WorldWideScience

Sample records for radiation belt formed

  1. Storm-time radiation belt electron dynamics: Repeatability in the outer radiation belt

    Science.gov (United States)

    Murphy, K. R.; Mann, I. R.; Rae, J.; Watt, C.; Boyd, A. J.; Turner, D. L.; Claudepierre, S. G.; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Fennell, J. F.

    2017-12-01

    During intervals of enhanced solar wind driving the outer radiation belt becomes extremely dynamic leading to geomagnetic storms. During these storms the flux of energetic electrons can vary by over 4 orders of magnitude. Despite recent advances in understanding the nature of competing storm-time electron loss and acceleration processes the dynamic behavior of the outer radiation belt remains poorly understood; the outer radiation belt can exhibit either no change, an enhancement, or depletion in radiation belt electrons. Using a new analysis of the total radiation belt electron content, calculated from the Van Allen probes phase space density (PSD), we statistically analyze the time-dependent and global response of the outer radiation belt during storms. We demonstrate that by removing adiabatic effects there is a clear and repeatable sequence of events in storm-time radiation belt electron dynamics. Namely, the relativistic (μ=1000 MeV/G) and ultra-relativistic (μ=4000 MeV/G) electron populations can be separated into two phases; an initial phase dominated by loss followed by a second phase dominated by acceleration. At lower energies, the radiation belt seed population of electrons (μ=150 MeV/G) shows no evidence of loss but rather a net enhancement during storms. Further, we investigate the dependence of electron dynamics as a function of the second adiabatic invariant, K. These results demonstrate a global coherency in the dynamics of the source, relativistic and ultra-relativistic electron populations as function of the second adiabatic invariant K. This analysis demonstrates two key aspects of storm-time radiation belt electron dynamics. First, the radiation belt responds repeatably to solar wind driving during geomagnetic storms. Second, the response of the radiation belt is energy dependent, relativistic electrons behaving differently than lower energy seed electrons. These results have important implications in radiation belt research. In particular

  2. Earth's radiation belts

    International Nuclear Information System (INIS)

    Moslehi Fard, M.

    1984-01-01

    The theory of trapped particles in a magnetic field of approximated dipole is described completely in the first part. Second part contains experimental results. The mechanism of radiation belt source ''albedo neutrons'' and also types of dissipation mechanism about radiation belt is explained. The trapped protons and electrons by radiation belt is discussed and the life-time of trapped particles are presented. Finally the magnetic fields of Moon, Venus, Mars, and Saturn, measured by passengers Mariner 4,10 and pioneer 10,11 are indicated. The experimental and theoretical results for the explanation of trapped plasma around the earth which is looked like two internal and external belt have almost good correspondence

  3. Formation and Decay of the Inner Electron Radiation Belt

    Science.gov (United States)

    2017-01-09

    a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 09-01-2017 2. REPORT TYPE...radiation belt: CRAND and trapped solar protons......17 APPENDIX C - Inward diffusion and loss of radiation belt protons...transfer orbit that can be damaged by the intense charged -particle environment. Protons are the prominent hazard, often causing single event upsets in

  4. Survey of current situation in radiation belt modeling

    Science.gov (United States)

    Fung, Shing F.

    2004-01-01

    The study of Earth's radiation belts is one of the oldest subjects in space physics. Despite the tremendous progress made in the last four decades, we still lack a complete understanding of the radiation belts in terms of their configurations, dynamics, and detailed physical accounts of their sources and sinks. The static nature of early empirical trapped radiation models, for examples, the NASA AP-8 and AE-8 models, renders those models inappropriate for predicting short-term radiation belt behaviors associated with geomagnetic storms and substorms. Due to incomplete data coverage, these models are also inaccurate at low altitudes (e.g., <1000 km) where many robotic and human space flights occur. The availability of radiation data from modern space missions and advancement in physical modeling and data management techniques have now allowed the development of new empirical and physical radiation belt models. In this paper, we will review the status of modern radiation belt modeling. Published by Elsevier Ltd on behalf of COSPAR.

  5. Modeling of Jupiter's electron an ion radiation belts

    International Nuclear Information System (INIS)

    Sicard, Angelica

    2004-01-01

    In the Fifties, James Van Allen showed the existence of regions of the terrestrial magnetosphere consisted of energetic particles, trapped by the magnetic field: the radiation belts. The radiation belts of the Earth were the subject of many modeling works and are studied since several years at the Departement Environnement Spatial (DESP) of ONERA. In 1998, the DESP decided to adapt the radiation belts model of the Earth, Salammbo, to radiation environment of Jupiter. A first thesis was thus carried out on the subject and a first radiation belts model of electrons of Jupiter was developed [Santos-Costa, 2001]. The aim of this second thesis is to develop a radiation belts model for protons and heavy ions. In order to validate the developed model, the comparisons between Salammbo results and observations are essential. However, the validation is difficult in the case of protons and heavy ions because in-situ measurements of the probes are very few and most of the time contaminated by very energetic electrons. To solve this problem, a very good model of electrons radiation belts is essential to confirm or cancel the contamination of protons and heavy ions measurements. Thus, in parallel to the development of the protons and heavy ions radiation belts model, the electrons models, already existing, has been improved. Then Salammbo results have been compared to the different observations available (in-situ measurements, radio-astronomical observations). The different comparisons show a very good agreement between Salammbo results and observations. (author) [fr

  6. An Experimental Concept for Probing Nonlinear Physics in Radiation Belts

    Science.gov (United States)

    Crabtree, C. E.; Ganguli, G.; Tejero, E. M.; Amatucci, B.; Siefring, C. L.

    2017-12-01

    A sounding rocket experiment, Space Measurement of Rocket-Released Turbulence (SMART), can be used to probe the nonlinear response to a known stimulus injected into the radiation belt. Release of high-speed neutral barium atoms (8- 10 km/s) generated by a shaped charge explosion in the ionosphere can be used as the source of free energy to seed weak turbulence in the ionosphere. The Ba atoms are photo-ionized forming a ring velocity distribution of heavy Ba+ that is known to generate lower hybrid waves. Induced nonlinear scattering will convert the lower hybrid waves into EM whistler/magnetosonic waves. The escape of the whistlers from the ionospheric region into the radiation belts has been studied and their observable signatures quantified. The novelty of the SMART experiment is to make coordinated measurement of the cause and effect of the turbulence in space plasmas and from that to deduce the role of nonlinear scattering in the radiation belts. Sounding rocket will carry a Ba release module and an instrumented daughter section that includes vector wave magnetic and electric field sensors, Langmuir probes and energetic particle detectors. The goal of these measurements is to determine the whistler and lower hybrid wave amplitudes and spectrum in the ionospheric source region and look for precipitated particles. The Ba release may occur at 600-700 km near apogee. Ground based cameras and radio diagnostics can be used to characterize the Ba and Ba+ release. The Van Allen Probes can be used to detect the propagation of the scattering-generated whistler waves and their effects in the radiation belts. By detecting whistlers and measuring their energy density in the radiation belts the SMART mission will confirm the nonlinear generation of whistlers through scattering of lower hybrid along with other nonlinear responses of the radiation belts and their connection to weak turbulence.

  7. Space Weather Effects in the Earth's Radiation Belts

    Science.gov (United States)

    Baker, D. N.; Erickson, P. J.; Fennell, J. F.; Foster, J. C.; Jaynes, A. N.; Verronen, P. T.

    2018-02-01

    The first major scientific discovery of the Space Age was that the Earth is enshrouded in toroids, or belts, of very high-energy magnetically trapped charged particles. Early observations of the radiation environment clearly indicated that the Van Allen belts could be delineated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. The energy distribution, spatial extent and particle species makeup of the Van Allen belts has been subsequently explored by several space missions. Recent observations by the NASA dual-spacecraft Van Allen Probes mission have revealed many novel properties of the radiation belts, especially for electrons at highly relativistic and ultra-relativistic kinetic energies. In this review we summarize the space weather impacts of the radiation belts. We demonstrate that many remarkable features of energetic particle changes are driven by strong solar and solar wind forcings. Recent comprehensive data show broadly and in many ways how high energy particles are accelerated, transported, and lost in the magnetosphere due to interplanetary shock wave interactions, coronal mass ejection impacts, and high-speed solar wind streams. We also discuss how radiation belt particles are intimately tied to other parts of the geospace system through atmosphere, ionosphere, and plasmasphere coupling. The new data have in many ways rewritten the textbooks about the radiation belts as a key space weather threat to human technological systems.

  8. Radiation belt seed population and its association with the relativistic electron dynamics: A statistical study: Radiation Belt Seed Population

    International Nuclear Information System (INIS)

    Tang, C. L.; Wang, Y. X.; Ni, B.; Zhang, J.-C.

    2017-01-01

    Using the Van Allen Probes data, we study the radiation belt seed population and it associated with the relativistic electron dynamics during 74 geomagnetic storm events. Based on the flux changes of 1 MeV electrons before and after the storm peak, these storm events are divided into two groups of “non-preconditioned” and “preconditioned”. The statistical study shows that the storm intensity is of significant importance for the distribution of the seed population (336 keV electrons) in the outer radiation belt. However, substorm intensity can also be important to the evolution of the seed population for some geomagnetic storm events. For non-preconditioned storm events, the correlation between the peak fluxes and their L-shell locations of the seed population and relativistic electrons (592 keV, 1.0 MeV, 1.8 MeV, and 2.1 MeV) is consistent with the energy-dependent dynamic processes in the outer radiation belt. For preconditioned storm events, the correlation between the features of the seed population and relativistic electrons is not fully consistent with the energy-dependent processes. It is suggested that the good correlation between the radiation belt seed population and ≤1.0 MeV electrons contributes to the prediction of the evolution of ≤1.0 MeV electrons in the Earth’s outer radiation belt during periods of geomagnetic storms.

  9. High-energy outer radiation belt dynamic modeling

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Nightingale, R.W.; Rinaldi, M.A.

    1989-01-01

    Specification of the average high-energy radiation belt environment in terms of phenomenological montages of satellite measurements has been available for some time. However, for many reasons both scientific and applicational (including concerns for a better understanding of the high-energy radiatino background in space), it is desirable to model the dynamic response of the high-energy radiation belts to sources, to losses, and to geomagnetic activity. Indeed, in the outer electron belt, this is the only mode of modeling that can handle the large intensity fluctuations. Anticipating the dynamic modeling objective of the upcoming Combined Release and Radiation Effects Satellite (CRRES) program, we have undertaken to initiate the study of the various essential elements in constructing a dynamic radiation belt model based on interpretation of satellite data according to simultaneous radial and pitch-angle diffusion theory. In order to prepare for the dynamic radiation belt modeling based on a large data set spanning a relatively large segment of L-values, such as required for CRRES, it is important to study a number of test cases with data of similar characteristics but more restricted in space-time coverage. In this way, models of increasing comprehensiveness can be built up from the experience of elucidating the dynamics of more restrictive data sets. The principal objectives of this paper are to discuss issues concerning dynamic modeling in general and to summarize in particular the good results of an initial attempt at constructing the dynamics of the outer electron radiation belt based on a moderately active data period from Lockheed's SC-3 instrument flown on board the SCATHA (P78-2) spacecraft. Further, we shall discuss the issues brought out and lessons learned in this test case

  10. Bayesian inference of radiation belt loss timescales.

    Science.gov (United States)

    Camporeale, E.; Chandorkar, M.

    2017-12-01

    Electron fluxes in the Earth's radiation belts are routinely studied using the classical quasi-linear radial diffusion model. Although this simplified linear equation has proven to be an indispensable tool in understanding the dynamics of the radiation belt, it requires specification of quantities such as the diffusion coefficient and electron loss timescales that are never directly measured. Researchers have so far assumed a-priori parameterisations for radiation belt quantities and derived the best fit using satellite data. The state of the art in this domain lacks a coherent formulation of this problem in a probabilistic framework. We present some recent progress that we have made in performing Bayesian inference of radial diffusion parameters. We achieve this by making extensive use of the theory connecting Gaussian Processes and linear partial differential equations, and performing Markov Chain Monte Carlo sampling of radial diffusion parameters. These results are important for understanding the role and the propagation of uncertainties in radiation belt simulations and, eventually, for providing a probabilistic forecast of energetic electron fluxes in a Space Weather context.

  11. Estimates Of Radiation Belt Remediation Requirements

    Science.gov (United States)

    Tuszewski, M.; Hoyt, R. P.; Minor, B. M.

    2004-12-01

    A low-Earth orbit nuclear detonation could produce an intense artificial radiation belt of relativistic electrons. Many satellites would be destroyed within a few weeks. We present here simple estimates of radiation belt remediation by several different techniques, including electron absorption by gas release, pitch angle scattering by steady electric and magnetic fields from tether arrays, and pitch angle scattering by wave-particle interactions from in-situ transmitters. For each technique, the mass, size, and power requirements are estimated for a one-week remediation (e-folding) timescale, assuming that a 10 kTon blast trapped 1024 fission product electrons (1 to 8 MeV) at L = 1.5 in a dipolar belt of width dL = 0.1.

  12. Radiation Belt Transport Driven by Solar Wind Dynamic Pressure Fluctuations

    Science.gov (United States)

    Kress, B. T.; Hudson, M. K.; Ukhorskiy, A. Y.; Mueller, H.

    2012-12-01

    The creation of the Earth's outer zone radiation belts is attributed to earthward transport and adiabatic acceleration of electrons by drift-resonant interactions with electromagnetic fluctuations in the magnetosphere. Three types of radial transport driven by solar wind dynamic pressure fluctuations that have been identified are: (1) radial diffusion [Falthammer, 1965], (2) significant changes in the phase space density radial profile due to a single or few ULF drift-resonant interactions [Ukhorskiy et al., 2006; Degeling et al., 2008], and (3) shock associated injections of radiation belt electrons occurring in less than a drift period [Li et al., 1993]. A progress report will be given on work to fully characterize different forms of radial transport and their effect on the Earth's radiation belts. The work is being carried out by computing test-particle trajectories in electric and magnetic fields from a simple analytic ULF field model and from global MHD simulations of the magnetosphere. Degeling, A. W., L. G. Ozeke, R. Rankin, I. R. Mann, and K. Kabin (2008), Drift resonant generation of peaked relativistic electron distributions by Pc 5 ULF waves, textit{J. Geophys. Res., 113}, A02208, doi:10.1029/2007JA012411. Fälthammar, C.-G. (1965), Effects of Time-Dependent Electric Fields on Geomagnetically Trapped Radiation, J. Geophys. Res., 70(11), 2503-2516, doi:10.1029/JZ070i011p02503. Li, X., I. Roth, M. Temerin, J. R. Wygant, M. K. Hudson, and J. B. Blake (1993), Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC, textit{Geophys. Res. Lett., 20}(22), 2423-2426, doi:10.1029/93GL02701. Ukhorskiy, A. Y., B. J. Anderson, K. Takahashi, and N. A. Tsyganenko (2006), Impact of ULF oscillations in solar wind dynamic pressure on the outer radiation belt electrons, textit{Geophys. Res. Lett., 33}(6), L06111, doi:10.1029/2005GL024380.

  13. Dynamics of the earth's radiation belts and inner magnetosphere (geophysical monograph series)

    CERN Document Server

    2013-01-01

    Dynamics of the Earth's Radiation Belts and Inner Magnetosphere draws together current knowledge of the radiation belts prior to the launch of Radiation Belt Storm Probes (RPSP) and other imminent space missions, making this volume timely and unique. The volume will serve as a useful benchmark at this exciting and pivotal period in radiation belt research in advance of the new discoveries that the RPSP mission will surely bring. Highlights include the following: a review of the current state of the art of radiation belt science; a complete and up-to-date account of the wave-particle interactions that control the dynamical acceleration and loss processes of particles in the Earth's radiation belts and inner magnetosphere; a discussion emphasizing the importance of the cross-energy coupling of the particle populations of the radiation belts, ring current, and plasmasphere in controlling the dynamics of the inner magnetosphe...

  14. Electron Radiation Belts of the Solar System

    Science.gov (United States)

    Mauk, Barry; Fox, Nicola

    To address the question of what factors dictate similarities and differences between radiation belts, we present comparisons between the electron radiation belt spectra of all five strongly magnetized planets within the solar system: Earth, Jupiter, Saturn, Uranus, and Neptune. We choose the highest intensity observed electron spectrum within each system (highest specifically near 1 MeV) and compare them against expectations based on the so-called Kennel-Petschek limit (KP; 1966) for each system. For evaluating the KP limit, we begin with the new relativis-tically correct formulation of Summers et al. (2009) but then add several refinements of our own. Specifically, we: 1) utilized a much more flexible analytic spectral shape that allows us to accurately fit observed radiation belt spectra; 2) adopt the point of view that the anisotropy parameter is not a free parameter but must take on a minimal value, as originally proposed by Kennel and Petschek (1966); and 3) examine the differential characteristics of the KP limit along the lines of what Schulz and Davidson (1988) performed for the non-relativistic formula-tion. We find that three factors limit the highest electron radiation belt intensities within solar system planetary magnetospheres: a) whistler mode interactions that limit spectral intensities to a differential Kennel-Petschek limit (3 planets); b) the absence of robust acceleration pro-cesses associated with injection dynamics (1 planet); and c) material interactions between the radiation particles and clouds of gas and dust (1 planet).

  15. Large enhancement of highly energetic electrons in the outer radiation belt and its transport into the inner radiation belt inferred from MDS-1 satellite observations

    Science.gov (United States)

    Obara, T.; Matsumoto, H.

    2016-03-01

    We have examined a large increase of relativistic electrons in the outer radiation belt and its penetration into the inner radiation belt over slot region using the MDS-1 satellite observations. Result of analyses demonstrates that a large increase took place in the spring and autumn seasons, and we have newly confirmed that the penetration of outer belt electrons to the inner radiation zone took place during the big magnetic storms by examining a pitch angle distribution of the penetrating electrons.

  16. Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization

    Science.gov (United States)

    Daglis, I.; Balasis, G.; Bourdarie, S.; Horne, R.; Khotyaintsev, Y.; Mann, I.; Santolik, O.; Turner, D.; Anastasiadis, A.; Georgiou, M.; Giannakis, O.; Papadimitriou, C.; Ropokis, G.; Sandberg, I.; Angelopoulos, V.; Glauert, S.; Grison, B., Kersten T.; Kolmasova, I.; Lazaro, D.; Mella, M.; Ozeke, L.; Usanova, M.

    2013-09-01

    We present the concept, objectives and expected impact of the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) project, which is being implemented by a consortium of seven institutions (five European, one Canadian and one US) with support from the European Community's Seventh Framework Programme. The MAARBLE project employs multi-spacecraft monitoring of the geospace environment, complemented by ground-based monitoring, in order to analyze and assess the physical mechanisms leading to radiation belt particle energization and loss. Particular attention is paid to the role of ULF/VLF waves. A database containing properties of the waves is being created and will be made available to the scientific community. Based on the wave database, a statistical model of the wave activity dependent on the level of geomagnetic activity, solar wind forcing, and magnetospheric region will be developed. Multi-spacecraft particle measurements will be incorporated into data assimilation tools, leading to new understanding of the causal relationships between ULF/VLF waves and radiation belt dynamics. Data assimilation techniques have been proven as a valuable tool in the field of radiation belts, able to guide 'the best' estimate of the state of a complex system. The MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project has received funding from the European Union’s Seventh Framework Programme (FP7-SPACE-2011-1) under grant agreement no. 284520.

  17. The Foundations of Radiation Belt Research

    Science.gov (United States)

    Ludwig, G. H.

    2008-12-01

    The United States undertook the launching of an artificial Earth satellite as part of its contribution to the International Geophysical Year. The Vanguard program was established to meet that commitment, and it developed a launch vehicle, ground station network, and suite of scientific payloads, including the cosmic ray experiment proposed by James A. Van Allen. Although Vanguard eventually exceeded all of its pre-stated goals, the preemptive launches of Sputniks I and II by the Soviets in October and November 1957 spurred the U.S. into a frenzy of activity, resulting in the launches of Explorers I and III in January and March of 1958. The data from those two satellites quickly revealed the lower boundary of an unexpected region of high intensity radiation trapped in the Earth's magnetic field. The original announcement in May 1958 stated that the radiation was probably composed of either protons or electrons, and that, if electrons, it was probably bremsstrahlung formed in the satellite shell. Immediately following that announcement, approval was received for what became Explorer IV, whose announced purpose was to follow up on the new discovery. Another reason for the satellite, unmentioned at the time, was its inclusion as a component of the highly classified Argos program, a covert military program to test whether the detonation of nuclear devices at high altitude would inject measurable numbers of charged particles into durable trajectories in the Earth's magnetic field. Our team at Iowa produced the satellites under the oversight of, and with assistance by, the Army Ballistic Missile Agency in Huntsville, and with the contributions of key hardware from several other government laboratories. The project was completed in the unbelievably short period of seventy-seven days from approval to launch. Launched into a higher-inclination orbit than the earlier Explorers, Explorer IV confirmed the discovery and greatly expanded our understanding of the natural

  18. Effects of Electromagnetic Perturbations on Particles Trapped in the Radiation Belts

    Energy Technology Data Exchange (ETDEWEB)

    Dungey, J. W. [Imperial College of Science and Technology, London (United Kingdom)

    1965-06-15

    Since the radiation belts were discovered by Van Allen in 1958, observations of trapped particles have rapidly built up a large body of information. Knowledge of the neutral atmosphere as well as the ionosphere shows that for energetic particles the probable time before colliding with another particle of any kind may be extremely long. Then the only feature known to affect the motion of the particle is the electromagnetic field and, conversely, over a long time even weak electromagnetic disturbances can be important. Consequently, electromagnetic disturbances should be important in determining the form of the radiation belts, and it will be seen that certain features encourage an interpretation of this kind. The physics of the radiation belts may be regarded as a part of plasma physics, namely the realm in which collisions are negligible. This needs qualifying in that there is a boundary layer (the ionosphere) where collisions are important, and this is analogous to laboratory plasma containment devices. The energy range of trapped particles is wide, but includes the energy range required for fusion reactors. The mean free time in the radiation belts is extreme, but the neglect of collisions yields a great simplification in theoretical work, and an understanding of collision-free plasmas is expected to be useful. Observations in space have great advantages. The quantity measured by a particle-detector sensitive to a limited range of energy and with a limited cone of acceptance is the velocity distribution function, which is fundamental in theoretical work. Local electric and magnetic measurements are also made with very little disturbance by the spacecraft. The disadvantage is that simultaneous measurements cannot be made at many different points.

  19. Three-dimensional data assimilation and reanalysis of radiation belt electrons: Observations of a four-zone structure using five spacecraft and the VERB code

    Science.gov (United States)

    Kellerman, A. C.; Shprits, Y. Y.; Kondrashov, D.; Subbotin, D.; Makarevich, R. A.; Donovan, E.; Nagai, T.

    2014-11-01

    Obtaining the global state of radiation belt electrons through reanalysis is an important step toward validating our current understanding of radiation belt dynamics and for identification of new physical processes. In the current study, reanalysis of radiation belt electrons is achieved through data assimilation of five spacecraft with the 3-D Versatile Electron Radiation Belt (VERB) code using a split-operator Kalman filter technique. The spacecraft data are cleaned for noise, saturation effects, and then intercalibrated on an individual energy channel basis, by considering phase space density conjunctions in the T96 field model. Reanalysis during the CRRES era reveals a never-before-reported four-zone structure in the Earth's radiation belts during the 24 March 1991 shock-induced injection superstorm: (1) an inner belt, (2) the high-energy shock-injection belt, (3) a remnant outer radiation belt, and (4) a second outer radiation belt. The third belt formed near the same time as the second belt and was later enhanced across keV to MeV energies by a second particle injection observed by CRRES and the Northern Solar Terrestrial Array riometer network. During the recovery phase of the storm, the fourth belt was created near L*=4RE, lasting for several days. Evidence is provided that the fourth belt was likely created by a dominant local heating process. This study outlines the necessity to consider all diffusive processes acting simultaneously and the advantage of supporting ground-based data in quantifying the observed radiation belt dynamics. It is demonstrated that 3-D data assimilation can resolve various nondiffusive processes and provides a comprehensive picture of the electron radiation belts.

  20. The atmospheric implications of radiation belt remediation

    Directory of Open Access Journals (Sweden)

    C. J. Rodger

    2006-08-01

    Full Text Available High altitude nuclear explosions (HANEs and geomagnetic storms can produce large scale injections of relativistic particles into the inner radiation belts. It is recognised that these large increases in >1 MeV trapped electron fluxes can shorten the operational lifetime of low Earth orbiting satellites, threatening a large, valuable population. Therefore, studies are being undertaken to bring about practical human control of the radiation belts, termed "Radiation Belt Remediation" (RBR. Here we consider the upper atmospheric consequences of an RBR system operating over either 1 or 10 days. The RBR-forced neutral chemistry changes, leading to NOx enhancements and Ox depletions, are significant during the timescale of the precipitation but are generally not long-lasting. The magnitudes, time-scales, and altitudes of these changes are no more significant than those observed during large solar proton events. In contrast, RBR-operation will lead to unusually intense HF blackouts for about the first half of the operation time, producing large scale disruptions to radio communication and navigation systems. While the neutral atmosphere changes are not particularly important, HF disruptions could be an important area for policy makers to consider, particularly for the remediation of natural injections.

  1. Radiation Belt Test Model

    Science.gov (United States)

    Freeman, John W.

    2000-10-01

    Rice University has developed a dynamic model of the Earth's radiation belts based on real-time data driven boundary conditions and full adiabaticity. The Radiation Belt Test Model (RBTM) successfully replicates the major features of storm-time behavior of energetic electrons: sudden commencement induced main phase dropout and recovery phase enhancement. It is the only known model to accomplish the latter. The RBTM shows the extent to which new energetic electrons introduced to the magnetosphere near the geostationary orbit drift inward due to relaxation of the magnetic field. It also shows the effects of substorm related rapid motion of magnetotail field lines for which the 3rd adiabatic invariant is violated. The radial extent of this violation is seen to be sharply delineated to a region outside of 5Re, although this distance is determined by the Hilmer-Voigt magnetic field model used by the RBTM. The RBTM appears to provide an excellent platform on which to build parameterized refinements to compensate for unknown acceleration processes inside 5Re where adiabaticity is seen to hold. Moreover, built within the framework of the MSFM, it offers the prospect of an operational forecast model for MeV electrons.

  2. Conceptual design of a Moving Belt Radiator (MBR) shuttle-attached experiment

    Science.gov (United States)

    Aguilar, Jerry L.

    1990-01-01

    The conceptual design of a shuttle-attached Moving Belt Radiator (MBR) experiment is presented. The MBR is an advanced radiator concept in which a rotating belt is used to radiate thermal energy to space. The experiment is developed with the primary focus being the verification of the dynamic characteristics of a rotating belt with a secondary objective of proving the thermal and sealing aspects in a reduced gravity, vacuum environment. The mechanical design, selection of the belt material and working fluid, a preliminary test plan, and program plan are presented. The strategy used for selecting the basic sizes and materials of the components are discussed. Shuttle and crew member requirements are presented with some options for increasing or decreasing the demands on the STS. An STS carrier and the criteria used in the selection process are presented. The proposed carrier for the Moving Belt Radiator experiment is the Hitchhiker-M. Safety issues are also listed with possible results. This experiment is designed so that a belt can be deployed, run at steady state conditions, run with dynamic perturbations imposed, verify the operation of the interface heat exchanger and seals, and finally be retracted into a stowed position for transport back to earth.

  3. First Results of Modeling Radiation Belt Electron Dynamics with the SAMI3 Plasmasphere Model

    Science.gov (United States)

    Komar, C. M.; Glocer, A.; Huba, J.; Fok, M. C. H.; Kang, S. B.; Buzulukova, N.

    2017-12-01

    The radiation belts were one of the first discoveries of the Space Age some sixty years ago and radiation belt models have been improving since the discovery of the radiation belts. The plasmasphere is one region that has been critically important to determining the dynamics of radiation belt populations. This region of space plays a critical role in describing the distribution of chorus and magnetospheric hiss waves throughout the inner magnetosphere. Both of these waves have been shown to interact with energetic electrons in the radiation belts and can result in the energization or loss of radiation belt electrons. However, radiation belt models have been historically limited in describing the distribution of cold plasmaspheric plasma and have relied on empirically determined plasmasphere models. Some plasmasphere models use an azimuthally symmetric distribution of the plasmasphere which can fail to capture important plasmaspheric dynamics such as the development of plasmaspheric drainage plumes. Previous work have coupled the kinetic bounce-averaged Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model used to model ring current and radiation belt populations with the Block-adaptive Tree Solar wind Roe-type Upwind Scheme (BATSRUS) global magnetohydrodynamic model to self-consistently obtain the magnetospheric magnetic field and ionospheric potential. The present work will utilize this previous coupling and will additionally couple the SAMI3 plasmasphere model to better represent the dynamics on the plasmasphere and its role in determining the distribution of waves throughout the inner magnetosphere. First results on the relevance of chorus, hiss, and ultralow frequency waves on radiation belt electron dynamics will be discussed in context of the June 1st, 2013 storm-time dropout event.

  4. The atmospheric implications of radiation belt remediation

    Directory of Open Access Journals (Sweden)

    C. J. Rodger

    2006-08-01

    Full Text Available High altitude nuclear explosions (HANEs and geomagnetic storms can produce large scale injections of relativistic particles into the inner radiation belts. It is recognised that these large increases in >1 MeV trapped electron fluxes can shorten the operational lifetime of low Earth orbiting satellites, threatening a large, valuable population. Therefore, studies are being undertaken to bring about practical human control of the radiation belts, termed "Radiation Belt Remediation" (RBR. Here we consider the upper atmospheric consequences of an RBR system operating over either 1 or 10 days. The RBR-forced neutral chemistry changes, leading to NOx enhancements and Ox depletions, are significant during the timescale of the precipitation but are generally not long-lasting. The magnitudes, time-scales, and altitudes of these changes are no more significant than those observed during large solar proton events. In contrast, RBR-operation will lead to unusually intense HF blackouts for about the first half of the operation time, producing large scale disruptions to radio communication and navigation systems. While the neutral atmosphere changes are not particularly important, HF disruptions could be an important area for policy makers to consider, particularly for the remediation of natural injections.

  5. Quantitative Simulation of QARBM Challenge Events During Radiation Belt Enhancements

    Science.gov (United States)

    Li, W.; Ma, Q.; Thorne, R. M.; Bortnik, J.; Chu, X.

    2017-12-01

    Various physical processes are known to affect energetic electron dynamics in the Earth's radiation belts, but their quantitative effects at different times and locations in space need further investigation. This presentation focuses on discussing the quantitative roles of various physical processes that affect Earth's radiation belt electron dynamics during radiation belt enhancement challenge events (storm-time vs. non-storm-time) selected by the GEM Quantitative Assessment of Radiation Belt Modeling (QARBM) focus group. We construct realistic global distributions of whistler-mode chorus waves, adopt various versions of radial diffusion models (statistical and event-specific), and use the global evolution of other potentially important plasma waves including plasmaspheric hiss, magnetosonic waves, and electromagnetic ion cyclotron waves from all available multi-satellite measurements. These state-of-the-art wave properties and distributions on a global scale are used to calculate diffusion coefficients, that are then adopted as inputs to simulate the dynamical electron evolution using a 3D diffusion simulation during the storm-time and the non-storm-time acceleration events respectively. We explore the similarities and differences in the dominant physical processes that cause radiation belt electron dynamics during the storm-time and non-storm-time acceleration events. The quantitative role of each physical process is determined by comparing against the Van Allen Probes electron observations at different energies, pitch angles, and L-MLT regions. This quantitative comparison further indicates instances when quasilinear theory is sufficient to explain the observed electron dynamics or when nonlinear interaction is required to reproduce the energetic electron evolution observed by the Van Allen Probes.

  6. Radiation Belts of Antiparticles in Planetary Magnetospheres

    Science.gov (United States)

    Pugacheva, G. I.; Gusev, A. A.; Jayanthi, U. B.; Martin, I. M.; Spjeldvik, W. N.

    2007-05-01

    The Earth's radiation belts could be populated, besides with electrons and protons, also by antiparticles, such as positrons (Basilova et al., 1982) and antiprotons (pbar). Positrons are born in the decay of pions that are directly produced in nuclear reactions of trapped relativistic inner zone protons with the residual atmosphere at altitudes in the range of about 500 to 3000 km over the Earth's surface. Antiprotons are born by high energy (E > 6 GeV) cosmic rays in p+p - p+p+p+ pbar and in p+p - p+p+n+nbar reactions. The trapping and storage of these charged anti-particles in the magnetosphere result in radiation belts similar to the classical Van Allen belts of protons and electrons. We describe the mathematical techniques used for numerical simulation of the trapped positron and antiproton belt fluxes. The pion and antiproton yields were simulated on the basis of the Russian nuclear reaction computer code MSDM, a Multy Stage Dynamical Model, Monte Carlo code, (i.e., Dementyev and Sobolevsky, 1999). For estimates of positron flux there we have accounted for ionisation, bremsstrahlung, and synchrotron energy losses. The resulting numerical estimates show that the positron flux with energy >100 MeV trapped into the radiation belt at L=1.2 is of the order ~1000 m-2 s-1 sr-1, and that it is very sensitive to the shape of the trapped proton spectrum. This confined positron flux is found to be greater than that albedo, not trapped, mixed electron/positron flux of about 50 m-2 s-1 sr-1 produced by CR in the same region at the top of the geomagnetic field line at L=1.2. As we show in report, this albedo flux also consists mostly of positrons. The trapped antiproton fluxes produced by CR in the Earth's upper rarified atmosphere were calculated in the energy range from 10 MeV to several GeV. In the simulations we included a mathematic consideration of the radial diffusion process, both an inner and an outer antiproton source, losses of particles due to ionization process

  7. The evolution of Saturn's radiation belts modulated by changes in radial diffusion

    Science.gov (United States)

    Kollmann, P.; Roussos, E.; Kotova, A.; Paranicas, C.; Krupp, N.

    2017-12-01

    Globally magnetized planets, such as the Earth1 and Saturn2, are surrounded by radiation belts of protons and electrons with kinetic energies well into the million electronvolt range. The Earth's proton belt is supplied locally from galactic cosmic rays interacting with the atmosphere3, as well as from slow inward radial transport4. Its intensity shows a relationship with the solar cycle4,5 and abrupt dropouts due to geomagnetic storms6,7. Saturn's proton belts are simpler than the Earth's because cosmic rays are the principal source of energetic protons8 with virtually no contribution from inward transport, and these belts can therefore act as a prototype to understand more complex radiation belts. However, the time dependence of Saturn's proton belts had not been observed over sufficiently long timescales to test the driving mechanisms unambiguously. Here we analyse the evolution of Saturn's proton belts over a solar cycle using in-situ measurements from the Cassini Saturn orbiter and a numerical model. We find that the intensity in Saturn's proton radiation belts usually rises over time, interrupted by periods that last over a year for which the intensity is gradually dropping. These observations are inconsistent with predictions based on a modulation in the cosmic-ray source, as could be expected4,9 based on the evolution of the Earth's proton belts. We demonstrate that Saturn's intensity dropouts result instead from losses due to abrupt changes in magnetospheric radial diffusion.

  8. Detailed Characteristics of Radiation Belt Electrons Revealed by CSSWE/REPTile Measurements

    Science.gov (United States)

    Zhang, K.; Li, X.; Schiller, Q.; Gerhardt, D. T.; Millan, R. M.

    2016-12-01

    The outer radiation belt electrons are highly dynamic. We study the detailed characteristics of the relativistic electrons in the outer belt using measurements from the Colorado Student Space Weather Experiment (CSSWE) mission, a low Earth orbit Cubesat, which transverses the radiation belt four times in one orbit ( 1.5 hr) and has the advantage of measuring the dynamic activities of the electrons including their rapid precipitations. Among the features of the relativistic electrons, we show the measured electron distribution as a function of geomagnetic activities and local magnetic field strength. Moreover, a specific precipitation band, which happened on 19 Jan 2013, is investigated based on the conjunctive measurement of CSSWE and the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL). In this precipitation band event, the net loss of the 0.58 1.63 MeV electrons (L=3.5 6) is estimated to account for 6.84% of the total electron content.

  9. The Global Statistical Response of the Outer Radiation Belt During Geomagnetic Storms

    Science.gov (United States)

    Murphy, K. R.; Watt, C. E. J.; Mann, I. R.; Jonathan Rae, I.; Sibeck, D. G.; Boyd, A. J.; Forsyth, C. F.; Turner, D. L.; Claudepierre, S. G.; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Fennell, J.

    2018-05-01

    Using the total radiation belt electron content calculated from Van Allen Probe phase space density, the time-dependent and global response of the outer radiation belt during storms is statistically studied. Using phase space density reduces the impacts of adiabatic changes in the main phase, allowing a separation of adiabatic and nonadiabatic effects and revealing a clear modality and repeatable sequence of events in storm time radiation belt electron dynamics. This sequence exhibits an important first adiabatic invariant (μ)-dependent behavior in the seed (150 MeV/G), relativistic (1,000 MeV/G), and ultrarelativistic (4,000 MeV/G) populations. The outer radiation belt statistically shows an initial phase dominated by loss followed by a second phase of rapid acceleration, while the seed population shows little loss and immediate enhancement. The time sequence of the transition to the acceleration is also strongly μ dependent and occurs at low μ first, appearing to be repeatable from storm to storm.

