-01

    2009/2010 ABSTRACT DEVELOPMENT OF MICROFLUIDIC DEVICES FOR BIOMEDICAL APPLICATIONS OF SYNCHROTRON RADIATION INFRARED MICROSPECTROSCOPY by Birarda Giovanni The detection and measurement of biological processes in a complex living system is a discipline at the edge of Physics, Biology, and Engineering, with major scientific challenges, new technological applications and a great potential impact on dissection of phenomena occurring at tissue, cell, and sub cellular level. The ...

  10. Web software for the control and management of radiation protection devices in the Cadarache site

    International Nuclear Information System (INIS)

    Beltritti, F.

    2010-01-01

    This series of slides presents how to use a new software dedicated to the management of the periodical controls that have to be performed on the equipment involved in radiation protection. This software is ready to be dispatched on the CEA site of Cadarache. This software gives information on: the device to be controlled, the controls that have to be performed, the procedures to follow to make the test, the equipment necessary for the test particularly the need for radioactive sources, the maintenance of the device, the previous measurements and in the end the device's conformity. An evaluation of the conformity of all the devices present in a building or an area or of a particular type can be easily obtained. (A.C.)

  11. Reduction in radiation exposure to nursing personnel with the use of remote afterloading brachytherapy devices

    International Nuclear Information System (INIS)

    Grigsby, P.W.; Perez, C.A.; Eichling, J.; Purdy, J.; Slessinger, E.

    1991-01-01

    The radiation exposure to nursing personnel from patients with brachytherapy implants on a large brachytherapy service were reviewed. Exposure to nurses, as determined by TLD monitors, indicates a 7-fold reduction in exposure after the implementation of the use of remote afterloading devices. Quarterly TLD monitor data for six quarters prior to the use of remote afterloading devices demonstrate an average projected annual dose equivalent to the nurses of 152 and 154 mrem (1.5 mSv). After the implementation of the remote afterloading devices, the quarterly TLD monitor data indicate an average dose equivalent per nurse of 23 and 19 mrem (0.2 mSv). This is an 87% reduction in exposure to nurses with the use of these devices (p less than 0.01)

  12. Radiation Damage in Electronic Memory Devices

    Directory of Open Access Journals (Sweden)

    Irfan Fetahović

    2013-01-01

    Full Text Available This paper investigates the behavior of semiconductor memories exposed to radiation in order to establish their applicability in a radiation environment. The experimental procedure has been used to test radiation hardness of commercial semiconductor memories. Different types of memory chips have been exposed to indirect ionizing radiation by changing radiation dose intensity. The effect of direct ionizing radiation on semiconductor memory behavior has been analyzed by using Monte Carlo simulation method. Obtained results show that gamma radiation causes decrease in threshold voltage, being proportional to the absorbed dose of radiation. Monte Carlo simulations of radiation interaction with material proved to be significant and can be a good estimation tool in probing semiconductor memory behavior in radiation environment.

  13. Modelling the long-term consequences of a hypothetical dispersal of radioactivity in an urban area including remediation alternatives

    International Nuclear Information System (INIS)

    Thiessen, K.M.; Andersson, K.G.; Batandjieva, B.; Cheng, J.-J.; Hwang, W.T.; Kaiser, J.C.; Kamboj, S.; Steiner, M.; Tomas, J.; Trifunovic, D.; Yu, C.

    2009-01-01

    The Urban Remediation Working Group of the International Atomic Energy Agency's EMRAS (Environmental Modelling for Radiation Safety) program was organized to address issues of remediation assessment modelling for urban areas contaminated with dispersed radionuclides. The present paper describes the second of two modelling exercises. This exercise was based on a hypothetical dispersal of radioactivity in an urban area from a radiological dispersal device, with reference surface contamination at selected sites used as the primary input information. Modelling endpoints for the exercise included radionuclide concentrations and external dose rates at specified locations, contributions to the dose rates from individual surfaces, and annual and cumulative external doses to specified reference individuals. Model predictions were performed for a 'no action' situation (with no remedial measures) and for selected countermeasures. The exercise provided an opportunity for comparison of three modelling approaches, as well as a comparison of the predicted effectiveness of various countermeasures in terms of their short-term and long-term effects on predicted doses to humans.

  14. The use of fixatives for response to a radiation dispersal devise attack - a review of the current (2009) state-of-the-art

    International Nuclear Information System (INIS)

    Parra, R.R.; Medina, V.F.; Conca, J.L.

    2009-01-01

    Radiation dispersal devices (RDDs), or dirty bombs, are terrorist weapons designed to scatter radioactive materials in large urban areas. Although the main intent of a RDD is to produce general panic and chaos, other impacts such as health, environmental, property and economical damage may also occur. Although one certain method of reducing health risks from a RDD event is to remove the radioactive contaminants from the environment immediately, rapid cleanup after a RDD event may be impossible in many cases. However, preventing the migration of the radioactive contaminant is crucial. Although it may be necessary to allow the contaminant to remain in place, preventing its migration is still essential. Fixatives can reduce or eliminating migration potential of a contaminant introduced by a RDD. This paper reviews the significance of fixatives in response to a RDD event and some of the products which have been identified for such a purpose. Many of the products are promising for application. However, many reports lack quantitative information to allow for effective comparative evaluation. Further, key parameters, such as shelf life and product toxicity, are not typically evaluated. We recommend that standardized performance parameters be established to allow for better comparative evaluation.

  15. Dispersion engineering in metamaterials and metasurfaces

    Science.gov (United States)

    Li, Xiong; Pu, Mingbo; Ma, Xiaoliang; Guo, Yinghui; Gao, Ping; Luo, Xiangang

    2018-02-01

    Dispersion engineering is essential for spectral utilization in electromagnetic systems. However, it is difficult to manage the dispersions in both natural materials and traditional electromagnetic waveguides since they are tightly related to fine structures of atoms, molecules and causality. The emergence of metamaterials and metasurfaces, which are made of subwavelength inclusions offers tremendous freedom to manipulate the electromagnetic parameters of materials and modes. Here, we review the basic principles, practical applications and recent advancements of the dispersion engineering in metadevices. The contributions of dispersion management in metadevice-based super-resolution imaging/nanolithography systems, planar functional devices, as well as the broadband perfect absorbers/polarization converters are discussed in depth. The challenges faced by this field as well as future developing trends are also presented in the conclusions.

  16. Radiation Damage in Electronic Memory Devices

    OpenAIRE

    Fetahović, Irfan; Pejović, Milić; Vujisić, Miloš

    2013-01-01

    This paper investigates the behavior of semiconductor memories exposed to radiation in order to establish their applicability in a radiation environment. The experimental procedure has been used to test radiation hardness of commercial semiconductor memories. Different types of memory chips have been exposed to indirect ionizing radiation by changing radiation dose intensity. The effect of direct ionizing radiation on semiconductor memory behavior has been analyzed by using Monte Carlo simula...

  17. Safety lock for radiography exposure device

    International Nuclear Information System (INIS)

    Gaines, T.M.

    1982-01-01

    A safety lock for securing a radiation source in a radiography exposure device is disclosed. The safety lock prevents the inadvertent extension of the radiation source from the exposure device. The exposure devices are used extensively in industry for nondestructive testing of metal materials for defect. Unnecessary exposure of the radiographer or operator occurs not infrequently due to operator's error in believing that the radiation source is secured in the exposure device when, in fact, it is not. The present invention solves this problem of unnecessary exposure by releasingly trapping the radiation source in the shield of the radiography exposure device each time the source is retracted therein so that it is not inadvertently extended therefrom without the operator resetting the safety lock, thereby releasing the radiation source. Further, the safety lock includes an indicator which indicates when the source is trapped in the exposure device and also when it is untrapped. The safety lock is so designed that it does not prevent the return of the source to the trapped, shielded position in the exposure device. Further the safety lock includes a key means for locking the radiation source in the trapped position. The key means cannot be actuated until said radiation source is in said trapped position to further insure the safety lock cannot be inadvertently locked with the source untrapped and thus still extendable from the exposure device

  18. Radiation hardness of β-Ga2O3 metal-oxide-semiconductor field-effect transistors against gamma-ray irradiation

    Science.gov (United States)

    Wong, Man Hoi; Takeyama, Akinori; Makino, Takahiro; Ohshima, Takeshi; Sasaki, Kohei; Kuramata, Akito; Yamakoshi, Shigenobu; Higashiwaki, Masataka

    2018-01-01

    The effects of ionizing radiation on β-Ga2O3 metal-oxide-semiconductor field-effect transistors (MOSFETs) were investigated. A gamma-ray tolerance as high as 1.6 MGy(SiO2) was demonstrated for the bulk Ga2O3 channel by virtue of weak radiation effects on the MOSFETs' output current and threshold voltage. The MOSFETs remained functional with insignificant hysteresis in their transfer characteristics after exposure to the maximum cumulative dose. Despite the intrinsic radiation hardness of Ga2O3, radiation-induced gate leakage and drain current dispersion ascribed respectively to dielectric damage and interface charge trapping were found to limit the overall radiation hardness of these devices.

  19. BNLs Synchrotron-radiation Research Hub for Characterizing Detection Materials and Devices for the NA-22 Community

    Energy Technology Data Exchange (ETDEWEB)

    Camarda, G. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bolotnikov, A. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cui, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hossain, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roy, U. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yang, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Vanier, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); McDowell, Alastair [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rosen, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Labrum, Joseph [Univ. of California, Berkeley, CA (United States)

    2017-03-01

    The goal of this project is to obtain and characterize scintillators, emerging- and commercial-compoundsemiconductor radiation- detection materials and devices provided by vendors and research organizations. The focus of our proposed research is to clarify the role of the deleterious defects and impurities responsible for the detectors' non-uniformity in scintillating crystals, commercial semiconductor radiation-detector materials, and in emerging R&D ones. Some benefits of this project addresses the need for fabricating high-performance scintillators and compound-semiconductor radiation-detectors with the proven potential for large-scale manufacturing. The findings help researchers to resolve the problems of non-uniformities in scintillating crystals, commercial semiconductor radiation-detector materials, and in emerging R&D ones.

  20. Tissue kerma vs distance relationships for initial nuclear radiation from the atomic devices detonated over Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    Kerr, G.D.; Pace, J.V. III; Scott, W.H. Jr.

    1983-06-01

    Initial nuclear radiation is comprised of prompt neutrons and prompt primary gammas from an exploding nuclear device, prompt secondary gammas produced by neutron interactions in the environment, and delayed neutrons and delayed fission-product gammas from the fireball formed after the nuclear device explodes. These various components must all be considered in establishing tissue kerma vs distance relationships which describe the decrease of initial nuclear radiation with distance in Hiroshima and in Nagasaki. The tissue kerma at ground evel from delayed fission-product gammas and delayed neutrons was investigated using the NUIDEA code developed by Science Applications, Inc. This code incorporates very detailed models which can take into account such features as the rise of the fireball, the rapid radioactive decay of fission products in it, and the perturbation of the atmosphere by the explosion. Tissue kerma vs distance relationships obtained by summing results of these current state-of-the-art calculations will be discussed. Our results clearly show that the prompt secondary gammas and delayed fission-product gammas are the dominant components of total tissue kerma from initial nuclear radiation in the cases of the atomic (or pure-fission) devices detonated over Hiroshima and Nagasaki

  1. New developments on the generation of arbitrary polarized radiation from insertion devices

    International Nuclear Information System (INIS)

    Elleaume, P.

    1991-01-01

    The complete description of the polarization of a beam of radiation is described in terms of the total energy and three polarization rates. The polarization characteristics from conventional undulators and wigglers is recalled. A presentation is made of some new insertion devices that were proposed and/or built to generate circular polarization and more generally to improve the control of polarization. They are the asymmetric and elliptical wigglers and the helical and crossed undulators

  2. Conducted and radiated noise in detection devices

    International Nuclear Information System (INIS)

    Moisa, D.

    2001-01-01

    Conducted and radiated noise is an external noise which affects the quality of the signals of the detectors. An external noise can be reduced, usually, by shielding. This was the situation with 'older fashion' devices which uses boxes and coaxial cables. As the devices becomes more complex, the shielding of the detectors is more and more difficult and the transmission lines evolves from coaxial cables to twisted pair cables which are no more shielded. In such situation, the conducted and radiated noise (C and R noise) becomes important. Due to complexity of a real detector, the main work is based on experiments with components and simulations of some specific problems, associated with CDC detector. The first experiment was done to understand how the C and R noise is propagated. The emission device was a set of coils (between 3 and 5 turns with diameter from 10 to 50 mm) feed by an 74S140 driver. A pulse of about 8 ns width was generated. A coil of reception of about the same physical characteristics was used to see the emitted pulse. When the two coils are separated by about 80 cm, the receiver generated no signal. But, if along the two coils, a conductive material is introduced (a wire for instance), the receiver senses a signal. This signal is not changed too much if the wire is or not connected to ground. The explanation is simple: the pulse in the emitting coil produces an EM pulse which spreads in space. If a conductive material is around, the EM energy is received by that conductor and it is propagated at tens of meters with small attenuation. When this energy reaches the end of the conductor, it is radiated in space. If some other conductors are around, the energy is received and propagated by that conductors. This experiment was done for about 20 kinds of conductors (different coax cables, twisted-pair ribbons, power cables, metallic bars) and with many coils (different diameters and numbers of turns). It was measured the pk-to-pk level, decay constant and

  3. NASDA technician test real-time radiation monitoring device

    Science.gov (United States)

    1997-01-01

    A technician from the National Space Development Agency of Japan (NASDA) tests the real-time radiation monitoring device on SPACEHAB at Kennedy Space Center in preparation for the STS-89 mission, slated to be the first Shuttle launch of 1998. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine-day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven-member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A.

  4. Radiation emitter-detector package

    International Nuclear Information System (INIS)

    O'Brien, J.T.; Limm, A.C.; Nyul, P.; Tassia, V.S. Jr.

    1978-01-01

    Mounted on the metallic base of a radiation emitter-detector is a mounting block is a first projection, and a second projection. A radiation detector is on the first projection and a semiconductor electroluminescent device, i.e., a radiation emitter, is on the second projection such that the plane of the recombination region of the electroluminescent device is perpendicular to the radiation incident surface of the radiation detector. The electroluminescent device has a primary emission and a secondary emission in a direction different from the primary emission. A radiation emitter-detector package as described is ideally suited to those applications wherein the secondary radiation of the electroluminescent device is fed into a feedback circuit regulating the biasing current of the electroluminescent device

  5. An assessment of the effects of radiation on permanent magnet material in the ALS [Advanced Light Source] insertion devices

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.; Jenkins, T.M.; Namito, Y.; Nelson, W.R.; Swanson, W.P.

    1989-08-01

    Electrons that are lost from the beam during normal operation of a synchrotron radiation source and during a beam dump at the end of a run produce both ionizing radiation and neutrons. This radiation has the potential for damaging sensitive materials, in particular those that need to be very close to the beam. The wigglers and undulators for the Advanced Light Source (ALS) at LBL will use magnetic materials such as the very high performance neodymium-iron-boron, which will be as close as 1 cm away from the electron beam during operation. This material, which is preferred because of its high remanence, is known to be more sensitive to radiation than some other magnetic materials. Simple energy loss estimates and the EGS4 code were used to estimate the radiation levels in the ALS insertion devices in the regions of the magnetic materials. The radiation levels were estimated for both aluminum and stainless steel vacuum chambers to determine if one would provide significantly better shielding. We conclude that Nd-Fe-B can be used in the ALS insertion devices and that there is little difference in the radiation levels for aluminum and stainless vacuum vessels. 8 refs., 7 figs., 1 tab

  6. [Morphological structure of rat epiphysis exposed to electromagnetic radiation from communication devices].

    Science.gov (United States)

    Yashchenko, S G; Rybalko, S Yu

    Pineal gland is one of the most important components of homeostasis - the supporting system of the body. It participates in the launch of stress responses, restriction of their development, prevention of adverse effects on the body. There was proved an impact of electromagnetic radiation on the epiphysis. However, morphological changes in the epiphysis under exposure to electromagnetic radiation of modern communication devices are studied not sufficiently. For the time present the population is daily exposed to electromagnetic radiation, including local irradiation on the brain. These date determined the task of this research - the study of the structure of rat pineal gland under the exposure to electromagnetic radiation from personal computers and mobile phones. These date determined the task of this research - the study of the structure of rat pineal gland under the exposure to electromagnetic radiation from personal computers and mobile phones. Performed transmission electron microscopy revealed signs of degeneration of dark and light pinealocytes. These signs were manifested in the development of a complex of general and specific morphological changes. There was revealed the appearance of signs of aging and depletion transmission electron microscopy both in light and dark pinealocytes. These signs were manifested in the accumulation of lipofuscin granules and electron-dense "brain sand", the disappearance of nucleoli, cytoplasm vacuolization and mitochondrial cristae enlightenment.

  7. Summary of Building Protection Factor Studies for External Exposure to Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, Michael B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kane, Jave [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homann, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pobanz, Brenda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-02-17

    Radiation dose assessments are used to help inform decisions to minimize health risks in the event of an atmospheric release of radioactivity including, for example, from a Radiological Dispersal Device, an Improvised Nuclear Device detonation, or a Nuclear Power Plant accident. During these incidents, radiation dose assessments for both indoor and outdoor populations are needed to make informed decisions. These dose assessments inform emergency plans and decisions including, for example, identifying areas in which people should be sheltered and determining when controlled population evacuations should be made. US dose assessment methodologies allow consideration of the protection, and therefore dose reduction, that buildings provide their occupants. However, these methodologies require an understanding of the protection provided by various building types that is currently lacking. To help address this need, Lawrence Livermore National Laboratory, in cooperation with Sandia National Laboratories and the Nuclear Regulatory Commission, was tasked with (a) identifying prior building protection studies, (b) extracting results relevant to US building construction, and (c) summarizing building protection by building type. This report focuses primarily on the protection against radiation from outdoor fallout particles (external gamma radiation).

  8. Summary of Building Protection Factor Studies for External Exposure to Ionizing Radiation

    International Nuclear Information System (INIS)

    Dillon, Michael B.; Kane, Jave; Nasstrom, John; Homann, Steve; Pobanz, Brenda

    2016-01-01

    Radiation dose assessments are used to help inform decisions to minimize health risks in the event of an atmospheric release of radioactivity including, for example, from a Radiological Dispersal Device, an Improvised Nuclear Device detonation, or a Nuclear Power Plant accident. During these incidents, radiation dose assessments for both indoor and outdoor populations are needed to make informed decisions. These dose assessments inform emergency plans and decisions including, for example, identifying areas in which people should be sheltered and determining when controlled population evacuations should be made. US dose assessment methodologies allow consideration of the protection, and therefore dose reduction, that buildings provide their occupants. However, these methodologies require an understanding of the protection provided by various building types that is currently lacking. To help address this need, Lawrence Livermore National Laboratory, in cooperation with Sandia National Laboratories and the Nuclear Regulatory Commission, was tasked with (a) identifying prior building protection studies, (b) extracting results relevant to US building construction, and (c) summarizing building protection by building type. This report focuses primarily on the protection against radiation from outdoor fallout particles (external gamma radiation).

  9. Coating thickness measuring device

    International Nuclear Information System (INIS)

    Joffe, B.B.; Sawyer, B.E.; Spongr, J.J.

    1984-01-01

    A device especially adapted for measuring the thickness of coatings on small, complexly-shaped parts, such as, for example, electronic connectors, electronic contacts, or the like. The device includes a source of beta radiation and a radiation detector whereby backscatter of the radiation from the coated part can be detected and the thickness of the coating ascertained. The radiation source and detector are positioned in overlying relationship to the coated part and a microscope is provided to accurately position the device with respect to the part. Means are provided to control the rate of descent of the radiation source and radiation detector from its suspended position to its operating position and the resulting impact it makes with the coated part to thereby promote uniformity of readings from operator to operator, and also to avoid excessive impact with the part, thereby improving accuracy of measurement and eliminating damage to the parts

  10. Hair treatment process providing dispersed colors by light diffraction

    Science.gov (United States)

    Sutton, Richard Matthew Charles; Lamartine, Bruce Carvell; Orler, E. Bruce; Song, Shuangqi

    2015-12-22

    A hair treatment process for providing dispersed colors by light diffraction including (a) coating the hair with a material comprising a polymer, (b) pressing the hair with a pressing device including one or more surfaces, and (c) forming a secondary nanostructured surface pattern on the hair that is complementary to the primary nanostructured surface pattern on the one or more surfaces of the pressing device. The secondary nanostructured surface pattern diffracts light into dispersed colors that are visible on the hair. The section of the hair is pressed with the pressing device for from about 1 to 55 seconds. The polymer has a glass transition temperature from about 55.degree. C. to about 90.degree. C. The one or more surfaces include a primary nanostructured surface pattern.

  11. High ionization radiation field remote visualization device - shielding requirements

    International Nuclear Information System (INIS)

    Fernandez, Antonio P. Rodrigues; Omi, Nelson M.; Silveira, Carlos Gaia da; Calvo, Wilson A. Pajero

    2011-01-01

    The high activity sources manipulation hot-cells use special and very thick leaded glass windows. This window provides a single sight of what is being manipulated inside the hot-cell. The use of surveillance cameras would replace the leaded glass window, provide other sights and show more details of the manipulated pieces, using the zoom capacity. Online distant manipulation may be implemented, too. The limitation is their low ionizing radiation resistance. This low resistance also limited the useful time of robots made to explore or even fix problematic nuclear reactor core, industrial gamma irradiators and high radioactive leaks. This work is a part of the development of a high gamma field remote visualization device using commercial surveillance cameras. These cameras are cheap enough to be discarded after the use for some hours of use in an emergency application, some days or some months in routine applications. A radiation shield can be used but it cannot block the camera sight which is the shield weakness. Estimates of the camera and its electronics resistance may be made knowing each component behavior. This knowledge is also used to determine the optical sensor type and the lens material, too. A better approach will be obtained with the commercial cameras working inside a high gamma field, like the one inside of the IPEN Multipurpose Irradiator. The goal of this work is to establish the radiation shielding needed to extend the camera's useful time to hours, days or months, depending on the application needs. (author)

  12. Experimental arrangement to measure dispersion in optical fiber devices

    International Nuclear Information System (INIS)

    Armas Rivera, Ivan; Beltran Perez, Georgina; Castillo Mixcoatl, Juan; Munoz Aguirre, Severino; Zaca Moran, Placido

    2011-01-01

    Dispersion is a quite important parameter in systems based on optical fiber, especially in pulsed emission lasers, where the temporal width is affected by such parameter. Therefore, it is necessary to consider the dispersion provoked by each component in the cavity. There are various experimental interferometric arrangements to evaluate this parameter. Generally, these systems modify the wavelength to obtain information about the n(λ) dependency, which is contained in the interferogram phase. However, this makes the system quite slow and it requires tunable and narrow bandwidth laser sources. In the present work, results obtained from an arrangement based on Mach-Zehnder interferometer where one of the arms is the optical fiber under study, while the reference one is air, are presented. In order to determine the n(λ) dependency, a wide spectrum light source was used in the wavelength range of interest. The phase information was evaluated from the interferometric signal measured by an optical spectrum analyzer.

  13. Experimental arrangement to measure dispersion in optical fiber devices

    Energy Technology Data Exchange (ETDEWEB)

    Armas Rivera, Ivan [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias de la Electronica (Mexico); Beltran Perez, Georgina; Castillo Mixcoatl, Juan; Munoz Aguirre, Severino [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico Matematicas (Mexico); Zaca Moran, Placido, E-mail: ivan_rr1@hotmail.com [Benemerita Universidad Autonoma de Puebla, Fisicoquimica de Materiales ICUAP (Mexico)

    2011-01-01

    Dispersion is a quite important parameter in systems based on optical fiber, especially in pulsed emission lasers, where the temporal width is affected by such parameter. Therefore, it is necessary to consider the dispersion provoked by each component in the cavity. There are various experimental interferometric arrangements to evaluate this parameter. Generally, these systems modify the wavelength to obtain information about the n({lambda}) dependency, which is contained in the interferogram phase. However, this makes the system quite slow and it requires tunable and narrow bandwidth laser sources. In the present work, results obtained from an arrangement based on Mach-Zehnder interferometer where one of the arms is the optical fiber under study, while the reference one is air, are presented. In order to determine the n({lambda}) dependency, a wide spectrum light source was used in the wavelength range of interest. The phase information was evaluated from the interferometric signal measured by an optical spectrum analyzer.

  14. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.

    Science.gov (United States)

    Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F

    2012-03-07

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements.

  15. Electromagnetic radiation screening of semiconductor devices for long life applications

    Science.gov (United States)

    Hall, T. C.; Brammer, W. G.

    1972-01-01

    A review is presented of the mechanism of interaction of electromagnetic radiation in various spectral ranges, with various semiconductor device defects. Previous work conducted in this area was analyzed as to its pertinence to the current problem. The task was studied of implementing electromagnetic screening methods in the wavelength region determined to be most effective. Both scanning and flooding type stimulation techniques are discussed. While the scanning technique offers a considerably higher yield of useful information, a preliminary investigation utilizing the flooding approach is first recommended because of the ease of implementation, lower cost and ability to provide go-no-go information in semiconductor screening.

  16. The Measurement of Spectral Characteristics and Composition of Radiation in Atlas with MEDIPIX2-USB Devices

    Science.gov (United States)

    Campbell, M.; Doležal, Z.; Greiffenberg, D.; Heijne, E.; Holy, T.; Idárraga, J.; Jakůbek, J.; Král, V.; Králík, M.; Lebel, C.; Leroy, C.; Llopart, X.; Lord, G.; Maneuski, D.; Ouellette, O.; Sochor, V.; Pospíšil, S.; Suk, M.; Tlustos, L.; Vykydal, Z.; Wilhelm, I.

    2008-06-01

    A network of devices to perform real-time measurements of the spectral characteristics and composition of radiation in the ATLAS detector and cavern during its operation is being built. This system of detectors will be a stand alone system fully capable of delivering real-time images of fluxes and spectral composition of different particle species including slow and fast neutrons. The devices are based on MEDIPIX2 pixel silicon detectors that will be operated via active USB cables and USB-Ethernet extenders through an Ethernet network by a PC located in the USA15 ATLAS control room. The installation of 14 devices inside ATLAS (detector and cavern) is in progress.

