WorldWideScience

Sample records for radiation damage control

  1. [Influence of Detector Radiation Damage on CR Mammography Quality Control].

    Science.gov (United States)

    Moriwaki, Atsumi; Ishii, Mie; Terazono, Shiho; Arao, Keiko; Ishii, Rie; Sanada, Taizo; Yoshida, Akira

    2016-05-01

    Recently, radiation damage to the detector apparatus employed in computed radiography (CR) mammography has become problematic. The CR system and the imaging plate (IP) applied to quality control (QC) program were also used in clinical mammography in our hospital, and the IP to which radiation damage has occurred was used for approximately 5 years (approximately 13,000 exposures). We considered using previously acquired QC image data, which is stored in a server, to investigate the influence of radiation damage to an IP. The mammography unit employed in this study was a phase contrast mammography (PCM) Mermaid (KONICA MINOLTA) system. The QC image was made newly, and it was output in the film, and thereafter the optical density of the step-phantom image was measured. An input (digital value)-output (optical density) conversion curve was plotted using the obtained data. The digital values were then converted to optical density values using a reference optical density vs. digital value curve. When a high radiation dose was applied directly, radiation damage occurred at a position on the IP where no object was present. Daily QC for mammography is conducted using an American College of Radiology (ACR) accreditation phantom and acrylic disc, and an environmental background density measurement is performed as one of the management indexes. In this study, the radiation damage sustained by the acrylic disc was shown to differ from that of the background. Thus, it was revealed that QC results are influenced by radiation damage.

  2. Radiation damage

    CERN Document Server

    Heijne, Erik H M; CERN. Geneva

    1998-01-01

    a) Radiation damage in organic materials. This series of lectures will give an overview of radiation effects on materials and components frequently used in accelerator engineering and experiments. Basic degradation phenomena will be presented for organic materials with comprehensive damage threshold doses for commonly used rubbers, thermoplastics, thermosets and composite materials. Some indications will be given for glass, scintillators and optical fibres. b) Radiation effects in semiconductor materials and devices. The major part of the time will be devoted to treat radiation effects in semiconductor sensors and the associated electronics, in particular displacement damage, interface and single event phenomena. Evaluation methods and practical aspects will be shown. Strategies will be developed for the survival of the materials under the expected environmental conditions of the LHC machine and detectors. I will describe profound revolution in our understanding of black holes and their relation to quantum me...

  3. Radiation damage tolerant nanomaterials

    Directory of Open Access Journals (Sweden)

    I.J. Beyerlein

    2013-11-01

    Full Text Available Designing a material from the atomic level to achieve a tailored response in extreme conditions is a grand challenge in materials research. Nanostructured metals and composites provide a path to this goal because they contain interfaces that attract, absorb and annihilate point and line defects. These interfaces recover and control defects produced in materials subjected to extremes of displacement damage, impurity implantation, stress and temperature. Controlling radiation-induced-defects via interfaces is shown to be the key factor in reducing the damage and imparting stability in certain nanomaterials under conditions where bulk materials exhibit void swelling and/or embrittlement. We review the recovery of radiation-induced point defects at free surfaces and grain boundaries and stabilization of helium bubbles at interphase boundaries and present an approach for processing bulk nanocomposites containing interfaces that are stable under irradiation.

  4. Radiation damage in graphite

    CERN Document Server

    Simmons, John Harry Walrond

    1965-01-01

    Nuclear Energy, Volume 102: Radiation Damage in Graphite provides a general account of the effects of irradiation on graphite. This book presents valuable work on the structure of the defects produced in graphite crystals by irradiation. Organized into eight chapters, this volume begins with an overview of the description of the methods of manufacturing graphite and of its physical properties. This text then presents details of the method of setting up a scale of irradiation dose. Other chapters consider the effect of irradiation at a given temperature on a physical property of graphite. This

  5. Low doses of ionizing radiation to mammalian cells may rather control than cause DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Feinendegen, L.E. [Brookhaven National Lab., Upton, NY (United States). Medical Dept.; Bond, V.P. [Washington State Univ., Richland, WA (United States); Sondhaus, C.A. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Radiology and Radiation Control Office; Altman, K.I. [Univ. of Rochester Medical Center, NY (United States). Dept. of Biochemistry and Biophysics

    1998-12-31

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced metabolic changes that induce mechanisms of DNA damage mitigation, which do not operate at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in the low-dose region. This suggests that the LNT hypothesis should be reexamined. This paper aims at demonstrating tissue effects as an expression of cellular responses, both damaging and defensive, in relation to the energy deposited in cell mass, by use of microdosimetric concepts.

  6. Radiation damage of structural materials

    CERN Document Server

    Koutsky, Jaroslav

    1994-01-01

    Maintaining the integrity of nuclear power plants is critical in the prevention or control of severe accidents. This monograph deals with both basic groups of structural materials used in the design of light-water nuclear reactors, making the primary safety barriers of NPPs. Emphasis is placed on materials used in VVER-type nuclear reactors: Cr-Mo-V and Cr-Ni-Mo-V steel for RPV and Zr-Nb alloys for fuel element cladding. The book is divided into 7 main chapters, with the exception of the opening one and the chapter providing a phenomenological background for the subject of radiation damage. Ch

  7. Radiation Damage of Quartz Fibers

    CERN Document Server

    Hagopian, V

    1999-01-01

    Quartz fibers are used in high energy physics experiments as the active medium in high radiation area calorimetry. Quartz fibers are also used in the transmission of optical signals. Even though quartz does not damage by moderate amounts of irradiation, the clad of the fibers and the protective coating ( buffer) do damage reducing light transmission. Various types of quartz fibers have been irradiated and measured for light transmission. The most radiation hard quartz fibers are those with quartz clad and aluminum buffer.

  8. Radiation damage in biomolecular systems

    CERN Document Server

    Fuss, Martina Christina

    2012-01-01

    Since the discovery of X-rays and radioactivity, ionizing radiations have been widely applied in medicine both for diagnostic and therapeutic purposes. The risks associated with radiation exposure and handling led to the parallel development of the field of radiation protection. Pioneering experiments done by Sanche and co-workers in 2000 showed that low-energy secondary electrons, which are abundantly generated along radiation tracks, are primarily responsible for radiation damage through successive interactions with the molecular constituents of the medium. Apart from ionizing processes, which are usually related to radiation damage, below the ionization level low-energy electrons can induce molecular fragmentation via dissociative processes such as internal excitation and electron attachment. This prompted collaborative projects between different research groups from European countries together with other specialists from Canada,  the USA and Australia. This book summarizes the advances achieved by these...

  9. Radiation damage in rat kidney microvasculature.

    Science.gov (United States)

    Nelson, A C; Shah-Yukich, A; Babayan, R

    1984-01-01

    Scanning electron microscopy (SEM) combined with a specialized polymer injection casting technique permits the analysis of radiation induced damage in rat kidney glomeruli. A lead shielding device is constructed to enable the irradiation of the living rat left kidney, while the remainder of the animal is shielded from the dose, the right kidney serves as a control. The source of radiation is 137Cs which produces 0.66 MeV gamma-rays to achieve a kidney dose of 100 rad and 5000 rad in these experiments. Radiation damage to kidney glomeruli is assessed at intervals of 0, 1, 3 and 7 days post-irradiation at the two dose levels. It is found that radiation damage to kidney glomeruli is expressed morphologically at 7 days post-irradiation at the 100 rad dose level, while glomerular damage is apparent as early as 3 days post-irradiation at the 5000 rad dose level. Moreover, by 7 days post-irradiation with a 5000 rad dose, the kidney glomerulus thoroughly degenerates to a leaky fused mass of vessels. From a morphological viewpoint, kidney glomeruli are significantly more sensitive to radiation than surrounding vasculature. The methods developed here for assessment of radiation damage are highly repeatable and could serve as a standard technique in radiobiology.

  10. Radiation damage in silicon detectors

    CERN Document Server

    Lindström, G

    2003-01-01

    Radiation damage effects in silicon detectors under severe hadron and gamma-irradiation are surveyed, focusing on bulk effects. Both macroscopic detector properties (reverse current, depletion voltage and charge collection) as also the underlying microscopic defect generation are covered. Basic results are taken from the work done in the CERN-RD48 (ROSE) collaboration updated by results of recent work. Preliminary studies on the use of dimerized float zone and Czochralski silicon as detector material show possible benefits. An essential progress in the understanding of the radiation-induced detector deterioration had recently been achieved in gamma irradiation, directly correlating defect analysis data with the macroscopic detector performance.

  11. Radiation damage in multiphase ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Men, Danju [Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575 (United States); Patel, Maulik K.; Usov, Igor O. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Toiammou, Moidi; Monnet, Isabelle [CIMAP, CEA/CNRS/ENSICAEN/Universite de Caen-Basse Normandie, Bd Henri Becquerel, BP 5133, F-14070 Caen Cedex 5 (France); Pivin, Jean Claude [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS-IN2P3-Universite Paris Sud, UMR 8609, Bat. 108, 91405 Orsay (France); Porter, John R. [Materials Department, University of California, Santa Barbara, CA 93106-5050 (United States); Mecartney, Martha L., E-mail: martham@uci.edu [Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575 (United States)

    2013-11-15

    Graphical abstract: Display Omitted -- Abstract: Four-phase ceramic composites containing 3 mol% Y{sub 2}O{sub 3} stabilized ZrO{sub 2} (3Y-TZP), Al{sub 2}O{sub 3}, MgAl{sub 2}O{sub 4}, and LaPO{sub 4} were synthesized as model materials representing inert matrix fuel with enhanced thermal conductivity and decreased radiation-induced microstructural damage with respect to single-phase UO{sub 2}. This multi-phase concept, if successful, could be applied to design advanced nuclear fuels which could then be irradiated to higher burn-ups. 3Y-TZP in the composite represents a host (fuel) phase with the lowest thermal conductivity and Al{sub 2}O{sub 3} is the high thermal conductivity phase. The role of MgAl{sub 2}O{sub 4} and LaPO{sub 4} was to stabilize the structure under irradiation. The radiation response was evaluated by ion irradiation at 500 °C with 10 MeV Au ions and at 800 °C with 92 MeV Xe ions, to simulate damage due to primary knock-on atoms and fission fragments, respectively. Radiation damage and microstructural changes were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy and computational modeling. Al{sub 2}O{sub 3}, Y{sub 2}O{sub 3} stabilized ZrO{sub 2} and MgAl{sub 2}O{sub 4} phases exhibit high amorphization resistance and remain stable when irradiated with both Au and Xe ions. A monoclinic-to-tetragonal phase transformation, however, is promoted by Xe and Au ion irradiation in 3Y-TZP. The LaPO{sub 4} monazite phase appears to melt, dewet the other phases, and recrystallize under Au irradiation, but does not change under Xe irradiation.

  12. Radiation damage studies of a recycling integrator VLSI chip for dosimetry and control of therapeutical beams

    Science.gov (United States)

    Cirio, R.; Bourhaleb, F.; Degiorgis, P. G.; Donetti, M.; Marchetto, F.; Marletti, M.; Mazza, G.; Peroni, C.; Rizzi, E.; SanzFreire, C.

    2002-04-01

    A VLSI chip based on a recycling integrator has been designed and built to be used as front-end readout of detectors for dosimetry and beam monitoring. The chip is suitable for measurements with both conventional radiotherapy accelerators (photon or electron beams) and with hadron accelerators (proton or light ion beams). As the chips might be located at few centimeters from the irradiation area and they are meant to be used in routine hospital practice, it is mandatory to assert their damage to both electromagnetic and neutron irradiation. We have tested a few chips on a X-ray beam and on thermal and fast neutron beams. Results of the tests are reported and an estimate of the expected lifetime of the chip for routine use is given.

  13. [Mechanisms of electromagnetic radiation damaging male reproduction].

    Science.gov (United States)

    Xue, Lei; Chen, Hao-Yu; Wang, Shui-Ming

    2012-08-01

    More and more evidence from over 50 years of researches on the effects of electromagnetic radiation on male reproduction show that a certain dose of electromagnetic radiation obviously damages male reproduction, particularly the structure and function of spermatogenic cells. The mechanisms of the injury may be associated with energy dysmetabolism, lipid peroxidation, abnormal expressions of apoptosis-related genes and proteins, and DNA damage.

  14. DNA Damage Signals and Space Radiation Risk

    Science.gov (United States)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.

  15. Thoracic damage control surgery.

    Science.gov (United States)

    Gonçalves, Roberto; Saad, Roberto

    2016-01-01

    The damage control surgery came up with the philosophy of applying essential maneuvers to control bleeding and abdominal contamination in trauma patients who are within the limits of their physiological reserves. This concept was extended to thoracic injuries, where relatively simple maneuvers can shorten operative time of in extremis patients. This article aims to revise the various damage control techniques in thoracic organs that must be known to the surgeon engaged in emergency care. RESUMO A cirurgia de controle de danos surgiu com a filosofia de se aplicar manobras essenciais para controle de sangramento e contaminação abdominal, em doentes traumatizados, nos limites de suas reservas fisiológicas. Este conceito se estendeu para as lesões torácicas, onde manobras relativamente simples, podem abreviar o tempo operatório de doentes in extremis. Este artigo tem como objetivo, revisar as diversas técnicas de controle de dano em órgãos torácicos, que devem ser de conhecimento do cirurgião que atua na emergência.

  16. Radiation damage to nucleoprotein complexes in macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Charles; Garman, Elspeth F.; Ginn, Helen Mary [University of Oxford, South Parks Road, Oxford OX1 3QU (United Kingdom); Ravelli, Raimond B. G. [Maastricht University, PO Box 616, Maastricht 6200 MD (Netherlands); Carmichael, Ian [University of Notre Dame, Notre Dame, IN 46556 (United States); Kneale, Geoff; McGeehan, John E., E-mail: john.mcgeehan@port.ac.uk [University of Portsmouth, King Henry 1st Street, Portsmouth PO1 2DY (United Kingdom)

    2015-01-30

    Quantitative X-ray induced radiation damage studies employing a model protein–DNA complex revealed a striking partition of damage sites. The DNA component was observed to be far more resistant to specific damage compared with the protein. Significant progress has been made in macromolecular crystallography over recent years in both the understanding and mitigation of X-ray induced radiation damage when collecting diffraction data from crystalline proteins. In contrast, despite the large field that is productively engaged in the study of radiation chemistry of nucleic acids, particularly of DNA, there are currently very few X-ray crystallographic studies on radiation damage mechanisms in nucleic acids. Quantitative comparison of damage to protein and DNA crystals separately is challenging, but many of the issues are circumvented by studying pre-formed biological nucleoprotein complexes where direct comparison of each component can be made under the same controlled conditions. Here a model protein–DNA complex C.Esp1396I is employed to investigate specific damage mechanisms for protein and DNA in a biologically relevant complex over a large dose range (2.07–44.63 MGy). In order to allow a quantitative analysis of radiation damage sites from a complex series of macromolecular diffraction data, a computational method has been developed that is generally applicable to the field. Typical specific damage was observed for both the protein on particular amino acids and for the DNA on, for example, the cleavage of base-sugar N{sub 1}—C and sugar-phosphate C—O bonds. Strikingly the DNA component was determined to be far more resistant to specific damage than the protein for the investigated dose range. At low doses the protein was observed to be susceptible to radiation damage while the DNA was far more resistant, damage only being observed at significantly higher doses.

  17. The expected radiation damage of CSNS target

    Science.gov (United States)

    Yin, W.; Yu, Q. Z.; Lu, Y. L.; Wang, S. L.; Tong, J. F.; Liang, T. J.

    2012-12-01

    The radiation damage to the tungsten target and its SS316 vessel for Chinese Spallation Neutron Source (CSNS) has been estimated with a Monte-Carlo simulation code MCNPX2.5.0. We compare the effects on the radiation damage due to two different proton beam profiles: a uniform distribution and a Gaussian distribution. We also discuss the dependence of the radiation damage estimation on different physics models. The results show the peak displacement productions in vessel and the fourth target plate are 2.5 and 5.5 dpa/y, respectively, under a Gaussian proton beam. The peak helium productions in the vessel and the fourth target are 305 and 353 appm/y, respectively, under the same proton beam. Based on these results and the allowable dpa values we have estimated the lifetime of the tungsten target and its vessel.

  18. Nanofoams Response to Radiation Damage

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Engang [Los Alamos National Laboratory; Serrano De Caro, Magdalena [Los Alamos National Laboratory; Wang, Yongqiang [Los Alamos National Laboratory; Nastasi, Michael [Nebraska Center for Energy Sciences Research, University of Nebraska-Lincoln, NE 68508; Zepeda-Ruiz, Luis [PLS, Lawrence Livermore National Laboratory, Livermore, CA 94551; Bringa, Eduardo M. [CONICET and Inst. Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza, 5500 Argentina; Baldwin, Jon K. [Los Alamos National Laboratory; Caro, Jose A. [Los Alamos National Laboratory

    2012-07-30

    Conclusions of this presentation are: (1) np-Au foams were successfully synthesized by de-alloying process; (2) np-Au foams remain porous structure after Ne ion irradiation to 1 dpa; (3) SFTs were observed in irradiated np-Au foams with highest and intermediate flux, while no SFTs were observed with lowest flux; (4) SFTs were observed in irradiated np-Au foams at RT, whereas no SFTs were observed at LNT irradiation; (5) The diffusivity of vacancies in Au at RT is high enough so that the vacancies have enough time to agglomerate and thus collapse. As a result, SFTs were formed; (6) The high flux created much more damage/time, vacancies don't have enough time to diffuse or recombine. As a result, SFTs were formed.

  19. Radiation damage effect on avalanche photodiodes

    CERN Document Server

    Baccaro, S; Cavallari, F; Da Ponte, V; Deiters, K; Denes, P; Diemoz, M; Kirn, Th; Lintern, A L; Longo, E; Montecchi, M; Musienko, Y; Pansart, J P; Renker, D; Reucroft, S; Rosi, G; Rusack, R; Ruuska, D; Stephenson, R; Torbet, M J

    1999-01-01

    Avalanche Photodiodes have been chosen as photon sensors for the electromagnetic calorimeter of the CMS experiment at the LHC. These sensors should operate in the 4T magnetic field of the experiment. Because of the high neutron radiation in the detector extensive studies have been done by the CMS collaboration on the APD neutron radiation damage. The characteristics of these devices after irradiation have been analized, with particular attention to the quantum efficiency and the dark current. The recovery of the radiation induced dark current has been studied carefully at room temperature and at slightly lower and higher temperatures. The temperature dependence of the defects decay-time has been evaluated.

  20. Radiation damage of polymers in ultrasonic fields

    Energy Technology Data Exchange (ETDEWEB)

    Anbalagan, Poornnima

    2008-07-01

    Radiation damage has always been a topic of great interest in various fields of sciences. In this work, an attempt is made to probe into the effect of subthreshold ultrasonic waves on the radiation damage created by irradiation of deuterons in polymer samples wherein the polymer samples act as model systems. Two equal volumes of radiation damage were produced in a single polymer sample wherein a standing wave of ultrasound was introduced into one. Three polymers namely, Polycarbonate, Polymethylmethacrylate and Polyvinyl chloride were used in this work. Four independent techniques were used to analyze the irradiated samples and visualize the radiation damage. Interferometric measurements give a measure of the refractive index modulation in the irradiated sample. Polymers, being transparent, do not absorb in the visible region of the electromagnetic spectrum. UV-Vis absorption spectroscopy shows absorption peaks in the visible region in irradiated polymer samples. Ion irradiation causes coloration of polymers. The light microscope is used to measure the absorption of white light by the irradiated polymers. Positron annihilation spectroscopy is used to obtain a measure of the open volume created by irradiation in polymers. A comparison between the irradiated region and the region exposed to ultrasonic waves simultaneously with irradiation in a polymer sample shows the polymer specific influence of the ultrasonic standing wave. (orig.)

  1. Ion-biomolecule interactions and radiation damage

    NARCIS (Netherlands)

    Schlathölter, T.A.; Alvarado Chacon, F.; Hoekstra, R.A.

    2005-01-01

    Ionization and fragmentation of DNA and its constituents is it primary step in biological radiation damage. In this paper we investigate the response of nucleobases upon interaction with keV singly and multiply charged ions. The dependence of ionization and fragmentation on ion atomic number Z, char

  2. The Status of Radiation Damage Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, Denis M.; Scheele, Randall D.; Icenhower, Jonathan P.; Kozelisky, Anne E.; Sell, Richard L.; Legore, Virginia L.; Schaef, Herbert T.; O' Hara, Matthew J.; Brown, Christopher F.; Buchmiller, William C.

    2001-11-20

    Experiments have been on-going for about two years to determine the effects that radiation damage have on the physical and chemical properties of candidate titanate ceramics for the immobilization of plutonium. We summarize the results of these experiments in this document.

  3. Undulator Radiation Damage Experience at LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Nuhn, H. D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Field, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Mao, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Levashov, Y. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Santana, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Welch, J. N. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wolf, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-01-06

    The SLAC National Accelerator Laboratory has been running the Linac Coherent Light Source (LCLS), the first x-ray Free Electron Laser since 2009. Undulator magnet damage from radiation, produced by the electron beam traveling through the 133-m long straight vacuum tube, has been and is a concern. A damage measurement experiment has been performed in 2007 in order to obtain dose versus damage calibrations. Radiation reduction and detection devices have been integrated into the LCLS undulator system. The accumulated radiation dose rate was continuously monitored and recorded. In addition, undulator segments have been routinely removed from the beamline to be checked for magnetic (50 ppm, rms) and mechanic (about 0.25 µm, rms) changes. A reduction in strength of the undulator segments is being observed, at a level, which is now clearly above the noise. Recently, potential sources for the observed integrated radiation levels have been investigated. The paper discusses the results of these investigation as well as comparison between observed damage and measured dose accumulations and discusses, briefly, strategies for the new LCLS-II upgrade, which will be operating at more than 300 times larger beam rate.

  4. Calculation of Radiation Damage in SLAC Targets

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, B D; Monasterio, P; Stein, W

    2008-04-03

    Ti-6Al-4V alloys are being considered as a positron producing target in the Next Linear Collider, with an incident photon beam and operating temperatures between room temperature and 300 C. Calculations of displacement damage in Ti-6Al-4V alloys have been performed by combining high-energy particle FLUKA simulations with SPECTER calculations of the displacement cross section from the resulting energy-dependent neutron flux plus the displacements calculated from the Lindhard model from the resulting energy-dependent ion flux. The radiation damage calculations have investigated two cases, namely the damage produced in a Ti-6Al-4V SLAC positron target where the irradiation source is a photon beam with energies between 5 and 11 MeV. As well, the radiation damage dose in displacements per atom, dpa, has been calculated for a mono-energetic 196 MeV proton irradiation experiment performed at Brookhaven National Laboratory (BLIP experiment). The calculated damage rate is 0.8 dpa/year for the Ti-6Al-4V SLAC photon irradiation target, and a total damage exposure of 0.06 dpa in the BLIP irradiation experiment. In both cases, the displacements are predominantly ({approx}80%) produced by recoiling ions (atomic nuclei) from photo-nuclear collisions or proton-nuclear collisions, respectively. Approximately 25% of the displacement damage results from the neutrons in both cases. Irradiation effects studies in titanium alloys have shown substantial increases in the yield and ultimate strength of up to 500 MPa and a corresponding decrease in uniform ductility for neutron and high energy proton irradiation at temperatures between 40 and 300 C. Although the data is limited, there is an indication that the strength increases will saturate by doses on the order of a few dpa. Microstructural investigations indicate that the dominant features responsible for the strength increases were dense precipitation of a {beta} (body-centered cubic) phase precipitate along with a high number density

  5. Radiation Damage in the LHCb VELO

    CERN Multimedia

    Harrison, Jon

    2011-01-01

    The VErtex LOcator (VELO) is a silicon strip detector designed to reconstruct particle tracks and vertices produced by proton-proton interactions near to the LHCb interaction point. The excellent track resolution and decay vertex separation provided by the VELO are essential to all LHCb analyses. For the integrated luminosity delivered by the LHC up to the end of $2011$ the VELO is exposed to higher particle fluences than any other silicon detector of the four major LHC experiments. These proceedings present results from radiation damage studies carried out during the first two years of data taking at the LHC. Radiation damage has been observed in all of the $88$ VELO silicon strip sensors, with many sensors showing evidence of type-inversion in the highest fluence regions. Particular attention has been given to the two \

  6. Radiation damage at LHCb, results and expectations

    CERN Multimedia

    Faerber, Christian

    2011-01-01

    The LHCb Detector is a single-arm spectrometer at the LHC designed to detect new physics through measuring CP violation and rare decays of heavy flavor mesons. The detector consists of vertex detector, tracking system, dipole magnet, 2 RICH detectors, em. calorimeter, hadron calorimeter, muon detector which all use different technologies and suffer differently from radiation damage. These radiation damage results and the investigation methods will be shown. The delivered luminosity till July 2011 was about 450 pb−1. The Vertex detector receives the highest particle flux at LHCb. The currents drawn by the silicon sensors are, as expected, increasing proportional to the integrated luminosity. The highest irradiaton regions of the n-bulk silicon sensors are observed to have recently undergone space charge sign inversion. The Silicon Trackers show increasing leakage currents comparable with earlier predictions. The electromagentic calorimeter and hadron calorimeter suffer under percent-level signal decrease whi...

  7. Extra lethal damage due to residual incompletely repaired sublethal damage in hyperfractionated and continuous radiation treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; van de Geijn, J.; Goffman, T. (ROB, DCT, NCI, NIH, Bethesda, Maryland 20892 (US))

    1991-05-01

    In the conventional linear--quadratic model of single-dose response, the {alpha} and {beta} terms reflect lethal damage created {ital during} the delivery of a dose, from two different presumed molecular processes, one linear with dose, the other quadratic. With the conventional one-fraction-per-day (or less) regimens, the sublethal damage (SLD), presumably repairing exponentially over time, is essentially completely fixed by the time of the next dose of radiation. If this assumption is true, the effects of subsequent fractions of radiation should be independent, that is, there should be little, if any, reversible damage left from previous fractions, at the time of the next dose. For multiple daily fractions, or for the limiting case, continuous radiation, this simplification may overlook damaged cells that have had insufficient time for repair. A generalized method is presented for accounting for extra lethal damage (ELD) arising from such residual SLD for hyperfractionation and continuous irradiation schemes. It may help to predict differences in toxicity and tumor control, if any, obtained with unconventional'' treatment regimens. A key element in the present model is the finite size and the dynamic character of the pool of sublethal damage. Besides creating the usual linear and quadratic components of lethal damage, each new fraction converts a certain fraction of the existing SLD into ELD, and creates some new SLD.

  8. Radiation Damage in Polarized Ammonia Solids

    CERN Document Server

    Slifer, K

    2007-01-01

    Solid NH3 and ND3 provide a highly polarizable, radiation resistant source of polarized protons and deuterons and have been used extensively in high luminosity experiments investigating the spin structure of the nucleon. Over the past twenty years, the UVA polarized target group has been instrumental in producing and polarizing much of the material used in these studies, and many practical considerations have been learned in this time. In this discussion, we analyze the polarization performance of the solid ammonia targets used during the recent JLab Eg4 run. Topics include the rate of polarization decay with accumulated charge, the annealing procedure for radiation damaged targets to recover polarization, and the radiation induced change in optimum microwave frequency used to polarize the sample. We also discuss the success we have had in implementing frequency modulation of the polarizing microwave frequency.

  9. Radiation damage of insulating crystals induced by electronic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Noriaki

    1988-05-01

    A review is given on radiation damage of insulating crystals arising from energy imparted to solids into electronic excitation. Emphasis is placed in describing the mechanism. The role of the exciton-phonon interaction in the production of radiation damage is described and the radiation damage processes in a few typical insulators such as alkali halides, alkali earth fluorides and silicon dioxide are described.

  10. Radiation damage-controlled localization of alteration haloes in albite: implications for alteration types and patterns vis-à-vis mineralization and element mobilization

    Science.gov (United States)

    Pal, D. C.; Chaudhuri, T.

    2016-12-01

    Uraninite, besides occurring in other modes, occurs as inclusions in albite in feldspathic schist in the Bagjata uranium deposits, Singhbhum shear zone, India. The feldspathic schist, considered the product of Na-metasomatism, witnessed multiple hydrothermal events, the signatures of which are preserved in the alteration halo in albite surrounding uraninite. Here we report radiation damage-controlled localization of alteration halo in albite and its various geological implications. Microscopic observation and SRIM/TRIM simulations reveal that the dimension of the alteration halo is dependent collectively on the zone of maximum cumulative α dose that albite was subjected to and by the extent of dissolution of uraninite during alteration. In well-preserved alteration haloes, from uraninite to the unaltered part of albite, the alteration minerals are systematically distributed in different zones; zone-1: K-feldspar; zone-2: chlorite; zone-3: LREE-phase/pyrite/U-Y-silicate. Based on textures of alteration minerals in the alteration microdomain, we propose a generalized Na+➔K+➔H+ alteration sequence, which is in agreement with the regional-scale alteration pattern. Integrating distribution of ore and alteration minerals in the alteration zone and their geochemistry, we further propose multiple events of U, REE, and sulfide mineralization/mobilization in the Bagjata deposit. The alteration process also involved interaction of the hydrothermal fluid with uraninite inclusions resulting in resorption of uraninite, redistribution of elements, including U and Pb, and resetting of isotopic clock. Thus, our study demonstrates that alteration halo is a miniature scale-model of the regional hydrothermal alteration types and patterns vis-à-vis mineralization/mobilization. This study further demonstrates that albite is vulnerable to radiation damage and damage-controlled fluid-assisted alteration, which may redistribute metals, including actinides, from radioactive minerals

  11. Studies on the strategies of minimizing radiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hee Yong; Sohn, Young Sook

    1998-04-01

    We studied on the strategies of minimizing radiation damage in animal system. To this end we studied following areas of research (1) mechanisms involved in bone marrow damage after total body irradiation, (2) extraction of components that are useful in protecting hematopoietic system from radiation damage, (3) cell therapy approach in restoring the damaged tissue, (4) development of radioprotective chemical reagent, and (5) epidemiological study on the population that had been exposed to radiation.

  12. Stochastic modeling of p53-regulated apoptosis upon radiation damage

    CERN Document Server

    Bhatt, Divesh; Bahar, Ivet

    2011-01-01

    We develop and study the evolution of a model of radiation induced apoptosis in cells using stochastic simulations, and identified key protein targets for effective mitigation of radiation damage. We identified several key proteins associated with cellular apoptosis using an extensive literature survey. In particular, we focus on the p53 transcription dependent and p53 transcription independent pathways for mitochondrial apoptosis. Our model reproduces known p53 oscillations following radiation damage. The key, experimentally testable hypotheses that we generate are - inhibition of PUMA is an effective strategy for mitigation of radiation damage if the treatment is administered immediately, at later stages following radiation damage, inhibition of tBid is more effective.

  13. Radiation damage in zircon and monazite

    Energy Technology Data Exchange (ETDEWEB)

    Meldrum, A.; Boatner, L.A. [Oak Ridge National Lab., TN (United States). Solid state Div.; Weber, W.J. [Pacific Northwest National Lab., Richland, WA (United States); Ewing, R.C. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering and Radiological Sciences

    1998-07-01

    Monazite and zircon respond differently to ion irradiation and to thermal and irradiation-enhanced annealing. The damage process (i.e., elastic interactions leading to amorphization) in radioactive minerals (metamictization) is basically the same as for the ion-beam-irradiated samples with the exception of the dose rate which is much lower in the case of natural samples. The crystalline-to-metamict transition in natural samples with different degrees of damage, from almost fully crystalline to completely metamict, is compared to the sequence of microstructures observed for ion-beam-irradiated monazite and zircon. The damage accumulation process, representing the competing effects of radiation-induced structural disorder and subsequent annealing mechanisms (irradiation-enhanced and thermal) occurs at much higher temperatures for zircon than for monazite. The amorphization dose, expressed as displacements per atom, is considerably higher in the natural samples, and the atomic-scale process leading to metamictization appears to develop differently. Ion-beam-induced amorphization data were used to calculate the {alpha}-decay-event dose required for amorphization in terms of a critical radionuclide concentration, i.e., the concentration above which a sample of a given age will become metamict at a specific temperature. This equation was applied to estimate the reliability of U-Pb ages, to provide a qualitative estimate of the thermal history of high-U natural zircons, and to predict whether actinide-bearing zircon or monazite nuclear waste forms will become amorphous (metamict) over long timescales.

  14. Particle fluence measurements by activation technique for radiation damage studies

    CERN Document Server

    León-Florián, E; Furetta, C; Leroy, Claude

    1995-01-01

    High-level radiation environment can produce radiation damage in detectors and their associate electronic components. The establishment of a correlation between damage, irradiation level and absorbed dose requires a precise measurement of the fluence of particles causing the damage. The activation technique is frequently used for performing particle fluence measurements. A review of this technique is presented.

  15. Non-Thermal Electromagnetic Radiation Damage to Lens Epithelium

    OpenAIRE

    Bormusov, Elvira; P.Andley, Usha; Sharon, Naomi; Schächter, Levi; Lahav, Assaf; Dovrat, Ahuva

    2008-01-01

    High frequency microwave electromagnetic radiation from mobile phones and other modern devices has the potential to damage eye tissues, but its effect on the lens epithelium is unknown at present. The objective of this study was to investigate the non-thermal effects of high frequency microwave electromagnetic radiation (1.1GHz, 2.22 mW) on the eye lens epithelium in situ. Bovine lenses were incubated in organ culture at 35°C for 10-15 days. A novel computer-controlled microwave source was us...

  16. Radiation Damage In Reactor Cavity Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G [ORNL; Le Pape, Yann [ORNL; Naus, Dan J [ORNL; Remec, Igor [ORNL; Busby, Jeremy T [ORNL; Rosseel, Thomas M [ORNL; Wall, Dr. James Joseph [Electric Power Research Institute (EPRI)

    2015-01-01

    License renewal up to 60 years and the possibility of subsequent license renewal to 80 years has established a renewed focus on long-term aging of nuclear generating stations materials, and recently, on concrete. Large irreplaceable sections of most nuclear generating stations include concrete. The Expanded Materials Degradation Analysis (EMDA), jointly performed by the Department of Energy, the Nuclear Regulatory Commission and Industry, identified the urgent need to develop a consistent knowledge base on irradiation effects in concrete. Much of the historical mechanical performance data of irradiated concrete does not accurately reflect typical radiation conditions in NPPs or conditions out to 60 or 80 years of radiation exposure. To address these potential gaps in the knowledge base, The Electric Power Research Institute and Oak Ridge National Laboratory are working to disposition radiation damage as a degradation mechanism. This paper outlines the research program within this pathway including: (i) defining the upper bound of the neutron and gamma dose levels expected in the biological shield concrete for extended operation (80 years of operation and beyond), (ii) determining the effects of neutron and gamma irradiation as well as extended time at temperature on concrete, (iii) evaluating opportunities to irradiate prototypical concrete under accelerated neutron and gamma dose levels to establish a conservative bound and share data obtained from different flux, temperature, and fluence levels, (iv) evaluating opportunities to harvest and test irradiated concrete from international NPPs, (v) developing cooperative test programs to improve confidence in the results from the various concretes and research reactors, (vi) furthering the understanding of the effects of radiation on concrete (see companion paper) and (vii) establishing an international collaborative research and information exchange effort to leverage capabilities and knowledge.

  17. Protection of DNA damage by radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Ho; Kim, In Gyu; Lee, Kang Suk; Kim, Kug Chan; Oh, Tae Jung

    1998-12-01

    The SOS response of Escherichia coli is positively regulated by RecA. To examine the effects of polyamines on The SOS response of E. Coli, we investigated the expression of recA gene in polyamine-deficient mutant and wild type carrying recA'::lacZ fusion gene. As a result, recA expression by mitomycin C is higher in wild type than that of polyamine-deficient mutant, but recA expression by UV radiation is higher in wild type than of mutant. We also found that exogenous polyamines restored the recA expression in the polyamine-deficient mutant to the wild type level. These results proposed that polyamines play an important role in mechanism of intracellular DNA protection by DNA damaging agents.

  18. Simulation of radiation damage in gadolinium pyrochlores

    Science.gov (United States)

    Todorov, Ilian T.; Purton, John A.; Allan, Neil L.; Dove, Martin T.

    2006-02-01

    We report molecular dynamics simulations of the production of radiation cascades in pyrochlores. We consider the apparently similar systems Gd2Ti2O7, Gd2Zr2O7 and Gd2Pb2O7, the first two of which have been put forward as potential materials for high-level radioactive waste storage. The effects of changing the mass of the 'primary knock-on' atom are also examined and we investigate whether the change in behaviour from Ti to Zr to Pb is largely due to the mass or the size difference between the elements. Problems associated with analysing the cascades and the damage created are discussed. There are clear differences between the three compounds. The simulations see no direct amorphization but rather a transition to the fluorite structure which is more pronounced for the Zr and Pb compounds than the Ti system. Underlying chemical trends are examined.

  19. Non-thermal electromagnetic radiation damage to lens epithelium.

    Science.gov (United States)

    Bormusov, Elvira; P Andley, Usha; Sharon, Naomi; Schächter, Levi; Lahav, Assaf; Dovrat, Ahuva

    2008-05-21

    High frequency microwave electromagnetic radiation from mobile phones and other modern devices has the potential to damage eye tissues, but its effect on the lens epithelium is unknown at present. The objective of this study was to investigate the non-thermal effects of high frequency microwave electromagnetic radiation (1.1GHz, 2.22 mW) on the eye lens epithelium in situ. Bovine lenses were incubated in organ culture at 35°C for 10-15 days. A novel computer-controlled microwave source was used to investigate the effects of microwave radiation on the lenses. 58 lenses were used in this study. The lenses were divided into four groups: (1) Control lenses incubated in organ culture for 10 to15 days. (2) Electromagnetic radiation exposure group treated with 1.1 GHz, 2.22 mW microwave radiation for 90 cycles of 50 minutes irradiation followed by 10 minutes pause and cultured up to 10 days. (3) Electromagnetic radiation exposure group treated as group 2 with 192 cycles of radiation and cultured for 15 days. (4) Lenses exposed to 39.5°C for 2 hours 3 times with 24 hours interval after each treatment beginning on the second day of the culture and cultured for 11 days. During the culture period, lens optical quality was followed daily by a computer-operated scanning laser beam. At the end of the culture period, control and treated lenses were analyzed morphologically and by assessment of the lens epithelial ATPase activity. Exposure to 1.1 GHz, 2.22 mW microwaves caused a reversible decrease in lens optical quality accompanied by irreversible morphological and biochemical damage to the lens epithelial cell layer. The effect of the electromagnetic radiation on the lens epithelium was remarkably different from those of conductive heat. The results of this investigation showed that electromagnetic fields from microwave radiation have a negative impact on the eye lens. The lens damage by electromagnetic fields was distinctly different from that caused by conductive heat.

  20. The study of radiation damage of EPROM 2764 memory

    Directory of Open Access Journals (Sweden)

    Domanski Grzegorz

    2016-01-01

    Full Text Available A simple statistical theory of radiation damage of semiconductor memory has been constructed. The radiation damage of EPROM memory has been investigated. The measured number of damaged bytes is significantly lower than the expected number resulting from the purely random distribution of the damaged bits. In this way it has been proven that there is a correlation between the failures of individual memory bits which are located in the same byte.

  1. Tailoring radiation damage in ZnO by surface modification

    Science.gov (United States)

    Myers, M. T.; Charnvanichborikarn, S.; Myers, M. A.; Lee, J. H.; Wang, H.; Biener, M. M.; Shao, L.; Kucheyev, S. O.

    2013-07-01

    Heavy-ion irradiation of (0 0 0 1) ZnO crystals results in unusual damage buildup, including an additional (intermediate) peak in damage-depth profiles measured by ion channeling, the formation of near-surface nanocavities, and stoichiometric imbalance. All these effects are thought to be associated with the influence of the sample surface on dynamic annealing processes. Here, by using ion channeling and transmission electron microscopy, we find that placing an ~7 nm thick AlO(OH) layer on the (0 0 0 1) ZnO surface results in (i) suppression of cavity formation, (ii) a reduced intermediate defect peak intensity, and (iii) a decreased level of disorder extending up to ~100 nm from the ZnO surface for room-temperature bombardment with 500 keV Xe ions. Our results demonstrate the potential to control radiation damage in ZnO by surface manipulation.

  2. Radiation Damage in Electronic Memory Devices

    OpenAIRE

    Irfan Fetahović; Milić Pejović; Miloš Vujisić

    2013-01-01

    This paper investigates the behavior of semiconductor memories exposed to radiation in order to establish their applicability in a radiation environment. The experimental procedure has been used to test radiation hardness of commercial semiconductor memories. Different types of memory chips have been exposed to indirect ionizing radiation by changing radiation dose intensity. The effect of direct ionizing radiation on semiconductor memory behavior has been analyzed by using Monte Carlo simula...

  3. Medicinal protection with Chinese herb-compound against radiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R.J.; Qian, J.K.; Yang, G.H.; Wang, B.Z.; Wen, X.L. (Institute of Space Medico-Engineering, Beijing (China))

    1990-08-01

    Experiments were carried out on mice and the subjects irradiated for cancer therapy to evaluate the protective efficacy of a Chinese medicinal herb-compound (CMHC). The lethality and the degree of leucopenia caused by radiation in mice medicated with CMHC were significantly less in comparison with control mice (p less than 0.01 and p less than 0.001, respectively). CMHC significantly improved the WBC and the thrombocytes in irradiated workers (p less than 0.01 and p less than 0.001, respectively). The WBC count of 40 patients under radiotherapy while treated with CMHC recovered from 3450 +/- 77/c.mm to 5425 +/- 264/c.mm (p less than 0.001); whereas, in the control group, without any medication, the WBC count dropped significantly (p less than 0.001). Our results revealed the applicabilities of CMHC in protection against radiation damage in spaceflight and in other fields.

  4. Chemistry of radiation damage to wire chambers

    Energy Technology Data Exchange (ETDEWEB)

    Wise, J.

    1992-08-01

    Proportional counters are used to study aspects of radiation damage to wire chambers (wire aging). Principles of low-pressure, rf plasma chemistry are used to predict the plasma chemistry in electron avalanches (1 atm, dc). (1) Aging is studied in CF{sub 4}/iC{sub 4}H{sub 10} gas mixtures. Wire deposits are analyzed by Auger electron spectroscopy. An apparent cathode aging process resulting in loss of gain rather than in a self-sustained current is observed in CF{sub 4}-rich gases. A four-part model considering plasma polymerization of the hydrocarbon, etching of wire deposits by CF{sub 4}, acceleration of deposition processes in strongly etching environments, and reactivity of the wire surface is developed to understand anode wire aging in CF{sub 4}/iC{sub 4}H{sub 10} gases. Practical guidelines suggested by the model are discussed. (2) Data are presented to suggest that trace amounts of Freons do not affect aging rates in either dimethyl ether or Ar/C{sub 2}H{sub 6}. Apparent loss of gain is explained by attachment of primary electrons to a continuously increasing concentration of Freon 11 (CCl{sub 3}F) in the counter gas. An increase in the concentration of Freon 11 in dimethyl ether is caused by a distillation process in the gas supply bottle and is a natural consequence of the unequal volatilities of the two compounds.

  5. Radiation damage to DNA: the effect of LET

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.F.; Milligan, J.R. [California Univ., San Diego, La Jolla, CA (United States). School of Medicine

    1997-03-01

    Mechanisms whereby ionizing radiation induced damage are introduced into cellular DNA are discussed. The types of lesions induced are summarized and the rationale is presented which supports the statement that radiation induced singly damaged sites are biologically unimportant. The conclusion that multiply damaged sites are critical is discussed and the mechanisms whereby such lesions are formed are presented. Structures of multiply damaged sites are summarized and problems which they present to cellular repair systems are discussed. Lastly the effects of linear energy transfer on the complexity of multiply damaged sites are surveyed and the consequences of this increased complexity are considered in terms of cell survival and mutation. (author)

  6. Radiation Damage in Electronic Memory Devices

    Directory of Open Access Journals (Sweden)

    Irfan Fetahović

    2013-01-01

    Full Text Available This paper investigates the behavior of semiconductor memories exposed to radiation in order to establish their applicability in a radiation environment. The experimental procedure has been used to test radiation hardness of commercial semiconductor memories. Different types of memory chips have been exposed to indirect ionizing radiation by changing radiation dose intensity. The effect of direct ionizing radiation on semiconductor memory behavior has been analyzed by using Monte Carlo simulation method. Obtained results show that gamma radiation causes decrease in threshold voltage, being proportional to the absorbed dose of radiation. Monte Carlo simulations of radiation interaction with material proved to be significant and can be a good estimation tool in probing semiconductor memory behavior in radiation environment.

  7. Defense mechanisms against radiation induced teratogenic damage in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kato, F.; Ootsuyama, A.; Nomoto, S.; Norimura, T. [Univ. of Occupational and Environmental Health, Kitakyushu, (Japan)

    2002-07-01

    Experimental studies with mice have established that fetuses at midgestational stage are highly susceptible to malformation at high, but not low, doses of radiation. When DNA damage is produced by a small amount of radiation, it is efficiently eliminated by DNA repair. However, DNA repair is not perfect. There must be defense mechanisms other than DNA repair. In order to elucidate the essential role of p53 gene in apoptotic tissue repair, we compared the incidence of radiation-induced malformations and deaths (deaths after day 10) in wild-type p53 (+/+) mice and null p53 (-/-) mice. For p53 (+/+) mice, an X-ray dose of 2 Gy given at a high dose-rate (450 mGy/min) to fetuses at 9.5 days of gestation was highly lethal and considerably teratogenic whereas it was only slightly lethal but highly teratogenic for p53 (-/-) fetuses. This reciprocal relationship of radiosensitivity to malformations and deaths supports the notion that fetal tissues have a p53 -dependent idguardianln of the tissue that aborts cells bearing radiation-induced teratogenic DNA damage. When an equal dose of 2 Gy given at a 400-fold lower dose-rate (1.2 mGy/min), this dose became not teratogenic for p53 (+/+) fetuses exhibiting p53 -dependent apoptosis, whereas this dose remained teratogenic for p53 (-/-) fetuses unable to carry out apoptosis. Furthermore, when the dose was divided into two equal dose fractions (1+1 Gy) at high dose rate, separated by 24 hours, the incidences of malformations were equal with control level for p53 (+/+), but higher for p53 (-/-) mice. Hence, complete elimination of teratogenic damage from irradiated tissues requires a concerted cooperation of two mechanisms; proficient DNA repair and p53-dependent apoptotic tissue repair.

  8. UV Radiation Damage and Bacterial DNA Repair Systems

    Science.gov (United States)

    Zion, Michal; Guy, Daniel; Yarom, Ruth; Slesak, Michaela

    2006-01-01

    This paper reports on a simple hands-on laboratory procedure for high school students in studying both radiation damage and DNA repair systems in bacteria. The sensitivity to ultra-violet (UV) radiation of both "Escherichia coli" and "Serratia marcescens" is tested by radiating them for varying time periods. Two growth temperatures are used in…

  9. Temperature effects on radiation damage to silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Barberis, E.; Cartiglia, N.; Leslie, J.; Pitzl, D.; Rowe, W.A.; Sadrozinski, H.F.W. (SCIPP, Univ. California, Santa Cruz, CA (United States)); Boissevain, J.G.; Ferguson, P.; Holzscheiter, K.; Kapustinsky, J.S.; Palounek, A.P.T.; Sommer, W.F.; Sondheim, W.E.; Ziock, H.J. (Los Alamos National Lab., NM (United States)); Ellison, J.A.; Fleming, J.K.; Jerger, S.; Joyce, D.; Lietzke, C.; Wimpenny, S.J. (Univ. California, Riverside, CA (United States)); Matthews, J.A.J.; Skinner, D. (Univ. New Mexico, Albuquerque, NM (United States))

    1993-03-01

    Motivated by the large particle fluences anticipated for the SSC and LHC, we are performing a systematic study of radiation damage to silicon microstrip detectors. Here we report radiation effects on detectors cooled to 0deg C (the proposed operating point for a large SSC silicon tracker) including leakage currents and change in depletion voltage. We also present results on the annealing behavior of the radiation damage. Finally, we report results of charge collection measurements of the damaged detectors made with an [sup 241]Am [alpha] source. (orig.).

  10. Activation and radiation damage in the environment of hadron accelerators

    CERN Document Server

    Kiselev, Daniela

    2013-01-01

    A component which suffers radiation damage usually also becomes radioactive, since the source of activation and radiation damage is the interaction of the material with particles from an accelerator or with reaction products. However, the underlying mechanisms of the two phenomena are different. These mechanisms are described here. Activation and radiation damage can have far-reaching consequences. Components such as targets, collimators, and beam dumps are the first candidates for failure as a result of radiation damage. This means that they have to be replaced or repaired. This takes time, during which personnel accumulate dose. If the dose to personnel at work would exceed permitted limits, remote handling becomes necessary. The remaining material has to be disposed of as radioactive waste, for which an elaborate procedure acceptable to the authorities is required. One of the requirements of the authorities is a complete nuclide inventory. The methods used for calculation of such inventories are presented,...

  11. Single Molecule Scanning of DNA Radiation Oxidative Damage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal will develop an assay to map genomic DNA, at the single molecule level and in a nanodevice, for oxidative DNA damage arising from radiation exposure;...

  12. Molecular dynamics investigation of radiation damage in semiconductors

    Science.gov (United States)

    Good, Brian S.

    1991-01-01

    Results of a molecular dynamics investigation of the effects of radiation damage on the crystallographic structure of semiconductors are reported. Particular cosiderastion is given to the formation of point defects and small defect complexes in silicon at the end of a radiation-damage cascade. The calculations described make use of the equivalent crystal theory of Smith and Banerjea (1988). Results on the existence of an atomic displacement threshold, the defect formation energy, and some crystallographic information on the defects observed are reported.

  13. Molecular dynamics investigation of radiation damage in semiconductors

    Science.gov (United States)

    Good, Brian S.

    1991-01-01

    Results of a molecular dynamics investigation of the effects of radiation damage on the crystallographic structure of semiconductors are reported. Particular cosiderastion is given to the formation of point defects and small defect complexes in silicon at the end of a radiation-damage cascade. The calculations described make use of the equivalent crystal theory of Smith and Banerjea (1988). Results on the existence of an atomic displacement threshold, the defect formation energy, and some crystallographic information on the defects observed are reported.

  14. Radiation damage to DNA: The importance of track structure

    CERN Document Server

    Hill, M A

    1999-01-01

    A wide variety of biological effects are induced by ionizing radiation, from cell death to mutations and carcinogenesis. The biological effectiveness is found to vary not only with the absorbed dose but also with the type of radiation and its energy, i.e., with the nature of radiation tracks. An overview is presented of some of the biological experiments using different qualities of radiation, which when compared with Monte Carlo track structure studies, have highlighted the importance of the localized spatial properties of stochastic energy deposition on the nanometer scale at or near DNA. The track structure leads to clustering of damage which may include DNA breaks, base damage etc., the complexity of the cluster and therefore its biological repairability varying with radiation type. The ability of individual tracks to produce clustered damage, and the subsequent biological response are important in the assessment of the risk associated with low-level human exposure. Recent experiments have also shown that...

  15. Radiation damage of the ILC positron source target

    Energy Technology Data Exchange (ETDEWEB)

    Ushakov, A.; Riemann, S.

    2007-11-15

    The radiation damage of the positron source target for the International Linear Collider (ILC) has been studied. The displacement damage in target material due to multi-MeV photons has been calculated by combining FLUKA simulations for secondary particle production, SPECTER data for neutron displacement cross-sections and the Lindhard model for estimations of displacement damage by ions. The radiation damage of a stationary Ti6Al4V target in units of displacements per atom (dpa) has been estimated for photons from an undulator with strength 0.92 and period 1.15 cm. The calculated damage is 7 dpa. Approximately 12.5% of displacement damage result from neutrons. (orig.)

  16. Radiation damage of the ILC positron source target

    Energy Technology Data Exchange (ETDEWEB)

    Ushakov, A.; Riemann, S.

    2007-11-15

    The radiation damage of the positron source target for the International Linear Collider (ILC) has been studied. The displacement damage in target material due to multi-MeV photons has been calculated by combining FLUKA simulations for secondary particle production, SPECTER data for neutron displacement cross-sections and the Lindhard model for estimations of displacement damage by ions. The radiation damage of a stationary Ti6Al4V target in units of displacements per atom (dpa) has been estimated for photons from an undulator with strength 0.92 and period 1.15 cm. The calculated damage is 7 dpa. Approximately 12.5% of displacement damage result from neutrons. (orig.)

  17. Bleomycin and radiation-induced lung damage in mice

    Energy Technology Data Exchange (ETDEWEB)

    Collis, C.H.; Down, J.D.; Pearson, A.E.; Steel, G.G. (Institute of Cancer Research, Sutton (UK). Surrey Branch)

    1983-01-01

    Bleomycin-induced lung damage was assessed using both a functional end-point and mortality. The extent of lung damage was found to depend on the schedule, mode of administration and dose of the drug. Greater damage occurred following twice-weekly administration than when the same dose was given as a single injection. Intravenous administration resulted in greater damage than intraperitoneal administration. When bleomycin was given with thoracic irradiation lung damage occurred earlier and at lower radiation doses than with radiation alone. Similar responses were obtained whether bleomycin was given four weeks before, with or four weeks after irradiation. Thus although there was enhanced damage from the combined treatment, there was no evidence of a time-dependent interaction.

  18. QUANTIFYING LOCAL RADIATION-INDUCED LUNG DAMAGE FROM COMPUTED TOMOGRAPHY

    NARCIS (Netherlands)

    Ghobadi, Ghazaleh; Hogeweg, Laurens E.; Faber, Hette; Tukker, Wim G. J.; Schippers, Jacobus M.; Brandenburg, Sytze; Langendijk, Johannes A.; Coppes, Robert P.; van Luijk, Peter

    2010-01-01

    Purpose: Optimal implementation of new radiotherapy techniques requires accurate predictive models for normal tissue complications. Since clinically used dose distributions are nonuniform, local tissue damage needs to be measured and related to local tissue dose. In lung, radiation-induced damage re

  19. DNA Damage by Radiation in Tradescantia Leaf Cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min; Hyun, Kyung Man; Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2010-04-15

    The comet assay is currently used in different areas of biological sciences to detect DNA damage. The comet assay, due to its simplicity, sensitivity and need of a few cells, is ideal as a short-term genotoxicity test. The comet assay can theoretically be applied to every type of eukaryotic cell, including plant cells. Plants are very useful as monitors of genetic effects caused by pollution in the atmosphere, water and soil. Tradescantia tests are very useful tools for screening the mutagenic potential in the environment. Experiments were conducted to study the genotoxic effects of ionizing radiations on the genome integrity, particularly of Tradescantia. The increasingly frequent use of Tradescantia as a sensitive environmental bioindicator of genotoxic effects. This study was designed to assess the genotoxicity of ionizing radiation using Tradescnatia-comet assay. The development of comet assay has enabled investigators to detect DNA damage at the levels of cells. To adapt this assay to plant cells, nuclei were directly obtained from Tradescantia leaf samples. A significant dose-dependent increase in the average tail moment values over the negative control was observed. Recently the adaptation of this technique to plant cells opens new possibilities for studies in variety area. The future applications of the comet assay could impact some other important areas, certainly, one of the limiting factors to its utility is the imagination of the investigator.

  20. Early mechanisms in radiation-induced biological damage

    Energy Technology Data Exchange (ETDEWEB)

    Powers, E.L.

    1983-01-01

    An introduction to the mechanisms of radiation action in biological systems is presented. Several questions about the nature of the radiation damage process are discussed, including recognition of the oxygen effects, dose-response relationships, and the importance of the hydroxyl radical. (ACR)

  1. Radiation damage of LHCb electromagnetic calorimeter

    CERN Document Server

    Barsuk, S; Kirichenko, V; Korolko, I; Malyshev, S; Rusinov, V Yu; Tarkovski, E

    2000-01-01

    Addressed is an extensive irradiation test program carried on to establish proper design and materials to build electromagnetic calorimeter that matches radiation conditions of the LHCb experiment at CERN. The results obtained are compared with measurements by other groups.

  2. Radiation damage in charge-coupled devices.

    Science.gov (United States)

    Bassler, Niels

    2010-08-01

    Due to their high sensitivity and signal-to-noise ratio, charge-coupled devices (CCDs) have been the preferred optical photon detectors of astronomers for several decades. CCDs are flown in space as the main detection instrument on several well-known missions, such as the Hubble Space Telescope, XMM-Newton or the Cassini Probe. Also, CCDs are frequently used in satellite star trackers which provide attitude information to the satellite orientation system. However, one major drawback is their extreme vulnerability to radiation, which is readily abundant in space. Here, we shall give a brief overview of the radiation effects on CCDs, and mention ways how to mitigate the effects in other ways than merely increase shielding, such as cooling and annealing. As an example, we have investigated the radiation hardness of a particular CCD, the so-called CCD47-20 from Marconi Applied Technologies (now E2V), by exposing it to radiation fields representing the radiation environment found in a highly elliptic orbit crossing the Van-Allen radiation belts. Two engineering-grade CCDs were irradiated with proton beams and photons, and effects of increased bulk dark current, surface dark current and inversion threshold voltage shifts were observed and are quantified.

  3. Radiation damage limitations for the Fermilab Energy Doubler/Saver

    Energy Technology Data Exchange (ETDEWEB)

    Sanger, P.A.

    1977-01-01

    One important factor determining the lifetime of particle accelerators using superconducting magnets is the accumulated radiation damage of the magnet components. Using existing damage studies and a measured correlation between the radiation levels with the beam-off and the beam-on, a reasonable assessment of magnet lifetimes can be made. On the basis of this assessment it is expected that damage to the magnet conductor will not limit the magnet performance. The proper choice of polymeric materials used in the magnet is necessary to avoid frequent refurbishing of the magnets.

  4. Radiation controlling reversible window

    Energy Technology Data Exchange (ETDEWEB)

    Gell, H.A. Jr.

    1980-01-01

    A coated glass glazing system is presented including a transparent glass substrate having one surface coated with a radiation absorptive film which is overcoated with a radiation reflective film by a technique which renders the radiation reflective film radiation absorptive at the surface contracting the radiating absorptive film. The coated glass system is used as glazing for storm windows which are adapted to be reversible so that the radiation reflective surface may be exposed to the outside of the dwelling during the warm seasons to prevent excessive solar radiation from entering a dwelling and reversed during cold seasons to absorb solar radiation and utilize it to aid in keeping the dwelling interior warm.

  5. Radiation damage in ceramic plasma-facing materials

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Noriaki; Morita, Kenji

    1988-07-01

    The present status of the studies of radiation damage of plasma-facing materials is reviewed. Emphasis is placed on the extent of the understanding in terms of the critical issues for materials in use as plasma interactive components. Understanding of the basic problems of radiation effects, which are important for long term development of fusion reactors, is also emphasized. It is pointed out that for low-Z materials radiation damage by fission neutrons is a good measure of the effects of radiation damage by fusion neutrons. The understanding of the fission neutron damage of major candidate materials is surveyed. Existing data on the effects of transmuted helium gas in beryllium are inferred and the data needs for the He effects on graphite are stressed. For radiation damage by plasma particles, the importance of understanding of the dynamic behaviors of the materials which are composite because of redeposition and hydrogen implantation. Some of the features of such composite materials under radiation are presented.

  6. Radiation control standards and procedures

    Energy Technology Data Exchange (ETDEWEB)

    1956-12-14

    This manual contains the Radiation Control Standards'' and Radiation Control Procedures'' at Hanford Operations which have been established to provide the necessary control radiation exposures within Irradiation Processing Department. Provision is also made for including, in the form of Bulletins'', other radiological information of general interest to IPD personnel. The purpose of the standards is to establish firm radiological limits within which the Irradiation Processing Department will operate, and to outline our radiation control program in sufficient detail to insure uniform and consistent application throughout all IPD facilities. Radiation Control Procedures are intended to prescribe the best method of accomplishing an objective within the limitations of the Radiation Control Standards. A procedure may be changed at any time provided the suggested changes is generally agreeable to management involved, and is consistent with department policies and the Radiation Control Standards.

  7. Radiation damage in plastic detectors; Dano por radiacion en detectores plasticos

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Tavera, L. [UAEM, Facultad de Quimica, 50000 Toluca, Estado de Mexico (Mexico)

    2007-07-01

    Full text: The damage induced by ionizing radiation in plastics produce a wide diversity of changes in the either the whole polymer structure or a localized high destruction. The first effect is achieved by using gamma and/or electron irradiation, whereas the second is carry out by employing positive ions irradiation. The damage intensity can be controlled by the dose delivery to the plastic, in the first case and by the rate of energy loss of the incident ion in the second case. Damage deepness in the thickness of the plastic, depends of radiation energy, although, attenuation effects have to be considered for gamma and electron irradiation. This paper presents an overview of those effects, the applications for radiation dosimetry and the production of micro and nano pores, as well as the methodology for control all parameters involved in the damage. Techniques for visualization the localized high destruction in the plastics are also presented. (Author)

  8. Radiation Damage Studies with Hadrons on Materials and Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J

    2004-07-01

    Many materials and electronics need to be tested for the radiation environment expected at linear colliders (LC) where the accelerator and detectors will be subjected to large fluences of hadrons, leptons and {gamma}'s over their life[1]. Examples are NdFeB magnets considered for the damping rings and final focus, electronic and electro-optical devices to be utilized in detector readout and accelerator controls and CCDs required for the vertex detector. Effects of {gamma}'s on many materials have been presented[2] and our understanding of the situation for rare earth permanent magnets at PAC2003[3]. Here we give first measurements of the fast neutron, stepped doses at the UC Davis McClellan Nuclear Reactor Center (UCD MNRC) together with the induced radioactivities. Damage appears to be proportional to the distances between the operating point and H{sub ci}.

  9. A Computational Study of Hadron Radiation Damage to DNA Nucleobases

    DEFF Research Database (Denmark)

    Milhøj, Birgitte Olai

    Radiation damage of biomolecules is a signicant contributor to both the onset and also possible curing of cancer. Such damage is largely the result of free radicals that can be created by the interaction of high-energetic photons or ions with water within cells. Understanding the details of this ......Radiation damage of biomolecules is a signicant contributor to both the onset and also possible curing of cancer. Such damage is largely the result of free radicals that can be created by the interaction of high-energetic photons or ions with water within cells. Understanding the details...... of this interaction is therefore of vital importance to the medical community, but even after decades of thorough investigation the breakdown pattern of radiation damage has not yet been completely deciphered. This thesis represents a very comprehensive attempt at drawing conclusions on the initial step....... Considering this there is much novelty in the results drawn from the present study, as conclusions based also on the kinetics of the system imply that the hydrogen abstraction pathways are of equal importance for the possible reactions preceding the radiation damage. The purine nucleobases are found to favour...

  10. Probing Radiation Damage in Plutonium Alloys with Multiple Measurement Techniques

    Energy Technology Data Exchange (ETDEWEB)

    McCall, S K; Fluss, M J; Chung, B W

    2010-04-21

    A material subjected to radiation damage will usually experience changes in its physical properties. Measuring these changes in the physical properties provides a basis to study radiation damage in a material which is important for a variety of real world applications from reactor materials to semiconducting devices. When investigating radiation damage, the relative sensitivity of any given property can vary considerably based on the concentration and type of damage present as well as external parameters such as the temperature and starting material composition. By measuring multiple physical properties, these differing sensitivities can be leveraged to provide greater insight into the different aspects of radiation damage accumulation, thereby providing a broader understanding of the mechanisms involved. In this report, self-damage from {alpha}-particle decay in Pu is investigated by measuring two different properties: magnetic susceptibility and resistivity. The results suggest that while the first annealing stage obeys second order chemical kinetics, the primary mechanism is not the recombination of vacancy-interstitial close pairs.

  11. Typical Cell Signaling Response to Ionizing Radiation:DNA Damage and Extranuclear Damage

    Institute of Scientific and Technical Information of China (English)

    Hui Yu

    2012-01-01

    To treat many types of cancer,ionizing radiation (IR) is primarily used as external-beam radiotherapy,brachytherapy,and targeted radionuclide therapy.Exposure of tumor cells to IR can induce DNA damage as well as generation of reactiveoxygen species (ROS) and reactive nitrogen species (RNS) which can cause non-DNA lesions or extracellular damage like lipid perioxidation.The initial radiation-induced cell responses to DNA damage and ROS like the proteolytic processing,as well as synthesis and releasing ligands (such as growth factors,cytokines,and hormone) can cause the delayed secondary responses in irradiated and unirradiated bystander cells through paracrine and autocrine pathways.

  12. Radiation hazard control report

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Taeko; Inagaki, Masayo; Morishima, Hiroshige; Araki, Yasusuke; Takiguchi, Chizuko; Hiraji, Chihiro; Nagai, Shoya [Kinki Univ., Higashi-Osaka, Osaka (Japan)

    2003-03-01

    The document of radiation hazard control from April 2001 to March 2002 in the research institute of atomic energy of Kinki University was reported and actual data were presented. 106 personnel were subjected to the control, the reactor maximal output was 1W with total output of 399,64 W center dot h for total 718.23 h and the institute underwent the inspection by Ministry of Education, Culture, Sports, Science and Technology for twice, which resulting in getting satisfactory evaluation. The control involved was for the personnel, laboratories and field. The first was done mainly with film badges and sometimes with pocket dosimeters, and revealed the exposure of 0.480 mSv at maximum. The laboratory dose equivalent was continuously measured with the ionization chamber area monitor and sometimes with the ionization chamber survey meters, GM tube survey meters and scintillation survey meters. The film badge and TLD were also used. In addition, concentrations of radioactivity were measured in the exhaust gas and water with the dust-monitor and overall-monitor, respectively, and surface densities by smear-method with 2 pi-gas flow and liquid scintillation counters. The field control was carried out by calculation of environmental gamma-ray dose equivalent rate based on monthly TLD dose data and by actual beta-ray measurement of environmental specimens collected at every 3 months. (J.P.N.)