  10. Dynamics of Quasi-Electrostatic Whistler waves in Earth's Radiation belts

    Science.gov (United States)

    Goyal, R.; Sharma, R. P.; Gupta, D. N.

    2017-12-01

    A numerical model is proposed to study the dynamics of high amplitude quasi-electrostatic whistler waves propagating near resonance cone angle and their interaction with finite frequency kinetic Alfvén waves (KAWs) in Earth's radiation belts. The quasi-electrostatic character of whistlers is narrated by dynamics of wave propagating near resonance cone. A high amplitude whistler wave packet is obtained using the present analysis which has also been observed by S/WAVES instrument onboard STEREO. The numerical simulation technique employed to study the dynamics, leads to localization (channelling) of waves as well as turbulent spectrum suggesting the transfer of wave energy over a range of frequencies. The turbulent spectrum also indicates the presence of quasi-electrostatic whistlers and density fluctuations associated with KAW in radiation belts plasma. The ponderomotive force of pump quasi-electrostatic whistlers (high frequency) is used to excite relatively much lower frequency waves (KAWs). The wave localization and steeper spectra could be responsible for particle energization or heating in radiation belts.

  11. Examining Relativistic Electron Loss in the Outer Radiation Belt

    Science.gov (United States)

    Green, J. C.; Onsager, T. G.; O'Brien, P.

    2003-12-01

    Since the discovery of earth's radiation belts researchers have sought to identify the mechanisms that dictate the seemingly erratic relativistic electron flux levels in the outer belt. Contrary to intuition, relativistic electron flux levels do not always increase during geomagnetic storms even though these storms signify enhanced energy input from the solar wind to the magnetosphere [Reeves et al., 2003; O'Brien et al., 2001]. The fickle response of the radiation belt electrons to geomagnetic activity suggests that flux levels are determined by the outcome of a continuous competition between acceleration and loss. Some progress has been made developing and testing acceleration mechanisms but little is known about how relativistic electrons are lost. We examine relativistic electron losses in the outer belt focusing our attention on flux decrease events of the type first described by Onsager et al. [2002]. The study showed a sudden decrease of geosynchronous >2MeV electron flux occurring simultaneously with local stretching of the magnetic field. The decrease was first observed near 15:00 MLT and progressed to all local times after a period of ˜10 hours. Expanding on the work of Onsager et al. [2002], we have identified ˜ 51 such flux decrease events in the GOES and LANL data and present the results of a superposed epoch analysis of solar wind data, geomagnetic activity indicators, and locally measured magnetic field and plasma data. The analysis shows that flux decreases occur after 1-2 days of quiet condition. They begin when either the solar wind dynamic pressure increases or Bz turns southward pushing hot dense plasma earthward to form a partial ring current and stretched magnetic field at dusk. Adiabatic electron motion in response to the stretched magnetic field may explain the initial flux reduction; however, often the flux does not recover with the magnetic field recovery, indicating that true loss from the magnetosphere is occurring. Using Polar and

  12. A virtual radiation belt observatory: Looking forward to the electronic geophysical year

    Science.gov (United States)

    Baker, D. N.; Green, J. C.; Kroehl, H. W.; Kihn, E.; Virbo Team

    During the International Geophysical Year (1957-1958), member countries established many new capabilities pursuing the major IGY objectives of collecting geophysical data as widely as possible and providing free access to these data for all scientists around the globe. A key achievement of the IGY was the establishment of a worldwide system of data centers and physical observatories. The worldwide scientific community has now endorsed and is promoting an electronic Geophysical Year (eGY) initiative. The proposed eGY concept would both commemorate the 50th anniversary of the IGY in 2007-2008 and would provide a forward impetus to geophysics in the 21st century, similar to that provide by the IGY fifty years ago. The eGY concept advocates the establishment of a series of virtual geophysical observatories now being deployed in cyberspace. We are developing the concept of a Virtual Radiation Belt Observatory (ViRBO) that will bring together near-earth particle and field measurements acquired by NASA, NOAA, DoD, DOE, and other spacecraft. We discuss plans to aggregate these measurements into a readily accessible database along with analysis, visualization, and display tools that will make radiation belt information available and useful both to the scientific community and to the user community. We envision that data from the various agencies along with models being developed under the auspices of the National Science Foundation Center for Integrated Space Weather Modeling (CISM) will help us to provide an excellent `climatology' of the radiation belts over the past several decades. In particular, we would plan to use these data to drive physical models of the radiation belts to form a gridded database which would characterize particle and field properties on solar-cycle (11-year) time scales. ViRBO will also provide up-to-date specification of conditions for event analysis and anomaly resolution. We are even examining the possibilities for near-realtime acquisition of

  13. Precipitated Fluxes of Radiation Belt Electrons via Injection of Whistler-Mode Waves

    Science.gov (United States)

    Kulkarni, P.; Inan, U. S.; Bell, T. F.

    2005-12-01

    Inan et al. (U.S. Inan et al., Controlled precipitation of radiation belt electrons, Journal of Geophysical Research-Space Physics, 108 (A5), 1186, doi: 10.1029/2002JA009580, 2003.) suggested that the lifetime of energetic (a few MeV) electrons in the inner radiation belts may be moderated by in situ injection of whistler mode waves at frequencies of a few kHz. We use the Stanford 2D VLF raytracing program (along with an accurate estimation of the path-integrated Landau damping based on data from the HYDRA instrument on the POLAR spacecraft) to determine the distribution of wave energy throughout the inner radiation belts as a function of injection point, wave frequency and injection wave normal angle. To determine the total wave power injected and its initial distribution in k-space (i.e., wave-normal angle), we apply the formulation of Wang and Bell ( T.N.C. Wang and T.F. Bell, Radiation resistance of a short dipole immersed in a cold magnetoionic medium, Radio Science, 4 (2), 167-177, February 1969) for an electric dipole antenna placed at a variety of locations throughout the inner radiation belts. For many wave frequencies and wave normal angles the results establish that most of the radiated power is concentrated in waves whose wave normals are located near the resonance cone. The combined use of the radiation pattern and ray-tracing including Landau damping allows us to make quantitative estimates of the magnetospheric distribution of wave power density for different source injection points. We use these results to estimate the number of individual space-based transmitters needed to significantly impact the lifetimes of energetic electrons in the inner radiation belts. Using the wave power distribution, we finally determine the energetic electron pitch angle scattering and the precipitated flux signatures that would be detected.

  14. The impact of radiation belts region on top side ionosphere condition during last solar minimum.

    Science.gov (United States)

    Rothkaehl, Hanna; Przepiórka, Dororta; Matyjasiak, Barbara

    2014-05-01

    The wave particle interactions in radiation belts region are one of the key parameters in understanding the global physical processes which govern the near Earth environment. The populations of outer radiation belts electrons increasing in response to changes in the solar wind and the interplanetary magnetic field, and decreasing as a result of scattering into the loss cone and subsequent absorption by the atmosphere. The most important question in relation to understanding the physical processes in radiation belts region relates to estimate the ratio between acceleration and loss processes. This can be also very useful for construct adequate models adopted in Space Weather program. Moreover the wave particle interaction in inner radiation zone and in outer radiation zone have significant influence on the space plasma property at ionospheric altitude. The aim of this presentation is to show the manifestation of radiation belts region at the top side ionosphere during the last long solar minimum. The presentation of longitude and seasonal changes of plasma parameters affected by process occurred in radiation belts region has been performed on the base of the DEMETER and COSMIC 3 satellite registration. This research is partly supported by grant O N517 418440

  15. Nonlinear Whistler Wave Physics in the Radiation Belts

    Science.gov (United States)

    Crabtree, Chris

    2016-10-01

    Wave particle interactions between electrons and whistler waves are a dominant mechanism for controlling the dynamics of energetic electrons in the radiation belts. They are responsible for loss, via pitch-angle scattering of electrons into the loss cone, and energization to millions of electron volts. It has previously been theorized that large amplitude waves on the whistler branch may scatter their wave-vector nonlinearly via nonlinear Landau damping leading to important consequences for the global distribution of whistler wave energy density and hence the energetic electrons. It can dramatically reduce the lifetime of energetic electrons in the radiation belts by increasing the pitch angle scattering rate. The fundamental building block of this theory has now been confirmed through laboratory experiments. Here we report on in situ observations of wave electro-magnetic fields from the EMFISIS instrument on board NASA's Van Allen Probes that show the signatures of nonlinear scattering of whistler waves in the inner radiation belts. In the outer radiation belts, whistler mode chorus is believed to be responsible for the energization of electrons from 10s of Kev to MeV energies. Chorus is characterized by bursty large amplitude whistler mode waves with frequencies that change as a function of time on timescales corresponding to their growth. Theories explaining the chirping have been developed for decades based on electron trapping dynamics in a coherent wave. New high time resolution wave data from the Van Allen probes and advanced spectral techniques are revealing that the wave dynamics is highly structured, with sub-elements consisting of multiple chirping waves with discrete frequency hops between sub-elements. Laboratory experiments with energetic electron beams are currently reproducing the complex frequency vs time dynamics of whistler waves and in addition revealing signatures of wave-wave and beat-wave nonlinear wave-particle interactions. These new data

  16. Canadian radiation belt science in the ILWS era

    Science.gov (United States)

    Mann, I. R.

    The Outer Radiation Belt Injection, Transport, Acceleration, and Loss Satellite (ORBITALS) is a Canadian Space Agency small satellite mission proposed as a Canadian contribution to the satellite infrastructure for the International Living With a Star (ILWS) program. Planned to operate contemporaneously with the NASA Radiation Belt Storm Probes (RBSP), the ORBITALS will monitor the energetic electron and ion populations in the inner magnetosphere across a wide range of energies (keV to tens of MeV) as well as the dynamic electric and magnetic fields, waves, and cold plasma environment which govern the injection, transport, acceleration and loss of these energetic and space weather critical particle populations in the inner magnetosphere. Currently in Phase A Design Study, the ORBITALS will be launched into a low-inclination GTO-like orbit which every second orbit maximizes the long lasting apogee-pass conjunctions with both the ground-based instruments of the Canadian Geospace Monitoring (CGSM) array as well as with the GOES East and West and geosynchronous communications satellites in the North American sector. In a twelve-hour orbit, every second apogee will conjunct with instrumentation 180 degree in longitude away in the Asian sector. Specifically, the ORBITALS will make the measurements necessary to reach reveal fundamental new understanding of the relative importance of different physical processes (for example VLF verses ULF waves) which shape the energetic particle populations in the inner magnetosphere, as well as providing the raw radiation measurements at MEO altitudes necessary for the development of the next-generation of radiation belt specification models. On-board experiments will also monitor the dose, single event upset, and deep-dielectric charging responses of electronic components on-orbit. Supporting ground-based measurements of ULF and higher frequency wave fields from the Canadian CARISMA (www.carisma.ca) magnetometer array, as well as from

  17. Coordinates for Representing Radiation Belt Particle Flux

    Science.gov (United States)

    Roederer, Juan G.; Lejosne, Solène

    2018-02-01

    Fifty years have passed since the parameter "L-star" was introduced in geomagnetically trapped particle dynamics. It is thus timely to review the use of adiabatic theory in present-day studies of the radiation belts, with the intention of helping to prevent common misinterpretations and the frequent confusion between concepts like "distance to the equatorial point of a field line," McIlwain's L-value, and the trapped particle's adiabatic L* parameter. And too often do we miss in the recent literature a proper discussion of the extent to which some observed time and space signatures of particle flux could simply be due to changes in magnetospheric field, especially insofar as off-equatorial particles are concerned. We present a brief review on the history of radiation belt parameterization, some "recipes" on how to compute adiabatic parameters, and we illustrate our points with a real event in which magnetospheric disturbance is shown to adiabatically affect the particle fluxes measured onboard the Van Allen Probes.

  18. Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus

    Science.gov (United States)

    Yang, Chang; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H. E.; Reeves, G. D.; Baker, D. N.; Blake, J. B.; Funsten, H. O.

    2016-08-01

    Van Allen radiation belt electrons exhibit complex dynamics during geomagnetically active periods. Investigation of electron pitch angle distributions (PADs) can provide important information on the dominant physical mechanisms controlling radiation belt behaviors. Here we report a storm time radiation belt event where energetic electron PADs changed from butterfly distributions to normal or flattop distributions within several hours. Van Allen Probes observations showed that the flattening of butterfly PADs was closely related to the occurrence of whistler-mode chorus waves. Two-dimensional quasi-linear STEERB simulations demonstrate that the observed chorus can resonantly accelerate the near-equatorially trapped electrons and rapidly flatten the corresponding electron butterfly PADs. These results provide a new insight on how chorus waves affect the dynamic evolution of radiation belt electrons.

  19. Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus

    International Nuclear Information System (INIS)

    Yang, Chang; Changsha University of Science and Technology, Changsha; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan

    2016-01-01

    Van Allen radiation belt electrons exhibit complex dynamics during geomagnetically active periods. Investigation of electron pitch angle distributions (PADs) can provide important information on the dominant physical mechanisms controlling radiation belt behaviors. In this paper, we report a storm time radiation belt event where energetic electron PADs changed from butterfly distributions to normal or flattop distributions within several hours. Van Allen Probes observations showed that the flattening of butterfly PADs was closely related to the occurrence of whistler-mode chorus waves. Two-dimensional quasi-linear STEERB simulations demonstrate that the observed chorus can resonantly accelerate the near-equatorially trapped electrons and rapidly flatten the corresponding electron butterfly PADs. Finally, these results provide a new insight on how chorus waves affect the dynamic evolution of radiation belt electrons.

  20. Problems with models of the radiation belts

    International Nuclear Information System (INIS)

    Daly, E.J.; Lemaire, J.; Heynderickx, D.; Rodgers, D.J.

    1996-01-01

    The current standard models of the radiation-belt environment have many shortcomings, not the least of which is their extreme age. Most of the data used for them were acquired in the 1960's and early 1970's. Problems with the present models, and the ways in which data from more recent missions are being or can be used to create new models with improved functionality, are described. The phenomenology of the radiation belts, the effects on space systems, and geomagnetic coordinates and modeling are discussed. Errors found in present models, their functional limitations, and problems with their implementation and use are detailed. New modeling must address problems at low altitudes with the south Atlantic anomaly, east-west asymmetries and solar cycle variations and at high altitudes with the highly dynamic electron environment. The important issues in space environment modeling from the point of view of usability and relationship with effects evaluation are presented. New sources of data are discussed. Future requirements in the data, models, and analysis tools areas are presented

  1. Nonlinear Scattering of VLF Waves in the Radiation Belts

    Science.gov (United States)

    Crabtree, Chris; Rudakov, Leonid; Ganguli, Guru; Mithaiwala, Manish

    2014-10-01

    Electromagnetic VLF waves, such as whistler mode waves, control the lifetime of trapped electrons in the radiation belts by pitch-angle scattering. Since the pitch-angle scattering rate is a strong function of the wave properties, a solid understanding of VLF wave sources and propagation in the magnetosphere is critical to accurately calculate electron lifetimes. Nonlinear scattering (Nonlinear Landau Damping) is a mechanism that can strongly alter VLF wave propagation [Ganguli et al. 2010], primarily by altering the direction of propagation, and has not been accounted for in previous models of radiation belt dynamics. Laboratory results have confirmed the dramatic change in propagation direction when the pump wave has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Recent results show that the threshold for nonlinear scattering can often be met by naturally occurring VLF waves in the magnetosphere, with wave magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear scattering can then dramatically alter the macroscopic dynamics of waves in the radiation belts leading to the formation of a long-lasting wave-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al. 2012]. By considering these effects, the lifetimes of electrons can be dramatically reduced. This work is supported by the Naval Research Laboratory base program.

  2. A new Predictive Model for Relativistic Electrons in Outer Radiation Belt

    Science.gov (United States)

    Chen, Y.

    2017-12-01

    Relativistic electrons trapped in the Earth's outer radiation belt present a highly hazardous radiation environment for spaceborne electronics. These energetic electrons, with kinetic energies up to several megaelectron-volt (MeV), manifest a highly dynamic and event-specific nature due to the delicate interplay of competing transport, acceleration and loss processes. Therefore, developing a forecasting capability for outer belt MeV electrons has long been a critical and challenging task for the space weather community. Recently, the vital roles of electron resonance with waves (including such as chorus and electromagnetic ion cyclotron) have been widely recognized; however, it is still difficult for current diffusion radiation belt models to reproduce the behavior of MeV electrons during individual geomagnetic storms, mainly because of the large uncertainties existing in input parameters. In this work, we expanded our previous cross-energy cross-pitch-angle coherence study and developed a new predictive model for MeV electrons over a wide range of L-shells inside the outer radiation belt. This new model uses NOAA POES observations from low-Earth-orbits (LEOs) as inputs to provide high-fidelity nowcast (multiple hour prediction) and forecast (> 1 day prediction) of the energization of MeV electrons as well as the evolving MeV electron distributions afterwards during storms. Performance of the predictive model is quantified by long-term in situ data from Van Allen Probes and LANL GEO satellites. This study adds new science significance to an existing LEO space infrastructure, and provides reliable and powerful tools to the whole space community.

  3. Statistical studies of energetic electrons in the outer radiation belt

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, A.D.; Rodgers, D.J.; Jones, G.H. E-mail: g.h.jones@ic.ac.uk

    1999-10-01

    The medium electron A (MEA) instrument aboard the CRRES spacecraft provided data on terrestrial radiation belt electrons in the energy range from 153 to 1582 keV, during 1990-91. These data have previously been used to produce an empirical model of the radiation belts from L=1.1 to 8.9, ordered according to 17 energy bands, 18 pitch angle bins, and 5 Kp ranges. Empirical models such as this are very valuable, but are prone to statistical fluctuations and gaps in coverage. In this study, in order to smooth the data and make it more easy to interpolate within data gaps, the pitch angle distribution at each energy in the model was fitted with a Bessel function. This provided a way to characterize the pitch angle in terms of only two parameters for each energy. It was not possible to model fluxes reliably within the loss cone because of poor statistics. The fitted distributions give an indication of the way in which pitch angle diffusion varies in the outer radiation belts. The two parameters of the Bessel function were found to vary systematically with L value, energy and Kp. Through the fitting of a simple function to these systematic variations, the number of parameters required to describe the model could be reduced drastically.

  4. Oscillations of the Outer Boundary of the Outer Radiation Belt During Sawtooth Oscillations

    Directory of Open Access Journals (Sweden)

    Jae-Hun Kim

    2006-09-01

    Full Text Available We report three sawtooth oscillation events observed at geosynchronous orbit where we find quasi-periodic (every 2-3 hours sudden flux increases followed by slow flux decreases at the energy levels of ˜50-400 keV. For these three sawtooth events, we have examined variations of the outer boundary of the outer radiation belt. In order to determine L values of the outer boundary, we have used data of relativistic electron flux observed by the SAMPEX satellite. We find that the outer boundary of the outer radiation belt oscillates periodically being consistent with sawtooth oscillation phases. Specifically, the outer boundary of the outer radiation belt expands (namely, the boundary L value increases following the sawtooth particle flux enhancement of each tooth, and then contracts (namely, the boundary L value decreases while the sawtooth flux decreases gradually until the next flux enhancement. On the other hand, it is repeatedly seen that the asymmetry of the magnetic field intensity between dayside and nightside decreases (increases due to the dipolarization (the stretching on the nightside as the sawtooth flux increases (decreases. This implies that the periodic magnetic field variations during the sawtooth oscillations are likely responsible for the expansion-contraction oscillations of the outer boundary of the outer radiation belt.

  5. Three-dimensional data assimilation and reanalysis of radiation belt electrons: Observations over two solar cycles, and operational forecasting.

    Science.gov (United States)

    Kellerman, A. C.; Shprits, Y.; Kondrashov, D. A.; Podladchikova, T.; Drozdov, A.; Subbotin, D.; Makarevich, R. A.; Donovan, E.; Nagai, T.

    2015-12-01

    Understanding of the dynamics in Earth's radiation belts is critical to accurate modeling and forecasting of space weather conditions, both which are important for design, and protection of our space-borne assets. In the current study, we utilize the Versatile Electron Radiation Belt (VERB) code, multi-spacecraft measurements, and a split-operator Kalman filter to recontructe the global state of the radiation belt system in the CRRES era and the current era. The reanalysis has revealed a never before seen 4-belt structure in the radiation belts during the March 1991 superstorm, and highlights several important aspects in regards to the the competition between the source, acceleration, loss, and transport of particles. In addition to the above, performing reanalysis in adiabatic coordinates relies on specification of the Earth's magnetic field, and associated observational, and model errors. We determine the observational errors for the Kalman filter directly from cross-spacecraft phase-space density (PSD) conjunctions, and obtain the error in VERB by comparison with reanalysis over a long time period. Specification of errors associated with several magnetic field models provides an important insight into the applicability of such models for radiation belt research. The comparison of CRRES area reanalysis with Van Allen Probe era reanalysis allows us to perform a global comparison of the dynamics of the radiation belts during different parts of the solar cycle and during different solar cycles. The data assimilative model is presently used to perform operational forecasts of the radiation belts (http://rbm.epss.ucla.edu/realtime-forecast/).

  6. Space electronics: radiation belts set new challenges

    International Nuclear Information System (INIS)

    Leray, J.L.; Barillot, C.; Boudenot, J.C.

    1999-01-01

    Telecommunications satellites have been in use since 1962 with the first satellite network (constellation) coming into operation in 1966. GPS systems have been available since the mid seventies. Until now, all these systems have avoided orbits which lie within the radiation belts. The latest constellation projects, offering much wider bandwidths, need to use orbits between 1500 and 2000 km, where the proton density is at its highest. The vulnerability of future generations of components can be predicted by extrapolating the behaviour of current devices. Screening is not a viable option due to cost and weight limitations in satellite applications. As a result, satellite and component manufacturers are seeking new methods of hardening components or making them more radiation tolerant in an environment where the radiation levels are ten times those currently experiences. (authors)

  7. Internal Charging Design Environments for the Earths Radiation Belts

    Science.gov (United States)

    Minow, Joseph I.; Edwards, David L.

    2009-01-01

    Relativistic electrons in the Earth's radiation belts are a widely recognized threat to spacecraft because they penetrate lightly shielded vehicle hulls and deep into insulating materials where they accumulate to sufficient levels to produce electrostatic discharges. Strategies for evaluating the magnitude of the relativistic electron flux environment and its potential for producing ESD events are varied. Simple "rule of thumb" estimates such as the widely used 10(exp 10) e-/sq cm fluence within 10 hour threshold for the onset of pulsing in dielectric materials provide a quick estimate of when to expect charging issues. More sophisticated strategies based on models of the trapped electron flux within the Earth s magnetic field provide time dependent estimates of electron flux along spacecraft orbits and orbit integrate electron flux. Finally, measurements of electron flux can be used to demonstrate mean and extreme relativistic electron environments. This presentation will evaluate strategies used to specify energetic electron flux and fluence environments along spacecraft trajectories in the Earth s radiation belts.

  8. Study the Precipitation of Radiation Belt Electrons during the Rapid Dropout Events

    Science.gov (United States)

    Tu, W.; Cunningham, G.; Li, X.; Chen, Y.

    2015-12-01

    During the main phase of storms, the relativistic electron flux in the radiation belt can drop by orders of magnitude on timescales of a few hours. Where do the electrons go? This is one of the most important outstanding questions in radiation belt studies. Radiation belt electrons can be lost either by transport across the magnetopause into interplanetary space or by precipitation into the atmosphere. In this work we first conduct a survey of the MeV electron dropouts using the Van Allen Probes data in conjunction with the low-altitude measurements of precipitating electrons by 6 NOAA/POES satellites. The dropout events are categorized into three types: precipitation-loss dominant, outward radial diffusion dominant, or with contributions from both mechanisms. The survey results suggest the relative importance of precipitation and outward radial diffusion to the fast dropouts of radiation belt electrons, and their extent in L-shell and electron energy. Then, for specific events identified as dominated by precipitation loss, we use the Drift-Diffusion model, which includes the effects of azimuthal drift and pitch angle diffusion, to simulate both the electron dropout observed by Van Allen Probes and the distributions of drift-loss-cone electrons observed by multiple low-earth-orbit satellites (6 POES and the Colorado Student Space Weather Experiment). The model quantifies the electron precipitation loss and pitch angle diffusion coefficient, Dxx, with high temporal and spatial resolution. Finally, by comparing the Dxx derived from the model with those estimated from the quasi-linear theory using wave data from Van Allen Probes and other event-specific wave models, we are able to test the validity of quasi-linear theory and seek direct evidence of the wave-particle interactions during the dropouts.

  9. A three-dimensional phase space dynamical model of the Earth's radiation belt

    International Nuclear Information System (INIS)

    Boscher, D. M.; Beutier, T.; Bourdarie, S.

    1996-01-01

    A three dimensional phase space model of the Earth's radiation belt is presented. We have taken into account the magnetic and electric radial diffusions, the pitch angle diffusions due to Coulomb interactions and interactions with the plasmaspheric hiss, and the Coulomb drag. First, a steady state of the belt is presented. Two main maxima are obtained, corresponding to the inner and outer parts of the belt. Then, we have modelled a simple injection at the external boundary. The particle transport seems like what was measured aboard satellites. A high energy particle loss is found, by comparing the model results and the measurements. It remains to be explained

  10. Trapping in stochastic mechanics and applications to covers of clouds and radiation belts

    International Nuclear Information System (INIS)

    Albeverio, S.; Blanchard, P.; Combe, P.; Rodriguez, R.; Sirugue, M.; Sirugue-Collin, M.

    1984-11-01

    It is possible to assign a stochastic acceleration to conservative stochastic diffusion processes. As a basic assumption, this stochastic acceleration is set equal to the deterministic smooth component of the external force acting on the particle, whereas the influences of the remainder is modelled by a diffusion coefficient. In this paper, we shall try to see whether it can account for the observation in two cases: the cover of clouds of planets and the radiation belts in the planetary magnetic field. We describe the basic properties of Newtonian Diffusion Stochastic Processes and indicate their connection with Schroedinger-like equations. Furthermore we give a heuristic interpretation of the nodal surfaces as impenetrable barriers for Newtonian Stochastic Diffusion Processes. The possible applications to the observed average cloud covering in the planetary atmosphere are presented we discuss the radiation belts (Van Allen Belts) along the previous ideas

  11. A comparison of outer electron radiation belt dropouts during solar ...

    Indian Academy of Sciences (India)

    Utilizing multiple data sources from the year 1997–2007, this study identifies radiation belt electron dropouts which are ultimately triggered when solar wind stream interfaces (SI) arrived at ... Center for Space Research, School for Physical and Chemical Sciences, North–West University, Potchefstroom 2520, South Africa.

  12. Low altitude observations of the energetic electrons in the outer radiation belt during isolated substorms

    International Nuclear Information System (INIS)

    Varga, L.; Venkatesan, D.; Johns Hopkins Univ., Laurel, MD; Meng, C.I.

    1985-01-01

    The low energy (1-20 keV) detector registering particles onboard the polar-orbiting low altitude (approx. 850 km) DMSP-F2 and -F3 satellites also records high energy electrons penetrating the detector walls. Thus the dynamics of this electron population at L=3.5 can be studied during isolated periods of magnetospheric substorms identified by the indices of auroral electrojet (AE), geomagnetic (Ksub(p)) and ring current (Dsub(st)). Temporal changes in the electron flux during the substorms are observed to be an additional contribution riding over the top of the pre-storm (or geomagnetically quiet-time) electron population; the duration of the interval of intensity variations is observed to be about the same as that of the enhancement of the AE index. This indicates the temporal response of the outer radiation belt to the substorm activity, since the observation was made in the ''horns'' of the outer radiation belt. The observed enhanced radiation at low altitude may associate with the instantaneous increase and/or dumping of the outer radiation belt energetic electrons during each isolated substorm activity. (author)

  13. Modeling radiation belt dynamics using a 3-D layer method code

    Science.gov (United States)

    Wang, C.; Ma, Q.; Tao, X.; Zhang, Y.; Teng, S.; Albert, J. M.; Chan, A. A.; Li, W.; Ni, B.; Lu, Q.; Wang, S.

    2017-08-01

    A new 3-D diffusion code using a recently published layer method has been developed to analyze radiation belt electron dynamics. The code guarantees the positivity of the solution even when mixed diffusion terms are included. Unlike most of the previous codes, our 3-D code is developed directly in equatorial pitch angle (α0), momentum (p), and L shell coordinates; this eliminates the need to transform back and forth between (α0,p) coordinates and adiabatic invariant coordinates. Using (α0,p,L) is also convenient for direct comparison with satellite data. The new code has been validated by various numerical tests, and we apply the 3-D code to model the rapid electron flux enhancement following the geomagnetic storm on 17 March 2013, which is one of the Geospace Environment Modeling Focus Group challenge events. An event-specific global chorus wave model, an AL-dependent statistical plasmaspheric hiss wave model, and a recently published radial diffusion coefficient formula from Time History of Events and Macroscale Interactions during Substorms (THEMIS) statistics are used. The simulation results show good agreement with satellite observations, in general, supporting the scenario that the rapid enhancement of radiation belt electron flux for this event results from an increased level of the seed population by radial diffusion, with subsequent acceleration by chorus waves. Our results prove that the layer method can be readily used to model global radiation belt dynamics in three dimensions.

  14. Application of multi-parameter chorus and plasmaspheric hiss wave models in radiation belt modeling

    Science.gov (United States)

    Aryan, H.; Kang, S. B.; Balikhin, M. A.; Fok, M. C. H.; Agapitov, O. V.; Komar, C. M.; Kanekal, S. G.; Nagai, T.; Sibeck, D. G.

    2017-12-01

    Numerical simulation studies of the Earth's radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model along with many other radiation belt models require inputs for pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. In this study we incorporate recently developed multi-parameter chorus and plasmaspheric hiss wave models based on geomagnetic index and solar wind parameters. We perform CIMI simulations for two geomagnetic storms and compare the flux enhancement of MeV electrons with data from the Van Allen Probes and Akebono satellites. We show that the relativistic electron fluxes calculated with multi-parameter wave models resembles the observations more accurately than the relativistic electron fluxes calculated with single-parameter wave models. This indicates that wave models based on a combination of geomagnetic index and solar wind parameters are more effective as inputs to radiation belt models.

  15. Characteristics of pitch angle distributions of hundreds of keV electrons in the slot region and inner radiation belt

    Science.gov (United States)

    Zhao, H.; Li, X.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Baker, D. N.; Jaynes, A. N.; Malaspina, D. M.

    2014-12-01

    The pitch angle distribution (PAD) of energetic electrons in the slot region and inner radiation belt received little attention in the past decades due to the lack of quality measurements. Using the state-of-the-art pitch angle-resolved data from the Magnetic Electron Ion Spectrometer instrument onboard the Van Allen Probes, a detailed analysis of hundreds of keV electron PADs below L = 4 is performed, in which the PADs are categorized into three types: normal (flux peaking at 90°), cap (exceedingly peaking narrowly around 90°), and 90° minimum (lower flux at 90°) PADs. By examining the characteristics of the PADs of ˜460 keV electrons for over a year, we find that the 90° minimum PADs are generally present in the inner belt (Lpitch angle scattering of hiss waves. Fitting the normal PADs into sinnα form, the parameter n is much higher below L = 3 than that in the outer belt and relatively constant in the inner belt but changes significantly in the slot region (2 mechanism can hardly explain the formation of 90° minimum PADs at the center of inner belt.

  16. Wave-Particle Interactions in the Radiation Belts, Aurora,and Solar Wind: Opportunities for Lab Experiments

    Science.gov (United States)

    Kletzing, C.

    2017-12-01

    The physics of the creation, loss, and transport of radiation belt particles is intimately connected to the electric and magnetic fields which mediate these processes. A large range of field and particle interactions are involved in this physics from large-scale ring current ion and magnetic field dynamics to microscopic kinetic interactions of whistler-mode chorus waves with energetic electrons. To measure these kinds of radiation belt interactions, NASA implemented the two-satellite Van Allen Probes mission. As part of the mission, the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) investigation is an integrated set of instruments consisting of a triaxial fluxgate magnetometer (MAG) and a Waves instrument which includes a triaxial search coil magnetometer (MSC). We show a variety of waves thought to be important for wave particle interactionsin the radiation belts: low frequency ULF pulsations, EMIC waves, and whistler mode waves including upper and lower band chorus. Outside ofthe radiation belts, Alfven waves play a key role in both solar wind turbulenceand auroral particle acceleration. Several of these wave modes could benefit (or have benefitted) from laboratory studies to further refineour understanding of the detailed physics of the wave-particle interactionswhich lead to energization, pitch angle scattering, and cross-field transportWe illustrate some of the processes and compare the wave data with particle measurements to show relationships between wave activity and particle processobserved in the inner magnetosphere and heliosphere.

  17. Multi-Point Measurements to Characterize Radiation Belt Electron Precipitation Loss

    Science.gov (United States)

    Blum, L. W.

    2017-12-01

    Multipoint measurements in the inner magnetosphere allow the spatial and temporal evolution of various particle populations and wave modes to be disentangled. To better characterize and quantify radiation belt precipitation loss, we utilize multi-point measurements both to study precipitating electrons directly as well as the potential drivers of this loss process. Magnetically conjugate CubeSat and balloon measurements are combined to estimate of the temporal and spatial characteristics of dusk-side precipitation features and quantify loss due to these events. To then understand the drivers of precipitation events, and what determines their spatial structure, we utilize measurements from the dual Van Allen Probes to estimate spatial and temporal scales of various wave modes in the inner magnetosphere, and compare these to precipitation characteristics. The structure, timing, and spatial extent of waves are compared to those of MeV electron precipitation during a few individual events to determine when and where EMIC waves cause radiation belt electron precipitation. Magnetically conjugate measurements provide observational support of the theoretical picture of duskside interaction of EMIC waves and MeV electrons leading to radiation belt loss. Finally, understanding the drivers controlling the spatial scales of wave activity in the inner magnetosphere is critical for uncovering the underlying physics behind the wave generation as well as for better predicting where and when waves will be present. Again using multipoint measurements from the Van Allen Probes, we estimate the spatial and temporal extents and evolution of plasma structures and their gradients in the inner magnetosphere, to better understand the drivers of magnetospheric wave characteristic scales. In particular, we focus on EMIC waves and the plasma parameters important for their growth, namely cold plasma density and cool and warm ion density, anisotropy, and composition.

  18. Combined Global MHD and Test-Particle Simulation of a Radiation Belt Storm: Comparing Depletion, Recovery and Enhancement with in Situ Measurements

    Science.gov (United States)

    Sorathia, K.; Ukhorskiy, A. Y.; Merkin, V. G.; Wiltberger, M. J.; Lyon, J.; Claudepierre, S. G.; Fennell, J. F.

    2017-12-01

    During geomagnetic storms the intensities of radiation belt electrons exhibit dramatic variability. In the main phase electron intensities exhibit deep depletion over a broad region of the outer belt. The intensities then increase during the recovery phase, often to levels that significantly exceed their pre-storm values. In this study we analyze the depletion, recovery and enhancement of radiation belt intensities during the 2013 St. Patrick's geomagnetic storm. We simulate the dynamics of high-energy electrons using our newly-developed test-particle radiation belt model (CHIMP) based on a hybrid guiding-center/Lorentz integrator and electromagnetic fields derived from high-resolution global MHD (LFM) simulations. Our approach differs from previous work in that we use MHD flow information to identify and seed test-particles into regions of strong convection in the magnetotail. We address two science questions: 1) what are the relative roles of magnetopause losses, transport-driven atmospheric precipitation, and adiabatic cooling in the radiation belt depletion during the storm main phase? and 2) to what extent can enhanced convection/mesoscale injections account for the radiation belt buildup during the recovery phase? Our analysis is based on long-term model simulation and the comparison of our model results with electron intensity measurements from the MAGEIS experiment of the Van Allen Probes mission.

  19. On a new component of radiation belts

    International Nuclear Information System (INIS)

    Grigorov, N.L.; Kurnosova, L.V.; Razorenov, L.A.; Remizov, A.S.; Fradkin, M.I.; Moskovskij Gosudarstvennyj Univ.

    1982-01-01

    The mechanism of electron radiation belt filling with high-energy particles is discussed. Experimental data on particle fluxes in the Earth magnetosphere are presented. The experiments are carried out using the Cherenkov scintillation telescope installed on the ''Lightning-1'' satellite. Values of secondary particle flux obtained during the measurement at a height of 500 km and 30-40 th. km. coincide within the limits of errors. It is noted that secondary particle flux, equal to the albedo electron flux, is registered on large heights. This reason indicates the fact of forbidden angle filling with electrons with energies above 10 MeV

  20. Forecasting the Earth’s radiation belts and modelling solar energetic particle events: Recent results from SPACECAST

    Directory of Open Access Journals (Sweden)

    Poedts Stefaan

    2013-05-01

    Full Text Available High-energy charged particles in the van Allen radiation belts and in solar energetic particle events can damage satellites on orbit leading to malfunctions and loss of satellite service. Here we describe some recent results from the SPACECAST project on modelling and forecasting the radiation belts, and modelling solar energetic particle events. We describe the SPACECAST forecasting system that uses physical models that include wave-particle interactions to forecast the electron radiation belts up to 3 h ahead. We show that the forecasts were able to reproduce the >2 MeV electron flux at GOES 13 during the moderate storm of 7–8 October 2012, and the period following a fast solar wind stream on 25–26 October 2012 to within a factor of 5 or so. At lower energies of 10 – a few 100 keV we show that the electron flux at geostationary orbit depends sensitively on the high-energy tail of the source distribution near 10 RE on the nightside of the Earth, and that the source is best represented by a kappa distribution. We present a new model of whistler mode chorus determined from multiple satellite measurements which shows that the effects of wave-particle interactions beyond geostationary orbit are likely to be very significant. We also present radial diffusion coefficients calculated from satellite data at geostationary orbit which vary with Kp by over four orders of magnitude. We describe a new automated method to determine the position at the shock that is magnetically connected to the Earth for modelling solar energetic particle events and which takes into account entropy, and predict the form of the mean free path in the foreshock, and particle injection efficiency at the shock from analytical theory which can be tested in simulations.