  17. The Measurement of Spectral Characteristics and Composition of Radiation in ATLAS with MEDIPIX2-USB Devices

    CERN Document Server

    Campbell, M.; Greiffenberg, D.; Heijne, E.; Holy, T.; Idárraga, J.; Jakubek, J.; Král, V.; Králík, M.; Lebel, C.; Leroy, C.; Llopart, X.; Lord, G.; Maneuski, D.; Ouellette, O.; Sochor, V.; Prospísil, S.; Suk, M; Tlustos, L.; Vykydal, Z.; Wilhelm, I.

    2008-01-01

    A network of devices to perform real-time measurements of the spectral characteristics and composition of radiation in the ATLAS detector and cavern during its operation is being built. This system of detectors will be a stand alone system fully capable of delivering real-time images of fluxes and spectral composition of different particle species including slow and fast neutrons. The devices are based on MEDIPIX2 pixel silicon detectors that will be operated via active USB cables and USB-Ethernet extenders through an Ethernet network by a PC located in the USA15 ATLAS control room. The installation of 14 devices inside ATLAS (detector and cavern) is in progress.

  18. Proposal of secure camera-based radiation warning system for nuclear detection

    International Nuclear Information System (INIS)

    Tsuchiya, Ken'ichi; Kurosawa, Kenji; Akiba, Norimitsu; Kakuda, Hidetoshi; Imoto, Daisuke; Hirabayashi, Manato; Kuroki, Kenro

    2016-01-01

    Counter-terrorisms against radiological and nuclear threat are significant issues toward Tokyo 2020 Olympic and Paralympic Games. In terms of cost benefit, it is not easy to build a warning system for nuclear detection to prevent a Dirty Bomb attack (dispersion of radioactive materials using a conventional explosive) or a Silent Source attack (hidden radioactive materials) from occurring. We propose a nuclear detection system using the installed secure cameras. We describe a method to estimate radiation dose from noise pattern in CCD images caused by radiation. Some dosimeters under neutron and gamma-ray irradiations (0.1mSv-100mSv) were taken in CCD video camera. We confirmed amount of noise in CCD images increased in radiation exposure. The radiation detection using CMOS in secure cameras or cell phones has been implemented. However, in this presentation, we propose a warning system including neutron detection to search shielded nuclear materials or radiation exposure devices using criticality. (author)

  19. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    International Nuclear Information System (INIS)

    Vaz, Pedro

    2015-01-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed. - Highlights: • The hazards associated to the use of radioactive sources must be taken into account. • Security issues are of paramount importance in the use of radioactive sources. • Radiation sources can be used to perpetrate terrorist acts (RDDs, INDs, REDs). • DSRS and orphan sources trigger radiological protection, safety and security concerns. • Regulatory control, from cradle to grave, of radioactive sources is mandatory.

  20. Toad radiation reveals into-India dispersal as a source of endemism in the Western Ghats-Sri Lanka biodiversity hotspot

    Directory of Open Access Journals (Sweden)

    Bossuyt Franky

    2009-06-01

    Full Text Available Abstract Background High taxonomic level endemism in the Western Ghats-Sri Lanka biodiversity hotspot has been typically attributed to the subcontinent's geological history of long-term isolation. Subsequent out of – and into India dispersal of species after accretion to the Eurasian mainland is therefore often seen as a biogeographic factor that 'diluted' the composition of previously isolated Indian biota. However, few molecular studies have focussed on into-India dispersal as a possible source of endemism on the subcontinent. Using c. 6000 base pairs of mitochondrial and nuclear DNA, we investigated the evolutionary history and biogeography of true toads (Bufonidae, a group that colonized the Indian Subcontinent after the Indo-Asia collision. Results Contrary to previous studies, Old World toads were recovered as a nested clade within New World Bufonidae, indicating a single colonization event. Species currently classified as Ansonia and Pedostibes were both recovered as being non-monophyletic, providing evidence for the independent origin of torrential and arboreal ecomorphs on the Indian subcontinent and in South-East Asia. Our analyses also revealed a previously unrecognized adaptive radiation of toads containing a variety of larval and adult ecomorphs. Molecular dating estimates and biogeographic analyses indicate that the early diversification of this clade happened in the Western Ghats and Sri Lanka during the Late Oligocene to Early Miocene. Conclusion Paleoclimate reconstructions have shown that the Early Neogene of India was marked by major environmental changes, with the transition from a zonal- to the current monsoon-dominated climate. After arrival in the Western Ghats-Sri Lanka hotspot, toads diversified in situ, with only one lineage able to successfully disperse out of these mountains. Consequently, higher taxonomic level endemism on the Indian Subcontinent is not only the result of Cretaceous isolation, but also of invasion

  1. Semiconductor radiation detectors. Device physics

    International Nuclear Information System (INIS)

    Lutz, G.

    2007-01-01

    Starting from basic principles, the author, whose own contributions to these developments have been significant, describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiation. This development was stimulated by requirements in elementary particle physics where it has led to important scientific discoveries. It has now spread to many other fields of science and technology. The book is written in a didactic way and includes an introduction to semiconductor physics. The working principles of semiconductor radiation detectors are explained in an intuitive way, followed by formal quantitative analysis. Broad coverage is also given to electronic signal readout and to the subject of radiation damage. The book is the first to comprehensively cover the semiconductor radiation detectors currently in use. It is useful as a teaching guide and as a reference work for research and applications. (orig.)

  2. Opto-mechanical devices for the Antares automatic beam alignment system

    International Nuclear Information System (INIS)

    Swann, T.; Combs, C.; Witt, J.

    1981-01-01

    Antares is a 24-beam CO 2 laser system for controlled fusion research, under construction at Los Alamos National Laboratory. Rapid automatic alignment of this system is required prior to each experimental shot. Unique opto-mechanical alignment devices, which have been developed specifically for this automatic alignment system, are discussed. A variable focus alignment telescope views point light sources. A beam expander/spatial filter processes both a visible Krypton Ion and a 10.6 μm CO 2 alignment laser. The periscope/carousel device provides the means by which the alignment telescope can sequentially view each of twelve optical trains in each power amplifier. The polyhedron alignment device projects a point-light source for both centering and pointing alignment at the polyhedron mirror. The rotating wedge alignment device provides a sequencing point-light source and also compensates for dispersion between visible and 10.6 μm radiation. The back reflector flip in remotely positions point-light sources at the back reflector mirrors. A light source box illuminates optic fibers with high intensity white light which is distributed to the various point-light sources in the system

  3. Method and device for demounting in a radiation detector a photomultiplier tube

    International Nuclear Information System (INIS)

    Persyk, D.E.; Stoub, E.W.

    1986-01-01

    A device is described for demounting in a radiation detector a photomultiplier tube which is bonded with its scintillation crystal assembly by means of an elastic light transparent adhesive, comprising: (a) a music wire of about 0.01 to 0.03 inch diameter which forms a noose between its wire ends, the noose being provided for being placed aroung the bond; and (b) twisting means connected with both wire ends for twisting them such that the noose becomes smaller thereby sharing the bond

  4. Test results of the experimental laser device for potato tubers radiation treatment

    International Nuclear Information System (INIS)

    Anufrik, S.S.; Korzun, O.S.

    2007-01-01

    Results of 3 year investigation of the influence of the presowing low intensity laser radiation treatment of potato (Solanum tuberosum L.) tubers with the help of laser device with various spectral composition and exposition on plant growth, development and productivity and potato tubers quality and starch content in the conditions of the Republic of Belarus were presented. Presowing tubers treatment of potato cultivars Sante, Yavar and Arkhideya was realized by He-Ne, Ar-, Cu (in course of 3 and 5 minutes) and CO2 (in course of 5 seconds) lasers. Research results have shown that presowing treatment with CO2 laser promoted the higher (on 1,7-6,6%) potato germination capacity in comparison with the control variant without radiation treatment. Height of potato plants of Sante variety after radiation treatment fell behind the control ones. Haulm quantity per one plant and yield quality did not depend on radiation treatment Treatment with CO2 laser exercised the stimulatory action on productivity of Sante variety without changing the starch content in tubers. Tuber weight increased up to 0,4 kg (0,2 kg in the control variant). Similar effect for Arkhideya and Yavar varieties was obtained after Cu-laser treatment in course of 5 minutes. Radiation treatment with He-Ne laser caused the increased starch accumulation (on 0,4-0,6% in comparison with the control variant) in potato tubers of all studied varieties

  5. DeviceNet-based device-level control in SSRF

    CERN Document Server

    Leng Yong Bin; Lu Cheng Meng; Miao Hai Feng; Liu Song Qiang; Shen Guo Bao

    2002-01-01

    The control system of Shanghai Synchrotron Radiation Facility is an EPICS-based distributed system. One of the key techniques to construct the system is the device-level control. The author describes the design and implementation of the DeviceNet-based device controller. A prototype of the device controller was tested in the experiments of magnet power supply and the result showed a precision of 3 x 10 sup - sup 5

  6. Risks and management of radiation exposure.

    Science.gov (United States)

    Yamamoto, Loren G

    2013-09-01

    High-energy ionizing radiation is harmful. Low-level exposure sources include background, occupational, and medical diagnostics. Radiation disaster incidents include radioactive substance accidents and nuclear power plant accidents. Terrorism and international conflict could trigger intentional radiation disasters that include radiation dispersion devices (RDD) (a radioactive dirty bomb), deliberate exposure to industrial radioactive substances, nuclear power plant sabotage, and nuclear weapon detonation. Nuclear fissioning events such as nuclear power plant incidents and nuclear weapon detonation release radioactive fallout that include radioactive iodine 131, cesium 137, strontium 90, uranium, plutonium, and many other radioactive isotopes. An RDD dirty bomb is likely to spread only one radioactive substance, with the most likely substance being cesium 137. Cobalt 60 and strontium 90 are other RDD dirty bomb possibilities. In a radiation disaster, stable patients should be decontaminated to minimize further radiation exposure. Potassium iodide (KI) is useful for iodine 131 exposure. Prussian blue (ferric hexacyanoferrate) enhances the fecal excretion of cesium via ion exchange. Ca-DTPA (diethylenetriaminepentaacetic acid) and Zn-DTPA form stable ionic complexes with plutonium, americium, and curium, which are excreted in the urine. Amifostine enhances chemical and enzymatic repair of damaged DNA. Acute radiation sickness ranges in severity from mild to lethal, which can be assessed by the nausea/vomiting onset/duration, complete blood cell count findings, and neurologic symptoms.

  7. An angle-resolved, wavelength-dispersive x-ray fluorescence spectrometer for depth profile analysis of ion-implanted semiconductors using synchrotron radiation

    Science.gov (United States)

    Schmitt, W.; Hormes, J.; Kuetgens, U.; Gries, W. H.

    1992-01-01

    An apparatus for angle-resolved, wavelength-dispersive x-ray fluorescence spectroscopy with synchrotron radiation has been built and tested at the beam line BN2 of the Bonn electron stretcher and accelerator (ELSA). The apparatus is to be used for nondestructive depth profile analysis of ion-implanted semiconductors as part of the multinational Versailles Project of Advanced Materials and Standards (VAMAS) project on ion-implanted reference materials. In particular, the centroid depths of depth profiles of various implants is to be determined by use of the angle-resolved signal ratio technique. First results of measurements on implants of phosphorus (100 keV, 1016 cm-2) and sulfur (200 keV, 1014 cm-2) in silicon wafers using ``white'' synchrotron radiation are presented and suggest that it should be generally possible to measure the centroid depth of an implant at dose densities as low as 1014 cm-2. Some of the apparative and technical requirements are discussed which are peculiar to the use of synchrotron radiation in general and to the use of nonmonochromatized radiation in particular.

  8. An angle-resolved, wavelength-dispersive x-ray fluorescence spectrometer for depth profile analysis of ion-implanted semiconductors using synchrotron radiation

    International Nuclear Information System (INIS)

    Schmitt, W.; Hormes, J.; Kuetgens, U.; Gries, W.H.

    1992-01-01

    An apparatus for angle-resolved, wavelength-dispersive x-ray fluorescence spectroscopy with synchrotron radiation has been built and tested at the beam line BN2 of the Bonn electron stretcher and accelerator (ELSA). The apparatus is to be used for nondestructive depth profile analysis of ion-implanted semiconductors as part of the multinational Versailles Project of Advanced Materials and Standards (VAMAS) project on ion-implanted reference materials. In particular, the centroid depths of depth profiles of various implants is to be determined by use of the angle-resolved signal ratio technique. First results of measurements on implants of phosphorus (100 keV, 10 16 cm -2 ) and sulfur (200 keV, 10 14 cm -2 ) in silicon wafers using ''white'' synchrotron radiation are presented and suggest that it should be generally possible to measure the centroid depth of an implant at dose densities as low as 10 14 cm -2 . Some of the apparative and technical requirements are discussed which are peculiar to the use of synchrotron radiation in general and to the use of nonmonochromatized radiation in particular

  9. A NOVEL, REMOVABLE, CERROBEND, BEAM-BLOCKING DEVICE FOR RADIATION THERAPY OF THE CANINE HEAD AND NECK: PILOT STUDY.

    Science.gov (United States)

    Kent, Michael S; Berlato, Davide; Vanhaezebrouck, Isabelle; Gordon, Ira K; Hansen, Katherine S; Theon, Alain P; Holt, Randall W; Trestrail, Earl A

    2017-01-01

    Radiation therapy of the head and neck can result in mucositis and other acute affects in the oral cavity. This prospective pilot study evaluated a novel, intraoral, beam-blocking device for use during imaging and therapeutic procedures. The beam-blocking device was made from a metal alloy inserted into a coated frozen dessert mold (Popsicle® Mold, Cost Plus World Market, Oakland, CA). The device was designed so that it could be inserted into an outer shell, which in turn allowed it to be placed or removed depending on the need due to beam configuration. A Farmer type ionization chamber and virtual water phantom were used to assess effects of field size on transmission. Six large breed cadaver dogs, donated by the owner after death, were recruited for the study. Delivered dose at the dorsal and ventral surfaces of the device, with and without the alloy block in place, were measured using radiochromic film. It was determined that transmission was field size dependent with larger field sizes leading to decreased attenuation of the beam, likely secondary to scatter. The mean and median transmission on the ventral surface without the beam-blocking device was 0.94 [range 0.94-0.96]. The mean and median transmission with the beam-blocking device was 0.52 [range 0.50-0.57]. The mean and median increase in dose due to backscatter on the dorsal surface of the beam-blocking device was 0.04 [range 0.02-0.04]. Findings indicated that this novel device can help attenuate radiation dose ventral to the block in dogs, with minimal backscatter. © 2016 American College of Veterinary Radiology.

  10. Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device

    Science.gov (United States)

    Kruczek, T.; Leyman, R.; Carnegie, D.; Bazieva, N.; Erbert, G.; Schulz, S.; Reardon, C.; Reynolds, S.; Rafailov, E. U.

    2012-08-01

    Generation of continuous wave radiation at terahertz (THz) frequencies from a heterodyne source based on quantum-dot (QD) semiconductor materials is reported. The source comprises an active region characterised by multiple alternating photoconductive and QD carrier trapping layers and is pumped by two infrared optical signals with slightly offset wavelengths, allowing photoconductive device switching at the signals' difference frequency ˜1 THz.

  11. Evaluation of stability of polymeric insulation materials in radiation fields and development of radiation stable PVC and polypropylene for medical devices

    International Nuclear Information System (INIS)

    Gonzalez, M.E.; Docters, A.S.

    1999-01-01

    Radiation stability of polypropylene and polyvinylchloride medical products of local origin was evaluated, establishing their functionality by appropriate methods. A device for a mechanical test of syringes and another device for puncture testing of plastic films were constructed and tested. Shelf-life anticipation of irradiated products was examined by treating to high doses and in other cases by storing irradiated products at high temperatures. In both cases negative results would anticipate no functionality for real time aged products. Radiation stability improvement was tried by incorporating light protectors and antioxidants into polypropylene homopolymer. A composition with added light protector was obtained that did not discolor and that kept mechanical stability during aging. Polyvinylchloride tubing was examined and found stable in comparison with imported materials. A non-discoloring product could not be obtained. Evaluation of local commercial polyvinylchloride insulations of wires similar to the wires used in the conveyor system of the Irradiation Facility of Ezeiza Atomic Center suggested that the limit of 50 % reduction in elongation to break in relation to control samples as an indication of failure is too conservative, because this limit was reached much earlier than the actual period of use of installed wires. (author)

  12. Structure of a radiate pseudocolony associated with an intrauterine contraceptive device

    International Nuclear Information System (INIS)

    O'Brien, P.K.; Lea, P.J.; Roth-Moyo, L.A.

    1985-01-01

    Transmission electron microscopy of a radiate pseudocolony associated with an intrauterine contraceptive device (IUCD) showed central bundles of extracellular fibers averaging 35 nm in diameter, surrounded by layered mantles of electron-dense, amorphous granular material. No bacterial, viral, or fungal structures were present. X-ray microanalysis revealed copper, sulfur, chloride, iron, and phosphorus; no calcium was found. It is postulated that these structures and histologically identical non-IUCD-associated granules from the female genital tract, as well as similar structures from other body locations, including those reported in colloid cysts of the third ventricle, are of lipofuscin origin

  13. Influence of gamma radiation onto polymeric matrix with papain

    International Nuclear Information System (INIS)

    Zulli, Gislaine; Lopes, Patricia Santos; Velasco, Maria Valeria Robles; Alcantara, Mara Tania Silva; Rogero, Sizue Ota; Lugao, Ademar Benevolo; Mathor, Monica Beatriz

    2010-01-01

    Papain is a proteolytic enzyme that has been widely used as debridement agent for scars and wound healing treatment. However, papain presents low stability, which limits its use to extemporaneous or short shelf-life formulations. The purpose of this study was to entrap papain into a polymeric matrix in order to obtain a drug delivery system that could be used as medical device. Since these systems must be sterile, gamma radiation is an interesting option and presents advantages in relation to conventional agents: no radioactive residues are formed; the product can be sterilized inside the final packaging and has an excellent reliability. The normative reference for the establishment of the sterilizing dose determines 25 kGy as the inactivation dose for viable microorganisms. A silicone dispersion was selected to prepare membranes containing 2% (w/w) papain. Irradiated and non-irradiated membranes were simultaneously assessed in order to verify whether gamma radiation interferes with the drug-releasing profile. Results showed that irradiation does not affect significantly papain release and its activity. Therefore papain shows radioresistance in the irradiation conditions applied. In conclusion, gamma radiation can be easily used as sterilizing agent without affecting the papain release profile and its activity onto the biocompatible device is studied.

  14. Influence of gamma radiation onto polymeric matrix with papain

    Energy Technology Data Exchange (ETDEWEB)

    Zulli, Gislaine [Nuclear and Energetic Research Institute, IPEN-CNEN/SP, Sao Paulo, SP 05508-000 (Brazil); Lopes, Patricia Santos, E-mail: patricia.lopes@prof.uniso.b [Pharmacy Department, University of Sorocaba, Sorocaba, SP 18023-000 (Brazil); Velasco, Maria Valeria Robles [Pharmacy Department, University of Sao Paulo, Sao Paulo, SP 05508-900 (Brazil); Alcantara, Mara Tania Silva; Rogero, Sizue Ota; Lugao, Ademar Benevolo; Mathor, Monica Beatriz [Nuclear and Energetic Research Institute, IPEN-CNEN/SP, Sao Paulo, SP 05508-000 (Brazil)

    2010-03-15

    Papain is a proteolytic enzyme that has been widely used as debridement agent for scars and wound healing treatment. However, papain presents low stability, which limits its use to extemporaneous or short shelf-life formulations. The purpose of this study was to entrap papain into a polymeric matrix in order to obtain a drug delivery system that could be used as medical device. Since these systems must be sterile, gamma radiation is an interesting option and presents advantages in relation to conventional agents: no radioactive residues are formed; the product can be sterilized inside the final packaging and has an excellent reliability. The normative reference for the establishment of the sterilizing dose determines 25 kGy as the inactivation dose for viable microorganisms. A silicone dispersion was selected to prepare membranes containing 2% (w/w) papain. Irradiated and non-irradiated membranes were simultaneously assessed in order to verify whether gamma radiation interferes with the drug-releasing profile. Results showed that irradiation does not affect significantly papain release and its activity. Therefore papain shows radioresistance in the irradiation conditions applied. In conclusion, gamma radiation can be easily used as sterilizing agent without affecting the papain release profile and its activity onto the biocompatible device is studied.

  15. Influence of gamma radiation onto polymeric matrix with papain

    Science.gov (United States)

    Zulli, Gislaine; Lopes, Patrícia Santos; Velasco, Maria Valéria Robles; Alcântara, Mara Tânia Silva; Rogero, Sizue Ota; Lugao, Ademar Benévolo; Mathor, Monica Beatriz

    2010-03-01

    Papain is a proteolytic enzyme that has been widely used as debridement agent for scars and wound healing treatment. However, papain presents low stability, which limits its use to extemporaneous or short shelf-life formulations. The purpose of this study was to entrap papain into a polymeric matrix in order to obtain a drug delivery system that could be used as medical device. Since these systems must be sterile, gamma radiation is an interesting option and presents advantages in relation to conventional agents: no radioactive residues are formed; the product can be sterilized inside the final packaging and has an excellent reliability. The normative reference for the establishment of the sterilizing dose determines 25 kGy as the inactivation dose for viable microorganisms. A silicone dispersion was selected to prepare membranes containing 2% (w/w) papain. Irradiated and non-irradiated membranes were simultaneously assessed in order to verify whether gamma radiation interferes with the drug-releasing profile. Results showed that irradiation does not affect significantly papain release and its activity. Therefore papain shows radioresistance in the irradiation conditions applied. In conclusion, gamma radiation can be easily used as sterilizing agent without affecting the papain release profile and its activity onto the biocompatible device is studied.

  16. Radiation leakage monitoring method and device from primary to secondary coolant systems in nuclear reactor

    International Nuclear Information System (INIS)

    Tajiri, Yoshiaki; Umehara, Toshihiro; Yamada, Masataka.

    1993-01-01

    The present invention monitors radiation leaked from any one of primary cooling systems to secondary cooling systems in a plurality of steam generators. That is, radiation monitoring means each corresponding to steam each generators are disposed to the upstream of a position where main steam pipes are joined. With such a constitution, since the detection object of each of radiation monitoring means is secondary coolants before mixing with secondary coolants of other secondary loops or dilution, lowering of detection accuracy can be avoided. Except for the abnormal case, that is, a case neither of radiation leakage nor of background change, the device is adapted as a convenient measuring system only with calculation performance. Once abnormality occurs, a loop having a value exceeding a standard value is identified by a single channel analyzer function. The amount of radiation leakage from the steam generator belonging to the specified loop is monitored quantitatively by a multichannel analyzer function. According to the method of the present invention, since specific spectrum analysis is conducted upon occurrence of abnormality, presence of radiation leakage and the scale thereof can be judged rapidly. (I.S.)

  17. Study of bremsstrahlung dose fields in radiation shield and labyrinth devices of plants with LUEH-8/5B accelerator

    International Nuclear Information System (INIS)

    Vikulin, A.A.; Vanyushkin, B.M.; Garnyk, D.V.; Kon'kov, N.G.; Terent'ev, B.M.

    1980-01-01

    Measurement results of exposure dose rate (EDR) of radiation in fields of bremsstrahlung of radiation plants with LUEh-8/5B linear accelerator of electrons by means of DRG2-03 dose meter, intended for operative measuring EDR in high intense fields of γ-radiation of powerful radioisotopic plants, are presented. Dose meter design is described. Measurements of bremsstrahlung EDR have been carried out in the chamber of plant irradiation for radiation sterilizing medical items, as well as in the chamber of VNIIRT experimental plant. RUP-1 device has been used for measuring radiation EDR in a labyrinth behind 1.8 m thick shoulder by concrete [ru

  18. Hair treatment device for providing dispersed colors by light diffraction

    Science.gov (United States)

    Lamartine, Bruce Carvell; Orler, Bruce E.; Sutton, Richard Matthew Charles; Song, Shuangqi

    2016-01-26

    Hair was coated with polymer-containing fluid and then hot pressed to form a composite of hair and a polymer film imprinted with a nanopattern. Polychromatic light incident on the nanopattern is diffracted into dispersed colored light.

  19. Nanocrystal-polymer nanocomposite electrochromic device

    Science.gov (United States)

    Milliron, Delia; Runnerstrom, Evan; Helms, Brett; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2015-12-08

    Described is an electrochromic nanocomposite film comprising a solid matrix of an oxide based material, the solid matrix comprising a plurality of transparent conducting oxide (TCO) nanostructures dispersed in the solid matrix and a lithium salt dispersed in the solid matrix. Also described is a near infrared nanostructured electrochromic device having a functional layer comprising the electrochromic nanocomposite film.

  20. Combined sensors for the detection, identification and monitoring of radiation sources

    International Nuclear Information System (INIS)

    Yaar, I.

    2006-01-01

    Radiation sources widely used in industry, medicine, agriculture. Research and education are the most dangerous from the viewpoint of their widespread and easy access.The probability that these sources will be stolen and used to assemble a radiological dispersive (RDD) is nor negligible. Such a device can be used by terrorist groups for the purpose of contamination of industrial centers, airports, seaports and residential areas, which can affect a large sector of the economy of a country. Detonation of a RDD can lead to death and exposure of the population to radiation, but, as a whole, the use of the bomb is aimed at creating panic among population, causing economic damage and social shock to the society. In this work, ways to reduce the threat of radiation sources obtained outside and within a country will be discussed

  1. Enhanced thermal conductivity of nano-SiC dispersed water based ...

    Indian Academy of Sciences (India)

    Silicon carbide (SiC) nanoparticle dispersed water based nanofluids were prepared using up to 0.1 vol% of nanoparticles. Use of suitable stirring routine ensured uniformity and stability of dispersion. Thermal conductivity ratio of nanofluid measured using transient hot wire device shows a significant increase of up to 12% ...