  13. Radiation hazard control report

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Taeko; Inagaki, Masayo; Morishima, Hiroshige; Araki, Yasusuke; Takiguchi, Chizuko; Matsubayashi, Hideki; Hiraji, Chihiro [Kinki Univ., Higashi-Osaka, Osaka (Japan)

    2002-01-01

    The document of radiation hazard control from April 2000 to March 2001 in the research institute of atomic energy of Kinki University was reported and actual data were presented. Seventy five personnel were subjected to the control, the reactor maximal output was 1W with total output of 463.74 W center dot h for total 777.34 h and the institute underwent the inspection by Science and Technology Agency for 3 times, which resulting in getting satisfactory evaluation. The control involved was for the personnel, laboratories and field. The first was done mainly with film badges and sometimes with pocket dosimeters, and revealed the exposure of 0.264 mSv at maximum. The laboratory dose equivalent was continuously measured with the ionization chamber area monitor and sometimes with the ionization chamber survey meters, GM tube survey meters and scintillation survey meters. The film badge and TLD were also used. In addition, concentrations of radioactivity were measured in the exhaust gas and water with the dust-monitor and overall-monitor, respectively, and surface densities by smear-method with the 2 pi-gas flow and liquid scintillation counters. The field control was carried out by calculation of environmental gamma-ray dose equivalent rate based on monthly TLD dose data and by actual beta-ray measurement of environmental specimens collected at every 3 months. (J.P.N.)

  14. Animal Models of Ionizing Radiation Damage

    Science.gov (United States)

    1992-01-01

    Haggbloom, and R.A. Gazzara, Effects of Hippocampal X-irradiation-Produced Granule-Cell Agenesis on Instrumental Runway Performance in Rats, Physiol...Bowden, and J.P. Wyatt, A Pathway To Pulmonary Fibrosis: An Ultrastructural Study Of Mouse and Rat Following Radiation to the Whole Body and Hemithorax...532-536, 1956. 27. Brooks, P.M., E.O. Richey, and J.E. Pickering, Prompt Pulmonary Ventilation and Oxygen Consumption Changes in Rhesus Monkeys

  15. Heat induced damage detection in composite materials by terahertz radiation

    Science.gov (United States)

    Radzieński, Maciej; Mieloszyk, Magdalena; Rahani, Ehsan Kabiri; Kundu, Tribikram; Ostachowicz, Wiesław

    2015-03-01

    In recent years electromagnetic Terahertz (THz) radiation or T-ray has been increasingly used for nondestructive evaluation of various materials such as polymer composites and porous foam tiles in which ultrasonic waves cannot penetrate but T-ray can. Most of these investigations have been limited to mechanical damage detection like inclusions, cracks, delaminations etc. So far only a few investigations have been reported on heat induced damage detection. Unlike mechanical damage the heat induced damage does not have a clear interface between the damaged part and the surrounding intact material from which electromagnetic waves can be reflected back. Difficulties associated with the heat induced damage detection in composite materials using T-ray are discussed in detail in this paper. T-ray measurements are compared for different levels of heat exposure of composite specimens.

  16. Influence of radiation damage on BGO scintillation properties

    Energy Technology Data Exchange (ETDEWEB)

    Georgii, R.; Meissl, R.; Lichti, G.G.; Schoenfelder, V. [Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany); Hajdas, W. [Paul-Scherrer Institut, CH-5232 Villigen (Switzerland); Henschel, H. [Fraunhofer-Institut fuer Naturwissenschaftlich-Technische Trendanalyse, D-53879 Euskirchen (Germany); Graef, H.-D.; Neumann-Cosel, P. von; Richter, A. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany)

    1998-08-11

    Aboard INTEGRAL, the next medium-size {gamma}-ray mission of the European Space Agency (ESA), a high-resolution Ge-spectrometer array with a BGO anticoincidence shield and imaging capability will be flown. The influence of the radiation damage on the photoelectron yield of the BGO scintillators due to the radiation environment in the orbit, i.e. {gamma}-rays, electrons and protons from the radiation, belts and the cosmic diffuse radiation, was investigated. Irradiation tests with doses equivalent to the orbit conditions were performed and the photoelectron yields of different BGO crystals were measured. It was found that for equal doses the reduction of the photoelectron yield varies strongly for the crystals of different manufacturers. Furthermore, electromagnetic radiation affects the photoelectron yield much stronger than particle radiation. A possible explanation is given by interpreting the effect due to {gamma}-rays primarily as damage of the electronic structure of the BGO, whereas the particle radiation damages mainly the crystal structure. (orig.) 19 refs.

  17. Damage Pattern as a Function of Various Types of Radiation

    Directory of Open Access Journals (Sweden)

    R.G. Ahmed

    2006-01-01

    Full Text Available The number of reports on the effects of various types of radiation is gradually increasing because of weakening of the immune system. Radiation can penetrate into living cells and result in the transfer of radiation energy to the biological material. The absorbed energy can increase the reactive oxygen species and break chemical bonds and cause ionization of different biologically essential macromolecules, such as DNA membrane lipids and proteins. Damage to the cellular membrane release the hydrolytic enzymes responsible for various catabolic processes in the tissues and leads to cell death. An understanding of the pattern in critical cellular structures such as DNA is an important prerequisite for a mechanistic assessment of primary radiation injury. The DNA damage induced by radiation such as base alterations, cross linking, strands breaker chromosomal aberration which may in turn lead to mutations. In order to further explore the harmful effects of radiation. I have produced a variety of effects of radiation on the apoptosis and necrosis. Indeed, the present review has shown that the increase in the oxidative stress (increased endogenous production of the free radicals due to radiation may be a reason for such a damage of the cell membrane, and may lead to harming the cellular elements (such as DNA. Here, one can hypothesize that, the cells with increased sensitivity to oxidative stress may be more susceptible to damage by radiation compared to normal cells. The ultimate biological consequences of this effect are subsequently processed by these cells. Much work remains to be done to firmly establish this concept.

  18. High-energy radiation damage in zirconia: modeling results

    Energy Technology Data Exchange (ETDEWEB)

    Zarkadoula, Eva; Devanathan, Ram; Weber, William J.; Seaton, Michael; Todorov, Ilian; Nordlund, Kai; Dove, Martin T.; Trachenko, Kostya

    2014-02-28

    Zirconia has been viewed as a material of exceptional resistance to amorphization by radiation damage, and was consequently proposed as a candidate to immobilize nuclear waste and serve as a nuclear fuel matrix. Here, we perform molecular dynamics simulations of radiation damage in zirconia in the range of 0.1-0.5 MeV energies with the account of electronic energy losses. We find that the lack of amorphizability co-exists with a large number of point defects and their clusters. These, importantly, are largely disjoint from each other and therefore represent a dilute damage that does not result in the loss of long-range structural coherence and amorphization. We document the nature of these defects in detail, including their sizes, distribution and morphology, and discuss practical implications of using zirconia in intense radiation environments.

  19. High-energy radiation damage in zirconia: modeling results

    Energy Technology Data Exchange (ETDEWEB)

    Zarkadoula, Evangelia [Queen Mary, University of London; Devanathan, Ram [Pacific Northwest National Laboratory (PNNL); Weber, William J [ORNL; Seaton, M [Daresbury Laboratory, UK; Todorov, I T [Daresbury Laboratory, UK; Nordlund, Kai [University of Helsinki; Dove, Martin T [Queen Mary, University of London; Trachenko, Kostya [Queen Mary, University of London

    2014-01-01

    Zirconia is viewed as a material of exceptional resistance to amorphization by radiation damage, and consequently proposed as a candidate to immobilize nuclear waste and serve as an inert nuclear fuel matrix. Here, we perform molecular dynamics simulations of radiation damage in zirconia in the range of 0.1-0.5 MeV energies with account of electronic energy losses. We nd that the lack of amorphizability co-exists with a large number of point defects and their clusters. These, importantly, are largely isolated from each other and therefore represent a dilute damage that does not result in the loss of long-range structural coherence and amorphization. We document the nature of these defects in detail, including their sizes, distribution and morphology, and discuss practical implications of using zirconia in intense radiation environments.

  20. High-energy radiation damage in zirconia: Modeling results

    Energy Technology Data Exchange (ETDEWEB)

    Zarkadoula, E., E-mail: zarkadoulae@ornl.gov [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); SEPnet, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Devanathan, R. [Nuclear Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Weber, W. J. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Seaton, M. A.; Todorov, I. T. [STFC Daresbury Laboratory, Scientific Computing Department, Keckwick Lane, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Nordlund, K. [University of Helsinki, P.O. Box 43, FIN-00014 Helsinki (Finland); Dove, M. T. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Trachenko, K. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); SEPnet, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2014-02-28

    Zirconia is viewed as a material of exceptional resistance to amorphization by radiation damage, and consequently proposed as a candidate to immobilize nuclear waste and serve as an inert nuclear fuel matrix. Here, we perform molecular dynamics simulations of radiation damage in zirconia in the range of 0.1–0.5 MeV energies with account of electronic energy losses. We find that the lack of amorphizability co-exists with a large number of point defects and their clusters. These, importantly, are largely isolated from each other and therefore represent a dilute damage that does not result in the loss of long-range structural coherence and amorphization. We document the nature of these defects in detail, including their sizes, distribution, and morphology, and discuss practical implications of using zirconia in intense radiation environments.

  1. Kinetic model for the pathogenesis of radiation lung damage

    Energy Technology Data Exchange (ETDEWEB)

    Collis, C.H. (Institute of Cancer Research, Sutton (UK). Surrey Branch)

    1982-09-01

    The development of radiation-induced lung damage can be explained by a kinetic model, based on the assumption that this damage becomes manifest only when a critical proportion (K) of essential cells have ceased to function, and that the rate of loss of these cells following irradiation is linear and dose-dependent. The kinetic model relates the surviving fraction to the time to manifestation of radiation-induced lung damage and to constants, K and the cell cycle time, T. Predictions made from the model about the nature of the response to irradiation are, for the most part, fulfilled. The model can also be used to interpret the response to combined treatment with irradiation and cytotoxic drugs, including the much earlier manifestation of lung damage sometimes seen with such treatment.

  2. Low cost CCD camera protection against neutron radiation damage.

    Science.gov (United States)

    Kok, J G M

    2005-01-01

    At a radiotherapy department cancer patients are treated with high energy electron and photon beams. These beams are produced by a linear accelerator. A closed circuit television system is used to monitor patients during treatment. Although CCD cameras are rather resistant to stray radiation, they are damaged by the low flux of neutrons which are produced by the linac as a side effect. PVC can be used to reduce damage to CCD cameras induced by neutron radiation. A box with 6 cm thick walls will extend the life of the camera at least by a factor of two. A PVC neutron shield is inexpensive. PVC is easy to obtain and the box is simple to construct. A similar box made out of PE will not reduce neutron damage to a CCD camera. Although PE is a good medium to moderate faster neutrons, thereby reducing some of the bulk defects, it will not capture thermal neutrons which induce surface damage.

  3. Damage-mitigating control of mechanical systems

    Science.gov (United States)

    Holmes, Michael S.

    Damage-Mitigating Control is a field of research involving the integration of two distinct disciplines: Systems Sciences and Mechanics of Materials. This dissertation presents a feedback control architecture for mechanical systems to achieve a tradeoff between dynamic performance and structural durability of critical plant components. The proposed damage-mitigating control system has a two-tier structure: (i) A lower-level linear output feedback controller for plant output tracking and stability robustness over a specified operating range; and (ii) An upper-level nonlinear feedback controller which takes advantage of the real-time information generated by a physics-based model of material damage. The advantages and disadvantages of various methods available for the design of linear tracking controllers are discussed. A robust sampled-data Hsbinfty controller is designed for a reusable rocket engine, similar to the Space Shuttle Main Engine, based on a 2-input/2-output, 20-state model. The mu-synthesis technique is used to design a robust sampled-data controller for a commercial-scale fossil-fueled power plant based on a 4-input/4-output, 27-state model. A procedure for the design of damage-mitigating linear tracking controllers is also presented. The concept of fuzzy control is used to synthesize upper-level nonlinear feedback controllers based on real-time damage information. Damage-mitigating controllers are designed for the reusable rocket engine and the fossil-fueled power plant. A major advantage of using the fuzzy method for damage-mitigating controller design is that the controller can be synthesized without directly dealing with the inherent nonlinearities of the damage model. Simulation results for the reusable rocket engine and the fossil-fueled power plant suggest that the fuzzy method of damage mitigation is a practical way to design damage controllers for mechanical systems. The damage controller parameter optimization method is presented as an

  4. Radiation damage studies of silicon microstrip sensors

    CERN Document Server

    Nakayama, T; Hara, K; Shimojima, M; Ikegami, Y; Iwata, Y; Johansen, L G; Kobayashi, H; Kohriki, T; Kondo, T; Nakano, I; Ohsugi, T; Riedler, P; Roe, S; Stapnes, Steinar; Stugu, B; Takashima, R; Tanizaki, K; Terada, S; Unno, Y; Yamamoto, K; Yamamura, K

    2000-01-01

    Various types of large area silicon microstrip detectors were fabricated for the development of radiation-tolerant detectors that will operate in the LHC ATLAS SCT. The detectors were irradiated with 12-GeV protons at KEK to fluences of 1.7*10/sup 14/ and 4.2*10/sup 14 / protons/cm/sup 2/. Irradiated samples included n-on-n detectors with 4 k Omega cm bulk resistivity and p-on-n detectors with 1 k Omega cm and 4 k Omega cm bulk resistivities. Four patterns of p-stop structures are configured in the n-on-n detectors. Although Hamamatsu fabricated most of the detectors, p-on-n detectors by SINTEF are also included, as well as those fabricated in a modified process by Hamamatsu. The detector performances after irradiation that are compared are the probability of creation of faulty coupling capacitors, C-V characteristics, charge curves, and total leakage current. The p-on-n are similar to the n-on-n detectors in these performances, and will remain operational in the ATLAS radiation environment. (12 refs).

  5. Effects of lactic bacteria on immunological activation and radiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Monzen, Hajime; Yuki, Rumio [Otsu Red Cross Hospital, Shiga (Japan); Gu, Yeunhwa; Hasegawa, Takeo [Suzuka Univ. of Medical Science, Mie (Japan). Graduate School

    2003-03-01

    Although some studies have suggested that certain substances, such as vitamins and glucan, found in natural food products may have protective effect against radiation injuries, no substance is used practically as radioprotectors. Safe radioprotectors without side effects are, however, yet to see. Enterococcus faecalis (Ef) in intestines is known to enhance immunity of the host as a biological response modifier. In this report, we have examined the radiation protection effect of Ef using C3H mice and assessed the effect of Ef on the natural killer (NK) cells activity of the splenic cells in the mice. Less body weight losses after irradiation were observed among Ef injection groups, in comparison with control groups. Our data showed a strong tendency to prolong the surviving fraction among the groups with the Ef injection. Hence, the Ef treatment appeared to have protected mucosal damage caused by the X-ray irradiation. The NK cells activities were markedly enhanced after the Ef injection as well. With the evidence mentioned above, we conclude that the Ef may have positive effect on patients who undergo a radiotherapy. (author)

  6. Proton-radiation damage in Gunn oscillators

    Science.gov (United States)

    Johnson, J. W.; Fales, C. L., Jr.

    1973-01-01

    The irradiation effects of 22 MeV protons on the electrical characteristics of GaAs continuous-wave Gunn oscillators was studied. The radio frequency power output was reduced by 3 decibels at proton fluences in the neighborhood of 1.5 x 10 to the 12th power protons/sq cm. Conductance measurements indicate that the carrier removal rate at high electric fields remained roughly 40 percent less than at low fields. Diode efficiencies of two device groups were found to be monotonically descreasing functions of fluence. Frequency modulation noise was generally unaffected by radiation, but the magnitude of the noise in the noise power spectrum increased significantly. These effects are partially accounted for, in a qualitative fashion, by a model of electron traps having field-dependent net-carrier capture rates and various response times.

  7. Simulating radiation damage in {delta}-plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, M. [Department of Mathematical Sciences, Loughborough University, Loughborough, LE11 3TU (United Kingdom)], E-mail: m.robinson@lboro.ac.uk; Kenny, S.D.; Smith, R. [Department of Mathematical Sciences, Loughborough University, Loughborough, LE11 3TU (United Kingdom); Storr, M.T.; McGee, E. [Atomic Weapons Establishment, Aldermaston, Reading, RG7 4PR (United Kingdom)

    2009-09-15

    Radiation events in {delta}-Pu (fcc) have been simulated in an attempt to understand the fundamental mechanisms that contribute to the Pu ageing process. The Pu interactions are modelled using a potential based on the modified embedded atom method (MEAM). The energetics of point defects have been investigated using static calculations together with molecular dynamics (MD) to simulate radiation events. All MD simulations were carried out with Pu initially in the face-centred-cubic (fcc) structure, although this is not the lowest energy configuration for the pure metal. The point defect study suggests that the mono-vacancy has the lowest formation energy (0.46 eV), with interstitial defects favouring the <100> - split orientation over occupation of the native fcc octahedral site. Displacement threshold energy calculations at room temperature give a minimum value of between 5 and 6 eV, increasing to 8-14 eV along the major crystallographic directions. Low energy collision cascades, initiated with energies in the range of 0.4-1 keV, show that the cascades form in a similar manner to other fcc metals with a vacancy rich zone at the cascade core, surrounded by isolated interstitial defects. Higher energy cascades show similar features but with occasional channelling of energetic atoms and sub-cascade branching which significantly reduces defect production. A common trait observed across all the cascades was the relatively slow annealing period, compared to cascades in other fcc metals, with simulations at energies above 5 keV requiring many 10's of picoseconds before the ballistic phase was completed.

  8. Inducible HSP70 Protects Radiation-Induced Salivary Gland Damage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae-June; Lee, Yoon-Jin; Kwon, Hee-Choong; Lee, Su-Jae; Bae, Sang-Woo; Lee, Yun-Sil [Korea Institute of Radiological Medical Sciences, Seoul (Korea, Republic of); Kim, Sung-Ho [Chonnam National University, Gwangju (Korea, Republic of)

    2006-07-01

    Irradiation (IR) delivered to the head and neck is a common treatment for malignancies. Salivary glands in the irradiation field are severely damaged, and consequently this resulted in marked salivary hypofunction. While the exact mechanism of salivary gland damage remains enigmatic, fluid secreting acinar cells are lost, and saliva output is dramatically reduced. Previously we have reported that inducible heat shock protein 70 (HSP70i) induced radioresistance in vitro. Moreover, HSP70i localized to salivary glands by gene transfer has great potential for the treatment of salivary gland. Herein, we investigated whether HSP70 can use as radio protective molecules for radiation-induced salivary gland damage in vivo.

  9. Radiation damage in nonmetallic solids under dense electronic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Noriaki; Tanimura, Katsumi; Nakai, Yasuo (Dept. of Physics, Nagoya Univ. (Japan))

    1992-03-01

    Basic processes of radiation damage of insulators by dense electronic excitation are reviewed. First it is pointed out that electronic excitation of nonmetallic solids produces the self-trapped excitons and defect-related metastable states having relatively long lifetimes, and that the excitation of these metastable states, produces stable defects. The effects of irradiation with heavy ions, including track registration, are surveyed on the basis of the microscopic studies. It is pointed out also that the excitation of the metastable states plays a role in laser-induced damage at relatively low fluences, while the laser damage has been reported to be governed by heating of free electrons produced by multiphoton excitation. Difference in the contributions of the excitation of metastable defects to laser-induced damage of surfaces, or laser ablation, and laser-induced bulk damage is stressed. (orig.).

  10. Radiation Damage Studies of Silicon Photomultipliers

    CERN Document Server

    Bohn, P; Hazen, E.; Heering, A.; Rohlf, J.; Freeman, J.; Los, Sergey V.; Cascio, E.; Kuleshov, S.; Musienko, Y.; Piemonte, C.

    2008-01-01

    We report on the measurement of the radiation hardness of silicon photomultipliers (SiPMs) manufactured by Fondazione Bruno Kessler in Italy (1 mm$^2$ and 6.2 mm$^2$), Center of Perspective Technology and Apparatus in Russia (1 mm$^2$ and 4.4 mm$^2$), and Hamamatsu Corporation in Japan (1 mm$^2$). The SiPMs were irradiated using a beam of 212 MeV protons at Massachusetts General Hospital, receiving fluences of up to $3 \\times 10^{10}$ protons per cm$^2$ with the SiPMs at operating voltage. Leakage currents were read continuously during the irradiation. The delivery of the protons was paused periodically to record scope traces in response to calibrated light pulses to monitor the gains, photon detection efficiencies, and dark counts of the SiPMs. The leakage current and dark noise are found to increase with fluence. Te leakage current is found to be proportional to the mean square deviation of the noise distribution, indicating the dark counts are due to increased random individual pixel activation, while SiPM...

  11. Radiation damage aspects of the Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Parmentier, N.; Nenot, J.C. (CEA Centre d' Etudes Nucleaires de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire)

    1989-01-01

    During the night of 25 to 26 April 1986, the most severe nuclear accident occurred at the Chernobyl power stations. It resulted in the irradiation of 237 workers at dose levels justifying medical care. The most severe cases (115) were hospitalized in Moscow, with 20 patients with doses higher than 6 Gy. In most cases, the treatment was classical, based on transfusion of red cells and platelets, and heavy supportive therapy. For 19 patients with severe aplasia, transplantations of bone marrow (13) or foetal liver (6) were decided. Of these patients only one survived, which justifies the statement from U.S.S.R. physicians: after an accident the indications of grafting are limited and its risks may not justify its use. Most of the complications were related to radiation burns which involved 56 victims and resulted in fatal outcomes in at least 19 patients. The population was evacuated from a 30 km zone around the site; based on direct measurements and calculations, the collective dose was evaluated at 1.6 x 10{sup 4} man Sv, with an individual average lower than 250 mSv. The European part of U.S.S.R. with 75 million persons is supposed to have received a collective dose likely to increase the natural mortality by less than 0.1%. The numbers with cancer in the Northern Hemisphere might increase by 0.004% over the next 50 years.

  12. Radiation damage aspects of the chernobyl accident

    Science.gov (United States)

    Parmentier, N.; Nenot, J. C.

    During the night of 25 to 26 April 1986, the most severe nuclear accident occurred at the Chernobyl power station, about 150km north of Kiev, in the Ukraine. It resulted in the irradiation of 237 workers at dose levels justifying medical care. The most severe cases (115) were hospitalized in Moscow, with 20 patients with doses higher than 6 Gy. In most cases, the treatment was classical, based on transfusion of red cells and platelets, and heavy supportive therapy. For 19 patients with severe aplasia, transplantations of bone marrow (13) or foetal liver (6) were decided. Of these patients only one survived, which justifies the statement from U.S.S.R. physicians: after an accident the indications of grafting are limited and its risks may not justify its use. Most of the complications were related to radiation burns which involved 56 victims and resulted in fatal outcomes in at least 19 patients. The population was evacuated from a 30 km zone around the site; based on direct measurements and calculations, the collective dose was evaluated at 1.6 × 10 4 man Sv, with an individual average lower than 250 mSv. The European part of U.S.S.R. with 75 million persons is supposed to have received a collective dose likely to increase the natural mortality by less than 0.1%. The numbers with cancer in the Northern Hemisphere might increase by 0.004% over the next 50 years.

  13. LHCb: Radiation Damage in the LHCb VELO

    CERN Multimedia

    Rodriguez Perez, P

    2012-01-01

    LHCb is a dedicated experiment to study new physics in the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. The beauty and charm hadrons are identified through their flight distance in the Vertex Locator (VELO), and hence the detector is critical for both the trigger and offline physics analyses. The 88 VELO sensors are all n-on-n type but one, which is made from n-on-p silicon, and is the only n-on-p module silicon sensor operated at the LHC. The sensors have an inner radius of only 7 mm from the LHC beam and an outer radius of 42 mm, consequently the sensors receive a large and non-uniform radiation dose. The LHCb is planned to record an integrated luminosity up to 5 $fb^{-1}$ with collision energies between 7 and 14 TeV before 2018. The leakage current in the sensors has increased significantly following the delivered luminosity, and decreased during shutdown periods due to annealing. The effective depletion voltage of the sensors is measured from the charge collection effi...

  14. Design and construction of an irradiation apparatus with controlled atmosphere and temperature for radiation damage evaluation of nuclear materials in the IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lucki, Georgi; Silva, Jose Eduardo Rosa da; Castanheira, Myrthes; Terremoto, Luis Antonio Albiac; Teodoro, Celso Antonio; Silva, Antonio Teixeira e; Damy, Margaret de Almeida [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: glucki@ipen.br

    2005-07-01

    A material irradiation apparatus CIMAT (Capsula de Irradiacao de Materiais) with controlled temperature and atmosphere is described. The device was specifically designed to perform experiments inside the core of the IEA-R1 swimming pool reactor and allows fast neutron (E=1 MeV) irradiations of multiple miniature metallic samples at temperature between 100 deg C and 500 deg C, in Argon or Helium atmosphere to inhibit corrosion. The aim of CIMAT is to make a comparative assessment of Radiation Embrittlement (RE) on the AS 508 cl.3 steel, of different origins (ELETROMETAL-Brazil and VITCOVICE-Chekia) used in Pressure Vessels (PV) of PWR, for fluence of 10 exp 19 nvt at 300 C, by means of mechanical post irradiation evaluation. Previous characterization of non-irradiated samples of these materials is presented. In situ electrical and magnetic measurements, at high temperatures, are foreseen to be made with this apparatus. Extensive temperature stability and leak-tightness tests performed in the reactor swimming pool have proven the CIMAT to be intrinsically safe and operational. (author)

  15. Neutron dosimetry and radiation damage calculations for HFBR

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, L.R.; Ratner, R.T. [Pacific Northwest National Lab., TN (United States)

    1998-03-01

    Neutron dosimetry measurements have been conducted for various positions of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) in order to measure the neutron flux and energy spectra. Neutron dosimetry results and radiation damage calculations are presented for positions V10, V14, and V15.

  16. A new mechanism for radiation damage processes in alkali halides

    NARCIS (Netherlands)

    Dubinko, V.I.; Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den

    1999-01-01

    We present a theory of radiation damage formation in alkali halides based on a new mechanism of dislocation climb, which involves the production of VF centers (self-trapped hole neighboring a cation vacancy) as a result of the absorption of H centers of dislocation lines. We consider the evolution o

  17. Genomic damage in children accidentally exposed to ionizing radiation

    DEFF Research Database (Denmark)

    Fucic, A; Brunborg, G; Lasan, R

    2007-01-01

    doses of radiation; (b) effects on children from combined exposure to low doses of radiation and chemical agents from food, water and air; and (c) specific effects from exposure during early childhood (radioisotopes from water, radon in homes). Special consideration should also be given to a possible......, environmental radiation pollution and indoor accidental contamination reveals consistently increased chromosome aberration and micronuclei frequency in exposed than in referent children. Future research in this area should be focused on studies providing information on: (a) effects on children caused by low...... of children to environmental genotoxicants. Environmental research on children predominantly investigates the health effects of air pollution while effects from radiation exposure deserve more attention. The main sources of knowledge on genome damage of children exposed to radiation are studies performed...

  18. Radiation induced crystallinity damage in poly(L-lactic acid)

    CERN Document Server

    Kantoglu, O

    2002-01-01

    The radiation-induced crystallinity damage in poly(L-lactic acid) (PLLA) in the presence of air and in vacuum, is studied. From the heat of fusion enthalpy values of gamma irradiated samples, some changes on the thermal properties were determined. To identify these changes, first the glass transition temperature (T sub g) of L-lactic acid polymers irradiated to various doses in air and vacuum have been investigated and it is found that it is independent of irradiation atmosphere and dose. The fraction of damaged units of PLLA per unit of absorbed energy has been measured. For this purpose, SAXS and differential scanning calorimetry methods were used, and the radiation yield of number of damaged units (G(-u)) is found to be 0.74 and 0.58 for PLLA samples irradiated in vacuum and air, respectively.

  19. Recent results of radiation damage studies in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Bates, S.J.; Munday, D.J.; Parker, M.A.; Anghinolfi, F.; Chilingarov, A.; Ciasnohova, A.; Glaser, M.; Heijne, E.; Jarron, P.; Lemeilleur, F.; Santiard, J.C.; Bonino, R.; Clark, A.G.; Kambara, H.; Goessling, C.; Lisowski, B.; Rolf, A.; Pilath, S.; Feick, H.; Fretwurst, E.; Lindstroem, G.; Schulz, T.; Bardos, R.A.; Gorfine, G.W.; Moorhead, G.F.; Taylor, G.N.; Tovey, S.N. (Cavendish Lab., Univ. of Cambridge (United Kingdom) CERN, Geneva (Switzerland) DPNC, Univ. de Geneve (Switzerland) Inst. fuer Physik, Univ. Dortmund (Germany) 1. Inst. fuer Experimentalphysik, Univ. Hamburg (Germany) School of Physics, Univ. of Melbourne (Australia))

    1994-04-21

    The RD2 Collaboration is making preliminary studies on a silicon tracking detector for use at the LHC. It is a priority that this detector should withstand the high level of radiation to be expected for LHC operation. Therefore systematic studies on the change of the detector performance due to radiation damage have been made, or are in progress. Well established results on neutron related damage at room temperature have been extended to lower temperatures, as foreseen for operation at LHC. For comparison proton damage studies have also been started. The detector properties under investigation include the reverse current, the depletion voltage and the charge collection efficiency. With a compressed 10 year LHC operational scenario we have successfully checked the ability of silicon detectors to survive the period influences of high fluence irradiation and subsequent annealing. (orig.)

  20. Modelling radiation damage to ESA's Gaia satellite CCDs

    CERN Document Server

    Seabroke, G M; Cropper, M S

    2008-01-01

    The Gaia satellite is a high-precision astrometry, photometry and spectroscopic ESA cornerstone mission, currently scheduled for launch in late 2011. Its primary science drivers are the composition, formation and evolution of the Galaxy. Gaia will achieve its scientific requirements with detailed calibration and correction for radiation damage. Microscopic models of Gaia's CCDs are being developed to simulate the charge trapping effect of radiation damage, which causes charge transfer inefficiency. The key to calculating the probability of a photoelectron being captured by a trap is the 3D electron density within each CCD pixel. However, this has not been physically modelled for Gaia CCD pixels. In this paper, the first of a series, we motivate the need for such specialised 3D device modelling and outline how its future results will fit into Gaia's overall radiation calibration strategy.

  1. Feasibility of OCT to detect radiation-induced esophageal damage in small animal models (Conference Presentation)

    Science.gov (United States)

    Jelvehgaran, Pouya; Alderliesten, Tanja; Salguero, Javier; Borst, Gerben; Song, Ji-Ying; van Leeuwen, Ton G.; de Boer, Johannes F.; de Bruin, Daniel M.; van Herk, Marcel B.

    2016-03-01

    Lung cancer survival is poor and radiotherapy patients often suffer serious treatment side effects. The esophagus is particularly sensitive leading to reduced food intake or even fistula formation. Only few direct techniques exist to measure radiation-induced esophageal damage, for which knowledge is needed to improve the balance between risk of tumor recurrence and complications. Optical coherence tomography (OCT) is a minimally-invasive imaging technique that obtains cross-sectional, high-resolution (1-10µm) images and is capable of scanning the esophageal wall up to 2-3mm depth. In this study we investigated the feasibility of OCT to detect esophageal radiation damage in mice. In total 30 mice were included in 4 study groups (1 main and 3 control groups). Mice underwent cone-beam CT imaging for initial setup assessment and dose planning followed by single-fraction dose delivery of 4, 10, 16, and 20Gy on 5mm spots, spaced 10mm apart. Mice were repeatedly imaged using OCT: pre-irradiation and up to 3 months post-irradiation. The control groups received either OCT only, irradiation only, or were sham-operated. We used histopathology as gold standard for radiation-induced damage diagnosis. The study showed edema in both the main and OCT-only groups. Furthermore, radiation-induced damage was primarily found in the highest dose region (distal esophagus). Based on the histopathology reports we were able to identify the radiation-induced damage in the OCT images as a change in tissue scattering related to the type of induced damage. This finding indicates the feasibility and thereby the potentially promising role of OCT in radiation-induced esophageal damage assessment.

  2. GUI to Facilitate Research on Biological Damage from Radiation

    Science.gov (United States)

    Cucinotta, Frances A.; Ponomarev, Artem Lvovich

    2010-01-01

    A graphical-user-interface (GUI) computer program has been developed to facilitate research on the damage caused by highly energetic particles and photons impinging on living organisms. The program brings together, into one computational workspace, computer codes that have been developed over the years, plus codes that will be developed during the foreseeable future, to address diverse aspects of radiation damage. These include codes that implement radiation-track models, codes for biophysical models of breakage of deoxyribonucleic acid (DNA) by radiation, pattern-recognition programs for extracting quantitative information from biological assays, and image-processing programs that aid visualization of DNA breaks. The radiation-track models are based on transport models of interactions of radiation with matter and solution of the Boltzmann transport equation by use of both theoretical and numerical models. The biophysical models of breakage of DNA by radiation include biopolymer coarse-grained and atomistic models of DNA, stochastic- process models of deposition of energy, and Markov-based probabilistic models of placement of double-strand breaks in DNA. The program is designed for use in the NT, 95, 98, 2000, ME, and XP variants of the Windows operating system.

  3. Thermal annealing of natural, radiation-damaged pyrochlore

    Energy Technology Data Exchange (ETDEWEB)

    Zietlow, Peter; Mihailova, Boriana [Hamburg Univ. (Germany). Dept. of Earth Sciences; Beirau, Tobias [Hamburg Univ. (Germany). Dept. of Earth Sciences; Stanford Univ., CA (United States). Dept. of Geological Sciences; and others

    2017-03-01

    Radiation damage in minerals is caused by the α-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400-1000 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia [6.4 wt% Th, 23.1.10{sup 18} α-decay events per gram (dpg)], Panda Hill/Tanzania (1.6 wt% Th, 1.6.10{sup 18} dpg), and Blue River/Canada (10.5 wt% U, 115.4.10{sup 18} dpg), are compared with a crystalline reference pyrochlore from Schelingen (Germany). The type of structural recovery depends on the initial degree of radiation damage (Panda Hill 28%, Blue River 85% and Miass 100% according to XRD), as the recrystallization temperature increases with increasing degree of amorphization. Raman spectra indicate reordering on the local scale during annealing-induced recrystallization. As Raman modes around 800 cm{sup -1} are sensitive to radiation damage (M. T. Vandenborre, E. Husson, Comparison of the force field in various pyrochlore families. I. The A{sub 2}B{sub 2}O{sub 7} oxides. J. Solid State Chem. 1983, 50, 362, S. Moll, G. Sattonnay, L. Thome, J. Jagielski, C. Decorse, P. Simon, I. Monnet, W. J. Weber, Irradiation damage in Gd{sub 2}Ti{sub 2}O{sub 7} single crystals: Ballistic versus ionization processes. Phys. Rev. 2011, 84, 64115.), the degree of local order was deduced from the ratio of the integrated intensities of the sum of the Raman bands between 605 and 680 cm{sup -1} divided by the sum of the integrated intensities of the bands between 810 and 860 cm{sup -1}. The most radiation damaged pyrochlore (Miass) shows an abrupt recovery of both, its short- (Raman) and long-range order (X-ray) between 800 and 850 K, while the weakly damaged pyrochlore (Panda Hill) begins to recover at considerably lower temperatures (near 500 K

  4. Laser annealing heals radiation damage in avalanche photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jin Gyu [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Electrical and Computer Engineering, Waterloo, ON (Canada); Anisimova, Elena; Higgins, Brendon L.; Bourgoin, Jean-Philippe [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Jennewein, Thomas [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Canadian Institute for Advanced Research, Quantum Information Science Program, Toronto, ON (Canada); Makarov, Vadim [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Electrical and Computer Engineering, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada)

    2017-12-15

    Avalanche photodiodes (APDs) are a practical option for space-based quantum communications requiring single-photon detection. However, radiation damage to APDs significantly increases their dark count rates and thus reduces their useful lifetimes in orbit. We show that high-power laser annealing of irradiated APDs of three different models (Excelitas C30902SH, Excelitas SLiK, and Laser Components SAP500S2) heals the radiation damage and several APDs are restored to typical pre-radiation dark count rates. Of nine samples we test, six APDs were thermally annealed in a previous experiment as another solution to mitigate the radiation damage. Laser annealing reduces the dark count rates further in all samples with the maximum dark count rate reduction factor varying between 5.3 and 758 when operating at -80 C. This indicates that laser annealing is a more effective method than thermal annealing. The illumination power to reach these reduction factors ranges from 0.8 to 1.6 W. Other photon detection characteristics, such as photon detection efficiency, timing jitter, and afterpulsing probability, fluctuate but the overall performance of quantum communications should be largely unaffected by these variations. These results herald a promising method to extend the lifetime of a quantum satellite equipped with APDs. (orig.)

  5. Monitoring Radiation Damage in the ATLAS Pixel Detector

    CERN Document Server

    Schorlemmer, André Lukas; Große-Knetter, Jörn; Rembser, Christoph; Di Girolamo, Beniamino

    2014-11-05

    Radiation hardness is one of the most important features of the ATLAS pixel detector in order to ensure a good performance and a long lifetime. Monitoring of radiation damage is crucial in order to assess and predict the expected performance of the detector. Key values for the assessment of radiation damage in silicon, such as the depletion voltage and depletion depth in the sensors, are measured on a regular basis during operations. This thesis summarises the monitoring program that is conducted in order to assess the impact of radiation damage and compares it to model predictions. In addition, the physics performance of the ATLAS detector highly depends on the amount of disabled modules in the ATLAS pixel detector. A worrying amount of module failures was observed during run I. Thus it was decided to recover repairable modules during the long shutdown (LS1) by extracting the pixel detector. The impact of the module repairs and module failures on the detector performance is analysed in this thesis.

  6. Positron annihilation lifetime study of radiation-damaged natural zircons

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J. [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra (Australia); Gaugliardo, P. [Centre for Antimatter-Matter Studies, School of Physics, University of Western Australia (Australia); Farnan, I.; Zhang, M. [Department of Earth Sciences, University of Cambridge (United Kingdom); Vance, E.R.; Davis, J.; Karatchevtseva, I.; Knott, R.B. [Australian Nuclear Science and Technology Organisation (Australia); Mudie, S. [The Australian Synchrotron, Victoria (Australia); Buckman, S.J. [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra (Australia); Institute for Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia); Sullivan, J.P., E-mail: james.sullivan@anu.edu.au [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra (Australia)

    2016-04-01

    Zircons are a well-known candidate waste form for actinides and their radiation damage behaviour has been widely studied by a range of techniques. In this study, well-characterised natural single crystal zircons have been studied using Positron Annihilation Lifetime Spectroscopy (PALS). In some, but not all, of the crystals that had incurred at least half of the alpha-event damage of ∼10{sup 19} α/g required to render them structurally amorphous, PALS spectra displayed long lifetimes corresponding to voids of ∼0.5 nm in diameter. The long lifetimes corresponded to expectations from published Small-Angle X-ray Scattering data on similar samples. However, the non-observation by PALS of such voids in some of the heavily damaged samples may reflect large size variations among the voids such that no singular size can be distinguished or. Characterisation of a range of samples was also performed using scanning electron microscopy, optical absorption spectroscopy, Raman scattering and X-ray scattering/diffraction, with the degree of alpha damage being inferred mainly from the Raman technique and X-ray diffraction. The observed void diameters and intensities of the long lifetime components were changed somewhat by annealing at 700 °C; annealing at 1200 °C removed the voids entirely. The voids themselves may derive from He gas bubbles or voids created by the inclusion of small quantities of organic and hydrous matter, notwithstanding the observation that no voidage was evidenced by PALS in two samples containing hydrous and organic matter. - Highlights: • Study of a range of naturally occurring zircons damaged by alpha radiation. • Characterised using a range of techniques, including PALS spectroscopy. • Effects on hydrous material appear important, rather than direct radiation damage. • Annealing is shown to remove the observed voids.

  7. Proton induced radiation damage in fast crystal scintillators

    Science.gov (United States)

    Yang, Fan; Zhang, Liyuan; Zhu, Ren-Yuan; Kapustinsky, Jon; Nelson, Ron; Wang, Zhehui

    2016-07-01

    This paper reports proton induced radiation damage in fast crystal scintillators. A 20 cm long LYSO crystal, a 15 cm long CeF3 crystal and four liquid scintillator based sealed quartz capillaries were irradiated by 800 MeV protons at Los Alamos up to 3.3 ×1014 p /cm2. Four 1.5 mm thick LYSO plates were irradiated by 24 GeV protons at CERN up to 6.9 ×1015 p /cm2. The results show an excellent radiation hardness of LYSO crystals against charged hadrons.

  8. Radiation Damage Study on the Electrical Properties of Si Diodes

    Science.gov (United States)

    Pascoalino, Kelly C. S.; Gonçalves, Josemary A. C.; Tobias, Carmen C. B.

    2011-08-01

    The aim of this work was to study the radiation damage effects on the electrical properties of Float Zone (FZ) and Magnetic Czochralski (MCz) diodes. The effects were evaluated by measuring the reverse current and capacitance of these devices as a function of the reverse voltage. The irradiation was performed in the Radiation Technology Center (CTR) at IPEN-CNEN/SP using a 60Co irradiator (Gammacell 220-Nordion) with a dose rate of about 2 kGy/h. Samples were irradiated at room temperature in five steps up to an accumulated dose of 603 kGy.

  9. Ion irradiation and biomolecular radiation damage II. Indirect effect

    CERN Document Server

    Wang, Wei; Su, Wenhui

    2010-01-01

    It has been reported that damage of genome in a living cell by ionizing radiation is about one-third direct and two-thirds indirect. The former which has been introduced in our last paper, concerns direct energy deposition and ionizing reactions in the biomolecules; the latter results from radiation induced reactive species (mainly radicals) in the medium (mainly water) surrounding the biomolecules. In this review, a short description of ion implantation induced radical formation in water is presented. Then we summarize the aqueous radical reaction chemistry of DNA, protein and their components, followed by a brief introduction of biomolecular damage induced by secondary particles (ions and electron). Some downstream biological effects are also discussed.

  10. The LHCb Vertex Locator – Performance and Radiation Damage

    CERN Document Server

    Oblakowska-Mucha, A

    2014-01-01

    LHCb is a dedicated flavour physics experiment at the Large Hadron Collider at CERN. The Vertex Locator (VELO) is an important part of a LHCb tracking system, enabling precision measurement of beauty and charm mesons’ flight distance. The VELO consist of a set of silicon micro-strip detectors, arranged in two retractable halves, operating only 7 mm from the interac- tion region. In these proceedings the VELO performance during the Run 1 is summarised and radiation damage studies are presented.

  11. Site-selective radiation damage of collapsed carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, V.H. [Department of Physics, 104 Davey Lab, The Pennsylvania State University, University Park, Pennsylvania 16802-6300 (United States); Chopra, N.G.; Cohen, M.L.; Zettl, A. [Department of Physics, University of California at Berkeley and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Radmilovic, V. [Department of Physical Metallurgy, University of Belgrade Karnegijeva 4, P.O. Box 494, Belgrade, 11001 (Yugoslavia)

    1998-10-01

    Carbon nanotubes can flatten into collapsed tubes with bulbs along either edge. The strong anisotropy in the graphitic radiation damage threshold both explains the rapid destruction of face-on flattened nanotubes and can be exploited to selectively modify the structure of edge-on flattened nanotubes, thereby creating one-dimensional sp{sup 2} carbon with noncontinuous transverse boundary conditions. {copyright} {ital 1998 American Institute of Physics.}

  12. Low dose radiation damage effects in silicon strip detectors

    Science.gov (United States)

    Wiącek, P.; Dąbrowski, W.

    2016-11-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  13. Radiation damage measurements on CZT drift strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kuvvetli, I. E-mail: irfan@dsri.dk; Budtz-Joergensen, C. E-mail: carl@dsri.dk; Korsbech, U.; Jensen, H.J

    2003-10-11

    At DSRI, in collaboration with the cyclotron facility at Copenhagen University Hospital, we have performed a study of radiation effects exposing a 2.7 mm thick CZT drift strip detector to 30 MeV protons. The detector characteristics were evaluated after exposure to a number of fluences in the range from 2x10{sup 8} to 60x10{sup 8} p{sup +}/cm{sup 2}. Even for the highest fluences, which had a dramatic effect on the spectroscopic performance, we were able to recover the detectors after an appropriate annealing procedure. The radiation damage was studied as a function of depth inside the detector material. A numerical model that emulates the physical processes of the charge transport in the CZT detector was used to derive the charge trapping parameter, {mu}{tau}{sub e} (the product of charge mobility and trapping time) as a function of fluence. The analysis showed that the electron trapping increased proportionately with the proton dose. The radiation contribution to the electron trapping was found to obey the following relation: ({mu}{tau}{sub e}{sup -1}){sub rad}=(2.5{+-}0.2)x10{sup -7}xPHI (V/cm){sup 2} with the proton fluence, PHI in p{sup +}/cm{sup 2}. The trapping depth dependence, however, did not agree well with the damage profile calculated using the standard Monte Carlo simulations, TRIM , for the proton-induced radiation effects. The present results suggest that proton-induced nuclear reactions contribute significantly to the radiation damage. Further work will elaborate on these effects.

  14. Radiation damage measurements on CZT drift strip detectors

    Science.gov (United States)

    Kuvvetli, I.; Budtz-Jørgensen, C.; Korsbech, U.; Jensen, H. J.

    2003-10-01

    At DSRI, in collaboration with the cyclotron facility at Copenhagen University Hospital, we have performed a study of radiation effects exposing a 2.7 mm thick CZT drift strip detector to 30 MeV protons. The detector characteristics were evaluated after exposure to a number of fluences in the range from 2×10 8 to 60×10 8 p +/cm 2. Even for the highest fluences, which had a dramatic effect on the spectroscopic performance, we were able to recover the detectors after an appropriate annealing procedure. The radiation damage was studied as a function of depth inside the detector material. A numerical model that emulates the physical processes of the charge transport in the CZT detector was used to derive the charge trapping parameter, μτe (the product of charge mobility and trapping time) as a function of fluence. The analysis showed that the electron trapping increased proportionately with the proton dose. The radiation contribution to the electron trapping was found to obey the following relation: (μτ e- 1) rad=(2.5±0.2)×10 -7×Φ ( V/cm)2 with the proton fluence, Φ in p +/cm 2. The trapping depth dependence, however, did not agree well with the damage profile calculated using the standard Monte Carlo simulations, TRIM [1], for the proton-induced radiation effects. The present results suggest that proton-induced nuclear reactions contribute significantly to the radiation damage. Further work will elaborate on these effects.

  15. Heat Induced Damage Detection by Terahertz (THz) Radiation

    Science.gov (United States)

    Rahani, Ehsan Kabiri; Kundu, Tribikram; Wu, Ziran; Xin, Hao

    2011-06-01

    Terahertz (THz) and sub-terahertz imaging and spectroscopy are becoming increasingly popular nondestructive evaluation techniques for damage detection and characterization of materials. THz radiation is being used for inspecting ceramic foam tiles used in TPS (Thermal Protection System), thick polymer composites and polymer tiles that are not good conductors of ultrasonic waves. Capability of THz electromagnetic waves in detecting heat induced damage in porous materials is investigated in this paper. Porous pumice stone blocks are subjected to long time heat exposures to produce heat induced damage in the block. The dielectric properties extracted from THz TDS (Time Domain Spectroscopy) measurements are compared for different levels of heat exposure. Experimental results show noticeable and consistent change in dielectric properties with increasing levels of heat exposure, well before its melting point.

  16. HSP25 Protects Radiation-Induced Salivary Gland Damage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae June; Lee, Yoon Jin; Kwon, Hee Choong; Lee, Su Jae; Bae, Sang Woo; Lee, Yun Sil [Korea Institute of Radiological Medical Sciences, Seoul (Korea, Republic of); Kim, Sung Ho [Chonnam National Univ., Gwangju (Korea, Republic of)

    2005-07-01

    Irradiation (IR) is a central treatment modality administered for head and neck malignancies. A significant consequence of this IR treatment is irreversible damage to salivary gland in the IR field. While the exact mechanism of salivary gland damage remains enigmatic, fluid secreting acinar cells are lost, and saliva output is dramatically reduced. Previously we have reported that heat shock protein 25 (HSP25) induced radioresistance in vitro. HSP25 interferes negatively with apoptosis through several pathways which involve its direct interaction with cytochrome c, protein kinase c delta or Akt. And localized gene transfer to salivary glands has great potential for the treatment of salivary gland. Herein, we investigated whether HSP25 can use as radio protective molecules for radiation-induced salivary gland damage in vivo.

  17. Damage control resuscitation for massive hemorrhage

    Institute of Scientific and Technical Information of China (English)

    Osaree Akaraborworn

    2014-01-01

    Hemorrhage is the second most common cause of death among trauma patients and almost half of the deaths occur within 24 hours after arrival.Damage control resuscitation is a new paradigm for patients with massive bleeding.It consists of permissive hypotension,hemostatic resuscitation and transfusion strategies,and damage control surgery.Permissive hypotension seems to have better results before the bleeding is controlled.The strategy of fluid resuscitation is minimizing crystalloid infusion and increasing early transfusion with a high ratio of fresh frozen plasma to packed red cells.Damage control surgery is done when the patient's condition is unfit for definitive surgery.Hemorrhage and contamination control with temporary abdominal closure is performed before transferring the patients to intensive care unit and the operating room for a permanent laparotomy.

  18. Self-radiation damage in plutonium and uranium mixed dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Masato; Endo, Hideo [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan); Sugata, Hiromasa [Inspection Development Company Ltd., Tokai, Ibaraki (Japan)

    2002-12-01

    In plutonium compounds, self-radiation induces expansion of the lattice parameter as a function of time. The expansion of the lattice parameter and thermal recovery of radiation damage in plutonium and uranium mixed dioxide (MOX) were studied in this paper. The MOX powder had been kept in an ambient atmosphere for about two years. The lattice parameter of the powder saturated after an increase of about 0.23%. The change in the lattice parameter was formulated as a function of the self-radiation amount. Three thermal recovery stages of radiation damage were observed in temperature ranges below 400degC, 400-800degC and above 800degC. The recovery rate of the three stages in total lattice expansion was about 25%, 55% and 20%, respectively, and activation energy in each recovery was estimated to be 0.14 eV, 0.54 eV and 1.1 eV. (author)

  19. Radiation tolerant power converter controls

    Science.gov (United States)

    Todd, B.; Dinius, A.; King, Q.; Uznanski, S.

    2012-11-01

    The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is the world's most powerful particle collider. The LHC has several thousand magnets, both warm and super-conducting, which are supplied with current by power converters. Each converter is controlled by a purpose-built electronic module called a Function Generator Controller (FGC). The FGC allows remote control of the power converter and forms the central part of a closed-loop control system where the power converter voltage is set, based on the converter output current and magnet-circuit characteristics. Some power converters and FGCs are located in areas which are exposed to beam-induced radiation. There are numerous radiation induced effects, some of which lead to a loss of control of the power converter, having a direct impact upon the accelerator's availability. Following the first long shut down (LS1), the LHC will be able to run with higher intensity beams and higher beam energy. This is expected to lead to significantly increased radiation induced effects in materials close to the accelerator, including the FGC. Recent radiation tests indicate that the current FGC would not be sufficiently reliable. A so-called FGClite is being designed to work reliably in the radiation environment in the post-LS1 era. This paper outlines the concepts of power converter controls for machines such as the LHC, introduces the risks related to radiation and a radiation tolerant project flow. The FGClite is then described, with its key concepts and challenges: aiming for high reliability in a radiation field.

  20. Radiation track, DNA damage and response—a review

    Science.gov (United States)

    Nikjoo, H.; Emfietzoglou, D.; Liamsuwan, T.; Taleei, R.; Liljequist, D.; Uehara, S.

    2016-11-01

    The purpose of this paper has been to review the current status and progress of the field of radiation biophysics, and draw attention to the fact that physics, in general, and radiation physics in particular, with the aid of mathematical modeling, can help elucidate biological mechanisms and cancer therapies. We hypothesize that concepts of condensed-matter physics along with the new genomic knowledge and technologies and mechanistic mathematical modeling in conjunction with advances in experimental DNA (Deoxyrinonucleic acid molecule) repair and cell signaling have now provided us with unprecedented opportunities in radiation biophysics to address problems in targeted cancer therapy, and genetic risk estimation in humans. Obviously, one is not dealing with ‘low-hanging fruit’, but it will be a major scientific achievement if it becomes possible to state, in another decade or so, that we can link mechanistically the stages between the initial radiation-induced DNA damage; in particular, at doses of radiation less than 2 Gy and with structural changes in genomic DNA as a precursor to cell inactivation and/or mutations leading to genetic diseases. The paper presents recent development in the physics of radiation track structure contained in the computer code system KURBUC, in particular for low-energy electrons in the condensed phase of water for which we provide a comprehensive discussion of the dielectric response function approach. The state-of-the-art in the simulation of proton and carbon ion tracks in the Bragg peak region is also presented. The paper presents a critical discussion of the models used for elastic scattering, and the validity of the trajectory approach in low-electron transport. Brief discussions of mechanistic and quantitative aspects of microdosimetry, DNA damage and DNA repair are also included as developed by the authors’ work.

  1. Delayed damage after radiation therapy for head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Yoshiyuki [Osaka Dental Univ., Hirakata (Japan)

    2000-03-01

    I investigated radiation damage, including osteoradionecrosis, arising from tooth extraction in fields that had received radiation therapy for head and neck cancer, and evaluated the effectiveness of pilocarpine for xerostomia. Between January 1990 and April 1996, I examined 30 patients for bone changes after tooth extraction in fields irradiated at the Department of Oral Radiology, Osaka Dental University Hospital. Nineteen of the patients had been treated for nasopharyngeal cancer and 11 for oropharyngeal cancer. Between January and April 1996, 4 additional patients were given pilocarpine hydrochloride (3-mg, 6-mg and 9-mg of KSS-694 orally three times a day) for 12 weeks and evaluated every 4 weeks as a base line. One had been treated for nasopharyngeal carcinoma, two for cancer of the cheek and one for an unknown carcinoma. Eighteen of the patients (11 with nasopharyngeal carcinoma and 7 with oropharyngeal carcinoma) had extractions. Use of preoperative and postoperative radiographs indicated that damage to the bone following tooth extraction after radiation exposure was related to whether antibiotics were administered the day before the extraction, whether forceps or elevators were used, and whether the tooth was in the field of radiation. Xerostomia improved in all 4 of the patients who received 6-mg or 9-mg of pilocarpine. It improved saliva production and relieved the symptoms of xerostomia after radiation therapy for head and neck cancer, although there were minor side effects such as fever. This information can be used to improve the oral environment of patients who have received radiation therapy for head and neck cancer, and to better understand their oral environment. (author)

  2. DIETARY FLAXSEED PREVENTS RADIATION-INDUCED OXIDATIVE LUNG DAMAGE, INFLAMMATION AND FIBROSIS IN A MOUSE MODEL OF THORACIC RADIATION INJURY

    Science.gov (United States)

    Lee, James C.; Krochak, Ryan; Blouin, Aaron; Kanterakis, Stathis; Chatterjee, Shampa; Arguiri, Evguenia; Vachani, Anil; Solomides, Charalambos C.; Cengel, Keith A.; Christofidou-Solomidou, Melpo

    2009-01-01

    Flaxseed (FS) has high contents of omega-3 fatty acids and lignans with antioxidant properties. Its use in preventing thoracic X-ray radiation therapy (XRT)-induced pneumonopathy has never been evaluated. We evaluated FS supplementation given to mice given before and post-XRT. FS-derived lignans, known for their direct antioxidant properties, were evaluated in abrogating ROS generation in cultured endothelial cells following gamma radiation exposure. Mice were fed 10% FS or isocaloric control diet for three weeks and given 13.5 Gy thoracic XRT. Lungs were evaluated at 24 hours for markers of radiation-induced injury, three weeks for acute lung damage (lipid peroxidation, lung edema and inflammation), and at four months for late lung damage (inflammation and fibrosis). FS-Lignans blunted ROS generation in vitro, resulting from radiation in a dose-dependent manner. FS-fed mice had reduced expression of lung injury biomarkers (Bax, p21, and TGF-beta1) at 24 hours following XRT and reduced oxidative lung damage as measured by malondialdehyde (MDA) levels at 3 weeks following XRT. In addition, FS-fed mice had decreased lung fibrosis as determined by hydroxyproline content and decreased inflammatory cell influx into lungs at 4 months post XRT. Importantly, when Lewis Lung carcinoma cells were injected systemically in mice, FS dietary supplementation did not appear to protect lung tumors from responding to thoracic XRT. Dietary FS is protective against pulmonary fibrosis, inflammation and oxidative lung damage in a murine model. Moreover, in this model, tumor radioprotection was not observed. FS lignans exhibited potent radiation-induced ROS scavenging action. Taken together, these data suggest that dietary flaxseed may be clinically useful as an agent to increase the therapeutic index of thoracic XRT by increasing the radiation tolerance of lung tissues. PMID:18981722

  3. Chromatin modifications and the DNA damage response to ionizing radiation

    Science.gov (United States)

    Kumar, Rakesh; Horikoshi, Nobuo; Singh, Mayank; Gupta, Arun; Misra, Hari S.; Albuquerque, Kevin; Hunt, Clayton R.; Pandita, Tej K.

    2013-01-01

    In order to survive, cells have evolved highly effective repair mechanisms to deal with the potentially lethal DNA damage produced by exposure to endogenous as well as exogenous agents. Ionizing radiation exposure induces highly lethal DNA damage, especially DNA double-strand breaks (DSBs), that is sensed by the cellular machinery and then subsequently repaired by either of two different DSB repair mechanisms: (1) non-homologous end joining, which re-ligates the broken ends of the DNA and (2) homologous recombination, that employs an undamaged identical DNA sequence as a template, to maintain the fidelity of DNA repair. Repair of DSBs must occur within the natural context of the cellular DNA which, along with specific proteins, is organized to form chromatin, the overall structure of which can impede DNA damage site access by repair proteins. The chromatin complex is a dynamic structure and is known to change as required for ongoing cellular processes such as gene transcription or DNA replication. Similarly, during the process of DNA damage sensing and repair, chromatin needs to undergo several changes in order to facilitate accessibility of the repair machinery. Cells utilize several factors to modify the chromatin in order to locally open up the structure to reveal the underlying DNA sequence but post-translational modification of the histone components is one of the primary mechanisms. In this review, we will summarize chromatin modifications by the respective chromatin modifying factors that occur during the DNA damage response. PMID:23346550

  4. Alterations in phosphate metabolism during cellular recovery of radiation damage in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Holahan, P.K.; Knizner, S.A.; Gabriel, C.M.; Swenberg, C.E.

    1988-01-01

    Alterations were examined in phosphate pools during cellular recovery from radiation damage in intact, wild-type diploid yeast cells using phosphorus 31 nuclear magnetic resonance (NMR) spectroscopy. Concurrent cell survival analysis was determined following exposure to cobalt 60 gamma radiation. Cells held in citrate-buffered saline (CBS) showed increased survival with increasing time after irradiation (liquid holding recovery, LHR) with no further recovery beyond 48 h. Addition of 100 mmol/cu. dm glucose to the recovery medium resulted in greater recovery. In the presence of 5 mmol/cu. dm 2-deoxyglucose (2-DG), LHR was completely inhibited. ATP was observable by NMR only when glucose was present in the recovery medium. In control cells, ATP concentrations increased and plateaued with increasing recovery time. With increasing radiation dose, the increase in ATP was of lesser magnitude, and after 2000 Gy no increase was observed. The observations suggest that either the production of ATP in irradiated cells is suppressed, or there is enhanced ATP utilization for repair of radiation damage. In CBS with 100 mmol/cu. dm glucose, a dose-dependent decrease in polyphosphate (polyP) was detectable with no concurrent increase in inorganic phosphate (p sub i). When 2-DG was present in the recovery medium, polyP decreased, but there was a simultaneous increase in p sub i with increasing radiation dose and recovery time. This suggests that the polyP are hydrolyzed as a source of phosphates for repair of radiation damage.

  5. Radiation damage measurements on CZT drift strip detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Korsbech, Uffe C C

    2003-01-01

    At DSRI, in collaboration with the cyclotron facility at Copenhagen University Hospital, we have performed a study of radiation effects exposing a 2.7 mm thick CZT drift strip detector to 30 MeV protons. The detector characteristics were evaluated after exposure to a number of fluences in the range...... from 2 x 10(8) to 60 x 10(8) p(+)/cm(2). Even for the highest fluences, which had a dramatic effect on the spectroscopic performance, we were able to recover the detectors after an appropriate annealing procedure. The radiation damage was studied as a function of depth inside the detector material...... with the proton dose. The radiation contribution to the electron trapping was found to obey the following relation: (mutau(e)(-1))(rad) = (2.5+/-0.2) x 10(-7) x Phi (V/cm)(2) with the proton fluence, Phi in p(+)/cm(2). The trapping depth dependence, however, did not agree well with the damage profile calculated...

  6. The evaluation of radiation damage parameter for CVD diamond

    Science.gov (United States)

    Grilj, V.; Skukan, N.; Jakšić, M.; Pomorski, M.; Kada, W.; Kamiya, T.; Ohshima, T.

    2016-04-01

    There are a few different phenomenological approaches that aim to track the dependence of signal height in irradiated solid state detectors on the fluence of damaging particles. However, none of them are capable to provide a unique radiation hardness parameter that would reflect solely the material capability to withstand high radiation environment. To extract such a parameter for chemical vapor deposited (CVD) diamond, two different diamond detectors were irradiated with proton beams in MeV energy range and subjected afterwards to ion beam induced charge (IBIC) analysis. The change in charge collection efficiency (CCE) due to defects produced was investigated in context of a theoretical model that was developed on the basis of the adjoint method for linearization of the continuity equations of electrons and holes. Detailed modeling of measured data resulted with the first known value of the kσ product for diamond, where k represents the number of charge carriers' traps created per one simulated primary lattice vacancy and σ represents the charge carriers' capture cross section. As discussed in the text, this product could be considered as a true radiation damage parameter.

  7. Radiation Damages in Aluminum Alloy SAV-1 under Neutron Irradiation

    Science.gov (United States)

    Salikhbaev, Umar; Akhmedzhanov, Farkhad; Alikulov, Sherali; Baytelesov, Sapar; Boltabaev, Azizbek

    2016-05-01

    The aim of this work was to study the effect of neutron irradiation on the kinetics of radiation damages in the SAV-1 alloy, which belongs to the group of aluminum alloys of the ternary system Al-Mg-Si. For fast-neutron irradiation by different doses up to fluence 1019 cm-2 the SAV-1 samples were placed in one of the vertical channels of the research WWR type reactor (Tashkent). The temperature dependence of the electrical resistance of the alloy samples was investigated in the range 290 - 490 K by the four-compensation method with an error about 0.1%. The experimental results were shown that at all the temperatures the dependence of the SAV-1 alloy resistivity on neutron fluence was nonlinear. With increasing neutron fluence the deviation from linearity and the growth rate of resistivity with temperature becomes more appreciable. The observed dependences are explained by means of martensitic transformations and the radiation damages in the studied alloy under neutron irradiation. The mechanisms of radiation modification of the SAV-1 alloy structure are discussed.

  8. The evaluation of radiation damage parameter for CVD diamond

    Energy Technology Data Exchange (ETDEWEB)

    Grilj, V., E-mail: vgrilj@irb.hr [Division for Experimental Physics, Ruđer Bošković Institute, 10000 Zagreb (Croatia); Skukan, N.; Jakšić, M. [Division for Experimental Physics, Ruđer Bošković Institute, 10000 Zagreb (Croatia); Pomorski, M. [CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette F-91191 (France); Kada, W. [Division of Electronics and Informatics, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Kamiya, T.; Ohshima, T. [Japan Atomic Energy Agency (JAEA), Takasaki, Gunma 370-1292 (Japan)

    2016-04-01

    There are a few different phenomenological approaches that aim to track the dependence of signal height in irradiated solid state detectors on the fluence of damaging particles. However, none of them are capable to provide a unique radiation hardness parameter that would reflect solely the material capability to withstand high radiation environment. To extract such a parameter for chemical vapor deposited (CVD) diamond, two different diamond detectors were irradiated with proton beams in MeV energy range and subjected afterwards to ion beam induced charge (IBIC) analysis. The change in charge collection efficiency (CCE) due to defects produced was investigated in context of a theoretical model that was developed on the basis of the adjoint method for linearization of the continuity equations of electrons and holes. Detailed modeling of measured data resulted with the first known value of the kσ product for diamond, where k represents the number of charge carriers’ traps created per one simulated primary lattice vacancy and σ represents the charge carriers’ capture cross section. As discussed in the text, this product could be considered as a true radiation damage parameter.

  9. Modeling radiation damage to pixel sensors in the ATLAS detector

    CERN Document Server

    Ducourthial, Audrey; The ATLAS collaboration

    2017-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15}n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside ...

  10. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Ducourthial, Audrey; The ATLAS collaboration

    2017-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15} n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside...

  11. Relative biological effectiveness of carbon ions for tumor control, acute skin damage and late radiation-induced fibrosis in a mouse model

    DEFF Research Database (Denmark)

    Sørensen, Brita Singers; Horsman, Michael Robert; Alsner, Jan;

    2015-01-01

    Background. The aim of the present study was to compare the biological effectiveness of carbon ions relative to x-rays between tumor control, acute skin reaction and late RIF of CDF1 mice. Material and methods. CDF1 mice with a C3H mouse mammary carcinoma implanted subcutaneously on the foot of t...

  12. Contribution of endogenous and exogenous damage to the total radiation-induced damage in the bacterial spore

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, G.P.; Samuni, A.; Czapski, G.

    1980-01-01

    Radical scavengers such as polyethylene glycol 4000 and bovine albumin have been used to define the contribution of exogenous and endogenous damage to the total radiation-induced damage in aqueous buffered suspensions of Bacillus pumilus spores. The results indicate that this damage in the bacterial spore is predominantly endogenous.

  13. Chromatin Modifications and the DNA Damage Response to Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Tej K Pandita

    2013-01-01

    Full Text Available In order to survive, cells have evolved highly effective repair mechanisms to deal with the potentially lethal DNA damage produced by exposure to endogenous as well as exogenous agents. Ionizing radiation exposure induces highly lethal DNA damage, especially DNA double strand breaks (DSBs, that is sensed by the cellular machinery and then subsequently repaired by either of two different DSB repair mechanisms: 1 non-homologous end-joining (NHEJ, which re-ligates the broken ends of the DNA and 2 homologous recombination (HR, that employs an undamaged identical DNA sequence as a template, to maintain the fidelity of DNA repair. Repair of DSBs must occur within the natural context of the cellular DNA which, along with specific proteins, is organized to form chromatin, the overall structure of which can impede DNA damage site access by repair proteins. The chromatin complex is a dynamic structure and is known to change as required for ongoing cellular processes such as gene transcription or DNA replication. Similarly, during the process of DNA damage sensing and repair, chromatin needs to undergo several changes in order to facilitate accessibility of the repair machinery. Cells utilize several factors to modify the chromatin in order to locally open up the structure to reveal the underlying DNA sequence but posttranslational modification (PTMs of the histone components is one of the primary mechanisms. In this review, we will summarize chromatin modification by t

  14. Radiation-damage study of a monocrystalline tungsten positron converter

    CERN Document Server

    Artru, X; Chehab, R; Johnson, B; Keppler, P; Major, J V; Rinolfi, Louis; Jejcic, A

    1998-01-01

    The exploitation of the enhancement of positron sources by channeling effects, in particular for Linear Colliders (LC), relies on the long term resistance of the crystal to radiation damage. Such dama ge has been tested on a 0.3 mm thick tungsten monocrystal exposed during 6 months to the 30 Gev incident electron beam of the SLAC Linear Collider (SLC). The crystal was placed in the converter region , orientated in a random direction and received an integrated flux of e- (fluence) of 2 x 10^18 e-/mm^2. The crystal was analyzed before and after irradiation by X and Gamma diffractometry. No damage was observed, the mosaic spread remained unchanged during irradiation (0.4 mrad FWHM). Implications for use of orientated crystal as converter for positron sources of future LCs are discussed.