  1. Modelling formation of new radiation belts and response to ULF oscillations following March 24, 1991 SSC

    International Nuclear Information System (INIS)

    Hudson, M.K.; Kotelnikov, A.D.; Li, X.; Lyon, J.G.; Roth, I.; Temerin, M.; Wygant, J.R.; Blake, J.B.; Gussenhoven, M.S.; Yumoto, K.; Shiokawa, K.

    1996-01-01

    The rapid formation of a new proton radiation belt at L≅2.5 following the March 24, 1991 Storm Sudden Commencement (SSC) observed at the CRRES satellite is modelled using a relativistic guiding center test particle code. The new radiation belt formed on a time scale shorter than the drift period of eg. 20 MeV protons. The SSC is modelled by a bipolar electric field and associated compression and relaxation in the magnetic field, superimposed on a background dipole magnetic field. The source population consists of solar protons that populated the outer magnetosphere during the solar proton event that preceeded the SSC and trapped inner zone protons. The simulations show that both populations contribute to drift echoes in the 20 endash 80 MeV range measured by the Aerospace instrument and in lower energy channels of the Protel instrument on CRRES, while primary contribution to the newly trapped population is from solar protons. Proton acceleration by the SSC differs from electron acceleration in two notable ways: different source populations contribute and nonrelativistic conservation of the first adiabatic invariant leads to greater energization of protons for a given decrease in L than for relativistic electrons. Model drift echoes, energy spectra and flux distribution in L at the time of injection compare well with CRRES observations. On the outbound pass, ∼2 hours after the SSC, the broad spectral peak of the new radiation belt extends to higher energies (20 endash 40 MeV) than immediately after formation. Electron flux oscillations observed at this later time are attributed to post-SSC impulses evident in ground magnetograms, while two minute period ULF oscillations also evident in CRRES field data appear to be cavity modes in the inner magnetosphere. copyright 1996 American Institute of Physics

  2. Detailed characteristics of radiation belt electrons revealed by CSSWE/REPTile measurements: Geomagnetic activity response and precipitation observation

    Science.gov (United States)

    Zhang, K.; Li, X.; Schiller, Q.; Gerhardt, D.; Zhao, H.; Millan, R.

    2017-08-01

    Earth's outer radiation belt electrons are highly dynamic. We study the detailed characteristics of relativistic electrons in the outer belt using measurements from the Colorado Student Space Weather Experiment (CSSWE) mission, a low Earth orbit (LEO) CubeSat, which traverses the radiation belt four times in one orbit ( 1.5 h) and has the advantage of measuring the dynamic activities of the electrons including their rapid precipitation. We focus on the measured electron response to geomagnetic activity for different energies to show that there are abundant sub-MeV electrons in the inner belt and slot region. These electrons are further enhanced during active times, while there is a lack of >1.63 MeV electrons in these regions. We also show that the variation of measured electron flux at LEO is strongly dependent on the local magnetic field strength, which is far from a dipole approximation. Moreover, a specific precipitation band, which happened on 19 January 2013, is investigated based on the conjunctive measurement of CSSWE, the Balloon Array for Radiation belt Relativistic Electron Losses, and one of the Polar Operational Environmental Satellites. In this precipitation band event, the net loss of the 0.58-1.63 MeV electrons (L = 3.5-6) is estimated to account for 6.8% of the total electron content.

  3. Upper limit on the inner radiation belt MeV electron intensity

    Science.gov (United States)

    Li, X; Selesnick, RS; Baker, DN; Jaynes, AN; Kanekal, SG; Schiller, Q; Blum, L; Fennell, J; Blake, JB

    2015-01-01

    No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (tens of MeV to GeV). The inner belt proton flux level, however, is relatively stable; thus, for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment on board Colorado Student Space Weather Experiment CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because their flux level is orders of magnitude higher than the background, while higher-energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about 1 order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt. Key Points Quantified upper limit of MeV electrons in the inner belt Actual MeV electron intensity likely much lower than the upper limit More detailed understanding of relativistic electrons in the magnetosphere PMID:26167446

  4. Studies on the evaluation of thermal belts and radiation fog over mountainous regions by LANDSAT data

    International Nuclear Information System (INIS)

    Kurose, Y.; Hayashi, Y.; Horiguchi, I.; Fukaishi, K.; Kanechika, O.; Ishida, H.; Sakurai, Y.; Sakai, T.; Yamauchi, Y.; Kohno, Y.

    1996-01-01

    Local meteorological phenomena and characteristics under conditions of nocturnal radiative cooling in winter were investigated using Landsat data and physiographic parameters over the hilly and mountainous regions of the western part of shikoku. (1) Relative elevation between thermal belts and underlying ground such as bottom of basin or valley was 400m on an average. (2) Thermal belts appeared in the zone between 400m and 1000m above the sea level in the western part of Shikoku. (3) Temperature of the thermal belts varied with the elevation in a ratio of about 1 degrees C/100m. This observation indicated that the thermal belt temperature was closely related to the altitude of the zone where the thermal belts originated. (4) Radiation fog was frequently recorded over some part along the Hiji river and over the area along Ootoyo to Motoyama; fog was present even at 10 a.m. (3 hours after sunrise). (5) Upper surface of the fog layer was located at 200m and 600m above the sea level in the Oozu basin and in the area along Ootoyo to Motoyama respectively. (6) In the Oozu basin, the distribution of hamlets on the mountainside was often recognized in the localities within the upper limit of foggy areas

  5. Solar Modulation of Inner Trapped Belt Radiation Flux as a Function of Atmospheric Density

    Science.gov (United States)

    Lodhi, M. A. K.

    2005-01-01

    No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose.

  6. The Magnetic Local Time Distribution of Energetic Electrons in the Radiation Belt Region

    Science.gov (United States)

    Allison, H. J.

    2017-12-01

    Using fourteen years of electron flux data from the National Oceanic and Atmospheric Administration Polar Operational Environmental Satellites (POES), a statistical study of the magnetic local time (MLT) distribution of the electron population is performed across a range of activity levels, defined by AE, AE*, Kp, solar wind velocity (Vsw), and VswBz. Three electron energies (>30, >100, and >300 keV) are considered. Dawn-dusk flux asymmetries larger than order of magnitude were observed for >30 and >100 keV electrons. For >300 keV electrons, dawn-dusk asymmetries were primarily due to a decrease in the average dusk-side flux beyond L* ˜ 4.5 that arose with increasing activity. For the >30 keV population, substorm injections enhance the dawn-side flux, which may not reach the dusk-side as the electrons can be on open drift paths and lost to the magnetopause. The asymmetries in the >300 keV population are attributed to the combination of magnetopause shadowing and >300 keV electron injections by large electric fields. We suggest that 3D radiation belt models could set the minimum energy boundary (Emin) to 30 keV or above at L* ˜6 during periods of low activity. However, for more moderate conditions, Emin should be larger than 100 keV and, for very extreme activities, ˜300 keV. Our observations show the extent that in-situ electron flux readings may vary during active periods due to the MLT of the satellite and highlight the importance of 4D radiation belt models to fully understand radiation belt processes.

  7. Lap belts and three-point belts.

    NARCIS (Netherlands)

    Kampen, L.T.B. van & Edelman, A.

    1975-01-01

    Results of the swov-accident investigation prove that if there are any differences in the effectiveness of lap belts and three-point belts, these are so small that they cannot form a basis for giving preference to one type over the other. Furthermore, in spite of the results of this investigation

  8. Neoclassical Diffusion of Radiation-Belt Electrons Across Very Low L-Shells

    Science.gov (United States)

    Cunningham, Gregory S.; Loridan, Vivien; Ripoll, Jean-François; Schulz, Michael

    2018-04-01

    In the presence of drift-shell splitting intrinsic to the International Geomagnetic Reference Field magnetic field model, pitch angle scattering from Coulomb collisions experienced by radiation-belt electrons in the upper atmosphere and ionosphere produces extra radial diffusion, a form of neoclassical diffusion. The strength of the neoclassical radial diffusion at L nuclear detonation. The data show apparent lifetimes 10-100 times as long as would have been expected from collisional pitch angle diffusion and Coulomb drag alone. Our model reproduces apparent lifetimes for >0.5-MeV electrons in the region 1.14 < L < 1.26 to within a factor of 2 (comparable to the uncertainty quoted for the observations). We conclude that neoclassical radial diffusion (resulting from drift-shell splitting intrinsic to International Geomagnetic Reference Field's azimuthal asymmetries) mitigates the decay expected from collisional pitch angle diffusion and inelastic energy loss alone and thus contributes importantly to the long apparent lifetimes observed at these low L-shells.

  9. Explaining the Diverse Response of the Ultra-relativistic Van Allen Radiation Belt to Solar Wind Forcing

    Science.gov (United States)

    Mann, I. R.; Ozeke, L.; Murphy, K. R.; Claudepierre, S. G.; Rae, J.; Milling, D. K.; Kale, A.; Baker, D. N.

    2017-12-01

    The NASA Van Allen Probes have opened a new window on the dynamics of ultra-relativistic electrons in the Van Allen radiation belts. Under different solar wind forcing the outer belt is seen to respond in a variety of apparently diverse and sometimes remarkable ways. For example, sometimes a third radiation belt is carved out (e.g., September 2012), or the belts can remain depleted for 10 days or more (September 2014). More usually there is a sequential response of a strong and sometimes rapid depletion followed by a re-energization, the latter increasing outer belt electron flux by orders of magnitude on hour timescales during some of the strongest storms of this solar cycle (e.g., March 2013, March 2015). Such dynamics also appear to be often bounded at low-L by an apparently impenetrable barrier at L 2.8 through which ultra-relativistic electrons do not penetrate. Many studies in the Van Allen Probes era have sought explanations for these apparently diverse features, often incorporating the effects from multiple plasma waves. In contrast, we show how this apparently diverse behaviour can instead be explained by one dominant process: ULF wave radial transport. Once ULF wave transport rates are accurately specified by observations, and coupled to the dynamical variation of the outer boundary condition at the edge of the outer belt, the observed diverse responses can all be explained. However, in order to get good agreement with observations, the modeling reveals the importance of still currently unexplained very fast loss in the main phase which results in an almost total extinction of the belts and decouples pre- and post-storm ultra-relativistic electron flux on hour timescales. Similarly, varying plasmasheet source populations are seen to be of critical importance such that near-tail dynamics play a crucial role in Van Allen belt dynamics. Nonetheless, simple models incorporating accurate transport rates derived directly from ULF wave measurements are shown to

  10. To the problem on a charge state of energetic ions of radiation belts

    International Nuclear Information System (INIS)

    Panasyuk, M.I.

    1980-01-01

    Estimation of the effect of recharging processes upon formation of intensity maxima of radiation belt ions of different types is obtained as well as the ion charge states in the area of intensity maxima. Comparison of spatial position of intensity maxima of the H, He, C, O ions with the energies more than 1 MeV with the calculation results is presented. It provides the particle radial drift under the effect of sudden impulses and death at the expence of ionization losses. Application of adiabaticity criterion of the particle movement to the analysis of position of outer edge of radiation belt of heavy ions permitted to carry out estimation of the He, C, O ion charge state. He ions with the energy more than 1 MeV possess mainly the charge state of +2, C and O ions with the energy of several MeV over L=5-6 are in the ionized state almost completely, and during the drift into the depth of the belts the ion charge decreases to 3-4 over L approximately 3.5 with the energy increase. At the energies higher than several MeV the recharge processes are significant for the C and.O ions. For He ions with the energy higher 1 MeV and for H ions with more than 0.1 MeV the recharge role is not considerable

  11. Detection of the strange bodies on the conveyor belt using gamma radiation technique

    International Nuclear Information System (INIS)

    Barna, A.; Ochiana, G.; Oncescu, M.

    1990-01-01

    The aim of this paper is to present a method for the computation of the activity of a gamma radiation source used in a radiometric assembly designed to detect the strange bodies (iron, stone or wood-made granules) within the textile material on the conveyor belt. The mathematical modelling method based on the Monte Carlo procedure has been used, with different values of the errors of types I and II; the investigation method is the transmission of gamma radiations. (Author)

  12. Statistics of the outer radiation belt

    International Nuclear Information System (INIS)

    Rodgers, D.J.; Johnstone, A.D.

    1996-01-01

    The highly variable electron flux levels in the outer radiation belt come about by competition between time-dependent source and loss mechanisms. In order to identify some of the different mechanisms involved, we examine the statistics of the variability of fluxes at geostationary orbit. Data from the SEM-2 analyzer on Meteosat-3 and from GOES-7 are used. Correlation analysis is used to find time-delays between changes in flux at different energies. We see that low energy flux is added to this region during sub-storms and that higher energy fluxes appear after 2 or 3 days. Whilst the timescale for this process is brief compared to a complete cycle of the open-quote Recirculation close-quote energization process, it is consistent with the timescale of its final step endash outward radial diffusion. By isolating periods when no new injection of plasma occurs, we make an assessment of flux loss rates in a quiet magnetosphere. copyright 1996 American Institute of Physics

  13. Combined convective and diffusive modeling of the ring current and radiation belt electron dynamics using the VERB-4D code

    Science.gov (United States)

    Aseev, N.; Shprits, Y.; Drozdov, A.; Kellerman, A. C.; Wang, D.

    2017-12-01

    Ring current and radiation belts are key elements in the global dynamics of the Earth's magnetosphere. Comprehensive mathematical models are useful tools that allow us to understand the multiscale dynamics of these charged particle populations. In this work, we present results of simulations of combined ring current - radiation belt electron dynamics using the four-dimensional Versatile Electron Radiation Belt (VERB-4D) code. The VERB-4D code solves the modified Fokker-Planck equation including convective terms and models simultaneously ring current (1 - 100 keV) and radiation belt (100 keV - several MeV) electron dynamics. We apply the code to the number of geomagnetic storms that occurred in the past, compare the results with different satellite observations, and show how low-energy particles can affect the high-energy populations. Particularly, we use data from Polar Operational Environmental Satellite (POES) mission that provides a very good MLT coverage with 1.5-hour time resolution. The POES data allow us to validate the approach of the VERB-4D code for modeling MLT-dependent processes such as electron drift, wave-particle interactions, and magnetopause shadowing. We also show how different simulation parameters and empirical models can affect the results, making a particular emphasis on the electric and magnetic field models. This work will help us reveal advantages and disadvantages of the approach behind the code and determine its prediction efficiency.

  14. Jupiter's magnetosphere and radiation belts

    Science.gov (United States)

    Kennel, C. F.; Coroniti, F. V.

    1979-01-01

    Radioastronomy and Pioneer data reveal the Jovian magnetosphere as a rotating magnetized source of relativistic particles and radio emission, comparable to astrophysical cosmic ray and radio sources, such as pulsars. According to Pioneer data, the magnetic field in the outer magnetosphere is radially extended into a highly time variable disk-shaped configuration which differs fundamentally from the earth's magnetosphere. The outer disk region, and the energetic particles confined in it, are modulated by Jupiter's 10 hr rotation period. The entire outer magnetosphere appears to change drastically on time scales of a few days to a week. In addition to its known modulation of the Jovian decametric radio bursts, Io was found to absorb some radiation belt particles and to accelerate others, and most importantly, to be a source of neutral atoms, and by inference, a heavy ion plasma which may significantly affect the hydrodynamic flow in the magnetosphere. Another important Pioneer finding is that the Jovian outer magnetosphere generates, or permits to escape, fluxes of relativistic electrons of such intensities that Jupiter may be regarded as the dominant source of 1 to 30 MeV cosmic ray electrons in the heliosphere.

  15. Quantifying the Precipitation Loss of Radiation Belt Electrons during a Rapid Dropout Event

    Science.gov (United States)

    Pham, K. H.; Tu, W.; Xiang, Z.

    2017-12-01

    Relativistic electron flux in the radiation belt can drop by orders of magnitude within the timespan of hours. In this study, we used the drift-diffusion model that includes azimuthal drift and pitch angle diffusion of electrons to simulate low-altitude electron distribution observed by POES/MetOp satellites for rapid radiation belt electron dropout event occurring on May 1, 2013. The event shows fast dropout of MeV energy electrons at L>4 over a few hours, observed by the Van Allen Probes mission. By simulating the electron distributions observed by multiple POES satellites, we resolve the precipitation loss with both high spatial and temporal resolution and a range of energies. We estimate the pitch angle diffusion coefficients as a function of energy, pitch angle, and L-shell, and calculate corresponding electron lifetimes during the event. The simulation results show fast electron precipitation loss at L>4 during the electron dropout, with estimated electron lifetimes on the order of half an hour for MeV energies. The electron loss rate show strong energy dependence with faster loss at higher energies, which suggest that this dropout event is dominated by quick and localized scattering process that prefers higher energy electrons. The estimated pitch angle diffusion rates from the model are then compared with in situ wave measurements from Van Allen Probes to uncover the underlying wave-particle-interaction mechanisms that are responsible for the fast electron precipitation. Comparing the resolved precipitation loss with the observed electron dropouts at high altitudes, our results will suggest the relative role of electron precipitation loss and outward radial diffusion to the radiation belt dropouts during storm and non-storm times, in addition to its energy and L dependence.

  16. Wave-Particle Interactions in the Earth's Radiation Belts: Recent Advances and Unprecedented Future Opportunities

    Science.gov (United States)

    Li, W.

    2017-12-01

    In the collisionless heliospheric plasmas, wave-particle interaction is a fundamental physical process in transferring energy and momentum between particles with different species and energies. This presentation focuses on one of the important wave-particle interaction processes: interaction between whistler-mode waves and electrons. Whistler-mode waves have frequencies between proton and electron cyclotron frequency and are ubiquitously present in the heliospheric plasmas including solar wind and planetary magnetospheres. I use Earth's Van Allen radiation belt as "local space laboratory" to discuss the role of whistler-mode waves in energetic electron dynamics using multi-satellite observations, theory and modeling. I further discuss solar wind drivers leading to energetic electron dynamics in the Earth's radiation belts, which is critical in predicting space weather that has broad impacts on our technological systems and society. At last, I discuss the unprecedented future opportunities of exploring space science using multi-satellite observations and state-of-the-art theory and modeling.

  17. Conveyor belt weigher using a nuclear technique

    International Nuclear Information System (INIS)

    Magal, B.S.

    1976-01-01

    Principles of operation of different types of continuous conveyor belt weighing machines developed for use in factories for bulk weighing of material on conveyor belts without interupting the material flow, are briefly mentioned. The design of nuclear weighing scale making use of the radiation absorption property of the material used is described in detail. The radiation source, choice of the source, detector and geometry of such a weighing scale are discussed. The nucleonic belt weigher is compared with the gravimetric belt weigher system. The advantages of the nuclear system are pointed out. The assembly drawing of the electronics, calibration procedure and performance evaluation are given. (A.K.)

  18. Automated Identification and Shape Analysis of Chorus Elements in the Van Allen Radiation Belts

    Science.gov (United States)

    Sen Gupta, Ananya; Kletzing, Craig; Howk, Robin; Kurth, William; Matheny, Morgan

    2017-12-01

    An important goal of the Van Allen Probes mission is to understand wave-particle interaction by chorus emissions in terrestrial Van Allen radiation belts. To test models, statistical characterization of chorus properties, such as amplitude variation and sweep rates, is an important scientific goal. The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite provides measurements of wave electric and magnetic fields as well as DC magnetic fields for the Van Allen Probes mission. However, manual inspection across terabytes of EMFISIS data is not feasible and as such introduces human confirmation bias. We present signal processing techniques for automated identification, shape analysis, and sweep rate characterization of high-amplitude whistler-mode chorus elements in the Van Allen radiation belts. Specifically, we develop signal processing techniques based on the radon transform that disambiguate chorus elements with a dominant sweep rate against hiss-like chorus. We present representative results validating our techniques and also provide statistical characterization of detected chorus elements across a case study of a 6 s epoch.

  19. Observational evidence of competing source, loss, and transport processes for relativistic electrons in Earth's outer radiation belt

    Science.gov (United States)

    Turner, Drew; Mann, Ian; Usanova, Maria; Rodriguez, Juan; Henderson, Mike; Angelopoulos, Vassilis; Morley, Steven; Claudepierre, Seth; Li, Wen; Kellerman, Adam; Boyd, Alexander; Kim, Kyung-Chan

    Earth’s outer electron radiation belt is a region of extreme variability, with relativistic electron intensities changing by orders of magnitude over time scales ranging from minutes to years. Extreme variations of outer belt electrons ultimately result from the relative impacts of various competing source (and acceleration), loss, and transport processes. Most of these processes involve wave-particle interactions between outer belt electrons and different types of plasma waves in the inner magnetosphere, and in turn, the activity of these waves depends on different solar wind and magnetospheric driving conditions and thus can vary drastically from event to event. Using multipoint analysis with data from NASA’s Van Allen Probes, THEMIS, and SAMPEX missions, NOAA’s GOES and POES constellations, and ground-based observatories, we present results from case studies revealing how different source/acceleration and loss mechanisms compete during active periods to result in drastically different distributions of outer belt electrons. By using a combination of low-Earth orbiting and high-altitude-equatorial orbiting satellites, we briefly review how it is possible to get a much more complete picture of certain wave activity and electron losses over the full range of MLTs and L-shells throughout the radiation belt. We then show example cases highlighting the importance of particular mechanisms, including: substorm injections and whistler-mode chorus waves for the source and acceleration of relativistic electrons; magnetopause shadowing and wave-particle interactions with EMIC waves for sudden losses; and ULF wave activity for driving radial transport, a process which is important for redistributing relativistic electrons, contributing both to acceleration and loss processes. We show how relativistic electron enhancement events involve local acceleration that is consistent with wave-particle interactions between a seed population of 10s to 100s of keV electrons, with a

  20. Reanalyses of the radiation belt electron phase space density using nearly equatorial CRRES and polar-orbiting Akebono satellite observations

    Science.gov (United States)

    Ni, Binbin; Shprits, Yuri; Nagai, Tsugunobu; Thorne, Richard; Chen, Yue; Kondrashov, Dmitri; Kim, Hee-jeong

    2009-05-01

    Data assimilation techniques provide algorithms that allow for blending of incomplete and inaccurate data with physics-based dynamic models to reconstruct the electron phase space density (PSD) in the radiation belts. In this study, we perform reanalyses of the radial PSD profile using two independent data sources from the nearly equatorial CRRES Medium Electron A (MEA) observations and the polar-orbiting Akebono Radiation Monitor (RDM) measurements for a 50-day period from 18 August to 6 October 1990. We utilize the University of California, Los Angeles, One-Dimensional Versatile Electron Radiation Belt (UCLA 1-D VERB) code and a Kalman filtering approach. Comparison of the reanalyses obtained independently using the CRRES MEA and Akebono RDM measurements shows that the dynamics of the PSD can be accurately reconstructed using Kalman filtering even when available data are sparse, inaccurate, and contaminated by random errors. The reanalyses exhibit similarities in the locations and magnitudes of peaks in radial profiles of PSD and the rate and radial extent of the dropouts during storms. This study shows that when unidirectional data are not available, pitch angle averaged flux measurements can be used to infer the long-term behavior (climatology) of the radiation belts. The methodology of obtaining PSD from pitch angle averaged and unidirectional fluxes using the Tsyganenko and Stern (1996) magnetic field model is described in detail.

  1. The JET belt limiter tiles

    International Nuclear Information System (INIS)

    Deksnis, E.

    1988-09-01

    The belt limiter system, comprising two full toroidal rings of limiter tiles, was installed in JET in 1987. In consists of water-cooled fins with the limiter material in form of tile inbetween. The tiles are designed to absorb heat fluxes during irradiation without the surface temperature exceeding 2000 0 C and to radiate this heat between pulses to the water cooled sink whose temperature is lower than that of the vacuum vessel. An important feature of the design is to maximise the area of the radiating surface facing the water cooled fin. This leads to a tile depth much greater than the width of the tile facing the heat flux. Limiter tiles intercept particles flowing out of the plasma through the area between the two belt limiter rings and through remaining surface area of the plasma column. Power deposition to a limiter tile depends strongly on the shape of the plasma, the edge plasma properties as well as on the surface profile of the tiles. This paper will discuss the methodology that was followed in producing an optimized surface profile of the tiles. This shaped profile has the feature that the resulting power deposition profile is roughly similar for a wide range of plasma parameters. (author)

  2. Electron flux enhancement in the inner radiation belt during moderate magnetic storms

    Directory of Open Access Journals (Sweden)

    H. Tadokoro

    2007-06-01

    Full Text Available During moderate magnetic storms, an electron channel (300–1100 keV of the NOAA satellite has shown sudden electron flux enhancements in the inner radiation belt. After examinating the possibility of contamination by different energetic particles, we conclude that these electron flux enhancements are reliable enough to be considered as natural phenomena, at least for the cases of small to moderate magnetic storms. Here, we define small and moderate storms to be those in which the minimum Dst ranges between −30 and −100 nT. The electron flux enhancements appear with over one order of magnitude at L~2 during these storms. The enhancement is not accompanied by any transport of electron flux from the outer belt. Statistical analysis shows that these phenomena have a duration of approximately 1 day during the period, starting with the main phase to the early recovery phase of the storms. The flux enhancement shows a dawn-dusk asymmetry; the amount of increased flux is larger in the dusk side. We suggest that this phenomenon could not be caused by the radial diffusion but would be due to pitch-angle scattering at the magnetic equator. The inner belt is not in a stationary state, as was previously believed, but is variable in response to the magnetic activity.

  3. Empirical radiation belt models: Comparison with in situ data and implications for environment definition

    Science.gov (United States)

    de Soria-Santacruz Pich, Maria; Jun, Insoo; Evans, Robin

    2017-09-01

    The empirical AP8/AE8 model has been the de facto Earth's radiation belts engineering reference for decades. The need from the community for a better model incubated the development of AP9/AE9/SPM, which addresses several shortcomings of the old model. We provide additional validation of AP9/AE9 by comparing in situ electron and proton data from Jason-2, Polar Orbiting Environmental Satellites (POES), and the Van Allen Probes spacecraft with the 5th, 50th, and 95th percentiles from AE9/AP9 and with the model outputs from AE8/AP8. The relatively short duration of Van Allen Probes and Jason-2 missions means that their measurements are most certainly the result of specific climatological conditions. In low Earth orbit (LEO), the Jason-2 proton flux is better reproduced by AP8 compared to AP9, while the POES electron data are well enveloped by AE9 5th and 95th percentiles. The shape of the South Atlantic anomaly (SAA) from Jason-2 data is better captured by AP9 compared to AP8, while the peak SAA flux is better reproduced by AP8. The <1.5 MeV inner belt electrons from Magnetic Electron Ion Spectrometer (MagEIS) are well enveloped by AE9 5th and 95th percentiles, while AE8 overpredicts the measurements. In the outer radiation belt, MagEIS and Relativistic Electron and Proton Telescope (REPT) electrons closely follow the median estimate from AE9, while AP9 5th and 95th percentiles generally envelope REPT proton measurements in the inner belt and slot regions. While AE9/AP9 offer the flexibility to specify the environment with different confidence levels, the dose and trapped proton peak flux for POES and Jason-2 trajectories from the AE9/AP9 50th percentile and above are larger than the estimates from the AE8/AP8 models.

  4. Method of modifying conveyor belt profile for monitoring ask content of coarse grain coal by radiometric methods

    International Nuclear Information System (INIS)

    Taborsky, J.; Tryzna, P.; Formanek, Z.; Vales, J.

    1982-01-01

    The conveyor belt is gripped in the chosen place with benches to form a V shape with a constant cross section independent of the immediate amount of transported coal. At this point the source and the radiation intensity monitor are placed in horizontal plane on the sides of the conveyor belt. Their connecting line is perpendicular to the direction of the movement of the conveyor belt. Thus, monitoring of the ash content of mined coal and operative control of mining according to measured values are made possible. (Ha)

  5. Nonlinear VLF Wave Physics in the Radiation Belts

    Science.gov (United States)

    Crabtree, C. E.; Tejero, E. M.; Ganguli, G.; Mithaiwala, M.; Rudakov, L.; Hospodarsky, G. B.; Kletzing, C.

    2014-12-01

    Electromagnetic VLF waves, such as whistler mode waves, both control the lifetime of trapped electrons in the radiation belts by pitch-angle scattering and are responsible for the energization of electrons during storms. Traditional approaches to understanding the influence of waves on trapped electrons have assumed that the wave characteristics (frequency spectrum, wave-normal angle distribution, etc.) were both stationary in time and amplitude independent from event to event. In situ data from modern satellite missions, such as the Van Allen probes, are showing that this assumption may not be justified. In addition, recent theoretical results [Crabtree et al. 2012] show that the threshold for nonlinear wave scattering can often be met by naturally occurring VLF waves in the magnetosphere, with wave magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear wave scattering (Nonlinear Landau Damping) is an amplitude dependent mechanism that can strongly alter VLF wave propagation [Ganguli et al. 2010], primarily by altering the direction of propagation. Laboratory results have confirmed the dramatic change in propagation direction when the pump wave has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Nonlinear scattering can alter the macroscopic dynamics of waves in the radiation belts leading to the formation of a long-lasting wave-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al., 2012]. Such nonlinear wave effects can dramatically reduce electron lifetimes. Nonlinear wave dynamics such as these occur when there are more than one wave present, such a condition necessarily violates the assumption of traditional wave-normal analysis [Santolik et al., 2003] which rely on the plane wave assumption. To investigate nonlinear wave dynamics using modern in situ data we apply the maximum entropy method [Skilling and Bryan, 1984] to solve for the wave distribution function

  6. Variations of Synchrotron Radio Emissions from Jupiter's Inner Radiation Belt

    Science.gov (United States)

    Lou, Y.-Q.

    2017-09-01

    Variations of Synchrotron Radio Emissions from Jupiter's Inner Radiation Belt Yu-Qing Lou* Physics Department, Tsinghua Centre for Astrophysics (THCA), Tsinghua-National Astronomical Observatories of China (NAOC) joint Research Centre for Astrophysics, Tsinghua University, Beijing 100084, China We describe the basic phenommenology of quasi-periodic 40 minute (QP-40) polar burst activities of Jupiter and their close correlation with the solar wind speed variations at the Jovian magnetosphere. Physically, relativistic electrons of QP-40 bursts most likely come from the circumpolar regions of the inner radiation belt (IRB) which gives off intense synchroton radio emissions in a wide wavelength range. Such relativistic electron bursts also give rise to beamed low-frequency radio bursts along polar magnetic field lines with distinct polarizations from Jupiter's two polar regions. Jovian aurora activities are expected to be also affected by such QP-40 burst activities. We present evidence of short-term (typical timescales shorter than an hour) variabilities of the IRB at 6cm wavelength and describe recent joint radio telescope observation campaign to monitor Jupiter in coordination with JUNO spacecraft. Except for low-frequency polarization features, we anticipate JUNO to detect QP-40 activities from both polar regions during the arrival of high-speed solar wind with intermittency. References 1. Y.-Q. Lou, The Astrophysical Journal, 548, 460 (2001). 2. Y.-Q. Lou, and C. Zheng, Mon. Not. Roy. Astron. Soc. Letters, 344, L1 (2003). 3. Y.-Q. Lou, H. G. Song, Y.Y. Liu, and M. Yang, Mon. Not. Roy. Astron. Soc. Letters, 421, L62 (2012). 4. Y.-Q. Lou, Geophysical Research Letters, 23, 609 (1996). 5. Y.-Q. Lou, Journal of Geophysical Research, 99, 14747 (1994). 6. G. R. Gladstone, et al., Nature, 415, 1000 (2002).

  7. Characteristics of Pitch Angle Distributions of 100s Kev Electrons in the Slot Region and Inner Radiation Belt­­­­­­­­

    Science.gov (United States)

    Zhao, H.; Li, X.; Blake, J. B.; Fennell, J.; Claudepierre, S. G.; Baker, D. N.; Jaynes, A. N.; Malaspina, D.

    2014-12-01

    The pitch angle distribution (PAD) of energetic electrons in the slot region and inner radiation belt received little attention in the past decades due to the lack of quality measurements. Using the state-of-art pitch-angle-resolved data from the Magnetic Electron Ion Spectrometer (MagEIS) instrument onboard the Van Allen Probes, a detailed analysis of 100s keV electron PADs below L =4 is performed, in which the PADs is categorized into three types: normal (flux peaking at 90°), cap (exceedingly peaking narrowly around 90°) and 90°-minimum (lower flux at 90°) PADs. By examining the characteristics of the PADs of 460 keV electrons for over a year, we find that the 90°-minimum PADs are generally present in the inner belt (Lpitch angle scattering of hiss waves. Fitting the normal PADs into sinnα form, the parameter n is much higher below L=3 than that in the outer belt and relatively constant in the inner belt but changes significantly in the slot region (2mechanism can hardly explain the formation of 90°-minimum PADs at the center of inner belt. These new and compelling observations, made possible by the high-quality measurements of MagEIS, present a challenge for the wave modelers, and future work is still needed to fully understand them.

  8. Prediction Model of the Outer Radiation Belt Developed by Chungbuk National University

    Directory of Open Access Journals (Sweden)

    Dae-Kyu Shin

    2014-12-01

    Full Text Available The Earth’s outer radiation belt often suffers from drastic changes in the electron fluxes. Since the electrons can be a potential threat to satellites, efforts have long been made to model and predict electron flux variations. In this paper, we describe a prediction model for the outer belt electrons that we have recently developed at Chungbuk National University. The model is based on a one-dimensional radial diffusion equation with observationally determined specifications of a few major ingredients in the following way. First, the boundary condition of the outer edge of the outer belt is specified by empirical functions that we determine using the THEMIS satellite observations of energetic electrons near the boundary. Second, the plasmapause locations are specified by empirical functions that we determine using the electron density data of THEMIS. Third, the model incorporates the local acceleration effect by chorus waves into the one-dimensional radial diffusion equation. We determine this chorus acceleration effect by first obtaining an empirical formula of chorus intensity as a function of drift shell parameter L*, incorporating it as a source term in the one-dimensional diffusion equation, and lastly calibrating the term to best agree with observations of a certain interval. We present a comparison of the model run results with and without the chorus acceleration effect, demonstrating that the chorus effect has been incorporated into the model to a reasonable degree.

  9. The quiet time structure of energetic (35--560 keV) radiation belt electrons

    International Nuclear Information System (INIS)

    Lyons, L.R.; Williams, D.J.

    1975-01-01

    Detailed Explorer 45 equatorial observations of the quiet time structure of radiation belt electrons (35--560 keV) for 1.7approximately-less-thanLapproximately-less-than5.2 are presented. Throughout the slot region and outer regions of the plasmasphere the observed pitch angle distributions are found to agree with those expected from resonant interactions with the plasmaspheric whistler mode wave band. Coulomb collisions become the dominant loss mechanism within the inner zone. The overall two-zone structure of the observed radial profiles is found to agree with the equilibrium structure expected to result from a balance between pitch angle scattering losses and radial diffusion from an average outer zone source. This agreement suggests that the dominant quiet time source and loss mechanisms have been identified and evaluated for energetic radiation belt electrons within the plasmasphere. In the outer regions of the plasmasphere (Lapprox.5) the equilibrium structure is observed to be modified by daily flux variations associated with changes in the level of magnetic activity that occur even during relatively quiet times. Within the inner region of the plasmasphere (Lapproximately-less-than3.5), electron fluxes are decoupled from these magnetic activity variations by the long time scales (>10 days) required for pitch angle and radial diffusion. Consequently, fluxes of these electrons are observed to remain nearly constant at equilibrium levels throughout the quiet periods examined

  10. Polar PWI and CEPPAD observations of chorus emissions and radiation belt electron acceleration: Four case studies

    Czech Academy of Sciences Publication Activity Database

    Sigsbee, K.; Menietti, J. D.; Santolík, Ondřej; Blake, J. B.

    2008-01-01

    Roč. 70, č. 14 (2008), s. 1774-1788 ISSN 1364-6826 R&D Projects: GA AV ČR IAA301120601 Grant - others: NASA (US) NNG05GM52G; NSF(US) 0307319 Institutional research plan: CEZ:AV0Z30420517 Keywords : chorus * outer radiation belt Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.667, year: 2008

  11. Belt of Yotvings. Radioecology

    International Nuclear Information System (INIS)

    Mazheika, J.; Petroshius, R.; Strzelecki, R.; Wolkovitcz, S.; Lewandowski, P.