  2. Intercomparison of dispersed radiation readings among film dosimetry, electronic and OSL with X-rays for low dose

    International Nuclear Information System (INIS)

    Andisco, D.; Blanco, S.; Bourel, V.; Schmidt, L.; Di Risio, C.

    2014-08-01

    One of the personal dosimetry methods more used for several decades is the dosimetry type film, characterized to possess readings with certain margin of trust. Today other methods exist that many times are presupposed more reliable due to the nature of the detection like the electronic dosimeters or the OSL (Optically Stimulated Luminescence) dosimetry. With the purpose of comparing different methods and to can determining the existent differences among each method has been carried out an intercomparison assay. The different dosimeters have been exposed to dispersed radiation generated by a Hemodynamics equipment of the type -arch in C- and a dispersing system of the primary beam. Film dosimeters have been used; OSL (In Light), OSL (Nano Dots) and Electronic with the purpose of knowing and to valorize the existent differences among its readings. Always, the intercomparison exercises have demonstrated to be an useful tool when establishing the measurement capacity and the quality of the results emitted by the laboratories of personal dosimetry services. Also, this type of assays allows obtaining quality indicators of the laboratory performance and they are habitual part of the procedures for accreditation of the same ones. The Optically Stimulated Luminescence is a technology that has grown in Argentina so much in the area of personal dosimetry as in dosimetry in vivo (radiotherapy area). In this intercomparison study, the answers corresponding to each technology were looked for oneself irradiation of the disperse type, that is to say, of very low energy. (Author)

  3. Detection of Terahertz Radiation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a system for detecting terahertz radiation, a camera device, and a method for detecting terahertz radiation.......The present invention relates to a system for detecting terahertz radiation, a camera device, and a method for detecting terahertz radiation....

  4. A NOVEL SUPPORT DEVICE FOR HEAD IMMOBILIZATION DURING RADIATION THERAPY THAT IS APPLICABLE TO BOTH CATS AND DOGS.

    Science.gov (United States)

    Nemoto, Yuki; Maruo, Takuya; Fukuyama, Yasuhiro; Kawarai, Shinpei; Shida, Takuo; Nakayama, Tomohiro

    2015-01-01

    Repeatable head immobilization is important for minimizing positioning error during radiation therapy for veterinary patients with head neoplasms. The purpose of this retrospective cross-sectional study was to describe a novel technique for head immobilization (Device II) and compare this technique with a previously described technique (Device I). Device II provided additional support by incorporating three teeth (vs. two teeth with Device I). Between 2011 and 2013, both devices were applied in clinically affected cats (Device I, n = 17; Device II, n = 11) and dogs (Device I, n = 85; Device II, n = 22) of various breeds and sizes. The following data were recorded for each included patient: variability in the angle of the skull (roll, yaw, and pitch), coordinates of the isocenter, and distance from the reference mark to the tumor. Devices I and II differed for skull angle variability during the treatment of dogs (roll, P = 0.0007; yaw, P = 0.0018; pitch, P = 0.0384) and for yaw of during the treatment of cats (P patients. © 2015 American College of Veterinary Radiology.

  5. On the rule of thumb for flipping the dispersion relation in BAW devices

    NARCIS (Netherlands)

    Jose, Sumy; Hueting, Raymond Josephus Engelbart; Jansman, Andreas

    2011-01-01

    High-performance solidly mounted bulk acoustic wave resonators (SMRs) can be obtained by employing frame region, if these exhibit type I dispersion. The commonly used piezoelectric material Aluminum Nitride is a type II material, for which type I dispersion can be enforced by increasing the top

  6. Radiation environmental real-time monitoring and dispersion modelling

    International Nuclear Information System (INIS)

    Kovacik, Andrej; Bartokova, Ivana; Melicherova, Terezia; Omelka, Jozef

    2015-01-01

    The MicroStep-MIS system of real-time radiation monitoring, which provides a turn-key solution for measurement, acquisition, processing, reporting, archiving and displaying of various radiation data, is described and discussed in detail. The qualities, long-term stability of measurement and sensitivity of the RPSG-05 probe are illustrated on its use within the radiation monitoring network of the Slovak Hydrometeorological Institute and within the monitoring network in the United Arab Emirates. (orig.)

  7. Study of radiation-induced leakage current between adjacent devices in a CMOS integrated circuit

    Institute of Scientific and Technical Information of China (English)

    Ding Lili; Guo Hongxia; Chen Wei; Fan Ruyu

    2012-01-01

    Radiation-induced inter-device leakage is studied using an analytical model and TCAD simulation.There were some different opinions in understanding the process of defect build-up in trench oxide and parasitic leakage path turning on from earlier studies.To reanalyze this problem and make it beyond argument,every possible variable is considered using theoretical analysis,not just the change of electric field or oxide thickness independently.Among all possible inter-device leakage paths,parasitic structures with N-well as both drain and source are comparatively more sensitive to the total dose effect when a voltage discrepancy exists between the drain and source region.Since N-well regions are commonly connected to the same power supply,these kinds of structures will not be a problem in a real CMOS integrated circuit.Generally speaking,conduction paths of inter-device leakage existing in a real integrated circuit and under real electrical circumstances are not very sensitive to the total ionizing dose effect.

  8. Emissions and doses from sources of ionising radiation in the Netherlands: radiation policy monitoring

    International Nuclear Information System (INIS)

    Eleveld, H.; Pruppers, M.

    2002-01-01

    In 1997 the Ministry of Housing, Spatial Planning and the Environment requested RIVM to develop an information system for policy monitoring. One of the motives was that the European Union requires that the competent authorities of each member state ensure that dose estimates due to practices involving exposure to ionising radiation are made as realistic as possible for the population as a whole and for reference groups in all places where such groups may occur. Emissions of radionuclides and radiation to the environment can be classified as follows: (1) emissions to the atmosphere, (2) emissions to the aquatic system and (3) emission of external radiation from radioactive materials and equipment that produces ionising radiation. Released radioactivity is dispersed via exposure pathways, such as the atmosphere, deposition on the ground and farmland products, drinking water, fish products, etc. This leads to radiation doses due to inhalation, ingestion and exposure to external radiation. To assess the possible radiation doses different kinds of models are applied, varying from simple multiplications with dispersion coefficients, transfer coefficients and dose conversion coefficients to complex dispersion models. In this paper an overview is given of the human-induced radiation doses in the Netherlands. Also, trends in and the effect of policy on the radiation dose of members of the public are investigated. This paper is based on an RIVM report published recently. A geographical distribution of radiation risks due to routine releases for a typical year in the Netherlands was published earlier

  9. Dispersion self-energy of the electron

    International Nuclear Information System (INIS)

    Hawton, M.

    1991-01-01

    Electron mass renormalization and the Lamb shift have been investigated using the dispersion self-energy formalism. If shifts of both the electromagnetic field and quantum-mechanical transitions frequencies are considered, absorption from the electromagnetic field is canceled by emission due to atomic fluctuations. The frequencies of all modes are obtained from the self-consistency condition that the field seen by the electron is the same as the field produced by the expectation value of current. The radiation present can thus be viewed as arising from emission and subsequent reabsorption by matter. As developed here, the numerical predictions of dispersion theory are identical to those of quantum electrodynamics. The physical picture implied by dispersion theory is discussed in the context of semiclassical theories and quantum electrodynamics

  10. Radiation damage of metal uranium; Radijaciono ostecenje metalnog urana

    Energy Technology Data Exchange (ETDEWEB)

    Mihajlovic, A [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    This report is concerned with the role of dispersion second phase in uranium and burnup rate. The role of dispersion phases in radiation stability of metal uranium was studies by three methods: variation of electric conductivity dependent on the neutron flux and temperature of pure uranium for different states of dispersion second phase; influence of dispersion phase on the radiation creep; transmission electron microscopy of fresh and irradiated uranium.

  11. Radiological scenario modeling using the Hotspot code and potential financial impact of treatment of radiation induced cancer to the public

    International Nuclear Information System (INIS)

    Silva, Gabriel Fidalgo Queiroz da; Andrade, Edson Ramos de; Rebello, Wilson Freitas; Araujo, Olga Maria Oliveira de

    2015-01-01

    The work aims to develop a methodology that is able to estimate the financial impact in a radiological emergency events, considering the radiation induced cancer, particularly leukemia. Considering a RDD - Radiological Dispersive Device, consisting of explosives and cesium-137 as radioactive material, a scenario building on the Rio de Janeiro was modeled. The convergence of a risk modeling platform (HotSpot 3.0), the analysis of excess relative risks for humans (BEIR V-Biological Effects of Ionizing Radiation V), considering scenarios composed of contaminated areas, are secondary goals

  12. Neutronic, thermal-hydraulics and accident analysis calculations for an irradiation device to be used in the qualification process of dispersion fuels in the IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Douglas Borges; Silva, Antonio Teixeira e; Umbehaun, Pedro Ernesto; Silva, Jose Eduardo Rosa da; Conti, Thadeu das Neves; Yamaguchi, Mitsuo [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)], e-mail: douglasborgesdomingos@yahoo.com.br

    2009-07-01

    Neutronic, thermal-hydraulics and accident analysis calculations were developed to estimate the safety of an irradiation device placed in the IEA-R1 reactor core. The irradiation device will be used to receive miniplates of U{sub 3}O{sub 8}-Al e U{sub 3}Si{sub 2}-Al dispersion fuels, LEU type (19.9% of {sup 235}U), with uranium densities of, respectively, 3.0 gU/cm{sup 3} and 4.8gU/cm{sup 3}. The fuel miniplates will be irradiated to nominal {sup 235}U burnup levels of 50% and 80%, in order to qualify the above high-density dispersion fuels to be used in the Brazilian Multipurpose Reactor, now in the conception phase. For the neutronic calculation, the computer code CITATION was utilized. The computer code FLOW was used to calculate the coolant flow rate in the irradiation device, allowing the determination of the fuel miniplate temperatures with the computer model MTRCR-IEA-R1. A postulated Loss of Coolant Accident (LOCA) was analyzed with the computer codes LOSS and TEMPLOCA, allowing the calculation of the fuel miniplate temperatures after the reactor pool draining. The calculations showed that the irradiation of the fuel miniplates will happen without any adverse consequence in the IEA-R1 reactor. (author)

  13. Igloo containment system for improvised explosive devices

    International Nuclear Information System (INIS)

    Dyckes, G.W.

    1980-09-01

    A method for containing or partially containing the blast and dispersal of radioactive particulate from improvised explosive devices is described. The containment system is restricted to devices located in fairly open areas at ground level, e.g., devices concealed in trucks, vans, transportainers, or small buildings which are accessible from all sides

  14. Generating high-power short terahertz electromagnetic pulses with a multifoil radiator.

    Science.gov (United States)

    Vinokurov, Nikolay A; Jeong, Young Uk

    2013-02-08

    We describe a multifoil cone radiator capable of generating high-field short terahertz pulses using short electron bunches. Round flat conducting foil plates with successively decreasing radii are stacked, forming a truncated cone with the z axis. The gaps between the foil plates are equal and filled with some dielectric (or vacuum). A short relativistic electron bunch propagates along the z axis. At sufficiently high particle energy, the energy losses and multiple scattering do not change the bunch shape significantly. When passing by each gap between the foil plates, the electron bunch emits some energy into the gap. Then, the radiation pulses propagate radially outward. For transverse electromagnetic waves with a longitudinal (along the z axis) electric field and an azimuthal magnetic field, there is no dispersion in these radial lines; therefore, the radiation pulses conserve their shapes (time dependence). At the outer surface of the cone, we have synchronous circular radiators. Their radiation field forms a conical wave. Ultrashort terahertz pulses with gigawatt-level peak power can be generated with this device.

  15. Chromatic dispersion compensation and Coherent Direct-Sequence OCDMA operation on a single super structured FBG.

    Science.gov (United States)

    Baños, Rocío; Pastor, Daniel; Amaya, Waldimar; Garcia-Munoz, Victor

    2012-06-18

    We have proposed, fabricated and demonstrated experimentally a set of Coherent Direct Sequence-OCDMA en/decoders based on Super Structured Fiber Bragg Gratings (SSFBGs) which are able to compensate the fiber chromatic dispersion at the same time that they perform the en/decoding task. The proposed devices avoid the use of additional dispersion compensation stages reducing system complexity and losses. This performance was evaluated for 5.4, 11.4 and 16.8 km of SSMF. The twofold performance was verified in Low Reflectivity regime employing only one GVD compensating device at decoder or sharing out the function between encoder and decoder devices. Shared functionality requires shorter SSFBGs designs and also provides added flexibility to the optical network design. Moreover, dispersion compensated en/decoders were also designed into the High Reflectivity regime employing synthesis methods achieving more than 9 dB reduction of insertion loss for each device.

  16. Radiation effects in semiconductors

    CERN Document Server

    2011-01-01

    There is a need to understand and combat potential radiation damage problems in semiconductor devices and circuits. Written by international experts, this book explains the effects of radiation on semiconductor devices, radiation detectors, and electronic devices and components. These contributors explore emerging applications, detector technologies, circuit design techniques, new materials, and innovative system approaches. The text focuses on how the technology is being used rather than the mathematical foundations behind it. It covers CMOS radiation-tolerant circuit implementations, CMOS pr

  17. Evaluation of integrity of radiation sources of nuclear gauges

    International Nuclear Information System (INIS)

    Torohate, Wiclif Francisco

    2016-01-01

    Nuclear equipment meters are mainly used in the industry in quality control and process control. The principle of operation consists in a shielded radioactive source together with a radiation detector such that the radiation interacts with the material to be analyzed before reaching the detector, providing real time data. Can be as their fixed and mobile mobility, the unique properties of ionizing radiation are used in three basic modes, transmission, backscatter or dispersion or induced (reactive). With the advancement and technological modernization in the world, the demand for nuclear gauges becomes increasingly larger. Currently in Brazil there are about 465 process control plants and 21 portable systems and Mozambique about 45 facilities using nuclear gauges. This font registration is done through a process called source inventory that allows also to know the category of the source, the danger or risk to human health that the source offers. The handling of this equipment requires personnel, certified, skilled and well trained in radiation protection area in accordance with the requirements of the various CNEN Rules. Due to the presence of radioactive source and because these devices are used by workers risk because there external radiation. In this context, we made the smear test in two fixed meters from the IRD industry laboratory, which determines the integrity of the source package, mandatory item in periodic integrity testing of the radiation source of this type of device. A set of procedures is made for its implementation as an evaluation of the radiological risk by radiological survey. It was intended to contribute to the learning handling and safe use of these meters. (author)

  18. A novel in vitro model for hematogenous spreading of S. aureus device biofilms demonstrating clumping dispersal as an advantageous dissemination mechanism

    DEFF Research Database (Denmark)

    Grønnemose, Rasmus Birkholm; Lindhardt Sæderup (Madsen), Kirstine; Kolmos, Hans Jørn

    2017-01-01

    Staphylococcus aureus is able to disseminate from vascular device biofilms to the blood and organs, resulting in life-threatening infections such as endocarditis. The mechanisms behind spreading are largely unknown, especially how the bacterium escapes immune effectors and antibiotics in the proc......Staphylococcus aureus is able to disseminate from vascular device biofilms to the blood and organs, resulting in life-threatening infections such as endocarditis. The mechanisms behind spreading are largely unknown, especially how the bacterium escapes immune effectors and antibiotics...... the ability to adhere to and initiate colonization of endothelial cell layers under flow. In vivo experiments showed that the released biofilm material reached the heart similarly as ordinary broth-grown bacteria, but also that clumps to some extend were trapped in the lungs. The clumping dispersal of S....... aureus from in vivo-like vascular biofilms and their specific properties demonstrated here help explain the pathophysiology associated with S. aureus bloodstream infections....

  19. Superconducting (radiation hardened) magnets for mirror fusion devices

    International Nuclear Information System (INIS)

    Henning, C.D.; Dalder, E.N.C.; Miller, J.R.; Perkins, J.R.

    1983-01-01

    Superconducting magnets for mirror fusion have evolved considerably since the Baseball II magnet in 1970. Recently, the Mirror Fusion Test Facility (MFTF-B) yin-yang has been tested to a full field of 7.7 T with radial dimensions representative of a full scale reactor. Now the emphasis has turned to the manufacture of very high field solenoids (choke coils) that are placed between the tandem mirror central cell and the yin-yang anchor-plug set. For MFTF-B the choke coil field reaches 12 T, while in future devices like the MFTF-Upgrade, Fusion Power Demonstration and Mirror Advanced Reactor Study (MARS) reactor the fields are doubled. Besides developing high fields, the magnets must be radiation hardened. Otherwise, thick neutron shields increase the magnet size to an unacceptable weight and cost. Neutron fluences in superconducting magnets must be increased by an order of magnitude or more. Insulators must withstand 10 10 to 10 11 rads, while magnet stability must be retained after the copper has been exposed to fluence above 10 19 neutrons/cm 2

  20. Reusable radiation monitor

    International Nuclear Information System (INIS)

    Fanselow, D.L.; Ersfeld, D.A.

    1978-01-01

    An integrating, reusable device for monitoring exposure to actinic radiation is disclosed. The device comprises a substrate having deposited thereon at least one photochromic aziridine compound which is sealed in an oxygen barrier to stabilize the color developed by the aziridine compound in response to actinic radiation. The device includes a spectral response shaping filter to transmit only actinic radiation of the type being monitored. A color standard is also provided with which to compare the color developed by the aziridine compound

  1. Use of mobile device technology to continuously collect patient-reported symptoms during radiation therapy for head and neck cancer: A prospective feasibility study.

    Science.gov (United States)

    Falchook, Aaron D; Tracton, Gregg; Stravers, Lori; Fleming, Mary E; Snavely, Anna C; Noe, Jeanne F; Hayes, David N; Grilley-Olson, Juneko E; Weiss, Jared M; Reeve, Bryce B; Basch, Ethan M; Chera, Bhishamjit S

    2016-01-01

    Accurate assessment of toxicity allows for timely delivery of supportive measures during radiation therapy for head and neck cancer. The current paradigm requires weekly evaluation of patients by a provider. The purpose of this study is to evaluate the feasibility of monitoring patient reported symptoms via mobile devices. We developed a mobile application for patients to report symptoms in 5 domains using validated questions. Patients were asked to report symptoms using a mobile device once daily during treatment or more often as needed. Clinicians reviewed patient-reported symptoms during weekly symptom management visits and patients completed surveys regarding perceptions of the utility of the mobile application. The primary outcome measure was patient compliance with mobile device reporting. Compliance is defined as number of days with a symptom report divided by number of days on study. There were 921 symptom reports collected from 22 patients during treatment. Median reporting compliance was 71% (interquartile range, 45%-80%). Median number of reports submitted per patient was 34 (interquartile range, 21-53). Median number of reports submitted by patients per week was similar throughout radiation therapy and there was significant reporting during nonclinic hours. Patients reported high satisfaction with the use of mobile devices to report symptoms. A substantial percentage of patients used mobile devices to continuously report symptoms throughout a course of radiation therapy for head and neck cancer. Future studies should evaluate the impact of mobile device symptom reporting on improving patient outcomes.

  2. Relative risk analysis in regulating the use of radiation-emitting medical devices. A preliminary application

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E.D.; Banks, W.W.; Altenbach, T.J.; Fischer, L.E. [Lawrence Livermore National Lab., CA (United States)

    1995-09-01

    This report describes a preliminary application of an analysis approach for assessing relative risks in the use of radiation- emitting medical devices. Results are presented on human-initiated actions and failure modes that are most likely to occur in the use of the Gamma Knife, a gamma irradiation therapy device. This effort represents an initial step in a US Nuclear Regulatory Commission (NRC) plan to evaluate the potential role of risk analysis in regulating the use of nuclear medical devices. For this preliminary application of risk assessment, the focus was to develop a basic process using existing techniques for identifying the most likely risk contributors and their relative importance. The approach taken developed relative risk rankings and profiles that incorporated the type and quality of data available and could present results in an easily understood form. This work was performed by the Lawrence Livermore National Laboratory for the NRC.

  3. Relative risk analysis in regulating the use of radiation-emitting medical devices. A preliminary application

    International Nuclear Information System (INIS)

    Jones, E.D.; Banks, W.W.; Altenbach, T.J.; Fischer, L.E.

    1995-09-01

    This report describes a preliminary application of an analysis approach for assessing relative risks in the use of radiation- emitting medical devices. Results are presented on human-initiated actions and failure modes that are most likely to occur in the use of the Gamma Knife, a gamma irradiation therapy device. This effort represents an initial step in a US Nuclear Regulatory Commission (NRC) plan to evaluate the potential role of risk analysis in regulating the use of nuclear medical devices. For this preliminary application of risk assessment, the focus was to develop a basic process using existing techniques for identifying the most likely risk contributors and their relative importance. The approach taken developed relative risk rankings and profiles that incorporated the type and quality of data available and could present results in an easily understood form. This work was performed by the Lawrence Livermore National Laboratory for the NRC

  4. Modeling of radiation-induced charge trapping in MOS devices under ionizing irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Petukhov, M. A., E-mail: m.a.petukhov@gmail.com; Ryazanov, A. I. [National Research Center Kurchatov Institute (Russian Federation)

    2016-12-15

    The numerical model of the radiation-induced charge trapping process in the oxide layer of a MOS device under ionizing irradiation is developed; the model includes carrier transport, hole capture by traps in different states, recombination of free electrons and trapped holes, kinetics of hydrogen ions which can be accumulated in the material during transistor manufacture, and accumulation and charging of interface states. Modeling of n-channel MOSFET behavior under 1 MeV photon irradiation is performed. The obtained dose dependences of the threshold voltage shift and its contributions from trapped holes and interface states are in good agreement with experimental data.

  5. Use of mobile device technology to continuously collect patient-reported symptoms during radiation therapy for head and neck cancer: A prospective feasibility study

    Directory of Open Access Journals (Sweden)

    Aaron D. Falchook, MD

    2016-04-01

    Conclusions: A substantial percentage of patients used mobile devices to continuously report symptoms throughout a course of radiation therapy for head and neck cancer. Future studies should evaluate the impact of mobile device symptom reporting on improving patient outcomes.

  6. Device for detecting ionizing radiation

    International Nuclear Information System (INIS)

    Anatychuk, L.I.; Kharitonov, J.P.; Kusniruk, V.F.; Meir, V.A.; Melnik, A.P.; Ponomarev, V.S.; Skakodub, V.A.; Sokolov, A.D.; Subbotin, V.G.; Zhukovsky, A.N.

    1980-01-01

    The present invention relates to ionizing radiation sensors, and , more particularly, to semiconductor spectrometers with thermoelectric cooling, and can most advantageously be used in mineral raw material exploration and evaluation under field conditions. The spectrometer comprises a vacuum chamber with an entrance window for passing the radiation therethrough. The vacuum chamber accommodates a thermoelectric cooler formed by a set of peltier elements. A heat conducting plate is mounted on the cold side of the thermoelectric cooler, and its hot side is provided with a radiator. Mounted on the heat conducting plate are sets of peltier elements, integral with the thermoelectric cooler and independent of one another. The peltier elements of these sets are stacked so as to develop the minimum temperature conditions on one set carrying a semiconductor detector and to provide the maximum refrigeration capacity conditions on the other set provided with the field-effect transistor mounted thereon

  7. Radiation Hardness tests with neutron flux on different Silicon photomultiplier devices

    Science.gov (United States)

    Cattaneo, P. W.; Cervi, T.; Menegolli, A.; Oddone, M.; Prata, M.; Prata, M. C.; Rossella, M.

    2017-07-01

    Radiation hardness is an important requirement for solid state readout devices operating in high radiation environments common in particle physics experiments. The MEG II experiment, at PSI, Switzerland, investigates the forbidden decay μ+ → e+ γ. Exploiting the most intense muon beam of the world. A significant flux of non-thermal neutrons (kinetic energy Ek>= 0.5 MeV) is present in the experimental hall produced along the beam-line and in the hall itself. We present the effects of neutron fluxes comparable to the MEG II expected doses on several Silicon Photomultiplier (SiPMs). The tested models are: AdvanSiD ASD-NUV3S-P50 (used in MEG II experiment), AdvanSiD ASD-NUV3S-P40, AdvanSiD ASD-RGB3S-P40, Hamamatsu and Excelitas C30742-33-050-X. The neutron source is the thermal Sub-critical Multiplication complex (SM1) moderated with water, located at the University of Pavia (Italy). We report the change of SiPMs most important electric parameters: dark current, dark pulse frequency, gain, direct bias resistance, as a function of the integrated neutron fluency.

  8. Radiation and detectors introduction to the physics of radiation and detection devices

    CERN Document Server

    Cerrito, Lucio

    2017-01-01

    This textbook provides an introduction to radiation, the principles of interaction between radiation and matter, and the exploitation of those principles in the design of modern radiation detectors. Both radiation and detectors are given equal attention and their interplay is carefully laid out with few assumptions made about the prior knowledge of the student. Part I is dedicated to radiation, broadly interpreted in terms of energy and type, starting with an overview of particles and forces, an extended review of common natural and man-made sources of radiation, and an introduction to particle accelerators. Particular attention is paid to real life examples, which place the types of radiation and their energy in context. Dosimetry is presented from a modern, user-led point of view, and relativistic kinematics is introduced to give the basic knowledge needed to handle the more formal aspects of radiation dynamics and interaction. The explanation of the physics principles of interaction between radiation an...

  9. Hybrid Multiphase CFD Solver for Coupled Dispersed/Segregated Flows in Liquid-Liquid Extraction

    Directory of Open Access Journals (Sweden)

    Kent E. Wardle

    2013-01-01

    Full Text Available The flows in stage-wise liquid-liquid extraction devices include both phase segregated and dispersed flow regimes. As a additional layer of complexity, for extraction equipment such as the annular centrifugal contactor, free-surface flows also play a critical role in both the mixing and separation regions of the device and cannot be neglected. Traditionally, computional fluid dynamics (CFD of multiphase systems is regime dependent—different methods are used for segregated and dispersed flows. A hybrid multiphase method based on the combination of an Eulerian multifluid solution framework (per-phase momentum equations and sharp interface capturing using Volume of Fluid (VOF on selected phase pairs has been developed using the open-source CFD toolkit OpenFOAM. Demonstration of the solver capability is presented through various examples relevant to liquid-liquid extraction device flows including three-phase, liquid-liquid-air simulations in which a sharp interface is maintained between each liquid and air, but dispersed phase modeling is used for the liquid-liquid interactions.