  15. Long-term radiation damage to a spaceborne germanium spectrometer

    CERN Document Server

    Kurczynski, P; Hull, E L; Palmer, D; Harris, M J; Seifert, H; Teegarden, B J; Gehrels, N; Cline, T L; Ramaty, R; Sheppard, D; Madden, N W; Luke, P N; Cork, C P; Landis, D A; Malone, D F; Hurley, K

    1999-01-01

    The Transient Gamma-Ray Spectrometer aboard the Wind spacecraft in deep space has observed gamma-ray bursts and solar events for four years. The germanium detector in the instrument has gradually deteriorated from exposure to the approx 10 sup 8 p/cm sup 2 /yr(>100 MeV) cosmic-ray flux. Low-energy tailing and loss of efficiency, attributed to hole trapping and conversion of the germanium from n- to p-type as a result of crystal damage, were observed. Raising the detector bias voltage ameliorated both difficulties and restored the spectrometer to working operation. Together, these observations extend our understanding of the effects of radiation damage to include the previously unsuccessfully studied regime of long-term operation in space. (author)

  16. Simulation of neutron radiation damage in silicon semiconductor devices.

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, John Nicolas; Hoekstra, Robert John; Hennigan, Gary Lee; Castro, Joseph Pete Jr.; Fixel, Deborah A.

    2007-10-01

    A code, Charon, is described which simulates the effects that neutron damage has on silicon semiconductor devices. The code uses a stabilized, finite-element discretization of the semiconductor drift-diffusion equations. The mathematical model used to simulate semiconductor devices in both normal and radiation environments will be described. Modeling of defect complexes is accomplished by adding an additional drift-diffusion equation for each of the defect species. Additionally, details are given describing how Charon can efficiently solve very large problems using modern parallel computers. Comparison between Charon and experiment will be given, as well as comparison with results from commercially-available TCAD codes.

  17. Radiation Damage to the Elements of the SIS300 Dipoles

    CERN Document Server

    Mustafin, Edil; Latysheva, Ludmila N; Moritz, Gebhard; Sobolevskiy, Nikolai; Walter, Gertrud

    2005-01-01

    Radiation damage to various elements of the cosine-theta type dipoles of the SIS300 synchrotron of the FAIR Project was calculated. Among the elements under consideration were the superconducting cable, insulating materials, and high-current by-pass protection diodes. The Monte-Carlo particle transport codes MARS and SHIELD were used to simulate propagation of the lost ions and protons, together with the products of nuclear interactions in the material of the elements. It was found that the lifetime of the protection diodes under irradiation is a more restrictive limit for the tolerable level of beam losses than the occurrence of magnet quenches.

  18. Damages by radiation in glasses; Danos por radiacion en vidrios

    Energy Technology Data Exchange (ETDEWEB)

    Olguin, F.; Gutierrez, C.; Cisniega, G.; Flores, J.H.; Golzarri, J.I.; Espinoza, G. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    As a part of the works carried out to characterize the electrons beam from the Pelletron accelerator of the Mexican Nuclear Center aluminium-silicate glass samples were irradiated. The purpose of these irradiations is to cause alterations in the amorphous microstructure of the material by means of the creation of color centers. The population density of these defects, consequence to the irradiation, is function of the exposure time which varied from 1 to 30 minutes, with an electronic beam energy of 400 keV, doing the irradiations at free atmosphere. the obtained spectra are correlated by damage which the radiation produced. (Author)

  19. Compilation of radiation damage test data cable insulating materials

    CERN Document Server

    Schönbacher, H; CERN. Geneva

    1979-01-01

    This report summarizes radiation damage test data on commercially available organic cable insulation and jacket materials: ethylene- propylene rubber, Hypalon, neoprene rubber, polyethylene, polyurethane, polyvinylchloride, silicone rubber, etc. The materials have been irradiated in a nuclear reactor to integrated absorbed doses from 5*10/sup 5/ to 5*10/sup 6/ Gy. Mechanical properties, e.g. tensile strength, elongation at break, and hardness, have been tested on irradiated and non-irradiated samples. The results are presented in the form of tables and graphs, to show the effect of the absorbed dose on the measured properties. (13 refs).

  20. Multiscale physics of ion-induced radiation damage.

    Science.gov (United States)

    Surdutovich, Eugene; Solov'yov, A V

    2014-01-01

    This is a review of a multiscale approach to the physics of ion-beam cancer therapy, an approach suggested in order to understand the interplay of a large number of phenomena involved in the radiation damage scenario occurring on a range of temporal, spatial, and energy scales. We describe different effects that take place on different scales and play major roles in the scenario of interaction of ions with tissue. The understanding of these effects allows an assessment of relative biological effectiveness that relates the physical quantities, such as dose, to the biological values, such as the probability of cell survival.

  1. Metals far from equilibrium: From shocks to radiation damage

    CERN Document Server

    Bringa, E M; Caturla, M J; Stoelken, J; Kalantar, D

    2003-01-01

    Shock waves and high-energy particle radiation can each drive materials far from thermodynamic equilibrium and enable novel scenarios in the processing of materials. A large number of theoretical and experimental studies of shock deformation have been performed on polycrystalline materials, but shock deformation in single crystals has only recently been studied in some detail. We present molecular dynamics (MD) simulations of the shock response of single crystal copper, modeled using an embedded atom potential that reproduces both defect formation and high pressure behavior. Shock-induced plasticity will also be discussed. Predicting the in-service response of ferritic alloys in future fusion energy environments requires a detailed understanding of the mechanisms of defect accumulation and microstructure evolution in harsh radiation environments, which include a high level of He generation concurrent with primary damage production. The second half of this paper describes results of atomistic MD and kinetic Mo...

  2. Compensation of radiation damages for SOI pixel detector via tunneling

    CERN Document Server

    Yamada, Miho; Kurachi, Ikuo

    2015-01-01

    We are developing monolithic pixel detectors based on SOI technology for high energy physics, X-ray applications and so on.To employ SOI pixel detector on such radiation environments, we have to solve effects of total ionization damages (TID) for transistors which are enclosed in oxide layer.The holes which are generated and trapped in the oxide layers after irradiation affect characteristics of near-by transistors due to its positive electric field.Annealing and radiation of ultraviolet are not realistic to remove trapped holes for a fabricated detector due to thermal resistance of components and difficulty of handling. We studied compensation of TID effects by tunneling using a high-voltage. For decrease of trapped holes, applied high-voltage to buried p-well which is under oxide layer to inject the electrons into the oxide layer.In this report, recent progress of this study is shown.

  3. Molecular dynamics simulation of radiation damage cascades in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Buchan, J. T. [Department of Physics and Astronomy, Curtin University, Perth, Western Australia 6845 (Australia); Robinson, M. [Nanochemistry Research Institute, Curtin University, Perth, Western Australia 6845 (Australia); Christie, H. J.; Roach, D. L.; Ross, D. K. [Physics and Materials Research Centre, School of Computing, Science and Engineering, University of Salford, Salford, Greater Manchester M5 4WT (United Kingdom); Marks, N. A. [Department of Physics and Astronomy, Curtin University, Perth, Western Australia 6845 (Australia); Nanochemistry Research Institute, Curtin University, Perth, Western Australia 6845 (Australia)

    2015-06-28

    Radiation damage cascades in diamond are studied by molecular dynamics simulations employing the Environment Dependent Interaction Potential for carbon. Primary knock-on atom (PKA) energies up to 2.5 keV are considered and a uniformly distributed set of 25 initial PKA directions provide robust statistics. The simulations reveal the atomistic origins of radiation-resistance in diamond and provide a comprehensive computational analysis of cascade evolution and dynamics. As for the case of graphite, the atomic trajectories are found to have a fractal-like character, thermal spikes are absent and only isolated point defects are generated. Quantitative analysis shows that the instantaneous maximum kinetic energy decays exponentially with time, and that the timescale of the ballistic phase has a power-law dependence on PKA energy. Defect recombination is efficient and independent of PKA energy, with only 50% of displacements resulting in defects, superior to graphite where the same quantity is nearly 75%.

  4. Readout techniques and radiation damage of undoped cesium iodide

    Energy Technology Data Exchange (ETDEWEB)

    Woody, C.L.; Levy, P.W.; Kierstead, J.A.; Skwarnicki, T.; Sobolewski, Z.; Goldberg, M.; Horwitz, N.; Souder, P.; Anderson, D.F. (Brookhaven National Lab., Upton, NY (USA); Syracuse Univ., NY (USA). Dept. of Physics; Fermi National Accelerator Lab., Batavia, IL (USA))

    1989-01-01

    Several readout techniques for undoped CsI have been studied which utilize the fast scintillation component for speed, and the high photon yield for good energy resolution. Quantum yields have been measured for samples up to 30 cm in length using photomultiplier tubes, wavelength shifters, and silicon photodiodes. A study has also been made of the scintillation properties of undoped CsI. It is found that the light output and decay time of the 310 nm fast component increases and the emission spectrum shifts to longer wavelengths at lower temperatures. The effects on the optical transmission and scintillation light output due to radiation damage from {sup 60}Co gamma rays has been measured for doses up to {approximately}10{sup 6} rad. It is found that the radiation resistance of undoped CsI is substantially higher than has been reported for thallium doped CsI. 16 refs., 11 figs., 3 tabs.

  5. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Nachman, Benjamin Philip; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of $10^{15}$ 1 MeV $n_\\mathrm{eq}/\\mathrm{cm}^2$ and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This talk presents a digitization model that includes radiation damage effects to the ATLAS Pixel sensors for the first time. After a thorough description of the setup, predictions for basic Pixel cluster properties are presented alongside first validation studies with Run 2 collision data.

  6. Radiation damage effects in standard float zone silicon diodes

    Energy Technology Data Exchange (ETDEWEB)

    Pascoalino, Kelly C.; Camargo, Fabio; Barbosa, Renata F.; Goncalves, Josemary A.C.; Tobias, Carmen C.B., E-mail: ccbueno@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    The aim of this work was to study the radiation damage effects on the electrical properties of standard float zone diodes (STFZ). Such effects were evaluated by measuring the current and capacitance of these devices as a function of the reverse voltage. For comparison, current and capacitance measurements were carried out with a non-irradiated STFZ device. The irradiation was performed in the Radiation Technology Center (CTR) at IPEN/CNEN-SP using a {sup 60}Co irradiator (Gammacell 220 - Nordion) with a dose rate of about 2.2 kGy/h. Samples were irradiated at room temperature in steps variable from 50 kGy up 140 kGy which lead to an accumulated dose of 460 kGy. The results obtained have shown that the upper dose limit for a 'damageless' STFZ diode is about 50 kGy. (author)

  7. Role of Oxidative Damage in Radiation-Induced Bone Loss

    Science.gov (United States)

    Schreurs, Ann-Sofie; Alwood, Joshua S.; Limoli, Charles L.; Globus, Ruth K.

    2014-01-01

    During prolonged spaceflight, astronauts are exposed to both microgravity and space radiation, and are at risk for increased skeletal fragility due to bone loss. Evidence from rodent experiments demonstrates that both microgravity and ionizing radiation can cause bone loss due to increased bone-resorbing osteoclasts and decreased bone-forming osteoblasts, although the underlying molecular mechanisms for these changes are not fully understood. We hypothesized that excess reactive oxidative species (ROS), produced by conditions that simulate spaceflight, alter the tight balance between osteoclast and osteoblast activities, leading to accelerated skeletal remodeling and culminating in bone loss. To test this, we used the MCAT mouse model; these transgenic mice over-express the human catalase gene targeted to mitochondria, the major organelle contributing free radicals. Catalase is an anti-oxidant that converts reactive species, hydrogen peroxide into water and oxygen. This animal model was selected as it displays extended lifespan, reduced cardiovascular disease and reduced central nervous system radio-sensitivity, consistent with elevated anti-oxidant activity conferred by the transgene. We reasoned that mice overexpressing catalase in mitochondria of osteoblast and osteoclast lineage cells would be protected from the bone loss caused by simulated spaceflight. Over-expression of human catalase localized to mitochondria caused various skeletal phenotypic changes compared to WT mice; this includes greater bone length, decreased cortical bone area and moment of inertia, and indications of altered microarchitecture. These findings indicate mitochondrial ROS are important for normal bone-remodeling and skeletal integrity. Catalase over-expression did not fully protect skeletal tissue from structural decrements caused by simulated spaceflight; however there was significant protection in terms of cellular oxidative damage (MDA levels) to the skeletal tissue. Furthermore, we

  8. Protecting the radiation-damaged skin from friction: a mini review

    Energy Technology Data Exchange (ETDEWEB)

    Herst, Patries M [Department of Radiation Therapy, University of Otago, Wellington (New Zealand)

    2014-06-15

    Radiation-induced skin reactions are an unavoidable side effect of external beam radiation therapy, particularly in areas prone to friction and excess moisture such as the axilla, head and neck region, perineum and skin folds. Clinical studies investigating interventions for preventing or managing these reactions have largely focussed on formulations with moisturising, anti-inflammatory, anti-microbial and wound healing properties. However, none of these interventions has emerged as a consistent candidate for best practice. Much less emphasis has been placed on evaluating ways to protect the radiation-damaged skin from friction and excess moisture. This mini review analyses the clinical evidence for barrier products that form a protective layer by adhering very closely to the skin folds and do not cause further trauma to the radiation-damaged skin upon removal. A database search identified only two types of barrier products that fitted these criteria and these were tested in two case series and six controlled clinical trials. Friction protection was most effective when the interventions were used from the start of treatment and continued for several weeks after completion of treatment. Soft silicone dressings (Mepilex Lite and Mepitel Film) and Cavilon No Sting Barrier Film, but not Cavilon Moisturizing Barrier Cream, decreased skin reaction severity, most likely due to differences in formulation and skin build-up properties. It seems that prophylactic use of friction protection of areas at risk could be a worthwhile addition to routine care of radiation-damaged skin.

  9. Genetic damage in subjects exposed to radiofrequency radiation.

    Science.gov (United States)

    Verschaeve, Luc

    2009-01-01

    Despite many research efforts and public debate there is still great concern about the possible adverse effects of radiofrequency (RF) radiation on human health. This is especially due to the enormous increase of wireless mobile telephones and other telecommunication devices throughout the world. The possible genetic effects of mobile phone radiation and other sources of radiofrequencies constitute one of the major points of concern. In the past several review papers were published on laboratory investigations that were devoted to in vitro and in vivo animal (cyto)genetic studies. However, it may be assumed that some of the most important observations are those obtained from studies with individuals that were exposed to relatively high levels of radiofrequency radiation, either as a result of their occupational activity or as frequent users of radiofrequency emitting tools. In this paper the cytogenetic biomonitoring studies of RF-exposed humans are reviewed. A majority of these studies do show that RF-exposed individuals have increased frequencies of genetic damage (e.g., chromosomal aberrations) in their lymphocytes or exfoliated buccal cells. However, most of the studies, if not all, have a number of shortcomings that actually prevents any firm conclusion. Radiation dosimetry was lacking in all papers, but some of the investigations were flawed by much more severe imperfections. Large well-coordinated multidisciplinary investigations are needed in order to reach any robust conclusion.

  10. Properties and recrystallization of radiation damaged pyrochlore and titanite

    Energy Technology Data Exchange (ETDEWEB)

    Zietlow, Peter

    2016-11-02

    Radiation damage in minerals is caused by the alpha-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400-1400 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG) (Zietlow et al., in print). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia (6.4 wt% Th, 23.1.10{sup 18} a-decay events per gram (dpg)), Zlatoust/Russia (6.3 wt% Th, 23.1.10{sup 18} dpg), Panda Hill/Tanzania (1.6 wt% Th, 1.6.10{sup 18} dpg), and Blue River/Canada (10.5 wt% U, 115.4.10{sup 18} dpg), are compared with a crystalline reference pyrochlore from Schelingen (Germany). The type of structural recovery depends on the initial degree of radiation damage (Panda Hill 28 %, Blue River 85 %, Zlatoust and Miass 100 % according to XRD), as the recrystallization temperature increases with increasing degree of amorphization. Raman spectra indicate reordering on the local scale during annealing-induced recrystallization. As Raman modes around 800 cm{sup -1} are sensitive to radiation damage (Vandenborre and Husson 1983, Moll et al. 2011), the degree of local order was deduced from the ratio of the integrated intensities of the sum of the Raman bands between 605 and 680 cm{sup -1} devided by the sum of the integrated intensities of the bands between 810 and 860 cm{sup -1}. The most radiation damaged pyrochlores (Miass and Zlatoust) show an abrupt recovery of both, its short- (Raman) and long-range order (X-ray) between 800 and 850 K. The volume decrease upon recrystallization in Zlatoust pyrochlore was large enough to crack the sample repeatedly. In contrast, the weakly damaged pyrochlore (Panda Hill) begins to recover at considerably lower temperatures (near 500 K), extending over a temperature range of ca. 300 K, up to 800 K (Raman). The pyrochlore from Blue River shows in its

  11. Combat Damage Control Resuscitation: Today and Tomorrow

    Science.gov (United States)

    2010-04-01

    blood components to optimize hemostasis, the concept of permissive hypotension is used to decrease the bleeding from uncontrolled bleeding points, the...physiologic deterioration. The future of damage control resuscitation will most likely involve the refinement and customization of blood components for the

  12. Effect of antioxidant supplementation on digestive enzymes in radiation induced intestinal damage in rats.

    Science.gov (United States)

    Anwar, Mumtaz; Nanda, Neha; Bhatia, Alka; Akhtar, Reyhan; Mahmood, Safrun

    2013-12-01

    Intestinal mucosa, a rapidly proliferating tissue, is highly sensitive to radiation and undergoes apoptosis as a consequence of over generation of oxidative free radicals and the lack of the antioxidants. Thus the present study was designed to investigate the intestinal damage induced by radiation and to study if supplementation of the diet with antioxidant vitamins could ameliorate the intestinal damage and its digestive activity, as determined by the expression of various border enzymes. Swiss Albino rats (150-200 g body weight) were divided into six groups. Group I: Control untreated; Group II: Irradiated; Group III: Irradiated + vitamin A; Group IV: Irradiated + vitamin C; Group V: Irradiated + vitamin E; and Group VI: Irradiated + lycopene. Animals were exposed to whole body γ-radiation from (60)Co at the rate of 8 Gy for 15 min/rat. Intestinal morphology and changes in various digestive enzymes together with, DNA damage was studied in six groups and each group consisted of 18 animals. The gastrointestinal toxicity resulted in malabsorption, diarrhoea, weight loss, loss of appetite, abdominal haemorrhage and hair loss. The activities of sucrase and alkaline phosphatase were elevated and those of lactase, leucine aminopeptidase (LAP) and gamma-glutamyl transpeptidase or tranferase (γ-GTP) were markedly reduced. Antioxidant vitamin A, C or E supplementations prevented changes in brush border enzyme activities as compared to lycopene administration in rat intestine by radiation exposure. Intestinal histology showed that the vitamin supplementation to irradiated rats minimized the intestinal damage in rats. These findings suggest that the epithelial lining of the intestine is highly sensitive to radiation exposure and supplementation of antioxidant vitamins is helpful in minimizing the intestinal damage and supplementation by vitamin E was most potent in ameliorating the intestinal aberrations.

  13. Radiation damage of biomolecules (RADAM) database development: current status

    Science.gov (United States)

    Denifl, S.; Garcia, G.; Huber, B. A.; Marinković, B. P.; Mason, N.; Postler, J.; Rabus, H.; Rixon, G.; Solov'yov, A. V.; Suraud, E.; Yakubovich, A. V.

    2013-06-01

    Ion beam therapy offers the possibility of excellent dose localization for treatment of malignant tumours, minimizing radiation damage in normal tissue, while maximizing cell killing within the tumour. However, as the underlying dependent physical, chemical and biological processes are too complex to treat them on a purely analytical level, most of our current and future understanding will rely on computer simulations, based on mathematical equations, algorithms and last, but not least, on the available atomic and molecular data. The viability of the simulated output and the success of any computer simulation will be determined by these data, which are treated as the input variables in each computer simulation performed. The radiation research community lacks a complete database for the cross sections of all the different processes involved in ion beam induced damage: ionization and excitation cross sections for ions with liquid water and biological molecules, all the possible electron - medium interactions, dielectric response data, electron attachment to biomolecules etc. In this paper we discuss current progress in the creation of such a database, outline the roadmap of the project and review plans for the exploitation of such a database in future simulations.

  14. Radiation damage in soft X-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Morin, C.; Li, L. [Department of Chemistry and Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON, L8S 4M1 (Canada); Hitchcock, A.P. [Department of Chemistry and Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON, L8S 4M1 (Canada)], E-mail: aph@mcmaster.ca; Scholl, A.; Doran, A. [Advanced Light Source, Berkeley Lab, Berkeley, CA 94720 (United States)

    2009-03-15

    The rates of chemical transformation by radiation damage of polystyrene (PS), poly(methyl methacrylate) (PMMA), and fibrinogen (Fg) in a X-ray photoemission electron microscope (X-PEEM) and in a scanning transmission X-ray microscope (STXM) have been measured quantitatively using synchrotron radiation. As part of the method of dose evaluation in X-PEEM, the characteristic (1/e) sampling depth of X-PEEM for polystyrene in the C 1s region was measured to be 4 {+-} 1 nm. Critical doses for chemical change as monitored by changes in the X-ray absorption spectra are 80 (12), 280 (40) and 1230 (180) MGy (1 MGy = 6.242*{rho} eV/nm{sup 3}, where {rho} is the polymer density in g/cm{sup 3}) at 300 eV photon energy for PMMA, Fg and PS, respectively. The critical dose for each material is comparable in X-PEEM and STXM and the values cited are thus the mean of the values determined by X-PEEM and STXM. C 1s, N 1s and O 1s spectroscopy of the damaged materials is used to gain insight into the chemical changes that soft X-rays induce in these materials.

  15. Self-radiation damage in plutonium and uranium mixed dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Masato, E-mail: kato.masato@jaea.go.j [Japan Atomic Energy Agency, 4-33 Muramatu, Tokai-Mura, Naka-gun, Ibaraki 319-1194 (Japan); Komeno, Akira [Japan Atomic Energy Agency, 4-33 Muramatu, Tokai-Mura, Naka-gun, Ibaraki 319-1194 (Japan); Uno, Hiroki; Sugata, Hiromasa [Inspection Development Company, 4-33 Muramatu, Tokai-Mura, Naka-gun, Ibaraki 319-1194 (Japan); Nakae, Nobuo [Japan Atomic Energy Agency, 4-33 Muramatu, Tokai-Mura, Naka-gun, Ibaraki 319-1194 (Japan); Japan Nuclear Energy Safety Organization, TOKYU REIT Toranomon Bldg, 3-17-1, Toranomon, Minato-ku, Tokyo 105-0001 (Japan); Konashi, Kenji [Tohoku University, 2145-2, Narita, Oarai-machi, Ibaraki 311-1313 (Japan); Kashimura, Motoaki [Japan Atomic Energy Agency, 4-33 Muramatu, Tokai-Mura, Naka-gun, Ibaraki 319-1194 (Japan)

    2009-08-15

    In plutonium compounds, the lattice parameter increases due to self-radiation damage by alpha-decay of plutonium isotopes. The lattice parameter change and its thermal recovery in plutonium and uranium mixed dioxide (MOX) were studied. The lattice parameter for samples of MOX powders and pellets that had been left in the air for up to 32 years was measured. The lattice parameter increased and was saturated at about 0.29%. The change in lattice parameter was formulated as a function of self-radiation dose. Three stages in the thermal recovery of the damage were observed in temperature ranges of below 673 K, 673-1073 K and above 1073 K. The activation energies in each recovery stage were estimated to be 0.12, 0.73 and 1.2 eV, respectively, and the corresponding mechanism for each stage was considered to be the recovery of the anion Frenkel defect, the cation Frenkel defect and a defect connected with helium, respectively.

  16. Imperfection and radiation damage in protein crystals studied with coherent radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nave, Colin, E-mail: colin.nave@diamond.ac.uk [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Sutton, Geoff [Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Evans, Gwyndaf; Owen, Robin; Rau, Christoph [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Robinson, Ian [University College London, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Stuart, David Ian [Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2016-01-01

    Coherent diffraction observations from polyhedra crystals at cryotemperature are reported. Information is obtained about the lattice strain and the changes with radiation damage. Fringes and speckles occur within diffraction spots when a crystal is illuminated with coherent radiation during X-ray diffraction. The additional information in these features provides insight into the imperfections in the crystal at the sub-micrometre scale. In addition, these features can provide more accurate intensity measurements (e.g. by model-based profile fitting), detwinning (by distinguishing the various components), phasing (by exploiting sampling of the molecular transform) and refinement (by distinguishing regions with different unit-cell parameters). In order to exploit these potential benefits, the features due to coherent diffraction have to be recorded and any change due to radiation damage properly modelled. Initial results from recording coherent diffraction at cryotemperatures from polyhedrin crystals of approximately 2 µm in size are described. These measurements allowed information about the type of crystal imperfections to be obtained at the sub-micrometre level, together with the changes due to radiation damage.

  17. Radiation damage of hollandite in multiphase ceramic waste forms

    Science.gov (United States)

    Clark, Braeden M.; Tumurgoti, Priyatham; Sundaram, S. K.; Amoroso, Jake W.; Marra, James C.; Shutthanandan, Vaithiyalingam; Tang, Ming

    2017-10-01

    Radiation damage was simulated in multiphase titanate-based ceramic waste forms using an ion accelerator to generate high energy alpha particles (He+) and an ion implanter to generate 7 MeV gold (Au3+) particles. X-ray diffraction and transmission electron microscopy were used to characterize the damaged surfaces and nearby regions. Simulated multiphase ceramic waste forms were prepared using two processing methods: spark plasma sintering and melt-processing. Both processing methods produced ceramics with similar phase assemblages consisting of hollandite-, zirconolite/pyrochlore-, and perovskite-type phases. The measured heavy ion (Au3+) penetration depth was less in spark plasma sintered samples than in melt-processed samples. Structural breakdown of the hollandite phase occurred under He+ irradiation indicated by the presence of x-ray diffraction peaks belonging to TiO2, BaTiO5, and other hollandite related phases (Ba2Ti9O20). The composition of the constituent hollandite phase affected the extent of damage induced by Au3+ ions.

  18. LNL irradiation facilities for radiation damage studies on electronic devices

    Science.gov (United States)

    Bisello, D.; Candelori, A.; Giubilato, P.; Mattiazzo, S.; Pantano, D.; Silvestrin, L.; Tessaro, M.; Wyss, J.

    2016-11-01

    In this paper we will review the wide range of irradiation facilities installed at the INFN Legnaro National Laboratories and routinely used for radiation damage studies on silicon detectors, electronic components and systems. The SIRAD irradiation facility, dedicated to Single Event Effect (SEE) and bulk damage studies, is installed at the 14MV Tandem XTU accelerator and can deliver ion beams from H up to Au in the energy range from 28MeV to 300MeV. An Ion Electron Emission Microscope, also installed at SIRAD, allows SEE testing with micrometric sensitivity. For total dose tests, two facilities are presently available: an X-rays source and a 60Co γ -ray source. The 7MV Van de Graaff CN accelerator provides 1H beams in the energy range 2-7MeV and currents up to few μA for both total dose and bulk damage studies. At this facility, very high dose rates (up to ˜ 100 krad/s (SiO2)) can be achieved. Finally, also neutron beams are available, produced at the CN accelerator, by the reaction d + Be ⇒ n + B.

  19. A quantum mechanical scheme to reduce radiation damage in electron microscopy

    CERN Document Server

    Okamoto, Hiroshi; Fink, Hans-Werner

    2015-01-01

    We show that radiation damage to unstained biological specimens is not an intractable problem in electron microscopy. When a structural hypothesis of a specimen is available, quantum mechanical principles allow us to verify the hypothesis with a very low electron dose. Realization of such a concept requires precise control of the electron wave front. Based on a diffractive electron optical implementation, we demonstrate the feasibility of this new method by both experimental and numerical investigations.

  20. Advanced concept for damage control : A framework to simulate fire propagation and damage control effects

    NARCIS (Netherlands)

    Gillis, M.P.W.; Keijer, W.; Smit, C.S.

    2003-01-01

    Current damage control procedures are developed on the basis of a long-standing experience. However there are reasons to believe that these procedures do not account for major weapon-induced calamities. Fire fighting after substantial blast and fragmentation damage, due to a weaponhit, is quite beyo

  1. Advanced concept for damage control : A framework to simulate fire propagation and damage control effects

    NARCIS (Netherlands)

    Gillis, M.P.W.; Keijer, W.; Smit, C.S.

    2003-01-01

    Current damage control procedures are developed on the basis of a long-standing experience. However there are reasons to believe that these procedures do not account for major weapon-induced calamities. Fire fighting after substantial blast and fragmentation damage, due to a weaponhit, is quite

  2. Mitigating radiation damage of single photon detectors for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Anisimova, Elena; Higgins, Brendon L.; Bourgoin, Jean-Philippe [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Cranmer, Miles [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); Choi, Eric [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); Magellan Aerospace, Ottawa, ON (Canada); Hudson, Danya; Piche, Louis P.; Scott, Alan [Honeywell Aerospace (formerly COM DEV Ltd.), Ottawa, ON (Canada); Makarov, Vadim [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); University of Waterloo, Department of Electrical and Computer Engineering, Waterloo, ON (Canada); Jennewein, Thomas [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Canadian Institute for Advanced Research, Quantum Information Science Program, Toronto, ON (Canada)

    2017-12-15

    Single-photon detectors in space must retain useful performance characteristics despite being bombarded with sub-atomic particles. Mitigating the effects of this space radiation is vital to enabling new space applications which require high-fidelity single-photon detection. To this end, we conducted proton radiation tests of various models of avalanche photodiodes (APDs) and one model of photomultiplier tube potentially suitable for satellite-based quantum communications. The samples were irradiated with 106 MeV protons at doses approximately equivalent to lifetimes of 0.6, 6, 12 and 24 months in a low-Earth polar orbit. Although most detection properties were preserved, including efficiency, timing jitter and afterpulsing probability, all APD samples demonstrated significant increases in dark count rate (DCR) due to radiation-induced damage, many orders of magnitude higher than the 200 counts per second (cps) required for ground-to-satellite quantum communications. We then successfully demonstrated the mitigation of this DCR degradation through the use of deep cooling, to as low as -86 C. This achieved DCR below the required 200 cps over the 24 months orbit duration. DCR was further reduced by thermal annealing at temperatures of +50 to +100 C. (orig.)

  3. Rosiglitazone attenuates pulmonary fibrosis and radiation-induced intestinal damage

    Energy Technology Data Exchange (ETDEWEB)

    Mangoni, M.; Gerini, C.; Sottili, M.; Cassani, S.; Stefania, G.; Biti, G. [Radiotherapy Unit, Clinical Physiopathology Department, University of Florence, Firenze (Italy); Castiglione, F. [Department of Human Pathology and Oncology, University of Florence, Firenze (Italy); Vanzi, E.; Bottoncetti, A.; Pupi, A. [Nuclear Medicine Unit, Clinical Physiopathology Department, University of Florence, Firenze (Italy)

    2011-10-15

    Full text of publication follows: Purpose.-The aim of the study was to evaluate radioprotective effect of rosiglitazone (RGZ) on a murine model of late pulmonary damage and of acute intestinal damage. Methods.- Lung fibrosis: C57 mice were treated with the radiomimetic agent bleomycin, with or without rosiglitazone (5 mg/kg/day). To obtain an independent qualitative and quantitative measure for lung fibrosis we used high resolution CT, performed twice a week during the entire observation period. Hounsfield Units (HU) of section slides from the upper and lower lung region were determined. On day 31 lungs were collected for histological analysis. Acute intestinal damage: mice underwent 12 Gy total body irradiation with or without rosiglitazone. Mice were sacrificed 24 or 72 h after total body irradiation and ileum and colon were collected. Results.- Lung fibrosis: after bleomycin treatment, mice showed typical CT features of lung fibrosis, including irregular septal thickening and patchy peripheral reticular abnormalities. Accordingly, HU lung density was dramatically increased. Rosiglitazone markedly attenuated the radiological signs of fibrosis and strongly inhibited HU lung density increase (60% inhibition at the end of the observation period). Histological analysis revealed that in bleomycin-treated mice, fibrosis involved 50-55% of pulmonary parenchyma and caused an alteration of the alveolar structures in 10% of parenchyma, while in rosiglitazone-treated mice, fibrosis involved only 20-25% of pulmonary parenchyma, without alterations of the alveolar structures. Acute intestinal damage: 24 h after 12 Gy of total body irradiation intestinal mucosa showed villi shortening, mucosal thickness and crypt necrotic changes. Rosiglitazone showed a histological improvement of tissue structure, with villi and crypts normalization and oedema reduction. Conclusion.- These results demonstrate that rosiglitazone displays a protective effect on pulmonary fibrosis and radiation

  4. Positron annihilation lifetime study of radiation-damaged natural zircons

    Science.gov (United States)

    Roberts, J.; Gaugliardo, P.; Farnan, I.; Zhang, M.; Vance, E. R.; Davis, J.; Karatchevtseva, I.; Knott, R. B.; Mudie, S.; Buckman, S. J.; Sullivan, J. P.

    2016-04-01

    Zircons are a well-known candidate waste form for actinides and their radiation damage behaviour has been widely studied by a range of techniques. In this study, well-characterised natural single crystal zircons have been studied using Positron Annihilation Lifetime Spectroscopy (PALS). In some, but not all, of the crystals that had incurred at least half of the alpha-event damage of ∼1019 α/g required to render them structurally amorphous, PALS spectra displayed long lifetimes corresponding to voids of ∼0.5 nm in diameter. The long lifetimes corresponded to expectations from published Small-Angle X-ray Scattering data on similar samples. However, the non-observation by PALS of such voids in some of the heavily damaged samples may reflect large size variations among the voids such that no singular size can be distinguished or. Characterisation of a range of samples was also performed using scanning electron microscopy, optical absorption spectroscopy, Raman scattering and X-ray scattering/diffraction, with the degree of alpha damage being inferred mainly from the Raman technique and X-ray diffraction. The observed void diameters and intensities of the long lifetime components were changed somewhat by annealing at 700 °C; annealing at 1200 °C removed the voids entirely. The voids themselves may derive from He gas bubbles or voids created by the inclusion of small quantities of organic and hydrous matter, notwithstanding the observation that no voidage was evidenced by PALS in two samples containing hydrous and organic matter.

  5. ATLS® and damage control in spine trauma

    Directory of Open Access Journals (Sweden)

    Gosse Andreas

    2009-03-01

    Full Text Available Abstract Substantial inflammatory disturbances following major trauma have been found throughout the posttraumatic course of polytraumatized patients, which was confirmed in experimental models of trauma and in vitro settings. As a consequence, the principle of damage control surgery (DCS has developed over the last two decades and has been successfully introduced in the treatment of severely injured patients. The aim of damage control surgery and orthopaedics (DCO is to limit additional iatrogenic trauma in the vulnerable phase following major injury. Considering traumatic brain and acute lung injury, implants for quick stabilization like external fixators as well as decided surgical approaches with minimized potential for additional surgery-related impairment of the patient's immunologic state have been developed and used widely. It is obvious, that a similar approach should be undertaken in the case of spinal trauma in the polytraumatized patient. Yet, few data on damage control spine surgery are published to so far, controlled trials are missing and spinal injury is addressed only secondarily in the broadly used ATLS® polytrauma algorithm. This article reviews the literature on spine trauma assessment and treatment in the polytrauma setting, gives hints on how to assess the spine trauma patient regarding to the ATLS® protocol and recommendations on therapeutic strategies in spinal injury in the polytraumatized patient.

  6. Computer simulations of radiation damage in protein crystals; Simulationsrechnungen zu Strahlenschaeden an Proteinkristallen

    Energy Technology Data Exchange (ETDEWEB)

    Zehnder, M.

    2007-03-15

    The achievable resolution and the quality of the dataset of an intensity data collection for structure analysis of protein crystals with X-rays is limited among other factors by radiation damage. The aim of this work is to obtain a better quantitative understanding of the radiation damage process in proteins. Since radiation damage is unavoidable it was intended to look for the optimum ratio between elastically scattered intensity and radiation damage. Using a Monte Carlo algorithm physical processes after an inelastic photon interaction are studied. The main radiation damage consists of ionizations of the atoms through the electron cascade following any inelastic photon interaction. Results of the method introduced in this investigation and results of an earlier theoretical studies of the influence of Auger-electron transport in diamond are in a good agreement. The dependence of the radiation damage as a function of the energy of the incident photon was studied by computer-aided simulations. The optimum energy range for diffraction experiments on the protein myoglobin is 10-40 keV. Studies of radiation damage as a function of crystal volume and shape revealed that very small plate or rod shaped crystals suffer less damage than crystals formed like a cube with the same volume. Furthermore the influence of a few heavy atoms in the protein molecule on radiation damage was examined. Already two iron atoms in the unit cell of myoglobin increase radiation damage significantly. (orig.)

  7. XAFS studies of radiation damage in nuclear materials

    Science.gov (United States)

    Olive, Daniel Thomas

    The growing demand for nuclear energy places a high importance on the development of new materials capable of withstanding higher temperatures and harsher irradiation conditions than those used in existing reactors. By supporting the development of next generation reactors it also becomes possible to close the nuclear fuel cycle, greatly reducing the amount of waste sent for disposal in deep geologic repositories, where its interaction with the environment is also a matter of interest. In this thesis, X-ray absorption fine structure (XAFS) spectroscopy is used to investigate the local atomic structure of systems of interest to nuclear energy. First, two XAFS studies on environmental materials are presented. Granular activated carbon (GAC) was treated with iron to improve its water remediation properties, specifically with respect to arsenic. XAFS was used to determine the nature of iron coating on the GAC surface, and the method of arsenic bonding to the treated surface. Next, a neodymium precipitate from solubility studies carried out for the Waste Isolation Pilot Plant (WIPP) was analyzed. Neodymium was used as an analog for plutonium in brine solutions. XAFS fitting indicated that the neodymium substituted for calcium in a gypsum lattice, providing information useful for future geochemical modeling. XAFS was also used to study radiation damage in materials. A candidate material for advanced reactor structural materials, modified 9Cr--1Mo, was irradiated to 1, 4, and 10 displacements per atom (dpa). XAFS analyses were performed on the Fe, Mo, and Nb K-edges. Irradiation caused a reduction in coordination for all three elements, but the exact behavior was element specific. Damage around Fe atoms was linear with dose, while damage around Mo atoms saturated at or before 1 dpa. XAFS was shown to provide a useful atomic level description of radiation damage for a complex alloy system. Finally, zirconium carbide and zirconium nitride, candidate materials for advanced

  8. Autophagy and mitophagy in cellular damage control

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    2013-01-01

    Full Text Available Autophagy and mitophagy are important cellular processes that are responsible for breaking down cellular contents, preserving energy and safeguarding against accumulation of damaged and aggregated biomolecules. This graphic review gives a broad summary of autophagy and discusses examples where autophagy is important in controlling protein degradation. In addition we highlight how autophagy and mitophagy are involved in the cellular responses to reactive species and mitochondrial dysfunction. The key signaling pathways for mitophagy are described in the context of bioenergetic dysfunction.

  9. Radiation damage/activity calculation for CSNS target station

    Science.gov (United States)

    Yin, W.; Liang, T. J.; Yu, Q. Z.; Jia, X. J.

    2010-03-01

    The radiation damages have been performed for Chinese spallation neutron source (CSNS) target center components that relies on Monte Carlo simulation code MCNPX. During the calculation, Bertini intranuclear cascade model, three level-density formulation GCCI, and multistage pre-equilibrium model MPM on which are provided within MCNPX are employed. We calculate the displacement per atom (DPA) and afterheat of the tungsten target, the stainless steel target vessel window and the aluminum alloy moderator vessel. As a hundred kW-level source, these spallation center components have the lifetime more than 5 year. We also give the activity for the T0 chopper of the beam line HIPD to get the primary data for making out a maintenance scenario.

  10. Chromatin compaction protects genomic DNA from radiation damage.

    Directory of Open Access Journals (Sweden)

    Hideaki Takata

    Full Text Available Genomic DNA is organized three-dimensionally in the nucleus, and is thought to form compact chromatin domains. Although chromatin compaction is known to be essential for mitosis, whether it confers other advantages, particularly in interphase cells, remains unknown. Here, we report that chromatin compaction protects genomic DNA from radiation damage. Using a newly developed solid-phase system, we found that the frequency of double-strand breaks (DSBs in compact chromatin after ionizing irradiation was 5-50-fold lower than in decondensed chromatin. Since radical scavengers inhibited DSB induction in decondensed chromatin, condensed chromatin had a lower level of reactive radical generation after ionizing irradiation. We also found that chromatin compaction protects DNA from attack by chemical agents. Our findings suggest that genomic DNA compaction plays an important role in maintaining genomic integrity.

  11. Evaluating experimental molecular physics studies of radiation damage in DNA*

    Science.gov (United States)

    Śmiałek, Małgorzata A.

    2016-11-01

    The field of Atomic and Molecular Physics (AMP) is a mature field exploring the spectroscopy, excitation, ionisation of atoms and molecules in all three phases. Understanding of the spectroscopy and collisional dynamics of AMP has been fundamental to the development and application of quantum mechanics and is applied across a broad range of disparate disciplines including atmospheric sciences, astrochemistry, combustion and environmental science, and in central to core technologies such as semiconductor fabrications, nanotechnology and plasma processing. In recent years the molecular physics also started significantly contributing to the area of the radiation damage at molecular level and thus cancer therapy improvement through both experimental and theoretical advances, developing new damage measurement and analysis techniques. It is therefore worth to summarise and highlight the most prominent findings from the AMP community that contribute towards better understanding of the fundamental processes in biologically-relevant systems as well as to comment on the experimental challenges that were met for more complex investigation targets. Contribution to the Topical Issue "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic, B. Sivaraman.

  12. Radiation damage in proton-irradiated epitaxial silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Joern

    2009-07-15

    In this work radiation hardness of 75 {mu}m, 100 {mu}m and 150 {mu}m thick epitaxial silicon pad diodes of both standard and oxygenated material was investigated. Damage after 24 GeV/c proton irradiation in a 1MeV neutron equivalent fluence range between 10{sup 14} cm{sup -2} and 10{sup 16} cm{sup -2} was studied and isothermal annealing experiments at 80 C were carried out. Standard CV/IV measurements could be performed up to 4 x 10{sup 15} cm{sup -2}. The volume-normalised reverse current was found to increase linearly with fluence with a slope independent of the thickness and impurity concentration. However, due to large fluctuations the fluences had to be renormalised using the current-related damage parameter. Concerning the depletion voltage, nearly all materials remained at a moderate level up to 4 x 10{sup 15} cm{sup -2}. During short-term annealing acceptors annealed out, whereas others were introduced during the long-term annealing. The stable damage was characterised by donor removal at low fluences and fluence-proportional predominant donor introduction for highly irradiated diodes, depending on the oxygen level. No type inversion was observed. Time-resolved measurements with a new 670 nm laser-TCT setup made the determination of the trapping time constant with the charge correction method possible. The results agreed with expectations and showed a linear increase of trapping probability with fluence. The electric field exhibited a double peak structure in highly irradiated diodes. Charge collection efficiency measurements with {alpha}-particles were independent of oxygen concentration, but showed an improved efficiency for thinner diodes. A comparison to simulation revealed systematic discrepancies. A non-constant trapping time parameter was proposed as possible solution. (orig.)

  13. Study of the radiation damage of silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Nitschke, Michael; Chmill, Valery; Garutti, Erika; Klanner, Robert; Schwandt, Joern [Institute for Experimental Physics, Hamburg University, Luruper Chaussee 149, D-22761 Hamburg (Germany)

    2016-07-01

    Radiation damage significantly changes the performance of silicon photomultipliers (SiPM). In this work, we first have characterized KETEK SiPMs with a pixel size of 15 x 15 μm{sup 2} using I-V (current-voltage), C/G-V/f (capacitance/impedance-voltage/frequency) and Q-V (charge-voltage) measurements with and without illumination with blue light of 470 nm from an LED. The SiPM parameters determined are DCR (dark count rate), relative PDE (photon detection efficiency), G (Gain), XT (cross-talk), Geiger breakdown characteristics, C{sub pix} (pixel capacitance) and R{sub q} (quenching resistance). Following this first characterization, the SiPMs were irradiated using reactor neutrons with fluences of 10{sup 9}, 10{sup 10}, 10{sup 11}, 5 . 10{sup 11}, and 10{sup 12} n/cm{sup 2}. Afterwards, the same measurements were repeated, and the dependence of the SiPM parameters on neutron fluence was determined. The results are used to optimize the radiation tolerance of SiPMs.

  14. Use of Displacement Damage Dose in an Engineering Model of GaAs Solar Cell Radiation Damage

    Science.gov (United States)

    Morton, T. L.; Chock, R.; Long, K. J.; Bailey, S.; Messenger, S. R.; Walters, R. J.; Summers, G. P.

    2005-01-01

    Current methods for calculating damage to solar cells are well documented in the GaAs Solar Cell Radiation Handbook (JPL 96-9). An alternative, the displacement damage dose (D(sub d)) method, has been developed by Summers, et al. This method is currently being implemented in the SAVANT computer program.

  15. Radiation tolerant power converter controls

    CERN Document Server

    Todd, B; King, Q; Uznanski, S

    2012-01-01

    The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is the world's most powerful particle collider. The LHC has several thousand magnets, both warm and super-conducting, which are supplied with current by power converters. Each converter is controlled by a purpose-built electronic module called a Function Generator Controller (FGC). The FGC allows remote control of the power converter and forms the central part of a closed-loop control system where the power converter voltage is set, based on the converter output current and magnet-circuit characteristics. Some power converters and FGCs are located in areas which are exposed to beam-induced radiation. There are numerous radiation induced effects, some of which lead to a loss of control of the power converter, having a direct impact upon the accelerator's availability. Following the first long shut down (LS1), the LHC will be able to run with higher intensity beams and higher beam energy. This is expected to lead to signifi...

  16. Radiation Damage and Fission Product Release in Zirconium Nitride

    Energy Technology Data Exchange (ETDEWEB)

    Egeland, Gerald W. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2005-08-29

    Zirconium nitride is a material of interest to the AFCI program due to some of its particular properties, such as its high melting point, strength and thermal conductivity. It is to be used as an inert matrix or diluent with a nuclear fuel based on transuranics. As such, it must sustain not only high temperatures, but also continuous irradiation from fission and decay products. This study addresses the issues of irradiation damage and fission product retention in zirconium nitride through an assessment of defects that are produced, how they react, and how predictions can be made as to the overall lifespan of the complete nuclear fuel package. Ion irradiation experiments are a standard method for producing radiation damage to a surface for observation. Cryogenic irradiations are performed to produce the maximum accumulation of defects, while elevated temperature irradiations may be used to allow defects to migrate and react to form clusters and loops. Cross-sectional transmission electron microscopy and grazing-incidence x-ray diffractometry were used in evaluating the effects that irradiation has on the crystal structure and microstructure of the material. Other techniques were employed to evaluate physical effects, such as nanoindentation and helium release measurements. Results of the irradiations showed that, at cryogenic temperatures, ZrN withstood over 200 displacements per atom without amorphization. No significant change to the lattice or microstructure was observed. At elevated temperatures, the large amount of damage showed mobility, but did not anneal significantly. Defect clustering was possibly observed, yet the size was too small to evaluate, and bubble formation was not observed. Defects, specifically nitrogen vacancies, affect the mechanical behavior of ZrN dramatically. Current and previous work on dislocations shows a distinct change in slip plane, which is evidence of the bonding characteristics. The stacking-fault energy changes dramatically with

  17. Reconstitution studies on the involvement of radiation-induced lipid peroxidation in damage to membrane enzymes.

    Science.gov (United States)

    Yukawa, O; Nagatsuka, S; Nakazawa, T

    1983-04-01

    The effect of radiation on the drug-metabolizing enzyme system of microsomes, reconstituted with liposomes of microsomal phospholipids, NADPH-cytochrome P-450 reductase and cytochrome P-450, was examined to elucidate the role of lipid peroxidation of membranes in radiation-induced damage to membrane-bound enzymes. The reconstituted system of non-irradiated enzymes with irradiated liposomes showed a low activity of hexobarbital hydroxylation, whereas irradiated enzymes combined with non-irradiated liposomes exhibited an activity equal to that of unirradiated controls. Irradiation of liposomes caused a decrease in cytochrome P-450 content by destruction of the haem of cytochrome P-450 and also inhibited the binding capacity of cytochrome P-450 for hexobarbital. The relationship between radiation-induced lipid peroxidation and membrane-bound enzymes is discussed.

  18. Reconstitution studies on the involvement of radiation-induced lipid peroxidation in damage to membrane enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Yukawa, O.; Nagatsuka, S.; Nakazawa, T. (National Inst. of Radiological Sciences, Chiba (Japan))

    1983-04-01

    The effect of ..gamma..-radiation on the drug-metabolizing enzyme system of microsomes, reconstituted with liposomes of microsomal phospholipids, NADPH-cytochrome P-450 reductase and cytochrome P-450, was examined to elucidate the role of lipid peroxidation of membranes in radiation-induced damage to membrane-bound enzymes. The reconstituted system of non-irradiated enzymes with irradiated liposomes showed a low activity of hexobarbital hydroxylation, whereas irradiated enzymes combined with non-irradiated liposomes exhibited an activity equal to that of unirradiated controls. Irradiation of liposomes caused a decrease in cytochrome P-450 content by destruction of the haem of cytochrome P-450 and also inhibited the binding capacity of cytochrome P-450 for hexobarbital. The relationship between radiation-induced lipid peroxidation and membrane-bound enzymes is discussed.

  19. Radiation Tolerant Interfaces: Influence of Local Stoichiometry at the Misfit Dislocation on Radiation Damage Resistance of Metal/Oxide Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Shutthanandan, Vaithiyalingam [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Choudhury, Samrat [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos NM 87545 USA; Manandhar, Sandeep [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Kaspar, Tiffany C. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Wang, Chongmin [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Devaraj, Arun [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Wirth, Brian D. [Department of Nuclear Engineering, University of Tennessee, Knoxville TN 37996 USA; Thevuthasan, Suntharampilli [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Hoagland, Richard G. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos NM 87545 USA; Dholabhai, Pratik P. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos NM 87545 USA; Uberuaga, Blas P. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos NM 87545 USA; Kurtz, Richard J. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA

    2017-04-24

    To understand how variations in interface properties such as misfit-dislocation density and local chemistry affect radiation-induced defect absorption and recombination, we have explored a model system of CrxV1-x alloy epitaxial films deposited on MgO single crystals. By controlling film composition, the lattice mismatch with MgO was adjusted so that the misfit-dislocation density varies at the interface. These interfaces were exposed to irradiation and in situ results show that the film with a semi-coherent interface (Cr) withstands irradiation while V film, which has similar semi-coherent interface like Cr, showed the largest damage. Theoretical calculations indicate that, unlike at metal/metal interfaces, the misfit dislocation density does not dominate radiation damage tolerance at metal/oxide interfaces. Rather, the stoichiometry, and the precise location of the misfit-dislocation density relative to the interface, drives defect behavior. Together, these results demonstrate the sensitivity of defect recombination to interfacial chemistry and provide new avenues for engineering radiation-tolerant nanomaterials.

  20. Hepatocyte growth factor gene therapy prevents radiation-induced liver damage

    Institute of Scientific and Technical Information of China (English)

    Chau-Hua Chi; I-Li Liu; Wei-Yu Lo; Bor-Song Liaw; Yu-Shan Wang; Kwan-Hwa Chi

    2005-01-01

    AIM: To transfer human HGF gene into the liver of rats by direct electroporation as a means to prevent radiationinduced liver damage.METHODS: Rat whole liver irradiation model was accomplished by intra-operative approach. HGF plasmid was injected into liver and transferred by electroporation using a pulse generator. Control rats (n = 8) received electrogene therapy (EGT) vehicle plasmid and another 8rats received HGF-EGT 100 μg 48 h before WLIR.Expression of HGF in liver was examined by RT-PCR and ELISA methods. Apoptosis was determined by TUNEL assay. Histopathology was evaluated 10 wk after whole liver irradiation.RESULTS: Marked decrease of apoptotic cells and downregulation of transforming growth factor-beta 1 (TGF-β1)mRNA were observed in the HGF-EGT group 2 d after liver irradiation compared to control animals. Less evidence of radiation-induced liver damage was observed morphologically in liver specimen 10 wk after liver irradiation and longer median survival time was observed from HGF-EGT group (14 wk) compared to control rats (5 wk). (P = 0.031).CONCLUSION: For the first time it has been demonstrated that HGF-EGT would prevent liver from radiation-induced liver damage by preventing apoptosis and down-regulation of TGF-β1.

  1. Evaluation of γ-radiation-induced DNA damage in two species of bivalves and their relative sensitivity using comet assay.

    Science.gov (United States)

    Praveen Kumar, M K; Shyama, S K; Sonaye, B S; Naik, U Roshini; Kadam, S B; Bipin, P D; D'costa, A; Chaubey, R C

    2014-05-01

    Ionizing radiation is known to induce genetic damage in diverse groups of organisms. Under accidental situations, large quantities of radioactive elements get released into the environment and radiation emitted from these radionuclides may adversely affect both the man and the non-human biota. The present study is aimed (a) to know the genotoxic effect of gamma radiation on aquatic fauna employing two species of selected bivalves, (b) to evaluate the possible use of 'Comet assay' for detecting genetic damage in haemocytes of bivalves as a biomarker for environmental biomonitoring and also (c) to compare the relative sensitivity of two species of bivalves viz. Paphia malabarica and Meretrix casta to gamma radiation. The comet assays was optimized and validated using different concentrations (18, 32 and 56 mg/L) of ethyl methanesulfonate (EMS), a direct-acting reference genotoxic agent, to which the bivalves were exposed for various times (24, 48 and 72 h). Bivalves were irradiated (single acute exposure) with 5 different doses (viz. 2, 4, 6, 8 and 10 Gy) of gamma radiation and their genotoxic effects on the haemocytes were studied using the comet assay. Haemolymph was collected from the adductor muscle at 24, 48 and 72 h of both EMS-exposed and irradiated bivalves and comet assay was carried out using standard protocol. A significant increase in DNA damage was observed as indicated by an increase in % tail DNA damage at different concentrations of EMS and all the doses of gamma radiation as compared to controls in both bivalve species. This showed a dose-dependent increase of genetic damage induced in bivalves by EMS as well as gamma radiation. Further, the highest DNA damage was observed at 24h. The damage gradually decreased with time, i.e. was smaller at 48 and 72 h than at 24h post irradiation in both species of bivalves. This may indicate repair of the damaged DNA and/or loss of heavily damaged cells as the post irradiation time advanced. The present study

  2. Measurement of DNA damage after exposure to 2450 MHz electromagnetic radiation.

    Science.gov (United States)

    Malyapa, R S; Ahern, E W; Straube, W L; Moros, E G; Pickard, W F; Roti Roti, J L

    1997-12-01

    Recent reports suggest that exposure to 2450 MHz electromagnetic radiation causes DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) in cells of rat brain irradiated in vivo (Lai and Singh, Bioelectromagnetics 16, 207-210, 1995; Int. J. Radiat. Biol. 69, 513-521, 1996). Therefore, we endeavored to determine if exposure of cultured mammalian cells in vitro to 2450 MHz radiation causes DNA damage. The alkaline comet assay (single-cell gel electrophoresis), which is reportedly the most sensitive method to assay DNA damage in individual cells, was used to measure DNA damage after in vitro 2450 MHz irradiation. Exponentially growing U87MG and C3H 10T1/2 cells were exposed to 2450 MHz continuous-wave (CW) radiation in specially designed radial transmission lines (RTLs) that provided relatively uniform microwave exposure. Specific absorption rates (SARs) were calculated to be 0.7 and 1.9 W/kg. Temperatures in the RTLs were measured in real time and were maintained at 37 +/- 0.3 degrees C. Every experiment included sham exposure(s) in an RTL. Cells were irradiated for 2 h, 2 h followed by a 4-h incubation at 37 degrees C in an incubator, 4 h and 24 h. After these treatments samples were subjected to the alkaline comet assay as described by Olive et al. (Exp. Cell Res. 198, 259-267, 1992). Images of comets were digitized and analyzed using a PC-based image analysis system, and the "normalized comet moment" and "comet length" were determined. No significant differences were observed between the test group and the controls after exposure to 2450 MHz CW irradiation. Thus 2450 MHz irradiation does not appear to cause DNA damage in cultured mammalian cells under these exposure conditions as measured by this assay.

  3. Controlling radiated emissions by design

    CERN Document Server

    Mardiguian, Michel

    2014-01-01

    The 3rd edition of Controlling Radiated Emissions by Design has been updated to reflect the latest changes in the field. New to this edition is material related to technical advances, specifically super-fast data rates on wire pairs, with no increase in RF interference. Throughout the book, details are given to control RF emissions using EMC design techniques. This book retains the step-by-step approach for incorporating EMC into every new design from the ground up. It describes the selection of quieter IC technologies, their implementation into a noise-free printed circuit layout, and the gathering of these into a low emissions package. Also included is how to design an I/O filter, along with connectors and cable considerations. All guidelines are supported throughout with comprehensive calculated examples. Design engineers, EMC specialists, and technicians will benefit from learning about the development of more efficient and economical control of emissions.

  4. Billeddiagnostiske aspekter ved damage control-kirurgi

    DEFF Research Database (Denmark)

    Ewertsen, Caroline; Hansen, Kristoffer Lindskov; Nielsen, Michael Bachmann

    2011-01-01

    The imaging modalities computed tomography (CT) and the ultrasonography (US) examination focused assessment with sonography for trauma (FAST) in relation to damage control in traumas are discussed. CT has the advantage of high sensitivity and specificity for detection of organ specific lesions....... FAST ultrasound is a good screening tool for intraperitoneal bleeding, but the sensitivity and specificity is lower than by CT. We recommend FAST-US prehospitally or early in the trauma room resuscitation. Haemodynamically stable patients with relevant traumas should undergo CT....

  5. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    Science.gov (United States)

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (pmicrowave exposed groups (pmicrowave exposed animal (pmicrowave exposed groups as compared to their corresponding values in sham exposed group (pmicrowave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect. The study also indicates that increased oxidative stress and inflammatory response might be the factors involved in DNA damage following low intensity microwave exposure.

  6. The radioprotective effect and mechanism of captopril on radiation induced-heart damage in rats

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Seung Hee; Lee, Kyung Ja; Koo, Hea Soo [Ewha Womans University, Seoul (Korea, Republic of)

    2004-03-15

    Captopril (angiotension converting enzyme inhibitor) is known to have a radioprotective effect in the lungs, intestines and skin, but its effect in the heart is unclear. To investigate the radioprotective effect and mechanism of captopril in the heart, the histopathological changes and immunohistochemical stains were compared with radiation alone, and radiation combined with captopril, in the rats. The histopathological changes and immunohistochemical stains (TNF {alpha} , TGF {beta} 1, PDGF and FGF2) were examined in the radiation alone and the combined captopril and radiation groups, 2 and 8 weeks after irradiation. Each group consisted of 8 to 10 rats (Sprague-Dawley). Irradiation (12.5 Gy) was given to the left hemithorax in a single fraction. Captopril (50 mg/Kg/d) mixed with water, was given orally and continuously from the first week prior to, up to the 8th week of the experiment. In the radiation alone group, the ventricle at 2 weeks after irradiation showed prominent edema ({rho} = 0.082) and fibrin deposit ({rho} = 0.018) compared to the control group. At 8 weeks, the edema was decreased and fibrosis increased compared to those at 2 weeks. The histopathological changes of the combined group were similar to those of the control group, due to the reduced radiation toxicity at 2 and 8 weeks. The endocardial fibrin deposit ({rho} = 0.047) in the atrium, and the interstitial fibrin deposit ({rho} = 0.019) and edema ({rho} = 0.042) of the ventricle were reduced significantly in the combined group compared to those in the radiation alone group at 2 weeks. The expressions of TNF- {alpha} , TGF- {beta} 1, PDGF and FGF-2 in the radiation alone group were more increased than in the control group, especially in the pericardium and endocardium of the atrium at 2 weeks. At 8 weeks, the pericardial TNF- {alpha} and TGF- {beta} 1, in the radiation alone group continuously increased. The expressions of TNF- {alpha} , TGF- {beta} 1, and PDGF were decreased in the combined

  7. Anæstesiologiske aspekter ved damage control-kirurgi

    DEFF Research Database (Denmark)

    Steinmetz, Jacob

    2011-01-01

    Patients with severe traumatic injuries occasionally undergo damage control surgery. This paper highlights some of the perioperative anaesthesiological considerations. Although damage control is often used as a surgical term, it is crucial that personnel involved in the parallel resuscitation of ...

  8. Multiscale approach to radiation damage induced by ion beams: complex DNA damage and effects of thermal spikes

    CERN Document Server

    Surdutovich, E; Solov'yov, A V

    2010-01-01

    We present the latest advances of the multiscale approach to radiation damage caused by irradiation of a tissue with energetic ions and report the most recent advances in the calculations of complex DNA damage and the effects of thermal spikes on biomolecules. The multiscale approach aims to quantify the most important physical, chemical, and biological phenomena taking place during and following irradiation with ions and provide a better means for clinically-necessary calculations with adequate accuracy. We suggest a way of quantifying the complex clustered damage, one of the most important features of the radiation damage caused by ions. This method can be used for the calculation of irreparable DNA damage. We include thermal spikes, predicted to occur in tissue for a short time after ion's passage in the vicinity of the ions' tracks in our previous work, into modeling of the thermal environment for molecular dynamics analysis of ubiquitin and discuss the first results of these simulations.

  9. Case report of the radiation damage to the developing teeth

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, Nobuo; Rakugi, Masami; Kusamura, Yayoi; Ochiai, Nobuyuki; Saito, Takahiro (Osaka Univ. (Japan). School of Dentistry)

    1983-12-01

    In the treatment of malignant diseases about the head and neck, radium, x-rays and other radioactive materials are used as therapeutic agents. When irradiation is heavy, deleterious effects may be seen later in jaws, the teeh, or in both teeth and jaws. Young patients with undeveloped and developing teeth, despite lower dosages, are more subject to radiation damage to the teeth. After heavy exposure, grossly stunted teeth may appear. The crown is sometimes smaller than normal and deformed, and the root may be grossly underdeveloped. Sometimes the crown is formed normally but the roots are absent. This case is presented in which the mandibular jaw was irradiated at 3 years old and it was possible to examine some of the abnormal teeth in detail by using clinical, radiographic, and histologic technicques. The patient was first seen on June 21, 1982, at the age of 6 years old and one month. His medical history revealed that when he was 3 years old a malignant fibrous histiocytoma of the left mandibula. Radiation therapy (Linac) began at 3 years old and three months and extended over a period of one month. The total dose was 4750 rads. The crown of other teeth were formed normally but when the patient was 7 years old, the upper left lateral incisor was appeared to have short clinical crown. Radiographs revealed that roots of lower incisors were short and roots of molars were absent. The extracted lower molar was cut undecalcified to produce planoparallel section. The section showed that the dysplastic dentin was formed and it was continuous with the alveolar bone at the base of the tooth.

  10. Comparison between cytogenetic damage induced in human lymphocytes by environmental chemicals or radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cebulska-Wasilewska, A. [Institute of Nuclear Physics, Cracow (Poland)

    1997-12-31

    Author compared cytogenetic effects of chemicals (benzene and the member at benzene related compounds) and ionizing radiation on the human lymphocytes. Levels of various types of cytogenetic damage observed among people from petroleum plants workers groups are similar to the levels of damages detected in the blood of people suspected of the accidental exposure to a radiation source

  11. Development of radiation biological dosimetry and treatment of radiation-induced damaged tissue

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chul Koo; Kim, Tae Hwan; Lee, Yun Sil [and others

    2000-04-01

    Util now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline(triage) to be able to be treated the victims as fast as possible. We established the apoptotic fragment assay, PCC, comet assay, and micronucleus assay which was the significant relationship between dose and cell damages to evaluate the irradiated dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with chromosome dosimetry and micronucleus assay.

  12. State Supervision and Control of Radiation Protection

    CERN Document Server

    2001-01-01

    Radiation Protection Centre is carrying state supervision and control of radiation protection. The main objective of state supervision and control of radiation protection is assessing how licensees comply with requirements of the appropriate legislation and enforcement. Summary of inspections conducted in 1999-2001 is presented.

  13. State Radiation Protection Supervision and Control

    CERN Document Server

    2002-01-01

    Radiation Protection Centre is carrying state supervision and control of radiation protection. The main objective of state supervision and control of radiation protection is assessing how licensees comply with requirements of the appropriate legislation and enforcement. Summary of inspections conducted in 2002 is presented.

  14. Microscopic model for chemical etchability along radiation damage paths in solids

    Institute of Scientific and Technical Information of China (English)

    Mukhtar Ahmed RANA

    2008-01-01

    It would be very interesting to develop a picture about removal of atoms from the radiation damaged paths or latent nuclear tracks and undamaged bulk material in track detectors. Here, theory of chemical etching is described briefly and a new model for chemical etching along radiation damaged paths in solids is developed based on basic scientific facts and valid assumptions. Dependence of chemical etching on radiation damage intensity and etching conditions is discussed. A new parameter for etching along radiation damaged paths is introduced, which is useful for investigation of relationship between chemical etchability and radiation damage in a solid. Results and discussion presented here are also useful for further development of nuclear waste immobilization.