    1997-01-01

    Full text: The map of gamma radiation dose of 'Belt of Yotvings' area displays the summarized gamma radiation coming from natural radionuclides of 238 U, 232 Th, 40 K and from cesium isotopes 137 Cs, 134 Cs, artificially supplied into the environment after the Chernobyl disaster. The average value of gamma radiation dose for 'Belt of Yotvings' area is 44.2 n Gy/h, with a distinct regional differentiation. The content of uranium varies from 0 to 4.5 g/t, with the average value of about 1.4 g/t. Thorium content varies from 0 to 10.3 g/t, with the average value of 4.3 g/t. Potassium content varies from 0.1 up to 2.5 %, with the average value of 1.2 %. The concentration of caesium radioisotopes reaches up to 11.6 kBq/m 2 , the average value being 3.8 kBq/m 2 . Radon concentration in soil air has been determined in 55 sites (83 analyses). Radon concentration has been noticed in volumes from trace amounts up to 55 kBq/m3.The radioecological mapping has documented that the highest concentrations of natural radioisotopes and, correspondingly, the highest total gamma radiation dose were observed in the northeastern part of the area studied, which is covered by clay-silty glaciolacustrine deposits. Slightly lower values are typical for the whole northwestern part of 'Belt of Yotvings'. Very low contents of radioactive elements and low total radiation doses are typical for eolian and sandur sands, occurring south-eastward from the line Augustow-Veisiejai. The Chernobyl NPP accident polluted the studied region with artificial cesium radioisotopes un significantly. The concentrations are low and they involve no radioecological hazard. The investigation of radon concentration in soil air have revealed several places affected by high radon emanation. These places should be studied in a more detailed way

  12. Forecasting of Radiation Belts: Results From the PROGRESS Project.

    Science.gov (United States)

    Balikhin, M. A.; Arber, T. D.; Ganushkina, N. Y.; Walker, S. N.

    2017-12-01

    Forecasting of Radiation Belts: Results from the PROGRESS Project. The overall goal of the PROGRESS project, funded in frame of EU Horizon2020 programme, is to combine first principles based models with the systems science methodologies to achieve reliable forecasts of the geo-space particle radiation environment.The PROGRESS incorporates three themes : The propagation of the solar wind to L1, Forecast of geomagnetic indices, and forecast of fluxes of energetic electrons within the magnetosphere. One of the important aspects of the PROGRESS project is the development of statistical wave models for magnetospheric waves that affect the dynamics of energetic electrons such as lower band chorus, hiss and equatorial noise. The error reduction ratio (ERR) concept has been used to optimise the set of solar wind and geomagnetic parameters for organisation of statistical wave models for these emissions. The resulting sets of parameters and statistical wave models will be presented and discussed. However the ERR analysis also indicates that the combination of solar wind and geomagnetic parameters accounts for only part of the variance of the emissions under investigation (lower band chorus, hiss and equatorial noise). In addition, advances in the forecast of fluxes of energetic electrons, exploiting empirical models and the first principles IMPTAM model achieved by the PROGRESS project is presented.

  13. Ice Caps and Ice Belts: The Effects of Obliquity on Ice−Albedo Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Brian E. J. [Department of Atmospheric and Environmental Sciences, University at Albany (State University of New York), 1400 Washington Avenue, Albany, NY 12222 (United States); Cronin, Timothy W. [Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Bitz, Cecilia M., E-mail: brose@albany.edu [Department of Atmospheric Sciences, MS 351640, University of Washington, Seattle, WA 98195-1640 (United States)

    2017-09-01

    Planetary obliquity determines the meridional distribution of the annual mean insolation. For obliquity exceeding 55°, the weakest insolation occurs at the equator. Stable partial snow and ice cover on such a planet would be in the form of a belt about the equator rather than polar caps. An analytical model of planetary climate is used to investigate the stability of ice caps and ice belts over the widest possible range of parameters. The model is a non-dimensional diffusive Energy Balance Model, representing insolation, heat transport, and ice−albedo feedback on a spherical planet. A complete analytical solution for any obliquity is given and validated against numerical solutions of a seasonal model in the “deep-water” regime of weak seasonal ice line migration. Multiple equilibria and unstable transitions between climate states (ice-free, Snowball, or ice cap/belt) are found over wide swaths of parameter space, including a “Large Ice-Belt Instability” and “Small Ice-Belt Instability” at high obliquity. The Snowball catastrophe is avoided at weak radiative forcing in two different scenarios: weak albedo feedback and inefficient heat transport (favoring stable partial ice cover), or efficient transport at high obliquity (favoring ice-free conditions). From speculative assumptions about distributions of planetary parameters, three-fourths to four-fifths of all planets with stable partial ice cover should be in the form of Earth-like polar caps.

  14. Method of monitoring, inspecting or testing conveyor belts

    International Nuclear Information System (INIS)

    Van der Walt, A.J.

    1985-01-01

    An invention is discussed which provides a method, installation and kit for monitoring, inspecting or testing a conveyor belt. Provision is made to transmit penetrating rays such as X-rays through a moving conveyor belt, forming a visible moving image from rays transmitted through the belt, and visually inspecting such moving image, after recording it if desired, to ascertain the condition of the interior of the belt. Typically an X-ray tube head is used to transmit the rays through the belt to a fluorescent screen which forms the image. The moving image can be recorded by means of a video camera

  15. Channel belt architecture formed by a meandering river

    NARCIS (Netherlands)

    Lageweg, W.I. van de; Dijk, W.M. van; Kleinhans, M.G.

    2013-01-01

    Stratification in channel belts is the key to reconstructing formative channel dimensions and palaeoflow conditions; this requires an understanding of the relation between river morphodynamics and set thickness. So far, theories for reconstruction of the original morphology from preserved

  16. Parametric validations of analytical lifetime estimates for radiation belt electron diffusion by whistler waves

    Directory of Open Access Journals (Sweden)

    A. V. Artemyev

    2013-04-01

    Full Text Available The lifetimes of electrons trapped in Earth's radiation belts can be calculated from quasi-linear pitch-angle diffusion by whistler-mode waves, provided that their frequency spectrum is broad enough and/or their average amplitude is not too large. Extensive comparisons between improved analytical lifetime estimates and full numerical calculations have been performed in a broad parameter range representative of a large part of the magnetosphere from L ~ 2 to 6. The effects of observed very oblique whistler waves are taken into account in both numerical and analytical calculations. Analytical lifetimes (and pitch-angle diffusion coefficients are found to be in good agreement with full numerical calculations based on CRRES and Cluster hiss and lightning-generated wave measurements inside the plasmasphere and Cluster lower-band chorus waves measurements in the outer belt for electron energies ranging from 100 keV to 5 MeV. Comparisons with lifetimes recently obtained from electron flux measurements on SAMPEX, SCATHA, SAC-C and DEMETER also show reasonable agreement.

  17. Modeling the Proton Radiation Belt With Van Allen Probes Relativistic Electron-Proton Telescope Data

    Science.gov (United States)

    Selesnick, R. S.; Baker, D. N.; Kanekal, S. G.; Hoxie, V. C.; Li, X.

    2018-01-01

    An empirical model of the proton radiation belt is constructed from data taken during 2013-2017 by the Relativistic Electron-Proton Telescopes on the Van Allen Probes satellites. The model intensity is a function of time, kinetic energy in the range 18-600 MeV, equatorial pitch angle, and L shell of proton guiding centers. Data are selected, on the basis of energy deposits in each of the nine silicon detectors, to reduce background caused by hard proton energy spectra at low L. Instrument response functions are computed by Monte Carlo integration, using simulated proton paths through a simplified structural model, to account for energy loss in shielding material for protons outside the nominal field of view. Overlap of energy channels, their wide angular response, and changing satellite orientation require the model dependencies on all three independent variables be determined simultaneously. This is done by least squares minimization with a customized steepest descent algorithm. Model uncertainty accounts for statistical data error and systematic error in the simulated instrument response. A proton energy spectrum is also computed from data taken during the 8 January 2014 solar event, to illustrate methods for the simpler case of an isotropic and homogeneous model distribution. Radiation belt and solar proton results are compared to intensities computed with a simplified, on-axis response that can provide a good approximation under limited circumstances.

  18. Pitch-angle diffusion of electrons through growing and propagating along a magnetic field electromagnetic wave in Earth's radiation belts

    International Nuclear Information System (INIS)

    Choi, C.-R.; Dokgo, K.; Min, K.-W.; Woo, M.-H.; Choi, E.-J.; Hwang, J.; Park, Y.-D.; Lee, D.-Y.

    2015-01-01

    The diffusion of electrons via a linearly polarized, growing electromagnetic (EM) wave propagating along a uniform magnetic field is investigated. The diffusion of electrons that interact with the growing EM wave is investigated through the autocorrelation function of the parallel electron acceleration in several tens of electron gyration timescales, which is a relatively short time compared with the bounce time of electrons between two mirror points in Earth's radiation belts. Furthermore, the pitch-angle diffusion coefficient is derived for the resonant and non-resonant electrons, and the effect of the wave growth on the electron diffusion is discussed. The results can be applied to other problems related to local acceleration or the heating of electrons in space plasmas, such as in the radiation belts

  19. Drift-resonant, relativistic electron acceleration at the outer planets: Insights from the response of Saturn's radiation belts to magnetospheric storms

    Science.gov (United States)

    Roussos, E.; Kollmann, P.; Krupp, N.; Paranicas, C.; Dialynas, K.; Sergis, N.; Mitchell, D. G.; Hamilton, D. C.; Krimigis, S. M.

    2018-05-01

    The short, 7.2-day orbital period of Cassini's Ring Grazing Orbits (RGO) provided an opportunity to monitor how fast the effects of an intense magnetospheric storm-time period (days 336-343/2016) propagated into Saturn's electron radiation belts. Following the storms, Cassini's MIMI/LEMMS instrument detected a transient extension of the electron radiation belts that in subsequent orbits moved towards the inner belts, intensifying them in the process. This intensification was followed by an equally fast decay, possibly due to the rapid absorption of MeV electrons by the planet's main rings. Surprisingly, all this cycle was completed within four RGOs, effectively in less than a month. That is considerably faster than the year-long time scales of Saturn's proton radiation belt evolution. In order to explain this difference, we propose that electron radial transport is partly controlled by the variability of global scale electric fields which have a fixed local time pointing. Such electric fields may distort significantly the orbits of a particular class of energetic electrons that cancel out magnetospheric corotation due to their westward gradient and curvature drifts (termed "corotation-resonant" or "local-time stationary" electrons) and transport them radially between the ring current and the radiation belts within several days and few weeks. The significance of the proposed process is highlighted by the fact that corotation resonance at Saturn occurs for electrons of few hundred keV to several MeV. These are the characteristic energies of seed electrons from the ring current that sustain the radiation belts of the planet. Our model's feasibility is demonstrated through the use of a simple test-particle simulation, where we estimate that uniform but variable electric fields with magnitudes lower that 1.0 mV/m can lead to a very efficient transport of corotation resonant electrons. Such electric fields have been consistently measured in the magnetosphere, and here we

  20. Empirical model of the high-latitude boundary of the Earth's outer radiation belt at altitudes of up to 1000 km

    Science.gov (United States)

    Kalegaev, V. V.; Barinova, W. O.; Myagkova, I. N.; Eremeev, V. E.; Parunakyan, D. A.; Nguyen, M. D.; Barinov, O. G.

    2018-01-01

    An empirical model of the high-latitude boundary of the outer Earth's radiation belt (ERB) has been presented, which is based on the measurement data of electron fluxes on the polar low-orbit CORONAS-Photon, Meteor-M1, and Meteor-M2 satellites. The boundary was determined by a sharp decrease to the background level of the flux of trapped electrons with energies of 100 or 200 keV in the polar part of the profile of the outer radiation belt. A numerical algorithm has been implemented to determine the time moment, when the fastest flux changes are recorded. The primary search was carried out, first, on 30 s averaged data, then repeated on data with a higher resolution. A functional dependence was obtained in order to approximate the obtained set of intersections of the boundary by elliptical curve. The empirical model constructed using the CORONAS-Photon measurement data in the epoch of anomalously low geomagnetic activity reflects the longitude structure of the high-latitude boundary of the outer radiation belt associated with the internal Earth's magnetic field (MF), as well as its dependence on the universal time. Based on the data of intersections of the high-latitude boundary of the outer ERB (OERB) in the epoch of 2014-2016, the latitudinal shift of the boundary to the equator dependent on geomagnetic activity has been determined, as well as the nightside shift of the boundary due to the diurnal rotation of the Earth.

  1. Mapping lightning discharges on Earth with lightning-generated whistlers wave emission in space and their effects on radiation belt electrons

    Science.gov (United States)

    Farges, T.; Ripoll, J. F.; Santolik, O.; Kolmasova, I.; Kurth, W. S.; Hospodarsky, G. B.; Kletzing, C.

    2017-12-01

    It is widely accepted that the slot region of the Van Allen radiation belts is sculpted by the presence of whistler mode waves especially by plasmaspheric hiss emissions. In this work, we investigate the role of lightning-generated whistler waves (LGW), which also contribute to scatter electrons trapped in the plasmaphere but, in general, to a lesser extent due to their low mean amplitude and occurrence rate. Our goal is to revisit the characterization of LGW occurrence in the Earth's atmosphere and in space as well as the computation of LGW effects by looking at a series of particular events, among which intense events, in order to characterize maximal scattering effects. We use multicomponent measurements of whistler mode waves by the Waves instrument of Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard the Van Allen Probes spacecraft as our primary data source. We combine this data set with local measurements of the plasma density. We also use the data of the World Wide Lightning Location Network in order to localize the source of lightning discharges on Earth and their radiated energy, both locally at the footprint of the spacecraft and, globally, along the drift path. We discuss how to relate the signal measured in space with the estimation of the power emitted in the atmosphere and the associated complexity. Using these unique data sets we model the coefficients of quasi-linear pitch angle diffusion and we estimate effects of these waves on radiation belt electrons. We show evidence that lightning generated whistlers can, at least in some cases, influence the radiation belt dynamics.

  2. Determination of relative immobile and sliding areas between carrying and tractive belts in using of belt conveyor intermediate drives

    OpenAIRE

    Goncharov K.A.

    2015-01-01

    Method of determination of relative immobile and sliding areas between carrying and tractive belts in places of mount-ing of belt conveyor intermediate drives made in the form of tractive contours is proposed. The example shows potential of this method in multidrive belt conveyor design process.

  3. Transport, charge exchange and loss of energetic heavy ions in the earth's radiation belts - Applicability and limitations of theory

    Science.gov (United States)

    Spjeldvik, W. N.

    1981-01-01

    Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.

  4. High Altitude Balloons as a Platform for Space Radiation Belt Science

    Science.gov (United States)

    Mazzino, L.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Johnson, W.; Mann, I. R.; Rae, J.; University of Alberta High Altitude Balloons (UA-HAB)

    2011-12-01

    The goals of the University of Alberta High Altitude Balloons Program (UA-HAB) are to i) use low cost balloons to address space radiation science, and ii) to utilise the excitement of "space mission" involvement to promote and facilitate the recruitment of undergraduate and graduate students in physics, engineering, and atmospheric sciences to pursue careers in space science and engineering. The University of Alberta High Altitude Balloons (UA-HAB) is a unique opportunity for University of Alberta students (undergraduate and graduate) to engage in the hands-on design, development, build, test and flight of a payload to operate on a high altitude balloon at around 30km altitude. The program development, including formal design and acceptance tests, reports and reviews, mirror those required in the development of an orbital satellite mission. This enables the students to gain a unique insight into how space missions are flown. UA-HAB is a one and half year program that offers a gateway into a high-altitude balloon mission through hands on experience, and builds skills for students who may be attracted to participate in future space missions in their careers. This early education will provide students with the experience necessary to better assess opportunities for pursuing a career in space science. Balloons offer a low-cost alternative to other suborbital platforms which can be used to address radiation belt science goals. In particular, the participants of this program have written grant proposal to secure funds for this project, have launched several 'weather balloon missions', and have designed, built, tested, and launched their particle detector called "Maple Leaf Particle Detector". This detector was focussed on monitoring cosmic rays and space radiation using shielded Geiger tubes, and was flown as one of the payloads from the institutions participating in the High Altitude Student Platform (HASP), organized by the Louisiana State University and the Louisiana

  5. Mass spectrometer determinations of solar wind He, Ne, and Ar and radiation belt He

    International Nuclear Information System (INIS)

    Warasila, R.L.

    1976-01-01

    A unique mass spectrometer system was built and used to measure He, Ne, and Ar abundances and isotopic ratios in various samples of spacecraft that have been exposed to the space environment. The Apollo 12 mission brought back sections of the Surveyor 3 vehicle suitable for mass spectrometric studies of implanted solar wind and solar cosmic ray particles. Using the mass spectrometer, a 4 He flux of 6-8 x 10 6 ions/cm 2 --sec was measured, and in addition 4 He/ 3 He = 2700 +- 50; 4 He/ 20 Ne = 410 + 30; 20 Ne/ 22 Ne = 13.5 +- 0.2; 20 Ne/ 36 Ar = 24.5 +- 2.5; and 36 Ar/ 38 Ar = 5.41 +- 0.20 isotopic abundances were measured. An upper limit for the flux of SCR 3 He in the 10-20 MeV/nucleon range was also determined, for the thirty-one month exposure period. In the radiation belt environment, 3 He was found in the aluminum antenna housing from the recovered second stage of a pre-Apollo Saturn test flight launched January 28, 1964 and returned to earth on April 28, 1966. The amount of 3 He found was about 6 x 10 -10 cc(STP)/cm 2 with a 4 He/ 3 He ratio of 145 or less. The 3 He was shown to come from the lower radiation belt as all other sources of 3 He were orders of magnitude lower than the observed value

  6. Colors of Inner Disk Classical Kuiper Belt Objects

    Science.gov (United States)

    Romanishin, W.; Tegler, S. C.; Consolmagno, G. J.

    2010-07-01

    We present new optical broadband colors, obtained with the Keck 1 and Vatican Advanced Technology telescopes, for six objects in the inner classical Kuiper Belt. Objects in the inner classical Kuiper Belt are of interest as they may represent the surviving members of the primordial Kuiper Belt that formed interior to the current position of the 3:2 resonance with Neptune, the current position of the plutinos, or, alternatively, they may be objects formed at a different heliocentric distance that were then moved to their present locations. The six new colors, combined with four previously published, show that the ten inner belt objects with known colors form a neutral clump and a reddish clump in B-R color. Nonparametric statistical tests show no significant difference between the B-R color distribution of the inner disk objects compared to the color distributions of Centaurs, plutinos, or scattered disk objects. However, the B-R color distribution of the inner classical Kuiper Belt Objects does differ significantly from the distribution of colors in the cold (low inclination) main classical Kuiper Belt. The cold main classical objects are predominately red, while the inner classical belt objects are a mixture of neutral and red. The color difference may reveal the existence of a gradient in the composition and/or surface processing history in the primordial Kuiper Belt, or indicate that the inner disk objects are not dynamically analogous to the cold main classical belt objects.

  7. COLORS OF INNER DISK CLASSICAL KUIPER BELT OBJECTS

    International Nuclear Information System (INIS)

    Romanishin, W.; Tegler, S. C.; Consolmagno, G. J.

    2010-01-01

    We present new optical broadband colors, obtained with the Keck 1 and Vatican Advanced Technology telescopes, for six objects in the inner classical Kuiper Belt. Objects in the inner classical Kuiper Belt are of interest as they may represent the surviving members of the primordial Kuiper Belt that formed interior to the current position of the 3:2 resonance with Neptune, the current position of the plutinos, or, alternatively, they may be objects formed at a different heliocentric distance that were then moved to their present locations. The six new colors, combined with four previously published, show that the ten inner belt objects with known colors form a neutral clump and a reddish clump in B-R color. Nonparametric statistical tests show no significant difference between the B-R color distribution of the inner disk objects compared to the color distributions of Centaurs, plutinos, or scattered disk objects. However, the B-R color distribution of the inner classical Kuiper Belt Objects does differ significantly from the distribution of colors in the cold (low inclination) main classical Kuiper Belt. The cold main classical objects are predominately red, while the inner classical belt objects are a mixture of neutral and red. The color difference may reveal the existence of a gradient in the composition and/or surface processing history in the primordial Kuiper Belt, or indicate that the inner disk objects are not dynamically analogous to the cold main classical belt objects.

  8. Determination of relative immobile and sliding areas between carrying and tractive belts in using of belt conveyor intermediate drives

    Directory of Open Access Journals (Sweden)

    Goncharov K.A.

    2015-12-01

    Full Text Available Method of determination of relative immobile and sliding areas between carrying and tractive belts in places of mount-ing of belt conveyor intermediate drives made in the form of tractive contours is proposed. The example shows potential of this method in multidrive belt conveyor design process.

  9. LANL* V1.0: a radiation belt drift shell model suitable for real-time and reanalysis applications

    Directory of Open Access Journals (Sweden)

    J. Koller

    2009-07-01

    Full Text Available We describe here a new method for calculating the magnetic drift invariant, L*, that is used for modeling radiation belt dynamics and for other space weather applications. L* (pronounced L-star is directly proportional to the integral of the magnetic flux contained within the surface defined by a charged particle moving in the Earth's geomagnetic field. Under adiabatic changes to the geomagnetic field L* is a conserved quantity, while under quasi-adiabatic fluctuations diffusion (with respect to a particle's L* is the primary term in equations of particle dynamics. In particular the equations of motion for the very energetic particles that populate the Earth's radiation belts are most commonly expressed by diffusion in three dimensions: L*, energy (or momentum, and pitch angle (the dot product of velocity and the magnetic field vector. Expressing dynamics in these coordinates reduces the dimensionality of the problem by referencing the particle distribution functions to values at the magnetic equatorial point of a magnetic "drift shell" (or L-shell irrespective of local time (or longitude. While the use of L* aids in simplifying the equations of motion, practical applications such as space weather forecasting using realistic geomagnetic fields require sophisticated magnetic field models that, in turn, require computationally intensive numerical integration. Typically a single L* calculation can require on the order of 105 calls to a magnetic field model and each point in the simulation domain and each calculated pitch angle has a different value of L*. We describe here the development and validation of a neural network surrogate model for calculating L* in sophisticated geomagnetic field models with a high degree of fidelity at computational speeds that are millions of times faster than direct numerical field line mapping and integration. This new surrogate model has

  10. Device for determining the content of bulk materials on conveyor belts

    International Nuclear Information System (INIS)

    Fritsche, D.

    1983-01-01

    On the basis of the forward scattering of photon radiation the invention is aimed at determining the content of bulk material, in particular the ash content of lignite, independently of the height of the material conveyed by belts. This could be achieved by making the radiation source support movable, so that the distance between source and conveyor belt is variable and adaptable to the mean height of the bulk material

  11. Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy.

    Science.gov (United States)

    Artemyev, A V; Agapitov, O V; Mourenas, D; Krasnoselskikh, V V; Mozer, F S

    2015-05-15

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity.

  12. Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations

    International Nuclear Information System (INIS)

    Li, W.; Ma, Q.; Thorne, R. M.; Bortnik, J.; Zhang, X.-J.

    2016-01-01

    Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electron evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.

  13. Solar Rotational Periodicities and the Semiannual Variation in the Solar Wind, Radiation Belt, and Aurora

    Science.gov (United States)

    Emery, Barbara A.; Richardson, Ian G.; Evans, David S.; Rich, Frederick J.; Wilson, Gordon R.

    2011-01-01

    The behavior of a number of solar wind, radiation belt, auroral and geomagnetic parameters is examined during the recent extended solar minimum and previous solar cycles, covering the period from January 1972 to July 2010. This period includes most of the solar minimum between Cycles 23 and 24, which was more extended than recent solar minima, with historically low values of most of these parameters in 2009. Solar rotational periodicities from S to 27 days were found from daily averages over 81 days for the parameters. There were very strong 9-day periodicities in many variables in 2005 -2008, triggered by recurring corotating high-speed streams (HSS). All rotational amplitudes were relatively large in the descending and early minimum phases of the solar cycle, when HSS are the predominant solar wind structures. There were minima in the amplitudes of all solar rotational periodicities near the end of each solar minimum, as well as at the start of the reversal of the solar magnetic field polarity at solar maximum (approx.1980, approx.1990, and approx. 2001) when the occurrence frequency of HSS is relatively low. Semiannual equinoctial periodicities, which were relatively strong in the 1995-1997 solar minimum, were found to be primarily the result of the changing amplitudes of the 13.5- and 27-day periodicities, where 13.5-day amplitudes were better correlated with heliospheric daily observations and 27-day amplitudes correlated better with Earth-based daily observations. The equinoctial rotational amplitudes of the Earth-based parameters were probably enhanced by a combination of the Russell-McPherron effect and a reduction in the solar wind-magnetosphere coupling efficiency during solstices. The rotational amplitudes were cross-correlated with each other, where the 27 -day amplitudes showed some of the weakest cross-correlations. The rotational amplitudes of the > 2 MeV radiation belt electron number fluxes were progressively weaker from 27- to 5-day periods

  14. Forms of Approximate Radiation Transport

    CERN Document Server

    Brunner, G

    2002-01-01

    Photon radiation transport is described by the Boltzmann equation. Because this equation is difficult to solve, many different approximate forms have been implemented in computer codes. Several of the most common approximations are reviewed, and test problems illustrate the characteristics of each of the approximations. This document is designed as a tutorial so that code users can make an educated choice about which form of approximate radiation transport to use for their particular simulation.

  15. HEPD on NEXTSat-1: A High Energy Particle Detector for Measurements of Precipitating Radiation Belt Electrons

    Science.gov (United States)

    Sohn, Jongdae; Lee, Jaejin; Min, Kyoungwook; Lee, Junchan; Lee, Seunguk; Lee, Daeyoung; Jo, Gyeongbok; Yi, Yu; Na, Gowoon; Kang, Kyung-In; Shin, Goo-Hwan

    2018-05-01

    Radiation belt particles of the inner magnetosphere precipitate into the atmosphere in the subauroral regions when they are pitch-angle scattered into the loss cone by wave-particle interactions. Such particle precipitations are known to be especially enhanced during space storms, though they can also occur during quiet times. The observed characteristics of precipitating electrons can be distinctively different, in their time series as well as in their spectra, depending on the waves involved. The present paper describes the High Energy Particle Detector (HEPD) on board the Next Generation Small Satellite-1 (NEXTSat-1), which will measure these radiation belt electrons from a low-Earth polar orbit satellite to study the mechanisms related to electron precipitation in the sub-auroral regions. The HEPD is based on silicon barrier detectors and consists of three telescopes that are mounted on the satellite to have angles of 0°. 45°, and 90°, respectively with the local geomagnetic field during observations. With a high time resolution of 32 Hz and a high spectral resolution of 11 channels over the energy range from 350 keV to 2 MeV, together with the pitch angle information provided by the three telescopes, HEPD is capable of identifying physical processes, such as microbursts and dust-side relativistic electron precipitation (DREP) events associated with electron precipitations. NextSat-1 is scheduled for launch in early 2018.

  16. Alternatives to accuracy and bias metrics based on percentage errors for radiation belt modeling applications

    Energy Technology Data Exchange (ETDEWEB)

    Morley, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-01

    This report reviews existing literature describing forecast accuracy metrics, concentrating on those based on relative errors and percentage errors. We then review how the most common of these metrics, the mean absolute percentage error (MAPE), has been applied in recent radiation belt modeling literature. Finally, we describe metrics based on the ratios of predicted to observed values (the accuracy ratio) that address the drawbacks inherent in using MAPE. Specifically, we define and recommend the median log accuracy ratio as a measure of bias and the median symmetric accuracy as a measure of accuracy.

  17. Intensity increase of energetic electrons in the outer radiation belt of the Earth in July 1972 according to data of the ''Prognoz-2'' artificial Earth satellite

    International Nuclear Information System (INIS)

    Blyudov, V.A.; Volodichev, N.N.; Nechaev, O.Yu.; Savenko, I.A.; Saraeva, M.A.; Shavrin, P.I.

    1979-01-01

    Carried out is the investigation of the 6-10 MeV electrons in the outer radiation belt of the Earth at the ''Prognoz-2'' artificial Earth satellite along the trajectory of the satellite motion according to the Mac Ilvain parameter L. With the help of a ternary coincidance telescope in Juny 1972, the formationand decay of the belt of energetic electrons with the maximum intensity in the L=3.7 region was recorded. The maximum fluxer of this belt electrons are estimated. It is supposed that the event recorded is the consequence of the magnetospherical disturbance that occured on 18.4.1972

  18. The development of an electronic system to continually monitor, indicate and control, 'belt slippage' in industrial friction 'V' belt drive transmission systems

    International Nuclear Information System (INIS)

    Brown, R E

    2012-01-01

    Belts have been used for centuries as a mechanism to transfer power from some form of drive system to a variety of load systems. Within industry today, many designs of belts but particularly friction, trapezoidal shaped 'V' belts are used and generally transfer power generated by electrical motors to numerous forms of driven load systems. It is suggested that belt systems, through their simplicity are sadly neglected by maintenance functions and generally are left unattended until high degrees of 'belt slippage' through loss of friction or 'belt breakage' provokes maintenance attention. These circumstances are most often identified through the reduced or loss of manufacturing production or the occurrence of catastrophic circumstances such as fire caused through excessive friction/ high belt slippage conditions. Obviously, these situations incur financial losses to companies and in some cases the near loss of the company's main manufacturing plant. Consequently, a satisfactory, viable solution is currently sought by industry to improve on current labour intensive maintenance practices. This paper will present an account of the development of an industrially robust, accurate and repeatable electronic system which continually monitors and indicates the degree of 'slippage' in a 'V' belt drive transmission system and in the circumstance of belt breakage or high belt slippage will enable and control the switching off the drive motor.

  19. Loss and source mechanisms of Jupiter's radiation belts near the inner boundary of trapping regions

    Science.gov (United States)

    Santos-Costa, Daniel; Bolton, Scott J.; Becker, Heidi N.; Clark, George; Kollmann, Peter; Paranicas, Chris; Mauk, Barry; Joergensen, John L.; Adriani, Alberto; Thorne, Richard M.; Bagenal, Fran; Janssen, Mike A.; Levin, Steve M.; Oyafuso, Fabiano A.; Williamson, Ross; Adumitroaie, Virgil; Ingersoll, Andrew P.; Kurth, Bill; Connerney, John E. P.

    2017-04-01

    We have merged a set of physics-based and empirical models to investigate the energy and spatial distributions of Jupiter's electron and proton populations in the inner and middle magnetospheric regions. Beyond the main source of plasma (> 5 Rj) where interchange instability is believed to drive the radial transport of charged particles, the method originally developed by Divine and Garrett [J. Geophys. Res., 88, 6889-6903, 1983] has been adapted. Closer to the planet where field fluctuations control the radial transport, a diffusion theory approach is used. Our results for the equatorial and mid-latitude regions are compared with Pioneer and Galileo Probe measurements. Data collected along Juno's polar orbit allow us to examine the features of Jupiter's radiation environment near the inner boundary of trapping regions. Significant discrepancies between Juno (JEDI keV energy particles and high energy radiation environment measurements made by Juno's SRU and ASC star cameras and the JIRAM infrared imager) and Galileo Probe data sets and models are observed close to the planet. Our simulations of Juno MWR observations of Jupiter's electron-belt emission confirm the limitation of our model to realistically depict the energy and spatial distributions of the ultra-energetic electrons. In this paper, we present our modeling approach, the data sets and resulting data-model comparisons for Juno's first science orbits. We describe our effort to improve our models of electron and proton belts. To gain a physical understanding of the dissimilarities with observations, we revisit the magnetic environment and the mechanisms of loss and source in our models.

  20. Wave energy budget analysis in the Earth’s radiation belts uncovers a missing energy

    Science.gov (United States)

    Artemyev, A.V.; Agapitov, O.V.; Mourenas, D.; Krasnoselskikh, V.V.; Mozer, F.S.

    2015-01-01

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth’s magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth’s magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave–particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth’s radiation belts, controlled by solar activity. PMID:25975615

  1. Direct detection of albedo neutron decay electrons at the inner edge of the radiation belt and experimental determination of neutron density in near-Earth space

    Science.gov (United States)

    Li, X.; Selesnick, R.; Schiller, Q. A.; Zhang, K.; Zhao, H.; Baker, D. N.; Temerin, M. A.

    2017-12-01

    The galaxy is filled with cosmic ray particles, mostly protons with kinetic energy above hundreds of mega-electron volts (MeV). Soon after the discovery of Earth's Van Allen radiation belts almost six decades ago, it was recognized that the main source of inner belt protons, with kinetic energies of tens to hundreds of MeV, is Cosmic Ray Albedo Neutron Decay (CRAND). In this process, cosmic rays reaching the upper atmosphere from throughout the galaxy interact with neutral atoms to produce albedo neutrons which, being unstable to 𝛽 decay, are a potential source of geomagnetically trapped protons and electrons. Protons retain most of the neutrons' kinetic energy while the electrons have lower energies, mostly below 1 MeV. The viability of the electron source was, however, uncertain because measurements showed that electron intensity can vary greatly while the neutron decay rate should be almost constant. Recent measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) onboard the Colorado Student Space Weather Experiment (CSSWE) CubeSat now show that CRAND is the main electron source for the radiation belt near its inner edge, and also contributes to the inner belt elsewhere. Furthermore, measurement of the CRAND electron intensity provides the first experimental determination of the neutron density in near-Earth space, 2x10-9/cm3, confirming earlier theoretical estimates.

  2. Proton flux under radiation belts: near-equatorial zone

    International Nuclear Information System (INIS)

    Grigoryan, O.R.; Panasyuk, M.I.; Petrov, A.N.; Kudela, K.

    2005-01-01

    In this work the features of low-energy proton flux increases in near-equatorial region (McIlvein parameter L th the proton flux (with energy from tens keV up to several MeV) increases are registering regularly. However modern proton flux models (for example AP8 model) works at L>1.15 only and does not take into account near-equatorial protons. These fluxes are not too big, but the investigation of this phenomenon is important in scope of atmosphere-ionosphere connections and mechanisms of particles transport in magnetosphere. In according to double charge-exchange model the proton flux in near-equatorial region does not depend on geomagnetic local time (MLT) and longitude. However the Azur satellite data and Kosmos-484, MIR station and Active satellite data revealed the proton flux dependence on longitude. The other feature of near-equatorial proton flux is the dependence on geomagnetic local time revealed in the Sampex satellite experiment and other experiments listed above. In this work the dependences on MLT and longitude are investigated using the Active satellite (30-500 keV) and Sampex satellite (>800 keV). This data confirms that main sources of near-equatorial protons are radiation belts and ring current. The other result is that near-equatorial protons are quasi-trapped. The empirical proton flux dependences on L, B at near-equatorial longitudes are presented. (author)

  3. FIREBIRD: A Dual Satellite Mission to Examine the Spatial and Energy Coherence Scales of Radiation Belt Electron Microbursts

    Science.gov (United States)

    Klumpar, D. M.; Spence, H. E.; Larsen, B. A.; Blake, J. B.; Springer, L.; Crew, A. B.; Mosleh, E.; Mashburn, K. W.

    2009-12-01

    FIREBIRD (Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics), a mission under NSF’s “CubeSat-based Science Missions for Space Weather and Atmospheric Research”, will address the broad scientific question: What is the role of microburst electron precipitation in radiation belt dynamics? There are four major candidate processes for losses of relativistic electrons from the outer radiation belt [Millan and Thorne, 2007]: wave-particle interactions with whistler-mode chorus, wave-particle interactions with electromagnetic ion-cyclotron (EMIC) waves, outward radial diffusion to the magnetopause, and loss of adiabaticity on stretched magnetic field lines. FIREBIRD will further investigate the role of whistler-mode chorus, by examining the microburst electron precipitation phenomenon attributed to chorus. Microbursts are thought to be a hallmark of rapid radiation belt losses, possibly removing the entire pre-storm outer zone in a single day [Lorentzen 2001b; O'Brien et al., 2004], yet they are also intimately tied to in-situ acceleration mechanisms. FIREBIRD’s two 1.5U (10 x 10 x 15 cm) CubeSats, each weighing up to 2 kg, will be placed into a common high-inclination bead-on-a-string orbit. The two satellites will remain within ~500 km of one another for six to twelve months, allowing characterization over the spatial scale regime from 10 - 500 km. Each satellite will carry an identical co-aligned pair of solid-state detectors sensitive to electrons from 30 keV to ~3 MeV with 100 msec time resolution. Simultaneous dual measurements provided by the twin FIREBIRD satellites will permit, for the first time, the determination of spatial scales of single microburst events. Along with energy-resolved spectra, these measurements will provide the critically needed answers on the radiation belt loss rate attributed to microbursts. There are three critical questions about relativistic electron microbursts that FIREBIRD can answer: 1) What

  4. Van Allen Probe Observations of Chorus Wave Activity, Source and Seed electrons, and the Radiation Belt Response During ICME and CIR Storms

    Science.gov (United States)

    Bingham, S.; Mouikis, C.; Kistler, L. M.; Farrugia, C. J.; Paulson, K. W.; Huang, C. L.; Boyd, A. J.; Spence, H. E.; Kletzing, C.

    2017-12-01

    Whistler mode chorus waves are electromagnetic waves that have been shown to be a major contributor to enhancements in the outer radiation belt during geomagnetic storms. The temperature anisotropy of source electrons (10s of keV) provides the free energy for chorus waves, which can accelerate sub-relativistic seed electrons (100s of keV) to relativistic energies. This study uses Van Allen Probe observations to examine the excitation and plasma conditions associated with chorus wave observations, the development of the seed population, and the outer radiation belt response in the inner magnetosphere, for 25 ICME and 35 CIR storms. Plasma data from the Helium Oxygen Proton Electron (HOPE) instrument and magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) are used to identify chorus wave activity and to model a linear theory based proxy for chorus wave growth. A superposed epoch analysis shows a peak of chorus wave power on the dawnside during the storm main phase that spreads towards noon during the storm recovery phase. According to the linear theory results, this wave activity is driven by the enhanced convection driving plasma sheet electrons across the dayside. Both ICME and CIR storms show comparable levels of wave growth. Plasma data from the Magnetic Electron Ion Spectrometer (MagEIS) and the Relativistic Electron Proton Telescope (REPT) are used to observe the seed and relativistic electrons. A superposed epoch analysis of seed and relativistic electrons vs. L shows radiation belt enhancements with much greater frequency in the ICME storms, coinciding with a much stronger and earlier seed electron enhancement in the ICME storms.