  10. An Updated Comprehensive Risk Analysis for Radioisotopes Identified of High Risk to National Security in the Event of a Radiological Dispersion Device Scenario

    Science.gov (United States)

    Robinson, Alexandra R.

    An updated global survey of radioisotope production and distribution was completed and subjected to a revised "down-selection methodology" to determine those radioisotopes that should be classified as potential national security risks based on availability and key physical characteristics that could be exploited in a hypothetical radiological dispersion device. The potential at-risk radioisotopes then were used in a modeling software suite known as Turbo FRMAC, developed by Sandia National Laboratories, to characterize plausible contamination maps known as Protective Action Guideline Zone Maps. This software also was used to calculate the whole body dose equivalent for exposed individuals based on various dispersion parameters and scenarios. Derived Response Levels then were determined for each radioisotope using: 1) target doses to members of the public provided by the U.S. EPA, and 2) occupational dose limits provided by the U.S. Nuclear Regulatory Commission. The limiting Derived Response Level for each radioisotope also was determined.

  11. MET-RODOS: A comprehensive atmospheric dispersion module

    DEFF Research Database (Denmark)

    Mikkelsen, T.; Thykier-Nielsen, S.; Astrup, P.

    1997-01-01

    A comprehensive meteorological dispersion module called MET-RODOS is being developed to serve the real-time RODOS(1-3) decision support system with an integrated prediction capability for airborne radioactive spread, deposition and gamma radiation exposure on all scales. Deposition, ground level ...

  12. Solid state radiation dosimetry

    International Nuclear Information System (INIS)

    Moran, P.R.

    1976-01-01

    Important recent developments provide accurate, sensitive, and reliable radiation measurements by using solid state radiation dosimetry methods. A review of the basic phenomena, devices, practical limitations, and categories of solid state methods is presented. The primary focus is upon the general physics underlying radiation measurements with solid state devices

  13. Radiation Detection Center on the Front Lines

    International Nuclear Information System (INIS)

    Hazi, A

    2005-01-01

    Many of today's radiation detection tools were developed in the 1960s. For years, the Laboratory's expertise in radiation detection resided mostly within its nuclear test program. When nuclear testing was halted in the 1990s, many of Livermore's radiation detection experts were dispersed to other parts of the Laboratory, including the directorates of Chemistry and Materials Science (CMS); Physics and Advanced Technologies (PAT); Defense and Nuclear Technologies (DNT); and Nonproliferation, Arms Control, and International Security (NAI). The RDC-- was formed to maximize the benefit of radiation detection technologies being developed in 15 to 20 research and development (R and D) programs. These efforts involve more than 200 Laboratory employees across eight directorates, in areas that range from electronics to computer simulations. The RDC's primary focus is the detection, identification, and analysis of nuclear materials and weapons. A newly formed outreach program within the RDC-- is responsible for conducting radiation detection workshops and seminars across the country and for coordinating university student internships. Simon Labov, director of the RDC, says, ''Virtually all of the Laboratory's programs use radiation detection devices in some way. For example, DNT uses radiation detection to create radiographs for their work in stockpile stewardship and in diagnosing explosives; CMS uses it to develop technology for advancing the detection, diagnosis, and treatment of cancer; and the Energy and Environment Directorate uses radiation detection in the Marshall Islands to monitor the aftermath of nuclear testing in the Pacific. In the future, the National Ignition Facility will use radiation detection to probe laser targets and study shock dynamics.''

  14. Discrete Event Simulation Model of the Polaris 2.1 Gamma Ray Imaging Radiation Detection Device

    Science.gov (United States)

    2016-06-01

    release; distribution is unlimited DISCRETE EVENT SIMULATION MODEL OF THE POLARIS 2.1 GAMMA RAY IMAGING RADIATION DETECTION DEVICE by Andres T...ONLY (Leave blank) 2. REPORT DATE June 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE DISCRETE EVENT SIMULATION MODEL...modeled. The platform, Simkit, was utilized to create a discrete event simulation (DES) model of the Polaris. After carefully constructing the DES

  15. Improved Understanding of Space Radiation Effects on Exploration Electronics by Advanced Modeling of Nanoscale Devices and Novel Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA space exploration missions will use nanometer-scale electronic technologies which call for a shift in how radiation effects in such devices and materials...

  16. Multifunctional synchrotron spectrometer of NRC Kurchatov Institute. Part 1. EXAFS in dispersive mode

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Tyutyunnikov, S.I.; Shalyapin, V.N.; Belyaev, A.D.; Artem'ev, A.N.; Kirillov, B.F.; Demkiv, A.A.; Knyazev, G.A.; Koval'chuk, M.V.; Artem'ev, N.A.

    2017-01-01

    The improved X-ray optical scheme, the system of registration and measurement procedure of multifunctional synchrotron radiation spectrometer in dispersive EXAFS mode are described. The results of the energy permission measurements of spectrometer are given. The advantages and disadvantages in the traditional and dispersion schematics of spectrometers EXAFS are analyzed. Examples of the EXAFS spectra measured in the dispersion mode are given.

  17. Anomalous acoustic dispersion in architected microlattice metamaterials

    Science.gov (United States)

    KröDel, Sebastian; Palermo, Antonio; Daraio, Chiara

    The ability to control dispersion in acoustic metamaterials is crucial to realize acoustic filtering and rectification devices as well as perfect imaging using negative refractive index materials. Architected microlattice metamaterials immersed in fluid constitute a versatile platform for achieving such control. We investigate architected microlattice materials able to exploit locally resonant modes of their fundamental building blocks that couple with propagating acoustic waves. Using analytical, numerical and experimental methods we find that such lattice materials show a hybrid dispersion behavior governed by Biot's theory for long wavelengths and multiple scattering theory when wave frequency is close to the resonances of the building block. We identify the relevant geometric parameters to alter and control the group and phase velocities in this class of acoustic metamaterials. Furthermore, we fabricate small-scale acoustic metamaterial samples using high precision SLA additive manufacturing and test the resulting materials experimentally using a customized ultrasonic setup. This work paves the way for new acoustic devices based on microlattice metamaterials.

  18. Insights into the evolution of a cryptic radiation of bats: dispersal and ecological radiation of Malagasy Miniopterus (Chiroptera: Miniopteridae).

    Science.gov (United States)

    Christidis, Les; Goodman, Steven M; Naughton, Kate; Appleton, Belinda

    2014-01-01

    The past decade has seen a proliferation of new species of Miniopterus bats (family Miniopteridae) recognized from Madagascar and the neighboring Comoros archipelago. The interspecific relationships of these taxa, their colonization history, and the evolution of this presumed adaptive radiation have not been sufficiently explored. Using the mitochondrial cytochrome-b gene, we present a phylogeny of the Malagasy members of this widespread Old World genus, based on 218 sequences, of which 82 are new and 136 derived from previous studies. Phylogenetic analyses recovered 18 clades, which divide into five primary lineages: (1) M. griveaudi; (2) M. mahafaliensis, M. sororculus and X3; (3) M. majori, M. gleni and M. griffithsi; (4) M. brachytragos; M. aelleniA, and M. aelleniB; and (5) M. manavi and M. petersoni recovered as sister species, which were in turn linked to a group comprising M. egeri and five genetically distinct populations referred to herein as P3, P4, P5, P6 and P7. Beast analysis indicated that the initial divergence within the Malagasy Miniopterus radiation took place 4.5 Myr; most species diverged between 4 and 2.5 Myr, and a secondary period was between 1.25 and 1 Myr. DNA K2P-distances between recognized taxa ranged from 12.9% to 2.5% and intraspecific variation was less than 1.8%. Of the 18 identified clades, Latin binomials are only associated with 11, which indicates much greater differentiation than currently recognized for Malagasy Miniopterus. These data are placed in a context of the dispersal history of this genus on the island and patterns of ecological diversity.

  19. Process for the production of radiation curable coating compositions containing microcapsules

    International Nuclear Information System (INIS)

    Lee, Y.; Shackle, D.R.

    1979-01-01

    A process for producing a radiation curable coating composition containing microcapsules comprises the steps of preparing a dispersion of substantially discrete microcapsules in a continuous phase, the continuous phase comprising a liquid volatile solvent, preparing a liquid radiation curable suspending medium, the liquid radiation curable suspending medium comprising one or more ethylenically unsaturated organic compounds having at least one terminal ethylenic group per molecule, mixing the dispersion of substantially discrete microcapsules in the continuous phase and the liquid radiation curable suspending medium with turbulent agitation to form an intimate mixture of the dispersion of microcapsules and the liquid radiation curable suspending medium, and applying heat and vacuum to the mixture, while maintaining the agitation, until the liquid volatile solvent is substantially removed from the mixture to form a dispersion of substantially discrete microcapsules in the liquid radiation curable suspending medium. The heat is applied to maintain the mixture at a temperature above the boiling point of the volatile solvent at the vacuum level

  20. Evaluation of a hand-held far-ultraviolet radiation device for decontamination of Clostridium difficile and other healthcare-associated pathogens

    Directory of Open Access Journals (Sweden)

    Nerandzic Michelle M

    2012-05-01

    Full Text Available Abstract Background Environmental surfaces play an important role in transmission of healthcare-associated pathogens. There is a need for new disinfection methods that are effective against Clostridium difficile spores, but also safe and rapid. The Sterilray™ Disinfection Wand device is a hand-held room decontamination technology that utilizes far-ultraviolet radiation (185-230 nm to kill pathogens. Methods We examined the efficacy of disinfection using the Sterilray device in the laboratory, in rooms of hospitalized patients, and on surfaces outside of patient rooms (i.e. keyboards and portable medical equipment. Cultures for C. difficile, methicillin-resistant Staphylococcus aureus (MRSA, and vancomycin-resistant Enterococcus (VRE were collected from commonly-touched surfaces before and after use of the Sterilray device. Results On inoculated surfaces in the laboratory, application of the Sterilray device at a radiant dose of 100 mJ/cm2 for ~ 5 seconds consistently reduced recovery of C. difficile spores by 4.4 CFU log10, MRSA by 5.4 log10CFU and of VRE by 6.9 log10CFU. A >3 log10 reduction of MRSA and VRE was achieved in ~2 seconds at a lower radiant dose, but killing of C. difficile spores was significantly reduced. On keyboards and portable medical equipment that were inoculated with C. difficile spores, application of the Sterilray device at a radiant dose of 100���mJ/cm2 for ~ 5 seconds reduced contamination by 3.2 log10CFU. However, the presence of organic material reduced the lethal effect of the far-UV radiation. In hospital rooms that were not pre-cleaned, disinfection with the Sterilray device significantly reduced the frequency of positive C. difficile and MRSA cultures (P =0.007. Conclusions The Sterilray™ Disinfection Wand is a novel environmental disinfection technology that rapidly kills C. difficile spores and other healthcare-associated pathogens on surfaces. However, the presence of organic matter

  1. MO-G-304-04: Generating Well-Dispersed Representations of the Pareto Front for Multi-Criteria Optimization in Radiation Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Kirlik, G; Zhang, H [University of Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: To present a novel multi-criteria optimization (MCO) solution approach that generates well-dispersed representation of the Pareto front for radiation treatment planning. Methods: Different algorithms have been proposed and implemented in commercial planning software to generate MCO plans for external-beam radiation therapy. These algorithms consider convex optimization problems. We propose a grid-based algorithm to generate well-dispersed treatment plans over Pareto front. Our method is able to handle nonconvexity in the problem to deal with dose-volume objectives/constraints, biological objectives, such as equivalent uniform dose (EUD), tumor control probability (TCP), normal tissue complication probability (NTCP), etc. In addition, our algorithm is able to provide single MCO plan when clinicians are targeting narrow bounds of objectives for patients. In this situation, usually none of the generated plans were within the bounds and a solution is difficult to identify via manual navigation. We use the subproblem formulation utilized in the grid-based algorithm to obtain a plan within the specified bounds. The subproblem aims to generate a solution that maps into the rectangle defined by the bounds. If such a solution does not exist, it generates the solution closest to the rectangle. We tested our method with 10 locally advanced head and neck cancer cases. Results: 8 objectives were used including 3 different objectives for primary target volume, high-risk and low-risk target volumes, and 5 objectives for each of the organs-at-risk (OARs) (two parotids, spinal cord, brain stem and oral cavity). Given tight bounds, uniform dose was achieved for all targets while as much as 26% improvement was achieved in OAR sparing comparing to clinical plans without MCO and previously proposed MCO method. Conclusion: Our method is able to obtain well-dispersed treatment plans to attain better approximation for convex and nonconvex Pareto fronts. Single treatment plan can

  2. Proceedings of the 3rd international workshop on radiation effects on semiconductor devices for space application

    International Nuclear Information System (INIS)

    1998-10-01

    This publication is the collection of the paper presented at the title workshop. The main purpose of the workshop is to bring the chance for exchange of information between scientists and engineers who work in the field of research and development of semiconductor devices used in strong radiation environment in space. The 27 of the presented papers are indexed individually. (J.P.N.)

  3. RF and dc desensitized electroexplosive device

    Science.gov (United States)

    Krainiak, John W.; Speaks, Paul D.; Cornett, Michael S.

    1989-07-01

    This patent application relates to electroexplosive devices (EEDs) such as detonators, blasting caps and squibs, in particular to a method and device for desensitizing EEDs to electromagnetic radiation and electrostatic charges with the added ability to desensitize the device to essentially dc currents. An insensitive electroexplosive device to electrically ignite explosive is disclosed. This device is inherently immune to radio frequency (RF) radiation, and also provides protection against dc or very low frequency RF induced by arcing. A central feature is use of zeners and capacitors to form a reactively balanced bridge circuit. When constructed in semiconductor form, as described in this application, the device is capable of incorporation in small caliber ordnance.

  4. Incore monitoring device

    International Nuclear Information System (INIS)

    Tai, Ichiro; Shirayama, Shin-pei; Nozaki, Shin-ichi.

    1978-01-01

    Purpose: To provide an incore monitoring device wherein both radiation monitoring and acoustic monitoring are carried out simultaneously by one detector, whereby installation of the device and signal pick-up are facilitated. Incore conditions are accurately grasped. Constitution: When a neutron is irradiated in a state where a DC voltage is applied between the electrode and the vessel in the device, an ionization current is occured by (n.γ) reaction of the transformed substance as in an ionization chamber, Accordingly, a voltage drop occurs at both ends of the resistor of the radiation signal processing system, as a result of which a neutron flux can be detected. Further, when a sound is generated in the reactor, the monitoring device bottom wall which formed by a piezoelectric element detects the sound-waves. This output signal is picked up by the acoustic signal processing system to judge the generation of sound. (Aizawa, K.)

  5. Measurement of the dose by dispersed radiation in a lineal accelerator using thermoluminescent dosimeters of CaSO{sub 4}:Dy; Medicion de la dosis por radiacion dispersa en un acelerador lineal usando dosimetros termoluminiscentes de CaSO{sub 4}:Dy

    Energy Technology Data Exchange (ETDEWEB)

    Chavez C, N.; Torijano, E.; Azorin, J. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico); Herrera, A. [ISSSTE, Hospital Nacional 20 de Noviembre, Eje 7 Sur Felix Cuevas Esq. Av. Coyoacan, Col. del Valle, 03229 Mexico D. F. (Mexico)

    2014-08-15

    The thermoluminescence (Tl) is based on the principle of the luminescent in a material when is heated below their incandescence temperature. Is a technique very used in dosimetry that is based on the property that have most of the crystalline materials regarding the storage of the energy that they absorb when are exposed to the ionizing radiations. When this material has been irradiated previously, the radioactive energy that contains is liberated in form of light. In general, the principles that govern the thermoluminescence are in essence the same of those responsible for all the luminescent processes and, this way, the thermoluminescence is one of the processes that are part of the luminescence phenomenon. For this work, the dispersed radiation was measured in the therapy area of the lineal accelerator of medical use type Elekta, using thermoluminescent dosimeters of CaSO{sub 4}:Dy + Ptfe developed and elaborated in the Universidad Autonoma Metropolitana, Unidad Iztapalapa. With the dosimeters already characterized and calibrated, we proceeded to measure the dispersed radiation being a patient in treatment. The results showed values for the dispersed radiation the order of a third of the dose received by the patient on the treatment table at 30 cm of the direct beam and the order of a hundredth in the control area (4 m of the direct beam, approximately). The conclusion is that the thermoluminescent dosimeters of CaSO{sub 4}: Dy + Ptfe are appropriate to measure dispersed radiation dose in radiotherapy. (author)

  6. Irradiation device

    International Nuclear Information System (INIS)

    Suzuki, Toshimitsu.

    1989-01-01

    In an irradiation device for irradiating radiation rays such as electron beams to pharmaceuticals, etc., since the distribution of scanned electron rays was not monitored, the electron beam intensity could be determined only indirectly and irradiation reliability was not satisfactory. In view of the above, a plurality of monitor wires emitting secondary electrons are disposed in the scanning direction near a beam take-out window of a scanning duct, signals from the monitor wires are inputted into a display device such as a cathode ray tube, as well as signals from the monitor wires at the central portion are inputted into counting rate meters to measure the radiation dose as well. Since secondary electrons are emitted when electron beams pass through the monitor wires and the intensity thereof is in proportion with the intensity of incident electron beams, the distribution of the radiation dose can be monitored by measuring the intensity of the emitted secondary electrons. Further, uneven irradiation, etc. can also be monitored to make the radiation of irradiation rays reliable. (N.H.)

  7. Setup reproducibility in radiation therapy for lung cancer: a comparison between T-bar and expanded foam immobilization devices

    International Nuclear Information System (INIS)

    Halperin, Ross; Roa, Wilson; Field, Melissa; Hanson, John; Murray, Brad

    1999-01-01

    Purpose: Physiologic and non-physiologic tumor motion complicates the use of tight margins in three-dimensional (3D) conformal radiotherapy. Setup reproducibility is an important non-physiologic cause of tumor motion. The objective of this study is to evaluate and compare patient setup reproducibility using the reusable T-bar and the disposable expanded foam immobilization device (EFID) in radiation therapy for lung cancer. Methods and Materials: Two hundred forty-four portal films were taken from 16 prospectively accrued patients treated for lung cancer. Patients were treated with either a pair of anterior and posterior parallel opposing fields (POF), or a combination of POF and a three-field isocentric technique. Each patient was treated in a supine position using either the T-bar setup or EFID. Six patients were treated in both devices over their treatment courses. Field placement analysis was used to evaluate 3D setup reproducibility, by comparing positions of bony landmarks relative to the radiation field edges in digitized simulator and portal images. Anterior-posterior, lateral, and longitudinal displacements, as well as field rotations along coronal and sagittal planes were measured. Statistical analyses of variance were applied to the deviations among portal films of all patients and the subgroup treated with both immobilization methods. Results: For the T-bar immobilization device, standard deviations of the setup reproducibility were 5.1, 3.7, and 5.1 mm in the anterior-posterior, lateral, and longitudinal dimensions, respectively. Rotations in the coronal plane and the sagittal plane were 0.9 deg. and 1.0 deg. , respectively. For the EFID, corresponding standard deviations of set up reproducibility were 3.6 mm, 5.3 mm, 5.4 mm, 0.7 deg. and 1.4 deg. , respectively. There was no statistically significant difference (p = 0.22) in the 3D setup reproducibility between T-bar and EFID. Subgroup analysis for the patients who were treated with both

  8. The signature-based radiation-scanning approach to standoff detection of improvised explosive devices

    International Nuclear Information System (INIS)

    Brewer, R.L.; Dunn, W.L.; Heider, S.; Matthew, C.; Yang, X.

    2012-01-01

    The signature-based radiation-scanning technique for detection of improvised explosive devices is described. The technique seeks to detect nitrogen-rich chemical explosives present in a target. The technology compares a set of “signatures” obtained from a test target to a collection of “templates”, sets of signatures for a target that contain an explosive in a specific configuration. Interrogation of nitrogen-rich fertilizer samples, which serve as surrogates for explosives, is shown experimentally to be able to discriminate samples of 3.8 L and larger. - Highlights: ► Signature-based radiation-scanning techniques applied to detection of explosives. ► Nitrogen-rich fertilizer samples served as surrogate explosive samples. ► Signatures of a target compared to collections of templates of surrogate explosives. ► Figure-of-merit determined for neutron and neutron-induced gamma-ray signatures. ► Discrimination of surrogate explosive from inert samples of 3.8 L and larger.

  9. Radiation hardness assurances categories for COTS technologies

    International Nuclear Information System (INIS)

    Hash, G.L.; Shaneyfelt, M.R.; Sexton, F.W.; Winokur, P.S.

    1997-01-01

    A comparison of the radiation tolerance of three commercial, and one radiation hardened SRAM is presented for four radiation environments. This work has shown the difficulty associated with strictly categorizing a device based solely on its radiation response, since its category depends on the specific radiation environment considered. For example, the 3.3-V Paradigm SRAM could be considered a radiation-tolerant device except for its SEU response. A more useful classification depends on the methods the manufacturer uses to ensure radiation hardness, i.e. whether specific design and process techniques have been used to harden the device. Finally, this work has shown that burned-in devices may fail functionally as much as 50% lower in total dose environments than non-burned-in devices. No burn-in effect was seen in dose-rate upset, latchup, or SEE environments. The user must ensure that total dose lot acceptance testing was performed on burned-in devices

  10. Improvements in or relating to semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, M

    1981-08-26

    A method of testing a field effect device for radiation hardness is described which does not involve irradiating the device. In a low temperature environment the conductance of the device is measured as a function of gate voltage at a first and at a second different substrate bias potential and by comparing the two an assessment of radiation hardness is made.

  11. Eco-friendly and simple radiation-based preparation of graphene and its application to organic solar cells

    International Nuclear Information System (INIS)

    Jung, Chan-Hee; Park, Yong-Woon; Hwang, In-Tae; Choi, Jae-Hak; Go, Yeong-Jin; Na, Seok-In; Shin, Kwanwoo; Lee, Jae-Suk

    2014-01-01

    We report the reduction of graphene oxide (GO) through an eco-friendly and simple radiation-based method and the practical application of the resulting radiation-reduced GO (RRGO) as a solution-processable hole-transporting layer (HTL) for organic solar cells. GO dispersed in N, N′-dimethylformamide (DMF) was irradiated by γ-rays at various absorbed doses. The analytical results revealed that GO in DMF was effectively reduced to RRGO by γ-ray irradiation-induced deoxygenation, and that the reduction degree was dependent on the absorbed dose. The electrical conductivity of RRGO increased up to 12.7 S cm −1 with an increase in the absorbed dose, whereas the work function decreased to 4.34 eV. An organic solar cell device with RRGO prepared at 50 kGy as an HTL exhibited the best performance, with a power conversion efficiency of 2.72%, which is a better cell efficiency than is possible in devices with conventional GO and solvothermally-reduced GO. (paper)

  12. High heat flux device of thermonuclear device

    International Nuclear Information System (INIS)

    Tachikawa, Nobuo.

    1994-01-01

    The present invention provides an equipments for high heat flux device (divertor) of a thermonuclear device, which absorbs thermal deformation during operation, has a high installation accuracy, and sufficiently withstands for thermal stresses. Namely, a heat sink member is joined to a structural base. Armour tiles are joined on the heat sink member. Cooling pipes are disposed between the heat sink member and the armour tiles. With such a constitution, the heat sink member using a highly heat conductive material having ductility, such as oxygen free copper, the cooling pipes using a material having excellent high temperature resistance and excellent elongation, such as aluminum-dispersed reinforced copper, and the armour tiles are completely joined on the structural base. Therefore, when thermal deformation tends to cause in the high heat flux device such as a divertor, cooling pipes cause no plastic deformation because of their high temperature resistance, but the heat sink member such as a oxygen free copper causes plastic deformation to absorb thermal deformation. As a result, the high heat flux device such as a divertor causes no deformation. (I.S.)

  13. Studies of radiation hardness of MOS devices for application in a linear collider vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qingyu

    2008-10-17

    The proposed International Linear Collider (ILC) together with the Large Hadron Collider (LHC) at CERN serve as a combined tool to explore the mysteries of the universe: the former is a precision machine and the latter can be considered as a finding machine. The key component of the ILC is the vertex detector that should be placed as close as possible to the Interaction Point (IP) and has better radiation tolerance against the dominant electron-positron pair production background from beam-beam interactions. A new generation of MOS-type Depleted-Field-Effect Transistor (MOSDEPFET) active pixel detectors has been proposed and developed by Semiconductor Labor Munich for Physics and for extraterrestrial Physics in order to meet the requirements of the vertex detector at the ILC. Since all MOS devices are susceptible to ionizing radiation, the main topic is focused on the radiation hardness of detectors, by which a series of physical processes are analyzed: e.g. surface damage due to ionizing radiation as well as damage mechanisms and their associated radiation effects. As a consequence, the main part of this thesis consists of a large number of irradiation experiments and the corresponding discussions. Finally, radiation hardness of the detectors should be improved through a set of concluded experiences that are based on a series of analysis of the characteristic parameters using different measurement techniques. The feasibility of the MOSDEPFET-based vertex detector is, therefore, predicted at ILC. (orig.)