  15. Clustered DNA damages induced in human hematopoietic cells by low doses of ionizing radiation

    Science.gov (United States)

    Sutherland, Betsy M.; Bennett, Paula V.; Cintron-Torres, Nela; Hada, Megumi; Trunk, John; Monteleone, Denise; Sutherland, John C.; Laval, Jacques; Stanislaus, Marisha; Gewirtz, Alan

    2002-01-01

    Ionizing radiation induces clusters of DNA damages--oxidized bases, abasic sites and strand breaks--on opposing strands within a few helical turns. Such damages have been postulated to be difficult to repair, as are double strand breaks (one type of cluster). We have shown that low doses of low and high linear energy transfer (LET) radiation induce such damage clusters in human cells. In human cells, DSB are about 30% of the total of complex damages, and the levels of DSBs and oxidized pyrimidine clusters are similar. The dose responses for cluster induction in cells can be described by a linear relationship, implying that even low doses of ionizing radiation can produce clustered damages. Studies are in progress to determine whether clusters can be produced by mechanisms other than ionizing radiation, as well as the levels of various cluster types formed by low and high LET radiation.

  16. PWO crystals for CMS electromagnetic calorimeter studies of the radiation damage kinetics

    CERN Document Server

    Drobychev, G Yu; Dormenev, V; Korzhik, M; Lecoq, P; Lopatic, A; Nédélec, P; Peigneux, J P; Sillou, D

    2005-01-01

    Kinetics of radiation damage of the PWO crystals under irradiation and recovery were studied. Crystals were irradiated with dose corresponding to average one expected in the electromagnetic calorimeter (working dose irradiation). Radiation damage and recovery were monitored through measurements of PWO optical transmission. An approach is proposed which allows evaluating the influence of the PWO crystals properties on the statistical term in the energy resolution of the electromagnetic calorimeter. The analysis also gives important information about the nature of the radiation damage mechanism in scintillation crystals. The method was used during development of technology of the mass production of radiation hard crystals and during development of methods for crystals certification

  17. Review of radiation damage studies on DNW CMOS MAPS

    Science.gov (United States)

    Traversi, G.; Gaioni, L.; Manazza, A.; Manghisoni, M.; Ratti, L.; Re, V.; Zucca, S.; Bettarini, S.; Rizzo, G.; Morsani, F.; Bosisio, L.; Rashevskaya, I.; Cindro, V.

    2013-12-01

    Monolithic active pixel sensors fabricated in a bulk CMOS technology with no epitaxial layer and standard resistivity (10 Ω cm) substrate, featuring a deep N-well as the collecting electrode (DNW MAPS), have been exposed to γ-rays, up to a final dose of 10 Mrad (SiO2), and to neutrons from a nuclear reactor, up to a total 1 MeV neutron equivalent fluence of about 3.7 ·1013cm-2. The irradiation campaign was aimed at studying the effects of radiation on the most significant parameters of the front-end electronics and on the charge collection properties of the sensors. Device characterization has been carried out before and after irradiations. The DNW MAPS irradiated with 60Co γ-rays were also subjected to high temperature annealing (100 °C for 168 h). Measurements have been performed through a number of different techniques, including electrical characterization of the front-end electronics and of DNW diodes, laser stimulation of the sensors and tests with 55Fe and 90Sr radioactive sources. This paper reviews the measurement results, their relation with the damage mechanisms underlying performance degradation and provides a new comparison between DNW devices and MAPS fabricated in a CMOS process with high resistivity (1 kΩ cm) epitaxial layer.

  18. The Damage Mechanism and Protection of Electromagnetic Radiation%电磁辐射损伤机制与防护

    Institute of Scientific and Technical Information of China (English)

    郝娜; 程红缨; 任为; 缪春玉

    2012-01-01

    电磁辐射可导致动物心血管、神经、生殖、免疫等多系统不同程度损伤,严重威胁人类健康,电磁损伤的诊断和防治已成为亟待解决的问题.本文针对电磁辐射对靶器官的损伤作一综述,为电磁辐射的预防、诊断、防治和护理提供依据.%Studies have shown that electromagnetic radiation can cause varying degrees of damage to the cardiovascular, nervous, reproductive and immune systems. Diagnosis and control of electromagnetic damage has become a serious problem and a threat to human health. In this paper, electromagnetic radiation damage to target organs is reviewed. Evidence is provided for, electromagnetic radiation prevention, diagnosis and the basis for medical treatment.

  19. Damage evolution law of coal-rock under uniaxial compression based on the electromagnetic radiation characteristics

    Institute of Scientific and Technical Information of China (English)

    Jin Peijian; Wang Enyuan; Liu Xiaofei; Huang Ning; Wang Siheng

    2013-01-01

    Based on electromagnetic radiation characteristics,the present research studied the damage evolution of rock under uniaxial compression.Besides,this research built the coal-rock damage evolution model considered residual strength.The applicability and accuracy of the model were verified through experiments.The results show that coal-rock damage evolution consists of four periods.The first period is from the beginning of compression to nearly 20% of the stress peak value,during which the damage variable changes stably about 0.1,and accordingly a few of electromagnetic radiation signals emerge.The second period is from about 20% to 70% of the stress peak value.The damage has stable development,and the parameter of electromagnetic radiation characteristics turns larger continuously with the increase of stress.The third period is when the damage has accelerated development,the coal-rock was broken which result from sharp increasing of the damage variable,meanwhile a great quantity of electromagnetic radiation signals emerge.The fourth period is after the coal-rock fracture,during which the damage variable corresponding to the parameter of electromagnetic radiation characteristics has a stable development.This research has great academic and realistic significance for further studies the electromagnetic radiation characteristics of coal-rock under loading and damage and the forecasting of coal-rock dynamic disasters.

  20. Detection of DNA damage by space radiation in human fibroblasts flown on the International Space Station.

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Wong, Michael; Feiveson, Alan; Gaza, Ramona; Stoffle, Nicholas; Wang, Huichen; Wilson, Bobby; Rohde, Larry; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2017-02-01

    Although charged particles in space have been detected with radiation detectors on board spacecraft since the discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation is challenging due to the low dose and low dose rate nature of the radiation environment, and due to the difficulty in distinguishing the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in their lymphocytes and early onset of cataracts, are attributed primarily to their exposure to space radiation. In this study, cultured human fibroblasts were flown on the International Space Station (ISS). Cells were kept at 37°C in space for 14 days before being fixed for analysis of DNA damage with the γ-H2AX assay. The 3-dimensional γ-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed several foci that were larger and displayed a track pattern only in the Day 14 flight samples. To confirm that the foci data from the flight study was actually induced from space radiation exposure, cultured human fibroblasts were exposed to low dose rate γ rays at 37°C. Cells exposed to chronic γ rays showed similar foci size distribution in comparison to the non-exposed controls. The cells were also exposed to low- and high-LET protons, and high-LET Fe ions on the ground. Our results suggest that in G1 human fibroblasts under the normal culture condition, only a small fraction of large size foci can be attributed to high-LET radiation in space.

  1. Detection of DNA damage by space radiation in human fibroblasts flown on the International Space Station

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Wong, Michael; Feiveson, Alan; Gaza, Ramona; Stoffle, Nicholas; Wang, Huichen; Wilson, Bobby; Rohde, Larry; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2017-02-01

    Although charged particles in space have been detected with radiation detectors on board spacecraft since the discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation is challenging due to the low dose and low dose rate nature of the radiation environment, and due to the difficulty in distinguishing the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in their lymphocytes and early onset of cataracts, are attributed primarily to their exposure to space radiation. In this study, cultured human fibroblasts were flown on the International Space Station (ISS). Cells were kept at 37 °C in space for 14 days before being fixed for analysis of DNA damage with the γ-H2AX assay. The 3-dimensional γ-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed several foci that were larger and displayed a track pattern only in the Day 14 flight samples. To confirm that the foci data from the flight study was actually induced from space radiation exposure, cultured human fibroblasts were exposed to low dose rate γ rays at 37 °C. Cells exposed to chronic γ rays showed similar foci size distribution in comparison to the non-exposed controls. The cells were also exposed to low- and high-LET protons, and high-LET Fe ions on the ground. Our results suggest that in G1 human fibroblasts under the normal culture condition, only a small fraction of large size foci can be attributed to high-LET radiation in space.

  2. Cytogenetic damage at low doses and the problem of bioindication of chronic low level radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Geras' kin, S.A.; Dikarev, V.G.; Nesterov, E.B.; Vasiliev, D.V.; Dikareva, N.S. [Russian Inst. of Agricultural Radiology and Agroecology, Obninsk (Russian Federation)

    2000-05-01

    of radioactive wastes located at Sosnovy Bor in the Leningrad region was carried out in 1995-1999. Results of this research give evidence on pronounced genotoxic influence presence in investigated sites and as against the 30-km ChNPP zone in the Sosnovy Bor region chemical toxicants make the significant contribution to pollution of the environment. The seeds collected in control and experimental population were compared by acute {gamma}-irradiation resistance. This comparison has revealed the selection toward the increase of repair system efficiency. The received results give evidence that although the cytogenetic damage frequency within low dose range cannot be used in biological dosimetry, but the indexes based on it are informative and important for the man-made effect bioindication and for identification of groups at risk of long term health consequences of radiation. (author)

  3. Annealing of natural metamict zircons: II high degree of radiation damage

    CERN Document Server

    Colombo, M

    1998-01-01

    In situ time-dependent high-temperature X-ray powder diffraction was used to study the amorphous to crystalline transition in natural zircons which are characterized by a high degree of radiation damage. It was possible to distinguish two stages of the annealing process: (i) the recovery of the heavily disturbed but still crystalline domains and (ii) the recrystallization of the amorphous regions. The first stage is very fast under the chosen experimental conditions and, at least apparently, is not thermally activated. The second stage is a diffusion-controlled process, whose products (zircon or zircon and zirconia phases) are strongly correlated to the annealing temperature.

  4. High background radiation areas of Ram sar in Iran: evaluation of DNA damage by alkaline single cell gel electrophoresis (SCE)

    Energy Technology Data Exchange (ETDEWEB)

    Masoomi, J.R. [Biophysics Department, College of Sciences, Tarbiat Modarres University, Tehran (Iran, Islamic Republic of); Mohammadi, Sh. [Radiation Molecular Genetic Laboratory, National Radiation Protection Department (NRPD), Iranian Nuclear Regulatory Authority (INRA), P.O. Box 14155-4494, Tehran (Iran, Islamic Republic of); Amini, M. [Faculty of Pharmacy, Azad University of Tehran (Iran, Islamic Republic of); Ghiassi-Nejad, M. [Biophysics Department, College of Sciences, Tarbiat Modarres University, Tehran (Iran, Islamic Republic of)]. E-mail: ghiassi@mailcity.com

    2006-07-01

    The hot springs in special areas in Ram sar, a northern coastal town in Iran, contain {sup 226}Ra and {sup 222}Rn. The natural radiation effects, radiosensitivity or adaptive responses, on the inhabitants of high natural radiation in Ram sar were studied. The single cell gel electrophoresis was used to monitor DNA damages. Three groups of volunteers were selected, one from high natural background radiation areas as the case group and two from normal background radiation areas as controls (control 1 and control 2). The latter one had the similar living situation to case group while the other (control 2) had different living situation from the other groups. Peripheral blood mononuclear cells (PMNCs) were separated and irradiated by {sup 6}Co source at five different gamma doses. It was found that the spontaneous level of DNA damage and the induced DNA damage in all challenging doses in case group was considerably higher than control groups (p < 0.05). On the other hand, the repair rate in those volunteers, who received less than 10.2 mSv/y was significantly more than the control groups. In the contrary, individuals who live in homes with more than 10.2 mSv/y had incomplete repair. Additionally the plasma and urinary levels of vitamin C were measured spectrophotometrically. Although the concentration of vitamin C of plasma was equal in case and control 1 groups, the urinary level of vitamin C was found to be lower in the case group.

  5. Current ideas to reduce or salvage radiation damage to salivary glands

    NARCIS (Netherlands)

    Vissink, A; van Luijk, P; Langendijk, J A; Coppes, R P

    2015-01-01

    Radiation-induced hyposalivation is still a major problem after radiotherapy for head and neck cancer. Current and promising new thoughts to reduce or salvage radiation damage to salivary gland tissue are explored. The main cause underlying radiation-induced hyposalivation is a lack of functional sa

  6. Radiation damage studies related to nuclear waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Gray, W.J.; Wald, J.W.; Turcotte, R.P.

    1981-12-01

    Much of the previously reported work on alpha radiation effects on crystalline phases of importance to nuclear waste forms has been derived from radiation effects studies of composite waste forms. In the present work, two single-phase crystalline materials, Gd/sub 2/Ti/sub 2/O/sub 7/ (pyrochlore) and CaZrTi/sub 2/O/sub 7/ (zirconolite), of relative importance to current waste forms were studied independently by doping with /sup 244/Cm at the 3 wt % level. Changes in the crystalline structure measured by x-ray diffraction as a function of dose show that damage ingrowth follows an expected exponential relationship of the form ..delta..V/V/sub 0/ = A(1-exp(-BD)). In both cases, the materials became x-ray amorphous before the estimated saturation value was reached. The predicted magnitudes of the unit cell volume changes at saturation are 5.4% and 3.5%, respectively, for Gd/sub 2/Ti/sub 2/O/sub 7/ and CaZrTi/sub 2/O/sub 7/. The later material exhibited anisotropic behavior in which the expansion of the monoclinic cell in the c/sub 0/ direction was over five times that of the a/sub 0/ direction. The effects of transmutations on the properties of high-level waste solids have not been studied until now because of the long half-lives of the important fission products. This problem was circumvented in the present study by preparing materials containing natural cesium and then irradiating them with neutrons to produce /sup 134/Cs, which has only a 2y half-life. The properties monitored at about one year intervals following irradiation have been density, leach rate and microstructure. A small amount of x-ray diffraction work has also been done. Small changes in density and leach rate have been observed for some of the materials, but they were not large enough to be of any consequence for the final disposal of high level wastes.

  7. Recent radiation damage studies and developments of the Marlowe code

    Science.gov (United States)

    Ortiz, C. J.; Souidi, A.; Becquart, C. S.; Domain, C.; Hou, M.

    2014-07-01

    Radiation damage in materials relevant to applications evolves over time scales spanning from the femtosecond - the characteristic time for an atomic collision - to decades - the aging time expected for nuclear materials. The relevant kinetic energies of atoms span from thermal motion to the MeV range.The question motivating this contribution is to identify the relationship between elementary atomic displacements triggered by irradiation and the subsequent microstructural evolution of metals in the long term. The Marlowe code, based on the binary collision approximation (BCA) is used to simulate the sequences of atomic displacements generated by energetic primary recoils and the Object Kinetic Monte Carlo code LAKIMOCA, parameterized on a range of ab initio calculations, is used to predict the subsequent long-term evolution of point defect and clusters thereof. In agreement with full Molecular Dynamics, BCA displacement cascades in body-centered cubic (BCC) Fe and a face-centered cubic (FCC) Febond Nibond Cr alloy display recursive properties that are found useful for predictions in the long term.The case of defects evolution in W due to external irradiation with energetic H and He is also discussed. To this purpose, it was useful to extend the inelastic energy loss model available in Marlowe up to the Bethe regime. The last version of the Marlowe code (version 15) was delivered before message passing instructions softwares (such as MPI) were available but the structure of the code was designed in such a way to permit parallel executions within a distributed memory environment. This makes possible to obtain N different cascades simultaneously using N independent nodes without any communication between processors. The parallelization of the code using MPI was recently achieved by one author of this report (C.J.O.). Typically, the parallelized version of Marlowe allows simulating millions of displacement cascades using a limited number of processors (<64) within only

  8. Quantifying radiation damage in biomolecular small-angle X-ray scattering.

    Science.gov (United States)

    Hopkins, Jesse B; Thorne, Robert E

    2016-06-01

    Small-angle X-ray scattering (SAXS) is an increasingly popular technique that provides low-resolution structural information about biological macromolecules in solution. Many of the practical limitations of the technique, such as minimum required sample volume, and of experimental design, such as sample flow cells, are necessary because the biological samples are sensitive to damage from the X-rays. Radiation damage typically manifests as aggregation of the sample, which makes the collected data unreliable. However, there has been little systematic investigation of the most effective methods to reduce damage rates, and results from previous damage studies are not easily compared with results from other beamlines. Here a methodology is provided for quantifying radiation damage in SAXS to provide consistent results between different experiments, experimenters and beamlines. These methods are demonstrated on radiation damage data collected from lysozyme, glucose isomerase and xylanase, and it is found that no single metric is sufficient to describe radiation damage in SAXS for all samples. The radius of gyration, molecular weight and integrated SAXS profile intensity constitute a minimal set of parameters that capture all types of observed behavior. Radiation sensitivities derived from these parameters show a large protein dependence, varying by up to six orders of magnitude between the different proteins tested. This work should enable consistent reporting of radiation damage effects, allowing more systematic studies of the most effective minimization strategies.

  9. Resuscitation og abdominalkirurgiske aspekter ved damage control-kirurgi

    DEFF Research Database (Denmark)

    Hillingsø, Jens G; Svendsen, Lars Bo; Johansson, Pär I

    2011-01-01

    vicious cycle". Due to this a new resuscitation practice has been defined; damage control resuscitation, consisting of hypotensive resuscitation (restricted use of crystalloids), haemostatic resuscitation (balanced use of blood components) in combination with surgical haemostatic procedures (damage...

  10. Integrated Damage-Adaptive Control System (IDACS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI proposes to further develop, implement and test the damage-adaptive control algorithms developed in Phase I within the framework of an Integrated Damage...

  11. Broadband Radiation Modes: Estimation and Active Control

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2002-01-01

    In this paper we give a formulation of the most efficiently radiating vibration patterns of a vibrating body, the radiation modes, in the time domain. The radiation modes can be used to arrive at efficient weighting schemes for an array of sensors in order to reduce the controller dimensionality. Be

  12. Radiation-Induced Liver Damage: Correlation of Histopathology with Hepatobiliary Magnetic Resonance Imaging, a Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Seidensticker, Max, E-mail: max.seidensticker@med.ovgu.de [Universitätsklinik Magdeburg, Klinik für Radiologie und Nuklearmedizin (Germany); Burak, Miroslaw [Pomeranian Medical University, Department of Diagnostic Imaging and Interventional Radiology (Poland); Kalinski, Thomas [Universitätsklinik Magdeburg, Institut für Pathologie (Germany); Garlipp, Benjamin [Universitätsklinik Magdeburg, Klinik für Allgemein-, Viszeral- und Gefäßchirurgie (Germany); Koelble, Konrad [Philipps Universität Marburg, Fachbereich Medizin der, Abteilung für Neuropathologie (Germany); Wust, Peter [Charité Universitätsmedizin Berlin, Klinik für Radioonkologie und Strahlentherapie (Germany); Antweiler, Kai [Universitätsklinik Magdeburg, Institut für Biometrie und Medizinische Informatik (Germany); Seidensticker, Ricarda; Mohnike, Konrad; Pech, Maciej; Ricke, Jens [Universitätsklinik Magdeburg, Klinik für Radiologie und Nuklearmedizin (Germany)

    2015-02-15

    PurposeRadiotherapy of liver malignancies shows promising results (radioembolization, stereotactic irradiation, interstitial brachytherapy). Regardless of the route of application, a certain amount of nontumorous liver parenchyma will be collaterally damaged by radiation. The functional reserve may be significantly reduced with an impact on further treatment planning. Monitoring of radiation-induced liver damage by imaging is neither established nor validated. We performed an analysis to correlate the histopathological presence of radiation-induced liver damage with functional magnetic resonance imaging (MRI) utilizing hepatobiliary contrast media (Gd-BOPTA).MethodsPatients undergoing local high-dose-rate brachytherapy for whom a follow-up hepatobiliary MRI within 120 days after radiotherapy as well as an evaluable liver biopsy from radiation-exposed liver tissue within 7 days before MRI were retrospectively identified. Planning computed tomography (CT)/dosimetry was merged to the CT-documentation of the liver biopsy and to the MRI. Presence/absence of radiation-induced liver damage (histopathology) and Gd-BOPTA uptake (MRI) as well as the dose applied during brachytherapy at the site of tissue sampling was determined.ResultsFourteen biopsies from eight patients were evaluated. In all cases with histopathological evidence of radiation-induced liver damage (n = 11), no uptake of Gd-BOPTA was seen. In the remaining three, cases no radiation-induced liver damage but Gd-BOPTA uptake was seen. Presence of radiation-induced liver damage and absence of Gd-BOPTA uptake was correlated with a former high-dose exposition.ConclusionsAbsence of hepatobiliary MRI contrast media uptake in radiation-exposed liver parenchyma may indicate radiation-induced liver damage. Confirmatory studies are warranted.

  13. Perspectives in radiation biophysics: From radiation track structure simulation to mechanistic models of DNA damage and repair

    Science.gov (United States)

    Nikjoo, H.; Taleei, R.; Liamsuwan, T.; Liljequist, D.; Emfietzoglou, D.

    2016-11-01

    In radiation targeted therapy and genetic risk estimation of low dose radiation protection there is a crucial need for full description of DNA damage response and repair (DDR) leading to cell death and cell mutation. We propose such a description can be arrived through realistic track-structure simulations together with mechanistic mathematical formulation of DDR and the availability of experimental data for testing the proof of principle. In this paper we review briefly first the state of the art in DNA damage and repair, and then the recent advances in the physics of track structure which represents an essential tool in radiation biophysics.

  14. Evaluation of γ-radiation-induced DNA damage in two species of bivalves and their relative sensitivity using comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Praveen Kumar, M.K., E-mail: here.praveen@gmail.com [Department of Zoology, Goa University, Goa 403206 (India); Shyama, S.K., E-mail: skshyama@gmail.com [Department of Zoology, Goa University, Goa 403206 (India); Sonaye, B.S. [Department of Radiation Oncology, Goa Medical College, Goa (India); Naik, U Roshini; Kadam, S.B.; Bipin, P.D.; D’costa, A. [Department of Zoology, Goa University, Goa 403206 (India); Chaubey, R.C. [Radiation Biology and Health Science Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-05-01

    Highlights: • Possible genotoxic effect of accidental exposure of aquatic fauna to γ radiation. • Relative sensitivity of bivalves to γ radiation is also analyzed using comet assay. • γ radiation induced significant genetic damage in both the species of bivalves. • P. malabarica and M. casta exhibited a similar level of sensitivity to γ radiation. • Comet assay may be used as a biomarker for the environmental biomonitoring. - Abstract: Ionizing radiation is known to induce genetic damage in diverse groups of organisms. Under accidental situations, large quantities of radioactive elements get released into the environment and radiation emitted from these radionuclides may adversely affect both the man and the non-human biota. The present study is aimed (a) to know the genotoxic effect of gamma radiation on aquatic fauna employing two species of selected bivalves, (b) to evaluate the possible use of ‘Comet assay’ for detecting genetic damage in haemocytes of bivalves as a biomarker for environmental biomonitoring and also (c) to compare the relative sensitivity of two species of bivalves viz. Paphia malabarica and Meretrix casta to gamma radiation. The comet assays was optimized and validated using different concentrations (18, 32 and 56 mg/L) of ethyl methanesulfonate (EMS), a direct-acting reference genotoxic agent, to which the bivalves were exposed for various times (24, 48 and 72 h). Bivalves were irradiated (single acute exposure) with 5 different doses (viz. 2, 4, 6, 8 and 10 Gy) of gamma radiation and their genotoxic effects on the haemocytes were studied using the comet assay. Haemolymph was collected from the adductor muscle at 24, 48 and 72 h of both EMS-exposed and irradiated bivalves and comet assay was carried out using standard protocol. A significant increase in DNA damage was observed as indicated by an increase in % tail DNA damage at different concentrations of EMS and all the doses of gamma radiation as compared to controls in

  15. Charge-trap correction and radiation damage in orthogonal-strip planar germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hull, E.L. [PHDS Corporation, 3011 Amherst Road, Knoxville, TN 37921 (United States); Jackson, E.G.; Lister, C.J. [Physics Department, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Pehl, R.H. [PHDS Corporation, 3011 Amherst Road, Knoxville, TN 37921 (United States)

    2014-10-21

    A charge-carrier trap correction technique was developed for orthogonal strip planar germanium gamma-ray detectors. The trap corrector significantly improves the gamma-ray energy resolution of detectors with charge-carrier trapping from crystal-growth defects and radiation damage. Two orthogonal-strip planar germanium detectors were radiation damaged with 2-MeV neutron fluences of ∼8×10{sup 9} n/cm{sup 2}. The radiation-damaged detectors were studied in the 60–80 K temperature range.

  16. Mechanisms of Retinal Damage from Chronic Laser Radiation.

    Science.gov (United States)

    1981-07-01

    W.K.: The effects of the pineal gland on light-induced retinal photoreceptor damage. Exp. Eye Res. 28:37-44, 1979. 17. Hollyfield, Joe G., Rayborn...co-iI workers in 196612. Noell reported that irreversible retinal damage occurs in normal laboratory rats exposed continuously to an illuminated...light than with either red or blue light. In fact, the action spectrum of the damage paralleled the action spectrum of the ERG. The iris of pigmented rats

  17. Status of radiation damage measurements in room temperature semiconductor radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Franks, L.A.; James, R.B.

    1998-04-01

    The literature of radiation damage measurements on cadmium zinc telluride (CZT), cadmium telluride (CT), and mercuric iodide (HgI{sub 2}) is reviewed for the purpose of determining their applicability to space applications. CZT strip detectors exposed to intermediate energy (1.3 MeV) proton fluences exhibit increased interstrip leakage after 10{sup 10} p/cm{sup 2} and significant bulk leakage after 10{sup 12} p/cm{sup 2}. CZT exposed to 200 MeV protons shows a two-fold loss in energy resolution after a fluence of 5 {times} 10{sup 9} p/cm{sup 2} in thick (3 mm) planar devices but little effect in 2 mm devices. No energy resolution effects were noted from moderated fission spectrum neutrons after fluences up to 10{sup 10} n/cm{sup 2}, although activation was evident. CT detectors show resolution losses after fluences of 3 {times} 10{sup 9} p/cm{sup 2} at 33 MeV for chlorine-doped detectors. Indium doped material may be more resistant. Neutron exposures (8 MeV) caused resolution losses after fluences of 2 {times} 10{sup 10} n/cm{sup 2}. Mercuric iodide has been studied with intermediate energy protons (10 to 33 MeV) at fluences up to 10{sup 12} p/cm{sup 2} and with 1.5 GeV protons at fluences up to 1.2 {times} 10{sup 8} p/cm{sup 2}. Neutron exposures at 8 MeV have been reported at fluences up to 10{sup 15} n/cm{sup 2}. No radiation damage was found under these irradiation conditions.

  18. Radiation Combined Injury: DNA Damage, Apoptosis, and Autophagy

    Science.gov (United States)

    2010-01-01

    the course of their disease (5) represents another significant source of exposure as normal tissues are subjected to radiation injury. Those charged...received thermal burns concurrent with radiation injury, (26, 35). At the Chernobyl reactor meltdown, 10% of 237 victims exposed to radiation received...injections, orally administered drugs, and perhaps subcutaneous injections (39) may be the most complex treatments available to mass casualty victims

  19. Non-Destructive Detection and Separation of Radiation Damaged Cells in Miniaturized, Inexpensive Device Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our objective is to develop and demonstrate a novel microfluidic device for non-destructive identification, sorting and counting of radiation damaged cells. A major...

  20. Non-Destructive Detection and Separation of Radiation Damaged Cells in Miniaturized, Inexpensive Device Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a clear and well-identified need for rapid, efficient, non-destructive detection and isolation of radiation damaged cells. Available commercial technologies...

  1. A Single-Molecule Study on the Structural Damage of Ultraviolet Radiated DNA

    Directory of Open Access Journals (Sweden)

    Pu Chun Ke

    2008-04-01

    Full Text Available The structural damage of double-stranded DNA under UV radiation was examined using single-molecule fluorescence microscopy. Compared to undamaged DNA, the diffusion coefficient of λ-DNA was significantly increased with 12 min or 20 min of radiation but remained unchanged for 40 min of exposure possibly due to strand crosslinking. The structural damage of DNA was further examined using transmission electron microscopy which revealed kinks and sharp bends along the DNA backbone.

  2. Measurements and TCAD Simulations of Bulk and Surface Radiation Damage Effects

    CERN Document Server

    F. Moscatelli; G. M. Bilei; A. Morozzi; G.-F. Dalla Betta; R. Mendicino; M. Boscardin; N. Zorzi; L. Servoli; P. Maccagnani

    2016-01-01

    In this work we propose the application of a radiation damage model based on the introduction of deep level traps/recombination centers suitable for device level numerical simulation of radiation detectors at very high fluences (e.g. 1÷2×1016 1-MeV equivalent neutrons per square centimeter) combined with a surface damage model developed by using experimental parameters extracted from measurements from gamma irradiated p-type dedicated test structures.

  3. Radiation Damage of F8 Lead Glass with 20 MeV Electrons

    CERN Document Server

    Schaefer, B D; McChesney, P; Shepherd, M R; Frye, J M

    2011-01-01

    Using a 20 MeV linear accelerator, we investigate the effects of electromagnetic radiation on the optical transparency of F8 lead glass. Specifically, we measure the change in attenuation length as a function of radiation dose. Comparing our results to similar work that utilized a proton beam, we conclude that F8 lead glass is more susceptible to proton damage than electron damage.

  4. PWO crystals for CMS electromagnetic calorimeter : studies of the radiation damage kinetics

    OpenAIRE

    Drobychev, G.; Auffray, E.; Dormenev, V.; Korzhik, M; Lecoq, P.; Lopatic, A.; Nédélec, P.; Peigneux, J. P.; D. Sillou

    2005-01-01

    Kinetics of radiation damage of the PWO crystals under irradiation and recovery were studied. Crystals were irradiated with dose corresponding to average one expected in the electromagnetic calorimeter (working dose irradiation). Radiation damage and recovery were monitored through measurements of PWO optical transmission. An approach is proposed which allows evaluating the influence of the PWO crystals properties on the statistical term in the energy resolution of the electromagnetic calorim...

  5. Radiation damage of F8 lead glass with 20 MeV electrons

    Science.gov (United States)

    Schaefer, B. D.; Mitchell, R. E.; McChesney, P.; Shepherd, M. R.; Frye, J. M.

    2012-03-01

    Using a 20 MeV linear accelerator, we investigate the effects of electromagnetic radiation on the optical transparency of F8 lead glass. Specifically, we measure the change in attenuation length as a function of radiation dose. Comparing our results to similar work that utilized a proton beam, we conclude that F8 lead glass is more susceptible to proton damage than electron damage.

  6. Measurements and TCAD Simulations of Bulk and Surface Radiation Damage Effects in Silicon Detectors

    CERN Document Server

    Moscatelli, F; Passeri, D; Bilei, G M; Servoli, L; Morozzi, A; Betta, G -F Dalla; Mendicino, R; Boscardin, M; Zorzi, N

    2016-01-01

    In this work we propose the application of a radiation damage model based on the introduction of deep level traps/recombination centers suitable for device level numerical simulation of radiation detectors at very high fluences (e.g. 1{\\div}2 10^16 1-MeV equivalent neutrons per square centimeter) combined with a surface damage model developed by using experimental parameters extracted from measurements from gamma irradiated p-type dedicated test structures.

  7. Terahertz radiation at 0.380 THz and 2.520 THz does not lead to DNA damage in skin cells in vitro.

    Science.gov (United States)

    Hintzsche, Henning; Jastrow, Christian; Heinen, Bernd; Baaske, Kai; Kleine-Ostmann, Thomas; Schwerdtfeger, Michael; Shakfa, Mohammed Khaled; Kärst, Uwe; Koch, Martin; Schrader, Thorsten; Stopper, Helga

    2013-01-01

    The question whether nonionizing electromagnetic radiation of low intensity can cause functional effects in biological systems has been a subject of debate for a long time. Whereas the majority of the studies have not demonstrated these effects, some aspects still remain unclear, e.g., whether high-frequency radiation in the terahertz range affects biological systems. In particular for frequencies higher than 0.150 THz, investigations of the ability of radiation to cause genomic damage have not been performed. In the present study, human skin cells were exposed in vitro to terahertz radiation at two specific frequencies: 0.380 and 2.520 THz. Power intensities ranged from 0.03-0.9 mW/cm(2) and the cells were exposed for 2 and 8 h. Our goal was to investigate whether the irradiation induced genomic damage in the cells. Chromosomal damage was not detected in the different cell types after exposure to radiation of both frequencies. In addition, cell proliferation was quantified and found to be unaffected by the exposure, and there was no increase in DNA damage measured in the comet assay for both frequencies. For all end points, cells treated with chemicals were included as positive controls. These positive control cells clearly showed decreased proliferation and increased genomic damage. The results of the present study are in agreement with findings from other studies investigating DNA damage as a consequence of exposure to the lower frequency range (radiation does not induce genomic damage.

  8. DAMAGE MODEL OF CONTROL FISSURE IN PERILOUS ROCK

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong-kai; TANG Hong-mei; YE Si-qiao

    2006-01-01

    Hitherto, perilous rock is the weakest topic in disasters studies. Specially,damage of control fissure under loads is one key technique in study of develop mechanism of perilous rock. Damage division of end area of control fissure was defined by authors,then calculation methods of timed-Poisson's ratio and timed-Young's modulus were established in damage mechanics theory. Further, the authors set up damage constitutive equation of control fissure, which founds important basis to numerical simulation for control fissure to develop.

  9. Cranial Radiation Therapy and Damage to Hippocampal Neurogenesis

    Science.gov (United States)

    Monje, Michelle

    2008-01-01

    Cranial radiation therapy is associated with a progressive decline in cognitive function, prominently memory function. Impairment of hippocampal neurogenesis is thought to be an important mechanism underlying this cognitive decline. Recent work has elucidated the mechanisms of radiation-induced failure of neurogenesis. Potential therapeutic…

  10. Visualizing the search for radiation-damaged DNA bases in real time

    Science.gov (United States)

    Lee, Andrea J.; Wallace, Susan S.

    2016-11-01

    The Base Excision Repair (BER) pathway removes the vast majority of damages produced by ionizing radiation, including the plethora of radiation-damaged purines and pyrimidines. The first enzymes in the BER pathway are DNA glycosylases, which are responsible for finding and removing the damaged base. Although much is known about the biochemistry of DNA glycosylases, how these enzymes locate their specific damage substrates among an excess of undamaged bases has long remained a mystery. Here we describe the use of single molecule fluorescence to observe the bacterial DNA glycosylases, Nth, Fpg and Nei, scanning along undamaged and damaged DNA. We show that all three enzymes randomly diffuse on the DNA molecule and employ a wedge residue to search for and locate damage. The search behavior of the Escherichia coli DNA glycosylases likely provides a paradigm for their homologous mammalian counterparts.

  11. Simulation study of radiation damage induced by energetic helium nuclei

    CERN Document Server

    Hoang Dac Luc; Hoang Dac Dat

    2003-01-01

    High energy alpha particles produced by neutron-induced nuclear reactions can damage severely reactor materials. Simulation of this process is described using theoretical calculation and ion irradiation experiments at different displacement doses and Helium doses.

  12. The contribution of endogenous and exogenous effects to radiation-induced damage in the bacterial spore.

    Science.gov (United States)

    Jacobs, G P; Samuni, A; Czapski, G

    1985-06-01

    Radical scavengers such as polyethylene glycol 400 and 4000 and bovine albumin have been used to define the contribution of exogenous and endogenous effects to the gamma-radiation-induced damage in aqueous buffered suspensions of Bacillus pumilus spores. The results indicate that this damage in the bacterial spore is predominantly endogenous both in the presence of 1 atmosphere of oxygen, and in anoxia.

  13. Contribution of endogenous and exogenous effects to radiation-induced damage in the bacterial spore

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, G.P. (Hebrew Univ., Jerusalem (Israel). School of Pharmacy); Samuni, A. (Hebrew Univ., Jerusalem (Israel). School of Medicine); Czapski, G. (Hebrew Univ., Jerusalem (Israel). Dept. of Physical Chemistry)

    1985-06-01

    Radical scavengers such as polyethylene glycol 400 and 4000 and bovine albumin have been used to define the contribution of exogenous and endogenous effects to the gamma-radiation-induced damage in aqueous buffered suspensions of Bacillus pumilus spores. The results indicate that this damage in the bacterial spore is predominantly endogenous both in the presence of 1 atmosphere of oxygen, and in anoxia.

  14. DNA repair pathways in radiation induced cellular damage: a molecular approach

    NARCIS (Netherlands)

    L.R. van Veelen (Lieneke)

    2005-01-01

    markdownabstract__Abstract__ DNA damage, especially double-strand breaks, can be induced by endogenous or exogenous darnaging agents, such as ionizing radiation. Repair of DNA damage is very important in maintaining genomic stability. Incorrect repair may lead to chromosomal aberrations,

  15. Nanocrystal ghosting: Extensive radiation damage in MgO induced by low-energy electrons

    Science.gov (United States)

    Frankenfield, Zackery; Kane, Kenneth; Sawyer, William H.

    2017-03-01

    We report direct evidence of extensive radiation damage in MgO nanocrystals due to intense bombardment (2 × 10 electrons/nm sec) by electrons with beam energies between 60 keV and 120 keV. Based upon a minimum intensity necessary to produce the observed damage, we present an explanation based on the Knotek-Feibelman process.

  16. DNA repair pathways in radiation induced cellular damage: a molecular approach

    NARCIS (Netherlands)

    L.R. van Veelen (Lieneke)

    2005-01-01

    markdownabstract__Abstract__ DNA damage, especially double-strand breaks, can be induced by endogenous or exogenous darnaging agents, such as ionizing radiation. Repair of DNA damage is very important in maintaining genomic stability. Incorrect repair may lead to chromosomal aberrations, translocat

  17. Nonlinear active control of damaged piezoelectric smart laminated plates and damage detection

    Institute of Scientific and Technical Information of China (English)

    Fu Yi-ming; RUAN Jian-li

    2008-01-01

    Considering mass and stiffness of piezoelectric layers and damage effects of composite layers,nonlinear dynamic equations of damaged piezoelectric smart laminated plates are derived.The derivation is based on the Hamilton's principle,the higherorder shear deformation plate theory, von Karman type geometrically nonlinear straindisplacement relations,and the strain energy equivalence theory.A negative velocity feedback control algorithm coupling the direct and converse piezoelectric effects is used to realize the active control and damage detection with a closed control loop. Simply supported rectangular laminated plates with immovable edges are used in numerical computation.Influence of the piezoelectric layers'location on the vibration control is investigated.In addition,effects of the degree and location of damage on the sensor output voltage are discussed.A method for damage detection is introduced.

  18. Radiation-Induced Nano-Explosions at the Solid Surface:Near Surface Radiation Damage in CR-39 Polymer

    Institute of Scientific and Technical Information of China (English)

    Mukhtar Ahmed Rana

    2011-01-01

    @@ New measurements of fission fragment and alpha particle induced surface damage in the most sensitive and commonly used nuclear track detector CR-39 are presented here.Precisely designed and optimized exposure and chemical etching experiments are employed to unfold the structure of radiation induced surface damage (RISD).Delay in the startup of the chemical etching of latent tracks or surface radiation damage is measured and is found to contain important information about the structure of the surface damage.Simple atomic scale pictures of RISD and its chemical etching are developed in an empirical manner.Theoretical model and experimental findings coherently compose a realistic picture of early or ferntosecond evolution of RISD.

  19. Compilation of radiation damage test data part III: materials used around high-energy accelerators

    CERN Document Server

    Beynel, P; Schönbacher, H; CERN. Geneva

    1982-01-01

    For pt.II see CERN report 79-08 (1979). This handbook gives the results of radiation damage tests on various engineering materials and components intended for installation in radiation areas of the CERN high-energy particle accelerators. It complements two previous volumes covering organic cable-insulating materials and thermoplastic and thermosetting resins.

  20. Evidence of Dopant Type-Inversion and Other Radiation Damage Effects of the CDF Silicon Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Ballarin, Roberto [Univ. of the Basque Country, Leioa (Spain)

    2010-06-01

    The aim of this document is to study the effect of radiation damage on the silicon sensors. The reflection of the effect of radiation can be observed in two fundamental parameters of the detector: the bias current and the bias voltage. The leakage current directly affects the noise, while the bias voltage is required to collect the maximum signal deposited by the charged particle.

  1. A new CT-based method to quantify radiation-induced lung damage in patients.

    Science.gov (United States)

    Ghobadi, Ghazaleh; Wiegman, Erwin M; Langendijk, Johannes A; Widder, Joachim; Coppes, Robert P; van Luijk, Peter

    2015-10-01

    A new method to assess radiation-induced lung toxicity (RILT) using CT-scans was developed. It is more sensitive in detecting damage and corresponds better to physician-rated radiation pneumonitis than routinely-used methods. Use of this method may improve lung toxicity assessment and thereby facilitate development of more accurate predictive models for RILT.

  2. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENNTIAL FLUORESENCE ASSAY

    Science.gov (United States)

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposures...

  3. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAY

    Science.gov (United States)

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposur...

  4. Investigations in silicate glasses. I. Radiation damage. II. Optical nonlinearity. [Gamma rays and electrons

    Energy Technology Data Exchange (ETDEWEB)

    Moran, M.J.

    1976-11-15

    The investigation of two poorly understood but technologically important physical properties of silicate glasses and related materials is described. The use of Electron Paramagnetic Resonance to investigate the nature of radiation-induced damage in glasses exposed to a variety of high-energy radiation sources is discussed first. Second, the measurement of the nonlinear index of refraction coefficient in a variety of optical materials related to the design of high-power laser systems is described. The radiation damage investigations rely heavily on the comparison of experimental results for different experimental situations. The comparison of EPR lineshapes, absolute spin densities and power saturation behavior is used to probe a variety of microscopic and macroscopic aspects of radiation damage in glasses. Comparison of radiation damage associated with exposure to gamma rays and fast neutrons (and combinations thereof) are interpreted in terms of the microscopic damage mechanisms which are expected to be associated with the specific radiations. Comparison of radiation damage behavior in different types of glasses is also interpreted in terms of the behavior expected for the specific materials. The body of data which is generated is found to be internally self-consistent and is also generally consistent with the radiation damage behavior expected for specific situations. A new and versatile technique for measuring the nonlinear index of refraction coefficient, n/sub 2/, in optical materials is described. The technique utilizes a 1 ns pulsed neodymium-glass laser system and time-resolved interferometry to determine the ratio of the coefficient n/sub 2/ of sample materials to the n/sub 2/ of CS/sub 2/. This method avoids some of the complications associated with performing absolute measurements of n/sub 2/ and allows the use of a relatively simple experimental technique. The measurements determine the nonlinear index ratios of the samples with an accuracy of about

  5. Proton irradiation of stem cells: Radiation damage and chemical radioprotection

    Science.gov (United States)

    Riley, R. C.; Montour, J. L.; Gurney, C. W.

    1972-01-01

    Effects of high energy protons on erythropoietic stem cells and radioprotection by chemicals were investigated in NASA Space Radiation Effects Laboratory. The effects of a parallel beam of 600 MeV protons. The fluence, when converted to dose, were referenced to the synchrocyclotron beam monitors which were then used to administer radiation exposures. Mice were given graded doses to 300 rads to determine dose-response curve. Other mice received saline, AET, or 5-hydroxytryptamine 10 to 15 minutes before exposure.

  6. RADIATION DAMAGE TO BSCCO-2223 FROM 50 MEV PROTONS

    Energy Technology Data Exchange (ETDEWEB)

    Zeller, A.F.; Ronningen, R.M.; Godeke, Arno; Heibronn, L.H; McMahan-Norris, P.; Gupta, R.

    2007-11-01

    The use of HTS materials in high radiation environments requires that the superconducting properties remain constant up to a radiation high dose. BSCCO-2223 samples from two manufacturers were irradiated with 50 MeV protons at fluences of up to 5 x 10{sup 17} protons/cm{sup 2}. The samples lost approximately 75% of their pre-irradiation I{sub c}. This compares with Nb{sub 3}Sn, which loses about 50% at the same displacements per atom.

  7. Inflammation and Immunity in Radiation Damage to the Gut Mucosa

    Directory of Open Access Journals (Sweden)

    Agnès François

    2013-01-01

    Full Text Available Erythema was observed on the skin of the first patients treated with radiation therapy. It is in particular to reduce this erythema, one feature of tissue inflammation, that prescribed dose to the tumor site started to be fractionated. It is now well known that radiation exposure of normal tissues generates a sustained and apparently uncontrolled inflammatory process. Radiation-induced inflammation is always observed, often described, sometimes partly explained, but still today far from being completely understood. The thing with the gut and especially the gut mucosa is that it is at the frontier between the external milieu and the organism, is in contact with a plethora of commensal and foreign antigens, possesses a dense-associated lymphoid tissue, and is particularly radiation sensitive because of a high mucosal turnover rate. All these characteristics make the gut mucosa a strong responsive organ in terms of radiation-induced immunoinflammation. This paper will focus on what has been observed in the normal gut and what remains to be done concerning the immunoinflammatory response following localized radiation exposure.

  8. The art and science of pediatric damage control.

    Science.gov (United States)

    Tran, Anthony; Campbell, Brendan T

    2017-02-01

    Damage control is a surgical strategy that has evolved and expanded considerably over the past 25 years. The approach was initially developed as a "bail out" procedure to control bleeding with severe abdominal injuries in the setting of unmitigated hemorrhagic shock. Damage control is now more broadly applied as a comprehensive management plan for the resuscitation and surgical treatment of injured patients with exhausted physiologic and metabolic reserve. This article reviews the most current concepts in damage control that are important and relevant to the practicing pediatric surgeon. It also provides evidence-based recommendations about how damage control principles can be pragmatically applied to severely injured children. This review focuses specifically on the fundamentals of damage control with respect to resuscitation and the operative treatment of children with severe abdominal, thoracic, and extremity injuries. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Temperature dependence of radiation damage and its annealing in silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, H.J.; Boissevain, J.G.; Holzscheiter, K.; Kapustinsky, J.S.; Palounek, A.P.T.; Sondheim, W.E. [Los Alamos National Lab., NM (United States); Barberis, E.; Cartiglia, N.; Leslie, J.; Pitzl, D.; Rowe, W.A.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E.; Wilder, M. [California Univ., Santa Cruz, CA (United States). Inst. for Particle Physics; Ellison, J.A.; Fleming, J.K.; Jerger, S.; Joyce, D.; Lietzke, C.; Reed, E.; Wimpenny, S.J. [California Univ., Riverside, CA (United States); Ferguson, P. [Missouri Univ., Rolla, MO (United States); Frautschi, M.A.; Matthews, J.A.J.; Skinner, D. [New Mexico Univ., Albuquerque, NM (United States)

    1992-12-01

    The radiation damage resulting from the large particle fluences predicted at the Superconducting Super Collider will induce significant leakage currents in silicon detectors. In order to limit those currents, we plan to operate the detectors at reduced temperatures ({approximately}0{degree} C). In this paper, we present the results of a study of temperature effects on both the initial radiation damage and the long-term annealing of that damage in silicon PIN detectors. Depletion voltage results are reported. The detectors were exposed to approximately 10{sup 14}/cm{sup 2} 650 MeV protons. Very pronounced temperature dependencies were observed.

  10. Temperature dependence of radiation damage and its annealing in silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, H.J.; Boissevain, J.G.; Holzscheiter, K.; Kapustinsky, J.S.; Palounek, A.P.T.; Sondheim, W.E. (Los Alamos National Lab., NM (United States)); Barberis, E.; Cartiglia, N.; Leslie, J.; Pitzl, D.; Rowe, W.A.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E.; Wilder, M. (Univ. of California, Santa Cruz, CA (United States). Santa Cruz Inst. for Particle Physics); Ellison, J.A.; Fleming, J.K.; Jerger, S.; Joyce, D.; Lietzke, C.; Reed, E.; Wimpenny, S.J. (Univ. of California, Riverside, CA (United States)); Ferguson, P. (Univ. of Missouri, Rolla, MO (United States)); Frautschi, M.A.; Matthews, J.A.J.; Skinner, D. (Univ. of New Mexico, Albuquerque, NM (United States))

    1993-08-01

    The radiation damage resulting from the large particle fluences predicted at the Superconducting Super Collider will induce significant leakage currents in silicon detectors. In order to limit those currents, the authors plan to operate the detectors at reduced temperatures ([approximately] 0 C). In this paper, they present the results of a study of temperature effects on both the initial radiation damage and the long-term annealing of that damage in silicon PIN detectors. Depletion voltage results are reported. The detectors were exposed to approximately 10[sup 14]/cm[sup 2] 650 MeV protons. Very pronounced temperature dependencies were observed.

  11. Temperature dependence of radiation damage and its annealing in silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, H.J.; Boissevain, J.G.; Holzscheiter, K.; Kapustinsky, J.S.; Palounek, A.P.T.; Sondheim, W.E. (Los Alamos National Lab., NM (United States)); Barberis, E.; Cartiglia, N.; Leslie, J.; Pitzl, D.; Rowe, W.A.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E.; Wilder, M. (California Univ., Santa Cruz, CA (United States). Inst. for Particle Physics); Ellison, J.A.; Fleming, J.K.; Jerger, S.; Joyce, D.; Lietzke, C.; Re

    1992-01-01

    The radiation damage resulting from the large particle fluences predicted at the Superconducting Super Collider will induce significant leakage currents in silicon detectors. In order to limit those currents, we plan to operate the detectors at reduced temperatures ([approximately]0[degree] C). In this paper, we present the results of a study of temperature effects on both the initial radiation damage and the long-term annealing of that damage in silicon PIN detectors. Depletion voltage results are reported. The detectors were exposed to approximately 10[sup 14]/cm[sup 2] 650 MeV protons. Very pronounced temperature dependencies were observed.

  12. The radiation damage of crystalline silicon PN diode in tritium beta-voltaic battery.

    Science.gov (United States)

    Lei, Yisong; Yang, Yuqing; Liu, Yebing; Li, Hao; Wang, Guanquan; Hu, Rui; Xiong, Xiaoling; Luo, Shunzhong

    2014-08-01

    A tritium beta-voltaic battery using a crystalline silicon convertor composed of (100)Si/SiO2/Si3N4 film degrades remarkably with radiation from a high intensity titanium tritide film. Simulation and experiments were carried out to investigate the main factor causing the degradation. The radiation damages mainly comes from the x-ray emitted from the titanium tritide film and beta particle can relieve the damages. The x-ray radiation induced positive charges in the SiO2 film destroying the output property of the PN diode with the induction of an electric field.

  13. Radiation tolerance of ceramics—Insights from atomistic simulation of damage accumulation in pyrochlores

    Energy Technology Data Exchange (ETDEWEB)

    Devanathan, Ramaswami; Weber, William J.; Gale, Julian D.

    2010-10-01

    We have used molecular dynamics simulations to examine the effects of radiation damage accumulation in two pyrochlore-structured ceramics, namely Gd2Ti2O7 and Gd2Zr2O7. It is well known from experiment that the titanate is susceptible to radiation-induced amorphization, while the zirconate does not go amorphous under prolonged irradiation. Our simulations show that cation Frenkel pair accumulation eventually leads to amorphization of Gd2Ti2O7. Anion disorder occurs with cation disorder. The amorphization is accompanied by a density decrease of about 12.7% and a decrease of about 50% in the elastic modulus. In Gd2Zr2O7, amorphization does not occur, because the residual damage is not sufficiently energetic to drive the material amorphous. Subtle differences in damage accumulation and annealing between the two pyrochlores lead to drastically different radiation response as the damage accumulates.

  14. Modeling high-energy radiation damage in nuclear and fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Trachenko, K., E-mail: k.trachenko@qmul.ac.uk [School of Physics, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); School of Physics and Astronomy, University of Southampton Highfield, Southampton SO17 1BJ (United Kingdom); Zarkadoula, E. [School of Physics, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); School of Physics and Astronomy, University of Southampton Highfield, Southampton SO17 1BJ (United Kingdom); Todorov, I.T. [Computational Science and Engineering Department, CCLRC Daresbury Laboratory, Daresbury WA44AD (United Kingdom); Dove, M.T. [School of Physics, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Dunstan, D.J. [School of Physics, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Nordlund, K. [Accelerator Laboratory, University of Helsinki, P.O. Box 43, FIN-00014 Helsinki (Finland)

    2012-04-15

    We discuss molecular dynamics (MD) simulations of high-energy radiation damage in materials relevant for encapsulation of nuclear waste and materials to be used in fusion reactors, including several important oxides and iron. We study various stages of evolution and relaxation of 100-200 keV collision cascades, and identify reversible elastic and irreversible inelastic structural changes. The elastic expansion of the lattice around the cascade is explained in terms of anharmonicity of interatomic interactions. The remaining irreversible structural change is related to resistance to amorphization by radiation damage. This resistance is quantified by the number of remaining defect atoms in the damaged structure. We discuss how MD simulations can predict experimental resistance to amorphization, including the important case of highly resistant materials. Finally, we discuss our current work to simulate radiation damage of MeV energies and system sizes of the order of billion atoms using massive parallel computing facilities.

  15. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation.

    Directory of Open Access Journals (Sweden)

    Xurui Zhang

    Full Text Available Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92-1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research.

  16. Time-scale invariances in preseismic electromagnetic radiation, magnetization and damage evolution of rocks

    Directory of Open Access Journals (Sweden)

    Y. Kawada

    2007-10-01

    Full Text Available We investigate the time-scale invariant changes in electromagnetic and mechanical energy releases prior to a rock failure or a large earthquake. The energy release processes are caused by damage evolutions such as crack propagation, motion of charged dislocation, area-enlargement of sheared asperities and repetitive creep-rate changes. Damage mechanics can be used to represent the time-scale invariant evolutions of both brittle and plastic damages. Irreversible thermodynamics applied to the damage mechanics reveals that the damage evolution produces the variations in charge, dipole and electromagnetic signals in addition to mechanical energy release, and yields the time-scale invariant patterns of Benioff electromagnetic radiation and cumulative Benioff strain-release. The irreversible thermodynamic framework of damage mechanics is also applicable to the seismo-magnetic effect, and the time-scale invariance is recognized in the remanent magnetization change associated with damage evolution prior to a rock failure.

  17. Effects of different levels of vitamin C on UV radiation-induced DNA damage

    Institute of Scientific and Technical Information of China (English)

    Dianfeng Zhou; Hang Heng; Kang Ji; Weizhong Ke

    2005-01-01

    The Raman spectra of DNA in different levels of vitamin C with 10- and 30-min ultraviolet (UV) radiations were reported. The intensity of UV radiation was 18.68 W/m2. The experimental results proved that vitamin C could alone prevent UV radiation from damaging DNA, but the effects depended on the concentration of vitamin C. When the concentration of vitamin C was about 0.08-0.4 mmol/L, vitamin C decreased UV radiation-induced DNA's damage. When the concentration of vitamin C exceeded 0.4 mmol/L, vitamin C accelerated DNA's damage instead. Maybe the reason is that when DNA in aqueous solution is radiated by UV, free radicals come into being, and vitamin C can scavenge free radicals, so vitamin C in lower concentration can protect DNA. The quantity of free radicals is finite, when vitamin C is superfluous, free radicals have been scavenged absolutely and vitamin C is residual. Vitamin C is a strong reductant. When the mixture of DNA and residual vitamin C is radiated by UV, vitamin C reacts with DNA. The more residual vitamin C and the longer time of UV radiation, the more DNA is damaged.

  18. Ionizing radiation, antioxidant response and oxidative damage: A meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Einor, D., E-mail: daniel@einor.com [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); Bonisoli-Alquati, A., E-mail: andreabonisoli@gmail.com [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA 70803 (United States); Costantini, D., E-mail: davidcostantini@libero.it [Department of Biology, University of Antwerp, Wilrijk, B-2610, Antwerp (Belgium); Mousseau, T.A., E-mail: mousseau@sc.edu [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); Faculty of Bioscience and Biotechnology, Chubu University, Kasugai (Japan); Møller, A.P., E-mail: anders.moller@u-psud.fr [Laboratoire d' Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Bâtiment 362, F-91405 Orsay Cedex (France)

    2016-04-01

    One mechanism proposed as a link between exposure to ionizing radiation and detrimental effects on organisms is oxidative damage. To test this hypothesis, we surveyed the scientific literature on the effects of chronic low-dose ionizing radiation (LDIR) on antioxidant responses and oxidative damage. We found 40 publications and 212 effect sizes for antioxidant responses and 288 effect sizes for effects of oxidative damage. We performed a meta-analysis of signed and unsigned effect sizes. We found large unsigned effects for both categories (0.918 for oxidative damage; 0.973 for antioxidant response). Mean signed effect size weighted by sample size was 0.276 for oxidative damage and − 0.350 for antioxidant defenses, with significant heterogeneity among effects for both categories, implying that ionizing radiation caused small to intermediate increases in oxidative damage and small to intermediate decreases in antioxidant defenses. Our estimates are robust, as shown by very high fail-safe numbers. Species, biological matrix (tissue, blood, sperm) and age predicted the magnitude of effects for oxidative damage as well as antioxidant response. Meta-regression models showed that effect sizes for oxidative damage varied among species and age classes, while effect sizes for antioxidant responses varied among species and biological matrices. Our results are consistent with the description of mechanisms underlying pathological effects of chronic exposure to LDIR. Our results also highlight the importance of resistance to oxidative stress as one possible mechanism associated with variation in species responses to LDIR-contaminated areas. - Highlights: • There is interest in variation in metabolic effects of chronic low-dose ionizing radiation • A random effect meta-analysis of effect sizes of radioactive contamination was performed • We found significant effects of radiation on oxidative damage and antioxidant response • We found significant heterogeneity among

  19. Experimental studies of radiation damage of silicon detectors. Internal report

    Energy Technology Data Exchange (ETDEWEB)

    Angelescu, T.; Ghete, V.M.; Ghiordanescu, N.; Lazanu, I.; Mihul, A. [Univ. of Bucharest (Romania); Golutvin, I.; Lazanu, S.; Savin, I.; Vasilescu, A. [JINR, Dubna (Russian Federation); Biggeri, U.; Borchi, E.; Bruzzi, M. [Univ. of Florence (Italy)]|[INFN, Florence (Italy); Li, Z.; Kraner, H.W. [Brookhaven National Lab., Upton, NY (United States)

    1994-02-01

    New particle physics experiments are correlated with high luminosity and/or high energy. The new generation of colliding beam machines which will be constructed will make an extrapolation of a factor of 100 in the center of mass energy and of 1000 in luminosity beyond present accelerators. The scientific community hopes that very exciting physics results could be achieved this way, from the solution to the problem of electroweak symmetry breaking to the possible discovery of new, unpredicted phenomena. The particles which compose the radiation field are: electrons, pions, neutrons, protons and photons. It has become evident that the problem of the radiation resistance of detectors in this severe environment is a crucial one. This situation is complicated more by the fact that detectors must work all the run time of the machine, and better all the time of the experiment, without replacement (part or whole). So, studies related to the investigation of the radiation hardness of all detector parts, are developing. The studies are in part material and device characterization after irradiation, and in part technological developments, made in order to find harder, cheaper technologies, for larger surfaces. Semiconductor detectors have proven to be a good choice for vertex and calorimeter. Both fixed target machines and colliders had utilized in the past silicon junction detectors as the whole or part of the detection system. Precision beam hodoscopes and sophisticated trigger devices with silicon are equally used. The associated electronics in located near the detectors, and is subjected to the same radiation fields. Studies of material and device radiation hardness are developing in parallel. Here the authors present results on the radiation hardness of silicon, both as a bulk material and as detectors, to neutron irradiation at high fluences.

  20. NASA's high efficiency and radiation damage solar cell program

    Science.gov (United States)

    Randolph, L. P.

    1980-01-01

    The conversion efficiency and the life expectancy of solar cells and arrays were evaluated for space applications. Efforts were made to improve the understanding of the conversion of electromagnetic radiation to useful forms of energy. A broad range of advanced concepts were evaluated.

  1. Protective effects of melatonin on the ionizing radiation induced DNA damage in the rat brain.

    Science.gov (United States)

    Undeger, Ulko; Giray, Belma; Zorlu, A Faruk; Oge, Kamil; Baçaran, Nurçen

    2004-03-01

    Melatonin is an endogenously produced antioxidant with radioprotective actions while ionizing radiation is a well-known cytotoxic and mutagenic agent of which the biological results are attributable to its free radical producing effects. The effect of melatonin on the DNA strand breakage and lipid peroxidation induced by ionizing radiation in the rat brain were investigated in order to clarify its radioprotective ability. The DNA strand breakage in rat brain exposed to 1000 cGy ionizing radiation was assessed by alkaline single cell gel electrophoresis and the lipid peroxidation was evaluated by measuring thiobarbituric acid reactive substances (TBARS) concentrations. A significant increase in DNA damage (p radiation treated rat brain. Pre-treatment of rats with intraperitoneal doses of 100 mg/kg melatonin provided a significant decrease in the DNA strand breakage and lipid peroxidation. Our results indicate that melatonin can protect brain cells from oxidative damage induced by ionizing radiation.

  2. Compensation for damage to workers health exposed to ionizing radiation in Argentina

    CERN Document Server

    Sobehart, L J

    2003-01-01

    The objective of this report is to analyze the possibility to establish a scheme to compensate damage to workers health exposed to ionizing radiation in Argentina for those cases in which it is possible to assume that the exposure to ionizing radiation is the cause of the cancer suffered by the worker. The proposed scheme is based on the recommendations set out in the 'International Conference on Occupational Radiation Protection: Protecting Workers against Exposure to Ionization Radiation, held in Geneva, Switzerland, August 26-30, 2002. To this end, the study analyzes the present state of scientific knowledge on cancer causation due to genotoxic factors, and the accepted form of the doses-response curve, for the human beings exposure to ionization radiation at low doses with low doses rates. Finally, the labor laws and regulations related to damage compensation; in particular the present Argentine Labor Law; the National Russian Federal Occupational Radiological Health Impairment and Workmen Compensation, t...

  3. Influence of trans fat on skin damage in first-generation rats exposed to UV radiation.

    Science.gov (United States)

    Barcelos, Raquel Cristine S; Vey, Luciana T; Segat, Hecson Jesser; Benvegnú, Dalila M; Trevizol, Fabíola; Roversi, Karine; Roversi, Katiane; Dias, Verônica T; Dolci, Geisa S; Kuhn, Fábio T; Piccolo, Jaqueline; CristinaVeit, Juliana; Emanuelli, Tatiana; Bürger, Marilise E

    2015-01-01

    The influence of trans fatty acids (TFA) on lipid profile, oxidative damage and mitochondrial function in the skin of rats exposed to ultraviolet radiation (UVR) was assessed. The first-generation offspring of female Wistar rats supplemented from pregnancy with either soybean oil (C-SO, rich in n-6 FA; control group) or hydrogenated vegetable fat (HVF, rich in TFA) were continued with the same supplements until adulthood, when half of each group was exposed to UVR for 12 weeks. The HVF group showed higher TFA cutaneous incorporation, increased protein carbonyl (PC) levels, decreased functionality of mitochondrial enzymes and antioxidant defenses of the skin. After UVR, the HVF group showed increased skin thickness and reactive species (RS) generation, with decreased skin antioxidant defenses. RS generation was positively correlated with skin thickness, wrinkles and PC levels. Once incorporated to skin, TFA make it more susceptible to developing UVR-induced disorders.

  4. Chemical control of ozone damage on watermelon

    Energy Technology Data Exchange (ETDEWEB)

    Fieldhouse, D.J.

    1978-01-01

    Foliar air pollution damage resulting from ambient ozone was essentially eliminated on watermelon, Citrullus lanatus, with the use of N-(2-(2-oxo-1-imidazolidinyl)ethyl)-N'-phenylurea applied as a combination of soil and foliar applications. Use of this experimental plant protectant resulted in higher yields with Sugar Baby watermelon due to increased melon size and an increase in the number of marketable melons. Sugar content was also significantly increased.

  5. Dynamics and Adaptive Control for Stability Recovery of Damaged Aircraft

    Science.gov (United States)

    Nguyen, Nhan; Krishnakumar, Kalmanje; Kaneshige, John; Nespeca, Pascal

    2006-01-01

    This paper presents a recent study of a damaged generic transport model as part of a NASA research project to investigate adaptive control methods for stability recovery of damaged aircraft operating in off-nominal flight conditions under damage and or failures. Aerodynamic modeling of damage effects is performed using an aerodynamic code to assess changes in the stability and control derivatives of a generic transport aircraft. Certain types of damage such as damage to one of the wings or horizontal stabilizers can cause the aircraft to become asymmetric, thus resulting in a coupling between the longitudinal and lateral motions. Flight dynamics for a general asymmetric aircraft is derived to account for changes in the center of gravity that can compromise the stability of the damaged aircraft. An iterative trim analysis for the translational motion is developed to refine the trim procedure by accounting for the effects of the control surface deflection. A hybrid direct-indirect neural network, adaptive flight control is proposed as an adaptive law for stabilizing the rotational motion of the damaged aircraft. The indirect adaptation is designed to estimate the plant dynamics of the damaged aircraft in conjunction with the direct adaptation that computes the control augmentation. Two approaches are presented 1) an adaptive law derived from the Lyapunov stability theory to ensure that the signals are bounded, and 2) a recursive least-square method for parameter identification. A hardware-in-the-loop simulation is conducted and demonstrates the effectiveness of the direct neural network adaptive flight control in the stability recovery of the damaged aircraft. A preliminary simulation of the hybrid adaptive flight control has been performed and initial data have shown the effectiveness of the proposed hybrid approach. Future work will include further investigations and high-fidelity simulations of the proposed hybrid adaptive Bight control approach.

  6. Analyses of the secondary particle radiation and the DNA damage it causes to human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lebel E.; Rusek A.; Sivertz, M.; Yip, K.; Thompson, K.; Tafrov, S.

    2011-11-22

    High-energy protons, and high mass and energy ions, along with the secondary particles they produce, are the main contributors to the radiation hazard during space explorations. Skin, particularly the epidermis, consisting mainly of keratinocytes with potential for proliferation and malignant transformation, absorbs the majority of the radiation dose. Therefore, we used normal human keratinocytes to investigate and quantify the DNA damage caused by secondary radiation. Its manifestation depends on the presence of retinol in the serum-free media, and is regulated by phosphatidylinositol 3-kinases. We simulated the generation of secondary radiation after the impact of protons and iron ions on an aluminum shield. We also measured the intensity and the type of the resulting secondary particles at two sample locations; our findings agreed well with our predictions. We showed that secondary particles inflict DNA damage to different extents, depending on the type of primary radiation. Low-energy protons produce fewer secondary particles and cause less DNA damage than do high-energy protons. However, both generate fewer secondary particles and inflict less DNA damage than do high mass and energy ions. The majority of cells repaired the initial damage, as denoted by the presence of 53BPI foci, within the first 24 hours after exposure, but some cells maintained the 53BP1 foci longer.