  5. Van Allen Probes Science Gateway: Single-Point Access to Long-Term Radiation Belt Measurements and Space Weather Nowcasting

    Science.gov (United States)

    Romeo, G.; Barnes, R. J.; Ukhorskiy, A. Y.; Sotirelis, T.; Stephens, G.

    2017-12-01

    The Science Gateway gives single-point access to over 4.5 years of comprehensive wave and particle measurements from the Van Allen Probes NASA twin-spacecraft mission. The Gateway provides a set of visualization and data analysis tools including: HTML5-based interactive visualization of high-level data products from all instrument teams in the form of: line plots, orbital content plots, dynamical energy spectra, L-shell context plots (including two-spacecraft plotting), FFT spectra of wave data, solar wind and geomagnetic indices data, etc.; download custom multi-instrument CDF data files of selected data products; publication quality plots of digital data; combined orbit predicts for mission planning and coordination including: Van Allen Probes, MMS, THEMIS, Arase (ERG), Cluster, GOES, Geotail, FIREBIRD; magnetic footpoint calculator for coordination with LEO and ground-based assets; real-time computation and processing of empirical magnetic field models - computation of magnetic ephemeris, computation of adiabatic invariants. Van Allen Probes is the first spacecraft mission to provide a nowcast of the radiation environment in the heart of the radiation belts, where the radiation levels are the highest and most dangerous for spacecraft operations. For this purpose, all instruments continuously broadcast a subset of their science data in real time. Van Allen Probes partners with four foreign institutions who operate ground stations that receive the broadcast: Korea (KASI), the Czech republic (CAS), Argentina (CONAE), and Brazil (INPE). The SpWx broadcast is then collected at APL and delivered to the community via the Science Gateway.

  6. ICME-driven sheath regions deplete the outer radiation belt electrons

    Science.gov (United States)

    Hietala, H.; Kilpua, E. K.; Turner, D. L.

    2013-12-01

    It is an outstanding question in space weather and solar wind-magnetosphere interaction studies, why some storms result in an increase of the outer radiation belt electron fluxes, while others deplete them or produce no change. One approach to this problem is to look at differences in the storm drivers. Traditionally drivers have been classified to Stream Interaction Regions (SIRs) and Interplanetary Coronal Mass Ejections (ICMEs). However, an 'ICME event' is a complex structure: The core is a magnetic cloud (MC; a clear flux rope structure). If the mass ejection is fast enough, it can drive a shock in front of it. This leads to the formation of a sheath region between the interplanetary shock and the leading edge of the MC. While both the sheath and the MC feature elevated solar wind speed, their other properties are very different. For instance, the sheath region has typically a much higher dynamic pressure than the magnetic cloud. Moreover, the sheath region has a high power in magnetic field and dynamic pressure Ultra Low Frequency (ULF) range fluctuations, while the MC is characterised by an extremely smooth magnetic field. Magnetic clouds have been recognised as important drivers magnetospheric activity since they can comprise long periods of very large southward Interplanetary Magnetic Field (IMF). Nevertheless, previous studies have shown that sheath regions can also act as storm drivers. In this study, we analyse the effects of ICME-driven sheath regions on the relativistic electron fluxes observed by GOES satellites on the geostationary orbit. We perform a superposed epoch analysis of 31 sheath regions from solar cycle 23. Our results show that the sheaths cause an approximately one order of magnitude decrease in the 24h-averaged electron fluxes. Typically the fluxes also stay below the pre-event level for more than two days. Further analysis reveals that the decrease does not depend on, e.g., whether the sheath interval contains predominantly northward

  7. The thrust belts of Western North America

    Energy Technology Data Exchange (ETDEWEB)

    Moulton, F.C.

    1993-08-01

    Most of the Basin and Range physiographic province of western North America is now believed to be part of the overthrust. The more obvious overthrust belt along the eastern edge of the Basin and Range Province is named the Sevier orogenic belt, where older rocks are observed thrust onto younger rocks. More detailed surface geological mapping, plus deep multiple-fold geophysical work and many oil and gas wildcat wells, have confirmed an east-vergent shortened and stacked sequence is present in many places in the Basin and Range. This western compressive deformed area in east central Nevada is now named the Elko orogenic belt by the U.S. Geological Survey. This older compressed Elko orogenic belt started forming approximately 250 m.y. ago when the North American plate started to move west as the Pangaea supercontinent started to fragment. The North American plate moved west under the sediments of the Miogeocline that were also moving west. Surface-formed highlands and oceanic island arcs on the west edge of the North American plate restricted the westward movement of the sediments in the Miogeocline, causing east-vergent ramp thrusts to form above the westward-moving North American plate. The flat, eastward-up-cutting thrust assemblages moved on the detachment surfaces.

  8. Relativistic electrons of the outer radiation belt and methods of their forecast (review

    Directory of Open Access Journals (Sweden)

    Potapov A.S.

    2017-03-01

    Full Text Available The paper reviews studies of the dynamics of relativistic electrons in the geosynchronous region. It lists the physical processes that lead to the acceleration of electrons filling the outer radiation belt. As one of the space weather factors, high-energy electron fluxes pose a serious threat to the operation of satellite equipment in one of the most populated orbital regions. Necessity is emphasized for efforts to develop methods for forecasting the situation in this part of the magnetosphere, possible predictors are listed, and their classification is given. An example of a predictive model for forecasting relativistic electron flux with a 1–2-day lead time is proposed. Some questions of practical organization of prediction are discussed; the main objectives of short-term, medium-term, and long-term forecasts are listed.

  9. Effect of Thermospheric Neutral Density upon Inner Trapped-belt Proton Flux

    Science.gov (United States)

    Wilson, Thomas L.; Lodhi, M. A. K.; Diaz, Abel B.

    2007-01-01

    We wish to point out that a secular change in the Earth's atmospheric neutral density alters charged-particle lifetime in the inner trapped radiation belts, in addition to the changes recently reported as produced by greenhouse gases. Heretofore, changes in neutral density have been of interest primarily because of their effect on the orbital drag of satellites. We extend this to include the orbital lifetime of charged particles in the lower radiation belts. It is known that the charged-belt population is coupled to the neutral density of the atmosphere through changes induced by solar activity, an effect produced by multiple scattering off neutral and ionized atoms along with ionization loss in the thermosphere where charged and neutral populations interact. It will be shown here that trapped-belt flux J is bivariant in energy E and thermospheric neutral density , as J(E,rho). One can conclude that proton lifetimes in these belts are also directly affected by secular changes in the neutral species populating the Earth s thermosphere. This result is a consequence of an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present.

  10. Reproducing the observed energy-dependent structure of Earth's electron radiation belts during storm recovery with an event-specific diffusion model

    Czech Academy of Sciences Publication Activity Database

    Ripoll, J.-F.; Reeves, G. D.; Cunningham, G. S.; Loridan, V.; Denton, M.; Santolík, Ondřej; Kurth, W. S.; Kletzing, C. A.; Turner, D. L.; Henderson, M. G.; Ukhorskiy, A. Y.

    2016-01-01

    Roč. 43, č. 11 (2016), s. 5616-5625 ISSN 0094-8276 R&D Projects: GA MŠk(CZ) LH15304 Institutional support: RVO:68378289 Keywords : radiation belts * slot region * electron losses * wave particle interactions * hiss wave s * electron lifetimes Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.253, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2016GL068869/full

  11. Spatial characterization of relativistic electron enhancements in the Earth's outer radiation belt during the Van Allen Probes era

    Science.gov (United States)

    Pinto, V. A.; Bortnik, J.; Moya, P. S.; Lyons, L. R.; Sibeck, D. G.; Kanekal, S. G.

    2017-12-01

    Using Van Allen Probes Relativistic Electron-Proton Telescope (REPT) instrument we have identified 73 relativistic electron enhancement events in the outer radiation belt that occurred at different L values between L = 2.5 and L = 6.0. To determine an enhancement, we have used three different identification methods. We then determine the radial location, MLT location, timing and strength of those enhancements. We discuss the differences of each of the methods and test them to pinpoint the origin and spatial propagation of each enhancement. We have classified the events based on the radial propagation, speed of enhancement and intensity of fluxes and response for energy channels ranging from 1.8 MeV to 6.3 MeV. In addition, we have used OMNI data to study the statistical properties of the solar wind during each event and have classified similarities and differences that might be relevant for each group of enhancements and help us determine the physical process responsible for different types of enhancements. Additionally, we have used >2 MeV electron fluxes at geostationary orbit as measured by the GOES 13 and 15 Energetic Particle Sensor (EPS) instrument to compare our results with the geostationary orbit. Our results suggest that under certain conditions GOES data can be used to predict fluxes at the core of the radiation belt and vice-versa.

  12. Review of radiation effects in solid-nuclear-waste forms

    International Nuclear Information System (INIS)

    Weber, W.J.

    1981-09-01

    Radiation effects on the stability of high-level nuclear waste (HLW) forms are an important consideration in the development of technology to immobilize high-level radioactive waste because such effects may significantly affect the containment of the radioactive waste. Since the required containment times are long (10 3 to 10 6 years), an understanding of the long-term cumulative effects of radiation damage on the waste forms is essential. Radiation damage of nuclear waste forms can result in changes in volume, leach rate, stored energy, structure/microstructure, and mechanical properties. Any one or combination of these changes might significantly affect the long-term stability of the nuclear waste forms. This report defines the general radiation damage problem in nuclear waste forms, describes the simulation techniques currently available for accelerated testing of nuclear waste forms, and reviews the available data on radiation effects in both glass and ceramic (primarily crystalline) waste forms. 76 references

  13. Modeling of the outer electron belt during magnetic storms

    International Nuclear Information System (INIS)

    Desorgher, L.; Buehler, P.; Zehnder, A.; Daly, E.; Adams, L.

    1999-01-01

    The flux dropout of relativistic electrons in the earth's outer radiation belt, during the main phase of the 26 March 1995 magnetic storm is examined. Outer belt measurements by the Radiation Environment Monitor, REM aboard the STRV-1b satellite are presented to characterize this dropout. In order to simulate the dynamics of the electron belt during the storm main phase a particle tracing code was developed which allows to trace the trajectories of equatorially mirroring electrons in a dynamic magnetospheric electromagnetic field. Two simulations were performed in a non-stationary magnetic field, one taking only the induced electric field into account (fully adiabatic motion), and one with an additional non-stationary convection electric field. The simulations show, that adiabatic deceleration can produce the observed count rate decrease and also the observed inward motion of the count rate peak. The convection electric field causes diffusion, which can take particles from low L values out to the magnetopause and contribute to an additional loss of particles, which is suggested by the observations

  14. Radiometric measurement independent of profile. Belt weighers

    International Nuclear Information System (INIS)

    Otto, J.

    1986-01-01

    Radiometric measuring techniques allow contactless determination of the material carried by belt conveyors. Data defining the material is obtained via attenuation of gamma rays passing through the material on the belt. The method applies the absorption law according to Lambert-Beer, which has to be corrected by a build-up factor because of the stray radiation induced by the Compton effect. The profile-dependent error observed with conventional radiometric belt weighers is caused by the non-linearity of the absorption law in connection with the simultaneous summation of the various partial rays in a detector. The scanning method allows separate evaluation of the partial rays' attenuation and thus yields the correct data of the material carried, regardless of the profile. The scanning method is applied on a finite number of scanning sections, and a residual error has to be taken into account. The stochastics of quantum emission and absorption leads to an error whose expectation value is to be taken into account in the scanning algorithm. As the conveyor belt is in motion during the process of measurements, only part of the material conveyed is irradiated. The resulting assessment error is investigated as a function of the autocorrelation function of the material on the belt. (orig./HP) [de

  15. HERSCHEL -RESOLVED OUTER BELTS OF TWO-BELT DEBRIS DISKS—EVIDENCE OF ICY GRAINS

    Energy Technology Data Exchange (ETDEWEB)

    Morales, F. Y.; Bryden, G.; Werner, M. W.; Stapelfeldt, K. R., E-mail: Farisa@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2016-11-01

    We present dual-band Herschel /PACS imaging for 59 main-sequence stars with known warm dust ( T {sub warm} ∼ 200 K), characterized by Spitzer . Of 57 debris disks detected at Herschel wavelengths (70 and/or 100 and 160 μ m), about half have spectral energy distributions (SEDs) that suggest two-ring disk architectures mirroring that of the asteroid–Kuiper Belt geometry; the rest are consistent with single belts of warm, asteroidal material. Herschel observations spatially resolve the outer/cold dust component around 14 A-type and 4 solar-type stars with two-belt systems, 15 of which for the first time. Resolved disks are typically observed with radii >100 AU, larger than expected from a simple blackbody fit. Despite the absence of narrow spectral features for ice, we find that the shape of the continuum, combined with resolved outer/cold dust locations, can help constrain the grain size distribution and hint at the dust’s composition for each resolved system. Based on the combined Spitzer /IRS+Multiband Imaging Photometer (5-to-70 μ m) and Herschel /PACS (70-to-160 μ m) data set, and under the assumption of idealized spherical grains, we find that over half of resolved outer/cold belts are best fit with a mixed ice/rock composition. Minimum grain sizes are most often equal to the expected radiative blowout limit, regardless of composition. Three of four resolved systems around the solar-type stars, however, tend to have larger minimum grains compared to expectation from blowout ( f {sub MB} = a {sub min}/ a {sub BOS} ∼ 5). We also probe the disk architecture of 39 Herschel -unresolved systems by modeling their SEDs uniformly, and find them to be consistent with 31 single- and 8 two-belt debris systems.

  16. Measurement of charge composition of electron flows with an energy above hundreds MeV in inner radiaion belt

    International Nuclear Information System (INIS)

    Gusev, A.A.; Pugacheva, G.I.

    1990-01-01

    A detector for studying the charge composition of a high-energy electron component of an internal radiation belt when measuring the precipitation of charged particles in the region of Brazil magnetic anomaly is suggested. The detector is a telescope consisting of two semiconductors and CsI crystal housed into a protection detector in the form of a cup made of plastic scintillator. An absorber of plastic scintillator is placed between semiconductive detections. The detector may record positrons with energy up to 5 MeV in the composition of precipitating particles from the belt in definite detector signal combination and specific energy release 511 keV in CsI crystal. 16 refs.; 3 figs

  17. New developments of belt conveyor systems; Inclined belt systems, vertical pipe elevators, vibration belts, oscillating tubes

    Energy Technology Data Exchange (ETDEWEB)

    Bahke, E.A. (Universitaet Karlsruhe, Karlsruhe (Germany, F.R.). Inst. fuer Foerdertechnik)

    1991-03-01

    Factors that have influenced the design of belt conveyor systems are discussed - these include strength and shaping. Belt conveyor systems for inclined, steep-angle and vertical conveying are described and comparison made between cable belt and steel cord belt conveyors used in coal mines. Hose-belt or tube conveyors such as are used in the PWH/Conti-Rollgurt Conveyor System for feeding boilers in German coal fired power stations are mentioned and advantages of the pipe-belt conveyor for vertical transport discussed. Design of the vibratory conveyor for transporting solids upwards by pulses is described. 29 refs., 19 figs., 2 tabs.

  18. Effects of Drift-Shell Splitting by Chorus Waves on Radiation Belt Electrons

    Science.gov (United States)

    Chan, A. A.; Zheng, L.; O'Brien, T. P., III; Tu, W.; Cunningham, G.; Elkington, S. R.; Albert, J.

    2015-12-01

    Drift shell splitting in the radiation belts breaks all three adiabatic invariants of charged particle motion via pitch angle scattering, and produces new diffusion terms that fully populate the diffusion tensor in the Fokker-Planck equation. Based on the stochastic differential equation method, the Radbelt Electron Model (REM) simulation code allows us to solve such a fully three-dimensional Fokker-Planck equation, and to elucidate the sources and transport mechanisms behind the phase space density variations. REM has been used to perform simulations with an empirical initial phase space density followed by a seed electron injection, with a Tsyganenko 1989 magnetic field model, and with chorus wave and ULF wave diffusion models. Our simulation results show that adding drift shell splitting changes the phase space location of the source to smaller L shells, which typically reduces local electron energization (compared to neglecting drift-shell splitting effects). Simulation results with and without drift-shell splitting effects are compared with Van Allen Probe measurements.

  19. Resonance zones and quasi-linear diffusion coefficients for radiation belt energetic electron interaction with oblique chorus waves in the Dungey magnetosphere

    International Nuclear Information System (INIS)

    Shi Run; Ni, Binbin; Gu Xudong; Zhao Zhengyu; Zhou Chen

    2012-01-01

    The resonance regions for resonant interactions of radiation belt electrons with obliquely propagating whistler-mode chorus waves are investigated in detail in the Dungey magnetic fields that are parameterized by the intensity of uniform southward interplanetary magnetic field (IMF) Bz or, equivalently, by the values of D=(M/B z,0 ) 1/3 (where M is the magnetic moment of the dipole and B z,0 is the uniform southward IMF normal to the dipole’s equatorial plane). Adoption of background magnetic field model can considerably modify the determination of resonance regions. Compared to the results for the case of D = 50 (very close to the dipole field), the latitudinal coverage of resonance regions for 200 keV electrons interacting with chorus waves tends to become narrower for smaller D-values, regardless of equatorial pitch angle, resonance harmonics, and wave normal angle. In contrast, resonance regions for 1 MeV electrons tend to have very similar spatial lengths along the field line for various Dungey magnetic field models but cover different magnetic field intervals, indicative of a strong dependence on electron energy. For any given magnetic field line, the resonance regions where chorus-electron resonant interactions can take place rely closely on equatorial pitch angle, resonance harmonics, and kinetic energy. The resonance regions tend to cover broader latitudinal ranges for smaller equatorial pitch angles, higher resonance harmonics, and lower electron energies, consistent with the results in Ni and Summers [Phys. Plasmas 17, 042902, 042903 (2010)]. Calculations of quasi-linear bounce-averaged diffusion coefficients for radiation belt electrons due to nightside chorus waves indicate that the resultant scattering rates differ from using different Dungey magnetic field models, demonstrating a strong dependence of wave-induced electron scattering effect on the adoption of magnetic field model. Our results suggest that resonant wave-particle interaction processes

  20. Dynamics of the outer radiation belts and their links with the polar substorms and the injection of hot plasma at the geostationary orbit

    International Nuclear Information System (INIS)

    Sauvaud, J.A.; Winckler, J.R.

    1981-01-01

    The aim of this paper is to analyse the results obtained aboard geostationary satellites and on the ground, in the auroral zone, on the dynamic changes in the outer radiation belts and their link with the time development of auroral forms during magnetospheric substorms. The measurements of high-energy particles, plasma, and magnetic induction at 6.6 Rsub(E) in the local midnight sector indicate the existence of a pre-expansion phase in substorms during which the outer belts move toward the Earth under the effect of the modification in the topology of the local magnetic induction. The pre-expansion phase coincides with an increase in the AE index, suggesting a direct link between the electrojet and the currents flowing across the tail of the magnetosphere. It also coincides in the auroral zone with the intensification and movement of the quiet arc system toward the equator. The phase is invariably terminated at the beginning of the expansion of the substorm by the break-up of the auroral arcs and the injection of hot plasma at the geostationary orbit near local midnight under the action of the induced electric field associated with the collapse of the geomagnetic field force lines. The study of the data, event by event, shows the complexity of phenomena which may be involved during the pre-expansion phase particularly with the possible presence of pseudo-substorms or aborted (minor) substorms which do not modify the general evolution described above [fr

  1. 30 CFR 75.1731 - Maintenance of belt conveyors and belt conveyor entries.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maintenance of belt conveyors and belt conveyor....1731 Maintenance of belt conveyors and belt conveyor entries. (a) Damaged rollers, or other damaged belt conveyor components, which pose a fire hazard must be immediately repaired or replaced. All other...

  2. Radiation transport in high-level waste form

    International Nuclear Information System (INIS)

    Arakali, V.S.; Barnes, S.M.

    1992-01-01

    The waste form selected for vitrifying high-level nuclear waste stored in underground tanks at West Valley, NY is borosilicate glass. The maximum radiation level at the surface of a canister filled with the high-level waste form is prescribed by repository design criteria for handling and disposition of the vitrified waste. This paper presents an evaluation of the radiation transport characteristics for the vitreous waste form expected to be produced at West Valley and the resulting neutron and gamma dose rates. The maximum gamma and neutron dose rates are estimated to be less than 7500 R/h and 10 mRem/h respectively at the surface of a West Valley canister filled with borosilicate waste glass

  3. Simulation of engine auxiliary drive V-belt slip motion. Part 1. Development of belt slip model; Engine hoki V belt slip kyodo no simulation. 1. Belt slip model no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kurisu, T [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    V-belts are widely used for driving auxiliary components of an engine. Inadequet design of such belt system sometimes results in troubles such as belt squeak, side rubber separation and/or bottom rubber crack. However, there has been no design tools which can predict belt slip quantitatively. The author developed a motion simulation program of Auxiliary Drive V-Belt System considering belt slip. The program showed good prediction accuracy for belt slip motion. This paper describes the simulation model. 1 ref., 12 figs.

  4. Passive radiation shielding considerations for the proposed space elevator

    Science.gov (United States)

    Jorgensen, A. M.; Patamia, S. E.; Gassend, B.

    2007-02-01

    The Earth's natural van Allen radiation belts present a serious hazard to space travel in general, and to travel on the space elevator in particular. The average radiation level is sufficiently high that it can cause radiation sickness, and perhaps death, for humans spending more than a brief period of time in the belts without shielding. The exact dose and the level of the related hazard depends on the type or radiation, the intensity of the radiation, the length of exposure, and on any shielding introduced. For the space elevator the radiation concern is particularly critical since it passes through the most intense regions of the radiation belts. The only humans who have ever traveled through the radiation belts have been the Apollo astronauts. They received radiation doses up to approximately 1 rem over a time interval less than an hour. A vehicle climbing the space elevator travels approximately 200 times slower than the moon rockets did, which would result in an extremely high dose up to approximately 200 rem under similar conditions, in a timespan of a few days. Technological systems on the space elevator, which spend prolonged periods of time in the radiation belts, may also be affected by the high radiation levels. In this paper we will give an overview of the radiation belts in terms relevant to space elevator studies. We will then compute the expected radiation doses, and evaluate the required level of shielding. We concentrate on passive shielding using aluminum, but also look briefly at active shielding using magnetic fields. We also look at the effect of moving the space elevator anchor point and increasing the speed of the climber. Each of these mitigation mechanisms will result in a performance decrease, cost increase, and technical complications for the space elevator.

  5. Seat belt reminders.

    NARCIS (Netherlands)

    2008-01-01

    Seat belts are an effective way of reducing the number or road deaths and severe road injuries in crashes. Seat belt reminders warn car drivers and passengers if the seat belt is not fastened. This can be done by a visual signal or an acoustic signal or by a combination of the two. Seat belt

  6. Belt Aligning Revisited

    Directory of Open Access Journals (Sweden)

    Yurchenko Vadim

    2017-01-01

    parts of the conveyor, the sides of the belt wear intensively. This results in reducing the life of the belt. The reasons for this phenomenon are well investigated, but the difficulty lies in the fact that they all act simultaneously. The belt misalignment prevention can be carried out in two ways: by minimizing the effect of causes and by aligning the belt. The construction of aligning devices and errors encountered in practice are considered in this paper. Self-aligning roller supports rotational in plan view are recommended as a means of combating the belt misalignment.

  7. Condition-Based Conveyor Belt Replacement Strategy in Lignite Mines with Random Belt Deterioration

    Science.gov (United States)

    Blazej, Ryszard; Jurdziak, Leszek

    2017-12-01

    In Polish lignite surface mines, condition-based belt replacement strategies are applied in order to assure profitable refurbishment of worn out belts performed by external firms specializing in belt maintenance. In two of three lignite mines, staff asses belt condition subjectively during visual inspections. Only one mine applies specialized diagnostic device (HRDS) allowing objective magnetic evaluation of belt core condition in order to choose the most profitable moment for the dismantling of worn out belt segments from conveyors and sending them to the maintenance firm which provides their refurbishment. This article describes the advantages of a new diagnostic device called DiagBelt. It was developed at the Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology. Economic gains from its application are calculated for the lignite mine and for the belt maintenance firm, taking into account random life (durability) of new and reconditioned belts (after the 1st and the 2nd refurbishment). Recursive calculations for following years allow the estimation of the length and costs of replaced, reconditioned and purchased belts on an annual basis, while the use of the Monte Carlo method allows the estimation of their variability caused by random deterioration of belts. Savings are obtained due to better selection of moments (times) for the replacement of belt segments and die to the possibility to qualify worn out belts for refurbishment without the need to remove their covers. In effect, increased belt durability and lowered share of waste belts (which were not qualified for reconditioning) create savings which can quickly cover expenditures on new diagnostic tools and regular belt inspections in the mine.

  8. Space Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, William R.

    1968-01-01

    This booklet discusses three kinds of space radiation, cosmic rays, Van Allen Belts, and solar plasma. Cosmic rays are penetrating particles that we cannot see, hear or feel, which come from distant stars. Van Allen Belts, named after their discoverer are great belts of protons and electrons that the earth has captured in its magnetic trap. Solar plasma is a gaseous, electrically neutral mixture of positive and negative ions that the sun spews out from convulsed regions on its surface.

  9. Two Step Acceleration Process of Electrons in the Outer Van Allen Radiation Belt by Time Domain Electric Field Bursts and Large Amplitude Chorus Waves

    Science.gov (United States)

    Agapitov, O. V.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Lejosne, S.

    2014-12-01

    A huge number of different non-linear structures (double layers, electron holes, non-linear whistlers, etc) have been observed by the electric field experiment on the Van Allen Probes in conjunction with relativistic electron acceleration in the Earth's outer radiation belt. These structures, found as short duration (~0.1 msec) quasi-periodic bursts of electric field in the high time resolution electric field waveform, have been called Time Domain Structures (TDS). They can quite effectively interact with radiation belt electrons. Due to the trapping of electrons into these non-linear structures, they are accelerated up to ~10 keV and their pitch angles are changed, especially for low energies (˜1 keV). Large amplitude electric field perturbations cause non-linear resonant trapping of electrons into the effective potential of the TDS and these electrons are then accelerated in the non-homogeneous magnetic field. These locally accelerated electrons create the "seed population" of several keV electrons that can be accelerated by coherent, large amplitude, upper band whistler waves to MeV energies in this two step acceleration process. All the elements of this chain acceleration mechanism have been observed by the Van Allen Probes.

  10. Plasmaspheric noise radiation during geomagnetic storms

    International Nuclear Information System (INIS)

    Larkina, V.I.; Likhter, Ya.I.

    1981-01-01

    Variations of plasmospheric background radiations during geomagnetic storms of different intensity are investigated. Used are results of ELF and VLF radiation measurements as well as electron fluxes of energies Esub(e)>40 keV carried out by Intercosmos 3 and Intercosmos 5 satellites. Dependences of radiation amplitude variations at 1.6 and 25 kHz frequencies on L shell for various geomagnetic activity in the day-time as well as data on variations of quasicaptured electron fluxes at Esub(e)>40 keV, are given. It is shown that experimental data agree with the existing theories of plasmospheric noise excitation. It is concluded that the plasmospheric noise excitation area Lsub(max) is always in the region of gap between radiation belts and inner slope of external radiation belt during magnetic storms. During magnetic storms Lsub(max) area moves simultaneously with the area, where particle flux of the external radiation belt is the most intensive [ru

  11. Effectiveness of Ford's belt reminder system in increasing seat belt use

    OpenAIRE

    Williams, A; Wells, J; Farmer, C

    2002-01-01

    Objectives: The study investigated the effectiveness in increasing seat belt use of Ford's belt reminder system, a supplementary system that provides intermittent flashing lights and chimes for five minutes if drivers are not belted.

  12. Lognormal Kalman filter for assimilating phase space density data in the radiation belts

    Science.gov (United States)

    Kondrashov, D.; Ghil, M.; Shprits, Y.

    2011-11-01

    Data assimilation combines a physical model with sparse observations and has become an increasingly important tool for scientists and engineers in the design, operation, and use of satellites and other high-technology systems in the near-Earth space environment. Of particular importance is predicting fluxes of high-energy particles in the Van Allen radiation belts, since these fluxes can damage spaceborne platforms and instruments during strong geomagnetic storms. In transiting from a research setting to operational prediction of these fluxes, improved data assimilation is of the essence. The present study is motivated by the fact that phase space densities (PSDs) of high-energy electrons in the outer radiation belt—both simulated and observed—are subject to spatiotemporal variations that span several orders of magnitude. Standard data assimilation methods that are based on least squares minimization of normally distributed errors may not be adequate for handling the range of these variations. We propose herein a modification of Kalman filtering that uses a log-transformed, one-dimensional radial diffusion model for the PSDs and includes parameterized losses. The proposed methodology is first verified on model-simulated, synthetic data and then applied to actual satellite measurements. When the model errors are sufficiently smaller then observational errors, our methodology can significantly improve analysis and prediction skill for the PSDs compared to those of the standard Kalman filter formulation. This improvement is documented by monitoring the variance of the innovation sequence.

  13. Outer Radiation Belt Dropout Dynamics Following the Arrival of Two Interplanetary Coronal Mass Ejections

    Science.gov (United States)

    Alves, L. R.; Da Silva, L. A.; Souza, V. M.; Sibeck, D. G.; Jauer, P. R.; Vieira, L. E. A.; Walsh, B. M.; Silveira, M. V. D.; Marchezi, J. P.; Rockenbach, M.; hide

    2016-01-01

    Magnetopause shadowing and wave-particle interactions are recognized as the two primary mechanisms for losses of electrons from the outer radiation belt. We investigate these mechanisms, sing satellite observations both in interplanetary space and within the magnetosphere and particle drift modeling. Two interplanetary shocks sheaths impinged upon the magnetopause causing a relativistic electron flux dropout. The magnetic cloud (C) and interplanetary structure sunward of the MC had primarily northward magnetic field, perhaps leading to a concomitant lack of substorm activity and a 10 day long quiescent period. The arrival of two shocks caused an unusual electron flux dropout. Test-particle simulations have shown 2 to 5 MeV energy, equatorially mirroring electrons with initial values of L 5.5can be lost to the magnetosheath via magnetopause shadowing alone. For electron losses at lower L-shells, coherent chorus wave-driven pitch angle scattering and ULF wave-driven radial transport have been shownto be viable mechanisms.

  14. Multi-pulse orbits and chaotic dynamics in motion of parametrically excited viscoelastic moving belt

    International Nuclear Information System (INIS)

    Zhang Wei; Yao Minghui

    2006-01-01

    In this paper, the Shilnikov type multi-pulse orbits and chaotic dynamics of parametrically excited viscoelastic moving belt are studied in detail. Using Kelvin-type viscoelastic constitutive law, the equations of motion for viscoelastic moving belt with the external damping and parametric excitation are given. The four-dimensional averaged equation under the case of primary parametric resonance is obtained by directly using the method of multiple scales and Galerkin's approach to the partial differential governing equation of viscoelastic moving belt. From the averaged equations obtained here, the theory of normal form is used to give the explicit expressions of normal form with a double zero and a pair of pure imaginary eigenvalues. Based on normal form, the energy-phrase method is employed to analyze the global bifurcations and chaotic dynamics in parametrically excited viscoelastic moving belt. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Silnikov type multi-pulse homoclinic orbits in the averaged equation. The results obtained above mean the existence of the chaos for the Smale horseshoe sense in parametrically excited viscoelastic moving belt. The chaotic motions of viscoelastic moving belts are also found by using numerical simulation. A new phenomenon on the multi-pulse jumping orbits is observed from three-dimensional phase space

  15. Ducting of the Whistler-Mode Waves by Magnetic Field-Aligned Density Enhancements in the Radiation Belt

    Science.gov (United States)

    Streltsov, A. V.; Bengtson, M.; English, D.; Miller, M.; Turco, L.

    2017-12-01

    Whistler-mode waves (or whistlers) are the right-hand polarized electromagnetic waves with a frequency in the range above the lower hybrid frequency and below the electron cyclotron frequency. They can efficiently interact with energetic electrons in the equatorial magnetosphere and remediate them from the earth's radiation belt. These interactions are non-linear, they depend on the wave amplitude, and for them to be efficient the wave power needs to be delivered from the transmitter to the interaction region without significant losses. The main physical mechanism which can solve this problem is ducting/guiding of whistlers by magnetic field-aligned density inhomogeneities or ducts. We present results from a modeling of whistler-mode waves observed by the NASA Van Allen Probes satellites inside the ducts formed by density enhancements (also known as, high-density ducts or HDD). Our previous studies suggest that HDD can confine without leakage only waves with some particular parameters (frequency, perpendicular and parallel wavelength) connected with the parameters of the duct (like duct's "width" and "depth"). Our numerical results confirm that 1) the high-density ducts with amplitudes and perpendicular sizes observed by the RBSP satellites can indeed guide whistlers over significant distances along the ambient magnetic field with small leakage, and 2) the quality of the ducting indeed depends on the wave perpendicular and parallel wavelengths and, therefore, the fact that the wave is ducted by HDD can be used to determine parameters of the wave.

  16. Calibration of an electron/proton monitor for the earth's radiation belt at 4 R/sub E/

    International Nuclear Information System (INIS)

    Higbie, P.R.; Belian, R.D.; Argo, H.V.; Baker, D.N.

    1982-03-01

    A charged particle dosimeter (the Burst Detector Dosimeter or BDD) was designed and fabricated and will be flown on certain of the Global Positioning Satellite (GPS) series of spacecraft. The BDD will monitor the dose received by the GPS spacecraft from the fluxes of electrons and protons in the Earth's radiation belt. The BDD uses absorbers in front of silicon sensors to determine the energy thresholds for measuring incident particle fluxes; and the magnitude of energy loss in a single sensor distinguishes between ions and electrons over a wide range of energies. Our electron calibrations were performed to determine accurately the energy response function of the dosimeter. The experimentally determined energy and angular responses are used to determine the equivalent energy thresholds and geometric factors for idealized step function responses

  17. Geological characteristics of dike-structural belt in Taoshan orefield and its relationship to uranium deposits

    International Nuclear Information System (INIS)

    Zhang Wanliang; Zou Maoqing; Shao Fei; Nie Bin

    2009-01-01

    Taoshan uranium field is occurred in the Taoshan composite batholith in the central Jiangxi Province. The main body of the batholith was formed in Triassic-Early Cretaceous. In Late Cretaceous-Eogene, NE strike fault structure and dike belt were developed in the batholith. From the north to the south, there are successive Xiaobu-Matian dike-structural belt, Wangnitian dike- structural belt, Huangtan-Yueyuan dike-structural belt, Xibei-Shangluo dike-structural belt, Jipoling dike-structural belt, Wangce dike-structural belt and Shiyuanling dike-structural belt. These belts are controlled by the main fault, share the same space and similar time with the uranium mineralization, which is one of the important factors in positioning the uranium ore as well as the prospecting direction of exploration. (authors)

  18. The tropical Atlantic surface wind divergence belt and its effect on clouds

    OpenAIRE

    Y. Tubul; I. Koren; O. Altaratz

    2015-01-01

    A well-defined surface wind divergence (SWD) belt with distinct cloud properties forms over the equatorial Atlantic during the boreal summer months. This belt separates the deep convective clouds of the intertropical convergence zone (ITCZ) from the shallow marine stratocumulus cloud decks forming over the cold-water subtropical region of the southern Hadley cell. Using the QuikSCAT-SeaWinds and Aqua-MODIS instruments, we examined the large-scale spatiotemporal ...

  19. Belt attachment and system

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Abraham D.; Davidson, Erick M.

    2018-03-06

    Disclosed herein is a belt assembly including a flexible belt with an improved belt attachment. The belt attachment includes two crossbars spaced along the length of the belt. The crossbars retain bearings that allow predetermined movement in six degrees of freedom. The crossbars are connected by a rigid body that attaches to the bearings. Implements that are attached to the rigid body are simply supported but restrained in pitching rotation.

  20. Gan-Hang tectonic belt and its geologic significance

    International Nuclear Information System (INIS)

    Deng Jiarui; Zhang Zhiping.

    1989-01-01

    Gan-Hang tectonic belt is predominantly controlled by Gan-Hang fracture zone. It is mainly composed of Yongfeng-Zhuji downwarping zone, Gan-Hang volcanic activity structural belt and Gan-Hang red basin downfaulted zone. Gan-Hang fracture zone is derived from evolution and development of Shaoxing-Jiangshan deep fracture. It is mainly composed of three deep and large fracture and Fuzhou-Yongfeng large fracture. The fracture zone is a long active belt, but in each active period the geologic structural patterns intensity, depth and forming time were not same. Gan-Hang tectonic belt possesses obvious inheritance. It has always maintained the character of the relative depression or low land since the Caledonian movement. This specific structural environment is favourable for uranium mineralization. At any rate, the formation of this uranium minerogenetic zone has been experiencing a long and complicated processes which were closely associated with long activity of Gan-Hang fracture zone

  1. Storm/substorm signatures in the outer belt

    International Nuclear Information System (INIS)

    Korth, A.; Friedel, R.H.W.; Mouikis, C.; Fennell, J.F.