  14. Studies of radiation hardness of MOS devices for application in a linear collider vertex detector

    International Nuclear Information System (INIS)

    Wei, Qingyu

    2008-01-01

    The proposed International Linear Collider (ILC) together with the Large Hadron Collider (LHC) at CERN serve as a combined tool to explore the mysteries of the universe: the former is a precision machine and the latter can be considered as a finding machine. The key component of the ILC is the vertex detector that should be placed as close as possible to the Interaction Point (IP) and has better radiation tolerance against the dominant electron-positron pair production background from beam-beam interactions. A new generation of MOS-type Depleted-Field-Effect Transistor (MOSDEPFET) active pixel detectors has been proposed and developed by Semiconductor Labor Munich for Physics and for extraterrestrial Physics in order to meet the requirements of the vertex detector at the ILC. Since all MOS devices are susceptible to ionizing radiation, the main topic is focused on the radiation hardness of detectors, by which a series of physical processes are analyzed: e.g. surface damage due to ionizing radiation as well as damage mechanisms and their associated radiation effects. As a consequence, the main part of this thesis consists of a large number of irradiation experiments and the corresponding discussions. Finally, radiation hardness of the detectors should be improved through a set of concluded experiences that are based on a series of analysis of the characteristic parameters using different measurement techniques. The feasibility of the MOSDEPFET-based vertex detector is, therefore, predicted at ILC. (orig.)

  15. Structure and crystallinity of water dispersible photoactive nanoparticles for organic solar cells

    DEFF Research Database (Denmark)

    Pedersen, Emil Bøje Lind; Pedersen, M.C.; Simonsen, Søren Bredmose

    2015-01-01

    Water based inks would be a strong advantage for large scale production of organic photovoltaic devices. Formation of water dispersible nanoparticles produced by the Landfester method is a promising route to achieve such inks. We provide new insights into the key ink properties of poly(3-hexylthi......Water based inks would be a strong advantage for large scale production of organic photovoltaic devices. Formation of water dispersible nanoparticles produced by the Landfester method is a promising route to achieve such inks. We provide new insights into the key ink properties of poly(3......-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) nanoparticles such as the internal structure and crystallinity of the dispersed nanoparticles and the previously unreported drastic changes that occur when the inks are cast into a film. We observe through transmission electron...

  16. Radiation effects on microelectronics in space

    International Nuclear Information System (INIS)

    Srour, J.R.; McGarrity, J.M.

    1988-01-01

    The basic mechanisms of space radiation effects on microelectronics are reviewed in this paper. Topics discussed include the effects of displacement damage and ionizing radiation on devices and circuits, single event phenomena, dose enhancement, radiation effects on optoelectronic devices and passive components, hardening approaches, and simulation of the space radiation environment. A summary is presented of damage mechanisms that can cause temporary or permanent failure of devices and circuits operating in space

  17. On the relativistic theory of electromagnetic dispersion relations and Poynting's theorem

    International Nuclear Information System (INIS)

    Lerche, I.

    1975-01-01

    Constitutive relations, and general dispersion relations, are derived for an arbitrary, anisotropic, dispersive and dissipative medium which is moving relative to an inertial observer. The constitutive relations are expressed in terms of the ''local'' dielectric tensor, magnetic permeability, etc., where ''local'' refers to the instantaneous rest frame of the medium. We also give the generalization of Poynting's theorem for power flow including the expression for the rate at which the moving medium does work on the radiation. In view of the current interest in radiation generated in, and passing through, pulsar magnetospheres, we believe that the general results presented here are, perhaps, not without some astrophysical import

  18. Biological in situ Dose Painting for Image-Guided Radiation Therapy Using Drug-Loaded Implantable Devices

    International Nuclear Information System (INIS)

    Cormack, Robert A.; Sridhar, Srinivas; Suh, W. Warren; D'Amico, Anthony V.; Makrigiorgos, G. Mike

    2010-01-01

    Purpose: Implantable devices routinely used for increasing spatial accuracy in modern image-guided radiation treatments (IGRT), such as fiducials or brachytherapy spacers, encompass the potential for in situ release of biologically active drugs, providing an opportunity to enhance the therapeutic ratio. We model this new approach for two types of treatment. Methods and Materials: Radiopaque fiducials used in IGRT, or prostate brachytherapy spacers ('eluters'), were assumed to be loaded with radiosensitizer for in situ drug slow release. An analytic function describing the concentration of radiosensitizer versus distance from eluters, depending on diffusion-elimination properties of the drug in tissue, was developed. Tumor coverage by the drug was modeled for tumors typical of lung stereotactic body radiation therapy treatments for various eluter dimensions and drug properties. Six prostate 125 I brachytherapy cases were analyzed by assuming implantation of drug-loaded spacers. Radiosensitizer-induced subvolume boost was simulated from which biologically effective doses for typical radiosensitizers were calculated in one example. Results: Drug distributions from three-dimensional arrangements of drug eluters versus eluter size and drug properties were tabulated. Four radiosensitizer-loaded fiducials provide adequate radiosensitization for ∼4-cm-diameter lung tumors, thus potentially boosting biologically equivalent doses in centrally located stereotactic body treated lesions. Similarly, multiple drug-loaded spacers provide prostate brachytherapy with flexible shaping of 'biologically equivalent doses' to fit requirements difficult to meet by using radiation alone, e.g., boosting a high-risk region juxtaposed to the urethra while respecting normal tissue tolerance of both the urethra and the rectum. Conclusions: Drug loading of implantable devices routinely used in IGRT provides new opportunities for therapy modulation via biological in situ dose painting.

  19. Insertion devices at the advanced photon source

    International Nuclear Information System (INIS)

    Moog, E.R.

    1996-01-01

    The insertion devices being installed at the Advanced Photon Source cause the stored particle beam to wiggle, emitting x-rays with each wiggle. These x-rays combine to make an intense beam of radiation. Both wiggler and undulator types of insertion devices are being installed; the characteristics of the radiation produced by these two types of insertion devices are discussed, along with the reasons for those characteristics

  20. Standard practice for application of thermoluminescence-dosimetry (TLD) systems for determining absorbed dose in radiation-hardness testing of electronic devices. ASTM standard

    International Nuclear Information System (INIS)

    1998-05-01

    This practice is under the jurisdiction of ASTM Committee E-10 on Nuclear Technology and Applications and is the direct responsibility of Subcommittee E10.07 on Radiation Dosimetry for Radiation Effects on Materials and Devices. Current edition approved Jun. 10, 1997. Published May 1998. Originally published as E 668-78. Last previous edition E 668-93

  1. Vertical dispersion produced by random closed orbit distortions and sextupoles

    International Nuclear Information System (INIS)

    Suzuki, Toshio.

    1977-01-01

    Vertical dispersion appears even in a machine designed with plane symmetry because of vertical closed orbit distortions, linear coupling and coupling due to sextupoles. This gives rise to several undesirable effects in an electron-positron storage ring such as PEP. Vertical dispersion at the interaction point will increase beam height and reduce luminosity. Vertical dispersion around the ring will modify vertical emittance and partition numbers for synchrotron radiation damping. It will also induce betatron-synchrotron resonance and affect chromaticity correction. Vertical dispersion due to random closed orbit distortions and sextupoles has been studied by Piwinski, and he has indicated that correction of chromaticity and chromatic change of β-function is important. However, he has assumed one error element and evaluated the dispersion at the position of the element. We generalize his argument to a more realistic case and derive more precise criteria for the correction of vertical dispersion. Horizontal dispersion due to perturbations is also studied. Vertical dispersion due to linear coupling is neglected in this note, since it has been studied by other authors. 7 refs

  2. Design and implementation of a device for measuring radiation energy of an electron accelerator

    International Nuclear Information System (INIS)

    Salhi, Heythem; Selmi, Samir

    2010-01-01

    Our work is part of a graduation project at the School of Technology and Computing, to obtain a master's degree in electrical engineering specialty industrial computer. Throughout the four-month internship at the National Center for Nuclear Science and Technology (CNSTN), we have learned to practice the knowledge acquired during the formative years and to manage our working time. Our job was to design and implementation of a device for measuring the energy of radiation. Our project meets the needs of users in the radio treatment Unit, which amount to automate measurement of radiation energy from the electron accelerator. This project has been beneficial on several levels: it was an opportunity to achieve better control of printed circuits, especially when they are dual layer and learning a new programming language that is actually BASIC. In human terms, this work has given us the opportunity to learn to manage our time, and learn teamwork. However, we are convinced that this project can be enhanced on various levels. It can be considered as a starting point of a contribution to the real-time measurement of the energy of radiation.

  3. Safety considerations in the design of the Fusion Engineering Device

    International Nuclear Information System (INIS)

    Barrett, R.J.

    1983-01-01

    The US Department of Energy (DOE) regulations and guidelines for radiation protection have been reviewed and are being applied to the device design. Direct radiation protection is provided by the device shield and the reactor building walls. Radiation from the activated device components and the tritium fuel is to be controlled with shielding, contamination control, and ventilation. The potential release of tritium from the plant has influenced the selection of reactor building and plant designs and specifications. The safety of the plant workers is affected primarily by the radiation from the activated device components and from plasma chamber debris

  4. Over-the-air Radiated Testing of Millimeter-Wave Beam-steerable Devices in a Cost-Effective Measurement Setup

    DEFF Research Database (Denmark)

    Fan, Wei; Kyösti, Pekka; Rumney, Moray

    2018-01-01

    antenna selection scheme is proposed. This setup is suitable for evaluation of beam-steerable devices, including both base station (BS) and user equipment (UE) devices. The requirements for the test system design are analyzed, including the measurement range, number of OTA antennas, number of active OTA...... conditions. In this article, radiated testing methods are reviewed, with a focus on their principle and applicability for beam steerable mmWave devices. To explore the spatial sparsity of mmWave channel profiles, a cost-effective simplified 3D sectored multi-probe anechoic chamber (MPAC) system with an OTA......With the severe spectrum congestion of sub-6GHz cellular systems, large-scale antenna systems in the millimeter-wave (mmWave) bands can potentially meet the high data rate envisioned for fifth generation (5G) communications. Performance evaluation of antenna systems is an essential step...

  5. Site-Specific Atmospheric Dispersion Characteristics of Korean Nuclear Power Plant Sites

    International Nuclear Information System (INIS)

    Han, M. H.; Kim, E. H.; Suh, K. S.; Hwang, W. T.; Choi, Y. G.

    2001-01-01

    Site-specific atmospheric dispersion characteristics have been analyzed. The northwest and the southwest wind prevail on nuclear sites of Korea. The annual isobaric surface averaged for twenty years around Korean peninsula shows that west wind prevails. The prevailing west wind is profitable in the viewpoint of radiation protection because three of four nuclear sites are located in the east side. Large scale field tracer experiments over nuclear sites have been conducted for the purpose of analyzing the atmospheric dispersion characteristics and validating a real-time atmospheric dispersion and dose assessment system FADAS. To analyze the site-specific atmospheric dispersion characteristics is essential for making effective countermeasures against a nuclear emergency

  6. A device for external γ-irradiation of experimental animals

    International Nuclear Information System (INIS)

    Ivanitskaya, N.F.; Talakin, Yu.N.; Lekakh, V.A.

    1992-01-01

    A device was developed for external gamma-irradiation of experimental animals including a radiation source, a device for fixation of the total animal or a segment of its body in the focus of irradiation, and a shilding screen. To widen the sphere of this device application by making possible a simultaneous radiation exposure of a group of animals under various radiation schedules, the device involves two discs with a common axis. The lower disc is provided with an electric drive and containers with animals are placed on it, and the upper disc is for the shielding screen. The device is supplied with an operation block

  7. Principles and techniques of radiation hardening. Volume 2. Transient radiation effects in electronics (TREE)

    International Nuclear Information System (INIS)

    Rudie, N.J.

    1976-01-01

    The three-volume book is intended to serve as a review of the effects of thermonuclear explosion induced radiation (x-rays, gamma rays, and beta particles) and the resulting electromagnetic pulse (EMP). Volume 2 deals with the following topics: radiation effects on quartz crystals, tantalum capacitors, bipolar semiconductor devices and integrated circuits, field effect transistors, and miscellaneous electronic devices; hardening electronic systems to photon and neutron radiation; nuclear radiation source and/or effects simulation techniques; and radiation dosimetry

  8. Calculation of characteristics of X-ray devices

    Directory of Open Access Journals (Sweden)

    Orobinskyi A. N.

    2015-12-01

    Full Text Available Actuality of this work is related to human radiation safety during tuning and regulation of X-ray devices in the process of their development and production. The more precise the calculations for the device are, the less time is required for its tuning and regulation, and thus people are less exposed to radiation. When developing an X-ray device, it is necessary to choose an X-ray tube and filters taking into account the application domain of the device. In order to do this, one should know anode voltage, X-ray tube anode current, material and thickness of filters, i.e. to calculate these characteristics at the set quality of X-ray radiation. The known published studies do not give any solution to this problem. The scientific novelty of this work is that it establishes the interdependence between main characteristics of the X-ray device: the function of the device defines the quality of X-ray radiation (mean photon energy and air kerma power; mean photon energy depends on the X-ray anode tube voltage and spectral resolution; air kerma power depends on anode tube voltage, current of X-ray tube anode, spectral resolution, thicknesses of the filters and their materials; spectral resolution depends on thicknesses of filters and their materials; thickness of filters depends on the material of the filter (the linear coefficient of weakening of X-ray radiation. Knowledge of interdependence of basic characteristics of the X-ray devices allowes developing simple algorithm for their calculation at the values of homogeneity coefficient from 0,8 to 1, which makes it possible to choose an X-ray tube and filters with the purpose of obtaining X-ray radiation of the set quality.

  9. Nuclear fuel shipping inspection device

    International Nuclear Information System (INIS)

    Takahashi, Toshio; Hada, Koji.

    1988-01-01

    Purpose: To provide an nuclear fuel shipping inspection device having a high detection sensitivity and capable of obtaining highly reliable inspection results. Constitution: The present invention concerns a device for distinguishing a fuel assembly having failed fuel rods in LMFBR type reactors. Coolants in a fuel assembly to be inspected are collected by a sampling pipeway and transferred to a filter device. In the filter device, granular radioactive corrosion products (CP) in the coolants are captured, to reduce the background. The coolants, after being passed through the filter device, are transferred to an FP catching device and gamma-rays of iodine and cesium nuclides are measured in FP radiation measuring device. Subsequently, the coolants transferred to a degasing device to separate rare gas FP in the coolants from the liquid phase. In a case if rare gas fission products are detected by the radiation detector, it means that there is a failed fuel rod in the fuel assembly to be inspected. Since the CP and the soluble FP are separated and extracted for the radioactivity measurement, the reliability can be improved. (Kamimura, M.)

  10. Evaluation of the Stryker S2 IM Nail Distal Targeting Device for reduction of radiation exposure: a case series study.

    Science.gov (United States)

    Anastopoulos, George; Ntagiopoulos, Panagiotis G; Chissas, Dionisios; Loupasis, George; Asimakopoulos, Antonios; Athanaselis, Eustratios; Megas, Panagiotis

    2008-10-01

    Distal locking is one challenging step during intramedullary nailing of femoral shaft fractures that can lead to an increase of radiation exposure. In the present study, the authors describe a technique for the distal locking of femoral nails, implementing a new targeting device in an attempt to reduce radiation exposure and operational time. Over a 2-year period, 127 consecutive cases of femoral shaft fractures were included in the study. All cases were treated with nailing of femoral shaft fractures with an unslotted reamed antegrade femoral nail and distal locking was performed with the use of a proximally mounted aiming device. Mean duration of the procedure was 63.5 18.1 min while the duration for distal locking was 6.6 +/- 2.6 min. In all successful cases, exposure from intraoperative fluoroscopy was 17.2 +/- 7.4 s for the whole operative procedure, and for distal locking was 2 shots, 1.35 s (range, 0.9-2.2 s) and 1.9 mGy (range, 1.1-2.9 mGy). Five cases (3.9%) were unsuccessful, but overall no intraoperative complications were encountered from the application of this technique. The ability of the device to correspond to the level of nail deformation and to properly identify the distal holes, reduced exposure to radiation compared to other published reports, and should be considered as a valuable tool for distal locking of femoral fractures.

  11. X ray sensitive area detection device

    Science.gov (United States)

    Carter, Daniel C. (Inventor); Witherow, William K. (Inventor); Pusey, Marc L. (Inventor); Yost, Vaughn H. (Inventor)

    1990-01-01

    A radiation sensitive area detection device is disclosed which comprises a phosphor-containing film capable of receiving and storing an image formed by a pattern of incoming x rays, UV, or other radiation falling on the film. The device is capable of fluorescing in response to stimulation by a light source in a manner directly proportional to the stored radiation pattern. The device includes: (1) a light source capable of projecting light or other appropriate electromagnetic wave on the film so as to cause it to fluoresce; (2) a means to focus the fluoresced light coming from the phosphor-containing film after light stimulation; and (3) at least one charged coupled detector or other detecting element capable of receiving and digitizing the pattern of fluoresced light coming from the phosphor-containing film. The device will be able to generate superior x ray images of high resolution from a crystal or other sample and will be particularly advantageous in that instantaneous near-real-time images of rapidly deteriorating samples can be obtained. Furthermore, the device can be made compact and sturdy, thus capable of carrying out x ray or other radiation imaging under a variety of conditions, including those experienced in space.

  12. Amorphous silicon radiation detectors

    Science.gov (United States)

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  13. Quantum cascade laser combs: effects of modulation and dispersion.

    Science.gov (United States)

    Villares, Gustavo; Faist, Jérôme

    2015-01-26

    Frequency comb formation in quantum cascade lasers is studied theoretically using a Maxwell-Bloch formalism based on a modal decomposition, where dispersion is considered. In the mid-infrared, comb formation persists in the presence of weak cavity dispersion (500 fs2 mm-1) but disappears when much larger values are used (30'000 fs2 mm-1). Active modulation at the round-trip frequency is found to induce mode-locking in THz devices, where the upper state lifetime is in the tens of picoseconds. Our results show that mode-locking based on four-wave mixing in broadband gain, low dispersion cavities is the most promising way of achieving broadband quantum cascade laser frequency combs.

  14. Highly dispersive transparency in coupled metamaterials

    International Nuclear Information System (INIS)

    Thuy, V T T; Park, J W; Lee, Y P; Tung, N T; Lam, V D; Rhee, J Y

    2010-01-01

    We investigate the coupling between bright and quasi-dark eigenmodes in a planar metamaterial supporting highly dispersive transparency. The specific design of such a metamaterial consists of a cut wire (CW) and a single-gap split-ring resonator (SRR). Through the numerical simulation and the equivalent-circuit analysis, we demonstrate that the response of the SRR, which is weakly excited by external electric field, plays the role of a quasi-dark eigenmode in the presence of a strongly radiative CW. Furthermore, by extending and relating our study to the trapped mode resonances and the coupling between dark and bright modes, a more comprehensive perspective for the metamaterial realization of highly dispersive transmission and slow-light applications is provided

  15. Study on the Hot Extrusion Process of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byoungkwon; Noh, Sanghoon; Kim, Kibaik; Kang, Suk Hoon; Chun, Youngbum; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ferritic/martensitic steel has a better thermal conductivity and swelling resistance than austenitic stainless steel. Unfortunately, the available temperature range of ferritic/martensitic steel is limited at up to 650 .deg. C. Oxide dispersion strengthened (ODS) steels have been developed as the most prospective core structural materials for next generation nuclear systems because of their excellent high strength and irradiation resistance. The material performances of this new alloy are attributed to the existence of uniformly distributed nano-oxide particles with a high density, which is extremely stable at high temperature in a ferritic/martensitic matrix. This microstructure can be very attractive in achieving superior mechanical properties at high temperatures, and thus, these favorable microstructures should be obtained through the controls of the fabrication process parameters during the mechanical alloying and hot consolidation procedures. In this study, a hot extrusion process for advanced radiation resistant ODS steel tube was investigated. ODS martensitic steel was designed to have high homogeneity, productivity, and reproducibility. Mechanical alloying and hot consolidation processes were employed to fabricate the ODS steels. A microstructure observation and creep rupture test were examined to investigate the effects of the optimized fabrication conditions. Advanced radiation resistant ODS steel has been designed to have homogeneity, productivity, and reproducibility. For these characteristics, modified mechanical alloying and hot consolidation processes were developed. Microstructure observation revealed that the ODS steel has uniformly distributed fine-grain nano-oxide particles. The fabrication process for the tubing is also being propelled in earnest.

  16. Study on the Hot Extrusion Process of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel Tubes

    International Nuclear Information System (INIS)

    Choi, Byoungkwon; Noh, Sanghoon; Kim, Kibaik; Kang, Suk Hoon; Chun, Youngbum; Kim, Tae Kyu

    2014-01-01

    Ferritic/martensitic steel has a better thermal conductivity and swelling resistance than austenitic stainless steel. Unfortunately, the available temperature range of ferritic/martensitic steel is limited at up to 650 .deg. C. Oxide dispersion strengthened (ODS) steels have been developed as the most prospective core structural materials for next generation nuclear systems because of their excellent high strength and irradiation resistance. The material performances of this new alloy are attributed to the existence of uniformly distributed nano-oxide particles with a high density, which is extremely stable at high temperature in a ferritic/martensitic matrix. This microstructure can be very attractive in achieving superior mechanical properties at high temperatures, and thus, these favorable microstructures should be obtained through the controls of the fabrication process parameters during the mechanical alloying and hot consolidation procedures. In this study, a hot extrusion process for advanced radiation resistant ODS steel tube was investigated. ODS martensitic steel was designed to have high homogeneity, productivity, and reproducibility. Mechanical alloying and hot consolidation processes were employed to fabricate the ODS steels. A microstructure observation and creep rupture test were examined to investigate the effects of the optimized fabrication conditions. Advanced radiation resistant ODS steel has been designed to have homogeneity, productivity, and reproducibility. For these characteristics, modified mechanical alloying and hot consolidation processes were developed. Microstructure observation revealed that the ODS steel has uniformly distributed fine-grain nano-oxide particles. The fabrication process for the tubing is also being propelled in earnest

  17. Requirements for materials of dispersion fuel elements

    International Nuclear Information System (INIS)

    Samojlov, A.G.; Kashtanov, A.I.; Volkov, V.S.

    1982-01-01

    Requirements for materials of dispersion fuel elements are considered. The necessity of structural and fissile materials compatibility at maximum permissible operation temperatures and temperatures arising in a fuel element during manufacture is pointed out. The fuel element structural material must be ductile, possess high mechanical strength minimum neutron absorption cross section, sufficient heat conductivity, good corrosion resistance in a coolant and radiation resistance. The fissile material must have high fissile isotope concentration, radiation resistance, high thermal conductivity, certain porosity high melting temperature must not change the composition under irradiation

  18. Droplet dispersion angle measurements on a Pease-Antony Venturi scrubber

    OpenAIRE

    Puentes,N. A. G.; Guerra,V. G.; Coury,J. R.; Gonçalves,J. A. S.

    2012-01-01

    A Pease-Anthony Venturi scrubber is a gas cleaning device that uses liquid, injected in the equipment as jets, to remove contaminants from the gas. The liquid jet is atomized into droplets, which are dispersed throughout the equipment due to the turbulence. The performance of the scrubber is affected by the spatial distribution of the droplets. Although CFD models have been used to predict the droplet dispersion, these models are expensive. Alternatively, the concept of "jet spreading angle" ...

  19. Rapid diversification in Australia and two dispersals out of Australia in the globally distributed bee genus, Hylaeus (Colletidae: Hylaeinae).

    Science.gov (United States)

    Kayaalp, Pelin; Schwarz, Michael P; Stevens, Mark I

    2013-03-01

    Hylaeus is the only globally distributed colletid bee genus, with subgeneric and species-level diversity highest in Australia. We used one mitochondrial and two nuclear genes to reconstruct a phylogeny using Bayesian analyses of this genus based on species from Australia, Asia, Africa, Europe, Hawai'i, the New World and New Zealand. Our results concord with a ca. 30Mya Hylaeus crown age inferred by earlier studies, and we show that Hylaeus originated in Australia. Our phylogeny indicates only two dispersal events out of Australia, both shortly after the initial diversification of extant taxa. One of these dispersals was into New Zealand with only a minor subsequent radiation, but the second dispersal out of Australia resulted in a world-wide distribution. This second dispersal and radiation event, combined with very extensive early radiation of Hyleaus in Australia, poses a conundrum: what kinds of biogeographical and ecological factors could simultaneously drive global dispersal, yet strongly constrain further successful migrations out of Australia when geographical barriers appear to be weak? We argue that for hylaeine bees movement into new niches and enemy-free spaces may have favoured initial dispersal events, but that subsequent dispersals would not have entailed the original benefits of new niche space. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Characterization of Personal Privacy Devices (PPD) radiation pattern impact on the ground and airborne segments of the local area augmentation system (LAAS) at GPS L1 frequency

    Science.gov (United States)

    Alkhateeb, Abualkair M. Khair

    Personal Privacy Devices (PPDs) are radio-frequency transmitters that intentionally transmit in a frequency band used by other devices for the intent purpose of denying service to those devices. These devices have shown the potential to interfere with the ground and air sub-systems of the Local Area Augmentation Systems (LAAS), a GPS-based navigation aids at commercial airports. The Federal Aviation Administration (FAA) is concerned by the potential impact of these devices to GPS navigation aids at airports and has commenced an activity to determine the severity of this threat. In support of this situation, the research in this dissertation has been conducted under (FAA) Cooperative Agreement 2011-G-012, to investigate the impact of these devices on the LAAS. In order to investigate the impact of PPDs Radio Frequency Interference (RFI) on the ground and air sub-systems of the LAAS, the work presented in phase one of this research is intended to characterize the vehicle's impact on the PPD's Effective Isotropic Radiated Power (EIRP). A study was conceived in this research to characterize PPD performance by examining the on-vehicle radiation patterns as a function of vehicle type, jammer type, jammer location inside a vehicle and jammer orientation at each location. Phase two was to characterize the GPS Radiation Pattern on Multipath Limiting Antenna. MLA has to meet stringent requirements for acceptable signal detection and multipath rejection. The ARL-2100 is the most recent MLA antenna proposed to be used in the LAAS ground segment. The ground-based antenna's radiation pattern was modeled. This was achieved via (HFSS) a commercial-off the shelf CAD-based modeling code with a full-wave electromagnetic software simulation package that uses the Finite Element Analysis. Phase three of this work has been conducted to study the characteristics of the GPS Radiation Pattern on Commercial Aircraft. The airborne GPS antenna was modeled and the resulting radiation pattern on

  1. Radiation effects on and dose enhancement of electronic materials

    International Nuclear Information System (INIS)

    Srour, J.R.; Long, D.M.