  7. Analyses of the Secondary Particle Radiation and the DNA Damage it Causes to Human Keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lebel E. A.; Tafrov S.; Rusek, A.; Sivertz, M. B.; Yip, K.; Thompson, K. H.

    2011-11-01

    High-energy protons, and high mass and energy ions, along with the secondary particles they produce, are the main contributors to the radiation hazard during space explorations. Skin, particularly the epidermis, consisting mainly of keratinocytes with potential for proliferation and malignant transformation, absorbs the majority of the radiation dose. Therefore, we used normal human keratinocytes to investigate and quantify the DNA damage caused by secondary radiation. Its manifestation depends on the presence of retinol in the serum-free media, and is regulated by phosphatidylinositol 3-kinases. We simulated the generation of secondary radiation after the impact of protons and iron ions on an aluminum shield. We also measured the intensity and the type of the resulting secondary particles at two sample locations; our findings agreed well with our predictions. We showed that secondary particles inflict DNA damage to different extents, depending on the type of primary radiation. Low-energy protons produce fewer secondary particles and cause less DNA damage than do high-energy protons. However, both generate fewer secondary particles and inflict less DNA damage than do high mass and energy ions. The majority of cells repaired the initial damage, as denoted by the presence of 53BPI foci, within the first 24 hours after exposure, but some cells maintained the 53BP1 foci longer.

  8. Mechanisms for radiation damage in DNA. Final report, June 1, 1986--August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Sevilla, M.D.

    1996-08-01

    Over the last 10 years significant advances have been made impacting the understanding of radiation damage to DNA. The principal objective of this work was the elucidation of the fundamental mechanisms of radiation damage to DNA through the direct and indirect effects. Recently the work concentrated on the direct effect of radiation damage on DNA. The objective was to elucidate the ultimate radiation chemical damage to DNA arising from the direct effect. In this effort the focus was on the application of three techniques. ESR spectroscopic measurement of initial radicals formed in DNA and its hydration layer at low temperatures. Ab initio molecular orbital calculations were employed to give highly accurate theoretical predictions of early events such as electron and hole localization sites which serve to test and to clarify the experimental observations. HPLC and GC-mass spectroscopic assays of DNA base products formation provide the ultimate chemical outcome of the initial radiation events. The bridge between the early ion radical species and the non-radical products is made in ESR studies which follow the chemistry of the early species as they react with water and or other DNA bases. The use of these techniques has resulted in a new and fundamental understanding of the radiation damage to DNA on a molecular scale. From this work, a working model for DNA damage from the initial ionization event to the eventual formation of molecular base damage products and strand breaks has been formulated. Results over the past several years which have led to the formulation of this model are described.

  9. Histopathological And Biological Studies On The Role Of Soybean And Broad Bean AgainstRadiation Induce Damage In Rat Kidney

    Directory of Open Access Journals (Sweden)

    Hanaa Fathy Waer, **Abdel El ­ Rahman Mohamed Attia

    2002-09-01

    Full Text Available Most of the physiological and histological activities in the animal body are disturbed after exposure to ionizing radiation. These disturbances are either due to direct harmful effect of radiation on the biological systems or to the indirect effect of free radicals formed in the body after irradiation. There is growing evidence that the type of food plays an important role in the prevention of chronic diseases. The biological disturbance due to ionizing radiation makes search for ways of protecting living organisms essential for controlling the radiation hazards. Much of the world population relies on legumes, as a stable food. Legumes can affectively protect cells and tissues against damage. Our present study was conducted to investigate the hazardous effects of single dose !"#$%#&f the possible protective effect of feeding beans (broad beans and soybeans against radiation exposure. Histopathological, and biological changes of kidney function in irradiated, and bean fed animals were carried out. Animals were weighted and daily food intake was determined. The result obtained revealed that soybean is an extremely rich source of protein and fat as compared to faba bean. Radiations cause a reduction in food intake and weight gain. It causes great changes in the kidney glomeruli and collecting tubules. The recovery of the cells depend on the type of feeding so, feeding soybean gives a significant radiation protection and decreases the extent of changes induced by radiation

  10. Radiation damage in silicon. Defect analysis and detector properties

    Energy Technology Data Exchange (ETDEWEB)

    Hoenniger, F.

    2008-01-15

    Silicon microstrip and pixel detectors are vital sensor-components as particle tracking detectors for present as well as future high-energy physics (HEP) experiments. All experiments at the large Hadron Collider (LHC) are equipped with such detectors. Also for experiments after the upgrade of the LHC (the so-called Super-LHC), with its ten times higher luminosity, or the planned International Linear Collider (ILC) silicon tracking detectors are forseen. Close to the interaction region these detectors have to face harsh radiation fields with intensities above the presently tolerable level. defect engineering of the used material, e. g. oxygen enrichment of high resistivity float zone silicon and growing of thin low resistivityepitaxial layers on Czochralski silicon substrates has been established to improve the radiation hardness of silicon sensors. This thesis focuses mainly on the investigation of radiation induced defects and their differences observed in various kinds of epitaxial silicon material. Comparisons with other materials like float zone or Czochralski silicon are added. Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) measurements have been performed after {gamma}-, electron-, proton- and neutron-irradiation. The differenced in the formation of vacancy and interstitial related defects as well as so-called clustered regions were investigated for various types of irradiation. In addition to the well known defects VO{sub i}, C{sub i}O{sub i}, C{sub i}C{sub s}, VP or V{sub 2} several other defect complexes have been found and investigated. Also the material dependence of the defect introduction rates and the defect annealing behavior has been studied by isothermal and isochronal annealing experiments. Especially the IO{sub 2} defect which is an indicator for the oxygen-dimer content of the material has been investigated in detail. On the basis of radiation induced defects like the bistable donor (BD) defect and a deep

  11. Radiation damage in flexible TFTs and organic detectors

    OpenAIRE

    Almeida, Maria Teresa Gonçalves Lobato de

    2015-01-01

    In this thesis was investigated the radiation hardness of the building blocks of a future flexible X-ray sensor system. The characterized building blocks for the pixel addressing and signal amplification electronics are high mobility semiconducting oxide transistors (HMSO-TFTs) and organic transistors (OTFTs), whereas the photonic detection system is based on organic semiconducting single crystals (OSSCs). TFT parameters such as mobility, threshold voltage and subthreshold slope were measured...

  12. RADIATION DAMAGE TO BSCCO-2223 FROM 50 MEV PROTONS

    Energy Technology Data Exchange (ETDEWEB)

    Zeller, A.F.; Ronningen, R.M.; Godeke, A.; Heilbronn, L.H.; McMahan-Norris, P.; Gupta, R.

    2007-11-27

    The use of HTS materials in high radiation environmentsrequires that the superconducting properties remain constant up to aradiation high dose. BSCCO-2223 samples from two manufacturers wereirradiated with 50 MeV protons at fluences of up to 5 x 1017 protons/cm2.The samples lost approximately 75 percent of their pre-irradiation Ic.This compares with Nb3Sn, which loses about 50 percent at the samedisplacements per atom.

  13. Critical Need for Radiation Damage Tools for Space Missions

    Science.gov (United States)

    Tripathi, Ram

    2005-04-01

    NASA has a new vision for space exploration in the 21st Century encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. As a result, there is a focus on long duration space missions. NASA, as much as ever, is committed to the safety of the missions and the crew. Exposure from the hazards of severe space radiation in deep space long duration missions is `the show stopper.' Thus, protection from the hazards of severe space radiation is of paramount importance for the new vision. There is an overwhelming emphasis on the reliability issues for the mission and the habitat. Accurate risk assessments critically depend on the accuracy of the input information about the interaction of ions with materials, electronics and tissues. A huge amount of essential experimental information for all the ions in space, across the periodic table, for a wide range of energies of several (up to a Trillion) orders of magnitude are needed for the radiation protection engineering for space missions that is simply not available (due to the high costs) and probably never will be. Therefore, there is a compelling need to develop reliable accurate models of nuclear reactions and structures that form the basic input ingredients. State-of-the-art nuclear cross sections models have been developed at the NASA Langley Research Center, however a considerable number of tools need to be developed to alleviate the situation. The vital role and importance of nuclear physics for space missions will be discussed.

  14. From DNA radiation damage to cell death: theoretical approaches.

    Science.gov (United States)

    Ballarini, Francesca

    2010-10-05

    Some representative models of radiation-induced cell death, which is a crucial endpoint in radiobiology, were reviewed. The basic assumptions were identified, their consequences on predicted cell survival were analyzed, and the advantages and drawbacks of each approach were outlined. In addition to "historical" approaches such as the Target Theory, the Linear-Quadratic model, the Theory of Dual Radiation Action and Katz' model, the more recent Local Effect Model was discussed, focusing on its application in Carbon-ion hadrontherapy. Furthermore, a mechanistic model developed at the University of Pavia and based on the relationship between cell inactivation and chromosome aberrations was presented, together with recent results; the good agreement between model predictions and literature experimental data on different radiation types (photons, protons, alpha particles, and Carbon ions) supported the idea that asymmetric chromosome aberrations like dicentrics and rings play a fundamental role for cell death. Basing on these results, a reinterpretation of the TDRA was also proposed, identifying the TDRA "sublesions" and "lesions" as clustered DNA double-strand breaks and (lethal) chromosome aberrations, respectively.

  15. From DNA Radiation Damage to Cell Death: Theoretical Approaches

    Directory of Open Access Journals (Sweden)

    Francesca Ballarini

    2010-01-01

    Full Text Available Some representative models of radiation-induced cell death, which is a crucial endpoint in radiobiology, were reviewed. The basic assumptions were identified, their consequences on predicted cell survival were analyzed, and the advantages and drawbacks of each approach were outlined. In addition to “historical” approaches such as the Target Theory, the Linear-Quadratic model, the Theory of Dual Radiation Action and Katz' model, the more recent Local Effect Model was discussed, focusing on its application in Carbon-ion hadrontherapy. Furthermore, a mechanistic model developed at the University of Pavia and based on the relationship between cell inactivation and chromosome aberrations was presented, together with recent results; the good agreement between model predictions and literature experimental data on different radiation types (photons, protons, alpha particles, and Carbon ions supported the idea that asymmetric chromosome aberrations like dicentrics and rings play a fundamental role for cell death. Basing on these results, a reinterpretation of the TDRA was also proposed, identifying the TDRA “sublesions” and “lesions” as clustered DNA double-strand breaks and (lethal chromosome aberrations, respectively.

  16. Characterization of radiation damage induced by swift heavy ions in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Christian

    2016-05-15

    irradiation temperatures above 200 C damage formation is mitigated due to defect annealing. Thus a controlled temperature of accelerator components is desirable in order to increase the lifetime. This thesis contributes to a better understanding of radiation damage in swift heavy ion-exposed graphite with the aim to optimize the design of beam catchers and production targets for secondary ion beams for the Super Fragment Separator (Super-FRS) at FAIR. Moreover, the results of this work provide important input data for simulations to describe the beam response and lifetime of high-dose exposed critical accelerator components.

  17. Wind Turbine Control with Active Damage Reduction through Energy Dissipation

    NARCIS (Netherlands)

    Barradas Berglind, Jose de Jesus; Jayawardhana, Bayu; Wisniewski, Rafał

    2016-01-01

    In this paper we propose an active damage reduction control strategy for wind turbines based on dissipated energy. To this end we rely on the equivalences relating both damage in the rainflow counting sense and dissipated energy to the variations of Preisach hysteresis operators. Since dissipation

  18. Control damage by seedling debarking weevil. Technical note No. 271

    Energy Technology Data Exchange (ETDEWEB)

    Eidt, D.C.; Weaver, C.A.A.

    1993-01-01

    Technical note describing a method of controlling the damage to seedlings by the seedling debarking weevil by using nematodes. Information is given on the damage involved, the nematodes to be used, treatment methods, planting procedures, benefits and costs, and results of earlier trials.

  19. Dependence of Radiation Damage in Stainless Steel on Irradiation Dose

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The accelerator driven radioactive clean nuclear power system (ADS) is a novel innovative idea forthe sustainable development of nuclear power system. The spallation neutron source system is one of thethree key parts of ADS, which provides source neutrons of about 1018 s-1 for the burning-up of fuels.Stainless steel (SS) is used for the beam window and target materials of the spallation neutron sourcesystem. It is irradiated by high-energy and intense protons and/or neutrons during operation. Theaccumulated displacement damage dose could reach a couple of hundred dpa (displacement per atom) per

  20. Fluorescence studies on radiation oxidative damage to membranes with implications to cellular radiosensitivity

    Indian Academy of Sciences (India)

    K P Mishra

    2002-12-01

    Radiation oxidative damage to plasma membrane and its consequences to cellular radiosensitivity have received increasing attention in the past few years. This review gives a brief account of radiation oxidative damage in model and cellular membranes with particular emphasis on results from our laboratory. Fluorescence and ESR spin probes have been employed to investigate the structural and functional alterations in membranes after g-irradiation. Changes in the lipid bilayer in irradiated unilamellar liposomes prepared from egg yolk lecithin (EYL) were measured by using diphenylhexatriene (DPH) as a probe. The observed increase in DPH polarization and decrease in fluorescence intensity after g-irradiation of liposomes imply radiationinduced decrease in bilayer fluidity. Inclusion of cholesterol in liposome was found to protect lipids against radiation damage, possibly by modulation of bilayer organization e.g. lipid packing. Measurements on dipalmitoyl phosphatidylcholine (DPPC) liposomes loaded with 6-carboxyfluorescein (CF) showed radiation dose-dependent release of the probe indicating radiation-induced increased permeability. Changes in plasma membrane permeability of thymocytes were monitored by fluorescein diacetate (FDA) and induced intracellular reactive oxygen species (ROS) were determined by 2,7-dichlorodihydro fluorescein diacetate (DCH-FDA). Results suggest a correlation between ROS generation and membrane permeability changes induced by radiation within therapeutic doses (0-10 Gy). It is concluded that increase in membrane permeability was the result of ROS-mediated oxidative reactions, which might trigger processes leading to apoptotic cell death after radiation exposure.

  1. Radioprotection by WR-151327 against the late normal tissue damage in mouse hind legs from gamma ray radiation

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Satoru; Ando, Koichi; Koike, Sachiko [National Institute of Radiological Sciences, Chiba (Japan)] [and others

    1994-11-15

    To evaluate the protective effect of WR-151327 on late radiation-induced damaged to normal tissues in mice, the right hind legs of mice with or without WR-151327 administration (400 mg/kg) were irradiated with {sup 137}Cs gamma rays. Leg contracture and skin shrinkage assays were performed at 380 days after irradiation. The mice were killed on day 400 postirradiation and histological sections of the legs were made. The thickness of the dermis, epidermis, and skin (dermis plus epidermis) was measured. The muscular area of the legs and the posterior knee angle between the femur and tibia were also measured. The left hind legs were similarly assessed as nonirradiated controls. Group means and standard deviations were calculated and dose-response curves were drawn for every endpoint. Then, the dose modifying factor (DMF) for each endpoint and the correlations among endpoints were determined. Latae damage assayed by leg contracture and skin shrinkage progressed with increasing radiation dose. However, it was reduced by drug treatment. The significant effect was indicated for skin shrinkage by a DMF of 1.8 at 35%. The DMF for leg contracture was 1.3 at 6 mm. In the irradiated legs, epidermal hyperplasia and dermal fibrosis in the skin, muscular atrophy, and extension disturbance of the knee joint were observed. These changes progressed with increasing radiation dose. Skin damage assayed by the present endpoints was also reduced by drug treatment by DMFs of 1.4 to 1.7. However, DMFs for damage to the muscle and knee were not determined because no isoeffect was observed. There were good correlations between leg contracture or skin shrinkage and the other endpoints in both untreated and drug-treated mice. WR-151327 has the potential to protect against radiation-induced late normal tissue damage. 17 refs., 6 figs., 2 tabs.

  2. Radiation damage of graphite in fission and fusion reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Engle, G.B. (GA Technologies, Inc., San Diego, CA (USA)); Kelly, B.T. (Springfields Nuclear Power Development Labs. (UK))

    1984-05-01

    Increasing the crystalline perfection of artificial graphites is suggested as one method of reducing the crystallite damage. The life expectance for the isotropic conventional graphites will in each case depend on the reactor component for which it will be used and on its design considerations. Based on neutron damage and related dimensional changes it is estimated graphite will be tenable to about 3x10/sup 22/ n/cm/sup 2/ (EDN) at 400/sup 0/C, 0.6x10/sup 22/ n/cm/sup 2/ (EDN) at 1000/sup 0/C and 1.4x10/sup 22/ n/cm/sup 2/ (EDN) at 1400/sup 0/C. There are no data above 1400/sup 0/C on which to speculate. A dose of 2x10/sup 22/ n/cm/sup 2/ may be accumulated in times ranging from as short as a few months in the first wall region of high power density designs to the fusion plant lifetime (30 years) in the neutron reflector region behind the blanket.

  3. Radiation Damage in Silicon Detectors Caused by Hadronic and Electromagnetic Irradiation

    CERN Document Server

    Fretwurst, E.; Stahl, J.; Pintilie, I.

    2002-01-01

    The report contains various aspects of radiation damage in silicon detectors subjected to high intensity hadron and electromagnetic irradiation. It focuses on improvements for the foreseen LHC applications, employing oxygenation of silicon wafers during detector processing (result from CERN-RD48). An updated survey on hadron induced damage is given in the first article. Several improvements are outlined especially with respect to antiannealing problems associated with detector storage during LHC maintenance periods. Open questions are outlined in the final section, among which are a full understanding of differences found between proton and neutron induced damage, process related effects changing the radiation tolerance in addition to the oxygen content and the lack of understanding the changed detector properties on the basis of damage induced point and cluster defects. In addition to float zone silicon, so far entirely used for detector fabrication,Czochralski silicon was also studied and first promising re...

  4. Radiation Damage of Polypropylene Fiber Targets in Storage Rings

    CERN Document Server

    Rohdjess, H; Bisplinghoff, J; Bollmann, R; Büsser, K; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Greiff, J; Gross, A; Gross-Hardt, R; Hinterberger, F; Igelbrink, M; Langkau, R; Maier, R; Mosel, F; Müller, M; Muenstermann, M; Prasuhn, D; Von Rossen, P; Scheid, H; Schirm, N; Schwandt, F; Scobel, W; Trelle, H J; Wellinghausen, A; Wiedmann, W; Woller, K; Ziegler, R

    2004-01-01

    Thin polypropylene (CH$_2$) fibers have been used for internal experiments in storage rings as an option for hydrogen targets. The change of the hydrogen content due to the radiation dose applied by the circulating proton beam has been investigated in the range $1\\cdot10^6$ to $2\\cdot10^8$~Gy at beam momenta of 1.5 to 3 GeV/c by comparing the elastic pp-scattering yield to that from inelastic p-carbon reactions. It is found that the loss of hydrogen as a function of applied dose receives contributions from a fast and a slow component.

  5. Pharmacological doses of daily ascorbate protect tumours from radiation damage after a single dose of radiation in an intracranial mouse glioma model

    Directory of Open Access Journals (Sweden)

    Carole eGrasso

    2014-12-01

    Full Text Available Pharmacological ascorbate is currently used as an anti-cancer treatment, potentially in combination with radiation therapy, by integrative medicine practitioners. In the acidic, metal-rich tumour environment, ascorbate acts as a pro-oxidant, with a mode of action similar to that of ionising radiation; both treatments kill cells predominantly by free radical-mediated DNA damage. The brain tumour, glioblastoma multiforme (GBM, is very resistant to radiation; radiosensitising GBM cells will improve survival of GBM patients. Here we demonstrate that a single fraction (6 Gy of radiation combined with a one hour exposure to ascorbate (5 mM sensitised murine glioma GL261cells to radiation in survival and colony-forming assays in vitro. In addition, we report the effect of a single fraction (4.5 Gy of whole brain radiation combined with daily intra-peritoneal injections of ascorbate (1 mg/kg in an intra-cranial GL261 glioma mouse model. Tumour-bearing C57BL/6 mice were divided into four groups: one group received a single dose of 4.5 Gy to the brain eight days after tumour implantation, a second group received daily intra-peritoneal injections of ascorbate (day 8-45 after implantation, a third group received both treatments and a fourth control group received no treatment. While radiation delayed tumour progression, intra-peritoneal ascorbate alone had no effect on tumour progression. Tumour progression was faster in tumour-bearing mice treated with radiation and daily ascorbate than those treated with radiation alone. Histological analysis showed less necrosis in tumours treated with both radiation and ascorbate, consistent with a radio-protective effect of ascorbate in vivo. Discrepancies between our in vitro and in vivo results may be explained by differences in the tumour micro-environment which determines whether ascorbate remains outside the cell, acting as a pro-oxidant or whether it enters the cells and acts as an anti-oxidant.

  6. Pharmacological doses of daily ascorbate protect tumors from radiation damage after a single dose of radiation in an intracranial mouse glioma model.

    Science.gov (United States)

    Grasso, Carole; Fabre, Marie-Sophie; Collis, Sarah V; Castro, M Leticia; Field, Cameron S; Schleich, Nanette; McConnell, Melanie J; Herst, Patries M

    2014-01-01

    Pharmacological ascorbate is currently used as an anti-cancer treatment, potentially in combination with radiation therapy, by integrative medicine practitioners. In the acidic, metal-rich tumor environment, ascorbate acts as a pro-oxidant, with a mode of action similar to that of ionizing radiation; both treatments kill cells predominantly by free radical-mediated DNA damage. The brain tumor, glioblastoma multiforme (GBM), is very resistant to radiation; radiosensitizing GBM cells will improve survival of GBM patients. Here, we demonstrate that a single fraction (6 Gy) of radiation combined with a 1 h exposure to ascorbate (5 mM) sensitized murine glioma GL261 cells to radiation in survival and colony-forming assays in vitro. In addition, we report the effect of a single fraction (4.5 Gy) of whole brain radiation combined with daily intraperitoneal injections of ascorbate (1 mg/kg) in an intracranial GL261 glioma mouse model. Tumor-bearing C57BL/6 mice were divided into four groups: one group received a single dose of 4.5 Gy to the brain 8 days after tumor implantation, a second group received daily intraperitoneal injections of ascorbate (day 8-45) after implantation, a third group received both treatments and a fourth control group received no treatment. While radiation delayed tumor progression, intraperitoneal ascorbate alone had no effect on tumor progression. Tumor progression was faster in tumor-bearing mice treated with radiation and daily ascorbate than in those treated with radiation alone. Histological analysis showed less necrosis in tumors treated with both radiation and ascorbate, consistent with a radio-protective effect of ascorbate in vivo. Discrepancies between our in vitro and in vivo results may be explained by differences in the tumor microenvironment, which determines whether ascorbate remains outside the cell, acting as a pro-oxidant, or whether it enters the cells and acts as an anti-oxidant.

  7. Ultraviolet Radiation, Aging and the Skin: Prevention of Damage by Topical cAMP Manipulation

    OpenAIRE

    Alexandra Amaro-Ortiz; Betty Yan; John A. D'Orazio

    2014-01-01

    Being the largest and most visible organ of the body and heavily influenced by environmental factors, skin is ideal to study the long-term effects of aging. Throughout our lifetime, we accumulate damage generated by UV radiation. UV causes inflammation, immune changes, physical changes, impaired wound healing and DNA damage that promotes cellular senescence and carcinogenesis. Melanoma is the deadliest form of skin cancer and among the malignancies of highest increasing incidence over the las...

  8. Nonlinear Ultrasonic Techniques to Monitor Radiation Damage in RPV and Internal Components

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Laurence [Georgia Inst. of Technology, Atlanta, GA (United States); Kim, Jin-Yeon [Georgia Inst. of Technology, Atlanta, GA (United States); Qu, Jisnmin [Northwestern Univ., Evanston, IL (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wall, Joe [Electric Power Research Inst. (EPRI), Knoxville, TN (United States)

    2015-11-02

    The objective of this research is to demonstrate that nonlinear ultrasonics (NLU) can be used to directly and quantitatively measure the remaining life in radiation damaged reactor pressure vessel (RPV) and internal components. Specific damage types to be monitored are irradiation embrittlement and irradiation assisted stress corrosion cracking (IASCC). Our vision is to develop a technique that allows operators to assess damage by making a limited number of NLU measurements in strategically selected critical reactor components during regularly scheduled outages. This measured data can then be used to determine the current condition of these key components, from which remaining useful life can be predicted. Methods to unambiguously characterize radiation related damage in reactor internals and RPVs remain elusive. NLU technology has demonstrated great potential to be used as a material sensor – a sensor that can continuously monitor a material’s damage state. The physical effect being monitored by NLU is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave. The degree of nonlinearity is quantified with the acoustic nonlinearity parameter, β, which is an absolute, measurable material constant. Recent research has demonstrated that nonlinear ultrasound can be used to characterize material state and changes in microscale characteristics such as internal stress states, precipitate formation and dislocation densities. Radiation damage reduces the fracture toughness of RPV steels and internals, and can leave them susceptible to IASCC, which may in turn limit the lifetimes of some operating reactors. The ability to characterize radiation damage in the RPV and internals will enable nuclear operators to set operation time thresholds for vessels and prescribe and schedule replacement activities for core internals. Such a capability will allow a more clear definition of reactor safety margins. The research consists of three tasks: (1

  9. Sestrin2 protects the myocardium against radiation-induced damage

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yue-Can; Chi, Feng; Xing, Rui; Gao, Song; Chen, Jia-Jia; Duan, Qiong-Yu; Sun, Yu-Nan; Niu, Nan; Tang, Mei-Yue; Wu, Rong [Shengjing Hospital of China Medical University, Department of Medical Oncology, Cancer Center, Shenyang (China); Zeng, Jing [University of Washington School of Medicine, Department of Radiation Oncology, Seattle, WA (United States); Wang, Hong-Mei [Nanfang Hospital of Southern Medical University, Department of Radiation Oncology, Guangzhou (China)

    2016-05-15

    The purpose of this study was to investigate the role of Sestrin2 in response to radiation-induced injury to the heart and on the cardiomyopathy development in the mouse. Mice with genetic deletion of the Sestrin2 (Sestrin2 knockout mice [Sestrin2 KO]) and treatment with irradiation (22 or 15 Gy) were used as independent approaches to determine the role of Sestrin2. Echocardiography (before and after isoproterenol challenge) and left ventricular (LV) catheterization were performed to evaluate changes in LV dimensions and function. Masson's trichrome was used to assess myocardial fibrosis. Immunohistochemistry and Western blot were used to detect the capillary density. After 22 or 15 Gy irradiation, the LV ejection fraction (EF) was impaired in wt mice at 1 week and 4 months after irradiation when compared with sham irradiation. Compared to wt mice, Sestrin2 KO mice had significant reduction in reduced LVEF at 1 week and 4 months after irradiation. A significant increase in LV end-diastolic pressure and myocardial fibrosis and a significant decrease in capillary density were observed in irradiation-wt mice, as well as in irradiation-Sestrin2 KO mice. Sestrin2 involved in the regulation of cardiomyopathy (such as myocardial fibrosis) after irradiation. Overexpression of Sestrin2 might be useful in limiting radiation-induced myocardial injury. (orig.)

  10. Modeling of secondary radiation damage in LIGA PMMA resist exposure

    Science.gov (United States)

    Ting, Aili

    2003-01-01

    Secondary radiation during LIGA PMMA resist exposure adversely affects feature definition, sidewall taper and overall sidewall offset. Additionally, it can degrade the resist adjacent to the substrate, leading to the loss of free-standing features through undercutting during resist development or through mechanical failure of the degraded material. The source of this radiation includes photoelectrons, Auger electrons, fluorescence photons, etc. Sandia"s Integrated Tiger Series (ITS), a coupled electron/photon Monte Carlo transport code, was used to compute dose profiles within 1 to 2 microns of the absorber edge and near the interface of the resist with a metallized substrate. The difficulty of sub-micron resolution requirement was overcome by solving a few local problems having carefully designed micron-scale geometries. The results indicate a 2-μm dose transition region near the absorber edge resulting from PMMA"s photoelectrons. This region leads to sidewall offset and to tapered sidewalls following resist development. The results also show a dose boundary layer of around 1 μm near the substrate interface due to electrons emitted from the substrate metallization layer. The maximum dose at the resist bottom under the absorber can be very high and can lead to feature loss during development. This model was also used to investigate those resist doses resulting from multi-layer substrate.

  11. Comparison of radiation damage in silicon induced by proton and neutron irradiation

    CERN Document Server

    Ruzin, A; Glaser, M; Zanet, A; Lemeilleur, F; Watts, S

    1999-01-01

    The subject of radiation damage to Si detectors induced by 24-GeV/c protons and nuclear reactor neutrons has been studied. Detectors fabricated on single-crystal silicon enriched with various impurities have been tested. Significant differences in electrically active defects have been found between the various types of material. The results of the study suggest for the first time that the widely used nonionizing energy loss (NIEL) factors are insufficient for normalization of the electrically active damage in case of oxygen- and carbon-enriched silicon detectors. It has been found that a deliberate introduction of impurities into the semiconductor can affect the radiation hardness of silicon detectors. (16 refs).

  12. Concurrent Transient Activation of Wnt/{beta}-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    Energy Technology Data Exchange (ETDEWEB)

    Hai Bo; Yang Zhenhua; Shangguan Lei; Zhao Yanqiu [Institute for Regenerative Medicine, Scott and White Hospital, Molecular and Cellular Medicine Department, Texas A and M Health Science Center, Temple, Texas (United States); Boyer, Arthur [Department of Radiology, Scott and White Hospital, Temple, Texas (United States); Liu, Fei, E-mail: fliu@medicine.tamhsc.edu [Institute for Regenerative Medicine, Scott and White Hospital, Molecular and Cellular Medicine Department, Texas A and M Health Science Center, Temple, Texas (United States)

    2012-05-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/{beta}-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after, or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/{beta}-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/{beta}-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/{beta}-catenin pathway could prevent radiation-induced salivary gland dysfunction.

  13. Optic radiation damage in multiple sclerosis is associated with visual dysfunction and retinal thinning - an ultrahigh-field MR pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Sinnecker, Tim [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Asklepios Fachklinikum Teupitz, Department of Neurology, Teupitz (Germany); Oberwahrenbrock, Timm; Zimmermann, Hanna; Ramien, Caren; Brandt, Alexander U. [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Metz, Imke; Brueck, Wolfgang [University Medicine Goettingen, Institute of Neuropathology, Goettingen (Germany); Pfueller, Caspar F.; Doerr, Jan [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Charite - Universitaetsmedizin Berlin, Clinical and Experimental Multiple Sclerosis Research Center, Berlin (Germany); Harms, Lutz; Ruprecht, Klemens [Charite - Universitaetsmedizin Berlin, Clinical and Experimental Multiple Sclerosis Research Center, Berlin (Germany); Charite - Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Hahn, Katrin [Charite - Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Niendorf, Thoralf [Max Delbrueck Center for Molecular Medicine, Berlin Ultrahigh Field Facility (B.U.F.F), Berlin (Germany); Charite - Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Experimental and Clinical Research Center, Berlin (Germany); Paul, Friedemann [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Charite - Universitaetsmedizin Berlin, Clinical and Experimental Multiple Sclerosis Research Center, Berlin (Germany); Charite - Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Charite - Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Experimental and Clinical Research Center, Berlin (Germany); Wuerfel, Jens [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Max Delbrueck Center for Molecular Medicine, Berlin Ultrahigh Field Facility (B.U.F.F), Berlin (Germany); University Medicine Goettingen, Institute of Neuroradiology, Goettingen (Germany)

    2015-01-15

    To investigate posterior visual pathway damage in multiple sclerosis using ultrahigh-field magnetic resonance imaging (MRI) at 7 Tesla (7 T), and to determine its correlation with visual disability and retinal fibre layer (RNFL) damage detectable by optic coherence tomography (OCT). We studied 7 T MRI, OCT, functional acuity contrast testing (FACT), and visually evoked potentials (VEP, n = 16) in 30 patients (including 26 relapsing-remitting MS and four clinically isolated syndrome patients) and 12 healthy controls to quantify RNFL thickness, optic radiation lesion volume, and optic radiation thickness. Optic radiation lesion volume was associated with thinning of the optic radiation (p < 0.001), delayed VEP (p = 0.031), and visual disability indicated by FACT (p = 0.020). Furthermore, we observed an inverse correlation between optic radiation lesion volume and RNFL thickness (p < 0.001), including patients without previous optic neuritis (p < 0.001). Anterior visual pathway damage, but also (subclinical) optic radiation integrity loss detectable by 7 T MRI are common findings in MS that are mutually affected. Given the association between optic radiation damage, visual impairment, and increased VEP latency in this exploratory study of a limited sample size, clinicians should be aware of acute lesions within the optic radiation in patients with (bilateral) visual disturbances. (orig.)

  14. Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons.

    Science.gov (United States)

    Xu, Shangcheng; Zhou, Zhou; Zhang, Lei; Yu, Zhengping; Zhang, Wei; Wang, Yuan; Wang, Xubu; Li, Maoquan; Chen, Yang; Chen, Chunhai; He, Mindi; Zhang, Guangbin; Zhong, Min

    2010-01-22

    Increasing evidence indicates that oxidative stress may be involved in the adverse effects of radiofrequency (RF) radiation on the brain. Because mitochondrial DNA (mtDNA) defects are closely associated with various nervous system diseases and mtDNA is particularly susceptible to oxidative stress, the purpose of this study was to determine whether radiofrequency radiation can cause oxidative damage to mtDNA. In this study, we exposed primary cultured cortical neurons to pulsed RF electromagnetic fields at a frequency of 1800 MHz modulated by 217 Hz at an average special absorption rate (SAR) of 2 W/kg. At 24 h after exposure, we found that RF radiation induced a significant increase in the levels of 8-hydroxyguanine (8-OHdG), a common biomarker of DNA oxidative damage, in the mitochondria of neurons. Concomitant with this finding, the copy number of mtDNA and the levels of mitochondrial RNA (mtRNA) transcripts showed an obvious reduction after RF exposure. Each of these mtDNA disturbances could be reversed by pretreatment with melatonin, which is known to be an efficient antioxidant in the brain. Together, these results suggested that 1800 MHz RF radiation could cause oxidative damage to mtDNA in primary cultured neurons. Oxidative damage to mtDNA may account for the neurotoxicity of RF radiation in the brain.

  15. Flight dynamics and control modelling of damaged asymmetric aircraft

    Science.gov (United States)

    Ogunwa, T. T.; Abdullah, E. J.

    2016-10-01

    This research investigates the use of a Linear Quadratic Regulator (LQR) controller to assist commercial Boeing 747-200 aircraft regains its stability in the event of damage. Damages cause an aircraft to become asymmetric and in the case of damage to a fraction (33%) of its left wing or complete loss of its vertical stabilizer, the loss of stability may lead to a fatal crash. In this study, aircraft models for the two damage scenarios previously mentioned are constructed using stability derivatives. LQR controller is used as a direct adaptive control design technique for the observable and controllable system. Dynamic stability analysis is conducted in the time domain for all systems in this study.

  16. Fatigue-Damage Estimation and Control for Wind Turbines

    DEFF Research Database (Denmark)

    Barradas Berglind, Jose de Jesus

    How can fatigue-damage for control of wind turbines be represented? Fatigue-damage is indeed a crucial factor in structures such as wind turbines that are exposed to turbulent and rapidly changing wind flow conditions. This is relevant both in their design stage and during the control......, the inclusion of fatigue-damage within feedback control loops is of special interest. Four strategies in total are proposed in this work: three for the wind turbine level and one for the wind farm level. On one hand, the three strategies in the turbine level are based on hysteresis operators and strive......-damage estimation in wind turbine components, to the mixed objective operation of wind energy conversion systems, and to the synthesis of control strategies that include hysteresis operators....

  17. Integrated Damage-Adaptive Control System (IDACS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI, in collaboration with Boeing Phantom Works, proposes to develop and test an efficient Integrated Damage Adaptive Control System (IDACS). The proposed system is...

  18. Delayed repair of radiation induced clustered DNA damage: Friend or foe?

    Energy Technology Data Exchange (ETDEWEB)

    Eccles, Laura J., E-mail: laura.eccles@rob.ox.ac.uk [DNA Damage Group, Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ (United Kingdom); O' Neill, Peter, E-mail: peter.oneill@rob.ox.ac.uk [DNA Damage Group, Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ (United Kingdom); Lomax, Martine E., E-mail: martine.lomax@rob.ox.ac.uk [DNA Damage Group, Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ (United Kingdom)

    2011-06-03

    A signature of ionizing radiation exposure is the induction of DNA clustered damaged sites, defined as two or more lesions within one to two helical turns of DNA by passage of a single radiation track. Clustered damage is made up of double strand breaks (DSB) with associated base lesions or abasic (AP) sites, and non-DSB clusters comprised of base lesions, AP sites and single strand breaks. This review will concentrate on the experimental findings of the processing of non-DSB clustered damaged sites. It has been shown that non-DSB clustered damaged sites compromise the base excision repair pathway leading to the lifetime extension of the lesions within the cluster, compared to isolated lesions, thus the likelihood that the lesions persist to replication and induce mutation is increased. In addition certain non-DSB clustered damaged sites are processed within the cell to form additional DSB. The use of E. coli to demonstrate that clustering of DNA lesions is the major cause of the detrimental consequences of ionizing radiation is also discussed. The delayed repair of non-DSB clustered damaged sites in humans can be seen as a 'friend', leading to cell killing in tumour cells or as a 'foe', resulting in the formation of mutations and genetic instability in normal tissue.

  19. Alterations in phosphate metabolism during cellular recovery of radiation damage in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Holahan, P.K.; Knizner, S.A.; Gabriel, C.M.; Swenberg, C.E.

    1988-10-01

    The authors examined alterations in phosphate pools during cellular recovery from radiation damage in intact, wild-type diploid yeast cells using /sup 31/P nuclear magnetic resonance (NMR) spectroscopy. Concurrent cell survival analysis was determined following exposure to /sup 60/Co ..gamma..-irradiation. Cells held in citrate-buffered saline (CBS) showed increased survival with increasing time after irradiation (liquid holding recovery, LHR) with no further recovery beyond 48 h. Addition of 100 mmol dm/sup -3/ glucose to the recovery medium resulted in greater recovery. In the presence of 5 mmol dm/sup /-/sup 3/ 2-deoxyglucose (2-DG), LHR was completely inhibited. NMR analyses were done on cells perfused in agarose threads and maintained under conditions similar to those in the survival studies. ATP was observable by NMR only when glucose was present in the recovery medium. In control cells, ATP concentrations increased and plateaued with increasing recovery time. With increasing radiation dose the increase in ATP was of lesser magnitude, and after 2000 Gy no increase was observed.

  20. Large-Scale Damage Control Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs large‑scale fire protection experiments that simulate actual Navy platform conditions. Remote control firefighting systems are also tested....

  1. Neutron radiation damage and recovery studies of SiPMs

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, T.; Rao, T.; Stoll, S.; Woody, C.

    2016-12-01

    We characterized the performance of Silicon Photomultipliers (SiPMs) before and after exposure of up to 1012 neutron/cm2 dosage. We show that the typical orders of magnitude increase of dark current upon neutron irradiation can be suppressed by operating it at a lower temperature and single-photoelectron detection capability can be restored. The required operating temperature depends on the dosage received. Furthermore, after high temperature thermal annealing, there is compelling evidence that the extrinsic dark current is lowered by orders of magnitude and single-photon detection performance are to some extent recovered at room temperature. Our experimental findings might have widespread implications for extending the functionality and the useful lifetime of current and future large scale SiPM detectors deployed in ionization radiation environment.

  2. Neutron radiation damage and recovery studies of SiPMs

    Science.gov (United States)

    Tsang, T.; Rao, T.; Stoll, S.; Woody, C.

    2016-12-01

    We characterized the performance of Silicon Photomultipliers (SiPMs) before and after exposure of up to 1012 neutron/cm2 dosage. We show that the typical orders of magnitude increase of dark current upon neutron irradiation can be suppressed by operating it at a lower temperature and single-photoelectron detection capability can be restored. The required operating temperature depends on the dosage received. Furthermore, after high temperature thermal annealing, there is compelling evidence that the extrinsic dark current is lowered by orders of magnitude and single-photon detection performance are to some extent recovered at room temperature. Our experimental findings might have widespread implications for extending the functionality and the useful lifetime of current and future large scale SiPM detectors deployed in ionization radiation environment.

  3. Radiation damage study using small-angle neutron scattering

    Science.gov (United States)

    Rétfalvi, E.; Török, Gy; Rosta, L.

    2000-03-01

    Nuclear radiation provides important changes in the microstructure of metallic components of nuclear power plant and research reactors, influencing their mechanical properties. The investigation of this problem has primary interest for the safety and life-time of such nuclear installations. For the characterization of this kind of nanostructures small angle neutron scattering technique is a very useful tool. We have carried out experiments on samples of irradiated reactor vessel material and welded components of VVER-440-type reactors on the SANS instrument at the Budapest Research Reactor. In our measurements irradiated as well as non-irradiated samples were compared and magnetic field was applied for viewing the magnetic structure effects of the materials. A clear modification of the structure due to irradiation was obtained. Our data were analyzed by the ITP92 code, the inverse Fourier transform program of O. Glatter [1].

  4. Radiation damage in negative-differential resistance devices

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, F.A.S. (Nuclear Materials Authority, Cairo (Egypt)); Kamh, S.A. (Ain-Shams Univ., Cairo (Egypt). Faculty of Women for Arts, Science and Education)

    1994-02-01

    Tunnel diodes made with silicon and gallium arsenide have been tested in both neutron- and gamma-radiation environments. Experimental data show that failure usually occurs in the range 10[sup 14]-10[sup 18] n cm[sup -2] or 50-270 Mrad range. The primary failure mechanism for neutron irradiated samples is an increase in the valley current (from 0.10 mA to 0.58 mA and from 1.5 [mu]A to 30 [mu]A for silicon and GaAs diodes, respectively). In the case of gamma-irradiated silicon samples, the valley current reaches a value of 0.48 mA, at 260.8 Mrad, although their initial values are 0.1 mA. As a result, the peak-to-valley current ratios of the irradiated devices were shown to decrease severely. Both the valley and forward peak voltage values were shown to decrease with radiation. Values of 0.18 and 0.25 V for silicon samples were measured after exposure to 5 x 10[sup 16] n cm[sup -2] although their initial values were 0.42 and 0.80 V, respectively. As a result, the devices' output power were shown to be affected seriously. Finally, silicon devices irradiated for 48 h in the ET-RR-1 research reactor, Egypt, for up to 1.872 x 10[sup 18] n cm[sup -2] or to gamma doses up to 2.6 x 10[sup 8] rad, were greatly influenced and they lost their main feature as PN-junctions. (Author).

  5. Modification of radiation-induced oxidative damage in liposomal and microsomal membrane by eugenol

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, B.N. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Lathika, K.M. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Mishra, K.P. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)]. E-mail: kpm@magnum.barc.ernet.in

    2006-03-15

    Radiation-induced membrane oxidative damage, and their modification by eugenol, a natural antioxidant, was investigated in liposomes and microsomes. Liposomes prepared with DPH showed decrease in fluorescence after {gamma}-irradiation, which was prevented significantly by eugenol and correlated with magnitude of oxidation of phospholipids. Presence of eugenol resulted in substantial inhibition in MDA formation in irradiated liposomes/microsomes, which was less effective when added after irradiation. Similarly, the increase in phospholipase C activity observed after irradiation in microsomes was inhibited in samples pre-treated with eugenol. Results suggest association of radio- oxidative membrane damage with alterations in signaling molecules, and eugenol significantly prevented these membrane damaging events.

  6. Modification of radiation-induced oxidative damage in liposomal and microsomal membrane by eugenol

    Science.gov (United States)

    Pandey, B. N.; Lathika, K. M.; Mishra, K. P.

    2006-03-01

    Radiation-induced membrane oxidative damage, and their modification by eugenol, a natural antioxidant, was investigated in liposomes and microsomes. Liposomes prepared with DPH showed decrease in fluorescence after γ-irradiation, which was prevented significantly by eugenol and correlated with magnitude of oxidation of phospholipids. Presence of eugenol resulted in substantial inhibition in MDA formation in irradiated liposomes/microsomes, which was less effective when added after irradiation. Similarly, the increase in phospholipase C activity observed after irradiation in microsomes was inhibited in samples pre-treated with eugenol. Results suggest association of radio- oxidative membrane damage with alterations in signaling molecules, and eugenol significantly prevented these membrane damaging events.

  7. Does prolonged radiofrequency radiation emitted from Wi-Fi devices induce DNA damage in various tissues of rats?

    Science.gov (United States)

    Akdag, Mehmet Zulkuf; Dasdag, Suleyman; Canturk, Fazile; Karabulut, Derya; Caner, Yusuf; Adalier, Nur

    2016-09-01

    Wireless internet (Wi-Fi) providers have become essential in our daily lives, as wireless technology is evolving at a dizzying pace. Although there are different frequency generators, one of the most commonly used Wi-Fi devices are 2.4GHz frequency generators. These devices are heavily used in all areas of life but the effect of radiofrequency (RF) radiation emission on users is generally ignored. Yet, an increasing share of the public expresses concern on this issue. Therefore, this study intends to respond to the growing public concern. The purpose of this study is to reveal whether long term exposure of 2.4GHz frequency RF radiation will cause DNA damage of different tissues such as brain, kidney, liver, and skin tissue and testicular tissues of rats. The study was conducted on 16 adult male Wistar-Albino rats. The rats in the experimental group (n=8) were exposed to 2.4GHz frequency radiation for over a year. The rats in the sham control group (n=8) were subjected to the same experimental conditions except the Wi-Fi generator was turned off. After the exposure period was complete the possible DNA damage on the rat's brain, liver, kidney, skin, and testicular tissues was detected through the single cell gel electrophoresis assay (comet) method. The amount of DNA damage was measured as percentage tail DNA value. Based on the DNA damage results determined by the single cell gel electrophoresis (Comet) method, it was found that the% tail DNA values of the brain, kidney, liver, and skin tissues of the rats in the experimental group increased more than those in the control group. The increase of the DNA damage in all tissues was not significant (p>0.05). However the increase of the DNA damage in rat testes tissue was significant (pWi-Fi) does not cause DNA damage of the organs investigated in this study except testes. The results of this study indicated that testes are more sensitive organ to RF radiation.

  8. On radiation damage to normal tissues and its treatment. Pt. 2; Anti-inflammatory drugs

    Energy Technology Data Exchange (ETDEWEB)

    Michalowski, A.S. (MRC Cyclotron Unit, Hammersmith Hospital, London (United Kingdom))

    1994-01-01

    In addition to transiently inhibiting cell cycle progression and sterilizing those cells capable of proliferation, irradiation disturbs the homeostasis effected by endogenous mediators of intercellular communication (humoral component of tissue response to radiation). Changes in the mediator levels may modulate radiation effects either by a assisting a return to normality (e.g., through a rise in H-type cell lineage-specific growth factors) or by aggravating the damage. The latter mode is illustrated with reports on changes in eicosanoid levels after irradiation and on results of empirical treatment of radiation injuries with anti-inflammatory drugs. Prodromal, acute and chronic effects of radiation are accompanied by excessive production of eicosanoids (prostaglandins, prostacyclin, thromboxanes and leukotrienes). These endogenous mediators of inflammatory reactions may be responsible for the vasodilatation, vasoconstriction, increased microvascular permeability, thrombosis and chemotaxis observed after radiation exposure. Glucocorticoids inhibit eicosanoid synthesis primarily by interfering with phospholipase A[sub 2] whilst non-steroidal anti-inflammatory drugs prevent prostaglandin/thromboxane synthesis by inhibiting cycloxygenase. When administered after irradiation on empirical grounds, drugs belonging to both groups tend to attenuate a range of prodomal, acute and chronic effects of radiation in man and animals. Taken together, these two sets of observations are highly suggestive of a contribution of humoral factors to the adverse responses of normal tissues and organs to radiation. A full account of radiation damage should therefore consist of complementary descriptions of cellular and humoral events. Further studies on anti-inflammatory drug treatment of radiation damage to normal organs are justified and desirable. (orig.).

  9. Study of terahertz-radiation-induced DNA damage in human blood leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Angeluts, A A; Esaulkov, M N; Kosareva, O G; Solyankin, P M; Shkurinov, A P [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Gapeyev, A B; Pashovkin, T N [Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region (Russian Federation); Matyunin, S N [Section of Applied Problems at the Presidium of the Russian Academy of Sciences, Moscow (Russian Federation); Nazarov, M M [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation); Cherkasova, O P [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2014-03-28

    We have carried out the studies aimed at assessing the effect of terahertz radiation on DNA molecules in human blood leukocytes. Genotoxic testing of terahertz radiation was performed in three different oscillation regimes, the blood leukocytes from healthy donors being irradiated for 20 minutes with the mean intensity of 8 – 200 μW cm{sup -2} within the frequency range of 0.1 – 6.5 THz. Using the comet assay it is shown that in the selected regimes such radiation does not induce a direct DNA damage in viable human blood leukocytes. (biophotonics)

  10. The impact of locally multiply damaged sites (LMDS) induced by ionizing radiation in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D.; Boucher, D. [Institut Curie-Section de Recherche, UMR2027 CNRS, LCR-V28 du CEA, Centre Universitaire, 91405 Orsay Cedex (France)

    2006-07-01

    Monte Carlo calculations have shown that ionising radiations produce a specific type of clustered cell damage called locally multiply damaged sites or LMDS. These lesions consist of closely positioned single-strand breaks, (oxidative) base damage and DNA double-strand breaks (DSB) in between one helical turn of DNA. As specific markers of radiation-induced damage these lesions are likely to condition biological responses and are thus of great interest for radiation protection. Calculations indicate that there should be more LMDS induced by high than by low LET radiation, and they should be absent in un-irradiated cells. Processes like K-shell activation and local Auger electron emission can be expected to add complex DSB or LMDS, producing significant chromosomal damage. In the discussion of the specificity of ionising radiation in comparison to other genotoxic agents, many arguments have been put forward that these lesions should be particularly deleterious for living cells. Complex lesions of that type should represent big obstacles for DNA repair and give rise to high lethality. Moreover, cellular attempts to repair them could accentuate harm, leading to mutations, genetic instability and cancer. In vitro experiments with oligonucleotides containing an artificially introduced set of base damage and SSB in different combinations have shown that depending on the close positioning of the damage on DNA, repair enzymes, and even whole cell extracts, are unable to repair properly and may stimulate mis-repair. Pulsed field gel electrophoresis (PFGE) in conjunction with enzymatic treatments has been used to detect LMDS in mammalian cells after high and low LET radiation. In order to further define the importance of LMDS for radiation induced cellular responses, we studied the induction of LMDS as a function of radiation dose and dose rate in mammalian cells (CHO and MRC5) using {sup 137}Cs gamma-radiation. Using PFGE and specific glycosylases to convert oxidative damage

  11. Assessment of DNA damage and oxidative stress induced by radiation in Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2012-04-15

    Exposure of eukaryotic cells to ionizing radiation results in the immediate formation of free radicals and the occurrence of oxidative cell damage. Recently International Commission on Radiological Protection (ICRP) requires the effect data of ionizing radiation on non-human biota for the radiological protection of the environment. Based on their radioecological properties and their important role in the soil ecosystem, earthworms have been identified by the ICRP as one of the reference animals and plants (RAPs) to be used in environmental radiation protection. The investigation shows that oxidative stress is closely related to the exposed dose of radiation in the environment. To evaluate oxidative stress by ionizing radiation in the earthworm, we performed several experiments. The comet assay is known as a measurement which is one of the best techniques in assessing the DNA damage by oxidative stress. The SOD is a key enzyme in protecting cells against oxidative stress. An increase in the level of antioxidant enzyme such as SOD indicated that the exposure to radiation caused stress responses. Glutathione oxidation is considered as a maker for detection of reactive oxygen species (ROS). The GSSG levels increased progressively with increased exposure dose of ionizing radiation, which suggested a dose-dependent ROS generation.

  12. TGF-.beta. antagonists as mitigators of radiation-induced tissue damage

    Science.gov (United States)

    Barcellos-Hoff, Mary H.

    1997-01-01

    A method for treating tissue damage caused by radiation is described by use of a TGF-.beta. antagonist, such as an anti-TGF-.beta. antibody or a TGF-.beta. latency associated protein. It is administered not more than a week after exposure, and is particularly useful in mitigating the side effects of breast cancer therapy.

  13. TGF-{beta} antagonists as mitigators of radiation-induced tissue damage

    Science.gov (United States)

    Barcellos-Hoff, M.H.

    1997-04-01

    A method for treating tissue damage caused by radiation is described by use of a TGF-{beta} antagonist, such as an anti-TGF-{beta} antibody or a TGF-{beta} latency associated protein. It is administered not more than a week after exposure, and is particularly useful in mitigating the side effects of breast cancer therapy.

  14. Retinal damage by optical radiation. An alternative approach to current, ACGIH-inspired guidelines

    NARCIS (Netherlands)

    Vos, J.J.; Norren, D. van

    2005-01-01

    Background: The ACGIH guidelines for protection against retinal damage by optical radiation are often difficult to apply due to their lack of transparency. The less known guidelines by the Netherlands Health Council (HCN), dating from 1978 and updated in 1993, might offer a way out in many cases. Me

  15. Stem Cell Therapy to Reduce Radiation-Induced Normal Tissue Damage

    NARCIS (Netherlands)

    Coppes, Rob P.; van der Goot, Annemieke; Lombaert, Isabelle M. A.

    Normal tissue damage after radiotherapy is still a major problem in cancer treatment. Stem cell therapy may provide a means to reduce radiation-induced side effects and improve the quality of life of patients. This review discusses the current status in stem cell research with respect to their

  16. OBJECT KINETIC MONTE CARLO SIMULATIONS OF RADIATION DAMAGE ACCUMULATION IN TUNGSTEN

    Energy Technology Data Exchange (ETDEWEB)

    Nandipati, Giridhar; Setyawan, Wahyu; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

    2016-09-01

    The objective of this work is to understand the accumulation of radiation damage created by primary knock-on atoms (PKAs) of various energies, at 300 K and for a dose rate of 10-4 dpa/s in bulk tungsten using the object kinetic Monte Carlo (OKMC) method.

  17. DNA damage and repair in plants under ultraviolet and ionizing radiations.

    Science.gov (United States)

    Gill, Sarvajeet S; Anjum, Naser A; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra

    2015-01-01

    Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315-400 nm; UV-B, 280-315 nm; and UV-C, exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context.

  18. Radiation-damage-induced phasing: a case study using UV irradiation with light-emitting diodes.

    Science.gov (United States)

    de Sanctis, Daniele; Zubieta, Chloe; Felisaz, Franck; Caserotto, Hugo; Nanao, Max H

    2016-03-01

    Exposure to X-rays, high-intensity visible light or ultraviolet radiation results in alterations to protein structure such as the breakage of disulfide bonds, the loss of electron density at electron-rich centres and the movement of side chains. These specific changes can be exploited in order to obtain phase information. Here, a case study using insulin to illustrate each step of the radiation-damage-induced phasing (RIP) method is presented. Unlike a traditional X-ray-induced damage step, specific damage is introduced via ultraviolet light-emitting diodes (UV-LEDs). In contrast to UV lasers, UV-LEDs have the advantages of small size, low cost and relative ease of use.

  19. Spontaneous perseverative turning in rats with radiation-induced hippocampal damage

    Energy Technology Data Exchange (ETDEWEB)

    Mickley, G.A.; Ferguson, J.L.; Nemeth, T.J.; Mulvihill, M.A.; Alderks, C.E. (Armed Forces Radiobiology Research Institute, Bethesda, MD (USA))

    1989-08-01

    This study found a new behavioral correlate of lesions specific to the dentate granule cell layer of the hippocampus: spontaneous perseverative turning. Irradiation of a portion of the neonatal rat cerebral hemispheres produced hypoplasia of the granule cell layer of the hippocampal dentate gyrus while sparing the rest of the brain. Radiation-induced damage to the hippocampal formation caused rats placed in bowls to spontaneously turn in long, slow bouts without reversals. Irradiated subjects also exhibited other behaviors characteristic of hippocampal damage (e.g., perseveration in spontaneous exploration of the arms of a T-maze, retarded acquisition of a passive avoidance task, and increased horizontal locomotion). These data extend previously reported behavioral correlates of fascia dentata lesions and suggest the usefulness of a bout analysis of spontaneous bowl turning as a measure of nondiscrete-trial spontaneous alternation and a sensitive additional indicator of radiation-induced hippocampal damage.

  20. Botanical Extracts as Medical Countermeasures for Radiation Induced DNA Damage

    Science.gov (United States)

    2012-03-01

    date June 2013 Listed medicinal ingredients - Grape seed extract standardized to 85 % polyphenols - Grape skin extract standardized to 15...Control wells contained dH2O or ethanol (concentration dependent on test substance solvent), NADPH (beta- nicotinamide adenine dinucleotide phosphate...statistical number of repeats NaCl sodium chloride NADPH beta- nicotinamide adenine dinucleotide phosphate nm nanometer (10-9) PBS phosphate buffered

  1. An Automated Method to Quantify Radiation Damage in Human Blood Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gordon K. Livingston, Mark S. Jenkins and Akio A. Awa

    2006-07-10

    Cytogenetic analysis of blood lymphocytes is a well established method to assess the absorbed dose in persons exposed to ionizing radiation. Because mature lymphocytes circulate throughout the body, the dose to these cells is believed to represent the average whole body exposure. Cytogenetic methods measure the incidence of structural aberrations in chromosomes as a means to quantify DNA damage which occurs when ionizing radiation interacts with human tissue. Methods to quantify DNA damage at the chromosomal level vary in complexity and tend to be laborious and time consuming. In a mass casualty scenario involving radiological/nuclear materials, the ability to rapidly triage individuals according to radiation dose is critically important. For high-throughput screening for dicentric chromosomes, many of the data collection steps can be optimized with motorized microscopes coupled to automated slide scanning platforms.

  2. [Damage and functional recovery of the mouse retina after exposure to ionizing radiation and methylnitrosourea].

    Science.gov (United States)

    Vinogradova, Iu V; Tronov, V A; Liakhova, K N; Poplinskaia, V A; Ostrovskiĭ, M A

    2014-01-01

    The eye retina consists of terminally differentiated cells that have lost their ability to proliferate. The death of these cells leads tothe loss of sight. The mice retina is characterized by relatively high resistance to radiation, which is provided by its ability to repair damage caused by environmental factors. The aim of our work was to assess the damaging effect of ionizing radiation and methylnitrosourea (MNU) on the DNA structure in the mouse retina, the functional activity of the retina, and its ability to recover in vivo. The results confirm the ability of the mature retina to structural and functional recovery. Adapting influence of low dose chemical agent increases retina resistance to cytotoxic dose of genotoxicants and prevents degeneration of photoreceptor layer of the retina. The results show the possibility of neurohormesis effect in the mice retina after exposure to ionizing radiation and chemicals.

  3. Annealing behavior of radiation damage in JFET-input operational amplifiers

    Institute of Scientific and Technical Information of China (English)

    Zheng Yuzhan; Lu Wu; Ren Diyuan; Wang Yiyuan; Guo Qi; Yu Xuefeng

    2009-01-01

    The elevated and room temperature annealing behavior of radiation damage in JFET-input operational amplifiers (op-amps) were investigated. High-and low-dose-rate irradiation results show that one of the JFET-input op-amps studied in this paper exhibits enhanced low-dose-rate sensitivity and the other shows time-dependent effect. The offset voltage of both op-amps increases during long-term annealing at room temperature. However, the offset voltage decreases at elevated temperature. The dramatic difference in annealing behavior at room and elevated temperatures indicates the migration behavior of radiation-induced species at elevated and room temperatures. This provides useful information to understand the degradation and annealing mechanisms in JFET-input op-amps under total ionizing radiation. Moreover, the annealing of oxide trapped charges should be taken into consideration, when using elevated temperature methods to evaluate low-dose-rate damage.

  4. A simple model of space radiation damage in GaAs solar cells

    Science.gov (United States)

    Wilson, J. W.; Stith, J. J.; Stock, L. V.

    1983-01-01

    A simple model is derived for the radiation damage of shallow junction gallium arsenide (GaAs) solar cells. Reasonable agreement is found between the model and specific experimental studies of radiation effects with electron and proton beams. In particular, the extreme sensitivity of the cell to protons stopping near the cell junction is predicted by the model. The equivalent fluence concept is of questionable validity for monoenergetic proton beams. Angular factors are quite important in establishing the cell sensitivity to incident particle types and energies. A fluence of isotropic incidence 1 MeV electrons (assuming infinite backing) is equivalent to four times the fluence of normal incidence 1 MeV electrons. Spectral factors common to the space radiations are considered, and cover glass thickness required to minimize the initial damage for a typical cell configuration is calculated. Rough equivalence between the geosynchronous environment and an equivalent 1 MeV electron fluence (normal incidence) is established.

  5. Reproducible radiation-damage processes in proteins irradiated by intense x-ray pulses

    Science.gov (United States)

    Hau-Riege, Stefan P.; Bennion, Brian J.

    2015-02-01

    X-ray free-electron lasers have enabled femtosecond protein nanocrystallography, a novel method to determine the structure of proteins. It allows time-resolved imaging of nanocrystals that are too small for conventional crystallography. The short pulse duration helps in overcoming the detrimental effects of radiation damage because x rays are scattered before the sample has been significantly altered. It has been suggested that, fortuitously, the diffraction process self-terminates abruptly once radiation damage destroys the crystalline order. Our calculations show that high-intensity x-ray pulses indeed trigger a cascade of damage processes in ferredoxin crystals, a particular metalloprotein of interest. However, we found that the damage process is initially not completely random. Correlations exist among the protein monomers, so that Bragg diffraction still occurs in the damaged crystals, despite significant atomic displacements. Our results show that the damage process is reproducible to a certain degree, which is potentially beneficial for the orientation step in single-molecule imaging.

  6. Resuscitation og abdominalkirurgiske aspekter ved damage control-kirurgi

    DEFF Research Database (Denmark)

    Hillingsø, Jens G; Svendsen, Lars Bo; Johansson, Pär I

    2011-01-01

    In multitrauma patients continuous bleeding is one of the major killers. Coagulation defects have been shown to be a primary event and to occur very early in multitrauma patients (acute traumatic coagulopathy). It is enhanced by acidosis, hypothermia and further coagulation disorders in the "bloody...... vicious cycle". Due to this a new resuscitation practice has been defined; damage control resuscitation, consisting of hypotensive resuscitation (restricted use of crystalloids), haemostatic resuscitation (balanced use of blood components) in combination with surgical haemostatic procedures (damage...

  7. Comparing simulations and test data of a radiation damaged CCD for the Euclid mission

    Science.gov (United States)

    Skottfelt, Jesper; Hall, David; Gow, Jason; Murray, Neil; Holland, Andrew; Prod'homme, Thibaut

    2016-07-01

    The radiation damage effects from the harsh radiative environment outside the Earth's atmosphere can be a cause for concern for most space missions. With the science goals becoming ever more demanding, the requirements on the precision of the instruments on board these missions also increases, and it is therefore important to investigate how the radiation induced damage affects the Charge-Coupled Devices (CCDs) that most of these instruments rely on. The primary goal of the Euclid mission is to study the nature of dark matter and dark energy using weak lensing and baryonic acoustic oscillation techniques. The weak lensing technique depends on very precise shape measurements of distant galaxies obtained by a large CCD array. It is anticipated that over the 6 year nominal lifetime of mission, the CCDs will be degraded to an extent that these measurements will not be possible unless the radiation damage effects are corrected. We have therefore created a Monte Carlo model that simulates the physical processes taking place when transferring signal through a radiation damaged CCD. The software is based on Shockley-Read-Hall theory, and is made to mimic the physical properties in the CCD as close as possible. The code runs on a single electrode level and takes charge cloud size and density, three dimensional trap position, and multi-level clocking into account. A key element of the model is that it takes device specific simulations of electron density as a direct input, thereby avoiding to make any analytical assumptions about the size and density of the charge cloud. This paper illustrates how test data and simulated data can be compared in order to further our understanding of the positions and properties of the individual radiation-induced traps.

  8. Radiation damage of polyethylene exposed in the stratosphere at an altitude of 40 km

    CERN Document Server

    Kondyurin, Alexey; Bilek, Marcela

    2011-01-01

    Low Density Polyethylene (LDPE) films were exposed at an altitude of 40 km over a 3 day NASA stratospheric balloon mission from Alice Springs, Australia. The radiation damage, oxidation and nitration in the LDPE films exposed in stratosphere were measured using ESR, FTIR and XPS spectroscopy. The results were compared with those from samples stored on the ground and exposed in a laboratory plasma. The types of free radicals, unsaturated hydrocarbon groups, oxygen-containing and nitrogen-containing groups in LDPE film exposed in the stratosphere and at the Earth's surface are different. The radiation damage in films exposed in the stratosphere are observed in the entire film due to the penetration of high energy cosmic rays through their thickness, while the radiation damage in films exposed on the ground is caused by sunlight penetrating into only a thin surface layer. A similarly thin layer of the film is damaged by exposure to plasma due to the low energy of the plasma particles. The intensity of oxidation ...

  9. Radiation damage in polymer films from grazing-incidence X-ray scattering measurements

    Energy Technology Data Exchange (ETDEWEB)

    Vaselabadi, Saeed Ahmadi [Department of Chemical and Biomolecular Engineering, University of Houston, Houston Texas 77204-4004; Shakarisaz, David [Department of Electrical and Computer Engineering, University of Houston, Houston Texas 77204-4005; Ruchhoeft, Paul [Department of Electrical and Computer Engineering, University of Houston, Houston Texas 77204-4005; Strzalka, Joseph [X-Ray Science Division, Argonne National Laboratory, Argonne Illinois 60439; Stein, Gila E. [Department of Chemical and Biomolecular Engineering, University of Houston, Houston Texas 77204-4004

    2016-02-16

    Grazing-incidence X-ray scattering (GIXS) is widely used to analyze the crystallinity and nanoscale structure in thin polymer lms. However, ionizing radiation will generate free radicals that initiate cross-linking and/or chain scission, and structural damage will impact the ordering kinetics, thermodynamics, and crystallinity in many polymers. We report a simple methodology to screen for beam damage that is based on lithographic principles: lms are exposed to patterns of x-ray radiation, and changes in polymer structure are revealed by immersing the lm in a solvent that dissolves the shortest chains. The experiments are implemented with high throughput using the standard beam line instrumentation and a typical GIXS configuration. The extent of damage (at a fixed radiation dose) depends on a range of intrinsic material properties and experimental variables, including the polymer chemistry and molecular weight, exposure environment, llm thickness, and angle of incidence. The solubility switch for common polymers is detected within 10-60 sec at ambient temperature, and we verified that this first indication of damage corresponds with the onset of network formation in glassy polystyrene and a loss of crystallinity in polyalkylthiophenes. Therefore, grazing-incidence x-ray patterning offers an efficient approach to determine the appropriate data acquisition times for any GIXS experiment.