    1998-01-01

    The response of the ring current region is compared for periods of storm and substorm activity, with an attempt to isolate the contributions of both processes. The authors investigate CRRES particle data in an overview format that allows the display of long-term variations of the outer radiation belt. They compare the evolution of the ring current population to indicators of storm (Dst) and substorm (AE) activity and examine compositional changes. Substorm activity leads to the intensification of the ring current at higher L (L ∼ 6) and lower ring current energies compared to storms (L ∼ 4). The O + /H + ratio during substorms remains low, near 10%, but is much enhanced during storms (can exceed 100%). They conclude that repeated substorms with an AE ∼ 900 nT lead to a ΔDst of ∼ 30 nT, but do not contribute to Dst during storm main phase as substorm injections do not form a symmetric ring current during such disturbed times

  2. An Empirical Planetesimal Belt Radius–Stellar Luminosity Relation

    Science.gov (United States)

    Matrà, L.; Marino, S.; Kennedy, G. M.; Wyatt, M. C.; Öberg, K. I.; Wilner, D. J.

    2018-05-01

    Resolved observations of millimeter-sized dust, tracing larger planetesimals, have pinpointed the location of 26 Edgeworth–Kuiper Belt analogs. We report that a belt’s distance R to its host star correlates with the star’s luminosity L ⋆, following R\\propto {L}\\star 0.19 with a low intrinsic scatter of ∼17%. Remarkably, our Edgeworth–Kuiper Belt in the solar system and the two CO snow lines imaged in protoplanetary disks lie close to this R–L ⋆ relation, suggestive of an intrinsic relationship between protoplanetary disk structures and belt locations. To test the effect of bias on the relation, we use a Monte Carlo approach and simulate uncorrelated model populations of belts. We find that observational bias could produce the slope and intercept of the R–L ⋆ relation but is unable to reproduce its low scatter. We then repeat the simulation taking into account the collisional evolution of belts, following the steady-state model that fits the belt population as observed through infrared excesses. This significantly improves the fit by lowering the scatter of the simulated R–L ⋆ relation; however, this scatter remains only marginally consistent with the one observed. The inability of observational bias and collisional evolution alone to reproduce the tight relationship between belt radius and stellar luminosity could indicate that planetesimal belts form at preferential locations within protoplanetary disks. The similar trend for CO snow line locations would then indicate that the formation of planetesimals or planets in the outer regions of planetary systems is linked to the volatility of their building blocks, as postulated by planet formation models.

  3. A radiation hardened digital fluxgate magnetometer for space applications

    Science.gov (United States)

    Miles, D. M.; Bennest, J. R.; Mann, I. R.; Millling, D. K.

    2013-09-01

    Space-based measurements of Earth's magnetic field are required to understand the plasma processes responsible for energising particles in the Van Allen radiation belts and influencing space weather. This paper describes a prototype fluxgate magnetometer instrument developed for the proposed Canadian Space Agency's (CSA) Outer Radiation Belt Injection, Transport, Acceleration and Loss Satellite (ORBITALS) mission and which has applications in other space and suborbital applications. The magnetometer is designed to survive and operate in the harsh environment of Earth's radiation belts and measure low-frequency magnetic waves, the magnetic signatures of current systems, and the static background magnetic field. The new instrument offers improved science data compared to its predecessors through two key design changes: direct digitisation of the sensor and digital feedback from two cascaded pulse-width modulators combined with analog temperature compensation. These provide an increase in measurement bandwidth up to 450 Hz with the potential to extend to at least 1500 Hz. The instrument can resolve 8 pT on a 65 000 nT field with a magnetic noise of less than 10 pT/√Hz at 1 Hz. This performance is comparable with other recent digital fluxgates for space applications, most of which use some form of sigma-delta (ΣΔ) modulation for feedback and omit analog temperature compensation. The prototype instrument was successfully tested and calibrated at the Natural Resources Canada Geomagnetics Laboratory.

  4. The tropical Atlantic surface wind divergence belt and its effect on clouds

    OpenAIRE

    Y. Tubul; I. Koren; O. Altaratz

    2015-01-01

    A well-defined surface wind divergence (SWD) belt with distinct cloud properties forms over the equatorial Atlantic during the boreal summer months. This belt separates the deep convective clouds of the Intertropical Convergence Zone (ITCZ) from the shallow marine stratocumulus cloud decks forming over the cold-water subtropical region of the southern branch of the Hadley cell in the Atlantic. Using the QuikSCAT-SeaWinds and Aqua-MODIS instruments, we examined the large-scal...

  5. Riding the belt

    Energy Technology Data Exchange (ETDEWEB)

    Potts, A

    1998-04-01

    Recent developments in conveyor systems have focused on accessories rather than the belt itself. Radio frequency identification (RFID) is a technology using transponders embedded in conveyor belts and this is the latest development at the German firm Contitech. The system described in the articles developed with Moers, features transponders for cooling, controlling and monitoring conveyor belts. Other developments mentioned include a JOKI drum motor featuring a fully integrated gearbox and electric motor enclosed in a steel shell, from Interoll; a new scraper cleaning system from Hosch, new steel cord belting from Fenner, a conveying system for Schleenhain lignite opencast mine by FAM Foerdelantigen Magdeburg; new bearings from Nadella (the sales arm of Intersoll-Rand), an anti-shock belt transfer table from Rosta and new caliper disc brakes from GE Industrial.

  6. Synaptic ribbon. Conveyor belt or safety belt?

    Science.gov (United States)

    Parsons, T D; Sterling, P

    2003-02-06

    The synaptic ribbon in neurons that release transmitter via graded potentials has been considered as a conveyor belt that actively moves vesicles toward their release sites. But evidence has accumulated to the contrary, and it now seems plausible that the ribbon serves instead as a safety belt to tether vesicles stably in mutual contact and thus facilitate multivesicular release by compound exocytosis.

  7. Normalization Of Thermal-Radiation Form-Factor Matrix

    Science.gov (United States)

    Tsuyuki, Glenn T.

    1994-01-01

    Report describes algorithm that adjusts form-factor matrix in TRASYS computer program, which calculates intraspacecraft radiative interchange among various surfaces and environmental heat loading from sources such as sun.

  8. Variations of the Electron Fluxes in the Terrestrial Radiation Belts Due To the Impact of Corotating Interaction Regions and Interplanetary Coronal Mass Ejections

    Science.gov (United States)

    Benacquista, R.; Boscher, D.; Rochel, S.; Maget, V.

    2018-02-01

    In this paper, we study the variations of the radiation belts electron fluxes induced by the interaction of two types of solar wind structures with the Earth magnetosphere: the corotating interaction regions and the interplanetary coronal mass ejections. We use a statistical method based on the comparison of the preevent and postevent fluxes. Applied to the National Oceanic and Atmospheric Administration-Polar Operational Environmental Satellites data, this gives us the opportunity to extend previous studies focused on relativistic electrons at geosynchronous orbit. We enlighten how corotating interaction regions and Interplanetary Coronal Mass Ejections can impact differently the electron belts depending on the energy and the L shell. In addition, we provide a new insight concerning these variations by considering their amplitude. Finally, we show strong relations between the intensity of the magnetic storms related to the events and the variation of the flux. These relations concern both the capacity of the events to increase the flux and the deepness of these increases.

  9. Solar cyclic behavior of trapped energetic electrons in Earth's inner radiation belt

    Science.gov (United States)

    Abel, Bob; Thorne, Richard M.

    1994-10-01

    Magnetic electron spectrometer data from six satellites (OV3-3, OV1-14, OGO 5, S3-2, S3-3, and CRRES) have been used to study long-term (1966-1991) behavior of trapped energetic electrons in the inner radiation belt. Comparison of the observed energy spectra at L equal to or greater than 1.35 for different phases of the solar cycle reveals a clear trend toward enhanced fluxes during periods of solar maximum for energies below a few hundred keV; we suggest that this is caused by an increase in the rate of inward radial diffusion from a source at higher L. In contrast, for L less than 1.30, where atmospheric collisions become increasingly important, the electron flux is reduced during solar maximum; we attribute this to the expected increase in upper atmospheric densities. The electron flux above 1 MeV exhibits a systematic decay beyond 1979 to values well below the current NASA AE-8 model. This indicates that the natural background of high-energy electrons has previously been overestimated due to the long lasting presence of electrons produced by nuclear detonations in the upper atmosphere in the late 1950s and early 1960s.

  10. Form factors and radiation widths of the giant multipole resonances

    International Nuclear Information System (INIS)

    Denisov, V.Yu.

    1990-01-01

    Simple analytic relations for the form factors of inelastic electron scattering in the Born approximation and radiation widths of the isovector and isoscalar giant multipole resonances are derived. The dynamic relationship between the volume and surface density vibrations were taken into account in this calculation. The form factors in the Born approximation were found to be in satisfactory agreement with experimental data in the region of small transferred momenta. The radiation widths of isoscalar multipole resonances increase when the number of nucleons increase as A 1/3 , and for isovector resonances this dependence has the form f(A)A 1/3 , where f(A) is a slowly increasing function of A. Radiation widths well fit the experimental data

  11. Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion

    Science.gov (United States)

    Bottke, William F.; Durda, Daniel D.; Nesvorný, David; Jedicke, Robert; Morbidelli, Alessandro; Vokrouhlický, David; Levison, Harold F.

    2005-12-01

    The main belt is believed to have originally contained an Earth mass or more of material, enough to allow the asteroids to accrete on relatively short timescales. The present-day main belt, however, only contains ˜5×10 Earth masses. Numerical simulations suggest that this mass loss can be explained by the dynamical depletion of main belt material via gravitational perturbations from planetary embryos and a newly-formed Jupiter. To explore this scenario, we combined dynamical results from Petit et al. [Petit, J. Morbidelli, A., Chambers, J., 2001. The primordial excitation and clearing of the asteroid belt. Icarus 153, 338-347] with a collisional evolution code capable of tracking how the main belt undergoes comminution and dynamical depletion over 4.6 Gyr [Bottke, W.F., Durda, D., Nesvorny, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H., 2005. The fossilized size distribution of the main asteroid belt. Icarus 175, 111-140]. Our results were constrained by the main belt's size-frequency distribution, the number of asteroid families produced by disruption events from diameter D>100 km parent bodies over the last 3-4 Gyr, the presence of a single large impact crater on Vesta's intact basaltic crust, and the relatively constant lunar and terrestrial impactor flux over the last 3 Gyr. We used our model to set limits on the initial size of the main belt as well as Jupiter's formation time. We find the most likely formation time for Jupiter was 3.3±2.6 Myr after the onset of fragmentation in the main belt. These results are consistent with the estimated mean disk lifetime of 3 Myr predicted by Haisch et al. [Haisch, K.E., Lada, E.A., Lada, C.J., 2001. Disk frequencies and lifetimes in young clusters. Astrophys. J. 553, L153-L156]. The post-accretion main belt population, in the form of diameter D≲1000 km planetesimals, was likely to have been 160±40 times the current main belt's mass. This corresponds to 0.06-0.1 Earth masses, only a small fraction

  12. Controllable forms of natural background radiation

    International Nuclear Information System (INIS)

    1988-03-01

    RENA is a research programm into the controllable forms of natural background radiation, which cover the activities originating from the naturally occurring radionuclides enhanced by human intervention. In the RENA-program emphasis lays upon the policy aspects of environmental-hygienic, economical and governmental character. (H.W.). 15 refs.; 2 tabs

  13. Dynamics Analysis and Modeling of Rubber Belt in Large Mine Belt Conveyors

    OpenAIRE

    Gao Yang

    2014-01-01

    Rubber belt not only is one of the key components of belt conveyor, but also affects the overall performance of the core part. Research on dynamics analysis of large conveyor not only helps to improve the reliability and design level, but also can guide the rational selection of conveyor safety factor, and effectively reduce the cost of the conveyor belt. Based on unique viscoelastic properties of belt conveyor, it was simplified as one-dimensional viscoelastic rod in this study, and then a d...

  14. Study of stability of chloramphenicol in different forms to gamma radiation

    International Nuclear Information System (INIS)

    Tawfik, Z.S.

    1985-01-01

    The effect of radiation dose, in the range from 5 KGY to 250 KGY, on chloramphenicol in either the solid form or as aqueous solution was studied. The results obtained showed that the radiation had no effect on the antibiotic when it was irradiated in the solid form. Minor changes were detected when the antibiotic was exposed to radiation in solution, at doses as small as 5 KGY. These changes were detected by UV-visible, infrared and HPLC techniques. Bioassay experiments performed using the antibiotic concentration recommended by pharmacopoeia were not sensitive enough to detect these small changes. Lower concentrations of the studied antibiotic in the chloramphenicol as a result of exposure to radiation in solution or as eye drops. Accordingly, sterilization of chloramphenicol using gamma radiation could be considered a safe process if the antibiotic is in the solid form but aqueous solutions of the studied antibiotic are not recommended for sterilization by gamma radiation. (author)

  15. Variation Process of Radiation Belt Electron Fluxes due to Interaction With Chorus and EMIC Rising-tone Emissions Localized in Longitude

    Science.gov (United States)

    Kubota, Y.; Omura, Y.

    2017-12-01

    Using results of test particle simulations of a large number of electrons interacting with a pair of chorus emissions, we create Green's functions to model the electron distribution function after all of the possible interactions with the waves [Omura et al., 2015]. Assuming that the waves are generated in a localized range of longitudes in the dawn side, we repeat taking the convolution integral of the Green's function with the distribution function of the electrons injected into the generation region of the localized waves. From numerical and theoretical analyses, we find that electron acceleration process only takes place efficiently below 4 MeV. Because extremely relativistic electrons go through the wave generation region rapidly due to grad-B0 and curvature drift, they don't have enough interaction time to be accelerated. In setting up the electrons after all interaction with chorus emissions as initial electron distribution function, we also compute the loss process of radiation belt electron fluxes due to interaction with EMIC rising-tone emissions generated in a localized range of longitudes in the dusk side [Kubota and Omura,2017]. References: (1) Omura, Y., Y. Miyashita, M. Yoshikawa, D. Summers, M. Hikishima, Y. Ebihara, and Y. Kubota (2015), Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere, J. Geophys. Res. Space Physics, 120, 9545-9562, doi:10.1002/2015JA021563. (2) Kubota, Y., and Y. Omura (2017), Rapid precipitation of radiation belt electrons induced by EMIC rising tone emissions localized in longitude inside and outside the plasmapause, J. Geophys. Res. Space Physics, 122, 293-309, doi:10.1002/2016JA023267.

  16. Study of energetic electrons in the outer radiation-belt regions using data obtained by the LLL spectrometer on OGO-5 in 1968

    International Nuclear Information System (INIS)

    West, H.I. Jr.; Buck, R.M.; Davidson, G.

    1979-01-01

    An account is given of measurements of electrons made by the LLL magnetic electron spectrometer (60 to 3000 keV in seven differential energy channels) on the Ogo-5 satellite in the earth's outer-belt regions during 1968 and early 1969. The data were analyzed specifically to determine pitch-angle diffusion lifetimes as a function of energy in the L-range 2 to 5. As a part of this effort, the general dynamics of these regions were studied in terms of the time-dependent energy spectra, and pitch-angle distributions for the seven energy groups were obtained as a function of L with representative values presented for L = 2.5 to 6. The pitch-angle-diffusion results were used to analyze the dynamics of the electrons injected following the intense storms on October 31 and November 1, 1968, in terms of radial diffusion; the derived diffusion coefficients provide a quite reasonable picture of electron transport in the radiation belts. Both the radial- and pitch-angle-diffusion results are compared with earlier results. 53 references

  17. Belt conveyor apparatus

    Science.gov (United States)

    Oakley, David J.; Bogart, Rex L.

    1987-01-01

    A belt conveyor apparatus according to this invention defines a conveyance path including a first pulley and at least a second pulley. An endless belt member is adapted for continuous travel about the pulleys and comprises a lower portion which engages the pulleys and an integral upper portion adapted to receive objects therein at a first location on said conveyance path and transport the objects to a second location for discharge. The upper belt portion includes an opposed pair of longitudinally disposed crest-like members, biased towards each other in a substantially abutting relationship. The crest-like members define therebetween a continuous, normally biased closed, channel along the upper belt portion. Means are disposed at the first and second locations and operatively associated with the belt member for urging the normally biased together crest-like members apart in order to provide access to the continuous channel whereby objects can be received into, or discharged from the channel. Motors are in communication with the conveyance path for effecting the travel of the endless belt member about the conveyance path. The conveyance path can be configured to include travel through two or more elevations and one or more directional changes in order to convey objects above, below and/or around existing structures.

  18. Asteroid family dynamics in the inner main belt

    Science.gov (United States)

    Dykhuis, Melissa Joy

    The inner main asteroid belt is an important source of near-Earth objects and terrestrial planet impactors; however, the dynamics and history of this region are challenging to understand, due to its high population density and the presence of multiple orbital resonances. This dissertation explores the properties of two of the most populous inner main belt family groups --- the Flora family and the Nysa-Polana complex --- investigating their memberships, ages, spin properties, collision dynamics, and range in orbital and reflectance parameters. Though diffuse, the family associated with asteroid (8) Flora dominates the inner main belt in terms of the extent of its members in orbital parameter space, resulting in its significant overlap with multiple neighboring families. This dissertation introduces a new method for membership determination (the core sample method) which enables the distinction of the Flora family from the background, permitting its further analysis. The Flora family is shown to have a signature in plots of semimajor axis vs. size consistent with that expected for a collisional family dispersed as a result of the Yarkovsky radiation effect. The family's age is determined from the Yarkovsky dispersion to be 950 My. Furthermore, a survey of the spin sense of 21 Flora-region asteroids, accomplished via a time-efficient modification of the epoch method for spin sense determination, confirms the single-collision Yarkovsky-dispersed model for the family's origin. The neighboring Nysa-Polana complex is the likely source region for many of the carbonaceous near-Earth asteroids, several of which are important targets for spacecraft reconnaissance and sample return missions. Family identification in the Nysa-Polana complex via the core sample method reveals two families associated with asteroid (135) Hertha, both with distinct age and reflectance properties. The larger of these two families demonstrates a correlation in semimajor axis and eccentricity

  19. Storm-time electron flux precipitation in the inner radiation belt caused by wave-particle interactions

    Directory of Open Access Journals (Sweden)

    H. Tadokoro

    2009-04-01

    Full Text Available It has been believed that electrons in the inner belt do not show the dynamical variation during magnetic storms except for great magnetic storms. However, Tadokoro et al. (2007 recently disclosed that low-altitude electrons in the inner belt frequently show flux variations during storms (Storm Time inner belt Electron Enhancement at the Low altitude (STEEL. This paper investigates a possible mechanism explaining STEEL during small and moderate storms, and shows that it is caused not by radial transport processes but by pitch angle scattering through wave-particle interactions. The waves related to wave-particle interactions are attributed to be banded whistler mode waves around 30 kHz observed in the inner magnetosphere by the Akebono satellite. The estimated pitch angle distribution based on a numerical calculation is roughly consistent with the observed results.

  20. Quantitative Assessment of CRAND Contribution to the Inner Belt Electron Intensity

    Science.gov (United States)

    Zhang, K.; Li, X.; Selesnick, R.; Schiller, Q. A.; Zhao, H.; Baker, D. N.; Temerin, M. A.

    2017-12-01

    Following the direct identification and measurements of Cosmic Ray Albedo Neutron Decay (CRAND) produced electrons near the inner edge of the inner belt by Colorado Student Space Weather Experiment (CSSWE)1, we extend the study by addressing more comprehensive questions: (1) what is the relative CRAND contribution to the inner belt compared with electrons injected from further out? (2) How does this relative contribution vary with geomagnetic activity and electron energy? (3) What is the solar cycle dependence of CRAND electrons? In order to answer the above questions, extended data of relativistic electrons in the inner belt are needed for a much longer time period and also finer energy resolution is required. Therefore, we will show results regarding the above questions based on data including other low Earth orbit measurements in addition to CSSWE, such as SAMPEX/PET, DEMETER/IDP, and PROBA-V/EPT. [1] Li, Xinlin, Richard Selesnick, Quintin Schiller, Kun Zhang, Hong Zhao, Daniel Baker, and Michael Temerin (2017), Direct detection of albedo neutron decay electrons at the inner edge of the radiation belt and determination of neutron density in near-Earth space, Nature, under review.

  1. Exploring the collisional evolution of the asteroid belt

    Science.gov (United States)

    Bottke, W.; Broz, M.; O'Brien, D.; Campo Bagatin, A.; Morbidelli, A.

    2014-07-01

    The asteroid belt is a remnant of planet-formation processes. By modeling its collisional and dynamical history, and linking the results to constraints, we can probe how the planets and small bodies formed and evolved. Some key model constraints are: (i) The wavy shape of the main-belt size distribution (SFD), with inflection points near 100-km, 10--20-km, 1 to a few km, and ˜0.1-km diameter; (ii) The number of asteroid families created by the catastrophic breakup of large asteroid bodies over the last ˜ 4 Gy, with the number of disrupted D > 100 km bodies as small as ˜20 or as large as 60; (iii) the flux of small asteroids derived from the main belt that have struck the Moon over the last 3.5 Ga --- crater SFDs on lunar terrains with known ages suggest the D 100 km bodies have been significantly battered, but only a fraction have been catastrophically disrupted. Conversely, most small asteroids today are byproducts of fragmentation events. These results are consistent with growing evidence that most of the prominent meteorite classes were produced by young asteroid families. The big question is how to use what we know to determine the main belt's original size and state. This work is ongoing, but dynamical models hint at many possibilities, including both the late arrival and late removal of material from the main belt. In addition, no model has yet properly accounted for the bombardment of the primordial main belt by leftover planetesimals in the terrestrial planet region. It is also possible to use additional constraints, such as the apparent paucity of Vesta-like or V-type objects in the outer main belt, to argue that the primordial main belt at best only 3--4 its current mass at its start. In our talk, we will review what is known, what has been predicted, and some intriguing directions for the future.

  2. Analysis of stress distribution of timing belts by FEM; Yugen yosoho ni yoru timing belt oryoku kaiseki (belt code oryoku bunpu kaiseki hokoku)

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Y; Tomono, K; Takahashi, H; Uchida, T [Honda R and D Co. Ltd., Tokyo (Japan)

    1997-10-01

    A model of the belt analyzed by-ABAQUS (: a general nonlinear finite element program) successfully confirmed the mechanism that generates the belt cord stress. A quite good agreement between experimental and computed results for the stress distribution of the belt cord. It is found that maximum stress of the cords occurs near the root of the tooth by calculation, where the belt cords break off. 3 refs., 9 figs.

  3. Separation of the Galactic Cosmic Rays and Inner Earth Radiation Belt Contributions to the Daily Dose Onboard the International Space Station in 2005-2011

    Science.gov (United States)

    Lishnevskii, A. E.; Benghin, V. V.

    2018-03-01

    The DB-8 detectors of the ISS radiation monitoring system (RMS) have operated almost continuously onboard the ISS service module since August 2001 till December 2014. The RMS data obtained were used for the daily monitoring of the radiation environment aboard the station. This paper considers the technique of RMS data analysis that allows one to distinguish the contributions of galactic cosmic rays and the Earth's inner radiation belt to the daily dose based on the dosimetry data obtained as a result of the station's passage in areas of the highest geomagnetic latitudes. The paper presents the results of an analysis of the dosimetry data based on this technique for 2005-2011, as well as a comparison with similar results the authors obtained previously using the technique based on an analysis of the dosimetry data obtained during station passages in the area of the South Atlantic Anomaly.

  4. Spectroscopical studies of impurities in the belt pinch HECTOR

    International Nuclear Information System (INIS)

    Singethan, J.

    1981-04-01

    In this paper UV-line-intensity measurements of impurities are presented, which have been performed in the belt-pinch HECTOR. From the line-intensities impurity concentrations and information on the radiation losses is be obtained. At temperatures below 100 eV, the energy loss due to line emission of oxygen and carbon impurities is one of the most important electron energy loss mechanisms. Thus the measurement and calculation of the radiation losses is of particular relevance. Furthermore the electron temperature time dependence can be obtained by comparing the line intensity time dependence with the solution of the respective rate equations. (orig./HT) [de

  5. The Contribution of Compressional Magnetic Pumping to the Energization of the Earth's Outer Electron Radiation Belt During High-Speed Stream-Driven Storms

    Science.gov (United States)

    Borovsky, Joseph E.; Horne, Richard B.; Meredith, Nigel P.

    2017-12-01

    Compressional magnetic pumping is an interaction between cyclic magnetic compressions and pitch angle scattering with the scattering acting as a catalyst to allow the cyclic compressions to energize particles. Compressional magnetic pumping of the outer electron radiation belt at geosynchronous orbit in the dayside magnetosphere is analyzed by means of computer simulations, wherein solar wind compressions of the dayside magnetosphere energize electrons with electron pitch angle scattering by chorus waves and by electromagnetic ion cyclotron (EMIC) waves. The magnetic pumping is found to produce a weak bulk heating of the electron radiation belt, and it also produces an energetic tail on the electron energy distribution. The amount of energization depends on the robustness of the solar wind compressions and on the amplitude of the chorus and/or EMIC waves. Chorus-catalyzed pumping is better at energizing medium-energy (50-200 keV) electrons than it is at energizing higher-energy electrons; at high energies (500 keV-2 MeV) EMIC-catalyzed pumping is a stronger energizer. The magnetic pumping simulation results are compared with energy diffusion calculations for chorus waves in the dayside magnetosphere; in general, compressional magnetic pumping is found to be weaker at accelerating electrons than is chorus-driven energy diffusion. In circumstances when solar wind compressions are robust and when EMIC waves are present in the dayside magnetosphere without the presence of chorus, EMIC-catalyzed magnetic pumping could be the dominant energization mechanism in the dayside magnetosphere, but at such times loss cone losses will be strong.

  6. Archaean wrench-fault tectonics in the Abitibi greenstone belt of Canada

    Science.gov (United States)

    Hubert, C.

    1986-01-01

    A tectonic model is proposed in which the southern Abitibi belt formed in a series of rift basins which dissected an earlier formed volcanic arc. Comparisons can be made with Phanerozoic areas such as, the Hokuroko basin of Japan, the Taupo volcanic zone of new Zealand and the Sumatra and Nicaragua volcanic arcs. In addition the identification of the major E - W thrust shears make it possible to speculate that the southern Abitibi belt comprises a collage of blocks of terrane which have been accreted against a more stable continental margin or microcontinent. If this interpretation is correct analogies can be made with the SW margin of the U.S.A. in which recently formed blocks of volcanic terrane are being accreted against its western margin.

  7. ASSESSING RADIATION PRESSURE AS A FEEDBACK MECHANISM IN STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Andrews, Brett H.; Thompson, Todd A.

    2011-01-01

    Radiation pressure from the absorption and scattering of starlight by dust grains may be an important feedback mechanism in regulating star-forming galaxies. We compile data from the literature on star clusters, star-forming subregions, normal star-forming galaxies, and starbursts to assess the importance of radiation pressure on dust as a feedback mechanism, by comparing the luminosity and flux of these systems to their dust Eddington limit. This exercise motivates a novel interpretation of the Schmidt law, the L IR -L' CO correlation, and the L IR -L' HCN correlation. In particular, the linear L IR -L' HCN correlation is a natural prediction of radiation pressure regulated star formation. Overall, we find that the Eddington limit sets a hard upper bound to the luminosity of any star-forming region. Importantly, however, many normal star-forming galaxies have luminosities significantly below the Eddington limit. We explore several explanations for this discrepancy, especially the role of 'intermittency' in normal spirals-the tendency for only a small number of subregions within a galaxy to be actively forming stars at any moment because of the time dependence of the feedback process and the luminosity evolution of the stellar population. If radiation pressure regulates star formation in dense gas, then the gas depletion timescale is 6 Myr, in good agreement with observations of the densest starbursts. Finally, we highlight the importance of observational uncertainties, namely, the dust-to-gas ratio and the CO-to-H 2 and HCN-to-H 2 conversion factors, that must be understood before a definitive assessment of radiation pressure as a feedback mechanism in star-forming galaxies.

  8. Revision of the occupational health examination form for radiation workers

    International Nuclear Information System (INIS)

    Liu Chang'an; Chen Erdong

    2005-01-01

    Objective: To revise the Occupational Health Examination Form for Radiation Workers, which is served as annex 3 of Management Regulations for Occupational Health Surveillance (Decree No.23 of Ministry of Health, P.R. China), so as to further improve and standardize the occupational health management for radiation workers. Methods: Based on corresponding laws, standards and general principles of occupational medicine. Results: The new version of the Form was established and passed auditing. Conclusion: The theoretical foundation, intention and methods of the revision process are briefly introduced. Requirements and necessary recommendations for implement the new Form are also described. (authors)

  9. Proterozoic orogenic belts and rifting of Indian cratons: Geophysical constraints

    Directory of Open Access Journals (Sweden)

    D.C. Mishra

    2014-01-01

    Full Text Available The Aravalli–Delhi and Satpura Mobile Belts (ADMB and SMB and the Eastern Ghat Mobile Belt (EGMB in India form major Proterozoic mobile belts with adjoining cratons and contemporary basins. The most convincing features of the ADMB and the SMB have been the crustal layers dipping from both sides in opposite directions, crustal thickening (∼45 km and high density and high conductivity rocks in upper/lower crust associated with faults/thrusts. These observations indicate convergence while domal type reflectors in the lower crust suggest an extensional rifting phase. In case of the SMB, even the remnant of the subducting slab characterized by high conductive and low density slab in lithospheric mantle up to ∼120 km across the Purna–Godavari river faults has been traced which may be caused by fluids due to metamorphism. Subduction related intrusives of the SMB south of it and the ADMB west of it suggest N–S and E–W directed convergence and subduction during Meso–Neoproterozoic convergence. The simultaneous E–W convergence between the Bundelkhand craton and Marwar craton (Western Rajasthan across the ADMB and the N–S convergence between the Bundelkhand craton and the Bhandara and Dharwar cratons across the SMB suggest that the forces of convergence might have been in a NE–SW direction with E–W and N–S components in the two cases, respectively. This explains the arcuate shaped collision zone of the ADMB and the SMB which are connected in their western part. The Eastern Ghat Mobile Belt (EGMB also shows signatures of E–W directed Meso–Neoproterozoic convergence with East Antarctica similar to ADMB in north India. Foreland basins such as Vindhyan (ADMB–SMB, and Kurnool (EGMB Supergroups of rocks were formed during this convergence. Older rocks such as Aravalli (ADMB, Mahakoshal–Bijawar (SMB, and Cuddapah (EGMB Supergroups of rocks with several basic/ultrabasic intrusives along these mobile belts, plausibly formed during

  10. Influence of beam divergence on form-factor in X-ray diffraction radiation

    International Nuclear Information System (INIS)

    Sergeeva, D.Yu.; Tishchenko, A.A.; Strikhanov, M.N.

    2015-01-01

    Diffraction radiation from divergent beam is considered in terms of radiation in UV and X-ray range. Scedastic form of Gaussian distribution of the particle in the bunch, i.e. Gaussian distribution with changing dispersion has been used, which is more adequate for description of divergent beams than often used Gaussian distribution with constant dispersion. Both coherent and incoherent form-factors are taken into account. The conical diffraction effect in diffraction radiation is proved to make essential contribution in spectral-angular characteristics of radiation from a divergent beam

  11. Linking main-belt comets to asteroid families

    Science.gov (United States)

    Novakovic, B.; Hsieh, H. H.; Cellino, A.

    2012-09-01

    Here we present our results obtained by applying different methods in order to establish a firm link between the main-belt comets (MBCs) and colisionally-formed asteroid families (AFs), i.e, to possibly find additional line of evidence supporting the hypothesis that MBCs may be preferentially found among the members of young AFs.

  12. Belt drive construction improvement

    Directory of Open Access Journals (Sweden)

    I.Yu. Khomenko

    2012-08-01

    Full Text Available The possibility of the traction capacity increase of the belt drive TRK is examined. This was done for the purpose of air conditioning system of passenger car with double-generator system energy supplying. Belts XPC (made by the German firm «Continental ContiTech» testing were conducted. The results confirmed the possibility of their usage in order to improve belt drive TRK characteristics.

  13. On the existence of a comet belt beyond Neptune

    International Nuclear Information System (INIS)

    Fernandez, J.A.

    1980-01-01

    The possible existence of a comet belt in connection with the origin of the short-period comets is analysed. It is noted that the current theory - that these comets originate as near-parabolic comets captured by Jupiter and the other giant planets - implies an excessive wastage of comets lost in hyperbolic orbits, which is avoided in the present model. The following picture is predicted. Solid conglomerates up to approximately 10 18 g were formed by gravitational instabilities in the belt region (about 35 to 50 AU). A further fragmentation-accretion process led to a power-law mass distribution similar to that observed in the asteroids. Since then, close encounters between members of the belt have provoked the diffusion of some of them with the effect that they have become subject to the strong perturbations of Neptune. Of these a small number pass from one planet to the next inside and end as short-period comets. By means of a Monte Carlo method, the influence of close encounters between belt comets is then studied in relation to the diffusion of their orbits. It is concluded that if such a belt contains members with masses equal to or greater than that of Ceres, the orbital diffusion could proceed fast enough to maintain the number of observed short-period comets in a steady state. (author)

  14. Continuous Mass Measurement on Conveyor Belt

    Science.gov (United States)

    Tomobe, Yuki; Tasaki, Ryosuke; Yamazaki, Takanori; Ohnishi, Hideo; Kobayashi, Masaaki; Kurosu, Shigeru

    The continuous mass measurement of packages on a conveyor belt will become greatly important. In the mass measurement, the sequence of products is generally random. An interesting possibility of raising throughput of the conveyor line without increasing the conveyor belt speed is offered by the use of two or three conveyor belt scales (called a multi-stage conveyor belt scale). The multi-stage conveyor belt scale can be created which will adjust the conveyor belt length to the product length. The conveyor belt scale usually has maximum capacities of less than 80kg and 140cm, and achieves measuring rates of more than 150 packages per minute and more. The output signals from the conveyor belt scale are always contaminated with noises due to vibrations of the conveyor and the product to be measured in motion. In this paper an employed digital filter is of Finite Impulse Response (FIR) type designed under the consideration on the dynamics of the conveyor system. The experimental results on the conveyor belt scale suggest that the filtering algorithms are effective enough to practical applications to some extent.

  15. Pelvic Belt Effects on Health Outcomes and Functional Parameters of Patients with Sacroiliac Joint Pain

    Science.gov (United States)

    Hammer, Niels; Möbius, Robert; Schleifenbaum, Stefan; Hammer, Karl-Heinz; Klima, Stefan; Lange, Justin S.; Soisson, Odette; Winkler, Dirk; Milani, Thomas L.

    2015-01-01

    Introduction The sacroiliac joint (SIJ) is a common source of low back pain. However, clinical and functional signs and symptoms correlating with SIJ pain are widely unknown. Pelvic belts are routinely applied to treat SIJ pain but without sound evidence of their pain-relieving effects. This case-control study compares clinical and functional data of SIJ patients and healthy control subjects and evaluates belt effects on SIJ pain. Methods 17 SIJ patients and 17 healthy controls were included in this prospective study. The short-form 36 survey and the numerical rating scale were used to characterize health-related quality of life in patients in a six-week follow-up and the pain-reducing effects of pelvic belts. Electromyography data were obtained from the gluteus maximus, biceps femoris, rectus femoris and medial vastus. Alterations of muscle activity, variability and gait patterns were compared in patients and controls along with the belts’ effects in a dynamic setting when walking. Results Significant improvements were observed in the short-form 36 survey of the SIJ patients, especially in the physical health subscores. Minor declines were also observed in the numerical rating scale on pain. Belt-related changes of muscle activity and variability were similar in patients and controls with one exception: the rectus femoris activity decreased significantly in patients with belt application when walking. Further belt effects include improved cadence and gait velocity in patients and controls. Conclusions Pelvic belts improve health-related quality of life and are potentially attributed to decreased SIJ-related pain. Belt effects include decreased rectus femoris activity in patients and improved postural steadiness during locomotion. Pelvic belts may therefore be considered as a cost-effective and low-risk treatment of SIJ pain. Trial Registration ClinicalTrials.gov NCT02027038 PMID:26305790

  16. Equilibria and Free Vibration of a Two-Pulley Belt-Driven System with Belt Bending Stiffness

    Directory of Open Access Journals (Sweden)

    Jieyu Ding

    2014-01-01

    Full Text Available Nonlinear equilibrium curvatures and free vibration characteristics of a two-pulley belt-driven system with belt bending stiffness and a one-way clutch are investigated. With nonlinear dynamical tension, the transverse vibrations of the translating belt spans and the rotation motions of the pulleys and the accessory shaft are coupled. Therefore, nonlinear piecewise discrete-continuous governing equations are established. Considering the bending stiffness of the translating belt spans, the belt spans are modeled as axially moving beams. The pattern of equilibria is a nontrivial solution. Furthermore, the nontrivial equilibriums of the dynamical system are numerically determined by using two different approaches. The governing equations of the vibration near the equilibrium solutions are derived by introducing a coordinate transform. The natural frequencies of the dynamical systems are studied by using the Galerkin method with various truncations and the differential and integral quadrature methods. Moreover, the convergence of the Galerkin truncation is investigated. Numerical results reveal that the study needs 16 terms after truncation in order to determine the free vibration characteristics of the pulley-belt system with the belt bending stiffness. Furthermore, the first five natural frequencies are very sensitive to the bending stiffness of the translating belt.