    1984-01-01

    This book describes radiation effects on and dose enhancement factors for electronic materials. Alteration of the electrical properties of solid-state devices and integrated circuits by impinging radiation is well-known. Such changes may cause an electronic subsystem to fail, thus there is currently great interest in devising methods for avoiding radiation-induced degradation. The development of radiation-hardened devices and circuits is an exciting approach to solving this problem for many applications, since it could minimize the need for shielding or other system hardening techniques. Part 1 describes the basic mechanisms of radiation effects on electronic materials, devices, and integrated circuits. Radiation effects in bulk silicon and in silicon devices are treated. Ionizing radiation effects in silicon dioxide films and silicon MOS devices are discussed. Single event phenomena are considered. Key literature references and a bibliography are provided. Part II provides tabulations of dose enhancement factors for electronic devices in x-ray and gamma-ray environments. The data are applicable to a wide range of semiconductor devices and selected types of capacitors. Radiation environments discussed find application in system design and in radiation test facilities

  2. Atmospheric dispersion models of radioactivity releases

    International Nuclear Information System (INIS)

    Oza, R.B.

    2016-01-01

    In view of the rapid industrialization in recent time, atmospheric dispersion models have become indispensible 'tools' to ensure that the effects of releases are well within the acceptable limits set by the regulatory authority. In the case of radioactive releases from the nuclear facility, though negligible in quantity and many a times not even measurable, it is required to demonstrate the compliance of these releases to the regulatory limits set by the regulatory authority by carrying out radiological impact assessment. During routine operations of nuclear facility, the releases are so low that environmental impact is usually assessed with the help of atmospheric dispersion models as it is difficult to distinguish negligible contribution of nuclear facility to relatively high natural background radiation. The accidental releases from nuclear facility, though with negligible probability of occurrence, cannot be ruled out. In such cases, the atmospheric dispersion models are of great help to emergency planners for deciding the intervention actions to minimize the consequences in public domain and also to workout strategies for the management of situation. In case of accidental conditions, the atmospheric dispersion models are also utilized for the estimation of probable quantities of radionuclides which might have got released to the atmosphere. Thus, atmospheric dispersion models are an essential tool for nuclear facility during routine operation as well as in the case of accidental conditions

  3. The exemption from the requirement of registration and/or licensing of some sources. machines and devices emitting ionizing and /or on ionizing radiation: a proposed draft for Israeli regulations

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, T; Margaliot, M [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center

    1997-11-16

    The licensing and authorization of the import, purchase, distribution, transportation and application of radioactive materials and devices emitting ionizing and/or non-ionizing radiation are carried out in Israel by the Ministries of the Environment and of Health. The legal basis for file authority of these Ministries in radiation protection matters is file {sup P}harmacists Regulation- Radioactive Elements and Products Thereof, 1981 (revision 1994) (PRREPT). Licenses are issued by the Chief Radiation Executive (CUE) appointed by the Minister of the Environment and the Minister of Health. The Regulations include a clause which enables the CUE to exempt certain amounts of radioactive materials from file requirements laid down in the PRREPT. The exemption clause is general and does not indicate the types and amounts of radioactive material may be exempted. The proposed draft Israeli regulations are related to exemption of some sources, machines and devices emitting ionizing and non-ionizing radiation, wife a suggestion to extend file above mentioned exemption clause to include some machines and devices and to provide an explicit and detailed list of materials, sources and devices to be exempted. Among these are the following: (authors)

  4. The exemption from the requirement of registration and/or licensing of some sources. machines and devices emitting ionizing and /or on ionizing radiation: a proposed draft for Israeli regulations

    International Nuclear Information System (INIS)

    Schlesinger, T.; Margaliot, M.

    1997-01-01

    The licensing and authorization of the import, purchase, distribution, transportation and application of radioactive materials and devices emitting ionizing and/or non-ionizing radiation are carried out in Israel by the Ministries of the Environment and of Health. The legal basis for file authority of these Ministries in radiation protection matters is file P harmacists Regulation- Radioactive Elements and Products Thereof, 1981 (revision 1994) (PRREPT). Licenses are issued by the Chief Radiation Executive (CUE) appointed by the Minister of the Environment and the Minister of Health. The Regulations include a clause which enables the CUE to exempt certain amounts of radioactive materials from file requirements laid down in the PRREPT. The exemption clause is general and does not indicate the types and amounts of radioactive material may be exempted. The proposed draft Israeli regulations are related to exemption of some sources, machines and devices emitting ionizing and non-ionizing radiation, wife a suggestion to extend file above mentioned exemption clause to include some machines and devices and to provide an explicit and detailed list of materials, sources and devices to be exempted. Among these are the following: (authors)

  5. Longitudinal dispersion of radioactive substances in Federal waterways

    Energy Technology Data Exchange (ETDEWEB)

    Krause, W.J. [Bundesanstalt fuer Gewaesserkunde (BfG), Koblenz (Germany); Speer, W.; Luellwitz, T.; Cremer, M.; Tolksdorf, W.

    2007-08-15

    In the context of radioactivity monitoring in German Federal Waterways (BWStr) by the Federal Institute of Hydrology (BfG) according to the Precautionary Radiation Protection Act (StrVG), the prediction of the dispersion of radioactive substances in water is one of the key tasks. The aim is the forecasting of the longitudinal dispersion of concentrations of soluble hazardous substances in flowing water. These predictions are based on the so-called dispersion tests with tritium as a tracer that the BfG has performed since 1980. Characteristic parameters like discharge-dependent flow velocities, dispersion and elimination constants related to emission sources or selected river sections are determined. They will serve as basis for a mathematical model to forecast discharge-dependent flow velocities, expected impact times, concentration maxima, and the duration of critical increases in concentrations. In the following, the results obtained till now from three investigation campaigns on the River Weser and its source rivers Werra and Fulda are described. (orig.)

  6. Real-time and on-site γ-ray radiation response testing system for semiconductor devices and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Yifei, E-mail: Y.Mu@student.liverpool.ac.uk [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Zhao, Ce Zhou, E-mail: cezhou.zhao@xjtlu.edu.cn [Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123 (China); Qi, Yanfei, E-mail: yanfei.qi01@xjtlu.edu.cn [Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123 (China); Lam, Sang, E-mail: s.lam@xjtlu.edu.cn [Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123 (China); Zhao, Chun, E-mail: garyzhao@ust.hk [Nano and Advanced Materials Institute, Hong Kong University of Science and Technology, Kowloon (Hong Kong); Lu, Qifeng, E-mail: qifeng@liverpool.ac.uk [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Cai, Yutao, E-mail: yutao.cai@xjtlu.edu.cn [Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123 (China); Mitrovic, Ivona Z., E-mail: ivona@liverpool.ac.uk [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Taylor, Stephen, E-mail: s.taylor@liverpool.ac.uk [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Chalker, Paul R., E-mail: pchalker@liverpool.ac.uk [Center for Materials and Structures, School of Engineering, University of Liverpool, Liverpool L69 3GH (United Kingdom)

    2016-04-01

    The construction of a turnkey real-time and on-site radiation response testing system for semiconductor devices is reported. Components of an on-site radiation response probe station, which contains a 1.11 GBq Cs{sup 137} gamma (γ)-ray source, and equipment of a real-time measurement system are described in detail for the construction of the whole system. The real-time measurement system includes a conventional capacitance–voltage (C–V) and stress module, a pulse C–V and stress module, a conventional current–voltage (I–V) and stress module, a pulse I–V and stress module, a DC on-the-fly (OTF) module and a pulse OTF module. Electrical characteristics of MOS capacitors or MOSFET devices are measured by each module integrated in the probe station under continuous γ-ray exposure and the measurement results are presented. The dose rates of different gate dielectrics are calculated by a novel calculation model based on the Cs{sup 137} γ-ray source placed in the probe station. For the sake of operators’ safety, an equivalent dose rate of 70 nSv/h at a given operation distance is indicated by a dose attenuation model in the experimental environment. HfO{sub 2} thin films formed by atomic layer deposition are employed to investigate the radiation response of the high-κ material by using the conventional C–V and pulse C–V modules. The irradiation exposure of the sample is carried out with a dose rate of 0.175 rad/s and ±1 V bias in the radiation response testing system. Analysis of flat-band voltage shifts (ΔV{sub FB}) of the MOS capacitors suggests that the on-site and real-time/pulse measurements detect more serious degradation of the HfO{sub 2} thin films compared with the off-site irradiation and conventional measurement techniques.

  7. Laboratory Tests for Dispersive Soil Viscosity Determining

    Science.gov (United States)

    Ter-Martirosyan, Z. G.; Ter-Martirosyan, A. Z.; Sobolev, E. S.

    2017-11-01

    There are several widespread methods for soil viscosity determining now. The standard shear test device and torsion test apparatus are the most commonly used installations to do that. However, the application of them has a number of disadvantages. Therefore, the specialists of Moscow State University of Civil Engineering proposed a new device to determine the disperse soil viscosity on the basis of a stabilometer with the B-type camera (viscosimeter). The paper considers the construction of a viscosimeter and the technique for determining soil viscosity inside this tool as well as some experimental verification results of its work.

  8. Ground deposition pattern of an explosive radiological dispersal device (RDD)

    International Nuclear Information System (INIS)

    Sharon, A.; Halevy, I.; Sattinger, D.; Berenstein, Z.; Neuman, R.; Banaim, P.; Pinhas, M.; Yaar, I.

    2014-01-01

    Activity deposition pattern of outdoor explosive RDD experiments were discussed and analyzed. In cases of fine, respirable size, aerosols dispersion, most of the activity deposited inside a circle of up to 4 fireball radii around the detonation point. About an order of magnitude less was deposited in the rest of the wide open area, in the downwind direction. The effects of different RA particles size distribution on the ground deposition pattern is still being studying under the framework of GF project

  9. Radiation effects modeling and experimental data on I2L devices

    International Nuclear Information System (INIS)

    Long, D.M.; Repper, C.J.; Ragonese, L.J.; Yang, N.T.

    1976-01-01

    This paper reports on an Integrated Injection Logic (I 2 L) radiation effects model which includes radiation effects phenomena. Twenty-five individual current components were identified for an I 2 L logic gate by assuming wholly vertical or wholly horizontal current flow. Equations were developed for each component in terms of basic parameters such as doping profiles, distances, and diffusion lengths, and set up on a computer for specific logic cell configurations. For neutron damage, the model shows excellent agreement with experimental data. Reactor test results on GE I 2 L samples showed a neutron hardness level in the range of 6 x 10 12 to 3 x 10 13 n/cm 2 (1 MeV Eq), and cobalt-60 tests showed a total dose hardness of 6 x 10 4 to greater than 1 x 10 6 Rads(Si) (all device types at an injection current of 50 microamps per gate). It was found that significant hardness improvements could be achieved by: (a) diffusion profile variation, (b) utilizing a tight N + collar around the cell, and (c) locating the collector close to the injector. Flash X-ray tests showed a transient logic upset threshold of 1 x 10 9 Rads(Si)/sec for a 28 ns pulse, and a survival level greater than 2 x 10 12 Rads(Si)/sec

  10. Workplace photon radiation fields

    International Nuclear Information System (INIS)

    Burgess, P.H.; Bartlett, D.T.; Ambrosi, P.

    1999-01-01

    The knowledge of workplace radiation fields is essential for measures in radiation protection. Information about the energy and directional distribution of the incident photon radiation was obtained by several devices developed by the National Radiation Protection Board, United Kingdom, by the Statens Stralskyddsinstitut, Sweden, together with EURADOS and by the Physikalisch-Technische Bundesanstalt, Germany. The devices are described and some results obtained at workplaces in nuclear industry, medicine and science in the photon energy range from 20 keV to 7 MeV are given. (author)

  11. Method and means of reducing erosion of components of plasma devices exposed to helium and hydrogen isotope radiation

    International Nuclear Information System (INIS)

    Kaminsky, M.S.; Das, S.K.; Rossing, T.D.

    1977-01-01

    Surfaces of components of plasma devices exposed to radiation by atoms or ions of helium or isotopes of hydrogen can be protected from damage due to blistering by shielding the surfaces with a structure formed by sintering a powder of aluminum or beryllium and its oxide or by coating the surfaces with such a sintered metal powder. 7 claims

  12. The 16 MeV - microtron at the Institute for Physics and Technology of Radiation Devices and its application

    International Nuclear Information System (INIS)

    Catana, D.; Panaitescu, I.; Axinescu, S.; Minea, R.

    1992-01-01

    The 17-orbit microtron at the Institute for Physics and Technology of Radiation Devices, Bucharest is described. The energy of electrons is 11 MeV in the first accelerating mode and 16 MeV in the second accelerating mode with a pulse beam power of about 400 Kw and a duty ratio of 10 -3 . (Author)

  13. Electron density measurement of non-equilibrium atmospheric pressure plasma using dispersion interferometer

    Science.gov (United States)

    Yoshimura, Shinji; Kasahara, Hiroshi; Akiyama, Tsuyoshi

    2017-10-01

    Medical applications of non-equilibrium atmospheric plasmas have recently been attracting a great deal of attention, where many types of plasma sources have been developed to meet the purposes. For example, plasma-activated medium (PAM), which is now being studied for cancer treatment, has been produced by irradiating non-equilibrium atmospheric pressure plasma with ultrahigh electron density to a culture medium. Meanwhile, in order to measure electron density in magnetic confinement plasmas, a CO2 laser dispersion interferometer has been developed and installed on the Large Helical Device (LHD) at the National Institute for Fusion Science, Japan. The dispersion interferometer has advantages that the measurement is insensitive to mechanical vibrations and changes in neutral gas density. Taking advantage of these properties, we applied the dispersion interferometer to electron density diagnostics of atmospheric pressure plasmas produced by the NU-Global HUMAP-WSAP-50 device, which is used for producing PAM. This study was supported by the Grant of Joint Research by the National Institutes of Natural Sciences (NINS).

  14. Adaptive radiation versus 'radiation' and 'explosive diversification': why conceptual distinctions are fundamental to understanding evolution.

    Science.gov (United States)

    Givnish, Thomas J

    2015-07-01

    Adaptive radiation is the rise of a diversity of ecological roles and role-specific adaptations within a lineage. Recently, some researchers have begun to use 'adaptive radiation' or 'radiation' as synonymous with 'explosive species diversification'. This essay aims to clarify distinctions between these concepts, and the related ideas of geographic speciation, sexual selection, key innovations, key landscapes and ecological keys. Several examples are given to demonstrate that adaptive radiation and explosive diversification are not the same phenomenon, and that focusing on explosive diversification and the analysis of phylogenetic topology ignores much of the rich biology associated with adaptive radiation, and risks generating confusion about the nature of the evolutionary forces driving species diversification. Some 'radiations' involve bursts of geographic speciation or sexual selection, rather than adaptive diversification; some adaptive radiations have little or no effect on speciation, or even a negative effect. Many classic examples of 'adaptive radiation' appear to involve effects driven partly by geographic speciation, species' dispersal abilities, and the nature of extrinsic dispersal barriers; partly by sexual selection; and partly by adaptive radiation in the classical sense, including the origin of traits and invasion of adaptive zones that result in decreased diversification rates but add to overall diversity. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.

  15. Study of total ionization dose effects in electronic devices

    International Nuclear Information System (INIS)

    Nidhin, T.S.; Bhattacharyya, Anindya; Gour, Aditya; Behera, R.P.; Jayanthi, T.

    2018-01-01

    Radiation effects in electronic devices are a major challenge in the dependable application developments of nuclear power plant instrumentation and control systems. The main radiation effects are total ionization dose (TID) effects, displacement damage dose (DDD) effects and single event effects (SEE). In this study, we are concentrating on TID effects in electronic devices. The focus of the study is mainly on SRAM based field programmable gate arrays (FPGA) along with that the devices of our interest are voltage regulators, flash memory and optocoupler. The experiments are conducted by exposing the devices to gamma radiation in power off condition and the degradation in the performances are analysed

  16. Asphaltene based photovoltaic devices

    Science.gov (United States)

    Chianelli, Russell R.; Castillo, Karina; Gupta, Vipin; Qudah, Ali M.; Torres, Brenda; Abujnah, Rajib E.

    2016-03-22

    Photovoltaic devices and methods of making the same, are disclosed herein. The cell comprises a photovoltaic device that comprises a first electrically conductive layer comprising a photo-sensitized electrode; at least one photoelectrochemical layer comprising metal-oxide particles, an electrolyte solution comprising at least one asphaltene fraction, wherein the metal-oxide particles are optionally dispersed in a surfactant; and a second electrically conductive layer comprising a counter-electrode, wherein the second electrically conductive layer comprises one or more conductive elements comprising carbon, graphite, soot, carbon allotropes or any combinations thereof.

  17. Data assimilation on atmospheric dispersion of radioactive materials

    DEFF Research Database (Denmark)

    Drews, Martin

    a new method for on-line estimation of the radionuclide source term, i.e. the amount and composition of the released radionuclides, and the main dispersion parameters, based on radiation monitoring data obtained in the vicinity of the release. The method is based on the extended Kalman filter (EKF...

  18. 76 FR 34845 - Medical Devices; Ear, Nose, and Throat Devices; Classification of the Wireless Air-Conduction...

    Science.gov (United States)

    2011-06-15

    ... control by other users with a similar medical device. Exposure to non-ionizing radiation Wireless... relating to EMC and wireless technology and human exposure to non-ionizing radiation. Therefore, on March... electro magnetic compatibility (EMC) and safety of exposure to non-ionizing radiation; (2) Design...

  19. Theoretical study of the thermal radiation of rough surfaces. Development of a device for the measurement of emissivity, and application to AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Heinisch, Bruno

    1982-01-01

    Within the frame of the study of heat transfers by radiation, this research thesis addresses the theoretical and experimental determination of the directional monochromatic emissivity. After some theoretical recalls, the author presents models for a direct calculation of emissivity, which in fact calculate bidirectional reflectivity by using laws of physical optics. An experimental device has been developed for the direct measurement of directional monochromatic emissivity of materials in the infrared (wavelength from 2 to 15 microns) in a polarised radiation. This device uses double beam with double modulation. Experimental results are presented for the 316 stainless steel [fr

  20. Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones.

    Science.gov (United States)

    Nguyen, H S; Dubois, F; Deschamps, T; Cueff, S; Pardon, A; Leclercq, J-L; Seassal, C; Letartre, X; Viktorovitch, P

    2018-02-09

    We demonstrate that symmetry breaking opens a new degree of freedom to tailor energy-momentum dispersion in photonic crystals. Using a general theoretical framework in two illustrative practical structures, we show that breaking symmetry enables an on-demand tuning of the local density of states of the same photonic band from zero (Dirac cone dispersion) to infinity (flatband dispersion), as well as any constant density over an adjustable spectral range. As a proof of concept, we demonstrate experimentally the transformation of the very same photonic band from a conventional quadratic shape to a Dirac dispersion, a flatband dispersion, and a multivalley one. This transition is achieved by finely tuning the vertical symmetry breaking of the photonic structures. Our results provide an unprecedented degree of freedom for optical dispersion engineering in planar integrated photonic devices.

  1. Multilayer mirror based monitors for impurity controls in large fusion reactor type devices

    International Nuclear Information System (INIS)

    Regan, S.P.; May, M.J.; Soukhanovskii, V.; Finkenthal, M.; Moos, H.W.

    1995-01-01

    Multilayer Mirror (MLM) based monitors are compact, high throughput diagnostics capable of extracting XUV emissions (the wavelength range including the soft-x-ray and the extreme ultraviolet, 10 angstrom to 304 angstrom) of impurities from the harsh environment of large fusion reactor type devices. For several years the Plasma Spectroscopy Group at Johns Hopkins University has investigated the application of MLM based XUV spectroscopic diagnostics for magnetically confined fusion plasmas. MLM based monitors have been constructed for and extensively used on DIII-D, Alcator C-mod, TEXT, Phaedrus-T, and CDX-U tokamaks to study the impurity behavior of elements ranging from He to Mo. On ITER MLM based devices would be used to monitor the spectral line emissions from Li I-like to F I-like charge states of Fe, Cr, and Ni, as well as extractors for the bands of emissions from high Z elements such as Mo or W for impurity controls of the fusion plasma. In addition to monitoring the impurity emissions from the main plasma, MLM based devices can also be adapted for radiation measurements of low Z elements in the divertor. The concepts and designs of these MLM based monitors for impurity controls in ITER will be presented. The results of neutron irradiation experiments of the MLMs performed in the Los Alamos Spallation Radiation Effects Facility (LASREF) at the Los Alamos National Laboratory will also be discussed. These preliminary neutron exposure studies show that the dispersive and reflective qualities of the MLMs were not affected in a significant manner

  2. Unipolar time-differential charge sensing in non-dispersive amorphous solids

    International Nuclear Information System (INIS)

    Goldan, A. H.; Rowlands, J. A.; Tousignant, O.; Karim, K. S.

    2013-01-01

    The use of high resistivity amorphous solids as photodetectors, especially amorphous selenium, is currently of great interest because they are readily produced over large area at substantially lower cost compared to grown crystalline solids. However, amorphous solids have been ruled out as viable radiation detection media for high frame-rate applications, such as single-photon-counting imaging, because of low carrier mobilities, transit-time-limited photoresponse, and consequently, poor time resolution. To circumvent the problem of poor charge transport in amorphous solids, we propose unipolar time-differential charge sensing by establishing a strong near-field effect using an electrostatic shield within the material. For the first time, we have fabricated a true Frisch grid inside a solid-state detector by evaporating amorphous selenium over photolithographically prepared multi-well substrates. The fabricated devices are characterized with optical, x-ray, and gamma-ray impulse-like excitations. Results prove the proposed unipolar time-differential property and show that time resolution in non-dispersive amorphous solids can be improved substantially to reach the theoretical limit set by spatial spreading of the collected Gaussian carrier cloud.

  3. The method of the correlation and dispersion defining of the total power components in the electric transport devices

    Directory of Open Access Journals (Sweden)

    A. V. Nikitenko

    2013-04-01

    Full Text Available Purpose. Development and theoretical ground of the analytical method for the calculation of the active, reactive and total powers in the electric traction devices, taking into consideration the non-stationary character of the stochastic processes change of the voltage and current in the elements of these systems. Methodology. The mathematical methods of the random processes theory and the “discrete electrical engineering” methods are used for solving the main problem of this paper. Findings. The Method of the Correlation and Dispersion is developed for definition of the active power, the reactive power by Fryse and the total power of the devices in the elements of the electric traction system of the main-line railways. The method is based on the well-known concepts of auto- and inter-correlation functions of the random processes which govern the feeder voltages and the currents in the traction power supply subsystem as well as the currents and voltages of the electric rolling stock. The method developed in this paper allows estimating the powers of both stationary and non-stationary processes. This method can be used for the analysis of both the traction mode and the regenerative braking mode of the electric rolling stock. The total power components were calculated for the one of the feeder areas of the Prydniprovsk railway using this method. The results show the significant flow of the reactive power in the traction power supply system. This fact is also confirmed by the high values of the reactive power coefficient. Originality. Scientific novelty of the research is consisted in the following. Firstly, for defining the active and reactive powers in elements of the traction power supply system the new method (the Method of Correlation and Dispersion is created and grounded. This method is different from other existing methods because it takes into consideration the varying non-stationary character of the chance processes of the feeder and

  4. Deposition of tellurium films by decomposition of electrochemically-generated H{sub 2}Te: application to radiative cooling devices

    Energy Technology Data Exchange (ETDEWEB)

    Engelhard, T.; Jones, E.D.; Viney, I. [Coventry Univ. (United Kingdom). Centre for Data Storage Mater.; Mastai, Y.; Hodes, G. [Department of Materials and Interfaces, Weizmann Institute of Science, 76100, Rehovot (Israel)

    2000-07-17

    The preparation of homogenous, large area thin layers of tellurium on thin polyethylene foils is described. The tellurium was formed by room temperature decomposition of electrochemically generated H{sub 2}Te. Pre-treatment of the polyethylene substrates with KMnO{sub 4} to give a Mn-oxide layer was found to improve the Te adhesion and homogeneity. Optical characterization of the layers was performed using UV/VIS/NIR spectroscopy. Such coatings have favorable characteristics for use as solar radiation shields in radiative cooling devices. The simplicity of generation of the very unstable H{sub 2}Te was also exploited to demonstrate formation of size-quantized CdTe nanocrystals. (orig.)

  5. The Economic Impact of a Radiological Dispersal Device (RDE)

    Science.gov (United States)

    2009-03-01

    construction sites” 9 (Boyle, 2002). In the Goiania case, the Cs-137 was acquired from an abandoned radiation- therapy unit when a private radiotherapy...Godiva Chocolatier 445292 Rocky Mountain Chocolate Factory 445292 Waggoner Chocolatier North American Industry Classification System (NAICS) Prior to

  6. The mean energy loss by neutrino with magnetic moment in strong magnetic field with consideration of positronium contribution to photon dispersion

    Science.gov (United States)

    Mosichkin, A. F.

    2017-11-01

    The process of radiative decay of the neutrino with a magnetic moment in a strong magnetic field with consideration of positronium influence on photon dispersion has been studied. Positronium contribution to the photon polarization operator induces significant modifications of the photon dispersion law and neutrino radiative decay amplitude. It has been shown that the mean energy loss of a neutrino with magnetic a moment significantly increases, when the positronium contribution to photon dispersion is taken into account.

  7. Safety considerations in the design of the fusion engineering device

    International Nuclear Information System (INIS)

    Barrett, R.J.