  10. Early and Late Damages in Chromosome 3 of Human Lymphocytes After Radiation Exposure

    Science.gov (United States)

    Sunagawa, Mayumi; Mangala, Lingegowda; Zhang, Ye; Kahdim, Munira; Wilson, Bobby; Cucinotta, Francis A.; Wu, Honglu

    2011-01-01

    Tumor formation in humans or animals is a multi-step process. An early stage of cancer development is believed to be genomic instability (GI) which accelerates the mutation rate in the descendants of the cells surviving radiation exposure. GI is defined as elevated or persistent genetic damages occurring many generations after the cells are exposed. While early studies have demonstrated radiation-induced GI in several cell types as detected in endpoints such as mutation, apoptosis and damages in chromosomes, the dependence of GI on the quality of radiation remains uncertain. To investigate GI in human lymphocytes induced by both low- and high-LET radiation, we initially exposed white blood cells collected from healthy subjects to gamma rays in vitro, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis post irradiation and at several intervals during the culture period. Among a number of biological endpoints planned for the project, the multi-color banding fluorescent in situ hybridization (mBAND) allows identification of inversions that were expected to be stable. We present here early and late chromosome aberrations detected with mBAND in chromosome 3 after gamma exposure. Comparison of chromosome damages in between human lymphocytes and human epithelial cells is also discussed

  11. Radiation damage free two-color X-ray ghost diffraction with atomic resolution

    CERN Document Server

    Li, Zheng; Chapman, Henry; Shih, Yanhua

    2015-01-01

    The X-ray free electron lasers (XFEL) can enable diffractive structural determination of protein crystals or single molecules that are too small and radiation-sensitive for conventional X-ray analysis. However the electronic form factor could have been modified during the ultrashort X-ray pulse due to photoionization and electron cascade caused by the intense X-ray pulse. For general X-ray imaging techniques, to minimize radiation damage effect is of major concern to ensure faithful reconstruction of the structure. Here we show that a radiation damage free diffraction can be achieved with an atomic spatial resolution, by using X-ray parametric down-conversion (PDC), and two-color biphoton ghost imaging. We illustrate that formation of the diffractive patterns satisfies a condition analogous to the Bragg equation, with a resolution that could be as fine as the lattice length scale of several Angstrom. Because the samples are illuminated by the optical photons of low energy, they can be free of radiation damage...

  12. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G., E-mail: lhudson@salud.unm.edu

    2013-06-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. - Highlights: • Low levels of arsenite enhance UV-induced DNA damage in human keratinocytes. • UV-initiated HPRT mutation frequency is enhanced by arsenite. • Zinc supplementation offsets DNA damage and mutation frequency enhanced by arsenite. • Zinc-dependent reduction of arsenite enhanced DNA damage is confirmed in vivo.

  13. Gamma radiation as a microbiological control process

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, E.T.; Stein, M.H.

    1976-01-01

    Since the approval of the NDA for radiation sterilization of tetracycline ophthalmic ointment submitted by Lederle Laboratories, many other companies have initiated programs to obtain the necessary data for an NDA filling. This paper outlines the factors to be considered in such filling, i.e., choice of radiation exposure, microbiological efficacy, evaluation of possibility of chemical change, establishment of maximum exposure, effect of maximum ratio, etc. Using radiation to control the bacterial level of incoming raw material is also discussed both from the standpoint of reducing the challenge to the sterilization process and as an adjunct to GMP for maintaining the equivalent to aseptic handling cleanliness for those products which do not require sterility or high degrees of sterility assurance.

  14. Evaluation of DNA damage in the root cells of Allium cepa seeds growing in soil of high background radiation areas of Ramsar - Iran

    Energy Technology Data Exchange (ETDEWEB)

    Saghirzadeh, M. [Department of Basic Science, Gonabad University of Medical Sciences, Gonabad (Iran, Islamic Republic of); Gharaati, M.R. [Faculty of Science, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mohammadi, Sh. [Nuclear Science and Technology Research Institute (NSTRI), Radiation Applications Research School, Tehran 11365-3486 (Iran, Islamic Republic of)], E-mail: smohammadi@aeoi.org.ir; Ghiassi-Nejad, M. [Faculty of Science, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2008-10-15

    Plants are unique in their ability to serve as in situ monitors for environmental genotoxins. We have used the alkaline comet assay for detecting induced DNA damage in Allium cepa to estimate the impact of high levels of natural radiation in the soils of inhabited zones of Ramsar. The average specific activity of natural radionuclides measured in the soil samples for {sup 226}Ra was 12,766 Bq kg{sup -1} whereas in the control soils was in the range of 34-60 Bq kg{sup -1}. A positive strong significant correlation of the DNA damage in nuclei of the root cells of A. cepa seeds germinated in the soil of high background radiation areas with {sup 226}Ra specific activity of the soil samples was observed. The results showed high genotoxicity of radioactively contaminated soils. Also the linear increase in the DNA damage indicates that activation of repair enzymes is not triggered by exposure to radiation in HBRA.

  15. DNA Damage and Repair in Plants under Ultraviolet and Ionizing Radiations

    Directory of Open Access Journals (Sweden)

    Sarvajeet S. Gill

    2015-01-01

    Full Text Available Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV and ionizing radiations (IR. Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315–400 nm; UV-B, 280–315 nm; and UV-C, <280 nm is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH• and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context.

  16. Radiation damage and sensitization effects on thermoluminescence of LiF:Mg,Ti (TLD-700)

    Science.gov (United States)

    Farag, M. A.; Sadek, A. M.; Shousha, Hany. A.; El-Hagg, A. A.; Atta, M. R.; Kitis, G.

    2017-09-01

    The radiation damage effects and enhancement the thermoluminescence (TL) efficiency of LiF:Mg,Ti (TLD-700)dosimeters via sensitization method were discussed. Attempts to eliminate the effects of damage and sensitization were made using different types of annealing processes. The results showed that after irradiating the dosimeters with dose > 250 Gy of 60Co gamma source, damage effects were observed. The sensitivity of the total area under the curve was decreased by a factor of ∼0.5 after irradiation at a pre-test dose of 2 kGy. However, the effects of radiation damage on each glow-peak are different. The glow-peak 2 was the only peak that was not affected by the high-dose irradiation. It has been shown that the degree of the radiation damage effect is related to the maximum dose-response function, f(D)max of the glow-peak. In general, significant radiation damage effects were observed for the glow-peaks of high f(D)max . Post-irradiation anneal at 280 °C for 30 min causes dramatic effects on the shape of the glow-curve and as well as on the sensitivity of the dosimeters. An increasing by a factor of ∼35 in the sensitivity of the total area under the curve was observed at a pre-test dose of 2 kGy. Improving the sensitivity of peak 7 by a factor of∼22 was the dominant factor in increasing the sensitivity of the dosimeters. On the other hand, an increasing by factors of ∼2.5 and ∼4 was found for peaks 2 and 5 respectively. On the other hand, a decreasing by a factor ∼0.5 was observed for peaks 3 and 4. At pre-test dose levels >250 Gy, a very strange and high intensity tail was observed in the high-temperature region of the glow-curves. The readout anneal was not enough to remove this tail. While, the furnace anneal could eliminate the sensitization effects but not the radiation damage effects on the sensitivity of the dosimeters.

  17. Pest control of ligniperdous insects by means of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Baer, M. (Akademie der Wissenschaften der DDR, Leipzig. Zentralinstitut fuer Isotopen- und Strahlenforschung); Kerner, G.; Unger, W. (Amt fuer Standardisierung, Messwesen und Warenpruefung, Berlin (German Democratic Republic)); Koehler, W. (Staatliche Schloesser und Gaerten, Potsdam-Sanssouci (German Democratic Republic). Abt. Restaurierung)

    1983-01-01

    Wooden objects of art and monuments are endangered by wood-destroying insects. The treatment of these objects with ionizing radiation is one way to control these pests. For this purpose the portable HWK-3 high-dose irradiation device was developed. In July 1979, a radiation experiment was made under field conditions in Potsdam-Sanssouci in order to gain experience in the operation and effectiveness of the new device. During the following 18 months the results of this experiment were evaluated by means of the SM 231 vibration measuring instrument. It became evident that a total dose of over 3 kGy would kill all of the death-watch beetles (Anobium punctatum de Geer) and doses down to 0.55 kGy would largely diminish the population, with future damages caused by death-watch beetles being highly unlikely. Delayed damages in the larvae caused by low total doses still add to the effectiveness of the pest control.

  18. Estimation of potential radiation damage to electronics units in the CLIC tunnel

    CERN Document Server

    Patapenka, Andrei

    2014-01-01

    An electronic unit is required for each CLIC “Two Beam Module”. This study aims to estimate the potential damage due to the prompt radiation to the electronics units installed inside the CLIC Main Linac tunnel. Sets of Monte-Carlo simulations have been done to estimate damage to electronics installed at various locations inside the tunnel. Continuous and point beam losses have been considered for CLIC Main and Drive beams. Lead and iron in combination with a polyethylene layer were investigated as a possible shielding. The upper limits of the estimated quantities are presented for stand alone and shielded electronics.

  19. Radiation damage of SiGe HBT Technologies at different bias configurations

    CERN Document Server

    Ullán, M; Lozano, M; Pellegrini, G; Knoll, D; Heinemann, B

    2008-01-01

    SiGe BiCMOS technologies are being proposed for the Front-end readout of the detectors in the middle region of the ATLAS-Upgrade. The radiation hardness of the SiGe bipolar transistors is being assessed for this application through irradiations with different particles. Biasing conditions during irradiation of bipolar transistors or circuits have an influence on the damage and there is a risk of erroneous results. We have performed several irradiation experiments of SiGe devices from IHP in different bias conditions. We have observed a systematic trend in gamma irradiations, showing a smaller damage in transistors irradiated biased compared to shorted or floating terminals.

  20. A comparison of ionizing radiation damage in CMOS devices from 60Co gamma rays, electrons and protons

    Institute of Scientific and Technical Information of China (English)

    HE Sao-Ping; YAO Zhi-Bin; ZHANG Feng-Qi

    2009-01-01

    Radiation hardened CC4007RH and non-radiation hardened CC4011 devices were irradiated using 80Co gamma rays, 1 MeV electrons and 1--9 MeV protons to compare the ionizing radiation damage of the gamma rays with the charged particles. For all devices examined, with experimental uncertainty, the radiation induced threshold voltage shifts (△Vth) generated by 60Co gamma rays are equal to that of 1 MeV electron and 1-7 MeV proton radiation under 0 gate bias condition. Under 5 V gate bias condition, the distinction of threshold voltage shifts (△Vth) generated by 60Co gamma rays and 1 MeV electrons irradiation are not large, and the radiation damage for protons below 9 MeV is always less than that of 60Co gamma rays. The lower energy the proton has, the less serious the radiation damage becomes.

  1. Mechanisms of Radiation Damage Generated by Ionizing Radiation in Optical Waveguides

    Science.gov (United States)

    1988-09-01

    SUMMARY OF APPENDIX B "Optical scattering and SPR study of ZBLAN glass : Dependence on preparation and processing methods" LMater. Sci. Forum 19-20...studied the types of centers created by ionizing radiation in ZBLAN (ZrF 4, BaF 2 , LaF 3, AlF 3 , and NaF) glass . Samples of ZBLAN were prepared using...radiation-induced centers in ZBLAN glass depend strongly on the glass -processing conditions. For example, ZBLAN glasses processed with CC14 yield paramagnetic

  2. Radiation damage study of thin YAG:Ce scintillator using low-energy protons

    Science.gov (United States)

    Novotný, P.; Linhart, V.

    2017-07-01

    Radiation hardness of a 50 μ m thin YAG:Ce scintillator in a form of dependence of a signal efficiency on 3.1 MeV proton fluence was measured and analysed using X-ray beam. The signal efficiency is a ratio of signals given by a CCD chip after and before radiation damage. The CCD chip was placed outside the primary beam because of its protection from damage which could be caused by radiation. Using simplified assumptions, the 3.1 MeV proton fluences were recalculated to: ṡ 150 MeV proton fluences with intention to estimate radiation damage of this sample under conditions at proton therapy centres during medical treatment, ṡ 150 MeV proton doses with intention to give a chance to compare radiation hardness of the studied sample with radiation hardness of other detectors used in medical physics, ṡ 1 MeV neutron equivalent fluences with intention to compare radiation hardness of the studied sample with properties of position sensitive silicon and diamond detectors used in nuclear and particle physics. The following results of our research were obtained. The signal efficiency of the studied sample varies slightly (± 3%) up to 3.1 MeV proton fluence of c. (4 - 8) × 1014 cm-2. This limit is equivalent to 150 MeV proton fluence of (5 - 9) × 1016 cm-2, 150 MeV proton dose of (350 - 600) kGy and 1 MeV neutron fluence of (1 - 2) × 1016 cm-2. Beyond the limit, the signal efficiency goes gradually down. Fifty percent decrease in the signal efficiency is reached around 3.1 MeV fluence of (1 - 2) × 1016 cm-2 which is equivalent to 150 MeV proton fluence of around 2 × 1018 cm-2, 150 MeV proton dose of around 15 MGy and 1 MeV neutron equivalent fluence of (4 - 8) × 1017 cm-2. In contrast with position sensitive silicon and diamond radiation detectors, the studied sample has at least two order of magnitude greater radiation resistance. Therefore, YAG:Ce scintillator is a suitable material for monitoring of primary beams of particles of ionizing radiation.

  3. The Effect of N-acetylcysteine on Biomarkers for Radiation-Induced Oxidative Damage in a Rat Model

    OpenAIRE

    Tamer, Lülüfer; GÜRGÜL, Serkan; Erdal,Nurten; Demirel, Can; Kilciksiz, Sevil; Ayaz, Lokman; Örs, Yasemin

    2008-01-01

    Our study aimed to investigate the potential radioprotective effects of N-acetylcysteine (NAC) by comparing its biochemical effects with those of WR-2721, as a representative of clinically used radioprotectors, in preventing oxidative damage caused by gamma irradiation (single dose, 6Gy) in normal rat tissue. The rats (n=40) were divided randomly and equally into 4 groups:Control (C), Radiation (R), R+NAC (received irradiation and 1,000mg/kg NAC) and R+WR-2721 (received irradiation and...

  4. Extract of Xylopia aethiopica (Annonaceae) protects against gamma-radiation induced testicular damage in Wistar rats.

    Science.gov (United States)

    Adaramoye, Oluwatosin Adekunle; Adedara, Isaac Adegboyega; Popoola, Bosede; Farombi, Ebenezer Olatunde

    2010-01-01

    Ionizing radiation is an important environmental risk factor and, a major therapeutic agent for cancer treatment. This study was designed to evaluate the protective effect of extract of Xylopia aethiopica (XA) on gamma-radiation-induced testicular damage in rats. Vitamin C (VC) served as the reference antioxidant during the study. The study consists of 4 groups of 11 rats each. Group I received corn oil (vehicle), groups II and IV were pretreated with XA (250 mg/kg) and VC (250mg/kg) for 6 weeks before and 8 weeks after exposure to gamma-radiation; group III was exposed to a single dose of gamma-radiation (5 Gy). Biochemical analysis revealed that gamma-irradiation caused a significant increase (p testicular lipid peroxidation (LPO) levels by 217% and 221%, respectively. Irradiated rats had markedly decreased testicular catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST), and reduced glutathione (GSH) levels. Irradiation resulted in 59% and 40% decreases in spermatozoa motility and live/dead sperm count, respectively, and a 161% increase in total sperm abnormalities. Histologically, testes of the irradiated rats showed extensive degenerative changes in the seminiferous tubules and defoliation of spermatocytes. Supplementation of XA and VC reversed the adverse effects of gamma-radiation on biochemical and histological indices of the rats. These findings demonstrated that Xylopia aethiopica has a protective effect by inhibiting oxidative damage in testes of irradiated rats.

  5. ON01210.Na (Ex-RAD® mitigates radiation damage through activation of the AKT pathway.

    Directory of Open Access Journals (Sweden)

    Anthony D Kang

    Full Text Available Development of radio-protective agents that are non-toxic is critical in light of ever increasing threats associated with proliferation of nuclear materials, terrorism and occupational risks associated with medical and space exploration. In this communication, we describe the discovery, characterization and mechanism of action of ON01210.Na, which effectively protects mouse and human bone marrow cells from radiation-induced damage both in vitro and in vivo. Our results show that treatment of normal fibroblasts with ON01210.Na before and after exposure to ionizing radiation provides dose dependent protection against radiation-induced damage. Treatment of mice with ON01210.Na prior to radiation exposure was found to result in a more rapid recovery of their hematopoietic system. The mechanistic studies described here show that ON01210.Na manifests its protective effects through the up-regulation of PI3-Kinase/AKT pathways in cells exposed to radiation. These results suggest that ON 01210.Na is a safe and effective radioprotectant and could be a novel agent for use in radiobiological disasters.

  6. ON01210.Na (Ex-RAD®) mitigates radiation damage through activation of the AKT pathway.

    Science.gov (United States)

    Kang, Anthony D; Cosenza, Stephen C; Bonagura, Marie; Manair, Manoj; Reddy, M V Ramana; Reddy, E Premkumar

    2013-01-01

    Development of radio-protective agents that are non-toxic is critical in light of ever increasing threats associated with proliferation of nuclear materials, terrorism and occupational risks associated with medical and space exploration. In this communication, we describe the discovery, characterization and mechanism of action of ON01210.Na, which effectively protects mouse and human bone marrow cells from radiation-induced damage both in vitro and in vivo. Our results show that treatment of normal fibroblasts with ON01210.Na before and after exposure to ionizing radiation provides dose dependent protection against radiation-induced damage. Treatment of mice with ON01210.Na prior to radiation exposure was found to result in a more rapid recovery of their hematopoietic system. The mechanistic studies described here show that ON01210.Na manifests its protective effects through the up-regulation of PI3-Kinase/AKT pathways in cells exposed to radiation. These results suggest that ON 01210.Na is a safe and effective radioprotectant and could be a novel agent for use in radiobiological disasters.

  7. Cross-generational trans fat intake exacerbates UV radiation-induced damage in rat skin.

    Science.gov (United States)

    Barcelos, R C S; Vey, L T; Segat, H J; Roversi, K; Roversi, Kr; Dias, V T; Trevizol, F; Kuhn, F T; Dolci, G S; Pase, C S; Piccolo, J; Veit, J C; Emanuelli, T; Luz, S C A; Bürger, M E

    2014-07-01

    We evaluated the influence of dietary fats on ultraviolet radiation (UVR)-induced oxidative damage in skin of rats. Animals from two consecutive generations born of dams supplemented with fats during pregnancy and breastfeeding were maintained in the same supplementation: soybean-oil (SO, rich in n-6 FA, control group), fish-oil (FO, rich in n-3 FA) or hydrogenated-vegetable-fat (HVF, rich in TFA). At 90 days of age, half the animals from the 2nd generation were exposed to UVR (0.25 J/cm(2)) 3×/week for 12 weeks. The FO group presented higher incorporation of n-3 FA in dorsal skin, while the HVF group incorporated TFA. Biochemical changes per se were observed in skin of the HVF group: greater generation of reactive oxygen species (ROS), lower mitochondrial integrity and increased Na(+)K(+)-ATPase activity. UVR exposure increased skin wrinkles scores and ROS generation and decreased mitochondrial integrity and reduced-glutathione levels in the HVF group. In FO, UVR exposure was associated with smaller skin thickness and reduced levels of protein-carbonyl, together with increased catalase activity and preserved Na(+)K(+)-ATPase function. In conclusion, while FO may be protective, trans fat may be harmful to skin health by making it more vulnerable to UVR injury and thus more prone to develop photoaging and skin cancer.

  8. How Magnetotactic Bacteria Respond to Radiation Induced Stress and Damage: Comparative Genomics Evidences for Evolutionary Adaptation

    Science.gov (United States)

    Wang, Y.; Pan, Y.

    2015-12-01

    Solar radiation and galactic cosmic radiation is believed to be major restriction factors influencing survival and evolution of life. On planet earth, geomagnetic field along with atmosphere protect living beings from the harmful radiation. During a geomagnetic reversal or excursion, however, the efflux of charged particles on earth surface would increase as the shielding effect of magnetic field decrease. The stratospheric ozone can also be partially stripped away by solar wind when the strength of the field is weak, leading to an increasing ultraviolet radiation penetration to the earth surface. However, studies on the mechanism of radiation induced stress and damage are focused only on bacteria that have no response to magnetic field. This study was motivated by the need to fill the gap upon knowledge of that on magnetic field sensitive microorganism. Magnetotactic bacteria (MTB) are a group of microbes that are able to synthesis intracellular nano-sized magnetic particles (named magnetosomes). These chain-arranged magnetosomes help MTB sense and swim along the magnetic field to find their optimal living environment efficiently. In this paper, in silico prediction of stress and damage repair genes in response to different radiation were carried out on the complete genome of four nonmagnetotactic and four magnetotactic spirilla. In silico analyses of the genomes of magnetic field sensitive and non-sensitive spirilla revealed: 1) all strains contain genes for regulate responses superoxide and peroxide stress, DNA pyrimidine dimer and string breaks; 2) non-magnetotactic spirilla have more genes dealing with oxidative stress, while magnetotactic spirilla may benefit from magnetotaxis by swimming into oxic-anoxic zone away from oxidative stress and direct radiation damage; yet, the lipid hydroperoxide peroxidase gene in MTB may be responsible for possible ROS generated by the membrane enveloped magnetite magnetosome; 3) magnetotactic spirilla possess SOS rec

  9. Radiation Damage Modeling for 3D Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Wallangen, Veronica; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of 10^15 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This poster presents the details of a new digitization model that includes radiation damage effects to the 3D Pixel sensors for the ATLAS Detector.

  10. Expression of c-myc gene as an early indicator of late radiation damage of kidney

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Makoto; Hatakenaka, Masamitsu [Kyushu Univ., Fukuoka (Japan). Dept. of Genetics Medical Inst. of Bioregulation; Masuda, Koji

    1998-02-01

    We have previously described the increased proliferation and appearance of abnormally large nuclei in renal proximal tubule cells after radiation. A model has been proposed that the large nuclear cells might be dying and the increased proliferation might lead to mitotic death of these cells and cause functional damage. We measured the amount of c-myc transcript taking the ratio of densities of bands for irradiated left kidney to unirradiated right kidney after RT-PCR procedure on 24 hours after 9, 12 and 15 Gy irradiation, and found positive in 1 out of 10 after 9 Gy, 6 out of 10 after 12 Gy and 9 out of 10 after 15 Gy. Measuring c-myc expression seems to be a potential very early indicator of late radiation damage of kidney. (author)

  11. Compound Poisson Processes and Clustered Damage of Radiation Induced DNA Double Strand Breaks

    Science.gov (United States)

    Gudowska-Nowak, E.; Ritter, S.; Taucher-Scholz, G.; Kraft, G.

    2000-05-01

    Recent experimental data have demonstrated that DNA damage induced by densely ionizing radiation in mammalian cells is distributed along the DNA molecule in the form of clusters. The principal constituent of DNA damage are double-strand breaks (DSB) which are formed when the breaks occur in both DNA strands and are directly opposite or separated by only a few base pairs. DSBs are believed to be most important lesions produced in chromosomes by radiation; interaction between DSBs can lead to cell killing, mutation or carcinogenesis. The paper discusses a model of clustered DSB formation viewed in terms of compound Poisson process along with the predictive essay of the formalism in application to experimental data.

  12. Synchrotron Powder Diffraction Study of Radiation Damage in Langmuir Blodgett Nanotemplate Crystallised Protein

    Directory of Open Access Journals (Sweden)

    Jonathan P. Wright

    2014-01-01

    Full Text Available Polycrystalline samples of lysozyme were prepared with and without a Langmuir-Blodgett (LB thin film template via both the hanging drop method and batch crystallisation. Powder diffraction methods are used to compare these samples and to measure their resistance to radiation damage at room temperature. The X-ray induced amorphisation of the samples was followed as a function of time and it was shown that diffraction does not entirely disappear even at very long exposure times. Two distinct kinetic timescales are evident suggesting that early and late stage processes are quite different. Radiation damage was also shown to be localized in the sample in the region where the beam impinges.

  13. Compact Radiative Control Structures for Millimeter Astronomy

    Science.gov (United States)

    Brown, Ari D.; Chuss, David T.; Chervenak, James A.; Henry, Ross M.; Moseley, s. Harvey; Wollack, Edward J.

    2010-01-01

    We have designed, fabricated, and tested compact radiative control structures, including antireflection coatings and resonant absorbers, for millimeter through submillimeter wave astronomy. The antireflection coatings consist of micromachined single crystal silicon dielectric sub-wavelength honeycombs. The effective dielectric constant of the structures is set by the honeycomb cell geometry. The resonant absorbers consist of pieces of solid single crystal silicon substrate and thin phosphorus implanted regions whose sheet resistance is tailored to maximize absorption by the structure. We present an implantation model that can be used to predict the ion energy and dose required for obtaining a target implant layer sheet resistance. A neutral density filter, a hybrid of a silicon dielectric honeycomb with an implanted region, has also been fabricated with this basic approach. These radiative control structures are scalable and compatible for use large focal plane detector arrays.

  14. Molecular dynamics study of radiation damage and microstructure evolution of zigzag single-walled carbon nanotubes under carbon ion incidence

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huan [Department of Nuclear Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China); Tang, Xiaobin, E-mail: tangxiaobin@nuaa.edu.cn [Department of Nuclear Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China); Jiangsu Key Laboratory of Nuclear Energy Equipment Materials Engineering, Nanjing (China); Chen, Feida; Huang, Hai; Liu, Jian [Department of Nuclear Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China); Chen, Da [Department of Nuclear Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China); Jiangsu Key Laboratory of Nuclear Energy Equipment Materials Engineering, Nanjing (China)

    2016-07-01

    Highlights: • Various incident sites of CNTs are classified into three types for the first time. • Different ion energies and fluences are considered to study the radiation damage. • CNTs have ability to heal the radiation-induced damage at higher temperature. • Stability of a large-diameter tube excels in a slim one under the same conditions. - Abstract: The radiation damage and microstructure evolution of different zigzag single-walled carbon nanotubes (SWCNTs) were investigated under incident carbon ion by molecular dynamics (MD) simulations. The radiation damage of SWCNTs under incident carbon ion with energy ranging from 25 eV to 1 keV at 300 K showed many differences at different incident sites, and the defect production increased to the maximum value with the increase in incident ion energy, and slightly decreased but stayed fairly stable within the majority of the energy range. The maximum damage of SWCNTs appeared when the incident ion energy reached 200 eV and the level of damage was directly proportional to incident ion fluence. The radiation damage was also studied at 100 K and 700 K and the defect production decreased distinctly with rising temperature because radiation-induced defects would anneal and recombine by saturating dangling bonds and reconstructing carbon network at the higher temperature. Furthermore, the stability of a large-diameter tube surpassed that of a thin one under the same radiation environments.

  15. Neutron flux spectra and radiation damage parameters for the Russian Bor-60 and SM-2 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karasiov, A.V. [D.V. Efremov Scientific Rresearch Institute of Electrophysical Apparatus, St. Petersburg (Russian Federation); Greenwood, L.R. [Pacific Northwest Laboratory, Richland, WA (United States)

    1995-04-01

    The objective is to compare neutron irradiation conditions in Russian reactors and similar US facilities. Neutron fluence and spectral information and calculated radiation damage parameters are presented for the BOR-60 (Fast Experimental Reactor - 60 MW) and SM-2 reactors in Russia. Their neutron exposure characteristics are comparable with those of the Experimental Breeder Reactor (ERB-II), the Fast Flux Test Facility (FFTF), and the High Flux Isotope Reactor (HFIR) in the United States.

  16. Some recent results of the silicon detector radiation damage study by the RD2 collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Anghinolfi, F. [CERN, Geneva (Switzerland); Bates, S. [CERN, Geneva (Switzerland); Bardos, R. [School of Physics, University of Melbourne, Parkville, Victoria 3052 (Australia); Bonino, R. [DPNC, Geneva University, Geneva (Switzerland); Chilingarov, A. [CERN, Geneva (Switzerland); Clark, A.G. [DPNC, Geneva University, Geneva (Switzerland); Feick, H. [1. Institut fuer Experimentalphysik, Universitaet Hamburg, D-20355 Hamburg (Germany); Fretwurst, E. [1. Institut fuer Experimentalphysik, Universitaet Hamburg, D-20355 Hamburg (Germany); Glaser, M. [CERN, Geneva (Switzerland); Gorfine, G. [School of Physics, University of Melbourne, Parkville, Victoria 3052 (Australia); Goessling, C. [Institut fuer Physik, Universitaet Dortmund, D-4600 Dortmund (Germany); Jarron, P. [CERN, Geneva (Switzerland); Kambara, H. [DPNC, Geneva University, Geneva (Switzerland); Lindstroem, G. [1. Institut fuer Experimentalphysik, Universitaet Hamburg, D-20355 Hamburg (Germany); Lisowski, B. [Institut fuer Physik, Universitaet Dortmund, D-4600 Dortmund (Germany); Moorhead, G.F. [School of Physics, University of Melbourne, Parkville, Victoria 3052 (Australia); Munday, D.J. [Cambridge Univ. (United Kingdom). Cavendish Lab.; Parker, M.A. [Cambridge Univ. (United Kingdom). Cavendish Lab.; Perrin, E. [DPNC, Geneva University, Geneva (Switzerland); Pilath, S. [Institut fuer Physik, Universitaet Dortmund, D-4600 Dortmund (Germany); Rolf, A. [Institut fuer Physik, Universitaet Dortmund, D-4600 Dortmund (Germany); Schulz, T. [1. Institut fuer Experimentalphysik, Universitaet Hamburg, D-20355 Hamburg (Germany); Taylor, G.N. [School of Physics, University of Melbourne, Parkville, Victoria 3052 (Australia); Teiger, J. [Centre d`Etudes Nucleaires de Saclay, F-91191 Gif-sur-Yvette (France); Tovey, S.N. [School of Physics, University of Melbourne, Parkville, Victoria 3052 (Australia); Uhlmann, T.M. [1. Institut fuer Experimentalphysik, Universitaet Hamburg, D-20355 Hamburg (Germany)

    1995-06-01

    Recent results by the RD2 Collaboration of a study of radiation damage of silicon detectors for the ATLAS detector at LHC are presented. The detectors have been irradiated by neutrons with fluences of up to 1.5x10{sup 14} neutrons/cm{sup 2}. The electric field in the detectors before and after type inversion, the depletion voltage and the dark current were studied. (orig.).

  17. Damage control kirurgi--en gennemgang af et Cochranereview

    DEFF Research Database (Denmark)

    Boel, Thomas; Hillingsø, Jens G; Svendsen, Lars Bo

    2011-01-01

    Damage Control Surgery (DCS) has been the approach in dealing with multi-trauma patients for the last 15 years. In this Cochrane-review the authors seek to compare the outcome of DCS with the outcome after the conventional strategy which is often a time-consuming operation with definitive repair...

  18. Assessment of Radiation Damage to the Structural Material of EAST Tokamak

    Institute of Scientific and Technical Information of China (English)

    Chen Yixue; Wu Yican

    2005-01-01

    Radiation damage to structural material of fusion facilities is of high concern for safety. The superconducting tokamak EAST will conduct D-D plasma experiments with the neutron production of 1015 neutrons per second. To evaluate the material radiation damage a programme system has been devised with the Monte Carlo transport code MCNP-4C, the inventory code FISPACT99, a specific interface, and the fusion evaluated nuclear data library FENDL-2.The key nuclear responses, i.e. fast neutron flux, displacement per atom, and the helium and hydrogen production, are calculated for the structural material SS-316L of the first wall, and the vacuum vessel, using this programme. The results demonstrate that the radiation damage to the structural material is so little that it will not lead to any significant change of material properties according to the reference design. This indicates that there is a large potential space for EAST to test advanced operation regime from the viewpoint of structural material safety.

  19. Prevention of radiation damages with antioxidative nutritional factors and analysis of the modification

    Energy Technology Data Exchange (ETDEWEB)

    Umegaki, Keizo; Esashi, Takatoshi [National Inst. of Health and Nutrition, Tokyo (Japan)

    1998-02-01

    The effects of dietary vitamine E, C and carotene on the damages of bone marrow DNA were investigated with mice exposed to X-ray radiation as the functions of radiation dose and time after the radiation. The administrations of vit E and vit C had little preventive effects on the generation of DNA damages due to X-ray irradiation. This may be attributed to small intake of those vitamines by bone marrow. On the contrary, the administration of {beta}-carotene from donaliella, a green algae at a dose of 300 mg/kg of body weight for two weeks significantly repressed the production of DNA damages by X-ray irradiation at 0.3 Gy, whereas the administration of carotene from palm oil had no effects. The vitamine E level was markedly reduced by either administration of the two carotenes to a level nearly 1/100-1/50 of the normal level. This study suggests that to investigate the effects of an antioxidant in vivo, it is important to consider its concentration in the region concerned as well as the effects of other antioxidants. (M.N.)

  20. Radiation damage and luminescence properties of gamma aluminum oxynitride transparent ceramic

    Science.gov (United States)

    Du, Xinhua; Yao, Shiyue; Jin, Xihai; Chen, Haohong; Li, Weifeng; Liang, Bo

    2015-09-01

    This paper reports on the radiation damage of gamma aluminum oxynitride (γ-AlON) transparent ceramic, which remarkably degrades UV-vis transparency and hence limits its applications in optoelectronic devices. The radiation-induced optical absorption of the as-sintered γ-AlON consists of at least two subbands: one is in the UV region with a peak at 270 nm and the other optical absorption band centers at 550 nm, covering the whole visible light spectrum, which makes the sample colored. Interestingly, all the radiation-induced color centers can be completely ‘bleached’ by low temperature annealing. In the thermoluminescence curve, we observed a broad luminescence in the range of 25-300 °C with the peak at 120 °C. Furthermore, the x-ray excited luminescence spectra revealed that there exist multiple emission centers in the γ-AlON. Based on this experimental fact, the radiation damage and luminescent mechanisms were studied. These optical properties of the γ-AlON are considered to be related to defect states. In the as-sintered γ-AlON, charge balancing is realized by the co-existence of \\text{V}\\text{Al}\\prime\\prime \\prime and \\text{O}\\text{N}\\bullet , and the predominant defect form is ≤ft[\\text{V}\\text{Al}\\prime\\prime \\prime-\\text{3O}\\text{N}\\bullet\\right] , which is optically inactive and no optical absorption occurs. However, isolated \\text{V}\\text{Al}\\prime\\prime \\prime and \\text{O}\\text{N}\\bullet can be formed by irradiation and it is these that are responsible for the radiation damage of γ-AlON transparent ceramic. In the end, the UV absorption and visible-light absorption in the irradiated sample were ascribed to VAl-related and ON-related intrinsic defects, respectively.

  1. Researches on active structural acoustic control by radiation modes

    Institute of Scientific and Technical Information of China (English)

    MAO Qibo; JIANG Zhe

    2001-01-01

    Based on the radiation modes, an active control strategy is presented for sound radiation from elastic structures with an example of simply supported rectangular panel. The physical characteristics and mathematical meaning of the radiation modes are analyzed. The radiation efficiency of radiation mode falls off very rapidly with the increase of modes order at low frequency. A new control strategy is developed in which by canceling the adjoint coefficient of the first k radiation modes, the sound powers of the first k radiation modes is zero theoretically. The numerical calculation is made by using point force actuators as control forces.

  2. Radiation damage and annealing in 1310 nm InGaAsP/InP lasers for the CMS tracker

    CERN Document Server

    Gill, K; Grabit, R; Jensen, F; Vasey, F

    2000-01-01

    Radiation damage in 1310 nm InGaAsP/InP multi-quantum-well lasers caused by 0.8 MeV neutrons is compared with the damage from other radiation sources, in terms of the increase in laser threshold current. The annealing behavior is then presented both in terms of both temperature and forward-bias current dependence. The annealing can be described by a model where radiation induced defects have a uniform distribution of activation energies for annealing. This model can then be used to predict the long-term damage expected for lasers operating inside the CMS tracker. (19 refs).

  3. Damage induced by pulsed IR laser radiation at transitions between different tissues

    Science.gov (United States)

    Frenz, Martin; Greber, Charlotte M.; Romano, Valerio; Forrer, Martin; Weber, Heinz P.

    1991-06-01

    Due to their strong absorption in water IR-lasers are excellent sources for precision cutting with minimal thermal damage in various fields of medicine. To understand the laser tissue interaction process one has to take into account the liquefaction of target material at the region of radiation impact. The dynamics of the created liquid may cause unexpected and undesirable effects for surgical laser applications. We studied the thermal damage along the walls of incision craters in terms of the elastic material properties and the dynamics of the drilling process. We show that the extension of thermally altered tissue is strongly influenced by the amount of hot liquefied tissue material remaining in the crater. When drilling into mechanically homogeneous materials this amount is essentially determined by the laser intensity used. However, when drilling through a composite structure consisting of various tissue types with different material properties, this is no longer the case. Even at low intensities, the damage zone varies substantially between the different layers. In our investigations we compared histologically and ultrastructurally the instantaneously created damage in the connective tissue and the subjacent skeletal muscle of skin after laser cutting, with long-time heating injuries. This comparison allows a differentiation between thermal and mechanical damage and an estimation of the minimum temperature created in the crater during the laser impact. The light microscopical examinations shows that the thermal damage in the connective tissue is about three times smaller than in the subjacent muscle layer. Comparative studies made with a composite structure consisting of the tissue substitutes gelatin and agar reveal that the unexpectedly large damage in the skeletal muscle layer is a result of the abrupt change of the elastic properties at the material transition. This discontinuity changes the ejection dynamics leading to a confinement of hot liquefied

  4. Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Borrego-Soto, Gissela; Ortiz-Lopez, Rocio; Rojas-Martinez, Augusto, E-mail: arojasmtz@gmail.com, E-mail: augusto.rojasm@uanl.mx [Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León (Mexico)

    2015-10-15

    Breast cancer is the most common malignancy in women. Radiotherapy is frequently used in patients with breast cancer, but some patients may be more susceptible to ionizing radiation, and increased exposure to radiation sources may be associated to radiation adverse events. This susceptibility may be related to deficiencies in DNA repair mechanisms that are activated after cell-radiation, which causes DNA damage, particularly DNA double strand breaks. Some of these genetic susceptibilities in DNA-repair mechanisms are implicated in the etiology of hereditary breast/ovarian cancer (pathologic mutations in the BRCA 1 and 2 genes), but other less penetrant variants in genes involved in sporadic breast cancer have been described. These same genetic susceptibilities may be involved in negative radiotherapeutic outcomes. For these reasons, it is necessary to implement methods for detecting patients who are susceptible to radiotherapy-related adverse events. This review discusses mechanisms of DNA damage and repair, genes related to these functions, and the diagnosis methods designed and under research for detection of breast cancer patients with increased radiosensitivity. (author)

  5. Irradiation damage to frog inner ear during synchrotron radiation tomographic investigation

    Energy Technology Data Exchange (ETDEWEB)

    Boistel, Renaud [Equipe Communications Acoustiques, NAMC, CNRS UMR 8620, F-91405 Orsay (France); CNRS UMR 7179 ' Mecanismes adaptatifs: des organismes aux communautes' , Departement ' Ecologie et Gestion de la Biodiversite' , Museum National d' Histoire Naturelle, 57 rue Cuvier, case postale 55, 75231 Paris Cedex 5 (France); Univ Paris Sud, F-91405 Orsay (France); European Synchrotron Radiation Facility, B.P. 220, F-38043 Grenoble (France)], E-mail: boistel@mnhn.fr; Pollet, Nicolas [Univ Paris Sud, F-91405 Orsay (France); CNRS UMR 8080, F-91405 Orsay (France); Epigenomics Project, Genopole, Univ Evry Val d' Essonne, 91034 Evry Cedex (France); Tinevez, Jean-Yves [Laboratoire Physico-Chimie Curie, CNRS UMR 168, Institut Curie Recherche, 26, Rue d' Ulm, 75248 Paris Cedex 05 (France); Cloetens, Peter [European Synchrotron Radiation Facility, B.P. 220, F-38043 Grenoble (France); Schlenker, Michel [Institut Neel, CNRS, and Grenoble Institute of Technology, B.P. 166, F-38042 Grenoble (France)

    2009-03-15

    Unexpectedly severe radiation damage, showing up through deformation of the saccule, was encountered during a synchrotron radiation high-resolution (700 nm pixel size) tomographic observation of an inner ear, fixed in a formaldehyde solution, of the frog Rana esculenta. The visible displacement of the edge of the otoconia-filled part of the saccule amounted to about 100 {mu}m after an irradiation with 20.5 keV X-ray photons corresponding to a dose of 1.5 kGy for the protein matrix. The close-knit coexistence of organic and mineral components in the biological tissue may be linked to the dramatic increase of radiation dosage sensitivity.

  6. Study on radiation damage to high energy accelerator components by irradiation in a nuclear reactor

    CERN Document Server

    Schönbacher, Helmut; Casta, J; Van de Voorde, M H

    1975-01-01

    The structural and other components used in high energy accelerators are continuously exposed to a wide spectrum of high energy particles and electromagnetic radiation. The resulting radiation damage may severely influence the functional capability of accelerator facilities. In order to arrive at an estimate of the service life of various materials in the radiation field, simulating experiments have to be carried out in a nuclear reactor. A large number of organic and inorganic materials, electronic components, metals, etc., intended specifically for use in 400 GeV proton synchrotron of CERN near Geneva, were irradiated in the ASTRA reactor in Seibersdorf near Vienna. The paper reports on the irradiation facilities available in this reactor for this purpose, on the dosimetry methods used, on the most important materials irradiated and on the results obtained in these experiments. (14 refs).

  7. Radiation Damage Mechanisms for Luminescence in Eu-doped GaN

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, J W; Castelaz, J M; Felter, T E; Wetzel, C; Talley, C E; Morse, J D; Stevens, C G

    2005-11-01

    Thin films of Eu-doped GaN are irradiated with 500 keV He{sup +} ions to understand radiation damage mechanisms and to quantify luminescence efficiency. Ion beam induced luminescence was monitored spectroscopically as function of fluence. Behavior observed is consistent with simultaneous creation of non-radiative defects and destruction of luminescent centers associated with the 4f-4f core-level transition in Eu{sup 3+}. This model contrasts with a previous description which takes into account only non-radiative defect generation in GaN:Eu. Based on light from a BaF{sub 2} scintillator standard, the luminescent energy generation efficiency of GaN:Eu films doped to {approx}3 x 10{sup 18} cm{sup -3} Eu is estimated to be {approx}0.1%.

  8. THE ONE CINETIC MODEL DAMAGE OF CELL BY SMALL DOSES OF RADIATION

    Directory of Open Access Journals (Sweden)

    A. T. Gubin

    2015-01-01

    Full Text Available To explain the known differences in the dose and age dependences of radiogenic mortality from leukemia and solid tumors after single exposure, a model was developed, which is a modification of the Kellerer-Rossi theory of dual radiation action. The model assumes formation in a cell of both single and double primary damages due to radiation and other carcinogens, while the recovery rate of single damages (φ significantly exceeds that for double ones (ψ. Upon achieving a certain stage of the cell cycle (the critical age of cell – T, double damages become permanent and with probability of А can be inherited to daughter cells as “premalignant” defects. In contrast, in the Kellerer-Rossi theory, permanent damage is formed immediately after formation of the second damage at the next energy absorption event in the cell, i.e. ψ=0 .On the assumption that the premalignant defects only occur based on the double primary damages, i.e. φ>>ψ, the expressions for А were derived for the prompt radiation exposure and radiation exposure at a constant dose rate. They reproduce the effect increasing with decreasing of T, whereas the influence of T on the linear term of the dose expression in both cases is the same, but with decreasing of T the quadratic term increases faster for exposure at a constant dose rate than that for the prompt one. Thus, presence of the quadratic term in the dose expression for leukemia and its virtual complete absence for solid tumors may be due to lower T-value for hemopoietic stem cells. Predicted by the model dose rate influence on the quadratic term does not depend on the dose, so the reduction factor should be only applied to the quadratic term of the dose expression. This follows as well from the original version of the Kellerer-Rossi theory.

  9. Protection against radiation-induced damage of 6-propyl-2-thiouracil (PTU) in thyroid cells.

    Science.gov (United States)

    Perona, Marina; Dagrosa, María A; Pagotto, Romina; Casal, Mariana; Pignataro, Omar P; Pisarev, Mario A; Juvenal, Guillermo J

    2013-03-01

    Many epidemiologic studies have shown that the exposure to high external radiation doses increases thyroid neoplastic frequency, especially when given during childhood or adolescence. The use of radioprotective drugs may decrease the damage caused by radiation therapy and therefore could be useful to prevent the development of thyroid tumors. The aim of this study was to investigate the possible application of 6-propyl-2-thiouracil (PTU) as a radioprotector in the thyroid gland. Rat thyroid epithelial cells (FRTL-5) were exposed to different doses of γ irradiation with or without the addition of PTU, methimazole (MMI), reduced glutathione (GSH) and perchlorate (KClO4). Radiation response was analyzed by clonogenic survival assay. Cyclic AMP (cAMP) levels were measured by radioimmunoassay (RIA). Apoptosis was quantified by nuclear cell morphology and caspase 3 activity assays. Intracellular reactive oxygen species (ROS) levels were measured using the fluorescent dye 2',7'-dichlorofluorescein-diacetate. Catalase, superoxide dismutase and glutathione peroxidase activities were also determined. Pretreatment with PTU, MMI and GSH prior to irradiation significantly increased the surviving cell fraction (SF) at 2 Gy (P PTU treated cells in a dose and time-dependent manner. Cells incubated with agents that stimulate cAMP (forskolin and dibutyril cAMP) mimicked the effect of PTU on SF. Moreover, pretreatment with the inhibitor of protein kinase A, H-89, abolished the radioprotective effect of PTU. PTU treatment diminished radiation-induced apoptosis and protected cells against radiation-induced ROS elevation and suppression of the antioxidant enzyme's activity. PTU was found to radioprotect normal thyroid cells through cAMP elevation and reduction in both apoptosis and radiation-induced oxidative stress damage.

  10. Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization

    Energy Technology Data Exchange (ETDEWEB)

    Costes, Sylvain V; Chiolo, Irene; Pluth, Janice M.; Barcellos-Hoff, Mary Helen; Jakob, Burkhard

    2009-09-15

    DNA damage sensing proteins have been shown to localize to the sites of DSB within seconds to minutes following ionizing radiation (IR) exposure, resulting in the formation of microscopically visible nuclear domains referred to as radiation-induced foci (RIF). This review characterizes the spatio-temporal properties of RIF at physiological doses, minutes to hours following exposure to ionizing radiation, and it proposes a model describing RIF formation and resolution as a function of radiation quality and nuclear densities. Discussion is limited to RIF formed by three interrelated proteins ATM (Ataxia telangiectasia mutated), 53BP1 (p53 binding protein 1) and ?H2AX (phosphorylated variant histone H2AX). Early post-IR, we propose that RIF mark chromatin reorganization, leading to a local nuclear scaffold rigid enough to keep broken DNA from diffusing away, but open enough to allow the repair machinery. We review data indicating clear kinetic and physical differences between RIF emerging from dense and uncondensed regions of the nucleus. At later time post-IR, we propose that persistent RIF observed days following exposure to ionizing radiation are nuclear ?scars? marking permanent disruption of the chromatin architecture. When DNA damage is resolved, such chromatin modifications should not necessarily lead to growth arrest and it has been shown that persistent RIF can replicate during mitosis. Thus, heritable persistent RIF spanning over tens of Mbp may affect the transcriptome of a large progeny of cells. This opens the door for a non DNA mutation-based mechanism of radiation-induced phenotypes.

  11. Chromosome Damage and Cell Proliferation Rates in In Vitro Irradiated Whole Blood as Markers of Late Radiation Toxicity After Radiation Therapy to the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Beaton, Lindsay A., E-mail: Lindsay.Beaton@hc-sc.gc.ca [Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, ON (Canada); Ferrarotto, Catherine; Marro, Leonora [Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, ON (Canada); Samiee, Sara; Malone, Shawn; Grimes, Scott; Malone, Kyle [The Ottawa Hospital, Ottawa Hospital Research Institute, University of Ottawa, 501 Smyth Rd, Ottawa, ON (Canada); Wilkins, Ruth C. [Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, ON (Canada)

    2013-04-01

    Purpose: In vitro irradiated blood samples from prostate cancer patients showing late normal tissue damage were examined for lymphocyte response by measuring chromosomal aberrations and proliferation rate. Methods and Materials: Patients were selected from a randomized trial evaluating the optimal timing of dose-escalated radiation and short-course androgen deprivation therapy. Of 438 patients, 3% experienced grade 3 late radiation proctitis and were considered to be radiosensitive. Blood samples were taken from 10 of these patients along with 20 matched samples from patients with grade 0 proctitis. The samples were irradiated at 6 Gy and, along with control samples, were analyzed for dicentric chromosomes and excess fragments per cell. Cells in first and second metaphase were also enumerated to determine the lymphocyte proliferation rate. Results: At 6 Gy, there were statistically significant differences between the radiosensitive and control cohorts for 3 endpoints: the mean number of dicentric chromosomes per cell (3.26 ± 0.31, 2.91 ± 0.32; P=.0258), the mean number of excess fragments per cell (2.27 ± 0.23, 1.43 ± 0.37; P<.0001), and the proportion of cells in second metaphase (0.27 ± 0.10, 0.46 ± 0.09; P=.0007). Conclusions: These results may be a valuable indicator for identifying radiosensitive patients and for tailoring radiation therapy.

  12. The pristine atomic structure of MoS{sub 2} monolayer protected from electron radiation damage by graphene

    Energy Technology Data Exchange (ETDEWEB)

    Algara-Siller, Gerardo; Kurasch, Simon; Sedighi, Mona; Lehtinen, Ossi; Kaiser, Ute [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University (Germany)

    2013-11-11

    Materials can, in principle, be imaged at the level of individual atoms with aberration-corrected transmission electron microscopy. However, such resolution can be attained only with very high electron doses. Consequently, radiation damage is often the limiting factor when characterizing sensitive materials. Here, we demonstrate a simple and an effective method to increase the electron radiation tolerance of materials by using graphene as protective coating. This leads to an improvement of three orders of magnitude in the radiation tolerance of monolayer MoS{sub 2}. Further on, we construct samples in different heterostructure configurations to separate the contributions of different radiation damage mechanisms.

  13. The pristine atomic structure of MoS2 monolayer protected from electron radiation damage by graphene

    Science.gov (United States)

    Algara-Siller, Gerardo; Kurasch, Simon; Sedighi, Mona; Lehtinen, Ossi; Kaiser, Ute

    2013-11-01

    Materials can, in principle, be imaged at the level of individual atoms with aberration-corrected transmission electron microscopy. However, such resolution can be attained only with very high electron doses. Consequently, radiation damage is often the limiting factor when characterizing sensitive materials. Here, we demonstrate a simple and an effective method to increase the electron radiation tolerance of materials by using graphene as protective coating. This leads to an improvement of three orders of magnitude in the radiation tolerance of monolayer MoS2. Further on, we construct samples in different heterostructure configurations to separate the contributions of different radiation damage mechanisms.

  14. Spectrum of Radiation-Induced Clustered Non-DSB Damage - A Monte Carlo Track Structure Modeling and Calculations.

    Science.gov (United States)

    Watanabe, Ritsuko; Rahmanian, Shirin; Nikjoo, Hooshang

    2015-05-01

    The aim of this report is to present the spectrum of initial radiation-induced cellular DNA damage [with particular focus on non-double-strand break (DSB) damage] generated by computer simulations. The radiation types modeled in this study were monoenergetic electrons (100 eV-1.5 keV), ultrasoft X-ray photons Ck, AlK and TiK, as well as some selected ions including 3.2 MeV/u proton; 0.74 and 2.4 MeV/u helium ions; 29 MeV/u nitrogen ions and 950 MeV/u iron ions. Monte Carlo track structure methods were used to simulate damage induction by these radiation types in a cell-mimetic condition from a single-track action. The simulations took into account the action of direct energy deposition events and the reaction of hydroxyl radicals on atomistic linear B-DNA segments of a few helical turns including the water of hydration. Our results permitted the following conclusions: a. The absolute levels of different types of damage [base damage, simple and complex single-strand breaks (SSBs) and DSBs] vary depending on the radiation type; b. Within each damage class, the relative proportions of simple and complex damage vary with radiation type, the latter being higher with high-LET radiations; c. Overall, for both low- and high-LET radiations, the ratios of the yields of base damage to SSBs are similar, being about 3.0 ± 0.2; d. Base damage contributes more to the complexity of both SSBs and DSBs, than additional SSB damage and this is true for both low- and high-LET radiations; and e. The average SSB/DSB ratio for low-LET radiations is about 18, which is about 5 times higher than that for high-LET radiations. The hypothesis that clustered DNA damage is more difficult for cells to repair has gained currency among radiobiologists. However, as yet, there is no direct in vivo experimental method to validate the dependence of kinetics of DNA repair on DNA damage complexity (both DSB and non-DSB types). The data on the detailed spectrum of DNA damage presented here, in particular

  15. In vivo and in vitro evaluation of corneal damage induced by 1573 nm laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Courant, D.; Chapel, C. [CEA Fontenay-aux-Roses (DSV/DRR/SRBF), 92 (France). Dept. de Radiobiologie et de Radiopathologie; Pothier, C. [DGA-DCE/CTA/LOT, 94 - Arcueil (France); Sales, N. [CEA Fontenay-aux-Roses (DSV/DRM/SNV), 92 (France)

    2006-07-01

    Recent developments in laser technology have originated a variety of infrared laser sources between 1500-1700 nm called as 'eye-safe' which are gaining widespread use in industry, medicine and military applications. This spectral region has been called 'eye safe' because the cornea and aqueous humor absorb sufficient radiation to prevent nearly all potentially damaging radiation from reaching the retina whereas the lens does not absorb this spectral range and remains undamaged. However, in providing protection for the deeper layers of the eye, the cornea itself is susceptible to thermal damage. Previous studies, performed at 1540 nm with exposures less than 1 s, are inconsistent in the quantity of energy required to cause corneal damage. The purpose of this study was first, to determine the threshold damage exposure (E.D.{sub 50}) on rabbit cornea induced by a 3 ns single pulse emitted at 1573 nm, using clinical observations and histology and to compare the results to the limit values recommended by I.C.N.I.R.P. guidelines or international standards. Secondly, it was suggested to investigate the cellular effects of infrared radiation with biochemical techniques on cell cultures in order to specify a cellular damage threshold and a better understanding of the laser - tissue interaction and the corneal injury. The minimal damage criterion was defined by a shallow, very small depression of the epithelial surface with a mild fluorescein staining. The E.D.{sub 50} obtained with corneal beam diameter of 400 mm is 26.6 J.cm{sup -2}. The corresponding radiant exposure, calculated with the 1 mm aperture diameter recommended by I.C.N.I.R.P. guidelines or standards, is 4.3 J.cm{sup -2}. In vitro experiments have been carried out on primary keratocytes and H.T. 1080 epithelial cell line, using an expanded beam of 3.5 mm diameter on plates or Lab Tek holders. Cells were irradiated with 10 Hz pulse ratio frequency during 1, 2 or 3 s. The S A

  16. Achieving Control of Lesion Growth in CNS with Minimal Damage

    CERN Document Server

    Raja, Mathankumar

    2012-01-01

    Lesions in central nervous system (CNS) and their growth leads to debilitating diseases like Multiple Sclerosis (MS), Alzheimer's etc. We developed a model earlier which shows how the lesion growth can be arrested through a beneficial auto-immune mechanism. The success of the approach depends on a set of control parameters and their phase space was shown to have a smooth manifold separating the uncontrolled lesion growth region from the controlled. Here we show that an optimal set of parameter values exist which minimizes system damage while achieving control of lesion growth.

  17. Influence of complex impurity centres on radiation damage in wide-gap metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Lushchik, A., E-mail: aleksandr.lushchik@ut.ee [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Lushchik, Ch. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Popov, A.I. [Institute of Solid State Physics, University of Latvia, Kengaraga 8, Riga LV-1063 (Latvia); Schwartz, K. [GSI Helmholtzzentrum für Schwerionenforschung (GSI), Planckstr. 1, 64291 Darmstadt (Germany); Shablonin, E.; Vasil’chenko, E. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia)

    2016-05-01

    Different mechanisms of radiation damage of wide-gap metal oxides as well as a dual influence of impurity ions on the efficiency of radiation damage have been considered on the example of binary ionic MgO and complex ionic–covalent Lu{sub 3}Al{sub 5}O{sub 12} single crystals. Particular emphasis has been placed on irradiation with ∼2 GeV heavy ions ({sup 197}Au, {sup 209}Bi, {sup 238}U, fluence of 10{sup 12} ions/cm{sup 2}) providing extremely high density of electronic excitations within ion tracks. Besides knock-out mechanism for Frenkel pair formation, the additional mechanism through the collapse of mobile discrete breathers at certain lattice places (e.g., complex impurity centres) leads to the creation of complex defects that involve a large number of host atoms. The experimental manifestations of the radiation creation of intrinsic and impurity antisite defects (Lu|{sub Al} or Ce|{sub Al} – a heavy ion in a wrong cation site) have been detected in LuAG and LuAG:Ce{sup 3+} single crystals. Light doping of LuAG causes a small enhancement of radiation resistance, while pair impurity centres (for instance, Ce|{sub Lu}–Ce|{sub Al} or Cr{sup 3+}–Cr{sup 3+} in MgO) are formed with a rise of impurity concentration. These complex impurity centres as well as radiation-induced intrinsic antisite defects (Lu|{sub Al} strongly interacting with Lu in a regular site) tentatively serve as the places for breathers collapse, thus decreasing the material resistance against dense irradiation.

  18. Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts

    Science.gov (United States)

    George, K.; Cucinotta, F. A.

    2008-01-01

    Cytogenetic analysis of astronauts blood lymphocytes provides a direct in vivo measurement of space radiation damage, which takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. We present our latest analyses of chromosome damage in astronauts blood lymphocytes assessed by fluorescence in situ hybridization (FISH) chromosome painting and collected at various times beginning directly after return from space to several years after flight. Dose was derived from frequencies of chromosome exchanges using preflight calibration curves, and the Relative Biological Effect (RBE) was estimated by comparison with individually measured physically absorbed doses. Values for average RBE were compared to the average quality factor (Q), from direct measurements of the lineal energy spectra using a tissue-equivalent proportional counter (TEPC) and radiation transport codes. Results prove that cytogenetic biodosimetry analyses on blood collected within a week or two of return from space provides a reliable estimate of equivalent radiation dose and risk after protracted exposure to space radiation of a few months or more. However, data collected several months or years after flight suggests that the yield of chromosome translocations may decline with time after the mission, indicating that retrospective doses may be more difficult to estimate. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from one crewmember, who has participated in two separate long-duration space missions and has been followed up for over 10 years, provide limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.

  19. Automated analysis of damages for radiation in plastics surfaces; Analisis automatizado de danos por radiacion en superficies plasticas

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, C.; Camacho M, E.; Tavera, L.; Balcazar, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1990-02-15

    Analysis of damages done by the radiation in a polymer characterized by optic properties of polished surfaces, of uniformity and chemical resistance that the acrylic; resistant until the 150 centigrade grades of temperature, and with an approximate weight of half of the glass. An objective of this work is the development of a method that analyze in automated form the superficial damages induced by radiation in plastic materials means an images analyst. (Author)

  20. Amifostine use in radiation-induced kidney damage. Preclinical evaluation with scintigraphic and histopathologic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kaldir, M. [The Ministry of Health, Numune Hospital, Erzurum (Turkey); Cosar-Alas, R.; Yurut-Caloglu, V.; Saynak, M.; Caloglu, M.; Kocak, Z.; Tokatli, F.; Uzal, C. [Dept. of Radiation Oncology, Faculty of Medicine, Trakya Univ., Edirne (Turkey); Cermik, T.F. [Dept. of Nuclear Medicine, Faculty of Medicine, Trakya Univ., Edirne (Turkey); Altaner, S. [Dept. of Pathology, Faculty of Medicine, Trakya Univ., Edirne (Turkey); Tuere, M. [Dept. of Biostatistics, Faculty of Medicine, Trakya Univ., Edirne (Turkey); Parlar, S. [Dept. of Medical Radiophysics, Faculty of Medicine, Trakya Univ., Edirne (Turkey)

    2008-07-15

    Purpose: to assess the degree of protective effects of amifostine on kidney functions via semiquantitative static renal scintigraphy and histopathologic analysis. Material and methods: 30 female albino rats were divided into three equal groups as control (CL), radiotherapy alone (RT), and radiotherapy + amifostine (RT+AMI). The animals in the CL and RT groups were given phosphate-buffered saline, whereas the animals in the RT+AMI group received amifostine (200 mg/kg) by intraperitoneal injection 30 min before irradiation. RT and RT+AMI groups were irradiated with a single dose of 6 Gy using a {sup 60}Co unit at a source-skin distance of 80 cm to the whole right kidney. They were followed up for 6 months. CL, RT, and RT+AMI groups underwent static kidney scintigraphy at the beginning of the experiment and, again, on the day before sacrificing. Histopathologically, tubular atrophy and fibrosis of the kidney damage were evaluated. Results: after irradiation, the median value of right kidney function was 48% (44-49%) and 50.5% (49%-52%) in RT and RT+AMI groups, respectively (p = 0.0002). Grade 1 kidney fibrosis was observed to be 60% in the RT group, while it was only 30% in the RT+AMI group. Grade 2 kidney fibrosis was 30% and 0% in the RT and RT+AMI group, respectively. Grade 1 tubular atrophy was 70% and 50% in the RT and RT+AMI group, respectively. Grade 2 tubular atrophy effect was the same in both groups (10%). Conclusion: static kidney scintigraphy represents an objective and reproducible method to noninvasively investigate kidney function following irradiation. Amifostine produced a significant reduction in radiation-induced loss of renal function. (orig.)

  1. Study the radiation damage effects in Si microstrip detectors for future HEP experiments

    Science.gov (United States)

    Lalwani, Kavita; Jain, Geetika; Dalal, Ranjeet; Ranjan, Kirti; Bhardwaj, Ashutosh

    2016-07-01

    Silicon (Si) detectors are playing a key role in High Energy Physics (HEP) experiments due to their superior tracking capabilities. In future HEP experiments, like upgrade of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC), CERN, the silicon tracking detectors will be operated in a very intense radiation environment. This leads to both surface and bulk damage in Si detectors, which in turn will affect the operating performance of Si detectors. It is important to complement the measurements of the irradiated Si strip detectors with device simulation, which helps in understanding of both the device behavior and optimizing the design parameters needed for the future Si tracking system. An important ingredient of the device simulation is to develop a radiation damage model incorporating both bulk and surface damage. In this work, a simplified two-trap model is incorporated in device simulation to describe the type-inversion. Further, an extensive simulation of effective doping density as well as electric field profile is carried out at different temperatures for various fluences.

  2. DNA damage among thyroid cancer and multiple cancer cases, controls, and long-lived individuals

    Energy Technology Data Exchange (ETDEWEB)

    Sigurdson, A J; Hauptmann, M; Alexander, B J; Doody, M M; Thomas, C B; Struewing, J P; Jones, I M

    2004-08-24

    Variation in the detection, signaling, and repair of DNA damage contributes to human cancer risk. To assess capacity to modulate endogenous DNA damage among radiologic technologists who had been diagnosed with breast cancer and another malignancy (breast-other; n=42), early-onset breast cancer (early-onset, age {<=} 35; n=38), thyroid cancer (n=68), long-lived cancer-free individuals (hyper-normals; n=20) and cancer-free controls (n=49) we quantified DNA damage (single strand breaks and abasic sites) in untreated lymphoblastoid cell lines using the alkaline comet assay. Komet{trademark} software provided comet tail length, % DNA in tail (tail DNA), comet distributed moment (CDM), and Olive tail moment (OTM) summarized as the geometric mean of 100 cells. Category cut-points (median and 75th percentile) were determined from the distribution among controls. Tail length (for {>=} 75% vs. below the median, age adjusted) was most consistently associated with the highest odds ratios in the breast-other, early-onset, and thyroid cancer groups (with risk increased 10-, 5- or 19-fold, respectively, with wide confidence intervals) and decreased risk among the hyper-normal group. For the other three Comet measures, risk of breast-other was elevated approximately three-fold. Risk of early-onset breast cancer was mixed and risk of thyroid cancer ranged from null to a two-fold increase. The hyper-normal group showed decreased odds ratios for tail DNA and OTM, but not CDM. DNA damage, as estimated by all Comet measures, was relatively unaffected by survival time, reproductive factors, and prior radiation treatment. We detected a continuum of endogenous DNA damage that was highest among cancer cases, less in controls, and suggestively lowest in hyper-normal individuals. Measuring this DNA damage phenotype may contribute to the identification of susceptible sub-groups. Our observations require replication in a prospective study with a large number of pre-diagnostic samples.

  3. Beclin 1 and UVRAG confer protection from radiation-induced DNA damage and maintain centrosome stability in colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Jae Myung Park

    Full Text Available Beclin 1 interacts with UV-irradiation-resistance-associated gene (UVRAG to form core complexes that induce autophagy. While cells with defective autophagy are prone to genomic instability that contributes to tumorigenesis, it is unknown whether Beclin1 or UVRAG can regulate the DNA damage/repair response to cancer treatment in established tumor cells. We found that siRNA knockdown of Beclin 1 or UVRAG can increase radiation-induced DNA double strand breaks (DSBs, shown by pATM and γH2Ax, and promote colorectal cancer cell death. Furthermore, knockdown of Beclin 1, UVRAG or ATG5 increased the percentage of irradiated cells with nuclear foci expressing 53BP1, a marker of nonhomologous end joining but not RAD51 (homologous recombination, compared to control siRNA. Beclin 1 siRNA was shown to attenuate UVRAG expression. Cells with a UVRAG deletion mutant defective in Beclin 1 binding showed increased radiation-induced DSBs and cell death compared to cells with ectopic wild-type UVRAG. Knockdown of Beclin 1 or UVRAG, but not ATG5, resulted in a significant increase in centrosome number (γ-tubulin staining in irradiated cells compared to control siRNA. Taken together, these data indicate that Beclin 1 and UVRAG confer protection against radiation-induced DNA DSBs and may maintain centrosome stability in established tumor cells.