  17. Dynamics Analysis and Modeling of Rubber Belt in Large Mine Belt Conveyors

    Directory of Open Access Journals (Sweden)

    Gao Yang

    2014-10-01

    Full Text Available Rubber belt not only is one of the key components of belt conveyor, but also affects the overall performance of the core part. Research on dynamics analysis of large conveyor not only helps to improve the reliability and design level, but also can guide the rational selection of conveyor safety factor, and effectively reduce the cost of the conveyor belt. Based on unique viscoelastic properties of belt conveyor, it was simplified as one-dimensional viscoelastic rod in this study, and then a discrete element model of conveyor systems was established. The kinetic equations of each discrete unit was derived using kinetic energy, potential energy of driving segment, bearing segment and return segment and equation of energy dissipation and Lagrange equation. Based on Wilson-q algorithm, the kinetic equation of DT1307-type ST2000's conveyor belt was solved by using Matlab to write computer programs. Research on the change rule of conveyor displacement, velocity, acceleration and dynamic tension during the boot process revealed the working mechanism of nonlinear viscoelastic, which lay the theoretical foundation for dynamic performance optimization of large belt conveyor. The calculation results were used to optimize design and analysis of conveyor system, the result showed that it could reduce the driven tension peaks about 12 %, save 5 % of overall manufacturing cost, which bring considerable profits for enterprises.

  18. Lap belt injuries in children.

    LENUS (Irish Health Repository)

    McGrath, N

    2010-07-01

    The use of adult seat belts without booster seats in young children may lead to severe abdominal, lumbar or cervical spine and head and neck injuries. We describe four characteristic cases of lap belt injuries presenting to a tertiary children\\'s hospital over the past year in addition to a review of the current literature. These four cases of spinal cord injury, resulting in significant long-term morbidity in the two survivors and death in one child, arose as a result of lap belt injury. These complex injuries are caused by rapid deceleration characteristic of high impact crashes, resulting in sudden flexion of the upper body around the fixed lap belt, and consequent compression of the abdominal viscera between the lap belt and spine. This report highlights the dangers of using lap belts only without shoulder straps. Age-appropriate child restraint in cars will prevent these injuries.

  19. Cleaning of conveyor belt materials using ultrasound in a thin layer of water.

    Science.gov (United States)

    Axelsson, L; Holck, A; Rud, I; Samah, D; Tierce, P; Favre, M; Kure, C F

    2013-08-01

    Cleaning of conveyor belts in the food industry is imperative for preventing the buildup of microorganisms that can contaminate food. New technologies for decreasing water and energy consumption of cleaning systems are desired. Ultrasound can be used for cleaning a wide range of materials. Most commonly, baths containing fairly large amounts of water are used. One possibility to reduce water consumption is to use ultrasonic cavitation in a thin water film on a flat surface, like a conveyor belt. In order to test this possibility, a model system was set up, consisting of an ultrasound transducer/probe with a 70-mm-diameter flat bottom, operating at 19.8 kHz, and contaminated conveyor belt materials in the form of coupons covered with a thin layer of water or water with detergent. Ultrasound was then applied on the water surface at different power levels (from 46 to 260 W), exposure times (10 and 20 s), and distances (2 to 20 mm). The model was used to test two different belt materials with various contamination types, such as biofilms formed by bacteria in carbohydrate- or protein-fat-based soils, dried microorganisms (bacteria, yeasts, and mold spores), and allergens. Ultrasound treatment increased the reduction of bacteria and yeast by 1 to 2 log CFU under the most favorable conditions compared with water or water-detergent controls. The effect was dependent on the type of belt material, the power applied, the exposure time, and the distance between the probe and the belt coupon. Generally, dried microorganisms were more easily removed than biofilms. The effect on mold spores was variable and appeared to be species and material dependent. Spiked allergens were also efficiently removed by using ultrasound. The results in this study pave the way for new cleaning designs for flat conveyor belts, with possibilities for savings of water, detergent, and energy consumption.

  20. Belt technology stretches conveyors' coverage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-15

    With China the leading growth engine in the conveyor market, leading belt manufacturers are establishing local manufacturing plants to boost their presence. Fenner is planning to almost triple production capacity over the next three years, with a third of its investment in China. Shanxi-Phoenix Conveyor Belt Systems is a joint venture between Phoenix Conveyor Belt Systems GmbH, now part of ContiTech Ag, and its Chinese partners Lu An Mining Group Co. Ltd. and Jingcheng Anthracite Group Co. Ltd. It manufacturers steel cable belts, PVC and multi-ply belts for coal mines and power plants. Recent belt designs by FennerEurope and Metso Minerals are reported. 2 photos.

  1. Unified limiting form of graviton radiation at extreme energies

    CERN Document Server

    Ciafaloni, Marcello; Coradeschi, Francesco; Veneziano, Gabriele

    2016-01-01

    We derive the limiting form of graviton radiation in gravitational scattering at transplanckian energies ($E\\gg M_P$) and small deflection angles. We show that --- owing to the graviton's spin 2 --- such limiting form unifies the soft- and Regge- regimes of emission, by covering a broad angular range, from forward fragmentation to deeply central region. The single-exchange emission amplitudes have a nice expression in terms of the transformation phases of helicity amplitudes under rotations. As a result, the multiple-exchange emission amplitudes can be resummed via an impact parameter $b$-space factorization theorem that takes into account all coherence effects. We then see the emergence of an energy spectrum of the emitted radiation which, being tuned on $\\hbar/R \\sim M_P^2/E \\ll M_P$, is reminiscent of Hawking's radiation. Such a spectrum is much softer than the one na\\"ively expected for increasing input energies and neatly solves a potential energy crisis. Furthermore, by including rescattering correction...

  2. Goulds Belt, Interstellar Clouds, and the Eocene-Oligocene Helium-3 Spike

    Science.gov (United States)

    Rubincam, David Parry

    2015-01-01

    Drag from hydrogen in the interstellar cloud which formed Gould's Belt may have sent small meteoroids with embedded helium to the Earth, perhaps explaining part or all of the (sup 3) He spike seen in the sedimentary record at the Eocene-Oligocene transition. Assuming the Solar System passed through part of the cloud, meteoroids in the asteroid belt up to centimeter size may have been dragged to the resonances, where their orbital eccentricities were pumped up into Earth-crossing orbits.

  3. Drivers' attitudes toward front or rear child passenger belt use and seat belt reminders at these seating positions.

    Science.gov (United States)

    Kidd, David G; McCartt, Anne T

    2014-01-01

    Passengers, especially those in rear seating positions, use seat belts less frequently than drivers. In-vehicle technology can inform drivers when their passengers are unbuckled and encourage passengers to use belts. The current study collected information about drivers' attitudes toward passenger belt use and belt reminders for front passengers and children in back seats. A national telephone survey of 1218 people 18 and older was conducted, of which 477 respondents were drivers who transport a front seat passenger at least once a week and 254 were drivers who transport an 8- to 15-year-old child in the back seat. Respondents were asked about their attitudes toward belt use by their front passengers or rear child passengers and preferences for different passenger belt reminder features. Ninety percent of drivers who regularly transport front seat passengers said that the passengers always use seat belts. Reported belt use was even higher among 8- to 15-year-old children in the back seat (97%). Among the drivers whose children do not always buckle up, about half said their child unbuckled the belt during the trip. Almost every full-time belt use driver (96%) would encourage front passengers to buckle up if not belted, compared to 57 percent of part-time belt users and nonusers. In contrast, nearly every driver who transports children in the back seat would encourage their belt use, regardless of the driver's belt use habits. Most drivers who transport front passengers wanted passenger belt reminders to encourage passengers to buckle up. Most of these drivers wanted a chime/buzzer or warning light or text display and wanted the reminder to last indefinitely. Most drivers who transport child passengers in the rear seat wanted the vehicle to indicate whether child passengers are unbuckled. A large majority of these drivers wanted notifications via a visual diagram of seating positions and belt use, a chime/buzzer, and a warning light or text display. These drivers

  4. Belt conveyors for bulk materials. 6th ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The 16 chapters are entitled: Belt conveyor general applications economics; Design considerations; Characteristics and conveyability of bulk materials; Capacities, belt widths and speeds; Belt conveyor idlers; Belt tension and power engineering; Belt selection; Pulleys and shafts; Curves; Steep angle conveying; Belt cleaners and accessories; Transfer points; Conveyor motor drives and controls; Operation, maintenance and safety; Belt takeups; and Emerging technologies. 6 apps.

  5. Application of cool wan flow control weight scale design on belt conveyor

    International Nuclear Information System (INIS)

    Djokorayono, Rony; Junus; Rivai, A; Gunarwan; Indarzah

    2003-01-01

    Control of the coal mass flow on the belt conveyor at coal handling unit PLTU Suralaya has been designed by using weight scale of gamma absorption technique where accuracy for the measurement of weight scale system is 0,5% to 0,1%. The absorption gamma radiation will be measured by scintillation or ion chamber detector

  6. Belt conveying of minerals

    Energy Technology Data Exchange (ETDEWEB)

    Stace, L.R.; Yardley, E.D. [University of Nottingham, Nottingham (United Kingdom). School of Civil Engineering

    2008-02-15

    A discussion of the history and economics of conveyor applications sets the scene. Conveyor design is investigated in detail, covering power requirements, belt tensioning, and hardware. Principles regarding construction and joining of belts are outlined and a helpful and practical overview of relevant standards, belt test methods, and issues surrounding standardisation is given. Conveyor belt systems can represent a significant operational hazard, so the authors have set out to highlight the important area of safety, with consideration given to fire/electrical resistance, as well as the interface between personnel and conveyor systems - including nip points and operational issues such as man-riding. Selected case studies illustrate some practical aspects of installation and operation, at Selby mine in the UK and Prosper-Haniel Colliery in Germany and others. 3 apps.

  7. ELECTRON IRRADIATION OF KUIPER BELT SURFACE ICES: TERNARY N2-CH4-CO MIXTURES AS A CASE STUDY

    International Nuclear Information System (INIS)

    Kim, Y. S.; Kaiser, R. I.

    2012-01-01

    The space weathering of icy Kuiper Belt Objects was investigated in this case study by exposing methane (CH 4 ) and carbon monoxide (CO) doped nitrogen (N 2 ) ices at 10 K to ionizing radiation in the form of energetic electrons. Online and in situ Fourier transform infrared spectroscopy was utilized to monitor the radiation-induced chemical processing of these ices. Along with isocyanic acid (HNCO), the products could be mainly derived from those formed in irradiated binary ices of the N 2 -CH 4 and CO-CH 4 systems: nitrogen-bearing products were found in the form of hydrogen cyanide (HCN), hydrogen isocyanide (HNC), diazomethane (CH 2 N 2 ), and its radical fragment (HCN 2 ); oxygen-bearing products were of acetaldehyde (CH 3 CHO), formyl radical (HCO), and formaldehyde (H 2 CO). As in the pure ices, the methyl radical (CH 3 ) and ethane (C 2 H 6 ) were also detected, as were carbon dioxide (CO 2 ) and the azide radical (N 3 ). Based on the temporal evolution of the newly formed products, kinetic reaction schemes were then developed to fit the temporal profiles of the newly formed species, resulting in numerical sets of rate constants. The current study highlights important constraints on the preferential formation of isocyanic acid (HNCO) over hydrogen cyanide (HCN) and hydrogen isocyanide (HNC), thus guiding the astrobiological and chemical evolution of those distant bodies.

  8. Handling technique of spore-forming bacteria in radiation sterilization. 1. Preparation of spores

    International Nuclear Information System (INIS)

    Koshikawa, Tomihiko

    1994-01-01

    This paper deals with a handling technique of spore-forming bacteria in radiation sterilization. An explanation is given under three sections: (1) life cycle of spore-forming bacteria, medium to form bacterial spores, and colony and purification methods of bacterial spores; (2) methods for measuring the number of bacterial spores and resistance against gamma radiation (D values); and (3) a test method for identifying spore-forming bacteria and a simple identification method. (N.K.)

  9. Ore sorting using natural gamma radiation

    International Nuclear Information System (INIS)

    Clark, G.J.; Dickson, B.L.; Gray, F.E.

    1980-01-01

    A method of sorting an ore which emits natural gamma radiation is described, comprising the steps of: (a) mining the ore, (b) placing, substantially at the mining location, the sampled or mined ore on to a moving conveyor belt, (c) measuring the natural gamma emission, water content and mass of the ore while the ore is on the conveyor belt, (d) using the gamma, water content and mass measurements to determine the ore grade, and (e) directing the ore to a location characteristic of its grade when it leaves the conveyor belt

  10. Initial discussion on ore-forming conditions and prospecting direction of volcanic type uranium deposits in the gangdise tectonic belt

    International Nuclear Information System (INIS)

    Zhao Baoguang; Wang Sili; Wang Qin; Sun Yue; Du Xiaolin; Chen Yuliang

    2010-01-01

    The most active volcanic activity in the Gangdise tectonic belt happened in early Cretaceous, Paleocene and Eocene, and Eocene is the most active period. The distribution of volcanic rock is controlled by latitudinal deep fault and deuteric longitudinal fault. Paleo-volcano was located at these structural compounds frequently. The volcanics which appeared near the merdional large scale pull-apart construction in Neogene is considered as land facies medium-acidic volcanics which brought by various kinds of volcanic basin. A large stream sediment anomaly (>6.8 x 10 -6 ) has been found at Cenozoic volcanics in south of CuoQin basin, and its areas amount to hundreds square kilometers. The uranium content of volcanics in Wuyu basin amounts to 20.0 x 10 -6 at most. It has favorable Ore-forming conditions for forming volcanic type uranium deposit due to the volcanic geologic environment, accompanying mineral, region feature of geochemistry and geophysical, volcanic-tectonic depression and so on. The major prospecting targets are the south of CuoQin basin and the Nanmulin district. (authors)

  11. VERO cells harbor a poly-ADP-ribose belt partnering their epithelial adhesion belt

    Directory of Open Access Journals (Sweden)

    Laura Lafon-Hughes

    2014-10-01

    Full Text Available Poly-ADP-ribose (PAR is a polymer of up to 400 ADP-ribose units synthesized by poly-ADP-ribose-polymerases (PARPs and degraded by poly-ADP-ribose-glycohydrolase (PARG. Nuclear PAR modulates chromatin compaction, affecting nuclear functions (gene expression, DNA repair. Diverse defined PARP cytoplasmic allocation patterns contrast with the yet still imprecise PAR distribution and still unclear functions. Based on previous evidence from other models, we hypothesized that PAR could be present in epithelial cells where cadherin-based adherens junctions are linked with the actin cytoskeleton (constituting the adhesion belt. In the present work, we have examined through immunofluorescence and confocal microscopy, the subcellular localization of PAR in an epithelial monkey kidney cell line (VERO. PAR was distinguished colocalizing with actin and vinculin in the epithelial belt, a location that has not been previously reported. Actin filaments disruption with cytochalasin D was paralleled by PAR belt disruption. Conversely, PARP inhibitors 3-aminobenzamide, PJ34 or XAV 939, affected PAR belt synthesis, actin distribution, cell shape and adhesion. Extracellular calcium chelation displayed similar effects. Our results demonstrate the existence of PAR in a novel subcellular localization. An initial interpretation of all the available evidence points towards TNKS-1 as the most probable PAR belt architect, although TNKS-2 involvement cannot be discarded. Forthcoming research will test this hypothesis as well as explore the existence of the PAR belt in other epithelial cells and deepen into its functional implications.

  12. The dynamic radiation environment assimilation model (DREAM)

    International Nuclear Information System (INIS)

    Reeves, Geoffrey D.; Koller, Josef; Tokar, Robert L.; Chen, Yue; Henderson, Michael G.; Friedel, Reiner H.

    2010-01-01

    The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate results than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.

  13. RF communications subsystem for the Radiation Belt Storm Probes mission

    Science.gov (United States)

    Srinivasan, Dipak K.; Artis, David; Baker, Ben; Stilwell, Robert; Wallis, Robert

    2009-12-01

    The NASA Radiation Belt Storm Probes (RBSP) mission, currently in Phase B, is a two-spacecraft, Earth-orbiting mission, which will launch in 2012. The spacecraft's S-band radio frequency (RF) telecommunications subsystem has three primary functions: provide spacecraft command capability, provide spacecraft telemetry and science data return, and provide accurate Doppler data for navigation. The primary communications link to the ground is via the Johns Hopkins University Applied Physics Laboratory's (JHU/APL) 18 m dish, with secondary links to the NASA 13 m Ground Network and the Tracking and Data Relay Spacecraft System (TDRSS) in single-access mode. The on-board RF subsystem features the APL-built coherent transceiver and in-house builds of a solid-state power amplifier and conical bifilar helix broad-beam antennas. The coherent transceiver provides coherency digitally, and controls the downlink data rate and encoding within its field-programmable gate array (FPGA). The transceiver also provides a critical command decoder (CCD) function, which is used to protect against box-level upsets in the C&DH subsystem. Because RBSP is a spin-stabilized mission, the antennas must be symmetric about the spin axis. Two broad-beam antennas point along both ends of the spin axis, providing communication coverage from boresight to 70°. An RF splitter excites both antennas; therefore, the mission is designed such that no communications are required close to 90° from the spin axis due to the interferometer effect from the two antennas. To maximize the total downlink volume from the spacecraft, the CCSDS File Delivery Protocol (CFDP) has been baselined for the RBSP mission. During real-time ground contacts with the APL ground station, downlinked files are checked for errors. Handshaking between flight and ground CFDP software results in requests to retransmit only the file fragments lost due to dropouts. This allows minimization of RF link margins, thereby maximizing data rate and

  14. Pelvic belt effects on sacroiliac joint ligaments: a computational approach to understand therapeutic effects of pelvic belts.

    Science.gov (United States)

    Sichting, Freddy; Rossol, Jerome; Soisson, Odette; Klima, Stefan; Milani, Thomas; Hammer, Niels

    2014-01-01

    The sacroiliac joint is a widely described source of low back pain. Therapeutic approaches to relieve pain include the application of pelvic belts. However, the effects of pelvic belts on sacroiliac joint ligaments as potential pain generators are mostly unknown. The aim of our study was to analyze the influence of pelvic belts on ligament load by means of a computer model. Experimental computer study using a finite element method. A computer model of the human pelvis was created, comprising bones, ligaments, and cartilage. Detailed geometries, material properties of ligaments, and in-vivo pressure distribution patterns of a pelvic belt were implemented. The effects of pelvic belts on ligament strain were computed in the double-leg stance. Pelvic belts increase sacroiliac joint motion around the sagittal axis but decrease motion around the transverse axis. With pelvic belt application, most of the strained sacroiliac joint ligaments were relieved, especially the sacrospinous, sacrotuberous, and the interosseous sacroiliac ligaments. Sacroiliac joint motion and ligament strains were minute. These results agree with validation data from other studies. Assigning homogenous and linear material properties and excluding muscle forces are clear simplifications of the complex reality. Pelvic belts alter sacroiliac joint motion and provide partial relief of ligament strain that is subjectively marked, although minimal in absolute terms. These findings confirm theories that besides being mechanical stabilizers, the sacroiliac joint ligaments are likely involved in neuromuscular feedback mechanisms. The results from our computer model help with unraveling the therapeutic mechanisms of pelvic belts.

  15. Using a Split-belt Treadmill to Evaluate Generalization of Human Locomotor Adaptation.

    Science.gov (United States)

    Vasudevan, Erin V L; Hamzey, Rami J; Kirk, Eileen M

    2017-08-23

    Understanding the mechanisms underlying locomotor learning helps researchers and clinicians optimize gait retraining as part of motor rehabilitation. However, studying human locomotor learning can be challenging. During infancy and childhood, the neuromuscular system is quite immature, and it is unlikely that locomotor learning during early stages of development is governed by the same mechanisms as in adulthood. By the time humans reach maturity, they are so proficient at walking that it is difficult to come up with a sufficiently novel task to study de novo locomotor learning. The split-belt treadmill, which has two belts that can drive each leg at a different speed, enables the study of both short- (i.e., immediate) and long-term (i.e., over minutes-days; a form of motor learning) gait modifications in response to a novel change in the walking environment. Individuals can easily be screened for previous exposure to the split-belt treadmill, thus ensuring that all experimental participants have no (or equivalent) prior experience. This paper describes a typical split-belt treadmill adaptation protocol that incorporates testing methods to quantify locomotor learning and generalization of this learning to other walking contexts. A discussion of important considerations for designing split-belt treadmill experiments follows, including factors like treadmill belt speeds, rest breaks, and distractors. Additionally, potential but understudied confounding variables (e.g., arm movements, prior experience) are considered in the discussion.

  16. 30 CFR 57.4503 - Conveyor belt slippage.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Conveyor belt slippage. 57.4503 Section 57.4503... Control Installation/construction/maintenance § 57.4503 Conveyor belt slippage. (a) Surface belt conveyors...) Underground belt conveyors shall be equipped with a detection system capable of automatically stopping the...

  17. Investigation of a new type charging belt

    International Nuclear Information System (INIS)

    Jones, N.L.

    1994-01-01

    There are many desirable characteristics for an electrostatic accelerator charging belt. An attempt has been made to find a belt that improves on these properties over the stock belt. Results of the search, procurement, and 1,500 hours of operational experience with a substantially different belt are reported

  18. Belt for picking up liquids

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, R B.H.; Nelson, S P

    1973-05-18

    This belt for picking up liquids consists of a layer of strong material, e.g., coarse cloth, sewed on at least one layer of absorbing material, e.g., sponge cloth, the stitching being disposed along chevrons with their apexes along the central axis of the belt; the edges do not contain any other marks. This arrangement facilitates the expulsion of the absorbed liquid when the belt passes between compression rollers.

  19. 30 CFR 56.4503 - Conveyor belt slippage.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Conveyor belt slippage. 56.4503 Section 56.4503... Control Installation/construction/maintenance § 56.4503 Conveyor belt slippage. Belt conveyors within... shall attend the belt at the drive pulley when it is necessary to operate the conveyor while temporarily...

  20. 14 CFR 27.1413 - Safety belts.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Safety belts. 27.1413 Section 27.1413 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1413 Safety belts. Each safety belt...

  1. Persistence of Salmonella on egg conveyor belts is dependent on the belt type but not on the rdar morphotype.

    Science.gov (United States)

    Stocki, S L; Annett, C B; Sibley, C D; McLaws, M; Checkley, S L; Singh, N; Surette, M G; White, A P

    2007-11-01

    Commercial caged layer flocks in Alberta, Canada, are commonly monitored for Salmonella enterica serovar Enteritidis (SE) and S. enterica serovar Typhimurium (ST) by environmental sampling. In one recent case, a SE strain isolated from the egg conveyor belt was a source of persistent infection for the flock. This study was undertaken to examine Salmonella colonization on egg conveyor belts and to determine whether the rdar morphotype, a conserved physiology associated with aggregation and long-term survival, contributed to persistence. Four woven belts constructed of natural or nonnatural fibers and a 1-piece belt made of vinyl were tested with rdar-positive ST and SE strains and a rdar-negative ST DeltaagfD reference strain. The type of egg belt was the most important factor influencing Salmonella colonization and persistence. The vinyl belt, with the least surface area available for colonization, had the fewest Salmonella remaining after washing and disinfection, whereas the hemp-plastic belt, with the greatest surface area, had the most Salmonella remaining. Real-time gene expression indicated that the rdar morphotype was involved in colonizing the egg belt pieces; however, it was not essential for persistence. In addition, rdar-positive and rdar-negative strains were equally similarly to disinfection on the egg belt pieces. The results indicate that Salmonella can persist on a variety of egg belts by mechanisms other than the rdar morphotype, and that using egg conveyer belts with reduced surface area for bacterial colonization can lessen contamination problems.

  2. Granulite belts of Central India with special reference to the Bhopalpatnam Granulite Belt: Significance in crustal evolution and implications for Columbia supercontinent

    Science.gov (United States)

    Vansutre, Sandeep; Hari, K. R.

    2010-11-01

    The Central Indian collage incorporates the following major granulite belts: (1) the Balaghat-Bhandara Granulite Belt (BBG), (2) the Ramakona-Katangi Granulite Belt (RKG), (3) the Chhatuabhavna Granulite (CBG) of Bilaspur-Raigarh Belt, (4) the Makrohar Granulite Belt (MGB) of Mahakoshal supracrustals, (5) the Kondagaon Granulite Belt (KGGB), (6) the Bhopalpatnam Granulite Belt (BGB), (7) the Konta Granulite Belt (KTGB) and (8) the Karimnagar Granulite Belt (KNGB) of the East Dharwar Craton (EDC). We briefly synthesize the general geologic, petrologic and geochronologic features of these belts and explain the Precambrian crustal evolution in Central India. On the basis of the available data, a collisional relationship between Bastar craton and the EDC during the Paleo-Mesoproterozoic is reiterated as proposed by the earlier workers. The tectonic evolution of only few of the orogenic belts (BGB in particular) of Central India is related to Columbia.

  3. Observed use of automatic seat belts in 1987 cars.

    Science.gov (United States)

    Williams, A F; Wells, J K; Lund, A K; Teed, N

    1989-10-01

    Usage of the automatic belt systems supplied by six large-volume automobile manufacturers to meet the federal requirements for automatic restraints were observed in suburban Washington, D.C., Chicago, Los Angeles, and Philadelphia. The different belt systems studied were: Ford and Toyota (motorized, nondetachable automatic shoulder belt), Nissan (motorized, detachable shoulder belt), VW and Chrysler (nonmotorized, detachable shoulder belt), and GM (nonmotorized detachable lap and shoulder belt). Use of automatic belts was significantly greater than manual belt use in otherwise comparable late-model cars for all manufacturers except Chrysler; in Chrysler cars, automatic belt use was significantly lower than manual belt use. The automatic shoulder belts provided by Ford, Nissan, Toyota, and VW increased use rates to about 90%. Because use rates were lower in Ford cars with manual belts, their increase was greater. GM cars had the smallest increase in use rates; however, lap belt use was highest in GM cars. The other manufacturers supply knee bolsters to supplement shoulder belt protection; all--except VW--also provide manual lap belts, which were used by about half of those who used the automatic shoulder belt. The results indicate that some manufacturers have been more successful than others in providing automatic belt systems that result in high use that, in turn, will mean fewer deaths and injuries in those cars.

  4. Tectonic evolution of part of the Southern Metamorphic Belt of the Armorican Massif including the Ile de Groix

    Science.gov (United States)

    Richards, Lawrence Edward

    The Southern Metamorphic Belt (SMB) of the Armorican Massifextends 400km along the south coast of Brittany and into Vendee. It is separated from the Central Armorican Domain by a major, late-Hercynian shear belt, known as the South Armorican Shear Zone. In the area studied, belts of metasedimentary and metavolcanic schist of uncertain age are separated by belts of granitic gneiss; areas of migmatite and Hercynian granite plutons cross-cut these belts. Three distinctive lithologic assemblages have been identified in the schist belts, characteristic of different depositional environments: the Le Pouldu Group, Kerleven and Gouesnach formations probably originated as abyssal black shales deposited on oceanic crust; the St. Laurent Formation and Melgven Schists probably formed as distal greywacke deposits on a deep continental shelf; the Nerly and Beg-Meil formations probably formed in a proximal marine or fluviatile environment. These disparate assemblages were tectonically juxtaposed by overthrusting (obduction) before an amphibolite facies metamorphism and deformation during the Cadomian Orogeny. The Moelan Gneiss, a Lower Ordovician alkali-granite intrusion, postdates M1/D1 and probably formed in a rifting environment at the onset of ocean-floor spreading along an axis south of the present Armorican Massif. The famous blueschists of the Ile de Groix probably formed in a subduction zone on the south side of the ocean and were obducted onto the passive southern margin of the Armorican Massif following closure of the ocean and continental collision. A second phase of regional deformation, producing a cataclastic foliation in the Moelan Gneiss, probably resulted from the collision. Large-scale overthrusting of the southern continent onto the Armorican Massif took place, causing metamorphism with partial melting at depth generating migmatites. A third phase of pervasive deformation may correlate with oroclinal bending of the Ibero-Armorican Arc during the Hercynian

  5. An evaluation of a weightlifting belt and back injury prevention training class for airline baggage handlers.

    Science.gov (United States)

    Reddell, C R; Congleton, J J; Dale Huchingson, R; Montgomery, J F

    1992-10-01

    This study evaluated the efficacy of a commercially available weightlifting belt in relation to reduction of lumbar injury incident rate and severity of injuries over an 8-month period. The study used 642 baggage handlers working for a major airline company as participants. Four treatment groups were randomly selected: a group receiving the belt only, a group receiving a 1 h training class only, a group receiving both a belt and a 1 h training class, and a control group receiving nothing. Two treatment groups were added which contained participants who discontinued use of the belt prior to the end of an 8-month study period. Results indicated that there were no significant differences for total lumbar injury incident rate, restricted workday case injury incident rate, lost workdays and restricted workdays rate, and worker's compensation rates. There was, however, a marginal significant difference for lost workday case injury incident rate. Groups with participants who wore the belt for a while then discontinued its use had a higher lost day case injury incident rate than did either the group receiving training only or the control group. Compliance was an overriding factor as the belt questionnaire response indicated that 58% of participants in the belt groups discontinued use of the belt before the end of 8 months. Comments made on the survey forms indicated that the belt was too hot. Similarly, comments suggested that the belt rubbed, pinched, and bruised ribs. Based on these results, the weightlifting belt used for this study cannot be recommended for use in aid of lifting during daily work activities of baggage handlers. Results indicate that use of the belts may, in fact, increase the risk of injury when not wearing a belt following a period of wearing a belt. As industries are experimenting with the use of belts, it is recommended that great care be taken in any further evaluation and close attention directed towards injuries which occur when not wearing the

  6. International Workshop on First Decadal Review Of The Edgeworth-kuiper-belt : Towards New Frontiers

    CERN Document Server

    Barrera, Luis; Towards New Frontiers

    2004-01-01

    A decade after the confirmation of the Kuiper Belt's existence, 80 of the world's experts gathered in Chile to review what has been learned since 1992. This record of the meeting is enhanced by several specially solicited papers covering additional material not presented at the conference. The volume includes papers on the dynamics of the trans-Neptunian region, the results of deep surveys for the new objects and the evidence for an outer Edge to the Edgeworth-Kuiper belt. Physical observations of many objects are described and attempts are made to bring these data into some coherent picture of the distant solar system. The interior physics of these distant, icy objects, and the link between the Kuiper Belt and dust disks around other stars are also considered. Of particular interest is a set of papers on how the surfaces of distant asteroids are affected by various types of radiation, an area crucial to the interpretation of data being collected by large ground based telescopes. Suitable for professi...

  7. 14 CFR 31.63 - Safety belts.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Safety belts. 31.63 Section 31.63 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.63 Safety belts. (a) There must be a safety belt...

  8. Dusty Cloud Acceleration by Radiation Pressure in Rapidly Star-forming Galaxies

    Science.gov (United States)

    Zhang, Dong; Davis, Shane W.; Jiang, Yan-Fei; Stone, James M.

    2018-02-01

    We perform two-dimensional and three-dimensional radiation hydrodynamic simulations to study cold clouds accelerated by radiation pressure on dust in the environment of rapidly star-forming galaxies dominated by infrared flux. We utilize the reduced speed of light approximation to solve the frequency-averaged, time-dependent radiative transfer equation. We find that radiation pressure is capable of accelerating the clouds to hundreds of kilometers per second while remaining dense and cold, consistent with observations. We compare these results to simulations where acceleration is provided by entrainment in a hot wind, where the momentum injection of the hot flow is comparable to the momentum in the radiation field. We find that the survival time of the cloud accelerated by the radiation field is significantly longer than that of a cloud entrained in a hot outflow. We show that the dynamics of the irradiated cloud depends on the initial optical depth, temperature of the cloud, and intensity of the flux. Additionally, gas pressure from the background may limit cloud acceleration if the density ratio between the cloud and background is ≲ {10}2. In general, a 10 pc-scale optically thin cloud forms a pancake structure elongated perpendicular to the direction of motion, while optically thick clouds form a filamentary structure elongated parallel to the direction of motion. The details of accelerated cloud morphology and geometry can also be affected by other factors, such as the cloud lengthscale, reduced speed of light approximation, spatial resolution, initial cloud structure, and dimensionality of the run, but these have relatively little affect on the cloud velocity or survival time.

  9. Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles

    Science.gov (United States)

    Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.

    1996-01-01

    The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar

  10. The energy-saving design of belt conveyors. Energiesparende Auslegung von Gurtfoerderanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Greune, A

    1989-01-01

    The examination of the factors affecting the main resistance on an experimental belt conveyor was carried out by varying the velocity and tension of the belt, the diameter of the carrying idlers and the distance between them, and, for the first time, this examination was performed on different belts with different covers. The influences of the varied parameters for the proportions of main resistance, frictional resistance due to imprint, belt flexing resistance and the rotational resistance of the idlers were recorded with the use of formulae and were graphically represented. For the entire relative main resistance referred to 1 m plant length it was possible to obtain a minimum for a particular combination of parameters, and further recommendations for the energy-saving design of belt conveyors were deduced from this. The joint goals of reducing the load-dependence of the rotational resistance and of improving the reliability of seals, at the same time keeping the number of parts to a minimum and making assembly simple, formed the focal point of examination into the possibilities of improving the construction of carrying idlers. Thus, individual components and alternative constructions were examined on a test bench for measuring the rotational resistance as well as on a test bench for seals, and indications for the design of individual assembly groups were developed from this. (orig.).

  11. 30 CFR 77.1107 - Belt conveyors.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Belt conveyors. 77.1107 Section 77.1107 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY... § 77.1107 Belt conveyors. Belt conveyors in locations where fire would create a hazard to personnel...

  12. 46 CFR 169.723 - Safety belts.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Safety belts. 169.723 Section 169.723 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.723 Safety belts. Each vessel must carry a harness type safety belt conforming to Offshore Racing Council (ORC) standards for each person on watch or...

  13. Plant trial of an under-belt capacitance and gamma-ray backscatter gauge for on-belt determination of moisture in coal

    International Nuclear Information System (INIS)

    Cutmore, N.G.; Rafter, P.T.; Abernethy, D.A.; Millen, M.J.

    1989-01-01

    A non-contacting under-belt capacitance and gamma-ray backscatter technique has been developed for the on-line measurement of moisture in coal. In this technique, moisture was correlated with radio frequency susceptance and conductance, determined using an under-belt capacitance sensor in which a fringing electric field interrogates a layer of coal on the conveyor belt directly about the sensor. To compensate for variations in the density and thickness of the coal layer, an under-belt gamma-ray backscatter gauge was used to measure an equivalent volume of coal. A plant trial of the technique was conducted at Stockton Borehole Colliery, NSW Australia, where the gauges were installed on the coking coal product conveyor. Product moistures, in the range 7-14%, were determined with r.m.s errors of 0.50 and 0.25 wt% using on-belt and static off-belt gauges, respectively. The difference in the on-belt and off-belt gauge measurement accuracy was attributed to sampling errors in the calibration of the on-belt gauge. 6 refs., 6 figs., 3 tabs

  14. Radiation damage in natural materials: implications for radioactive waste forms

    International Nuclear Information System (INIS)

    Ewing, R.C.

    1981-01-01

    The long-term effect of radiation damage on waste forms, either crystalline or glass, is a factor in the evaluation of the integrity of waste disposal mediums. Natural analogs, such as metamict minerals, provide one approach for the evaluaton of radiation damage effects that might be observed in crystalline waste forms, such as supercalcine or synroc. Metamict minerals are a special class of amorphous materials which were initially crystalline. Although the mechanism for the loss of crystallinity in these minerals (mostly actinide-containing oxides and silicates) is not clearly understood, damage caused by alpha particles and recoil nuclei is critical to the metamictization process. The study of metamict minerals allows the evaluation of long-term radiation damage effects, particularly changes in physical and chemical properties such as microfracturing, hydrothermal alteration, and solubility. In addition, structures susceptible to metamictization share some common properties: (1) complex compositions; (2) some degree of covalent bonding, instead of being ionic close-packed MO/sub x/ structures; and (3) channels or interstitial voids which may accommodate displaced atoms or absorbed water. On the basis of these empirical criteria, minerals such as pollucite, sodalite, nepheline and leucite warrant careful scrutiny as potential waste form phases. Phases with the monazite or fluorite structures are excellent candidates

  15. Analysis on uranium mineralization-formation condition and prospecting potential in Xidamingshan metallogenic belt

    International Nuclear Information System (INIS)

    Li Zhixing; Qi Fucheng; He Zhongbo; Zhang Zilong

    2012-01-01

    There are many different opinions about the source of uranium and metallogenic mechanism in Xidamingshan metallogenic belt. therefore it blocked uranium resources potential evaluation and ore exploration. Through absorb in- formation and investigate Daxin deposit and systematic analysis on samples. It is believed that uranium source mainly came from Cambrian System, a little came from the deep. The Devonian System is favorable room for saving ores in addition to be pre-concentrated room for uranium. Also, there are new cognition about uranium metallogenic mechanism, establish ore-forming series of Xidamingshan metallogenic belt, It is proposed that uranium mineralization have experienced 4 stages; It is cleared that hydrothermal fluid superposition transform type uranium deposit is main genetic type, ancient karst accumulate type is secondary genetic type, the later is formed by leaching the former and then precipitate, enrichment in ancient karst congeries, which is formed nearby faults and with the movement of Xishan structural movement. It is proven that metallogenic potential of Xidamingshan metallogenic belt is good. Tectonic rock controlled by subsidiary fracture nearby regional main fault, which connected with the Cambrian System and the Devonian System, and the deep of the deposit is guideline of mineral prospecting next stage. (authors)

  16. Interpretation of the Near-IR Spectra of the Kuiper Belt Object

    Science.gov (United States)

    Eluszkiewicz, Janusz; Cady-Pereira, Karen; Brown, Michael E.; Stansberry, John A.