    1983-01-01

    Safety considerations play a significant role in the design of a near-term Fusion Engineering Device (FED). For the safety of the general public and the plant workers, the radiation environment caused by the reacting plasma and the potential release of tritium fuel are the dominant considerations. The U.S. Department of Energy (DOE) regulations and guidelines for radiation protection have been reviewed and are being applied to the device design. Direct radiation protection is provided by the device shield and the reactor building walls. Radiation from the activated device components and the tritium fuel is to be controlled with shielding, contamination control, and ventilation. The potential release of tritium from the plant has influenced the selection of reactor building and plant designs and specifications. The safety of the plant workers is affected primarily by the radiation from the activated device components and from plasma chamber debris. The highly activated device components make it necessary to design many of the maintenance activities in the reactor building for totally remote operation. The hot cell facility has evolved as a totally remote maintenance facility due to the high radiation levels of the device components. Safety considerations have had substantial impacts on the design of FED. Several examples of safety-related design impacts are discussed in the paper. Feasible solutions have been identified for all outstanding safety-related items, and additional optimization of these solutions is anticipated in future design studies

  8. Analytical study of the relativistic dispersion: Application to the generation of the auroral kilometric radiation

    International Nuclear Information System (INIS)

    Le Queau, D.; Louarn, P.

    1989-01-01

    The measurements recently performed by the Viking spacecraft have shown that, in addition to being cold plasma depleted, the source regions of the Auroral Kilometric Radiation (A.K.R.) are characterized by a relatively denser, more energetic electron component. In order to properly study the Cyclotron Maser Instability (C.M.I.) which is thought to be responsible for the A.K.R. generation, it is thus necessary to include relativistic corrections in both the hermitian and the antihermitian parts of the dielectric tensor characterizing the linear properties of the plasma. Here one presents an analytical study of the corresponding dispersion equation which aims to describe stable and unstable waves having frequencies lying very close to the electronic gyrofrequency and propagating across the geomagnetic field with a perpendicular refractive index less than a few units (n perpendicular 1 and χ small), the growth rate could maximize at the cut-off frequency of the relativistic X mode. Moreover, for small χ, the relativistic X mode is connected to freely propagating modes which guarantees an easy access of the electromagnetic energy to free space

  9. On Radiated Performance Evaluation of Massive MIMO Devices in Multi-Probe Anechoic Chamber OTA Setups

    DEFF Research Database (Denmark)

    Kyösti, Pekka; Hentilä, Lassi; Fan, Wei

    2018-01-01

    Radiated testing of massive multiple-input-multipleoutput (MIMO) devices in fading radio channel conditions is expected to be essential in development of the fifth generation (5G) base stations (BS) and user equipment (UE) operating at or close to the millimetre wave (mm-wave) frequencies. In thi...... setup and find key design parameters by simulations. The results with the utilized channel models indicate that at 28 GHz up to 1616 planar arrays can be tested with range length of one meter and with at minimum eight active dual polarized probes....

  10. Monitor inspection device

    International Nuclear Information System (INIS)

    Ueshima, Yoshinobu.

    1995-01-01

    The device of the present invention reliably conducts monitoring by radiation monitors in a nuclear power plant thereby contributing to save the number of radiation operators and reduction of radiation exposure. Namely, radiation monitors continuously measure a plurality of γ-ray levels. A branched simultaneously counting circuit receives these signals. The output of the branched simultaneously counting circuit is inputted to a differentiation means. The differentiation means calculates a variation coefficient for each of the radiation monitoring values, namely, equivalent dose rates, and records and monitors change with time of the equivalent dose rates. With such procedures, the results of the monitoring of γ-ray levels can be judged objectively corresponding to the increase of the equivalent dose rates. As a result, the number of radiation operators can be saves and radiation exposure of the radiation operators can be reduced. (I.S.)

  11. Influence of burn-in on total-ionizing-dose effect of SRAM device

    International Nuclear Information System (INIS)

    Liu Minbo; Yao Zhibin; Huang Shaoyan; He Baoping; Sheng Jiangkun

    2014-01-01

    The influence of Burn-in on the total-ionizing-dose (TID) effect of SRAM device was investigated. SRAM devices of three different feature sizes were selected and irradiated by "6"0Co source with or without pre-irradiation Burn-in. Some parameters for radiation effect of SRAM device such as upset data, were measured, and the influence on the TID effect of different feature size SRAM devices with or without pre-irradiation Burn-in was obtained. The influence of different temperature Burn-in on radiation resistant capability of SRAM device was studied for 0.25 μm SRAM device. The results show that the smaller the device feature size is, the better the radiation-resistant capability of SRAM device is and the weaker the influence of Burn-in is. And the higher Burn-in temperature is, the more serious the influence of Burn-in on the total-dose radiation effect is. (authors)

  12. Irradiation damages of semiconductor devices and their improvement

    Energy Technology Data Exchange (ETDEWEB)

    Uwatoko, Yoshiya [Saitama Univ., Urawa (Japan); Ohyama, Hidenori; Hayama, Kiyoteru; Hakata, Tetsuya; Kudou, Tomohiro

    1998-01-01

    In this study, effect of radiation on semiconductor devices was evaluated at both sides of electrical and crystalline properties for two years from 1995 fiscal years. And, damage of Si(sub 1-x)Ge(sub x) device was considered at viewpoints of Ge content and sprung-out atomic number and non ionization energy loss of constituting atom formed by radiation on its radiation source dependency of damage. This paper was a report on proton beam damage of the Si(sub 1-x)Ge(sub x) device, neutron damage of InGaAs photodiode, and effect of Ga content and kinds of beam on their damages. (G.K.)

  13. Devices, materials, and processes for nano-electronics: characterization with advanced X-ray techniques using lab-based and synchrotron radiation sources

    International Nuclear Information System (INIS)

    Zschech, E.; Wyon, C.; Murray, C.E.; Schneider, G.

    2011-01-01

    Future nano-electronics manufacturing at extraordinary length scales, new device structures, and advanced materials will provide challenges to process development and engineering but also to process control and physical failure analysis. Advanced X-ray techniques, using lab systems and synchrotron radiation sources, will play a key role for the characterization of thin films, nano-structures, surfaces, and interfaces. The development of advanced X-ray techniques and tools will reduce risk and time for the introduction of new technologies. Eventually, time-to-market for new products will be reduced by the timely implementation of the best techniques for process development and process control. The development and use of advanced methods at synchrotron radiation sources will be increasingly important, particularly for research and development in the field of advanced processes and new materials but also for the development of new X-ray components and procedures. The application of advanced X-ray techniques, in-line, in out-of-fab analytical labs and at synchrotron radiation sources, for research, development, and manufacturing in the nano-electronics industry is reviewed. The focus of this paper is on the study of nano-scale device and on-chip interconnect materials, and materials for 3D IC integration as well. (authors)

  14. Characterization of Semiconductor Nanocrystal Assemblies as Components of Optoelectronic Devices

    Science.gov (United States)

    Malfavon-Ochoa, Mario

    dispersions of core and core/shell NCs will be shown to produce close packed assemblies of NCs forming near-wavelength luminescent superstructures separated in space. We show the dominant contribution of a two-monolayer thick sharp interface CdS shell to the diffraction efficiency, and necessarily the refractive index, of the NCs, independent of core size. Utilization of these gratings as in-coupling elements at various positions within a device architecture are also examined. These new observations were achieved by unprecedented control of NC architecture during dispersion processing, while maintaining high luminescence, made possible by optimized NC surface passivation. These studies enable the formation of new LED architectures, and new optoelectronic devices based on angle resolved, monochromatic fluorescence from diffraction gratings prepared from simple solution processing approaches. Further, the novel observation of angle amplified interfering fluorescence from these features is argued to be a result of long range radiative coupling and superradiance enabled by the monodispersity and high-quality NC surface passivation described herein.

  15. Nanoscale Devices for Rectification of High Frequency Radiation from the Infrared through the Visible: A New Approach

    Directory of Open Access Journals (Sweden)

    N. M. Miskovsky

    2012-01-01

    Full Text Available We present a new and viable method for optical rectification. This approach has been demonstrated both theoretically and experimentally and is the basis fot the development of devices to rectify radiation through the visible. This technique for rectification is based not on conventional material or temperature asymmetry as used in MIM (metal/insulator/metal or Schottky diodes, but on a purely sharp geometric property of the antenna. This sharp “tip” or edge with a collector anode constitutes a tunnel junction. In these devices the rectenna (consisting of the antenna and the tunnel junction acts as the absorber of the incident radiation and the rectifier. Using current nanofabrication techniques and the selective atomic layer deposition (ALD process, junctions of 1 nm can be fabricated, which allow for rectification of frequencies up to the blue portion of the spectrum. To assess the viability of our approach, we review the development of nanoantenna structures and tunnel junctions capable of operating in the visible region. In addition, we review the detailed process of rectification and present methodologies for analysis of diode data. Finally, we present operational designs for an optical rectenna and its fabrication and discuss outstanding problems and future work.

  16. Development of an irrigation control device based on solar radiation and its adaptability for cultivation of high soluble solid tomato fruit in root zone restriction culture

    International Nuclear Information System (INIS)

    Nitta, M.; Shibuya, K.; Kubai, K.; Komatsu, H.; Hosokawa, T.; Nakamura, K.

    2009-01-01

    An irrigation control device based on solar radiation was developed to allow automatic irrigation management for high soluble solid tomato fruit production in root zone restriction culture. Its adaptability for long-term cultivation (planting carried out in early September and harvesting ending in late June) of high soluble solid tomato fruit in root zone restriction culture was examined. The following results were obtained: 1. The control device was composed of generally available electronic parts. A change of setting was possible for the irrigation starting point, the irrigation time period, and the once amount of irrigation. For the first irrigation of the day, one of two irrigation control modes can be chosen; the first determines irrigation dependent on the solar radiation after the irrigated time of the previous day. The second mode irrigates at a set time. 2. The correlation between the total integrated solar radiation and the evapotranspiration rate of tomato plants were investigated. Positive correlations were observed for each month from October to June. Moreover, total integrated solar radiation per unit evapotranspiration was different for each month. 3. In long-term cultivation of tomato fruit using this device, the marketable yield of high soluble solid tomato fruit (more than Brix 8%) was 9.7t/10a. 4. This device exhibited the necessary adaptability for use in long-term cultivation of high soluble solid tomato fruit in root zone restriction culture, by changing the set value of the irrigation starting point and the irrigation time period in accordance with the growth period

  17. Effects of device scaling and geometry on MOS radiation hardness assurance

    International Nuclear Information System (INIS)

    Shaneyfelt, M.R.; Fleetwood, D.M.; Winokur, P.S.; Schwank, J.R.; Meisenheimer, T.L.

    1993-01-01

    In this work the authors investigate the effects of transistor scaling and geometry on radiation hardness. The total dose response is shown to depend strongly on transistor channel length. Specifically, transistors with shorter gate lengths tend to show more negative threshold-voltage shifts during irradiation than transistors with longer gate lengths. Similarly, transistors with longer gate lengths tend to show more positive threshold-voltage shifts during post-irradiation annealing than transistors with shorter gate lengths. These differences in radiation response, caused by differences in transistor size and geometry, will be important to factor into test-structure-to-IC correlations necessary to support cost-effective Qualified Manufacturers List (QML) hardness assurance. Transistors with minimum gate length (more negative ΔV th ) will have a larger effect on standby power supply current for an IC at high dose rates, such as in a weapon environment, where worst-case response is associated with negative threshold-voltage shifts during irradiation. On the other hand, transistors with maximum gate length (more positive ΔV th ) will have a larger effect on the timing parameters of an IC at low dose rates, such as in a space environment, where worst-case response is represented by positive threshold-voltage shifts after postirradiation anneal. The channel size and geometry effects they observe cannot be predicted from simple scaling models, but occur because of real differences in oxide-, interface-, and border-trap charge densities among devices of different sizes

  18. Nano scale Devices for Rectification of High Frequency Radiation from the Infrared through the Visible: A New Approach

    International Nuclear Information System (INIS)

    Miskovsky, N.M.; Cutler, P.H.; Miskovsky, N.M.; Cutler, P.H.; Lerne, P.B.; Mayer, A.; Weiss, B.L.; Willis, B.; Sullivan, T.E.

    2012-01-01

    We present a new and viable method for optical rectification. This approach has been demonstrated both theoretically and experimentally and is the basis fot the development of devices to rectify radiation through the visible. This technique for rectification is based not on conventional material or temperature asymmetry as used in MIM (metal/insulator/metal) or Schottky diodes, but on a purely sharp geometric property of the antenna. This sharp tip or edge with a collector anode constitutes a tunnel junction. In these devices the rectenna (consisting of the antenna and the tunnel junction) acts as the absorber of the incident radiation and the rectifier. Using current nano fabrication techniques and the selective atomic layer deposition (ALD) process, junctions of 1?nm can be fabricated, which allow for rectification of frequencies up to the blue portion of the spectrum. To assess the viability of our approach, we review the development of nano antenna structures and tunnel junctions capable of operating in the visible region. In addition, we review the detailed process of rectification and present methodologies for analysis of diode data. Finally, we present operational designs for an optical rectenna and its fabrication and discuss outstanding problems and future work.

  19. Risk evaluation of medical and industrial radiation devices

    International Nuclear Information System (INIS)

    Jones, E.D.; Cunningham, R.E.; Rathbun, P.A.

    1994-03-01

    In 1991, the NRC, Division of Industrial and Medical Nuclear Safety, began a program to evaluate the use of probabilistic risk assessment (PRA) in regulating medical devices. This program represents an initial step in an overall plant to evaluate the use of PRA in regulating the use of nuclear by-product materials. The NRC envisioned that the use of risk analysis techniques could assist staff in ensuring that the regulatory approach was standardized, understandable, and effective. Traditional methods of assessing risk in nuclear power plants may be inappropriate to use in assessing the use of by-product devices. The approaches used in assessing nuclear reactor risks are equipment-oriented. Secondary attention is paid to the human component, for the most part after critical system failure events have been identified. This paper describes the risk methodology developed by Lawrence Livermore National Laboratory (LLNL), initially intended to assess risks associated with the use of the Gamma Knife, a gamma stereotactic radiosurgical device. For relatively new medical devices such as the Gamma Knife, the challenge is to perform a risk analysis with very little quantitative data but with an important human factor component. The method described below provides a basic approach for identifying the most likely risk contributors and evaluating their relative importance. The risk analysis approach developed for the Gamma Knife and described in this paper should be applicable to a broader class of devices in which the human interaction with the device is a prominent factor. In this sense, the method could be a prototypical model of nuclear medical or industrial device risk analysis

  20. Radiation detectors for use in major public events: classification, requirements, main features, tests and lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Elder Magalhães de, E-mail: elder@ird.gov.br [Instituto de Radioproteção e Dosimetria (DIRAD/IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Radiometria

    2017-07-01

    Since September 11, 2001, we have entered a new terrorism era. The possibility of the use of lost/stolen radioactive materials increases the probability of a radiological threat. The real goal intended with the use of a Radiological Dispersal Device (RRD or dirty bomb) or a Radiation Exposure Device (RDE) could be psychological in nature. Panic in the venues and surrounding area would cause more deaths than the RDD itself, therefore these attempts could cause chaos, injury, fear and terror, the main target of terrorists. The response of the national authorities with the support and aid of the IAEA served as an increase of the capability of detection and identification of nuclear and radiological materials. But this response could not be limited only to the MPE, because if the country has radioactive or nuclear facilities they also should be considered in terms of theft, sabotage, illegal transfer, unauthorized access, and any other malicious acts. In 2007, Rio de Janeiro, received the first Brazilian Major Public Event in this new era. This was the first Brazilian operation which largely utilized detectors (personal radiations detectors -PRD- radiological identification detectors, -RID or RIID- and spectral radiations scanners, -backpacks-, HPGe detectors, car-borne and air-borne systems) to protect the venues, the athletes, the population and the environment. (author)

  1. Radiation detectors for use in major public events: classification, requirements, main features, tests and lessons learned

    International Nuclear Information System (INIS)

    Souza, Elder Magalhães de

    2017-01-01

    Since September 11, 2001, we have entered a new terrorism era. The possibility of the use of lost/stolen radioactive materials increases the probability of a radiological threat. The real goal intended with the use of a Radiological Dispersal Device (RRD or dirty bomb) or a Radiation Exposure Device (RDE) could be psychological in nature. Panic in the venues and surrounding area would cause more deaths than the RDD itself, therefore these attempts could cause chaos, injury, fear and terror, the main target of terrorists. The response of the national authorities with the support and aid of the IAEA served as an increase of the capability of detection and identification of nuclear and radiological materials. But this response could not be limited only to the MPE, because if the country has radioactive or nuclear facilities they also should be considered in terms of theft, sabotage, illegal transfer, unauthorized access, and any other malicious acts. In 2007, Rio de Janeiro, received the first Brazilian Major Public Event in this new era. This was the first Brazilian operation which largely utilized detectors (personal radiations detectors -PRD- radiological identification detectors, -RID or RIID- and spectral radiations scanners, -backpacks-, HPGe detectors, car-borne and air-borne systems) to protect the venues, the athletes, the population and the environment. (author)

  2. Effect of radiofrequency radiation from Wi-Fi devices on mercury release from amalgam restorations.

    Science.gov (United States)

    Paknahad, Maryam; Mortazavi, S M J; Shahidi, Shoaleh; Mortazavi, Ghazal; Haghani, Masoud

    2016-01-01

    Dental amalgam is composed of approximately 50% elemental mercury. Despite concerns over the toxicity of mercury, amalgam is still the most widely used restorative material. Wi-Fi is a rapidly using local area wireless computer networking technology. To the best of our knowledge, this is the first study that evaluates the effect of exposure to Wi-Fi signals on mercury release from amalgam restorations. Standard class V cavities were prepared on the buccal surfaces of 20 non-carious extracted human premolars. The teeth were randomly divided into 2 groups (n = 10). The control group was stored in non-environment. The specimens in the experimental groups were exposed to a radiofrequency radiation emitted from standard Wi Fi devices at 2.4 GHz for 20 min. The distance between the Wi-Fi router and samples was 30 cm and the router was exchanging data with a laptop computer that was placed 20 m away from the router. The concentration of mercury in the artificial saliva in the groups was evaluated by using a cold-vapor atomic absorption Mercury Analyzer System. The independent t test was used to evaluate any significant differences in mercury release between the two groups. The mean (±SD) concentration of mercury in the artificial saliva of the Wi-Fi exposed teeth samples was 0.056 ± .025 mg/L, while it was only 0.026 ± .008 mg/L in the non-exposed control samples. This difference was statistically significant (P =0.009). Exposure of patients with amalgam restorations to radiofrequency radiation emitted from conventional Wi-Fi devices can increase mercury release from amalgam restorations.

  3. Radiation Detection for Homeland Security Applications

    Science.gov (United States)

    Ely, James

    2008-05-01

    In the past twenty years or so, there have been significant changes in the strategy and applications for homeland security. Recently there have been significant at deterring and interdicting terrorists and associated organizations. This is a shift in the normal paradigm of deterrence and surveillance of a nation and the `conventional' methods of warfare to the `unconventional' means that terrorist organizations resort to. With that shift comes the responsibility to monitor international borders for weapons of mass destruction, including radiological weapons. As a result, countries around the world are deploying radiation detection instrumentation to interdict the illegal shipment of radioactive material crossing international borders. These efforts include deployments at land, rail, air, and sea ports of entry in the US and in European and Asian countries. Radioactive signatures of concern include radiation dispersal devices (RDD), nuclear warheads, and special nuclear material (SNM). Radiation portal monitors (RPMs) are used as the main screening tool for vehicles and cargo at borders, supplemented by handheld detectors, personal radiation detectors, and x-ray imaging systems. This talk will present an overview of radiation detection equipment with emphasis on radiation portal monitors. In the US, the deployment of radiation detection equipment is being coordinated by the Domestic Nuclear Detection Office within the Department of Homeland Security, and a brief summary of the program will be covered. Challenges with current generation systems will be discussed as well as areas of investigation and opportunities for improvements. The next generation of radiation portal monitors is being produced under the Advanced Spectroscopic Portal program and will be available for deployment in the near future. Additional technologies, from commercially available to experimental, that provide additional information for radiation screening, such as density imaging equipment, will

  4. Graphene Inks with Cellulosic Dispersants: Development and Applications for Printed Electronics

    Science.gov (United States)

    Secor, Ethan Benjamin

    Graphene offers promising opportunities for applications in printed and flexible electronic devices due to its high electrical and thermal conductivity, mechanical flexibility and strength, and chemical and environmental stability. However, scalable production and processing of graphene presents a critical technological challenge preventing the application of graphene for flexible electronic interconnects, electrochemical energy storage, and chemically robust electrical contacts. In this thesis, a promising and versatile platform for the production, patterning, and application of graphene inks is presented based on cellulosic dispersants. Graphene is produced from flake graphite using scalable liquid-phase exfoliation methods, using the polymers ethyl cellulose and nitrocellulose as multifunctional dispersing agents. These cellulose derivatives offer high colloidal stability and broadly tunable rheology for graphene dispersions, providing an effective and tunable platform for graphene ink development. Thermal or photonic annealing decomposes the polymer dispersant to yield high conductivity, flexible graphene patterns for various electronics applications. In particular, the chemical stability of graphene enables robust electrical contacts for ceramic, metallic, organic and electrolytic materials, validating the diverse applicability of graphene in printed electronics. Overall, the strategy for graphene ink design presented here offers a simple, efficient, and versatile method for integrating graphene in a wide range of printed devices and systems, providing both fundamental insight for nanomaterial ink development and realistic opportunities for practical applications.

  5. Tailoring Thermal Radiative Properties with Doped-Silicon Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhuomin [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-08-28

    Aligned doped-silicon nanowire (D-SiNW) arrays form a hyperbolic metamaterial in the mid-infrared and have unique thermal radiative properties, such as broadband omnidirectional absorption, low-loss negative refraction, etc. A combined theoretical and experimental investigation will be performed to characterize D-SiNW arrays and other metamaterials for tailoring thermal radiative properties. Near-field thermal radiation between anisotropic materials with hyperbolic dispersions will also be predicted for potential application in energy harvesting. A new kind of anisotropic metamaterial with a hyperbolic dispersion in a broad infrared region has been proposed and demonstrated based on aligned doped-silicon nanowire (D-SiNW) arrays. D-SiNW-based metamaterials have unique thermal radiative properties, such as broadband omnidirectional absorption whose width and location can be tuned by varying the filling ratio and/or doping level. Furthermore, high figure of merit (FOM) can be achieved in a wide spectral region, suggesting that D-SiNW arrays may be used as a negative refraction material with much less loss than other structured materials, such as layered semiconductor materials. We have also shown that D-SiNWs and other nanostructures can significantly enhance near-field thermal radiation. The study of near-field radiative heat transfer between closely spaced objects and the electromagnetic wave interactions with micro/nanostructured materials has become an emerging multidisciplinary field due to its importance in advanced energy systems, manufacturing, local thermal management, and high spatial resolution thermal sensing and mapping. We have performed extensive study on the energy streamlines involving anisotropic metamaterials and the applicability of the effective medium theory for near-field thermal radiation. Graphene as a 2D material has attracted great attention in nanoelectronics, plasmonics, and energy harvesting. We have shown that graphene can be used to

  6. An airborne dispersion/dose assessment computer program. Phase 1

    International Nuclear Information System (INIS)

    Scott, C.K.; Kennedy, E.R.; Hughs, R.

    1991-05-01

    The Atomic Energy Control Board (AECB) staff have a need for an airborne dispersion-dose assessment computer programme for a microcomputer. The programme must be capable of analyzing the dispersion of both radioactive and non-radioactive materials. A further requirement of the programme is that it be implemented on the AECB complex of microcomputers and that it have an advanced graphical user interface. A survey of computer programs was conducted to determine which, if any, could meet the AECB's requirements in whole or in part. Ten programmes were selected for detailed review including programs for nuclear and non-radiological emergencies. None of the available programmes for radiation dose assessment meets all the requirements for reasons of user interaction, method of source term estimation or site specificity. It is concluded that the best option for meeting the AECB requirements is to adopt the CAMEO programme (specifically the ALOHA portion) which has a superior graphical user interface and add the necessary models for radiation dose assessment

  7. Miniaturized radiation chirper

    International Nuclear Information System (INIS)

    Umbarger, C.J.; Wolf, M.A.

    1980-01-01

    A miniaturized radiation chirper for use with a small battery supplying on the order of 5 volts is described. A poor quality CdTe crystal which is not necessarily suitable for high resolution gamma ray spectroscopy is incorporated with appropriate electronics so that the chirper emits an audible noise at a rate that is proportional to radiation exposure level. The chirper is intended to serve as a personnel radiation warning device that utilizes new and novel electronics with a novel detector, a CdTe crystal. The resultant device is much smaller and has much longer battery life than existing chirpers

  8. Prediction of Phase Behavior of Spray-Dried Amorphous Solid Dispersions: Assessment of Thermodynamic Models, Standard Screening Methods and a Novel Atomization Screening Device with Regard to Prediction Accuracy

    Directory of Open Access Journals (Sweden)

    Aymeric Ousset

    2018-03-01

    Full Text Available The evaluation of drug–polymer miscibility in the early phase of drug development is essential to ensure successful amorphous solid dispersion (ASD manufacturing. This work investigates the comparison of thermodynamic models, conventional experimental screening methods (solvent casting, quench cooling, and a novel atomization screening device based on their ability to predict drug–polymer miscibility, solid state properties (Tg value and width, and adequate polymer selection during the development of spray-dried amorphous solid dispersions (SDASDs. Binary ASDs of four drugs and seven polymers were produced at 20:80, 40:60, 60:40, and 80:20 (w/w. Samples were systematically analyzed using modulated differential scanning calorimetry (mDSC and X-ray powder diffraction (XRPD. Principal component analysis (PCA was used to qualitatively assess the predictability of screening methods with regards to SDASD development. Poor correlation was found between theoretical models and experimentally-obtained results. Additionally, the limited ability of usual screening methods to predict the miscibility of SDASDs did not guarantee the appropriate selection of lead excipient for the manufacturing of robust SDASDs. Contrary to standard approaches, our novel screening device allowed the selection of optimal polymer and drug loading and established insight into the final properties and performance of SDASDs at an early stage, therefore enabling the optimization of the scaled-up late-stage development.

  9. Measurement of the radiation incident on ALS NdFeB permanent magnet insertion device structures and a determination of their lifetime

    International Nuclear Information System (INIS)

    Krebs, G.F.; Holmes, M.