  4. Experiments testing the abatement of radiation damage in D-xylose isomerase crystals with cryogenic helium.

    Science.gov (United States)

    Hanson, B Leif; Harp, Joel M; Kirschbaum, Kristin; Schall, Constance A; DeWitt, Ken; Howard, Andrew; Pinkerton, A Alan; Bunick, Gerard J

    2002-11-01

    Helium is a more efficient cryogen than nitrogen, and for macromolecular data collection at high-flux beamlines will deliver lower temperatures. An open-flow helium cryostat developed at the University of Toledo (the Pinkerton Device) has been used for macromolecular data collection. This device differs from standard commercial He cryostats by having a much narrower aperture providing a high velocity stream of He around the crystal that maximizes convective and conductive heat exchange between the crystal and the cryogen. This paper details a series of experiments conducted at the IMCA-CAT 17ID beamline using one crystal for each experimental condition to examine whether helium at 16 K provided better radiation-damage abatement compared with nitrogen at 100 K. These studies used matched high-quality crystals (0.94 A diffraction resolution) of D-xylose isomerase derived from the commercial material Gensweet SGI. Comparisons show that helium indeed abates the indicators of radiation damage, in this case resulting in longer crystal diffractive lifetimes. The overall trend suggests that crystals maintain order and that high-resolution data are less affected by increased radiation load when crystals are cooled with He rather than N(2). This is probably the result of a lower effective temperature at the crystal with concomitant reduction in free-radical diffusion. Other features, such as an apparent phase transition in macromolecular crystals at lower temperatures, require investigation to broaden the utility of He use.

  5. A Review on Radiation Damage in Concrete for Nuclear Facilities: From Experiments to Modeling

    Directory of Open Access Journals (Sweden)

    Beatrice Pomaro

    2016-01-01

    Full Text Available Concrete is a relatively cheap material and easy to be cast into variously shaped structures. Its good shielding properties against neutrons and gamma-rays, due to its intrinsic water content and relatively high-density, respectively, make it the most widely used material for radiation shielding also. Concrete is so chosen as biological barrier in nuclear reactors and other nuclear facilities where neutron sources are hosted. Theoretical formulas are available in nuclear engineering manuals for the optimum thickness of shielding for radioprotection purposes; however they are restricted to one-dimensional problems; besides the basic empirical constants do not consider radiation damage effects, while its long-term performance is crucial for the safe operation of such facilities. To understand the behaviour of concrete properties, it is necessary to examine concrete strength and stiffness, water behavior, volume change of cement paste, and aggregate under irradiated conditions. Radiation damage process is not well understood yet and there is not a unified approach to the practical and predictive assessment of irradiated concrete, which combines both physics and structural mechanics issues. This paper provides a collection of the most distinguished contributions on this topic in the past 50 years. At present a remarkable renewed interest in the subject is shown.

  6. DNA Damage in Melania Snail (Semisulcospira libertine) Irradiated with Gamma Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup (Korea, Republic of); An, Kwang Guk [Chungnam National University, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2010-10-15

    Generally radiological protection has focused on human. But International Commission on Radiological Protection (ICRP) requires the effect data of ionizing radiation on nonhuman biota for the radiological protection of the environment. The choice of a melania snail as a model for environmental biomonitoring of radiation genotoxicity took into account that invertebrates represent one of aquatic species. The comet assay or single cell gel electrophoresis (SCGE) assay, first introduced by Ostling and Johanson, was used to detect DNA single strand breaks and to investigate the application of this technique as a tool for aquatic biomonitoring. Comet assay offers considerable advantages over some other assays used in DNA damage detection, such as chromosomal aberrations, sister chromatid Exchange and the micronucleus test, since there is no need for cells to be in a dividing state. Other advantages are its rapidity, relatively low coast, and wide applicability to virtually any nucleated cell type. In this study, we evaluated DNA damage in cells of Semisulcospira libertina after irradiation with {sup 60}Co gamma radiation by using the comet assay

  7. Radiation damage of the PCO Pixelfly VGA CCD camera of the BES system on KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Náfrádi, Gábor, E-mail: nafradi@reak.bme.hu [NTI, BME, EURATOM Association, H-1111 Budapest (Hungary); Kovácsik, Ákos, E-mail: kovacsik.akos@reak.bme.hu [NTI, BME, EURATOM Association, H-1111 Budapest (Hungary); Pór, Gábor, E-mail: por@reak.bme.hu [NTI, BME, EURATOM Association, H-1111 Budapest (Hungary); Lampert, Máté, E-mail: lampert.mate@wigner.mta.hu [Wigner RCP, RMI, EURATOM Association, POB 49, 1525 Budapest (Hungary); Un Nam, Yong, E-mail: yunam@nfri.re.kr [NFRI, 169-148 Gwahak-Ro, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of); Zoletnik, Sándor, E-mail: zoletnik.sandor@wigner.mta.hu [Wigner RCP, RMI, EURATOM Association, POB 49, 1525 Budapest (Hungary)

    2015-01-11

    A PCO Pixelfly VGA CCD camera which is part a of the Beam Emission Spectroscopy (BES) diagnostic system of the Korea Superconducting Tokamak Advanced Research (KSTAR) used for spatial calibrations, suffered from serious radiation damage, white pixel defects have been generated in it. The main goal of this work was to identify the origin of the radiation damage and to give solutions to avoid it. Monte Carlo N-Particle eXtended (MCNPX) model was built using Monte Carlo Modeling Interface Program (MCAM) and calculations were carried out to predict the neutron and gamma-ray fields in the camera position. Besides the MCNPX calculations pure gamma-ray irradiations of the CCD camera were carried out in the Training Reactor of BME. Before, during and after the irradiations numerous frames were taken with the camera with 5 s long exposure times. The evaluation of these frames showed that with the applied high gamma-ray dose (1.7 Gy) and dose rate levels (up to 2 Gy/h) the number of the white pixels did not increase. We have found that the origin of the white pixel generation was the neutron-induced thermal hopping of the electrons which means that in the future only neutron shielding is necessary around the CCD camera. Another solution could be to replace the CCD camera with a more radiation tolerant one for example with a suitable CMOS camera or apply both solutions simultaneously.

  8. Radiation damage of the PCO Pixelfly VGA CCD camera of the BES system on KSTAR tokamak

    Science.gov (United States)

    Náfrádi, Gábor; Kovácsik, Ákos; Pór, Gábor; Lampert, Máté; Un Nam, Yong; Zoletnik, Sándor

    2015-01-01

    A PCO Pixelfly VGA CCD camera which is part a of the Beam Emission Spectroscopy (BES) diagnostic system of the Korea Superconducting Tokamak Advanced Research (KSTAR) used for spatial calibrations, suffered from serious radiation damage, white pixel defects have been generated in it. The main goal of this work was to identify the origin of the radiation damage and to give solutions to avoid it. Monte Carlo N-Particle eXtended (MCNPX) model was built using Monte Carlo Modeling Interface Program (MCAM) and calculations were carried out to predict the neutron and gamma-ray fields in the camera position. Besides the MCNPX calculations pure gamma-ray irradiations of the CCD camera were carried out in the Training Reactor of BME. Before, during and after the irradiations numerous frames were taken with the camera with 5 s long exposure times. The evaluation of these frames showed that with the applied high gamma-ray dose (1.7 Gy) and dose rate levels (up to 2 Gy/h) the number of the white pixels did not increase. We have found that the origin of the white pixel generation was the neutron-induced thermal hopping of the electrons which means that in the future only neutron shielding is necessary around the CCD camera. Another solution could be to replace the CCD camera with a more radiation tolerant one for example with a suitable CMOS camera or apply both solutions simultaneously.

  9. Contributions of each isotope in structural material on radiation damage in a hybrid reactor

    Science.gov (United States)

    Günay, Mehtap

    2016-11-01

    In this study, the fluids were used in the liquid first-wall, blanket and shield zones of the designed hybrid reactor system. In this study, salt-heavy metal mixtures consisting of 93-85% Li20Sn80 + 5% SFG-PuO2 and 2-10% UO2, 93-85% Li20Sn80 + 5% SFG-PuO2 and 2-10% NpO2, and 93-85% Li20Sn80 + 5% SFG-PuO2 and 2-10% UCO were used as fluids. In this study, the effect on the radiation damage of spent fuel-grade (SFG)-PuO2, UO2, NpO2 and UCO contents was investigated in the structural material of a designed fusion-fission hybrid reactor system. In the designed hybrid reactor system were investigated the effect on the radiation damage of the selected fluid according to each isotopes of structural material in the structural material for 30 full power years (FPYs). Three-dimensional analyses were performed using the most recent MCNPX-2.7.0 Monte Carlo radiation transport code and the ENDF/B-VII.0 nuclear data library.

  10. Self-repairing control for damaged robotic manipulators

    Energy Technology Data Exchange (ETDEWEB)

    Eisler, G.R.; Robinett, R.D.; Dohrmann, C.R.; Driessen, B.J. [and others

    1997-03-01

    Algorithms have been developed allowing operation of robotic systems under damaged conditions. Specific areas addressed were optimal sensor location, adaptive nonlinear control, fault-tolerant robot design, and dynamic path-planning. A seven-degree-of-freedom, hydraulic manipulator, with fault-tolerant joint design was also constructed and tested. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  11. Damage control apronectomy for necrotising fasciitis and strangulated umbilical hernia.

    LENUS (Irish Health Repository)

    Coyle, P

    2012-01-31

    We present a case of a 50-year-old morbidly obese woman who presented with a case of necrotizing fasciitis of the anterior abdominal wall due to a strangulated umbilical hernia. The case was managed through damage control surgery (DCS) with an initial surgery to stabilise the patient and a subsequent definitive operation and biological graft hernia repair. We emphasise the relevance of DCS principles in the management of severe abdominal sepsis.

  12. Protective Effect of Anthocyanins from Lingonberry on Radiation-induced Damages

    Directory of Open Access Journals (Sweden)

    Shuang-Qi Tian

    2012-12-01

    Full Text Available There is a growing concern about the serious harm of radioactive materials, which are widely used in energy production, scientific research, medicine, industry and other areas. In recent years, owing to the great side effects of anti-radiation drugs, research on the radiation protectants has gradually expanded from the previous chemicals to the use of natural anti-radiation drugs and functional foods. Some reports have confirmed that anthocyanins are good antioxidants, which can effectively eliminate free radicals, but studies on the immunoregulatory and anti-radiation effects of anthocyanins from lingonberry (ALB are less reported. In this experiment, mice were given orally once daily for 14 consecutive days before exposure to 6 Gy of gamma-radiation and were sacrificed on the 7th day post-irradiation. The results showed that the selected dose of extract did not lead to acute toxicity in mice; while groups given anthocyanins orally were significantly better than radiation control group according to blood analysis; pretreatment of anthocyanins significantly (p < 0.05 enhanced the thymus and spleen indices and spleen cell survival compared to the irradiation control group. Pretreatment with anthocyanins before irradiation significantly reduced the numbers of micronuclei (MN in bone marrow polychromatic erythrocytes (PCEs. These findings indicate that anthocyanins have immunostimulatory potential against immunosuppression induced by the radiation.

  13. Non-DBS DNA Repair Genes Regulate Radiation-induced Cytogenetic Damage Repair and Cell Cycle Progression

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Casey, Rachael; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in DSB repair, and its impact on cytogenetic responses has not been systematically studied. In the present study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by transfection with small interfering RNA in human fibroblast cells. The purpose of this study is to identify new roles of these selected genes on regulating DSB repair and cell cycle progression , as measured in the micronuclei formation and chromosome aberration. In response to IR, the formation of MN was significantly increased by suppressed expression of 5 genes: Ku70 in the DSB repair pathway, XPA in the NER pathway, RPA1 in the MMR pathway, and RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, P21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Most of the 11 genes that affected cytogenetic responses are not known to have clear roles influencing DBS repair. Nine of these 11 genes were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate the biological consequences after IR.

  14. Non-DBS DNA Repair Genes Regulate Radiation-induced Cytogenetic Damage Repair and Cell Cycle Progression

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Casey, Rachael; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in DSB repair, and its impact on cytogenetic responses has not been systematically studied. In the present study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by transfection with small interfering RNA in human fibroblast cells. The purpose of this study is to identify new roles of these selected genes on regulating DSB repair and cell cycle progression , as measured in the micronuclei formation and chromosome aberration. In response to IR, the formation of MN was significantly increased by suppressed expression of 5 genes: Ku70 in the DSB repair pathway, XPA in the NER pathway, RPA1 in the MMR pathway, and RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, P21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Most of the 11 genes that affected cytogenetic responses are not known to have clear roles influencing DBS repair. Nine of these 11 genes were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate the biological consequences after IR.

  15. Early to late sparing of radiation damage to the parotid gland by adrenergic and muscarinic receptor agonists

    NARCIS (Netherlands)

    Coppes, RP; Zeilstra, LJW; Kampinga, HH; Konings, AWT

    2001-01-01

    Damage to salivary glands after radiotherapeutic treatment of head and neck tumours can severely impair the quality of life of the patients. In the current study we have investigated the early-to-late pathogenesis of the parotid gland after radiation. Also the ability to ameliorate the damage using

  16. Effect of Tinospora cordifolia on the reduction of ultraviolet radiation-induced cytotoxicity and DNA damage in PC12 cells.

    Science.gov (United States)

    Masuma, Runa; Okuno, Tsutomu; Kabir Choudhuri, Mohammad Shahabuddin; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    The safety of Tinospora cordifolia and its potential to protect against ultraviolet radiation-induced cytotoxicity and DNA damage in PC12 cells were investigated. To evaluate the safety of T. cordifolia, cell viability and agarose gel electrophoresis were carried out using PC12 cells treated with 0 to 100 μg mL(-1) of methanol extract of T. cordifolia. T. cordifolia extracts did not show cytotoxicity ranging 0 to 100 μg mL(-1). In addition, T. cordifolia extracts significantly increased cell viability at 1 ng, 10 ng and 1 μg mL(-1) concentrations in serum-deprived medium compared to control. To confirm the protective role against UV-induced damage, PC12 cells alone or in the presence of 10 ng, 100 ng, or 1 μg mL(-1) of T. cordifolia extract were exposed to 250, 270 and 290 nm of UV radiation, which corresponded to doses of 120, 150 and 300 mJ cm(-2), respectively. Treatment with T. cordifolia extracts significantly increased the cell survival rate irradiated at 290 nm. In addition, T. cordifolia extracts significantly reduced cyclobutane pyrimidine dimer formation induced by UV irradiation at all wavelengths. In conclusion, T. cordifolia is not toxic and safe for cells. Our findings can support its application as phototherapy in the medical sector.

  17. Transgenerational accumulation of radiation damage in small mammals chronically exposed to Chernobyl fallout.

    Science.gov (United States)

    Ryabokon, Nadezhda I; Goncharova, R I

    2006-09-01

    The purpose of this investigation has been the analysis of the long-term development of biological damage in natural populations of a model mammalian species, the bank vole (Clethrionomys glareolus, Schreber), which were chronically exposed to low doses of ionizing radiation over 22 animal generations within 10 years following the Chernobyl accident. The time course of the biological end-points (chromosome aberrations in bone marrow cells and embryonic lethality) was compared with the time course of the whole-body absorbed dose rate from external and internal exposure in the studied populations inhabiting monitoring sites in Belarus with different ground deposition of radionuclides. The yield of chromosome aberrations and, in lesser degree, embryonic lethality was associated with the radionuclide contamination of the monitoring areas in a dose-dependent manner. As a main feature of the long-term development of biological damage under low dose rate irradiation, permanently elevated levels of chromosome aberrations and an increasing frequency of embryonic lethality have developed over 22 animal generations. This contrasts with the assumption that the biological damage would gradually disappear since in the same period of time the whole-body absorbed dose rate decreased exponentially with a half-value time of about 2.5-3 years. Furthermore, gravid females were captured, and their offspring, born and grown up under contamination-free laboratory conditions, showed the same enhanced level of chromosome aberrations. Therefore the authors suggest that, along with the biological damage attributable to the individual exposure of each animal, the observed cellular and systemic effects reflect the transgenerational transmission and accumulation, via genetic and/or epigenetic pathways, of damage attributable to the chronic low-dose rate exposure of the preceding generations of animals. They also suggest that the level of the accumulated transmissible damage in the investigated

  18. The radioprotective effect and mechanism of captopril on radiation induced lung damage in rat

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mi Hee; Lee, Kyung Ja; Koo, Hea Soo; Oh, Won Young [College of Medicine, Ewha Women Univ., Seoul (Korea, Republic of)

    2001-06-01

    It was reported that Captopril (angiotensin converting enzyme inhibitor) had an effect to reduce the pneumonitis and pulmonary fibrosis induced by radiation in rat. We performed this study to investigate the radioprotective effect and mechanism of Captopril. The comparison was made between the radiation only group and the combined Captopril and radiation group by examining histopathologic findings and immunohistochemical stains (TNF {alpha} and TGF {beta}1) at 2 and 8 weeks after irradiation. Each group has 8 to 10 rats (Sprague-Dawley). 12.5 Gy of X-ray was irradiated to the left hemithorax in a single fraction. Captopril (50 mg/kg/d) mixed with water was given per oral and continuously from 1 week prior to irradiation up to 8th week of the experiment. In the combined Captopril and radiation group, the histopathologic changes which were hemorrhage into alveolar space, changes of alveolar epithelium, bronchial epithelium and blood vessels, and perivascular edema were less severe than in the radiation only group at 2 weeks. At 8 weeks, the alveolar epithelial changes and perivascular edema were less prominent in the combined Captopril and radiation group. At 2 weeks, the TNF {alpha} expression of the combined Captopril and radiation group was markedly decreased at the alveolar epithelium (p<0.01), lymphoid tissue (p=0.06) and the macrophage of alveolar space (p<0.01) compared with the radiation only group. Furthermore the TGF {beta}1 expression was significantly prominent at the alveolar epithelium (p<0.02) and the macrophage in alveolar space (p< 0.02). At 8 weeks, the expression of TNF {alpha} and TGF {beta} 1 of most sites, except TGF {beta}1 of the macrophage of alveolar space (p=0.09), showed no significant difference between 2 groups. This study revealed that early lung damage induced by irradiation was reduced with the addition of Captopril in the latent and early pneumonitis phase. The expression of TNF {alpha} and TGF {beta} 1 at 2 weeks and TGF {beta} 1 at

  19. Detection of DNA Damage by Space Radiation in Human Fibroblasts Flown on the International Space Station

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Wong, Michael; Feiveson, Alan; Gaza, Ramona; Stoffle, Nicholas; Wang, Huichen; Wilson, Bobby; Rohde, Larry; Stodieck, Louis; hide

    2017-01-01

    Space radiation consists of energetic charged particles of varying charges and energies. Exposure of astronauts to space radiation on future long duration missions to Mars, or missions back to the Moon, is expected to result in deleterious consequences such as cancer and comprised central nervous system (CNS) functions. Space radiation can also cause mutation in microorganisms, and potentially influence the evolution of life in space. Measurement of the space radiation environment has been conducted since the very beginning of the space program. Compared to the quantification of the space radiation environment using physical detectors, reports on the direct measurement of biological consequences of space radiation exposure have been limited, due primarily to the low dose and low dose rate nature of the environment. Most of the biological assays fail to detect the radiation effects at acute doses that are lower than 5 centiSieverts. In a recent study, we flew cultured confluent human fibroblasts in mostly G1 phase of the cell cycle to the International Space Station (ISS). The cells were fixed in space after arriving on the ISS for 3 and 14 days, respectively. The fixed cells were later returned to the ground and subsequently stained with the gamma-H2AX (Histone family, member X) antibody that are commonly used as a marker for DNA damage, particularly DNA double strand breaks, induced by both low-and high-linear energy transfer radiation. In our present study, the gamma-H2AX (Histone family, member X) foci were captured with a laser confocal microscope. To confirm that some large track-like foci were from space radiation exposure, we also exposed, on the ground, the same type of cells to both low-and high-linear energy transfer protons, and high-linear energy transfer Fe ions. In addition, we exposed the cells to low dose rate gamma rays, in order to rule out the possibility that the large track-like foci can be induced by chronic low-linear energy transfer

  20. Investigation on the use of Americium Oxide for Space Power Sources: Radiation Damage Studies

    Directory of Open Access Journals (Sweden)

    Wiss T.

    2017-01-01

    Several candidate Americium compounds will be investigated for chemical stability at high temperature and for self-irradiation damage. New thermo-electric converter materials containing actinides will be assessed, and a robust encapsulation designed. Safety analyses will be performed including launch explosion and re-entry accidents. The research will conclude in a conceptual design of a prototype power source. In the first part of this study, americium dioxide will be considered from the point of view of its chemical durability and of its behavior against radiation damage and helium formation, two aspects to be carefully investigated due to the high alpha-activity of the americium. Transmission electron Microscopy (TEM and helium thermal desorption spectrometry (TDS experiments will be described and results on aged (more than 30 years AmO2 reported. Some comparison with 238PuO2 based RTG’s will be discussed.

  1. Fast heavy-ion radiation damage of glycine in aqueous solution

    Science.gov (United States)

    Nomura, Shinji; Tsuchida, Hidetsugu; Furuya, Ryosuke; Majima, Takuya; Itoh, Akio

    2016-12-01

    Fast heavy-ion radiolysis of biomolecules in aqueous solution is investigated for an atomistic understanding of radiation damage to normal cells during heavy-particle beam therapy. The smallest amino acid glycine was used as a model biomaterial. Microjets of aqueous glycine solutions under vacuum were irradiated with 4.0-MeV carbon ions corresponding to energies in the Bragg peak region. To understand the effects of the water environment on molecular damage, the yield of glycine dissociation was measured by secondary ion mass spectroscopy. The yield was significantly reduced relative to gas-phase glycine targets. This implies that the numerous water molecules surrounding a single glycine molecule act as a buffer that suppresses dissociation. This is an environmental effect similar to that observed for other biomolecular cluster targets.

  2. Modelling electron distributions within ESA's Gaia satellite CCD pixels to mitigate radiation damage

    CERN Document Server

    Seabroke, G M; Burt, D; Robbins, M S

    2009-01-01

    The Gaia satellite is a high-precision astrometry, photometry and spectroscopic ESA cornerstone mission, currently scheduled for launch in 2012. Its primary science drivers are the composition, formation and evolution of the Galaxy. Gaia will achieve its unprecedented positional accuracy requirements with detailed calibration and correction for radiation damage. At L2, protons cause displacement damage in the silicon of CCDs. The resulting traps capture and emit electrons from passing charge packets in the CCD pixel, distorting the image PSF and biasing its centroid. Microscopic models of Gaia's CCDs are being developed to simulate this effect. The key to calculating the probability of an electron being captured by a trap is the 3D electron density within each CCD pixel. However, this has not been physically modelled for the Gaia CCD pixels. In Seabroke, Holland & Cropper (2008), the first paper of this series, we motivated the need for such specialised 3D device modelling and outlined how its future resu...

  3. Equivalence of displacement radiation damage in superluminescent diodes induced by protons and heavy ions

    Science.gov (United States)

    Li, Xingji; Liu, Chaoming; Lan, Mujie; Xiao, Liyi; Liu, Jianchun; Ding, Dongfa; Yang, Dezhuang; He, Shiyu

    2013-07-01

    The degradation of optical power for superluminescent diodes is in situ measured under exposures of protons with various energies (170 keV, 3 MeV and 5 MeV), and 25 MeV carbon ions for several irradiation fluences. Experimental results show that the optical power of the SLDs decreases with increasing fluence. The protons with lower energies cause more degradation in the optical power of SLDs than those with higher energies at a given fluence. Compared to the proton irradiation with various energies, the 25 MeV carbon ions induce more severe degradation to the optical power. To characterize the radiation damage of the SLDs, the displacement doses as a function of chip depth in the SLDs are calculated by SRIM code for the protons and carbon ions. Based on the irradiation testing and calculation results, an approach is given to normalize the equivalence of displacement damage induced by various charged particles in SLDs.

  4. Analytical studies into radiation-induced starch damage in black and white peppers

    Science.gov (United States)

    Sharif, M. M.; Farkas, J.

    1993-07-01

    Temperature dependency of the apparent viscosity of heat-gelatinized suspensions of untreated and irradiated pepper samples has been investigated. There was a close linear correlation between the logaritm of "fluidity" /reciprocal of the apparent viscosity) and the reciprocal absolute temperature of the measurement. The slope of the regression line(the temperature dependence of fluidity) increased with the radiation dose. Gelatinization thermograms of aqueous suspensions of ground pepper samples were obtained by differential scanning calorimetry. Temperature characteristics of heat-gelatinization endotherms showed no significant differences between untreated and irradiated samples. A colorimetric method for damaged starch, the estimation of reducing power, and the alcohol-induced turbidity of aqueous extracts showed statistically significant increases of starch damage at doses higher than 4 kGy. These indices of starch-depolymerization have been changed less dramatically by irradiation than the apparent viscosity of the heat-gelatinized suspensions.

  5. OBJECT KINETIC MONTE CARLO SIMULATIONS OF RADIATION DAMAGE IN BULK TUNGSTEN

    Energy Technology Data Exchange (ETDEWEB)

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

    2015-09-22

    We used our recently developed lattice based OKMC code; KSOME [1] to carryout simulations of radiation damage in bulk W. We study the effect of dimensionality of self interstitial atom (SIA) diffusion i.e. 1D versus 3D on the defect accumulation during irradiation with a primary knock-on atom (PKA) energy of 100 keV at 300 K for the dose rates of 10-5 and 10-6 dpa/s. As expected 3D SIA diffusion significantly reduces damage accumulation due to increased probability of recombination events. In addition, dose rate, over the limited range examined here, appears to have no effect in both cases of SIA diffusion.

  6. Damage control surgery for severe thoracic and abdominal injuries

    Institute of Scientific and Technical Information of China (English)

    HUANG Xian-kai; ZHU Yu-jun; ZHANG Lian-yang

    2007-01-01

    Objective: To investigate the application of damage control surgery in treatment of patients with severe thoracic and abdominal injuries.Methods: A retrospective study was done on 37 patients with severe thoracic and abdominal injuries who underwent damage control surgery from January 2000 to October 2006 in our department. There were 8 cases of polytrauma ( with thoracic injury most commonly seen), 21 of polytrauma (with abdominal injury most commonly seen) and 8 of single abdominal trauma. Main organ damage included smashed hepatic injuries in 17 cases,posterior hepatic veins injuries in 8, pancreaticoduodenal injuries in 7, epidural or subdural hemorrhage in 4,contusion and laceration of brain in 5, severe lung and bronchus injuries in 4, pelvis and one smashed lower limb wound in 3 and pelvic fractures and retroperitoneal hemorrhage in 6. Injury severity score (ISS) was 28-45 scores (38.4 scores on average), abbreviated injury scale (ALS) ≥ 4.13. The patients underwent arteriography and arterial embolization including arteria hepatica embolization in 4 patients, arteria renalis embolization in 2 and pelvic arteria retroperitoneal embolization in 7. Once abbreviated operation finished, the patients were sent to ICU for resuscitation. Twenty-four cases underwent definitive operation within 48 hours after initial operation, 5 underwent definitive operation within 72 hours after initial operation, 2 cases underwent definitive operation postponed to 96 hours after initial operation for secondary operation to control bleeding because of abdominal cavity hemorrhea.Two cases underwent urgent laparotomy and decompression because of abdominal compartment syndrome and 2 cases underwent secondary operation because of intestinal fistulae (1 case of small intestinal fistula and 1 colon fistula) and gangrene of gallbladder.Results: A total of 28 patients survived, with a survival rate of 75.68%, and 9 died (4 died within 24 hours and 5 died 3-9 days after injury). The

  7. DETECTION OF LOW DOSE RADIATION-AND CHEMICALLY-INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAYS

    Science.gov (United States)

    Rapid, sensitive and simple assays for radiation- and chemically-induced DNA damage can be of significant benefit to a number of fields including radiation biology, clinical research, and environmental monitoring. Although temperature-induced DNA strand separation has been use...

  8. Operational Experience and Performance with the ATLAS Pixel detector with emphasis on radiation damage

    CERN Document Server

    Butti, Pierfrancesco; The ATLAS collaboration

    2017-01-01

    The tracking performance of the ATLAS detector relies critically on its 4-layer Pixel Detector, that has undergone significant hardware and software upgrades to meet the challenges imposed by the higher collision energy, pileup and luminosity that are being delivered by the Large Hadron Collider, with record breaking instantaneous luminosities of 1.3 x 10^34 cm-2 s-1 recently surpassed. The key status and performance metrics of the ATLAS Pixel Detector are summarised, and the operational experience and requirements to ensure optimum data quality and data taking efficiency are described, with special emphasis to radiation damage experience.

  9. Operational Experience and Performance with the ATLAS Pixel detector with emphasis on radiation damage

    CERN Document Server

    Garcia Pascual, Juan Antonio; The ATLAS collaboration

    2017-01-01

    The tracking performance of the ATLAS detector relies critically on its 4-layer Pixel Detector, that has undergone significant hardware and software upgrades to meet the challenges imposed by the higher collision energy, pileup and luminosity that are being delivered by the Large Hadron Collider, with record breaking instantaneous luminosities of 1.3 x 10$^{34}$ cm$^{-2}$ s$^{-1}$ recently surpassed. The key status and performance metrics of the ATLAS Pixel Detector are summarised, and the operational experience and requirements to ensure optimum data quality and data taking efficiency are described, with special emphasis to radiation damage experience.

  10. Ultraviolet radiation, sun damage and preventing; Ultrafiolett straaling, solskader og forebygging

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, B.; Christensen, T.; Nilsen, L.T.; Hannevik, M.

    2013-03-01

    The report focuses on the large impact of health damages due to excessive UV exposure from natural sun. The first part of the report gives background information on factors significantly affecting the intensity of UV radiation. The second part gives an overview of health effects related to UV exposure, with recommendations on how to avoid excessive UV exposure and still enjoy the positive sides of outdoor activity. The report is intended to contribute to informational activities about sun exposure as recommended by the World Health Organisation and the World Meteorology Organisation. (Author)

  11. Surgical intervention for complications caused by late radiation damage of the small bowel; a retrospective analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halteren, H.K. van; Gortzak, E.; Taal, B.G.; Helmerhorst, Th.J.M.; Aleman, B.M.P.; Hart, A.A.M.; Zoetmulder, F.A.N. (Nederlands Kanker Inst. ' Antoni van Leeuwenhoekhuis' , Amsterdam (Netherlands))

    1993-08-01

    The authors studied the records of 46 patients who had been operated on between 1974 and 1990 in the Netherlands Cancer Institute because of complications due to late radiation damage of the small bowel. The following factors led to an increase in complication-risk: hypalbuminemia. more than one laparotomy prior to irradiation and a short interval (< 12 months) between irradiation and surgical intervention. The following factors related to a poorer survival: incomplete resection of the primary tumor and a short interval (< 12 months) between irradiation and surgical intervention. The type f surgical intervention did not have cumulative prognostic value in relation to complication-risk or survival. (author).

  12. Annealing of natural metamict zircons. I low degree of radiation damage

    CERN Document Server

    Colombo, M

    1998-01-01

    In-situ time dependent high temperature X-ray powder diffraction was used to investigate the ordering process occurring during annealing of natural zircons with a low degree of radiation damage. It was possible to distinguish two stages of this process. Firstly, the diffusion of defects induced by alpha-particles, this stage contributes only to a certain degree of relaxation in the unit cell. In the second stage there is some degree of recrystallization. A hkl-dependence in the variation of the integrated intensity is observed and the increase in the volume of crystalline zircon is therefore related to a process of migration of dislocations.

  13. Sensitivity coefficients for the stochastic estimation of the radiation damage to the reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, C.M.; Hernandez Valle, S. [Centro de Investigaciones Tecnologicas, Nucleares y Ambientales, La Habana (Cuba). E-mail: calvarez@ctn.isctn.edu.cu; svalle@ctn.isctn.edu.cu

    2000-07-01

    The construction of the sensitivity matrix in the case of the vessel radiation damage estimation by Monte Carlo techniques poses new problems related to the uncertainties of the obtained responses. In the case of deterministic calculations, the sensitivity coefficient obtention is a straightforward procedure based on the perturbation formalism through the calculation of the adjoint fluxes. In the paper an alternative procedure implementation based on the differential operator method is described with the modifications needed to the used HEXANN-EVALU code for the response estimations in the VVER-440 pressure vessel. (author)

  14. Measuring radiation damage dynamics by pulsed ion beam irradiation: 2016 project annual report

    Energy Technology Data Exchange (ETDEWEB)

    Kucheyev, Sergei O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-04

    The major goal of this project is to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation in nuclear materials. In particular, the project exploits a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. For Year 3, this project had the following two major milestones: (i) the demonstration of the measurement of thermally activated defect-interaction processes by pulsed ion beam techniques and (ii) the demonstration of alternative characterization techniques to study defect dynamics. As we describe below, both of these milestones have been met.

  15. Threats to ICF reactor materials: computational simulations of radiation damage induced topological changes in fused silica

    CERN Document Server

    Kubota, A; Stolken, J; Sadigh, B; Reyes, S; Rubia, T D; Latkowski, J F

    2003-01-01

    We have performed molecular dynamics simulations of radiation damage in fused silica. In this study, we discuss the role of successive cascade overlap on the saturation and self-healing of oxygen vacancy defects in the amorphous fused silica network. Furthermore, we present findings on the topological changes in fused silica due to repeated energetic recoil atoms. These topological network modifications consistent with experimental Raman spectroscopic observation on neutron and ion irradiated fused silica are indicators of permanent densification that has also been observed experimentally.

  16. Resveratrol affects DNA damage induced by ionizing radiation in human lymphocytes in vitro.

    Science.gov (United States)

    Basso, Emiliano; Regazzo, Giulia; Fiore, Mario; Palma, Valentina; Traversi, Gianandrea; Testa, Antonella; Degrassi, Francesca; Cozzi, Renata

    2016-08-01

    Resveratrol (3,4',5-trihydroxystilbene; RSV) acts on cancer cells in several ways, inducing cell cycle delay and apoptotic death, and enhancing ionizing radiation (IR)-mediated responses. However, fewer studies have examined RSV effects on normal cells. We have treated human lymphocytes in vitro with RSV, either alone or combined with IR, to evaluate its potential use as a radioprotector. We measured the effects of RSV on induction of DNA damage, repair kinetics, and modulation of histone deacetylase activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A Leakage Current-based Measurement of the Radiation Damage in the ATLAS Pixel Detector

    CERN Document Server

    Gorelov, Igor; The ATLAS collaboration

    2015-01-01

    A measurement has been made of the radiation damage incurred by the ATLAS Pixel Detector barrel silicon modules from the beginning of operations through the end of 2012. This translates to hadronic fluence received over the full period of operation at energies up to and including 8 TeV. The measurement is based on a per-module measurement of the silicon sensor leakage current. The results are presented as a function of integrated luminosity and compared to predictions by the Hamburg Model. This information can be used to predict limits on the lifetime of the Pixel Detector due to current, for various operating scenarios.

  18. Using LEDs to stimulate the recovery of radiation damage to plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, J., E-mail: james-wetzel@uiowa.edu [The University of Iowa, Iowa City, IA (United States); Tiras, E. [The University of Iowa, Iowa City, IA (United States); Bilki, B. [The University of Iowa, Iowa City, IA (United States); Beykent University, Istanbul (Turkey); Onel, Y. [The University of Iowa, Iowa City, IA (United States); Winn, D. [Fairfield University, Fairfield, CT (United States)

    2017-03-15

    In this study, we consider using LEDs to stimulate the recovery of scintillators damaged from radiation in high radiation environments. We irradiated scintillating tiles of polyethylene naphthalate (PEN), Eljen brand EJ-260 (EJN), an overdoped EJ-260 (EJ2P), and a lab-produced elastomer scintillator (ES) composed of p-terphenyl (ptp) in epoxy. Two different high-dose irradiations took place, with PEN dosed to 100 kGy, and the others to 78 kGy. We found that the ‘blue’ scintillators (PEN and ES) recovered faster and maximally higher with LEDs than without. Conversely exposing the ‘green’ scintillators (EJ-260) to LED light had a nearly negligible effect on the recovery. We hypothesize that the ‘green’ scintillators require wavelengths that match their absorption and emission spectra for LED stimulated recovery.

  19. Evaluation of radiation damage to Metal-Oxide-Semiconductor (MOS) devices

    Science.gov (United States)

    1982-12-01

    The purpose of these experiments was to provide qualitative and quantitative information on the effects of various hydrogen and nitrogen annealing treatments on the radiation hardness, or resistivity to damage, of MOS capacitors. Toward this end, the following tasks were performed: Construction of capacitor TO-5 packages for device evaluation; The experimental determination of the 1 MHz capacitance-voltage bias curves for both the pre- and post-irradiated capacitors; Evaluation of the change in Flat Band Voltage (Delta V sub fb) for the pre- and post-radiation stressed devices; Compilation of all 1 MHz data for cataloging purposes and the establishment of a benchmark for the new computer automated test system; and Reported data to the Contracting Officer's Technical Representative (COTR) on a case-by-case basis, as time was of the essence.

  20. Soft X-ray radiation-damage studies in PMMA using a cryo-STXM.

    Science.gov (United States)

    Beetz, Tobias; Jacobsen, Chris

    2003-05-01

    Radiation damage sets a fundamental limit for studies with ionizing radiation; cryo-methods are known to ease these limits. Here, measurements on mass loss and the decrease in the C=O bond density as measured by oxygen-edge XANES (NEXAFS) spectroscopy in thin films of poly(methylmethacrylate) (PMMA), studied in a vacuum, are reported. While cryo-methods allow more than 95% of the mass to remain at doses up to 10(7) Gy, there is little difference in C=O bond density versus dose between 298 K and 113 K sample temperatures. At both temperatures the critical dose for bond breaking is approximately 15 x 10(6) Gy.

  1. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    Science.gov (United States)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  2. Ventricular function following radiation damage of the right ventricle. [Dogs, gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Stone, H.L.; Bishop, V.S.; Guyton, A.C.

    The right ventricles of four dogs were exposed to 20,000 R /sup 60/Co irradiation. The animals were carried through complete stages of: (a) control studies for several weeks, (b) irradiation, and (c) postirradiation studies until death from typical heart failure 23 to 33 days later. Several different types of cardiac function curves were measured at intervals during the control and postirradiation periods. No evident deterioration of the ventricles could be discerned from the function curves during the first 14 days following irradiation. However, during the ensuing 9 to 19 days the ventricles deteriorated rapidly, as evidenced by deteriorating ventricular function curves, terminating in death. Ventricular function, as estimated by the method used in the present study, declined to an average of 43% below that of normal ventricles prior to death of the animal.

  3. Protective Effect of Pyruvate Against Radiation-Induced Damage in Collagenized Tissues

    Science.gov (United States)

    Griko, Y. V.; Yan, Xiaoli

    2016-01-01

    Exposure to high doses of ionizing radiation produces both acute and late effects on the collagenized tissues and have profound effects on wound healing. Because of the crucial practical importance for new radioprotective agents, our study has been focused on evaluation of the efficacy of non-toxic naturally occurring compounds to protect tissue integrity against high-dose gamma radiation. Here, we demonstrate that molecular integrity of collagen may serve as a sensitive biological marker for quantitative evaluation of molecular damage to collagenized tissue and efficacy of radioprotective agents. Increasing doses of gamma radiation (0-50kGy) result in progressive destruction of the native collagen fibrils, which provide a structural framework, strength, and proper milieu for the regenerating tissue. The strategy used in this study involved the thermodynamic specification of all structural changes in collagenized matrix of skin, aortic heart valve, and bone tissue induced by different doses and conditions of g-irradiation. This study describes a simple biophysical approach utilizing the Differential Scanning Calorimetry (DSC) to characterize the structural resistance of the aortic valve matrix exposed to different doses of g-irradiation. It allows us to identify the specific response of each constituent as well as to determine the influence of the different treatments on the characteristic parameters of protein structure. We found that pyruvate, a substance that naturally occurs in the body, provide significant protection (up to 80%) from biochemical and biomechanical damage to the collagenized tissue through the effective targeting of reactive oxygen species. The recently discovered role of pyruvate in the cell antioxidant defense to O2 oxidation, and its essential constituency in the daily human diet, indicate that the administration of pyruvate-based radioprotective formulations may provide safe and effective protection from deleterious effects of ionizing

  4. Pudendal Nerve and Internal Pudendal Artery Damage May Contribute to Radiation-Induced Erectile Dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, Michael W., E-mail: mwnolan@ncsu.edu [Department of Clinical Sciences, and Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina (United States); Department of Environmental and Radiologic Health Sciences, Colorado State University, Fort Collins, Colorado (United States); Marolf, Angela J. [Department of Environmental and Radiologic Health Sciences, Colorado State University, Fort Collins, Colorado (United States); Ehrhart, E.J. [Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado (United States); Rao, Sangeeta [Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado (United States); Kraft, Susan L. [Department of Environmental and Radiologic Health Sciences, Colorado State University, Fort Collins, Colorado (United States); Engel, Stephanie [Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado (United States); Yoshikawa, Hiroto; Golden, Anne E. [Department of Environmental and Radiologic Health Sciences, Colorado State University, Fort Collins, Colorado (United States); Wasserman, Todd H. [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); LaRue, Susan M. [Department of Environmental and Radiologic Health Sciences, Colorado State University, Fort Collins, Colorado (United States)

    2015-03-15

    Purpose/Objectives: Erectile dysfunction is common after radiation therapy for prostate cancer; yet, the etiopathology of radiation-induced erectile dysfunction (RI-ED) remains poorly understood. A novel animal model was developed to study RI-ED, wherein stereotactic body radiation therapy (SBRT) was used to irradiate the prostate, neurovascular bundles (NVB), and penile bulb (PB) of dogs. The purpose was to describe vascular and neurogenic injuries after the irradiation of only the NVB or the PB, and after irradiation of all 3 sites (prostate, NVB, and PB) with varying doses of radiation. Methods and Materials: Dogs were treated with 50, 40, or 30 Gy to the prostate, NVB, and PB, or 50 Gy to either the NVB or the PB, by 5-fraction SBRT. Electrophysiologic studies of the pudendal nerve and bulbospongiosus muscles and ultrasound studies of pelvic perfusion were performed before and after SBRT. The results of these bioassays were correlated with histopathologic changes. Results: SBRT caused slowing of the systolic rise time, which corresponded to decreased arterial patency. Alterations in the response of the internal pudendal artery to vasoactive drugs were observed, wherein SBRT caused a paradoxical response to papaverine, slowing the systolic rise time after 40 and 50 Gy; these changes appeared to have some dose dependency. The neurofilament content of penile nerves was also decreased at high doses and was more profound when the PB was irradiated than when the NVB was irradiated. These findings are coincident with slowing of motor nerve conduction velocities in the pudendal nerve after SBRT. Conclusions: This is the first report in which prostatic irradiation was shown to cause morphologic arterial damage that was coincident with altered internal pudendal arterial tone, and in which decreased motor function in the pudendal nerve was attributed to axonal degeneration and loss. Further investigation of the role played by damage to these structures in RI-ED is

  5. Radiation damage to the normal monkey brain: experimental study induced by interstitial irradiation.

    Directory of Open Access Journals (Sweden)

    Mishima N

    2003-06-01

    Full Text Available Radiation damage to normal brain tissue induced by interstitial irradiation with iridium-192 seeds was sequentially evaluated by computed tomography (CT, magnetic resonance imaging (MRI, and histological examination. This study was carried out in 14 mature Japanese monkeys. The experimental area received more than 200-260 Gy of irradiation developed coagulative necrosis. Infiltration of macrophages to the periphery of the necrotic area was seen. In addition, neovascularization, hyalinization of vascular walls, and gliosis were found in the periphery of the area invaded by the macrophages. All sites at which the vascular walls were found to have acute stage fibrinoid necrosis eventually developed coagulative necrosis. The focus of necrosis was detected by MRI starting 1 week after the end of radiation treatment, and the size of the necrotic area did not change for 6 months. The peripheral areas showed clear ring enhancement with contrast material. Edema surrounding the lesions was the most significant 1 week after radiation and was reduced to a minimum level 1 month later. However, the edema then expanded once again and was sustained for as long as 6 months. CT did not provide as clear of a presentation as MRI, but it did reveal similar findings for the most part, and depicted calcification in the necrotic area. This experimental model is considered useful for conducting basic research on brachytherapy, as well as for achieving a better understanding of delayed radiation necrosis.

  6. Protective effects of analogs of luteinizing hormone-releasing hormone against x-radiation-induced testicular damage in rats

    Energy Technology Data Exchange (ETDEWEB)

    Schally, A.V.; Paz-Bouza, J.I.; Schlosser, J.V.; Karashima, T.; Debeljuk, L.; Gandle, B.; Sampson, M.

    1987-02-01

    Possible protective effects of the agonist (D-Trp/sup 6/)LH-RH and antagonist N-Ac(D-Phe(pCl)/sup 1,2/,D-Trp/sup 3/,D-Arg/sup 6/,D-Ala/sup 10/)LH-RH against testicular damage caused by x-radiation were investigated in rats. Three months after being subjected to x-irradiation of the testes with 415 or 622 rads, control rats showed marked reduction in the weights of the testes and elevated levels of LH and follicle-stimulating hormone (FSH), indicating tubular damage. Histological studies demonstrated that, in testes of rats given 415 rads, most seminiferous tubules had only Sertoli cells and no germinal cells, and, in the group give 622 rads, the depression of spermatogenesis was even more marked. Rats pretreated for 50 days with LH-RH antagonist showed a complete recovery of testicular weights and spermatogenesis 3 months after 415 rads and showed partial recovery after 622 rads, and LH and FSH levels returned to normal in both of these groups. Three experiments were also carried out in which the rats were pretreated for 1-2 months with long-acting microcapsules of the agonist (D-Trp/sup 6/)LH-RH. Some rats were then subjected to gonadal irradiation with 415 or 622 rads and allowed a recovery period of 2-4 months. On the basis of testicular weights, histology, and gonadotropin levels, it could be concluded that the agonist (D-Trp/sup 6/)LH-RH did not protect the rat testes exposed to 622 rads and, at most, only partially protected against 415 rads. These results suggest that pretreatment with LH-RH antagonists and possibly agonists, might decrease the testicular damage caused by radiation and accelerate the recovery of reproductive functions.

  7. Modelling single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources.

    Science.gov (United States)

    Loch, R A; Sobierajski, R; Louis, E; Bosgra, J; Bijkerk, F

    2012-12-17

    The single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly used multilayer optics and propose new material combinations selected for a high damage threshold. Our study demonstrates that the damage thresholds of multilayer optics can vary over a large range of incidence fluences and can be as high as several hundreds of mJ/cm(2). This strongly suggests that multilayer mirrors are serious candidates for damage resistant optics. Especially, multilayer optics based on Li(2)O spacers are very promising for use in current and future short-wavelength radiation sources.

  8. Combined small angle X-ray solution scattering with atomic force microscopy for characterizing radiation damage on biological macromolecules.

    Science.gov (United States)

    Costa, Luca; Andriatis, Alexander; Brennich, Martha; Teulon, Jean-Marie; Chen, Shu-Wen W; Pellequer, Jean-Luc; Round, Adam

    2016-10-27

    Synchrotron radiation facilities are pillars of modern structural biology. Small-Angle X-ray scattering performed at synchrotron sources is often used to characterize the shape of biological macromolecules. A major challenge with high-energy X-ray beam on such macromolecules is the perturbation of sample due to radiation damage. By employing atomic force microscopy, another common technique to determine the shape of biological macromolecules when deposited on flat substrates, we present a protocol to evaluate and characterize consequences of radiation damage. It requires the acquisition of images of irradiated samples at the single molecule level in a timely manner while using minimal amounts of protein. The protocol has been tested on two different molecular systems: a large globular tetremeric enzyme (β-Amylase) and a rod-shape plant virus (tobacco mosaic virus). Radiation damage on the globular enzyme leads to an apparent increase in molecular sizes whereas the effect on the long virus is a breakage into smaller pieces resulting in a decrease of the average long-axis radius. These results show that radiation damage can appear in different forms and strongly support the need to check the effect of radiation damage at synchrotron sources using the presented protocol.

  9. Graphene damage effects on radiation-resistance and configuration of copper–graphene nanocomposite under irradiation: A molecular dynamics study

    Science.gov (United States)

    Huang, Hai; Tang, Xiaobin; Chen, Feida; Liu, Jian; Li, Huan; Chen, Da

    2016-12-01

    Metal–graphene nanocomposite is a kind of potential radiation tolerant material. Graphene damage of the composite is inevitable within radiation environments. In this paper, two kinds of copper–graphene nanocomposite (CGNC) systems containing perfect graphene and prefabricated damage graphene, respectively, were adopted to expound the influences of graphene damage on the properties (radiation-resistance and configuration) of CGNC under irradiation by atomistic simulations. In the CGNC containing perfect graphene, the increasing graphene damage induced by the increase of the number of cascades, did not obviously impair the role of copper–graphene interface in keeping the properties of CGNC. In the CGNC containing prefabricated damage graphene, the properties of CGNC would significantly deteriorate once the radius of prefabricated damage exceeds 10 Å, and even stacking fault tetrahedral would occur in the CGNC. The results highlighted that prefabricated graphene damage have greater effects on the change of the properties of CGNC. Therefore, it is very necessary to maintain the structural integrity of graphene for improving the radiation-resistance and configuration of CGNC.

  10. Assessing the Effects of Radiation Damage on Ni-base Alloys for the Prometheus Space Reactor System

    Energy Technology Data Exchange (ETDEWEB)

    T. Angeliu

    2006-01-19

    Ni-base alloys were considered for the Prometheus space reactor pressure vessel with operational parameters of {approx}900 K for 15 years and fluences up to 160 x 10{sup 20} n/cm{sup 2} (E > 0.1 MeV). This paper reviews the effects of irradiation on the behavior of Ni-base alloys and shows that radiation-induced swelling and creep are minor considerations compared to significant embrittlement with neutron ,exposure. While the mechanism responsible for radiation-induced embrittlement is not fully understood, it is likely a combination of helium embrittlement and solute segregation that can be highly dependent on the alloy composition and exposure conditions. Transmutation calculations show that detrimental helium levels would be expected at the end of life for the inner safety rod vessel (thimble) and possibly the outer pressure vessel, primarily from high energy (E > 1 MeV) n,{alpha} reactions with {sup 58}Ni. Helium from {sup 10}B is significant only for the outer vessel due to the proximity of the outer vessel to the Be0 control elements. Recommendations for further assessments of the material behavior and methods to minimize the effects of radiation damage through alloy design are provided.

  11. Protective effect of an antithyroid compound against γ-radiation-induced damage in human colon cancer cells.

    Science.gov (United States)

    Perona, Marina; Dagrosa, Maria A; Pagotto, Romina; Casal, Mariana; Pignataro, Omar; Pisarev, Mario A; Juvenal, Guillermo J

    2014-08-01

    We have previously reported the radioprotective effect of propylthiouracil (PTU) on thyroid cells. The aim of the present study was to analyze whether tumor cells and normal cells demonstrate the same response to PTU. Human colon carcinoma cells were irradiated with γ-irradiation with or without PTU. We evaluated the clonogenic survival, intracellular reactive oxygen species levels, catalase, superoxide dismutase and glutathione peroxidase activities, and apoptosis by nuclear cell morphology and caspase-3 activity assays. Cyclic AMP (cAMP) levels were measured by radioimmunoassay. PTU treatment increased surviving cell fraction at 2 Gy (SF2) from 56.9 ± 3.6 in controls to 75.0 ± 3.5 (p PTU. Moreover, pretreatment with PTU increased intracellular levels of cAMP. Forskolin (p PTU on SF2. Co-treatment with H89, an inhibitor of protein kinase A, abolished the radioprotective effect of PTU. PTU reduces the toxicity of ionizing radiation by increasing cAMP levels and also possibly through a reduction in apoptosis levels and in radiation-induced oxidative stress damage. We therefore conclude that PTU protects both normal and cancer cells during exposure to radiation in conditions mimicking the radiotherapy.

  12. Assessing the Effects of Radiation Damage on Ni-base Alloys for the Prometheus Space Reactor System

    Energy Technology Data Exchange (ETDEWEB)

    T Angeliu; J Ward; J Witter

    2006-04-04

    Ni-base alloys were considered for the Prometheus space reactor pressure vessel with operational parameters of {approx}900 K for 15 years and fluences up to 160 x 10{sup 20} n/cm{sup 2} (E > 0.1 MeV). This paper reviews the effects of irradiation on the behavior of Ni-base alloys and shows that radiation-induced swelling and creep are minor considerations compared to significant embrittlement with neutron exposure. While the mechanism responsible for radiation-induced embrittlement is not fully understood, it is likely a combination of helium embrittlement and solute segregation that can be highly dependent on the alloy composition and exposure conditions. Transmutation calculations show that detrimental helium levels would be expected at the end of life for the inner safety rod vessel (thimble) and possibly the outer pressure vessel, primarily from high energy (E > 1 MeV) n,{alpha} reactions with {sup 58}Ni. Helium from {sup 10}B is significant only for the outer vessel due to the proximity of the outer vessel to the BeO control elements. Recommendations for further assessments of the material behavior and methods to minimize the effects of radiation damage through alloy design are provided.

  13. No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation.

    Science.gov (United States)

    Bogomazova, A N; Vassina, E M; Goryachkovskaya, T N; Popik, V M; Sokolov, A S; Kolchanov, N A; Lagarkova, M A; Kiselev, S L; Peltek, S E

    2015-01-13

    Terahertz (THz) radiation was proposed recently for use in various applications, including medical imaging and security scanners. However, there are concerns regarding the possible biological effects of non-ionising electromagnetic radiation in the THz range on cells. Human embryonic stem cells (hESCs) are extremely sensitive to environmental stimuli, and we therefore utilised this cell model to investigate the non-thermal effects of THz irradiation. We studied DNA damage and transcriptome responses in hESCs exposed to narrow-band THz radiation (2.3 THz) under strict temperature control. The transcription of approximately 1% of genes was subtly increased following THz irradiation. Functional annotation enrichment analysis of differentially expressed genes revealed 15 functional classes, which were mostly related to mitochondria. Terahertz irradiation did not induce the formation of γH2AX foci or structural chromosomal aberrations in hESCs. We did not observe any effect on the mitotic index or morphology of the hESCs following THz exposure.

  14. Active control of radiated sound using nearfield pressure sensing

    Institute of Scientific and Technical Information of China (English)

    CHEN Ke'an; YIN Xuefei

    2004-01-01

    Based on nearfield sound pressure sensing to pick up error information, an approach for constructing active acoustic structure to effectively reduce radiated sound power at low frequency is proposed. The idea is that a nearfield pressure after active control is used as error signals and transformed into an objective function in adaptive active control process.Firstly sound power expression using near-field pressure radiated from a flexible structure is derived, and then three kind of nearfield pressure based active control strategies, I.e. Minimization of radiated sound power, minimization of sound power for dominant radiation modes and minimization of sound power for modified dominant radiation modes are respectively presented and applied to active control of radiated single and broadband noise. Finally computer simulations on sound power reduction under three strategies are conducted and it is shown that the proposed active control strategies are invalid and considerable reduction in radiated sound power can be achieved.

  15. Scintillation mechanism and radiation damage in Ce{sub x}La{sub 1-x}F{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wojtowicz, A.J.; Wisniewski, D. [Boston Univ., MA (United States)]|[N. Copernicus Univ., Torun (Poland); Lempicki, A.; Brecher, C. [Boston Univ., MA (United States); Bartram, R.H. [Univ. of Connecticut, Storrs (United States); Woody, C.; Levy, P.; Stoll, S.; Kierstead, J. [Brookhaven National Lab., Upton, NY (United States); Pedrini, C. [CNRS, Villeurbanne (France)] [and others

    1994-08-01

    Recent spectroscopic and radiation damage experiments on a series of Ce{sub x}La{sub 1{minus}x}F{sub 3} crystals suggest that the scintillation light output is limited by an unusual quenching mechanism, which also plays a major role in minimizing radiation-induced damage. The intensity of the radiation-induced absorptions is a strong function of the Ce content x, reaching a maximum for x = 0.03 and a minimum for x = 1. This peculiar dependence appears to be due to the influence of deep-lying Ce levels on both scintillation mechanism and radiation damage. The authors suggest that various charge transfer processes can explain many aspects of the performance of Ce{sub x}La{sub 1{minus}x}F{sub 3} scintillators.

  16. Radiation damage parameters for modelling of FRM irradiation conditions at the RADEX facility of INR RAS

    CERN Document Server

    Koptelov, E A; Sobolevsky, N M; Strebkov, Y S; Subbotin, A V

    2002-01-01

    Results of MC calculations of primary radiation damage generated by the intense proton beam at the RADiation EXperiment (RADEX) facility of the Institute for Nuclear Research, Russian Academy of Sciences (INR RAS) are presented. RADEX is the irradiation channel located inside a proton target at the beam stop of the INR RAS linear proton accelerator having energy up to 600 MeV. The position of the irradiation channel at the facility can be changed by rotation of the proton target relative to the vertical axis, thus varying the relative influence of the primary protons and spallation neutrons on the primary damage kinetics. By shifting the proton target position outside the horizontal beam axis, one may reduce the predominant input of high-energy protons to the irradiation field. As a result, the spectrum of primary knock-on atoms in the irradiated sample may be significantly softened. This gives the possibility of changing irradiation parameters to simulate irradiation conditions at other installations (ITER a...

  17. Ultraviolet Radiation, Aging and the Skin: Prevention of Damage by Topical cAMP Manipulation

    Directory of Open Access Journals (Sweden)

    Alexandra Amaro-Ortiz

    2014-05-01

    Full Text Available Being the largest and most visible organ of the body and heavily influenced by environmental factors, skin is ideal to study the long-term effects of aging. Throughout our lifetime, we accumulate damage generated by UV radiation. UV causes inflammation, immune changes, physical changes, impaired wound healing and DNA damage that promotes cellular senescence and carcinogenesis. Melanoma is the deadliest form of skin cancer and among the malignancies of highest increasing incidence over the last several decades. Melanoma incidence is directly related to age, with highest rates in individuals over the age of 55 years, making it a clear age-related disease. In this review, we will focus on UV-induced carcinogenesis and photo aging along with natural protective mechanisms that reduce amount of “realized” solar radiation dose and UV-induced injury. We will focus on the theoretical use of forskolin, a plant-derived pharmacologically active compound to protect the skin against UV injury and prevent aging symptoms by up-regulating melanin production. We will discuss its use as a topically-applied root-derived formulation of the Plectranthus barbatus (Coleus forskolii plant that grows naturally in Asia and that has long been used in various Aryuvedic teas and therapeutic preparations.

  18. The behaviour of copper in view of radiation damage in the LHC luminosity upgrade

    CERN Document Server

    Flukiger, R

    2013-01-01

    In view of the safe operation of the quadrupoles in the luminosity upgrade of the LHC accelerator, the response of the copper stabilizer at low temperatures to the various high energy radiation sources is of primary importance. The present study takes into account the expected high energy spectrum of the simultaneous radiation by neutrons, protons, pions, electrons and photons, calculated using the FLUKA code by F. Cerutti (CERN) as well as on literature values. It was found that proton irradiation causes a considerably higher damage than neutron irradiation: in spite of a 3.8% proton fraction, the measured damage is of the order of 20%, which fits with the calculations of N. Mokhov (Fermilab) on the contribution of protons to the dpa. The same calculations indicate that the total effect of protons, pions and electrons is at least as high as that of neutrons. Since recent neutron experiments of Nakamoto et al. show that the RRR of Cu is reduced from 200 to 50-120 for a fluence of 10^{21} n/cm^{2}, it follows ...

  19. Aqueous extract of Pinus caribaea inhibits the damage induced by ultraviolet radiations, in plasmid DNA

    Directory of Open Access Journals (Sweden)

    Marioly Vernhes Tamayo

    2017-08-01

    Full Text Available Context: The incidence of solar ultraviolet radiation (UV on Earth has increased due to diminish of the ozone layer. This enviromental agent is highly genotoxic causing numerous damage in DNA molecule. Nowadays there is a growing interest in the search of compounds capable to minimize these effects. In particular, phytocompounds have been tested as excelent candidates for their antigenotoxic properties. Aims: To evaluate the protective effect of the aqueous extract of Pinus caribaea (EPC against the damage induced by the UVB and UVC radiation. Methods: The cell-free plasmid DNA assay was employed. The forms of plasmid were separated electrophoretically in agarose gel. For genotoxic and photoprotective evaluation of P. caribaea, different concentrations of the extract (0.1 – 2.0 mg/mL and exposure times were evaluated. The CPD lesions were detected enzymatically. Additionally, the transmittance of the aqueous extract against 254 nm and 312 nm was measured. Results: None of the concentrations were genotoxic in 30 min of treatment, for superior times a clastogenic effect was observed. The EPC despite inhibiting the activity of the enzyme T4 endo V, impedes photolesions formation in DNA at concentrations ≥ 0.1 mg/mL. Conclusions: The EPC has photoprotective properties, this effect could be related with its antioxidants and absorptives capacities.

  20. Radiation damage to neutron and proton irradiated GaAs particle detectors

    CERN Document Server

    Rogalla, M; Evans, N; Joost, S; Kienzle-Focacci, M N; Geppert, R; Göppert, R; Irsigler, R; Ludwig, J; Runge, K; Schmid, T; Eich, Th.; Schmid, Th.

    1997-01-01

    The radiation damage in 200 um thick Schottky diodes made on semi-insulating (SI) undoped GaAs Liquid Encapsulated Czochralski (LEC) bulk material with resistivities between 0.4 and 8.9*10E7 Ohm*cm were studied using alpha-spectroscopy, signal response to minimum ionising particles (MIP), I-V and CV-measurements. The results have been analysed to investigate the influence of the substrate resistivity on the detector performance after neutron and proton irradiation. The leakage current density, signal response to alpha-particles and MIPs show a strong dependence on the resistivity before and after irradiation. An observed decrease of the electron mean free drift length before and after irradiation with increasing substrate resistivity can be explained by a model involving the different ionisation ratios of defects, which are introduced by the irradiation. Comparison of the radiation damage due to neutrons and protons gives a hardness factor of 7+-0.9 for 24 GeV/c protons. The best detectors show a response to ...

  1. Human salivary gland stem cells ameliorate hyposalivation of radiation-damaged rat salivary glands.

    Science.gov (United States)

    Jeong, Jaemin; Baek, Hyunjung; Kim, Yoon-Ju; Choi, Youngwook; Lee, Heekyung; Lee, Eunju; Kim, Eun Sook; Hah, Jeong Hun; Kwon, Tack-Kyun; Choi, Ik Joon; Kwon, Heechung

    2013-11-15

    Salivary function in mammals may be defective for various reasons, such as aging, Sjogren's syndrome or radiation therapy in head and neck cancer patients. Recently, tissue-specific stem cell therapy has attracted public attention as a next-generation therapeutic reagent. In the present study, we isolated tissue-specific stem cells from the human submandibular salivary gland (hSGSCs). To efficiently isolate and amplify hSGSCs in large amounts, we developed a culture system (lasting 4-5 weeks) without any selection. After five passages, we obtained adherent cells that expressed mesenchymal stem cell surface antigen markers, such as CD44, CD49f, CD90 and CD105, but not the hematopoietic stem cell markers, CD34 and CD45, and that were able to undergo adipogenic, osteogenic and chondrogenic differentiation. In addition, hSGSCs were differentiated into amylase-expressing cells by using a two-step differentiation method. Transplantation of hSGSCs to radiation-damaged rat salivary glands rescued hyposalivation and body weight loss, restored acinar and duct cell structure, and decreased the amount of apoptotic cells. These data suggest that the isolated hSGSCs, which may have characteristics of mesenchymal-like stem cells, could be used as a cell therapy agent for the damaged salivary gland.

  2. Ultraviolet radiation, aging and the skin: prevention of damage by topical cAMP manipulation.

    Science.gov (United States)

    Amaro-Ortiz, Alexandra; Yan, Betty; D'Orazio, John A

    2014-05-15

    Being the largest and most visible organ of the body and heavily influenced by environmental factors, skin is ideal to study the long-term effects of aging. Throughout our lifetime, we accumulate damage generated by UV radiation. UV causes inflammation, immune changes, physical changes, impaired wound healing and DNA damage that promotes cellular senescence and carcinogenesis. Melanoma is the deadliest form of skin cancer and among the malignancies of highest increasing incidence over the last several decades. Melanoma incidence is directly related to age, with highest rates in individuals over the age of 55 years, making it a clear age-related disease. In this review, we will focus on UV-induced carcinogenesis and photo aging along with natural protective mechanisms that reduce amount of "realized" solar radiation dose and UV-induced injury. We will focus on the theoretical use of forskolin, a plant-derived pharmacologically active compound to protect the skin against UV injury and prevent aging symptoms by up-regulating melanin production. We will discuss its use as a topically-applied root-derived formulation of the Plectranthus barbatus (Coleus forskolii) plant that grows naturally in Asia and that has long been used in various Aryuvedic teas and therapeutic preparations.

  3. Inverted Apatite (U-Th)/He and Fission-track Dates from the Rae craton, Baffin Island, Canada and Implications for Apatite Radiation Damage-He Diffusivity Models

    Science.gov (United States)

    Ault, A. K.; Reiners, P. W.; Thomson, S. N.; Miller, G. H.

    2015-12-01

    Coupled apatite (U-Th)/He and fission-track (AFT) thermochronology data from the same sample can be used to decipher complex low temperature thermal histories and evaluate compatibility between these two methods. Existing apatite He damage-diffusivity models parameterize radiation damage annealing as fission-track annealing and yield inverted apatite He and AFT dates for samples with prolonged residence in the He partial retention zone. Apatite chemistry also impacts radiation damage and fission-track annealing, temperature sensitivity, and dates in both systems. We present inverted apatite He and AFT dates from the Rae craton, Baffin Island, Canada, that cannot be explained by apatite chemistry or existing damage-diffusivity and fission track models. Apatite He dates from 34 individual analyses from 6 samples range from 237 ± 44 Ma to 511 ± 25 Ma and collectively define a positive date-eU relationship. AFT dates from these same samples are 238 ± 15 Ma to 350 ± 20 Ma. These dates and associated track length data are inversely correlated and define the left segment of a boomerang diagram. Three of the six samples with 20-90 ppm eU apatite grains yield apatite He and AFT dates inverted by 300 million years. These samples have average apatite Cl chemistry of ≤0.02 wt.%, with no correlation between Cl content and Dpar. Thermal history simulations using geologic constraints, an apatite He radiation damage accumulation and annealing model, apatite He dates with the range of eU values, and AFT date and track length data, do not yield any viable time-temperature paths. Apatite He and AFT data modeled separately predict thermal histories with Paleozoic-Mesozoic peaks reheating temperatures differing by ≥15 °C. By modifying the parameter controlling damage annealing (Rmr0) from the canonical 0.83 to 0.5-0.6, forward models reproduce the apatite He date-eU correlation and AFT dates with a common thermal history. Results imply apatite radiation damage anneals at

  4. Autoimmune control of lesion growth in CNS with minimal damage

    Science.gov (United States)

    Mathankumar, R.; Mohan, T. R. Krishna

    2013-07-01

    Lesions in central nervous system (CNS) and their growth leads to debilitating diseases like Multiple Sclerosis (MS), Alzheimer's etc. We developed a model earlier [1, 2] which shows how the lesion growth can be arrested through a beneficial auto-immune mechanism. We compared some of the dynamical patterns in the model with different facets of MS. The success of the approach depends on a set of control parameters and their phase space was shown to have a smooth manifold separating the uncontrolled lesion growth region from the controlled. Here we show that an optimal set of parameter values exist in the model which minimizes system damage while, at once, achieving control of lesion growth.