    1997-05-01

    Measurements of the radiation incident on ALS insertion device NdFeB permanent magnet structures were carried out using thermoluminescence dosimeters. A plastic scintillator gamma telescope was utilized to unravel the various contributions to the integrated dose. Magnet lifetimes were calculated for various operational conditions

  10. GIS-based tools to identify tradeoffs between waste management and remediation strategies from radiological dispersal device incidents

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, P.; Wood, J.; Snyder, E. [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Boe, T. [Oak Ridge Inst. for Science and Education, Research Triangle Park, NC (United States); Schulthiesz, D.; Peake, T.; Ierardi, M. [U.S. Environmental Protection Agency, Washington, DC (United States); Hayes, C.; Rodgers, M. [Eastern Research Group, Inc., Morrisville, NC (United States)

    2011-07-01

    Management of waste and debris from the detonation of a Radiological Dispersal Device (RDD) will likely comprise a significant portion of the overall remediation effort and possibly contribute to a significant portion of the overall remediation costs. As part of the recent National Level Exercise, Liberty RadEx, that occurred in Philadelphia in April 2010, a methodology was developed by EPA to generate a first-order estimate of a waste inventory for the hypothetical RDD from the exercise scenario. Determination of waste characteristics and whether the generated waste is construction and demolition (C&D) debris, municipal solid waste (MSW), hazardous waste, mixed waste, or low level radioactive waste (LLRW), and characterization of the wastewater that is generated from the incident or subsequent cleanup activities will all influence the cleanup costs and timelines. Decontamination techniques, whether they involve chemical treatment, abrasive removal, or aqueous washing, will also influence the waste generated and associated cleanup costs and timelines. This paper describes the ongoing effort to develop a tool to support RDD planning and response activities by assessing waste quantities and characteristics as a function of potential mitigation strategies and targeted cleanup levels. (author)

  11. GIS-based tools to identify tradeoffs between waste management and remediation strategies from radiological dispersal device incidents

    International Nuclear Information System (INIS)

    Lemieux, P.; Wood, J.; Snyder, E.; Boe, T.; Schulthiesz, D.; Peake, T.; Ierardi, M.; Hayes, C.; Rodgers, M.

    2011-01-01

    Management of waste and debris from the detonation of a Radiological Dispersal Device (RDD) will likely comprise a significant portion of the overall remediation effort and possibly contribute to a significant portion of the overall remediation costs. As part of the recent National Level Exercise, Liberty RadEx, that occurred in Philadelphia in April 2010, a methodology was developed by EPA to generate a first-order estimate of a waste inventory for the hypothetical RDD from the exercise scenario. Determination of waste characteristics and whether the generated waste is construction and demolition (C&D) debris, municipal solid waste (MSW), hazardous waste, mixed waste, or low level radioactive waste (LLRW), and characterization of the wastewater that is generated from the incident or subsequent cleanup activities will all influence the cleanup costs and timelines. Decontamination techniques, whether they involve chemical treatment, abrasive removal, or aqueous washing, will also influence the waste generated and associated cleanup costs and timelines. This paper describes the ongoing effort to develop a tool to support RDD planning and response activities by assessing waste quantities and characteristics as a function of potential mitigation strategies and targeted cleanup levels. (author)

  12. Broadband temperature-insensitivity of dispersion-engineered waveguides and resonators

    Science.gov (United States)

    Xu, Lijuan; He, Liuqing; Guo, Yuhao; Li, Guifang; Zhang, Lin

    2018-02-01

    Photonic circuits suffer from thermal drift of device performance, which is a key obstacle to the development of commercial optoelectronic products. Temperature-insensitive integrated waveguides and resonators have been demonstrated by using materials with a negative TOC at a single wavelength, which are not suitable for WDM devices and wideband nonlinear devices. Here, we propose a waveguide structure with temperature-insensitivity over a bandwidth of 780 nm (1280 to 2060 nm) with an ultra-small effective TOC within +/-1×10-6/K. Uniquely, the waveguide has small anomalous dispersion (from 66 to 329 ps/nm/km) over the same band and is suitable for frequency comb generation without being affected by intra-cavity thermal dynamics.

  13. Microwave warning device

    International Nuclear Information System (INIS)

    Shriner, W.

    1981-01-01

    A device for warning a person carrying or wearing it of the presence of dangerous microwave radiation is fully powered by the radiations being detected. A very low-wattage gas-discharge lamp is energized by a broadly or a sharply tuned receiver circuit including dipole antennas or one antenna and a ''grounding'' casing element. The casing may be largely and uniformly transparent or have different areas gradedly light-transmissive to indicate varying radiation intensities. The casing can be made in the shape of a pocket watch, fountain pen, bracelet or finger ring, etc

  14. A device for the application of uniaxial strain to single crystal samples for use in synchrotron radiation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gannon, L. [Clarendon Laboratory, University of Oxford Physics Department, Parks Road, Oxford OX1 3PU (United Kingdom); Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE (United Kingdom); Bosak, A. [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Burkovsky, R. G. [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Peter the Great Saint-Petersburg Polytechnic University, 29 Politekhnicheskaya, 195251, St.-Petersburg (Russian Federation); Nisbet, G.; Hoesch, M., E-mail: Moritz.Hoesch@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE (United Kingdom); Petrović, A. P. [DPMC-MaNEP, Université de Genève, Quai Ernest-Ansermet 24, 1211 Genève 4 (Switzerland)

    2015-10-15

    We present the design, construction, and testing of a straining device compatible with many different synchrotron radiation techniques, in a wide range of experimental environments (including low temperature, high field and ultra-high vacuum). The device has been tested by X-ray diffraction on single crystal samples of quasi-one-dimensional Cs{sub 2}Mo{sub 6}Se{sub 6} and K{sub 2}Mo{sub 6}Se{sub 6}, in which microscopic strains up to a Δc/c = 0.12% ± 0.01% change in the c lattice parameters have been achieved. We have also used the device in an inelastic X-ray scattering experiment, to probe the strain-dependent speed of sound ν along the c axis. A reduction Δν/ν of up to −3.8% was obtained at a strain of Δc/c = 0.25% in K{sub 2}Mo{sub 6}Se{sub 6}.

  15. Dispersion of guided modes in two-dimensional split ring lattices

    DEFF Research Database (Denmark)

    Hansen, Per Lunnemann; Koenderink, A. Femius

    2014-01-01

    . This method takes into account all retarded electrodynamic interactions as well as radiation damping self-consistently. As illustration, we analyze the dispersion of plasmon nanorod lattices, and of 2D split ring resonator lattices. Plasmon nanorod lattices support transverse and longitudinal in...

  16. Ionizing secondary radiation generated by analog radiological and digital coronary cine angiographic equipment. Influence of external protection devices

    International Nuclear Information System (INIS)

    Ramirez N, Alfredo; Farias Ch, Eric; Silva J, Ana Maria; Leyton L, Fernando; Oyarzun C, Carlos; Ugalde P, Hector; Dussaillant, Gaston; Cumsille G, Angel

    2000-01-01

    Exposure to ionizing radiation is a know hazard of radiological procedures. Aim: to compare the emission of secondary ionizing radiation from two coronary angiographic equipments, one with digital and the other with analog image generation. To evaluate the effectiveness of external radiological protection devices. Material and methods: environmental and fluoroscopy generated radiation in the cephalic region of the patient was measured during diagnostic coronary angiographies. Ionizing radiation generated in anterior left oblique protection (ALO) and anterior right oblique protection (ARO) were measured with and without leaded protections. In 19 patients (group 1), a digital equipment was used and in 21 (group 2), an analog equipment. Results: header radiation for group 1 and 2 was 1194±337 and 364±222 μGray/h respectively (p≤0.001). During fluoroscopy and with leaded protection generated radiation for groups 1 and 2 was 612±947 and 70±61μGray/h respectively (p≤0.001). For ALO projection, generated for groups 1 and 2 was 105±47 and 71±192 μGray/h respectively (p≤0.001). During filming the radiation for ALO projection for groups 1 and 2 was 7252±9569 and 1671±2038 μGray/h respectively (p=0.03). Out of the protection zone, registered radiation during fluoroscopy for groups 1 and 2 was 2800±1741 and 1318±954 μGray/h respectively (p≤0.001); during filming, the figures were 15500±5840 and 18961±10599 μGray/h respectively (NS). Conclusions: digital radiological equipment has a lower level of ionizing radiation emission than the analog equipment

  17. Cooling device in thermonuclear device

    International Nuclear Information System (INIS)

    Honda, Tsutomu.

    1988-01-01

    Purpose: To prevent loss of cooling effect over the entire torus structure directly after accidental toubles in a cooling device of a thermonuclear device. Constitution: Coolant recycling means of a cooling device comprises two systems, which are alternately connected with in-flow pipeways and exit pipeways of adjacent modules. The modules are cooled by way of the in-flow pipeways and the exist pipeways connected to the respective modules by means of the coolant recycling means corresponding to the respective modules. So long as one of the coolant recycling means is kept operative, since every one other modules of the torus structure is still kept cooled, the heat generated from the module put therebetween, for which the coolant recycling is interrupted, is removed by means of heat conduction or radiation from the module for which the cooling is kept continued. No back-up emergency cooling system is required and it can provide high economic reliability. (Kamimura, M.)

  18. Safety work with MRI devices in medicine

    International Nuclear Information System (INIS)

    Zivkovic, D.; Hrnjak, M.

    1999-01-01

    This paper gives the basis of biological effects of physical factors which could affect personnel working on MRI devices and patients, and corresponding protection measures. Medical personnel working with MRI devices and patients could be exposed to static magnetic field, time varying fields and radiofrequency radiation, danger from electric current and chemical matters, and there is a high risk from moving metal objects which could wound the persons near-by. The protection from static magnetic field could be ensured by increasing the distance from the source. If MRI device is put in Faradays cage it could be corresponding protection of radiofrequency radiation. (author)

  19. Controlling electrical percolation in multicomponent carbon nanotube dispersions.

    Science.gov (United States)

    Kyrylyuk, Andriy V; Hermant, Marie Claire; Schilling, Tanja; Klumperman, Bert; Koning, Cor E; van der Schoot, Paul

    2011-04-10

    Carbon nanotube reinforced polymeric composites can have favourable electrical properties, which make them useful for applications such as flat-panel displays and photovoltaic devices. However, using aqueous dispersions to fabricate composites with specific physical properties requires that the processing of the nanotube dispersion be understood and controlled while in the liquid phase. Here, using a combination of experiment and theory, we study the electrical percolation of carbon nanotubes introduced into a polymer matrix, and show that the percolation threshold can be substantially lowered by adding small quantities of a conductive polymer latex. Mixing colloidal particles of different sizes and shapes (in this case, spherical latex particles and rod-like nanotubes) introduces competing length scales that can strongly influence the formation of the system-spanning networks that are needed to produce electrically conductive composites. Interplay between the different species in the dispersions leads to synergetic or antagonistic percolation, depending on the ease of charge transport between the various conductive components.

  20. Absorption Related to Hand-Held Devices in Data Mode

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Nielsen, Jesper Ødum; Pedersen, Gert F.

    2016-01-01

    The human body has an influence on the radiation from handheld devices like smartphones, tablets and laptops, part of the energy is absorbed and the spatial distribution of the radiated part is modified. Previous studies of whole body absorp- tion have mainly been numerical or related to talk mode....... In the present paper an experimental study involving four volunteers and three different devices is performed from 0.5 to 3 GHz. The devices are a laptop, a tablet, and a smartphone all held in the lap. The 3D distribution of radiation is measured. Comparing the integrated power in the case of a person present...

  1. Evaluation of image quality for various electronic portal imaging devices in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Son, Soon Yong; Choi, Kwan Woo [Dept. of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Kim, Jung Min [Dept. of College of Health Science, Radiologic Science, Korea University, Seoul (Korea, Republic of); and others

    2015-12-15

    In megavoltage (MV) radiotherapy, delivering the dose to the target volume is important while protecting the surrounding normal tissue. The purpose of this study was to evaluate the modulation transfer function (MTF), the noise power spectrum (NPS), and the detective quantum efficiency (DQE) using an edge block in megavoltage X-ray imaging (MVI). We used an edge block, which consists of tungsten with dimensions of 19 (thickness) × 10 (length) × 1 (width) cm3 and measured the pre-sampling MTF at 6 MV energy. Various radiation therapy (RT) devices such as TrueBeamTM (Varian), BEAMVIEWPLUS (Siemens), iViewGT (Elekta) and Clinac®iX (Varian) were used. As for MTF results, TrueBeamTM(Varian) flattening filter free(FFF) showed the highest values of 0.46 mm-1and1.40mm-1for MTF 0.5 and 0.1. In NPS, iViewGT (Elekta) showed the lowest noise distribution. In DQE, iViewGT (Elekta) showed the best efficiency at a peak DQE and 1 mm-1DQE of 0.0026 and 0.00014, respectively. This study could be used not only for traditional QA imaging but also for quantitative MTF, NPS, and DQE measurement for development of an electronic portal imaging device (EPID)

  2. Space radiation effects

    International Nuclear Information System (INIS)

    Li Shiqing; Yan Heping

    1995-01-01

    The authors briefly discusses the radiation environment in near-earth space and it's influences on material, and electronic devices using in space airship, also, the research developments in space radiation effects are introduced

  3. Influence of beam divergence on form-factor in X-ray diffraction radiation

    International Nuclear Information System (INIS)

    Sergeeva, D.Yu.; Tishchenko, A.A.; Strikhanov, M.N.

    2015-01-01

    Diffraction radiation from divergent beam is considered in terms of radiation in UV and X-ray range. Scedastic form of Gaussian distribution of the particle in the bunch, i.e. Gaussian distribution with changing dispersion has been used, which is more adequate for description of divergent beams than often used Gaussian distribution with constant dispersion. Both coherent and incoherent form-factors are taken into account. The conical diffraction effect in diffraction radiation is proved to make essential contribution in spectral-angular characteristics of radiation from a divergent beam

  4. Radiation protection measuring device SSM-1

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Product information from the producer on a universal measuring instrument for alpha, beta and gamma radiation designed for stationary and field use by military, police and fire brigades. 4 figs. (qui)

  5. Long-distance wind-dispersal of spores in a fungal plant pathogen: estimation of anisotropic dispersal kernels from an extensive field experiment.

    Directory of Open Access Journals (Sweden)

    Adrien Rieux

    Full Text Available Given its biological significance, determining the dispersal kernel (i.e., the distribution of dispersal distances of spore-producing pathogens is essential. Here, we report two field experiments designed to measure disease gradients caused by sexually- and asexually-produced spores of the wind-dispersed banana plant fungus Mycosphaerella fijiensis. Gradients were measured during a single generation and over 272 traps installed up to 1000 m along eight directions radiating from a traceable source of inoculum composed of fungicide-resistant strains. We adjusted several kernels differing in the shape of their tail and tested for two types of anisotropy. Contrasting dispersal kernels were observed between the two types of spores. For sexual spores (ascospores, we characterized both a steep gradient in the first few metres in all directions and rare long-distance dispersal (LDD events up to 1000 m from the source in two directions. A heavy-tailed kernel best fitted the disease gradient. Although ascospores distributed evenly in all directions, average dispersal distance was greater in two different directions without obvious correlation with wind patterns. For asexual spores (conidia, few dispersal events occurred outside of the source plot. A gradient up to 12.5 m from the source was observed in one direction only. Accordingly, a thin-tailed kernel best fitted the disease gradient, and anisotropy in both density and distance was correlated with averaged daily wind gust. We discuss the validity of our results as well as their implications in terms of disease diffusion and management strategy.

  6. Conversion coefficients for determination of dispersed photon dose during radiotherapy: NRUrad input code for MCNP.

    Science.gov (United States)

    Shahmohammadi Beni, Mehrdad; Ng, C Y P; Krstic, D; Nikezic, D; Yu, K N

    2017-01-01

    Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient's body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5.

  7. Digital communication device

    DEFF Research Database (Denmark)

    2005-01-01

    The invention concerns a digital communication device like a hearing aid or a headset. The hearing aid or headset has a power supply, a signal processing device, means for receiving a wireless signal and a receiver or loudspeaker, which produces an audio signal based on a modulated pulsed signal...... point is provided which is in electrical contact with the metal of the metal box and whereby this third connection point is connected to the electric circuitry of the communication device at a point having a stable and well defined electrical potential. In this way the electro-and magnetic radiation...

  8. The impact of communication materials on public responses to a radiological dispersal device (RDD) attack.

    Science.gov (United States)

    Rogers, M Brooke; Amlôt, Richard; Rubin, G James

    2013-03-01

    It is a common assumption that, in the event of a chemical, biological, radiological, or nuclear (CBRN) attack, a well-prepared and informed public is more likely to follow official recommendations regarding the appropriate safety measures to take. We present findings from a UK study investigating the ability of crisis communication to influence perceptions of risk and behavioral intentions in the general public in response to CBRN terrorism. We conducted a focus group study involving a scenario presented in mock news broadcasts to explore levels of public knowledge, information needs, and intended behavioral reactions to an attack involving an overt radiological dispersal device (RDD), or dirty bomb. We used the findings from these focus groups to design messages for the public that could be presented in a short leaflet. We then tested the effects of the leaflet on reactions to the same scenario in 8 further focus groups. The impact of the new messages on levels of knowledge, information needs, and intended compliance with official recommendations was assessed. The provision of information increased the perceived credibility of official messages and increased reported levels of intended compliance with advice to return to normal/stop sheltering, attend a facility for assessment and treatment, and return to a previously contaminated area after decontamination of the environment has taken place. Should a real attack with an RDD occur, having pretested messages available to address common concerns and information needs should facilitate the public health response to the attack.

  9. SU-E-J-48: Development of An Abdominal Compression Device for Respiratory Correlated Radiation Therapy

    International Nuclear Information System (INIS)

    Kim, T; Kang, S; Kim, D; Suh, T; Kim, S

    2014-01-01

    Purpose: The aim of this study is to develop the abdominal compression device which could control pressure level according to the abdominal respiratory motion and evaluate its feasibility. Methods: In this study, we focused on developing the abdominal compression device which could control pressure level at any point of time so the developed device is possible to use a variety of purpose (gating technique or respiratory training system) while maintaining the merit of the existing commercial device. The compression device (air pad form) was designed to be able to compress the front and side of abdomen and the pressure level of the abdomen is controlled by air flow. Pressure level of abdomen (air flow) was determined using correlation data between external abdominal motion and respiratory volume signal measured by spirometer. In order to verify the feasibility of the device, it was necessary to confirm the correlation between the abdominal respiratory motion and respiratory volume signal and cooperation with respiratory training system also checked. Results: In the previous study, we could find that the correlation coefficient ratio between diaphragm and respiratory volume signal measured by spirometer was 0.95. In this study, we confirmed the correlation between the respiratory volume signal and the external abdominal motion measured by belt-transducer (correlation coefficient ratio was 0.92) and used the correlated respiratory volume data as an abdominal pressure level. It was possible to control the pressure level with negligible time delay and respiratory volume data based guiding waveforms could be properly inserted into the respiratory training system. Conclusion: Through this feasibility study, we confirmed the correlation between the respiratory volume signal and the external abdominal motion. Also initial assessment of the device and its compatibility with the respiratory training system were verified. Further study on application in respiratory gated

  10. 47 CFR 15.13 - Incidental radiators.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Incidental radiators. 15.13 Section 15.13 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES General § 15.13 Incidental radiators. Manufacturers of these devices shall employ good engineering practices to minimize the risk of...

  11. Optoelectronic device with nanoparticle embedded hole injection/transport layer

    Science.gov (United States)

    Wang, Qingwu [Chelmsford, MA; Li, Wenguang [Andover, MA; Jiang, Hua [Methuen, MA

    2012-01-03

    An optoelectronic device is disclosed that can function as an emitter of optical radiation, such as a light-emitting diode (LED), or as a photovoltaic (PV) device that can be used to convert optical radiation into electrical current, such as a photovoltaic solar cell. The optoelectronic device comprises an anode, a hole injection/transport layer, an active layer, and a cathode, where the hole injection/transport layer includes transparent conductive nanoparticles in a hole transport material.

  12. A method and device for reducing background in well logging devices using inelastic gamma rays

    International Nuclear Information System (INIS)

    Culver, R.B.

    1974-01-01

    The invention relates to a well logging device, of the type comprising a source of pulsed neutrons and means for detecting radioactivity. The device comprises means adapted to interrupt the neutron source emission in response to the detection of a single gamma radiation showing a pre-determined feature [fr

  13. A dispersion modelling system for urban air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Karppinen, A.; Kukkonen, J.; Nordlund, G.; Rantakrans, E.; Valkama, I.

    1998-10-01

    An Urban Dispersion Modelling system UDM-FMI, developed at the Finnish Meteorological Institute is described in the report. The modelling system includes a multiple source Gaussian plume model and a meteorological pre-processing model. The dispersion model is an integrated urban scale model, taking into account of all source categories (point, line, area and volume sources). It includes a treatment of chemical transformation (for NO{sub 2}) wet and dry deposition (for SO{sub 2}) plume rise, downwash phenomena and dispersion of inert particles. The model allows also for the influence of a finite mixing height. The model structure is mainly based on the state-of-the-art methodology. The system also computes statistical parameters from the time series, which can be compared to air quality guidelines. The relevant meteorological parameters for the dispersion model are evaluated using data produced by a meteorological pre-processor. The model is based mainly on the energy budget method. Results of national investigations have been used for evaluating climate-dependent parameters. The model utilises the synoptic meteorological observations, radiation records and aerological sounding observations. The model results include the hourly time series of the relevant atmospheric turbulence 51 refs.

  14. Pneumatic radiator of transition radiation for large working area arrangements

    International Nuclear Information System (INIS)

    Shikhlyarov, K.K.; Gavalyan, V.G.

    1993-01-01

    An unconventional approach to the constructions of large area regular radiator of X-rays transition radiation is proposed based on the use of a pack of hermetically sealed bags, in which elastic helium layers are formed. A prototype of such a radiator of about 1m 2 area was made for test of the proposed device. 9 refs

  15. Design, construction, and in vivo feasibility of a positioning device for irradiation of mice brains using a clinical linear accelerator and intensity modulated radiation therapy.

    Science.gov (United States)

    Rancilio, Nicholas J; Dahl, Shaun; Athanasiadi, Ilektra; Perez-Torres, Carlos J

    2017-12-01

    The goal of this study was to design a positioning device that would allow for selective irradiation of the mouse brain with a clinical linear accelerator. We designed and fabricated an immobilization fixture that incorporates three functions: head stabilizer (through ear bars and tooth bar), gaseous anesthesia delivery and scavenging, and tissue mimic/bolus. Cohorts of five mice were irradiated such that each mouse in the cohort received a unique dose between 1000 and 3000 cGy. DNA damage immunohistochemistry was used to validate an increase in biological effect as a function of radiation dose. Mice were then followed with hematoxylin and eosin (H&E) and anatomical magnetic resonance imaging (MRI). There was evidence of DNA damage throughout the brain proportional to radiation dose. Radiation-induced damage at the prescribed doses, as depicted by H&E, appeared to be constrained to the white matter consistent with radiological observation in human patients. The severity of the damage correlated with the radiation dose as expected. We have designed and manufactured a device that allows us to selectively irradiate the mouse brain with a clinical linear accelerator. However, some off-target effects are possible with large prescription doses.

  16. Development of environmental radiation control technology

    International Nuclear Information System (INIS)

    Kim, Ingyu; Kim, Enhan; Keum, Dongkwon

    2012-04-01

    To develop the comprehensive environmental radiation management technology, - An urban atmospheric dispersion model and decision-aiding model have been developed. - The technologies for assessing the radiation impact to non-human biota and the environmental medium contamination have developed. - The analytical techniques of the indicator radionuclides related to decommissioning of nuclear facilities and nuclear waste repository have been developed. - The national environmental radiation impact has been assessed, and the optimum management system of natural radiation has been established

  17. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    Science.gov (United States)

    Majewski, Stanislaw; Kross, Brian J.; Zorn, Carl J.; Majewski, Lukasz A.

    1996-01-01

    An optimized examination system and method based on the Reverse Geometry X-Ray.RTM. (RGX.RTM.) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging.

  18. Proposal of highly sensitive optofluidic sensors based on dispersive photonic crystal waveguides

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Mortensen, Niels Asger

    2007-01-01

    Optofluidic sensors based on highly dispersive two-dimensional photonic crystal waveguides are studied theoretically. Results show that these structures are strongly sensitive to the refractive index of the infiltrated liquid (nl), which is used to tune dispersion of the photonic crystal waveguide....... The waveguide mode-gap edge shifts about 1.2 nm for δnl = 0.002. The shifts can be explained well by band structure theory combined with first-order perturbation theory. These devices are potentially interesting for chemical sensing applications....

  19. Charge transport and contact resistance in coplanar devices based on colloidal polyaniline dispersion

    Czech Academy of Sciences Publication Activity Database

    Masillamani, A. M.; Peřinka, N.; Hajná, Milena; Stejskal, Jaroslav; Tondelier, D.; Bonnassieux, Y.; Vanel, J.-C.; Geffroy, B.; Mencaraglia, D.

    2016-01-01

    Roč. 54, č. 17 (2016), s. 1710-1716 ISSN 0887-6266 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : charge transport * colloidal dispersion * colloids Subject RIV: JI - Composite Materials Impact factor: 2.838, year: 2016

  20. Device simulation of charge collection and single-event upset

    International Nuclear Information System (INIS)

    Dodd, P.E.

    1996-01-01

    In this paper the author reviews the current status of device simulation of ionizing-radiation-induced charge collection and single-event upset (SEU), with an emphasis on significant results of recent years. The author presents an overview of device-modeling techniques applicable to the SEU problem and the unique challenges this task presents to the device modeler. He examines unloaded simulations of radiation-induced charge collection in simple p/n diodes, SEU in dynamic random access memories (DRAM's), and SEU in static random access memories (SRAM's). The author concludes with a few thoughts on future issues likely to confront the SEU device modeler