  5. Soft-electron beam and gamma-radiation sensitivity and DNA damage in phosphine-resistant and -susceptible strains of Rhyzopertha dominica.

    Science.gov (United States)

    Hasan, Md Mahbub; Todoriki, Setsuko; Miyanoshita, Akihiro; Imamura, Taro; Hayashi, Toru

    2006-10-01

    The soft-electron beam (low-energy electrons) and gamma-radiation sensitivities of phosphine-resistant (PHR) and -susceptible (PHS) strains of adults lesser grain borer Rhyzopertha dominica (F.) were studied, with particular reference to DNA damage assessed using single-cell electrophoresis (comet assay). Results showed that mortality in adult R. dominica varied significantly between both PHR and PHS strains. Adults of the PHR strain were found to be more tolerant toward soft-electron and gamma radiation than adults of the PHS strain. Studies on the longevity of strains showed that mean survival time and dose rate were highly correlated with both strains and treatments. Results also showed that adults of the PHR strain lived longer than adults of PHS strain for both treatments. Radiation sensitivity indices, however, decreased as radiation dose increased in both strains. Analysis of DNA damage, after 40- and 160-Gy gamma radiation, was carried out using cells obtained from both strains. Gamma-irradiated adults of both strains showed typical DNA fragmentation, compared with cells from nonirradiated adults, which showed more intact DNA. Investigations using the comet assay showed that tail length, moment, olive-tail moment, percentage of tail DNA, and percentage of DNA damage were all greater in the PHS strain compared with the PHR strain and the control insects. Results also showed that DNA damage remained at a constant level for up to 24 h after irradiation. The results have been discussed in relation to the observed strain differences in radiation sensitivity and resistance to phosphine.

  6. Damage control (revised & updated) the essential lessons of crisis management

    CERN Document Server

    Dezenhall, Eric

    2011-01-01

    No one knows this better than Eric Dezenhall and John Weber, who help companies, politicians, and celebrities get out of various kinds of trouble. In this brutally honest and eye-opening guide, they take you behind the scenes of some of the biggest public relations successes—and debacles—of modern business, politics, and entertainment. You'll discover: • Why the 1982 Tylenol cyanide-poisoning case is always cited as the best model for damage control, when in fact it has no relevance to the typical corporate crisis. • Why Audi never fully recovered from driver accusations of “sudden acceleratio

  7. Protein damage and repair controlling seed vigor and longevity.

    Science.gov (United States)

    Ogé, Laurent; Broyart, Caroline; Collet, Boris; Godin, Béatrice; Jallet, Denis; Bourdais, Gildas; Job, Dominique; Grappin, Philippe

    2011-01-01

    The formation of abnormal isoaspartyl residues derived from aspartyl or asparaginyl residues is a major source of spontaneous protein misfolding in cells. The repair enzyme protein L: -isoaspartyl methyltransferase (PIMT) counteracts such damage by catalyzing the conversion of abnormal isoaspartyl residues to their normal aspartyl forms. Thus, this enzyme contributes to the survival of many organisms, including plants. Analysis of the accumulation of isoaspartyl-containing proteins and its modulation by the PIMT repair pathway, using germination tests, immunodetection, enzymatic assays, and HPLC analysis, gives new insights in understanding controlling mechanisms of seed longevity and vigor.

  8. Diffusion of fission products and radiation damage in SiC

    Science.gov (United States)

    Malherbe, Johan B.

    2013-11-01

    A major problem with most of the present nuclear reactors is their safety in terms of the release of radioactivity into the environment during accidents. In some of the future nuclear reactor designs, i.e. Generation IV reactors, the fuel is in the form of coated spherical particles, i.e. TRISO (acronym for triple coated isotropic) particles. The main function of these coating layers is to act as diffusion barriers for radioactive fission products, thereby keeping these fission products within the fuel particles, even under accident conditions. The most important coating layer is composed of polycrystalline 3C-SiC. This paper reviews the diffusion of the important fission products (silver, caesium, iodine and strontium) in SiC. Because radiation damage can induce and enhance diffusion, the paper also briefly reviews damage created by energetic neutrons and ions at elevated temperatures, i.e. the temperatures at which the modern reactors will operate, and the annealing of the damage. The interaction between SiC and some fission products (such as Pd and I) is also briefly discussed. As shown, one of the key advantages of SiC is its radiation hardness at elevated temperatures, i.e. SiC is not amorphized by neutrons or bombardment at substrate temperatures above 350 °C. Based on the diffusion coefficients of the fission products considered, the review shows that at the normal operating temperatures of these new reactors (i.e. less than 950 °C) the SiC coating layer is a good diffusion barrier for these fission products. However, at higher temperatures the design of the coated particles needs to be adapted, possibly by adding a thin layer of ZrC.

  9. Accelerated radiation damage test facility using a 5 MV tandem ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Wady, P.T., E-mail: paul.wady@manchester.ac.uk [Dalton Cumbrian Facility, University of Manchester, Westlakes Science & Technology Park, Moor Row, Cumbria CA24 3HA (United Kingdom); Draude, A.; Shubeita, S.M.; Smith, A.D.; Mason, N. [Dalton Cumbrian Facility, University of Manchester, Westlakes Science & Technology Park, Moor Row, Cumbria CA24 3HA (United Kingdom); Pimblott, S.M. [Dalton Cumbrian Facility, University of Manchester, Westlakes Science & Technology Park, Moor Row, Cumbria CA24 3HA (United Kingdom); School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Jimenez-Melero, E. [Dalton Cumbrian Facility, University of Manchester, Westlakes Science & Technology Park, Moor Row, Cumbria CA24 3HA (United Kingdom); School of Materials, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2016-01-11

    We have developed a new irradiation facility that allows to perform accelerated damage tests of nuclear reactor materials at temperatures up to 400 °C using the intense proton (<100 μA) and heavy ion (≈10 μA) beams produced by a 5 MV tandem ion accelerator. The dedicated beam line for radiation damage studies comprises: (1) beam diagnosis and focusing optical components, (2) a scanning and slit system that allows uniform irradiation of a sample area of 0.5–6 cm{sup 2}, and (3) a sample stage designed to be able to monitor in-situ the sample temperature, current deposited on the sample, and the gamma spectrum of potential radio-active nuclides produced during the sample irradiation. The beam line capabilities have been tested by irradiating a 20Cr–25Ni–Nb stabilised stainless steel with a 3 MeV proton beam to a dose level of 3 dpa. The irradiation temperature was 356 °C, with a maximum range in temperature values of ±6 °C within the first 24 h of continuous irradiation. The sample stage is connected to ground through an electrometer to measure accurately the charge deposited on the sample. The charge can be integrated in hardware during irradiation, and this methodology removes uncertainties due to fluctuations in beam current. The measured gamma spectrum allowed the identification of the main radioactive nuclides produced during the proton bombardment from the lifetimes and gamma emissions. This dedicated radiation damage beam line is hosted by the Dalton Cumbrian Facility of the University of Manchester.

  10. Ozone depletion and UVB radiation: impact on plant DNA damage in southern South America.

    Science.gov (United States)

    Rousseaux, M C; Ballaré, C L; Giordano, C V; Scopel, A L; Zima, A M; Szwarcberg-Bracchitta, M; Searles, P S; Caldwell, M M; Díaz, S B

    1999-12-21

    The primary motivation behind the considerable effort in studying stratospheric ozone depletion is the potential for biological consequences of increased solar UVB (280-315 nm) radiation. Yet, direct links between ozone depletion and biological impacts have been established only for organisms of Antarctic waters under the influence of the ozone "hole;" no direct evidence exists that ozone-related variations in UVB affect ecosystems of temperate latitudes. Indeed, calculations based on laboratory studies with plants suggest that the biological impact of ozone depletion (measured by the formation of cyclobutane pyrimidine dimers in DNA) is likely to be less marked than previously thought, because UVA quanta (315-400 nm) may also cause significant damage, and UVA is unaffected by ozone depletion. Herein, we show that the temperate ecosystems of southern South America have been subjected to increasingly high levels of ozone depletion during the last decade. We found that in the spring of 1997, despite frequent cloud cover, the passages of the ozone hole over Tierra del Fuego (55 degrees S) caused concomitant increases in solar UV and that the enhanced ground-level UV led to significant increases in DNA damage in the native plant Gunnera magellanica. The fluctuations in solar UV explained a large proportion of the variation in DNA damage (up to 68%), particularly when the solar UV was weighted for biological effectiveness according to action spectra that assume a sharp decline in quantum efficiency with increasing wavelength from the UVB into the UVA regions of the spectrum.

  11. Effect of adiponectin deficiency on intestinal damage and hematopoietic responses of mice exposed to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ponemone, Venkatesh; Fayad, Raja; Gove, Melissa E.; Pini, Maria [Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612 (United States); Fantuzzi, Giamila, E-mail: giamila@uic.edu [Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612 (United States)

    2010-08-07

    Adiponectin (APN) is an adipose tissue-derived cytokine that regulates insulin sensitivity and inflammation. It is also involved in modulation of cell proliferation by binding to various growth factors. Based on its known effects in modulating cell proliferation and oxidative stress, APN may potentially be involved in regulating tissue damage and repair following irradiation. Adiponectin KO mice and their WT littermates were exposed to a single whole-body dose of 3 or 6 Gy gamma radiation. Radiation-induced alterations were studied in jejunum, blood, bone marrow and thymus at days 1 and 5 post-irradiation and compared with sham-irradiated groups. In WT mice, irradiation did not significantly alter serum APN levels while inducing a significant decrease in serum leptin. Irradiation caused a significant reduction in thymocyte cellularity, with concomitant decrease in CD4{sup +}, CD8{sup +} and CD4{sup +}CD8{sup +} T cell populations, with no significant differences between WT and APN KO mice. Irradiation resulted in a significantly higher increase in the frequency of micronucleated reticulocytes in the blood of APN KO compared with WT mice, whereas frequency of micronucleated normochromatic erythrocytes in the bone marrow at day 5 was significantly higher in WT compared with APN KO mice. Finally, irradiation induced similar alterations in villus height and crypt cell proliferation in the jejunum of WT and APN KO mice. Jejunum explants from sham-irradiated APN KO mice produced higher levels of IL-6 compared with tissue from WT animals, but the difference was no longer apparent following irradiation. Our data indicate that APN deficiency does not play a significant role in modulating radiation-induced gastrointestinal injury in mice, while it may participate in regulation of damage to the hematopoietic system.

  12. Eliminating oscillations in TRV controlled hydronic radiators

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh; Stoustrup, Jakob; Rasmussen, Henrik

    2011-01-01

    of the radiator itself which result in a large time constant and high gain for radiator at low flows. Taking the radiator heat as its output, we have developed this term analytically. The result is achieved by solving the partial differential equation describing the distributed radiator system with boundary......Thermostatic Radiator Valves (TRV) have proved their significant contribution in energy savings for several years. However, at low heat demands, an unstable oscillatory behavior is usually observed and well known for these devices. The instability happens due to the nonlinear dynamics...

  13. Proton radiation damage assessment of a CCD for use in a Ultraviolet and Visible Spectrometer

    Science.gov (United States)

    Gow, J. P. D.; Mason, J.; Leese, M.; Hathi, B.; Patel, M.

    2017-01-01

    This paper describes the radiation environment and radiation damage analysis performed for the Nadir and Occultation for MArs Discovery (NOMAD) Ultraviolet and Visible Spectrometer (UVIS) channel launched onboard the ExoMars Trace Gas Orbiter (TGO) in 2016. The aim of the instrument is to map the temporal and spatial variation of trace gases such as ozone and dust/cloud aerosols in the atmosphere of Mars. The instrument consists of a set of two miniature telescope viewing optics which allow for selective input onto the optical bench, where an e2v technologies CCD30-11 will be used as the detector. A Geometry Description Markup Language model of the spacecraft and instrument box was created and through the use of ESA's SPace ENVironment Information System (SPENVIS) an estimate of the 10 MeV equivalent proton fluence was made at a number of radiation sensitive regions within NOMAD, including that of the CCD30-11 which is the focus of this paper. The end of life 10 MeV equivalent proton fluence at the charge coupled device was estimated to be 4.7 × 109 protons.cm-2 three devices were irradiated at different levels up a 10 MeV equivalent fluence of 9.4 × 109 protons.cm-2. The dark current, charge transfer inefficiency, charge storage, and cosmetic quality of the devices was investigated pre- and post-irradiation, determining that the devices will continue to provide excellent science throughout the mission.

  14. Mechanism of Radiation Damage Reduction in Equiatomic Multicomponent Single Phase Alloys.

    Science.gov (United States)

    Granberg, F; Nordlund, K; Ullah, Mohammad W; Jin, K; Lu, C; Bei, H; Wang, L M; Djurabekova, F; Weber, W J; Zhang, Y

    2016-04-01

    Recently a new class of metal alloys, of single-phase multicomponent composition at roughly equal atomic concentrations ("equiatomic"), have been shown to exhibit promising mechanical, magnetic, and corrosion resistance properties, in particular, at high temperatures. These features make them potential candidates for components of next-generation nuclear reactors and other high-radiation environments that will involve high temperatures combined with corrosive environments and extreme radiation exposure. In spite of a wide range of recent studies of many important properties of these alloys, their radiation tolerance at high doses remains unexplored. In this work, a combination of experimental and modeling efforts reveals a substantial reduction of damage accumulation under prolonged irradiation in single-phase NiFe and NiCoCr alloys compared to elemental Ni. This effect is explained by reduced dislocation mobility, which leads to slower growth of large dislocation structures. Moreover, there is no observable phase separation, ordering, or amorphization, pointing to a high phase stability of this class of alloys.

  15. Late Ordovician geographic patterns of extinction compared with simulations of astrophysical ionizing radiation damage

    CERN Document Server

    Melott, Adrian L

    2008-01-01

    Based on the intensity and rates of various kinds of intense ionizing radiation events such as supernovae and gamma-ray bursts, it is likely that the Earth has been subjected to one or more events of potential mass extinction level intensity during the Phanerozoic. These induce changes in atmospheric chemistry so that the level of Solar ultraviolet-B radiation reaching surface and near-surface waters may be approximately doubled for up to one decade. This UVB level is known from experiment to be more than enough to kill off many kinds of organisms, particularly phytoplankton. It could easily induce a crash of the photosynthetic-based food chain in the oceans. Certain regularities in the latitudinal distribution of damage are apparent in computational simulations of the atmospheric changes. It was previously proposed that the late Ordovician extinction is a candidate for a contribution from an ionizing radiation event, based on environmental selectivity in trilobites. We confront this hypothesis with data from...

  16. Mechanism of Radiation Damage Reduction in Equiatomic Multicomponent Single Phase Alloys

    Science.gov (United States)

    Granberg, F.; Nordlund, K.; Ullah, Mohammad W.; Jin, K.; Lu, C.; Bei, H.; Wang, L. M.; Djurabekova, F.; Weber, W. J.; Zhang, Y.

    2016-04-01

    Recently a new class of metal alloys, of single-phase multicomponent composition at roughly equal atomic concentrations ("equiatomic"), have been shown to exhibit promising mechanical, magnetic, and corrosion resistance properties, in particular, at high temperatures. These features make them potential candidates for components of next-generation nuclear reactors and other high-radiation environments that will involve high temperatures combined with corrosive environments and extreme radiation exposure. In spite of a wide range of recent studies of many important properties of these alloys, their radiation tolerance at high doses remains unexplored. In this work, a combination of experimental and modeling efforts reveals a substantial reduction of damage accumulation under prolonged irradiation in single-phase NiFe and NiCoCr alloys compared to elemental Ni. This effect is explained by reduced dislocation mobility, which leads to slower growth of large dislocation structures. Moreover, there is no observable phase separation, ordering, or amorphization, pointing to a high phase stability of this class of alloys.

  17. Biophysical modelling of early and delayed radiation damage at chromosome level

    Science.gov (United States)

    Andreev, S.; Eidelman, Y.

    Exposure by ionising radiation increases cancer risk in human population Cancer is thought to originate from an altered expression of certain number of specific genes It is now widely recognised that chromosome aberrations CA are involved in stable change in expression of genes by gain or loss of their functions Thus CA can contribute to initiation or progression of cancer Therefore understanding mechanisms of CA formation in the course of cancer development might be valuable tool for quantification and prognosis of different stages of radiation carcinogenesis Early CA are defined as aberrations induced in first post-irradiation mitotic cycle The present work describes the original biophysical technique for early CA modelling It includes the following simulation steps the ionising particle track structure the structural organisation of all chromosomes in G 0 G 1 cell nucleus spatial distribution of radiation induced DNA double-strand breaks dsb within chromosomes dsb rejoining and misrejoining modelling cell cycle taking into account mitotic delay which results in complex time dependence of aberrant cells in first mitosis The results on prediction of dose-response curves for simple and complex CA measured in cells undergoing first division cycle are presented in comparison with recent experimental data There is increasing evidence that CA are also observed in descendents of irradiated cells many generations after direct DNA damage These delayed CA or chromosome instability CI are thought to be a manifestation of genome

  18. Accelerated aging tests of radiation damaged lasers and photodiodes for the CMS tracker optical links

    CERN Document Server

    Gill, K; Batten, J; Cervelli, G; Grabit, R; Jensen, F; Troska, Jan K; Vasey, F

    1999-01-01

    The combined effects of radiation damage and accelerated ageing in COTS lasers and p-i-n photodiodes are presented. Large numbers of these devices are employed in future High Energy Physics experiments and it is vital that these devices are confirmed to be sufficiently robust in terms of both radiation resistance and reliability. Forty 1310 nm InGaAsP edge-emitting lasers (20 irradiated) and 30 InGaAs p- i-n photodiodes (19 irradiated) were aged for 4000 hours at 80 degrees C with periodic measurements made of laser threshold and efficiency, in addition to p-i-n leakage current and photocurrent. There were no sudden failures and there was very little wearout- related degradation in either unirradiated or irradiated sample groups. The results suggest that the tested devices have a sufficiently long lifetime to operate for at least 10 years inside the Compact Muon Solenoid experiment despite being exposed to a harsh radiation environment. (13 refs).

  19. Molecular dynamics study of radiation damage and microstructure evolution of zigzag single-walled carbon nanotubes under carbon ion incidence

    Science.gov (United States)

    Li, Huan; Tang, Xiaobin; Chen, Feida; Huang, Hai; Liu, Jian; Chen, Da

    2016-07-01

    The radiation damage and microstructure evolution of different zigzag single-walled carbon nanotubes (SWCNTs) were investigated under incident carbon ion by molecular dynamics (MD) simulations. The radiation damage of SWCNTs under incident carbon ion with energy ranging from 25 eV to 1 keV at 300 K showed many differences at different incident sites, and the defect production increased to the maximum value with the increase in incident ion energy, and slightly decreased but stayed fairly stable within the majority of the energy range. The maximum damage of SWCNTs appeared when the incident ion energy reached 200 eV and the level of damage was directly proportional to incident ion fluence. The radiation damage was also studied at 100 K and 700 K and the defect production decreased distinctly with rising temperature because radiation-induced defects would anneal and recombine by saturating dangling bonds and reconstructing carbon network at the higher temperature. Furthermore, the stability of a large-diameter tube surpassed that of a thin one under the same radiation environments.

  20. Fundamental Processes of Coupled Radiation Damage and Mechanical Behavior in Nuclear Fuel Materials for High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Phillpot, Simon; Tulenko, James

    2011-09-08

    The objective of this work has been to elucidate the relationship among microstructure, radiation damage and mechanical properties for nuclear fuel materials. As representative nuclear materials, we have taken an hcp metal (Mg as a generic metal, and Ti alloys for fast reactors) and UO2 (representing fuel). The degradation of the thermo-mechanical behavior of nuclear fuels under irradiation, both the fissionable material itself and its cladding, is a longstanding issue of critical importance to the nuclear industry. There are experimental indications that nanocrystalline metals and ceramics may be more resistant to radiation damage than their coarse-grained counterparts. The objective of this project look at the effect of microstructure on radiation damage and mechanical behavior in these materials. The approach to be taken was state-of-the-art, large-scale atomic-level simulation. This systematic simulation program of the effects of irradiation on the structure and mechanical properties of polycrystalline Ti and UO2 identified radiation damage mechanisms. Moreover, it will provided important insights into behavior that can be expected in nanocrystalline microstructures and, by extension, nanocomposites. The fundamental insights from this work can be expected to help in the design microstructures that are less susceptible to radiation damage and thermomechanical degradation.

  1. Source term and radiation dose estimates for postulated damage to the 102 Building at the General Electric Vallecitos Nuclear Center

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, J.; McPherson, R.B.; Schwendiman, L.C.; Watson, E.C.; Ayer, J.E.

    1979-02-01

    Three scenarios representing significant levels of containment loss due to moderate, substantial, and major damage to the 102 Building at the Vallecitos Nuclear Center are postulated, and the potential radiation doses to the general population as a result of the airborne releases of radionuclides are estimated. The damage scenarios are not correlated to any specific level of seismic activity. The three scenarios are: (1) Moderate damage scenario--perforation of the enclosures in and the structure comprising the Plutonium Analytical Laboratory. (2) Substantial damage scenario--complete loss of containment of the Plutonium Analytical Laboratory and loss of the filters sealing the inlet to the Radioactive Materials Laboratory hot cells. (3) Major damage scenario--the damage outlined in (2) plus the perforation of enclosures holding significant inventories of dispersible plutonium in and the structure comprising the Advanced Fuels Laboratory.

  2. Protective Effects of Prunus armeniaca L (Apricot on Low Dose Radiation-Induced Kidney Damage in Rats

    Directory of Open Access Journals (Sweden)

    Meltem KURUS

    2014-05-01

    Full Text Available OBJECTIVE: This experimental study was designed to evaluate radiation-induced kidney damage and the protective effect of apricot against it using histological parameters. MATERIAL and METHODS: Rats were divided into 6 groups each containing 10 Sprague Dawley rats as follows: Regc: Rats on a regular diet (control diet for 28 weeks; control group. Regx: Rats on a regular diet for 28 weeks, XRE on last day of eighth week. Aprc: Rats on an apricot diet for 28 weeks; control for no XRE. Aprx: Rats on an apricot diet for 28 weeks, XRE on last day of eighth week. Reg+Aprc: Rats on a regular diet for 8 weeks, followed by an apricot diet for the following 20 weeks; control. Reg + Aprx: Rats on a regular diet for 8 weeks, XRE on last day of eighth week, followed by an apricot diet for 20 weeks. RESULTS: The kidneys of the control groups showed normal kidney histology, whereas Regx group showed major histopathological changes, such as glomerular collapse, hemorrhage, interstitial fibrosis and inflammatory infiltrates. The Aprx and Reg+Aprx groups showed smaller amounts of degeneration. CONCLUSION: In conclusion, we suggest that agents with antioxidant properties such as apricot may have a positive effect in the treatment of renal diseases.

  3. The quantification of wound healing as a method to assess late radiation damage in primate skin exposed to high-energy protons

    Science.gov (United States)

    Cox, A. B.; Lett, J. T.

    In an experiment examining the effects of space radiations on primates, different groups of rhesus monkeys (Macaca mulatta) were exposed to single whole-body doses of 32- or 55-MeV protons. Survivors of those exposures, together with age-matched controls, have been monitored continuously since 1964 and 1965. Late effects of nominal proton doses ranging from 2-6 Gray have been measured in vitro using skin fibroblasts from the animals. A logical extension of that study is reported here, and it involves observations of wound healing after 3-mm diameter dermal punches were removed from the ears (pinnae) of control and irradiated monkeys. Tendencies in the reduction of competence to repair cutaneous wound have been revealed by the initial examinations of animals that received doses greater than 2 Gy more than 2 decades earlier. These trends indicate that this method of assessing radiation damage to skin exposed to high-energy radiations warrants further study.

  4. Dexmedetomidine acts as an oxidative damage prophylactic in rats exposed to ionizing radiation.

    Science.gov (United States)

    Kutanis, Dilek; Erturk, Engin; Besir, Ahmet; Demirci, Yucel; Kayir, Selcuk; Akdogan, Ali; Vanizor Kural, Birgul; Bahat, Zumrut; Canyilmaz, Emine; Kara, Hanife

    2016-11-01

    To investigate the effects of dexmedetomidine on oxidative injury caused by ionizing radiation. Randomized controlled experimental study. Department of radiation oncology and research laboratory of an academic hospital. Twenty-eight rats were randomized to 4 groups (n=7 per group). Group S rats were administered physiologic serum; group SR rats were administered physiologic serum and 10 Gy external ionizing radiation. Groups D100 and D200 were administered 100 and 200 μg/kg dexmedetomidine intraperitoneally, respectively, 45 minutes before ionizing radiation. Liver, kidney, lung, and thyroid tissue and serum levels of antioxidant enzymes (glutathione peroxidase [GPX], superoxide dismutase, and catalase) and oxidative metabolites (advanced oxidation protein products, malondialdehyde, and nitrate/nitrite, and serum ischemia-modified albumin) were measured 6 hours postprocedure. In group SR, IR decreased antioxidant enzyme levels and increased oxidative metabolite levels (PD100 and D200 than in group SR (PD100 and D200 than in group SR (PD100 and D200 than in group SR (PD100 and D200 than in group SR (P<.01). Hepatic, renal, and lung nitrate/nitrite levels were lower in group D200 than in group SR (P<.05). Dexmedetomidine preserves the antioxidant enzyme levels and reduces toxic oxidant metabolites. Therefore, it can provide protection from oxidative injury caused by ionizing radiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Detection of Low Level Microwave Radiation Induced Deoxyribonucleic Acid Damage Vis-à-vis Genotoxicity in Brain of Fischer Rats

    Science.gov (United States)

    Deshmukh, Pravin Suryakantrao; Megha, Kanu; Banerjee, Basu Dev; Ahmed, Rafat Sultana; Chandna, Sudhir; Abegaonkar, Mahesh Pandurang; Tripathi, Ashok Kumar

    2013-01-01

    Background: Non-ionizing radiofrequency radiation has been increasingly used in industry, commerce, medicine and especially in mobile phone technology and has become a matter of serious concern in present time. Objective: The present study was designed to investigate the possible deoxyribonucleic acid (DNA) damaging effects of low-level microwave radiation in brain of Fischer rats. Materials and Methods: Experiments were performed on male Fischer rats exposed to microwave radiation for 30 days at three different frequencies: 900, 1800 and 2450 MHz. Animals were divided into 4 groups: Group I (Sham exposed): Animals not exposed to microwave radiation but kept under same conditions as that of other groups, Group II: Animals exposed to microwave radiation at frequency 900 MHz at specific absorption rate (SAR) 5.953 × 10−4 W/kg, Group III: Animals exposed to 1800 MHz at SAR 5.835 × 10−4 W/kg and Group IV: Animals exposed to 2450 MHz at SAR 6.672 × 10−4 W/kg. At the end of the exposure period animals were sacrificed immediately and DNA damage in brain tissue was assessed using alkaline comet assay. Results: In the present study, we demonstrated DNA damaging effects of low level microwave radiation in brain. Conclusion: We concluded that low SAR microwave radiation exposure at these frequencies may induce DNA strand breaks in brain tissue. PMID:23833433

  6. Ionospheric heating for radiation belt control

    Science.gov (United States)

    Burke, William J.; Villalon, Elena

    1990-10-01

    Pitch-angle scattering interactions of electromagnetic waves in the ELF/VLF bands with trapped electrons describe the dynamics of the freshly filled radiation belts flux tubes. The natural existence of a 'slot' region with electron fluxes below the Kennel-Petschek limit requires non-local wave sources. A set of planned, active experiments is described in which VLF radiation is injected from ground and space band transmitters in conjunction with the Combined Release and Radiation Effects Satellite in the radiation belts. These experiments can measure the intensity if waves driving pitch-angle diffusion and the electron energies in gyroresonance with the waves.

  7. Investigating α-particle radiation damage in phyllosilicates using synchrotron microfocus-XRD/XAS: implications for geological disposal of nuclear waste

    Science.gov (United States)

    Bower, W. R.; Pearce, C. I.; Pimblott, S. M.; Haigh, S. J.; Mosselmans, J. F. W.; Pattrick, R. A. D.

    2014-12-01

    The response of mineral phases to the radiation fields that will be experienced in a geological disposal facility (GDF) for nuclear waste is poorly understood. Phyllosilicates are critical phases in a GDF with bentonite clay as the backfill of choice surrounding high level wastes in the engineered barrier, and clays and micas forming the most important reactive component of potential host rocks. It is essential that we understand changes in mineral properties and behaviour as a result of damage from both α and γ radiation over long timescales. Radiation damage has been demonstrated to affect the physical integrity and oxidation state1 of minerals which will also influence their ability to react with radionuclides. Using the University of Manchester's newly commissioned particle accelerator at the Dalton Cumbrian Facility, UK, model phyllosilicate minerals (e.g. biotite, chlorite) were irradiated with high energy (5MeV) alpha particles at controlled dose rates. This has been compared alongside radiation damage found in naturally formed 'radiohalos' - spherical areas of discolouration in minerals surrounding radioactive inclusions, resulting from alpha particle penetration, providing a natural analogue to study lattice damage under long term bombardment1,2. Both natural and artificially irradiated samples have been analysed using microfocus X-ray absorption spectroscopy and high resolution X-ray diffraction mapping on Beamline I18 at Diamond Light Source; samples were probed for redox changes and long/short range disorder. This was combined with lattice scale imaging of damage using HR-TEM (TitanTM Transmission Electron Microscope). The results show aberrations in lattice parameters as a result of irradiation, with multiple damage-induced 'domains' surrounded by amorphous regions. In the naturally damaged samples, neo-formed phyllosilicate phases are shown to be breakdown products of highly damaged regions. A clear reduction of the Fe(III) component has been

  8. Attempt at a medicolegal assessment of radiation damage as bodily injury. Der Versuch einer gerichtsmedizinischen Beurteilung des Strahlenschadens als Koerperverletzung

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, J.

    1970-02-20

    The dissertation shows on which basis an unsuccessful therapy or the inevitable consequence of therapy, radiation damage, can be prosecuted under penal law as bodily injury. A description is given of the nature and the different types of ionizing radiation, effects on the cell and on the human organism, types of damage, different degrees of sensitivity of the various organs, signs and symptoms in the human body, maximum doses, legal restrictions for different patient groups and organs. The problems involved in objectification and establishing a causal relationship between ionizing radiation and the manifest damage are pointed out clearly. The legal part of the work examines negligence, obligation to inform the patient, obligation to exercise due care, failure to do so and malpractice as possible criteria for culpable infliction of bodily injury. (HSCH).

  9. Observation of radiation-specific damage in cells exposed to depleted uranium: hprt gene mutation frequency

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Alexandra C. [Science Research Departments, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)], E-mail: millera@afrri.usuhs.mil; Stewart, Michael; Rivas, Rafael [Science Research Departments, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States); Marino, Steve; Randers-Pehrson, Gerhard [Center for Radiological Research, Columbia University, 630 W. 168th St. VC11-215, New York, NY 10032 (United States); Shi Lin [Science Research Departments, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)

    2007-07-15

    Depleted uranium (DU) is a dense heavy metal used primarily in military applications. Published data from our laboratory have demonstrated that DU exposure in vitro to immortalized human osteoblast cells (HOS) is both neoplastically transforming and genotoxic. Recent animal studies have also shown that DU is leukemogenic and genotoxic. DU possesses both a radiological (alpha particle) and chemical (metal) component. Since DU has a low specific activity in comparison to natural uranium, it is not considered to be a significant radiological hazard. The potential contribution of radiation to DU-induced biological effects is unknown, and the involvement of radiation in DU-induced biological effects could have significant implications for current risk estimates for internalized DU exposure. The purpose of the current study was to measure the induction of mutagenic damage in V79 cells and to determine if radiation plays a role in the induction of that damage. Mutagenicity at the hypoxanthine (guanine) phosphoribosyltransferase (hprt) locus was measured by selection with 6-thioguanine. There was a dose-dependent increase in mutagenic response following DU exposure (10-50{mu}m); the average increase in mutagenicity above background ranged from 2.54{+-}1.19 to 8.75{+-}1.8(P<0.05). Using the same concentration (25{mu}M) of two uranyl nitrate compounds that have different uranium isotopic concentrations and, therefore, different specific activities, we examined the effect on hprt mutant frequency in vitro. V79 cells were exposed to either {sup 238}U-uranyl nitrate, specific activity 0.33{mu}Ci/g, or DU-uranyl nitrate, specific activity 0.44{mu}Ci/g, delivered at a concentration of 25{mu}M for 24 h. Results showed, that at equal uranium concentration, a 1.33-fold increase in specific activity resulted in a 1.27{+-}0.11-fold (P<0.05) increase in hprt mutant frequency. Taken together these data support earlier results showing that radiation can play a role in DU

  10. Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Niels Gronbech; Asta, Mark; Ozolins, Nigel Browning' Vidvuds; de Walle, Axel van; Wolverton, Christopher

    2011-12-29

    The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.

  11. Technical Scope of Work: Proton Induced Radiation Damage in Crystal Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ren-Yuan [California Inst. of Technology (CalTech), Pasadena, CA (United States); Zhang, Liyuan [California Inst. of Technology (CalTech), Pasadena, CA (United States); Yang, Fan [California Inst. of Technology (CalTech), Pasadena, CA (United States); Ramberg, Eric [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Nebel, Todd [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2014-03-11

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of California Institute of Technology who have committed to participate in beam tests to be carried out during the 2014 Fermilab Test Beam Facility program. The goal of this investigation is to understand the proton-induced radiation damage in candidate fast crystal scintillators for future HEP experiments. Degradations of the optical and scintillation properties, including emission and transmittance spectra, light output, decay time and light response uniformity, will be measured before and after each step of proton irradiation at Fermilab with a defined fluence. The irradiation will start with a fluence of 1010/cm2 and going up in four steps to 1013/cm2.

  12. Radiation damage and tritium release from Li-Zr-Si oxides

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, H.; Bosch, P. [Universidad Autonoma Metropolitana-Iztapalapa, Dept. de Quimica (Mexico); Lopez, B.; Jimenez-Becerril, J.; Bulbulian, S. [Instituto Nacional de Investigaciones Nucleares, Dept. de Quimica (Mexico)

    2002-04-01

    Li-Zr-Si mixed oxides were irradiated in a mixed radiation field in order to produce tritium through the Li{sup 6}(n, {alpha})H{sup 3} reaction. The LiZrSiO{sub 4} samples, prepared with different Li:Zr molar ratios (1, 3, 5 and 6), presented high tritium diffusion compared with other lithium ceramics like Li{sub 2}SiO{sub 3} and Li{sub 2}ZrO{sub 3}. Furthermore, their composition and structure were not modified after irradiation. It was also found that Li{sub 2}ZrSi{sub 6}O{sub 15} was damaged by irradiation, and that tritium release was moderate in this compound. (authors)

  13. The effect of C concentration on radiation damage in Fe–Cr–C alloys

    Energy Technology Data Exchange (ETDEWEB)

    Meinander, A., E-mail: andrea.meinander@helsinki.fi [EURATOM-Tekes, Department of Physics, P.O. Box 43, FI-00014 University of Helsinki (Finland); Henriksson, K.O.E. [EURATOM-Tekes, Department of Physics, P.O. Box 43, FI-00014 University of Helsinki (Finland); Björkas, C. [EURATOM-Tekes, Department of Physics, P.O. Box 43, FI-00014 University of Helsinki (Finland); Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, Association EURATOM-FZJ, Partner in the Trilateral Euregio Cluster, Jülich (Germany); Vörtler, K.; Nordlund, K. [EURATOM-Tekes, Department of Physics, P.O. Box 43, FI-00014 University of Helsinki (Finland)

    2013-11-15

    Using a recently developed analytical bond-order potential for the complete ternary system, we performed molecular dynamics simulations of the primary radiation damage by displacement cascades in different Fe–Cr–C model alloys. We compared results obtained with this new potential to previous studies employing potentials for the binary Fe–Cr and Fe–C systems. We analysed the effect of C concentration on the number of Frenkel pairs produced by the cascades, as well as on clustering of vacancies and self-interstitial atoms (SIAs), and on the Cr and C content in the defects. The effect of C concentration on defect production was negligible, except at very high concentrations of over 1 at.% C. The main effect was in the Cr content of clustered SIAs, which increased with increasing C concentration.

  14. Radiation Damage and Recovery in Neutron-Irradiated MgO Crystal

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    MgO single crystal was irradiated by neutron up to a dose of 5.74×1018 cm-2. The radiation damage and its recovery were studied by means of UV-VIS and EM spectroscopy. The results indicate that the irradiation generates large amount of optically detectable defects such as single anion vacancies (F+ center), anion divacancies (F2) and some higher order defects. Through isochronal annealing, these defects started a series of processes of diminishing and transforming, and finally all disappeared while annealing at 900 ℃. It seems that the absorption bands of 573 nm are resulted from a higher order and more complex aggregated center than that of 424, 451 nm bands.

  15. Technical Scope of Work: Proton Induced Radiation Damage in Crystal Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ren-Yuan [California Inst. of Technology (CalTech), Pasadena, CA (United States); Zhang, Liyuan [California Inst. of Technology (CalTech), Pasadena, CA (United States); Yang, Fan [California Inst. of Technology (CalTech), Pasadena, CA (United States); Ramberg, Eric [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Nebel, Todd [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2014-03-11

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of California Institute of Technology who have committed to participate in beam tests to be carried out during the 2014 Fermilab Test Beam Facility program. The goal of this investigation is to understand the proton induced radiation damage in candidate fast crystal scintillators for future HEP experiments. Degradations of the optical and scintillation properties, including emission and transmittance spectra, light output, decay time and light response uniformity, will be measured before and after each step of proton irradiation at Fermilab with a defined fluence. The irradiation will start with a fluence of 1010/cm2 and going up in four steps to 1013/cm2.

  16. Radiation damage study on diamond sensors of the ALICE Beam Condition Monitoring system

    CERN Document Server

    Vai, Ilaria

    2013-01-01

    The ALICE Beam Monitoring System has been developed with the aim of detecting beam failures that can affect the experimental region. It is composed of synthetic diamonds as detector, a material that is particularly adapt to harsh radiation environment. However some sensors have shown an increase in the noise in the last year of operation. For this reason, I have developed a station to study the working parameters of the diamond sensors used in this system, in order to check their conditions. I've found an increase of the dark current of almost all the sensors and, in particular, the sensors of the system BCM-A seem to have suffered a greater damage than the others.

  17. Revealing low-dose radiation damage using single-crystal spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Robin L., E-mail: robin.owen@diamond.ac.uk [Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, OX11 0DE (United Kingdom); Yorke, Briony A.; Gowdy, James A.; Pearson, Arwen R. [University of Leeds, Leeds (United Kingdom)

    2011-05-01

    Data on the rapid reduction of haem proteins in the X-ray beam at synchrotron sources are presented. The use of single-crystal spectroscopy to detect these changes and their implication for diffraction data collection from oxidized species is also discussed. The structural information and functional insight obtained from X-ray crystallography can be enhanced by the use of complementary spectroscopies. Here the information that can be obtained from spectroscopic methods commonly used in conjunction with X-ray crystallography and best-practice single-crystal UV-Vis absorption data collection are briefly reviewed. Using data collected with the in situ system at the Swiss Light Source, the time and dose scales of low-dose X-ray-induced radiation damage and solvated electron generation in metalloproteins at 100 K are investigated. The effect of dose rate on these scales is also discussed.

  18. On radiation damage in FIB-prepared softwood samples measured by scanning X-ray diffraction.

    Science.gov (United States)

    Storm, Selina; Ogurreck, Malte; Laipple, Daniel; Krywka, Christina; Burghammer, Manfred; Di Cola, Emanuela; Müller, Martin

    2015-03-01

    The high flux density encountered in scanning X-ray nanodiffraction experiments can lead to severe radiation damage to biological samples. However, this technique is a suitable tool for investigating samples to high spatial resolution. The layered cell wall structure of softwood tracheids is an interesting system which has been extensively studied using this method. The tracheid cell has a complex geometry, which requires the sample to be prepared by cutting it perpendicularly to the cell wall axis. Focused ion beam (FIB) milling in combination with scanning electron microscopy allows precise alignment and cutting without splintering. Here, results of a scanning X-ray diffraction experiment performed on a biological sample prepared with a focused ion beam of gallium atoms are reported for the first time. It is shown that samples prepared and measured in this way suffer from the incorporation of gallium atoms up to a surprisingly large depth of 1 µm.

  19. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair

    Science.gov (United States)

    Sterpone, Silvia; Cozzi, Renata

    2010-01-01

    It is well known that ionizing radiation (IR) can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to developing cancer; this variability is principally represented by genetic polymorphisms, that is, DNA repair gene polymorphisms. In particular we have focussed on single nucleotide polymorphisms (SNPs) of XRCC1, a gene that encodes for a scaffold protein involved basically in Base Excision Repair (BER). In this paper we have reported and presented recent studies that show an influence of XRCC1 variants on DNA repair capacity and susceptibility to breast cancer. PMID:20798883

  20. A radiation damage test for double-sided silicon strip detectors

    CERN Document Server

    Iwata, Y; Ikeda, M; Kitabayashi, H; Ohmoto, T; Kondo, T; Unno, Y; Terada, S; Kohriki, T; Takashima, R

    2002-01-01

    In order to investigate the p-side strip isolation, position sensitivity and charge collection of type-inverted double-sided silicon microstrip detectors, signal amplitude and charge sharing of adjacent strips were measured by using a laser test stand, following the irradiation with a flux of 3.8x10 sup 1 sup 3 /cm sup 2 of 12 GeV protons. The irradiated detectors indicated high bulk resistivity, which results in maintaining a position sensitivity of the ohmic contact side even below the full depletion voltage. This fact suggests a possibility of operation of a double-sided detector whose full depletion voltage becomes higher than its breakdown limit because of a radiation damage.

  1. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair

    Directory of Open Access Journals (Sweden)

    Silvia Sterpone

    2010-01-01

    Full Text Available It is well known that ionizing radiation (IR can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to developing cancer; this variability is principally represented by genetic polymorphisms, that is, DNA repair gene polymorphisms. In particular we have focussed on single nucleotide polymorphisms (SNPs of XRCC1, a gene that encodes for a scaffold protein involved basically in Base Excision Repair (BER. In this paper we have reported and presented recent studies that show an influence of XRCC1 variants on DNA repair capacity and susceptibility to breast cancer.

  2. Simulation of thermal ageing and radiation damage in Fe-Cr

    Energy Technology Data Exchange (ETDEWEB)

    Wallenius, Janne [Department of Reactor Physics, KTH, AlbaNova University Centre, 106 91 Stockholm (Sweden)]. E-mail: janne@neutron.kth.se; Olsson, Paer [Department Materiaux et Mecanique des Composants, Electricite de France, EDF-R and D, Les Renardieres, F-77250 Moret sur Loing (France); Malerba, Lorenzo [SCK-CEN, Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Terentyev, Dmitry [SCK-CEN, Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium)

    2007-02-15

    In recent years substantial progress has been made in the field of multi-scale modelling of radiation damage Fe-Cr alloy. Ab initio calculations have provided a description of point-defect properties for a large number of defect configurations. Empirical potentials for the alloy of EAM and 2nd moment tight binding type have been constructed that reproduce these formation energies, as well as the anomalous shift in sign of mixing enthalpy at a Cr concentration of about 10%. Applying the potentials in simulation of interstitial cluster transport, it has been found that cluster diffusion coefficients have shallow minima corresponding to experimentally measured minima in swelling rates of Fe-Cr alloys. Kinetic Monte Carlo simulation of thermal ageing further show that these potentials correctly reproduce the formation modes of the alpha-prime phase for Cr concentrations above 9%. The present paper is a review of methods used and results achieved within the last couple of years.

  3. Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Niels Gronbech; Asta, Mark; Ozolins, Nigel Browning' Vidvuds; de Walle, Axel van; Wolverton, Christopher

    2011-12-29

    The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.

  4. HST/WFC3: understanding and mitigating radiation damage effects in the CCD detectors

    Science.gov (United States)

    Baggett, S. M.; Anderson, J.; Sosey, M.; Gosmeyer, C.; Bourque, M.; Bajaj, V.; Khandrika, H.; Martlin, C.

    2016-07-01

    At the heart of the Hubble Space Telescope Wide Field Camera 3 (HST/WFC3) UVIS channel is a 4096x4096 pixel e2v CCD array. While these detectors continue to perform extremely well after more than 7 years in low-earth orbit, the cumulative effects of radiation damage are becoming increasingly evident. The result is a continual increase of the hotpixel population and the progressive loss in charge-transfer efficiency (CTE) over time. The decline in CTE has two effects: (1) it reduces the detected source flux as the defects trap charge during readout and (2) it systematically shifts source centroids as the trapped charge is later released. The flux losses can be significant, particularly for faint sources in low background images. In this report, we summarize the radiation damage effects seen in WFC3/UVIS and the evolution of the CTE losses as a function of time, source brightness, and image-background level. In addition, we discuss the available mitigation options, including target placement within the field of view, empirical stellar photometric corrections, post-flash mode and an empirical pixel-based CTE correction. The application of a post-flash has been remarkably effective in WFC3 at reducing CTE losses in low-background images for a relatively small noise penalty. Currently, all WFC3 observers are encouraged to consider post-flash for images with low backgrounds. Finally, a pixel-based CTE correction is available for use after the images have been acquired. Similar to the software in use in the HST Advanced Camera for Surveys (ACS) pipeline, the algorithm employs an observationally-defined model of how much charge is captured and released in order to reconstruct the image. As of Feb 2016, the pixel-based CTE correction is part of the automated WFC3 calibration pipeline. Observers with pre-existing data may request their images from MAST (Mikulski Archive for Space Telescopes) to obtain the improved products.

  5. Atomistic investigation of Cr influence on primary radiation damage in Fe-12 at.% Cr grain boundaries

    Science.gov (United States)

    Esfandiarpour, A.; Feghhi, S. A. H.; Arjhangmehr, A.

    2016-08-01

    In this paper, we investigate the influence of Cr on the primary radiation damage in Fe-12 at.% Cr with different atomic grain boundaries (GBs). Four different GB structures, two twists and two symmetric tilt boundaries are selected as the model structures. The primary radiation damage near each GB in α-Fe and Fe-12 at.% Cr is simulated using Molecular Dynamics for 9 keV primary knock-on atoms with velocity vectors perpendicular to the GB plane. In agreement with previous works, the results indicate that the atomic GBs are biased toward interstitials and due to the reduction of ‘in-cascade’ interstitial-vacancy annihilation rates, vacancies accumulate in the bulk grains. The minimum defect production occurs when the overlap between cascade center and GB plane is maximum; in contrast, the number of residual defects in the bulk (vacancies and interstitials) increases when the overlap decreases. Moreover, we find that the presence of Cr hardly affects the number of residual defects in the grain interiors, and causes a Cr-enrichment in the surviving self-interstitial atoms in bulk during relaxation of the primary cascades—also in agreement with previous studies. Further, in order to study the effect of 12 at.% Cr on the energetic and kinetic properties of vacancies near the atomic GBs, we calculate formation energies and diffusion barriers of defects using Molecular Static and climbing-Nudged Elastic Band methods. The results reveal that the vacancies energetically and kinetically tend to form and cluster around the GB plane due to the substantial reduction of their formation energies and migration barriers in layers close to the GB center and are immobile on the simulated time frame (~ps).

  6. Stimulated recovery of the optical transmission of PbWO 4 scintillation crystals for electromagnetic calorimeters after radiation damage

    Science.gov (United States)

    Dormenev, V.; Kuske, T.; Novotny, R. W.; Borisevich, A.; Fedorov, A.; Korjik, M.; Mechinski, V.; Missevitch, O.; Lugert, S.

    2010-11-01

    In this paper we describe the phenomenon of the stimulated recovery of radiation damage in lead tungstate scintillation crystals achieved via illumination by visible and infrared light. It allows fast and efficient in-situ recovery of the optical transmission either during beam-off periods or on-line during data accumulation. The application can substantially improve or extend the running period of the experiment by keeping the damage at a tolerable level.

  7. Nicotinamide enhances repair of ultraviolet radiation-induced DNA damage in human keratinocytes and ex vivo skin.

    Science.gov (United States)

    Surjana, Devita; Halliday, Gary M; Damian, Diona L

    2013-05-01

    Nicotinamide (vitamin B3) protects from ultraviolet (UV) radiation-induced carcinogenesis in mice and from UV-induced immunosuppression in mice and humans. Recent double-blinded randomized controlled Phase 2 studies in heavily sun-damaged individuals have shown that oral nicotinamide significantly reduces premalignant actinic keratoses, and may reduce new non-melanoma skin cancers. Nicotinamide is a precursor of nicotinamide adenine dinucleotide (NAD(+)), an essential coenzyme in adenosine triphosphate (ATP) production. Previously, we showed that nicotinamide prevents UV-induced ATP decline in HaCaT keratinocytes. Energy-dependent DNA repair is a key determinant of cellular survival after exposure to DNA-damaging agents such as UV radiation. Hence, in this study we investigated whether nicotinamide protection from cellular energy loss influences DNA repair. We treated HaCaT keratinocytes with nicotinamide and exposed them to low-dose solar-simulated UV (ssUV). Excision repair was quantified using an assay of unscheduled DNA synthesis. Nicotinamide increased both the proportion of cells undergoing excision repair and the repair rate in each cell. We then investigated ssUV-induced cyclobutane pyrimidine dimers (CPDs) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8oxoG) formation and repair by comet assay in keratinocytes and with immunohistochemistry in human skin. Nicotinamide reduced CPDs and 8oxoG in both models and the reduction appeared to be due to enhancement of DNA repair. These results show that nicotinamide enhances two different pathways for repair of UV-induced photolesions, supporting nicotinamide's potential as an inexpensive, convenient and non-toxic agent for skin cancer chemoprevention.

  8. Protection of radiation induced DNA and membrane damages by total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst.

    Science.gov (United States)

    Smina, T P; Maurya, D K; Devasagayam, T P A; Janardhanan, K K

    2015-05-25

    The total triterpenes isolated from the fruiting bodies of Ganoderma lucidum was examined for its potential to prevent γ-radiation induced membrane damage in rat liver mitochondria and microsomes. The effects of total triterpenes on γ-radiation-induced DNA strand breaks in pBR 322 plasmid DNA in vitro and human peripheral blood lymphocytes ex vivo were evaluated. The protective effect of total triterpenes against γ-radiation-induced micronuclei formations in mice bone marrow cells in vivo were also evaluated. The results indicated the significant effectiveness of Ganoderma triterpenes in protecting the DNA and membrane damages consequent to the hazardous effects of radiation. The findings suggest the potential use of Ganoderma triterpenes in radio therapy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Monitoring Radiation Damage in the Vertex Locator and Top Pair Production in LHCb

    CERN Document Server

    Brown, Henry; Hutchcroft, David

    The Large Hadron Collider (LHC) is a proton-proton collider at the European Centre for Nuclear Research (CERN). The LHCb experiment is one of the four main experiments at the LHC. It is designed for the detection of $b\\bar{b}$ pairs produced in proton-proton collisions and to make precision measurements of $B$-mesons. The trigger level identification of $B$-mesons is provided by the Vertex Locator (VELO), which is the primary tracking detector of the experiment. Due to its proximity to the interaction point, the VELO is exposed to high levels of radiation damage. A new method of monitoring the damage is to perform current-voltage (IV) scans and to compare the results of these scans to laboratory tests on sample sensors. A method to perform the first $t\\bar{t}$ production measurement in the $\\eta>2$ range at the LHC, using a dilepton+$b$-jet channel, is also presented. A fiducial cross-section is obtained of $\\sigma_{\\mathrm{fid}}= 24.3^{+14.6}_{-9.7}\\mathrm{(stat.)}\\pm 6.9\\mathrm{(syst.)} \\pm 0.9 \\mathrm{(lum...

  10. Measurement of Radiation Damage of Water-based Liquid Scintillator and Liquid Scintillator

    CERN Document Server

    Bignell, Lindsey J; Hans, Sunej; Jaffe, David E; Rosero, Richard; Vigdor, Steven; Viren, Brett; Worcester, Elizabeth; Yeh, Minfang; Zhang, Chao

    2015-01-01

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of $5\\%$ scintillating phase) exhibit light yield reductions of $1.74 \\pm 0.55 \\%$ and $1.31 \\pm 0.59 \\%$ after $\\approx$ 800 Gy of proton dose, respectively. Whilst some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical conte...

  11. Survival, DNA Integrity, and Ultrastructural Damage in Antarctic Cryptoendolithic Eukaryotic Microorganisms Exposed to Ionizing Radiation

    Science.gov (United States)

    Pacelli, Claudia; Selbmann, Laura; Zucconi, Laura; Raguse, Marina; Moeller, Ralf; Shuryak, Igor; Onofri, Silvano

    2017-02-01

    Life dispersal between planets, planetary protection, and the search for biosignatures are main topics in astrobiology. Under the umbrella of the STARLIFE project, three Antarctic endolithic microorganisms, the melanized fungus Cryomyces antarcticus CCFEE 515, a hyaline strain of Umbilicaria sp. (CCFEE 6113, lichenized fungus), and a Stichococcus sp. strain (C45A, green alga), were exposed to high doses of space-relevant gamma radiation (60Co), up to 117.07 kGy. After irradiation survival, DNA integrity and ultrastructural damage were tested. The first was assessed by clonogenic test; viability and dose responses were reasonably described by the linear-quadratic formalism. DNA integrity was evaluated by PCR, and ultrastructural damage was observed by transmission electron microscopy. The most resistant among the tested organisms was C. antarcticus both in terms of colony formation and DNA preservation. Besides, results clearly demonstrate that DNA was well detectable in all the tested organisms even when microorganisms were dead. This high resistance provides support for the use of DNA as a possible biosignature during the next exploration campaigns. Implication in planetary protection and contamination during long-term space travel are put forward.

  12. Loranthus longiflorus protect central nervous system against oxidative damages of electromagnetic radiation on rat

    Directory of Open Access Journals (Sweden)

    Hemant Nagar

    2013-01-01

    Full Text Available Background: The interaction of mobile phone radio-frequency electromagnetic radiation (RF-EMR with the brain is a serious concern of our society. In this study, we aimed to experiment on the anti-oxidative property of a parasitic plant Loranthus longiflorus (Loranthaceae to protect central nervous system against oxidative damages of mobile phone electromagnetic field (EMF. Materials and Methods: Healthy male albino wistar rats were exposed to RF-EMR by giving 5 min calling/5 min interval for 1 hour per day for 2 months, keeping a GSM (0.9/1.8 GHz mobile phone in silent mode (no ring tone in the cage. After 15, 30, 45, 60 days exposure, three randomly picked animals from each group were tested with using behavioural model of CNS on rats. Results and Conclusion: Loranthus longiflorus bark extract could be effective in decreasing immobility (P < 0.05 and increased locomotor activity (P < 0.05. This result indicates the protective effect of Loranthus longiflorus bark against EMF induced oxidative damage of central nervous system.

  13. Black tea extract: a supplementary antioxidant in radiation-induced damage to DNA and normal lymphocytes.

    Science.gov (United States)

    Ghosh, Debjani; Pal, Sandip; Saha, Chabita; Chakrabarti, Amit Kumar; Datta, Salil C; Dey, Subrata Kumar

    2012-01-01

    Myriad research has contributed significantly toward the understanding and identification of health benefits stemming from tea polyphenols and many other naturally occurring flavonoids present in fruits and vegetables. These flavonoids are known to mitigate reactive oxygen species-induced damage by scavenging them. In this study, hot-water black tea extract rich in flavonoids is evaluated as a supplementary antioxidant. The antioxidant efficacy of black tea extract was investigated by evaluating radioprotection conferred to pBR322 DNA, calf thymus DNA, and normal lymphocytes during gamma irradiation. The protection was measured by gel electrophoresis, fluorimetric study, cell viability assay, cytokinesis-blocked micronuclei assay, and comet assay. The 2,2-diphenyl-1-picrylhydrazyl scavenging ability of the tea extract used increased in a dose-dependent manner (IC50: 182.45 µg/mL). Positive correlation of radioprotection with antioxidant activity of black tea extract was observed in all systems. Maximum protection against radiation-induced damage was observed in pBR322 DNA and calf thymus DNA at ≥200 µg/mL of black tea extract. At a dose of black tea extract as low as 5 µg/mL, efficient radioprotection was observed in normal lymphocytes, which is encouraging and can be tested in the future as a natural antioxidant supplement during radiotherapy.

  14. Radiation response of alloy T91 at damage levels up to 1000 peak dpa

    Energy Technology Data Exchange (ETDEWEB)

    Gigax, J. G.; Chen, T.; Kim, Hyosim; Wang, J.; Price, L. M.; Aydogan, E.; Maloy, S. A.; Schreiber, D. K.; Toloczko, M. B.; Garner, F. A.; Shao, Lin

    2016-12-01

    Ferritic/martensitic alloys are required for advanced reactor components to survive 500e600 neutroninduced dpa. Ion-induced void swelling of ferritic/martensitic alloy T91 in the quenched and tempered condition has been studied using a defocused, non-rastered 3.5 MeV Fe-ion beam at 475 C to produce damage levels up to 1000 peak displacements per atom (dpa). The high peak damage level of 1000 dpa is required to reach 500e600 dpa level due to injected interstitial suppression of void nucleation in the peak dpa region, requiring data extraction closer to the surface at lower dpa levels. At a relatively low peak damage level of 250 dpa, voids began to develop, appearing first in the near-surface region. With increasing ion fluence, swelling was observed deeper in the specimen, but remained completely suppressed in the back half of the ion range, even at 1000 peak dpa. The local differences in dpa rate in the front half of the ion range induce an “internal temperature shift” that strongly influences the onset of swelling, with shorter transient regimes resulting from lower dpa rates, in agreement not only with observations in neutron irradiation studies but also in various ion irradiations. Swelling was accompanied by radiation-induced precipitation of Cu-rich and Si, Ni, Mn-rich phases were observed by atom probe tomography, indicating concurrent microchemical evolution was in progress. In comparison to other ferritic/martensitic alloys during ion irradiation, T91 exhibits good swelling resistance with a swelling incubation period of about 400 local dpa.

  15. Effects of radiation on levels of DNA damage in normal non-adjacent mucosa from colorectal cancer cases.

    LENUS (Irish Health Repository)

    Sheridan, Juliette

    2013-03-01

    Defects in DNA repair pathways have been linked with colorectal cancer (CRC). Adjuvant radiotherapy has become commonplace in the treatment of rectal cancer however it is associated with a higher rate of second cancer formation. It is known that radiation results in DNA damage directly or indirectly by radiation-induced bystander effect (RIBE) by causing double-strand breaks (DSBs). The majority of work in RIBE has been performed in cell lines and limited studies have been in or ex vivo.

  16. Strength loss in MA-MOX green pellets from radiation damage to binders

    Science.gov (United States)

    Lessing, Paul A.; Cannon, W. Roger; Egeland, Gerald W.; Zuck, Larry D.; Jewell, James K.; Akers, Douglas W.; Groenewold, Gary S.

    2013-06-01

    The fracture strength of green Minor Actinides (MA)-MOX pellets containing 75 wt.% DUO2, 20 wt.% PuO2, 3 wt.% AmO2 and 2 wt.% NpO2 was studied as a function of storage time, after mixing with the binder and before sintering, to test the effect of radiation damage on binders. Fracture strength degraded continuously over the 10 days of the study for all three binders studied: PEG binder (Carbowax 8000), microcrystalline wax (Mobilcer X) and styrene-acrylic copolymer (Duramax B1022) but the fracture strength of Duramax B1022 degraded the least. For instance, for several hours after mixing Carbowax 8000 with MA-MOX, the fracture strength of a pellet was reasonably high and pellets were easily handled without breaking but the pellets were too weak to handle after 10 days. Strength measured using diametral compression test showed that strength degradation was more rapid in pellets containing 1.0 wt.% Carbowax PEG 8000 compared to those containing only 0.2 wt.%, suggesting that irradiation not only left the binder less effective but also reduced the pellet strength. In contrast the strength of pellets containing Duramax B1022 degraded very little over the 10 days period. It was suggested that the styrene portion present in the Duramax B1022 copolymer provided the radiation resistance.

  17. Strength Loss in MA-MOX Green Pellets from Radiation Damage to Binders

    Energy Technology Data Exchange (ETDEWEB)

    Paul A. Lessing; W.R. Cannon; Gerald W. Egeland; Larry D. Zuck; James K. Jewell; Douglas W. Akers; Gary S. Groenewold

    2013-06-01

    The fracture strength of green Minor Actinides (MA)-MOX pellets containing 75 wt.% DUO2, 20 wt. % PuO2, 3 wt. % AmO2 and 2 wt. % NpO2 was studied as a function of storage time, after mixing in the binder and before sintering, to test the effect of radiation damage on binders. Fracture strength degraded continuously over the 10 days of the study for all three binders studied: PEG binder (Carbowax 8000), microcrystalline wax (Mobilcer X) and Styrene-acrylic copolymer (Duramax B1022) but the fracture strength of Duramax B1022 degraded the least. For instance, for several hours after mixing Carbowax 8000 with MA MOX, the fracture strength of a pellet was reasonably high and pellets were easily handled without breaking but the pellets were too weak to handle after 10 days. Strength measured using diametral compression test showed strength degradation was more rapid in pellets containing 1.0 wt. % Carbowax PEG 8000 compared to those containing only 0.2 wt. %, suggesting that irradiation not only left the binder less effective but also reduced the pellet strength. In contrast the strength of pellets containing Duramax B1022 degraded very little over the 10 day period. It was suggested that the styrene portion of the Duramax B1022 copolymer provided the radiation resistance.

  18. Strength loss in MA-MOX green pellets from radiation damage to binders

    Energy Technology Data Exchange (ETDEWEB)

    Lessing, Paul A. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Cannon, W. Roger, E-mail: wrogercannon@gmail.com [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Egeland, Gerald W.; Zuck, Larry D.; Jewell, James K.; Akers, Douglas W.; Groenewold, Gary S. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2013-06-15

    The fracture strength of green Minor Actinides (MA)-MOX pellets containing 75 wt.% DUO{sub 2}, 20 wt.% PuO{sub 2}, 3 wt.% AmO{sub 2} and 2 wt.% NpO{sub 2} was studied as a function of storage time, after mixing with the binder and before sintering, to test the effect of radiation damage on binders. Fracture strength degraded continuously over the 10 days of the study for all three binders studied: PEG binder (Carbowax 8000), microcrystalline wax (Mobilcer X) and styrene–acrylic copolymer (Duramax B1022) but the fracture strength of Duramax B1022 degraded the least. For instance, for several hours after mixing Carbowax 8000 with MA-MOX, the fracture strength of a pellet was reasonably high and pellets were easily handled without breaking but the pellets were too weak to handle after 10 days. Strength measured using diametral compression test showed that strength degradation was more rapid in pellets containing 1.0 wt.% Carbowax PEG 8000 compared to those containing only 0.2 wt.%, suggesting that irradiation not only left the binder less effective but also reduced the pellet strength. In contrast the strength of pellets containing Duramax B1022 degraded very little over the 10 days period. It was suggested that the styrene portion present in the Duramax B1022 copolymer provided the radiation resistance.

  19. Cooling out the radiation damage on the XMM-Newton EPIC MOS CCDs

    Energy Technology Data Exchange (ETDEWEB)

    Abbey, A.F. E-mail: afa@star.le.ac.uk; Bennie, P.J.; Turner, M.J.L.; Altieri, B.; Rives, S

    2003-11-01

    The X-ray astronomy satellite XMM-Newton has been in an orbit taking it through the trapped radiation belts and direct solar proton flux during the peak of the current solar cycle for over two and a half years. The MOS CCD detectors (E2 V CCD22's) have degraded in charge transfer efficiency (CTE) as a result of damage created by high energy protons. Corrections for CTE in ground software have managed to restore most of the energy loss generated by the trapping sites, but the detector energy resolution has widened due to imperfect correction methods and the statistical noise generated by charge trapping. The detectors have been at -100 deg. C since launch, and they are qualified to operate down to -130 deg. C. Similar CCDs have been irradiated on the ground with 10 MeV protons and it was believed that the devices in orbit, although irradiated by much lower fluxes for longer times should exhibit the same improved CTE at lower temperatures. There was also concern that contrary to test devices on the ground, the devices in orbit had been almost continually cold for over 2 years and many bright pixels had developed giving a signal even at -100 deg. C, due possibly to radiation and the impact of micro-meteoroids. Cooling the CCDs in XMM to -120 deg. C demonstrated the expected improvement, and we intend to run both MOS cameras at the new temperature later in the year.

  20. Radiation damage in InGaAs photodiodes by 1 MeV fast neutrons

    CERN Document Server

    Ohyama, H; Vanhellemont, J; Takami, Y; Sunaga, H

    1998-01-01

    Irradiation damage in In sub 0 sub . sub 5 sub 3 Ga sub 0 sub . sub 4 sub 7 As p-i-n photodiodes by 1 MeV fast neutrons has been studied as a function of fluence for the first time, and the results are discussed in this paper. The degradation of the electrical and optical performance of diodes increases with increasing fluence. The induced lattice defects in the In sub 0 sub . sub 5 sub 3 Ga sub 0 sub . sub 4 sub 7 As epitaxial layers and the InP substrate are studied by Deep Level Transient Spectroscopy (DLTS) methods. In the In sub 0 sub . sub 5 sub 3 Ga sub 0 sub . sub 4 sub 7 As epitaxial layers, hole and electron capture levels are induced by irradiation. The influence of the type of radiation source on the device degradation is then discussed by comparison to 1 MeV electrons with respect to the numbers of knock-on atoms and the nonionizing energy loss (NIEL). The radiation source dependence of performance degradation is attributed to the difference of mass between the two irradiating particles and the p...