    2007-01-01

    Visible and near-IR observations of the Kuiper Belt Object (136472) 2005 FY(9) have indicated the presence of unusually long (1 cm or more) optical path lengths in a layer of methane ice. Using microphysical and radiative transfer modeling, we show that even at the frigid temperatures in the outer reaches of the solar system, a slab of low porosity methane ice can indeed form by pressureless sintering of micron-sized grains, and it can qualitatively reproduce the salient features of the measured spectra. A good semiquantitative match with the near-IR spectra can be obtained with a realistic slab model, provided the spectra are scaled to a visible albedo of 0.6, at the low end of the values currently estimated from Spitzer thermal measurements. Consistent with previous modeling studies, matching spectra scaled to higher albedos requires the incorporation of strong backscattering effects. The albedo may become better constrained through an iterative application of the slab model to the analysis of the thermal measurements from Spitzer and the visible/near-IR reflectance spectra. The slab interpretation offers two falsifiable predictions (1) Absence of an opposition surge, which is commonly attributed to the fluffiness of the optical surface. This prediction is best testable with a spacecraft, as Earth-based observations at true opposition will not be possible until early next century. (2) Unlikelihood of the simultaneous occurrence of very long spectroscopic path lengths in both methane and nitrogen ice on the surface of any Kuiper Belt Object, as the more volatile nitrogen would hinder densification in methane ice.

  17. Mercury's plasma belt: hybrid simulations results compared to in-situ measurements

    Science.gov (United States)

    Hercik, D.; Travnicek, P. M.; Schriver, D.; Hellinger, P.

    2012-12-01

    The presence of plasma belt and trapped particles region in the Mercury's inner magnetosphere has been questionable due to small dimensions of the magnetosphere of Mercury compared to Earth, where these regions are formed. Numerical simulations of the solar wind interaction with Mercury's magnetic field suggested that such a structure could be found also in the vicinity of Mercury. These results has been recently confirmed also by MESSENGER observations. Here we present more detailed analysis of the plasma belt structure and quasi-trapped particle population characteristics and behaviour under different orientations of the interplanetary magnetic field.The plasma belt region is constantly supplied with solar wind protons via magnetospheric flanks and tail current sheet region. Protons inside the plasma belt region are quasi-trapped in the magnetic field of Mercury and perform westward drift along the planet. This region is well separated by a magnetic shell and has higher average temperatures and lower bulk proton current densities than surrounding area. On the day side the population exhibits loss cone distribution function matching the theoretical loss cone angle. Simulations results are also compared to in-situ measurements acquired by MESSENGER MAG and FIPS instruments.

  18. Characteristics and its uranium metallogenic potential of the granite belt between Bange and Jiali county, tibet

    International Nuclear Information System (INIS)

    Zhao Baoguang; Wang Qin; Liu Zhipeng; Chen Yuliang; Xu Wei

    2012-01-01

    The granite belt between Bange and Jiali county is a composite batholith which intruded at multistage, it con- trolled by several groups of the fault system, the alteration is developed, with the alaskite, aplite, pegmatitic vein intruded, it is type Ⅰ in the beginning of forming, and change to type S in the late time. There is a large of geochemical anomalies of uranium (U>6.8 X 10 -6 ) in Gulu town and Sangba village, of which middle of the granite belt and Bianba county of which east of the granite belt, that anomalies area have 1200 km 2 , 800 km”2 and 1500 km 2 . All the anomalies is considered that its forming relate to batholith and its external contact, so it shows that it has favorite geological conditions for granite type uranium metallogenesis. (authors)

  19. 36 CFR 4.15 - Safety belts.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Safety belts. 4.15 Section 4... TRAFFIC SAFETY § 4.15 Safety belts. (a) Each operator and passenger occupying any seating position of a motor vehicle in a park area will have the safety belt or child restraint system properly fastened at...

  20. Deterministic methods for the relativistic Vlasov-Maxwell equations and the Van Allen belts dynamics

    International Nuclear Information System (INIS)

    Le Bourdiec, S.

    2007-03-01

    Artificial satellites operate in an hostile radiation environment, the Van Allen radiation belts, which partly condition their reliability and their lifespan. In order to protect them, it is necessary to characterize the dynamics of the energetic electrons trapped in these radiation belts. This dynamics is essentially determined by the interactions between the energetic electrons and the existing electromagnetic waves. This work consisted in designing a numerical scheme to solve the equations modelling these interactions: the relativistic Vlasov-Maxwell system of equations. Our choice was directed towards methods of direct integration. We propose three new spectral methods for the momentum discretization: a Galerkin method and two collocation methods. All of them are based on scaled Hermite functions. The scaling factor is chosen in order to obtain the proper velocity resolution. We present in this thesis the discretization of the one-dimensional Vlasov-Poisson system and the numerical results obtained. Then we study the possible extensions of the methods to the complete relativistic problem. In order to reduce the computing time, parallelization and optimization of the algorithms were carried out. Finally, we present 1Dx-3Dv (mono-dimensional for x and three-dimensional for velocity) computations of Weibel and whistler instabilities with one or two electrons species. (author)

  1. Geochemistry of Gold Deposits in Anka Schist Belt, Northwestern ...

    African Journals Online (AJOL)

    HP USER

    ABSTRACT. Gold quartz veins have been identified associated with the rock formations of the Anka Schist Belt forming eight gold deposits that include Kuba I, Kuba II, Doka, Dumi I, Dumi II, Zurzurfa I, Zurzurfa II, Jameson and Kwali. The present study involves the use of major and trace elements to characterize some of the.

  2. On the Relationship Between High Speed Solar Wind Streams and Radiation Belt Electron Fluxes

    Science.gov (United States)

    Zheng, Yihua

    2011-01-01

    Both past and recent research results indicate that solar wind speed has a close connection to radiation belt electron fluxes [e.g., Paulikas and Blake, 1979; Reeves et aI., 2011]: a higher solar wind speed is often associated with a higher level of radiation electron fluxes. But the relationship can be very complex [Reeves et aI., 2011]. The study presented here provides further corroboration of this viewpoint by emphasizing the importance of a global perspective and time history. We find that all the events during years 2010 and 2011 where the >0.8 MeV integral electron flux exceeds 10(exp 5) particles/sq cm/sr/s (pfu) at GEO orbit are associated with the high speed streams (HSS) following the onset of the Stream Interaction Region (SIR), with most of them belonging to the long-lasting Corotating Interaction Region (CIR). Our preliminary results indicate that during HSS events, a maximum speed of 700 km/s and above is a sufficient but not necessary condition for the > 0.8 MeV electron flux to reach 10(exp 5) pfu. But in the exception cases of HSS events where the electron flux level exceeds the 10(exp 5) pfu value but the maximum solar wind speed is less than 700 km/s, a prior impact can be noted either from a CME or a transient SIR within 3-4 days before the arrival of the HSS - stressing the importance of time history. Through superposed epoch analysis and studies providing comparisons with the CME events and the HSS events where the flux level fails to reach the 10(exp 5) pfu, we will present the quantitative assessment of behaviors and relationships of various quantities, such as the time it takes to reach the flux threshold value from the stream interface and its dependence on different physical parameters (e.g., duration of the HSS event, its maximum or average of the solar wind speed, IMF Bz, Kp). The ultimate goal is to apply what is derived to space weather forecasting.

  3. Drive alive: teen seat belt survey program.

    Science.gov (United States)

    Burkett, Katie M; Davidson, Steve; Cotton, Carol; Barlament, James; Loftin, Laurel; Stephens, James; Dunbar, Martin; Butterfield, Ryan

    2010-08-01

    To increase teen seat belt use among drivers at a rural high school by implementing the Drive Alive Pilot Program (DAPP), a theory-driven intervention built on highway safety best practices. The first component of the program was 20 observational teen seat belt surveys conducted by volunteer students in a high school parking lot over a 38-month period before and after the month-long intervention. The survey results were published in the newspaper. The second component was the use of incentives, such as gift cards, to promote teen seat belt use. The third component involved disincentives, such as increased police patrol and school policies. The fourth component was a programmatic intervention that focused on education and media coverage of the DAPP program. Eleven pre-intervention surveys and nine post-intervention surveys were conducted before and after the intervention. The pre- and post-intervention seat belt usage showed significant differences (p<0.0001). The average pre-intervention seat belt usage rate was 51.2%, while the average post-intervention rate was 74.5%. This represents a percentage point increase of 23.3 in seat belt use after the DAPP intervention. Based on seat belt observational surveys, the DAPP was effective in increasing seat belt use among rural high school teenagers. Utilizing a theory-based program that builds on existing best practices can increase the observed seat belt usage among rural high school students.

  4. Investigations of garnets from polymetamorphic rocks of the Lapland Granulite Belt of the Kandalaksha Region

    Directory of Open Access Journals (Sweden)

    Miłosz A. Huber

    2012-01-01

    Full Text Available Introduction: The Lapland Granulite Belt is placed on the Kandalaksha region (Kola Peninsula, Russia. The rocks of this Belt are composed mainly of amphibolites and granulites.Materials and methods: The research were focused on the garnets from the amphibolite and granulite rocks of Lapland Granulite Belt. The petrological methods like polarizing microscopy (PM, SEM-EDS, XRD for powdered samples and single crystal diffraction were used together with IR and Mössbauer spectroscopy and REE analysis by ion–microprobe.Results: It was found that the garnets from studied amphibolite and granulite rocks could be classified to pyralspite group without hydrogarnets components, so they were formed in high metamorphic facies.Conclusions: The joint geological observations and results of the performed experiments suggest that the garnets were subject of a blastesy, i.e. there were formed in long lasting metamorphic processes of low dynamics, except of those garnets from tectonic zones, found in the vicinity of mineral veins.

  5. Chaos on the conveyor belt.

    Science.gov (United States)

    Sándor, Bulcsú; Járai-Szabó, Ferenc; Tél, Tamás; Néda, Zoltán

    2013-04-01

    The dynamics of a spring-block train placed on a moving conveyor belt is investigated both by simple experiments and computer simulations. The first block is connected by a spring to an external static point and, due to the dragging effect of the belt, the blocks undergo complex stick-slip dynamics. A qualitative agreement with the experimental results can be achieved only by taking into account the spatial inhomogeneity of the friction force on the belt's surface, modeled as noise. As a function of the velocity of the conveyor belt and the noise strength, the system exhibits complex, self-organized critical, sometimes chaotic, dynamics and phase transition-like behavior. Noise-induced chaos and intermittency is also observed. Simulations suggest that the maximum complexity of the dynamical states is achieved for a relatively small number of blocks (around five).

  6. Pan-African reactivation of the Lurio segment of the Kibaran Belt system: a reappraisal from recent age determinations in northern Mozambique

    Science.gov (United States)

    Sacchi, R.; Cadoppi, P.; Costa, M.

    2000-04-01

    The role of the Lurio Belt in northern Mozambique, and the geological evolution of its foreland in the Proterozoic are discussed in the light of recent, single zircon age determinations showing Pan-African age for the granulite-facies metamorphism. The following tentative conclusions are reached, and evidence for and against them is reviewed. The Lurio Belt had a two-fold history, as a crust-forming orogen during the Kibaran and as a transpressive suture in Pan-African times. Together with the Zambezi Belt and the Schlesien-Mwembeshi Lineament, it formed a 3000 km discontinuity which underwent an embryonic oceanic development before being sutured during the Pan-African collisional event. The Lurio Belt foreland had a tectonic-metamorphic evolution at ca 1000 Ma, prior to major, Pan-African overprinting and was probably continuous with the basement of Queen Maud Land (Antarctica) and Natal. In Pan-African times, clockwise transpressive movements along the Lurio Belt brought about emplacement of granulite klippen in its foreland. If there is a southward continuation of the Pan-African Mozambique Belt beyond Mozambique, it is probably to be found in Antarctica.

  7. Geochemistry of Gold Deposits in Anka Schist Belt, Northwestern ...

    African Journals Online (AJOL)

    Gold quartz veins have been identified associated with the rock formations of the Anka Schist Belt forming eight gold deposits that include Kuba I, Kuba II, Doka, Dumi I, Dumi II, Zurzurfa I, Zurzurfa II, Jameson and Kwali. The present study involves the use of major and trace elements to characterize some of the features that ...

  8. Reconstructing the size distribution of the primordial Main Belt

    Science.gov (United States)

    Tsirvoulis, G.; Morbidelli, A.; Delbo, M.; Tsiganis, K.

    2018-04-01

    In this work we aim to constrain the slope of the size distribution of main-belt asteroids, at their primordial state. To do so we turn out attention to the part of the main asteroid belt between 2.82 and 2.96 AU, the so-called "pristine zone", which has a low number density of asteroids and few, well separated asteroid families. Exploiting these unique characteristics, and using a modified version of the hierarchical clustering method we are able to remove the majority of asteroid family members from the region. The remaining, background asteroids should be of primordial origin, as the strong 5/2 and 7/3 mean-motion resonances with Jupiter inhibit transfer of asteroids to and from the neighboring regions. The size-frequency distribution of asteroids in the size range 17 size distribution slope q = - 1.43 . In addition, applying the same 'family extraction' method to the neighboring regions, i.e. the middle and outer belts, and comparing the size distributions of the respective background populations, we find statistical evidence that no large asteroid families of primordial origin had formed in the middle or pristine zones.

  9. 30 CFR 75.1403-5 - Criteria-Belt conveyors.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Criteria-Belt conveyors. 75.1403-5 Section 75... Criteria—Belt conveyors. (a) Positive-acting stop controls should be installed along all belt conveyors... can be stopped or started at any location. (b) Belt conveyors used for regularly scheduled mantrips...

  10. Goulds Belt, Interstellar Clouds, and the Eocene Oligocene Helium-3 Enhancement

    Science.gov (United States)

    Rubincam, David Parry

    2015-01-01

    Drag from hydrogen in the interstellar cloud which formed Gould's Belt may have sent interplanetary dust particle (IDPs) and small meteoroids with embedded helium to the Earth, perhaps explaining part the helium-3 flux increase seen in the sedimentary record near the Eocene-Oligocene transition. Assuming the Solar System passed through part of the cloud, IDPs in the inner Solar System may have been dragged to Earth, while dust and small meteoroids in the asteroid belt up to centimeter size may have been dragged to the resonances, where their orbital eccentricities were pumped up into Earth-crossing orbits; however, this hypotheses does not explain the Popigai and Chesapeake Bay impacts.

  11. Drive Alive: Teen Seat Belt Survey Program

    Directory of Open Access Journals (Sweden)

    Loftin, Laurel

    2010-08-01

    Full Text Available Objective: To increase teen seat belt use among drivers at a rural high school by implementing the Drive Alive Pilot Program (DAPP, a theory-driven intervention built on highway safety best practices.Methods: The first component of the program was 20 observational teen seat belt surveys conducted by volunteer students in a high school parking lot over a 38-month period before and after the month-long intervention. The survey results were published in the newspaper. The second component was the use of incentives, such as gift cards, to promote teen seat belt use. The third component involved disincentives, such as increased police patrol and school policies. The fourth component was a programmatic intervention that focused on education and media coverage of the DAPP program.Results: Eleven pre-intervention surveys and nine post-intervention surveys were conducted before and after the intervention. The pre- and post-intervention seat belt usage showed significant differences (p<0.0001. The average pre-intervention seat belt usage rate was 51.2%, while the average post-intervention rate was 74.5%. This represents a percentage point increase of 23.3 in seat belt use after the DAPP intervention.Conclusion: Based on seat belt observational surveys, the DAPP was effective in increasing seat belt use among rural high school teenagers. Utilizing a theory-based program that builds on existing best practices can increase the observed seat belt usage among rural high school students. [West J Emerg Med. 2010; 11(3: 280-283.

  12. The space radiation environment

    International Nuclear Information System (INIS)

    Robbins, D.E.

    1997-01-01

    There are three primary sources of space radiation: galactic cosmic rays (GCR), trapped belt radiation, and solar particle events (SPE). All are composed of ions, the nuclei of atoms. Their energies range from a few MeV u -1 to over a GeV u -1 . These ions can fragment when they interact with spacecraft materials and produce energetic neutrons and ions of lower atomic mass. Absorbed dose rates inside a typical spacecraft (like the Space Shuttle) in a low inclination (28.5 degrees) orbit range between 0.05 and 2 mGy d -1 depending on the altitude and flight inclination (angle of orbit with the equator). The quality factor of radiation in orbit depends on the relative contributions of trapped belt radiation and GCR, and the dose rate varies both with orbital altitude and inclination. The corresponding equivalent dose rate ranges between 0.1 and 4 mSv d -1 . In high inclination orbits, like that of the Mir Space Station and as is planned for the International Space Station, blood-forming organ (BFO) equivalent dose rates as high as 1.5 mSv d -1 . Thus, on a 1 y mission, a crew member could obtain a total dose of 0.55 Sv. Maximum equivalent dose rates measured in high altitude passes through the South Atlantic Anomaly (SAA) were 10 mSv h -1 . For an interplanetary space mission (e.g., to Mars) annual doses from GCR alone range between 150 mSv y -1 at solar maximum and 580 mSv y -1 at solar minimum. Large SPE, like the October 1989 series, are more apt to occur in the years around solar maximum. In free space, such an event could contribute another 300 mSv, assuming that a warning system and safe haven can be effectively used with operational procedures to minimize crew exposures. Thus, the total dose for a 3 y mission to Mars could exceed 2 Sv

  13. Synchronous and Cogged Fan Belt Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Acosta, Jason [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-02-01

    The GSA Regional GPG Team commissioned the National Renewable Energy Laboratory (NREL) to perform monitoring of cogged V-belts and synchronous belts on both a constant volume and a variable air volume fan at the Byron G. Rodgers Federal Building and U.S. Courthouse in Denver, Colorado. These motor/fan combinations were tested with their original, standard V-belts (appropriately tensioned by an operation and maintenance professional) to obtain a baseline for standard operation. They were then switched to the cogged V-belts, and finally to synchronous belts. The power consumption by the motor was normalized for both fan speed and air density changes. This was necessary to ensure that the power readings were not influenced by a change in rotational fan speed or by the power required to push denser air. Finally, energy savings and operation and maintenance savings were compiled into an economic life-cycle cost analysis of the different belt options.

  14. AUTOMATION OF CONVEYOR BELT TRANSPORT

    Directory of Open Access Journals (Sweden)

    Nenad Marinović

    1990-12-01

    Full Text Available Belt conveyor transport, although one of the most economical mining transport system, introduce many problems to mantain the continuity of the operation. Every stop causes economical loses. Optimal operation require correct tension of the belt, correct belt position and velocity and faultless rolls, which are together input conditions for automation. Detection and position selection of the faults are essential for safety to eliminate fire hazard and for efficient maintenance. Detection and location of idler roll faults are still open problem and up to now not solved successfully (the paper is published in Croatian.

  15. Geometry and kinematics of Majiatan Fold-and-thrust Belt, Western Ordos Basin: implication for Tectonic Evolution of North-South Tectonic Belt

    Science.gov (United States)

    He, D.

    2017-12-01

    The Helan-Chuandian North-South Tectonic Belt crossed the central Chinese mainland. It is a boundary of geological, geophysical, and geographic system of Chinese continent tectonics from shallow to deep, and a key zone for tectonic and geomorphologic inversion during Mesozoic to Cenozoic. It is superimposed by the southeastward and northeastward propagation of Qinghai-Tibet Plateau in late Cenozoic. It is thus the critical division for West and East China since Mesozoic. The Majiatan fold-and-thrust belt (MFTB), locating at the central part of HCNSTB and the western margin of Ordos Basin, is formed by the tectonic evolution of the Helan-Liupanshan Mountains. Based on the newly-acquired high-resolution seismic profiles, deep boreholes, and surface geology, the paper discusses the geometry, kinematics, and geodynamic evolution of MFTB. With the Upper Carboniferous coal measures and the pre-Sinian ductile zone as the detachments, MFTB is a multi-level detached thrust system. The thrusting was mainly during latest Jurassic to Late Cretaceous, breaking-forward in the foreland, and resulting in a shortening rate of 25-29%. By structural restoration, this area underwent extension in Middle Proterozoic to Paleozoic, which can be divided into three phases of rifting such as Middle to Late Proterozoic, Cambiran to Ordovician, and Caboniferous to early Permian. It underwent compression since Late Triassic, including such periods as Latest Triassic, Late Jurassic to early Cretaceous, Late Cretaceous to early Paleogene, and Pliocene to Quaternary, with the largest shortening around Late Jurassic to early Cretaceous period (i.e. the mid-Yanshanian movement by the local name). However, trans-extension since Eocene around the Ordos Basin got rise to the formation the Yingchuan, Hetao, and Weihe grabens. It is concluded that MFTB is the leading edge of the intra-continental Helan orogenic belt, and formed by multi-phase breaking-forward thrusting during Late Jurassic to Cretaceous

  16. Feed chute geometry for minimum belt wear

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, A W; Wiche, S J [University of Newcastle, Newcastle, NSW (Australia). Centre for Bulk Solids and Particulate Technologies

    1998-09-01

    The paper is concerned with the feeding and transfer of bulk solids in conveyor belt operation. The paper focuses on chute design where the objective is to prevent spillage and minimise both chute and belt wear. It is shown that these objectives may be met through correct dynamic design of the chute and by directing the flow of bulk solids onto the belt at an acceptable incidence angle. The aim is to match the tangential velocity component of the feed velocity as close as possible to the belt velocity. At the same time, it is necessary to limit the impact pressure due to the change in momentum of the bulk solid as it feeds onto the belt. 2 refs., 8 figs.

  17. Metallogenic epoch of the Jiapigou gold belt, Jilin Province, China ...

    Indian Academy of Sciences (India)

    29, Xueyuan Road, Beijing 100083, People's Republic of China. 2Beijing Research .... terrane, which is separated from the central Asian orogenic belt .... Stage I formed the main body of quartz veins ...... size (20–25 μm) fluid inclusions can be observed, although most ..... Canada and Western Australia (Goldfarb et al. 2001 ...

  18. 30 CFR 75.1108 - Approved conveyor belts.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved conveyor belts. 75.1108 Section 75... Fire-Resistant Hydraulic Fluids on Underground Equipment § 75.1108 Approved conveyor belts. (a) Until December 31, 2009 conveyor belts placed in service in underground coal mines shall be: (1) Approved under...

  19. Effectiveness of media and enforcement campaigns in increasing seat belt usage rates in a state with a secondary seat belt law.

    Science.gov (United States)

    Vasudevan, Vinod; Nambisan, Shashi S; Singh, Ashok K; Pearl, Traci

    2009-08-01

    In 2005, in terms of seat belt usage rates, Nevada ranked third nationally and first among states with secondary seat belt use enforcement laws in the United States. An effective combination of a media-based education and enforcement campaign helped in this regard. The objective of this article is to document the effectiveness of enforcement and media-based education and outreach campaigns on the seat belt usage rates in Nevada, a state with a secondary seat belt usage law. Observational data on seat belt usage and passenger fatality data are used to evaluate the effectiveness of enforcement campaigns and media-based education and outreach campaigns. Data based on observations of about 40,000 vehicles in each of the years 2003 to 2005 were analyzed. Statistical analyses show that a significant increase in seat belt usage rates among both drivers and passengers for both genders resulted from the accompanying the media and enforcement campaigns. The results from this study indicate that effective and well-planned media/enforcement campaigns can have a significant impact on seat belt usage rates even in a state where the enforcement of seat belt laws can only be as a secondary violation. They validate and expand on findings from other efforts documented in the literature. These results demonstrate that, if coordinated properly, media and enforcement campaigns work very effectively in increasing seat belt usage rates even in states with secondary seat belt laws.

  20. Crustal Deformation around Zhangjiakou-Bohai Seismically Active Belt

    Science.gov (United States)

    Jin, H.; Fu, G.; Kato, T.

    2011-12-01

    Zhangjiakou-Bohai belt is a seismically active belt located in Northern China around Beijing, the capital of China. Near such a belt many great earthquakes occurred in the past centuries (e.g. the 1976 Tanshan Ms7.8 earthquake, the 1998 Zhangbei Ms6.2 earthquake, etc). Chinese Government established dense permanent and regional Global Positioning System (GPS) stations in and near the area. We collected and analyzed all the GPS observation data between 1999 and 2009 around Zhangjiakou-Bohai seismic belt, and obtained velocities at 143 stations. At the same time we investigated Zhangjiakou-Bohai belt slip rate for three profiles from northwest to southeast, and constructed a regional strain field on the Zhangjiakou-Bohai seismic belt region by least-square collocation. Based on the study we found that: 1) Nowadays the Zhangjiakou-Bohai seismic belt is creeping with left-lateral slip rate of 2.0mm~2.4mm/a, with coupling depth of 35~50km; 2) In total, the slip and coupling depth of the northwestern seismic belt is less than the one of southeast side; 3) The maximum shear strain is about 3×10-8 at Beijing-Tianjin-Tangshan area.

  1. Radiation damage studies related to nuclear waste forms

    International Nuclear Information System (INIS)

    Gray, W.J.; Wald, J.W.; Turcotte, R.P.

    1981-12-01

    Much of the previously reported work on alpha radiation effects on crystalline phases of importance to nuclear waste forms has been derived from radiation effects studies of composite waste forms. In the present work, two single-phase crystalline materials, Gd 2 Ti 2 O 7 (pyrochlore) and CaZrTi 2 O 7 (zirconolite), of relative importance to current waste forms were studied independently by doping with 244 Cm at the 3 wt % level. Changes in the crystalline structure measured by x-ray diffraction as a function of dose show that damage ingrowth follows an expected exponential relationship of the form ΔV/V 0 = A[1-exp(-BD)]. In both cases, the materials became x-ray amorphous before the estimated saturation value was reached. The predicted magnitudes of the unit cell volume changes at saturation are 5.4% and 3.5%, respectively, for Gd 2 Ti 2 O 7 and CaZrTi 2 O 7 . The later material exhibited anisotropic behavior in which the expansion of the monoclinic cell in the c 0 direction was over five times that of the a 0 direction. The effects of transmutations on the properties of high-level waste solids have not been studied until now because of the long half-lives of the important fission products. This problem was circumvented in the present study by preparing materials containing natural cesium and then irradiating them with neutrons to produce 134 Cs, which has only a 2y half-life. The properties monitored at about one year intervals following irradiation have been density, leach rate and microstructure. A small amount of x-ray diffraction work has also been done. Small changes in density and leach rate have been observed for some of the materials, but they were not large enough to be of any consequence for the final disposal of high level wastes

  2. Analysis on uranium resource situations and metallogenic potential of Heyuan mineralization belt of Guangdong province

    International Nuclear Information System (INIS)

    Chen Zhuhai; Zheng Mingliang; Song Shizhu; Liang Yewu; Zhao Wei

    2008-01-01

    Heyuan mineralization belt is a structure-magmatic activities belt which is charcterized by strong plastic deformation and shearing. The squeeze (overthrust) structure is formed early. Later stretch produced slide shovel-shaped normal fault which control the red basin and uranium mineralization. Comprehensive study shows that this area is of favorable uranium metallogenic condition due to the rich uranium source and higher degree of geology work, it is a target for the new round resources exploration. (authors)

  3. High-altitude cosmic ray neutrons: probable source for the high-energy protons of the earth's radiation belts

    International Nuclear Information System (INIS)

    Hajnal, F.; Wilson, J.

    1992-01-01

    'Full Text:' Several High-altitude cosmic-ray neutron measurements were performed by the NASA Ames Laboratory in the mid-to late-1970s using airplanes flying at about 13km altitude along constant geomagnetic latitudes of 20, 44 and 51 degrees north. Bonner spheres and manganese, gold and aluminium foils were used in the measurements. In addition, large moderated BF-3 counters served as normalizing instruments. Data analyses performed at that time did not provide complete and unambiguous spectral information and field intensities. Recently, using our new unfolding methods and codes, and Bonner-sphere response function extensions for higher energies, 'new' neutron spectral intensities were obtained, which show progressive hardening of neutron spectra as a function of increasing geomagnetic latitude, with substantial increases in the energy region iron, 1 0 MeV to 10 GeV. For example, we found that the total neutron fluences at 20 and 51 degrees magnetic north are in the ratio of 1 to 5.2 and the 10 MeV to 10 GeV fluence ratio is 1 to 18. The magnitude of these ratios is quite remarkable. From the new results, the derived absolute neutron energy distribution is of the correct strength and shape for the albedo neutrons to be the main source of the high-energy protons trapped in the Earth's inner radiation belt. In addition, the results, depending on the extrapolation scheme used, indicate that the neutron dose equivalent rate may be as high as 0.1 mSv/h near the geomagnetic north pole and thus a significant contributor to the radiation exposures of pilots, flight attendants and the general public. (author)

  4. A new high background radiation area in the Geothermal region of Eastern Ghats Mobile Belt (EGMB) of Orissa, India

    International Nuclear Information System (INIS)

    Baranwal, V.C.; Sharma, S.P.; Sengupta, D.; Sandilya, M.K.; Bhaumik, B.K.; Guin, R.; Saha, S.K.

    2006-01-01

    A high natural radiation zone is investigated for the first time in a geothermal region of Eastern Ghats Mobile Belt (EGMB) of Orissa state in India. The surrounding area comprises a geothermal region which has surveyed using a portable pulsed Geiger-Muller counter. On the basis of findings of GM counter, an area was marked as a high radiation zone. Soil and rock samples collected from the high radiation zone were analyzed by γ-ray spectrometry (GRS) using NaI(Tl) detector. The radioactivity is found to be contributed mainly by thorium. Concentration of thorium is reported to be very high compared to their normal abundance in crustal rocks. Further, concentrations of 238 U and 40 K are also high compared to normal abundance in crustal rocks but their magnitude is comparatively less than that of thorium. The average concentrations of 238 U (i.e. U(β-γ)), 232 Th and 40 K are found to be 33, 459ppm and 3%, respectively, in soils and 312, 1723ppm and 5%, respectively, in the granitic rocks. Maximum concentrations of 238 U, 232 Th and 40 K are found to be 95, 1194ppm and 4%, respectively, in soils and 1434, 10,590ppm and 8%, respectively, in the granitic rocks. Radioactive element emits various energies in its decay chain. High energies are utilized to estimate the concentration of actual 238 U, 232 Th and 40 K using a NaI(Tl) detector, however, low energies are used for the same in an HPGe detector. Some of the rock samples (eight in number) were also analyzed using HPGe detector for studying the behavior of low energies emitted in the decay series of uranium and thorium. The absorbed gamma dose rate in air and external annual dose rate of the high radiation zone are calculated to be 2431nGy/h and 3.0mSv/y, respectively. It is approximately 10 times greater than the dose rates obtained outside the high radiation zone. The high concentration of uranium and thorium may be one of the possible heat sources together with the normal geothermal gradient for hot springs

  5. The Tintina Gold Belt - A global perspective

    Science.gov (United States)

    Goldfarb, Richard J.; Hart, Craig J.R.; Miller, Marti L.; Miller, Lance D.; Farmer, G. Lang; Groves, David I.; Tucker, Terry L.; Smith, Moira T.

    2000-01-01

    The so-called Tintina Gold Belt extends for more than 1000 km along the length of the northern North American Cordillera. Middle to Late Cretaceous Au deposits within the belt have various similar characteristics, among which are a spatial and temporal association with magmatism; Bi-W-Te signatures in deposits hosted by granitod stocks and As-Sb signatures where hosted by sedimentary rocks and dyke systems; and δ180 values consistently > 12 per mil for Au-bearing quartz. Nevertheless significant differences in structural styles, levels of deposit emplacement, ore-fluid chemistry, and Au grades suggest that the characteristics represent a broad range of deposit types. Many of these are best classified as orogenic Au deposits in the Yukon-Tanana terrane, as epithermal and porphyry-style Au deposits in the Kuskokwim region, and as Au-bearing, granite-related veins and stockworks, replacements, and skarns, as well as associated polymetallic lodes, in central Yukon. The diverse types of Au deposits and associated plutons of the Tintina Gold Belt collectively define a 45-m.y.-long period of arc magmatism that migrated northwesterly, for about 1000 km, across the active collisional margin of Cretaceous northwestern North America. The initiation of fluid flow and plutonism in Albian time seems to correlate with the onset of oblique subduction and dextral strike-slip on the Denali-Farewell, Tintina-Kaltag, and related fault systems. Initial Au-vein formation and subduction-related magmatism at about 115-110 Ma (e.g., including the Goodpaster and Fortymile districts), within the seaward side of the Yukon-Tanana terrane, correlate with the arrival of the Wrangellia superterrane off the continental margin. Dextral translation of the allochthonous Wrangellia block was associated with the migration of the thermal pulse to the northwest at about 95-90 Ma. Orogenic (or so­ called mesotherrnal) and granitoid-related Au deposits formed across the width of the Yukon

  6. Temporal evolution of granitic magmas in the Luanchuan metallogenic belt, east Qinling Orogen, central China: Implications for Mo metallogenesis

    Science.gov (United States)

    Li, Dong; Han, Jiangwei; Zhang, Shouting; Yan, Changhai; Cao, Huawen; Song, Yaowu

    2015-11-01

    The Luanchuan metallogenic belt, located within the eastern part of the Qinling Orogen, central China, hosts a number of world-class Mo deposits that are closely related to small late Mesozoic granitic plutons. Zircon U-Pb dating of distinct plutons in the Luanchuan metallogenic belt has yielded ages of 153 ± 1, 154 ± 2, 152 ± 2, and 148 ± 1 Ma. Molybdenite Re-Os isotopic compositions of Yuku ore district in the southern part of Luanchuan metallogenic belt has yielded an isochron age of 146 ± 1 Ma, which is consistent with the large-scale mineralization ages in the northern part of the Luanchuan metallogenic belt. A combination of previous studies and new geochronological and isotopic data show a concordant temporal and genetic link between granitic magmatism and Mo mineralization in the Luanchuan metallogenic belt, suggesting that this mineralization episode formed the most extensive Mo mineralization belt in the east Qinling Orogen. Zircon grains from Mo-related granitic plutons show similar trace element distributions. High-precision Multi Collector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS) Pb isotope analysis of K-feldspar megacrysts from mineralization-related granites suggest that they were derived from the lower crust. Similarly, the Pb isotopic compositions of pyrite coprecipitated with molybdenite also suggest that the metals were derived form the lower crust, with probably minor mantle contribution. A continuum mineralization model that describes the sourcing of Mo from an evolving granitic magma over successive differentiation events, possibly in separate but connected magma chambers, could explain the remarkable Mo enrichment in the Luanchuan metallogenic belt. The volatile- and Mo-bearing granitic magmas ascended as diapirs from the deep crust, and were emplaced as dikes in the upper crust. Lithological differences between these Mo-bearing granites may relate to different stages in the evolution of individual magmas. Finally, ore-forming

  7. Grinding Glass Disks On A Belt Sander

    Science.gov (United States)

    Lyons, James J., III

    1995-01-01

    Small machine attached to table-top belt sander makes possible to use belt sander to grind glass disk quickly to specified diameter within tolerance of about plus or minus 0.002 in. Intended to be used in place of production-shop glass grinder. Held on driveshaft by vacuum, glass disk rotated while periphery ground by continuous sanding belt.

  8. Space Flight Ionizing Radiation Environments

    Science.gov (United States)

    Koontz, Steve

    2017-01-01

    The space-flight ionizing radiation (IR) environment is dominated by very high-kinetic energy-charged particles with relatively smaller contributions from X-rays and gamma rays. The Earth's surface IR environment is not dominated by the natural radioisotope decay processes. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of space radiation environments, beginning with the space radiation environment on the International Space Station and moving outward through the Van Allen belts to cislunar space. The benefits and limitations of radiation shielding materials will also be summarized.

  9. A joint econometric analysis of seat belt use and crash-related injury severity.

    Science.gov (United States)

    Eluru, Naveen; Bhat, Chandra R

    2007-09-01

    This paper formulates a comprehensive econometric structure that recognizes two important issues in crash-related injury severity analysis. First, the impact of a factor on injury severity may be moderated by various observed and unobserved variables specific to an individual or to a crash. Second, seat belt use is likely to be endogenous to injury severity. That is, it is possible that intrinsically unsafe drivers do not wear seat belts and are the ones likely to be involved in high injury severity crashes because of their unsafe driving habits. The preceding issues are considered in the current research effort through the development of a comprehensive model of seat belt use and injury severity that takes the form of a joint correlated random coefficients binary-ordered response system. To our knowledge, this is the first instance of such a model formulation and application not only in the safety analysis literature, but in the econometrics literature in general. The empirical analysis is based on the 2003 General Estimates System (GES) data base. Several types of variables are considered to explain seat belt use and injury severity levels, including driver characteristics, vehicle characteristics, roadway design attributes, environmental factors, and crash characteristics. The results, in addition to confirming the effects of various explanatory variables, also highlight the importance of (a) considering the moderating effects of unobserved individual/crash-related factors on the determinants of injury severity and (b) seat belt use endogeneity. From a policy standpoint, the results suggest that seat belt non-users, when apprehended in the act, should perhaps be subjected to both a fine (to increase the chances that they wear seat belts) as well as mandatory enrollment in a defensive driving course (to attempt to change their aggressive driving behaviors).

  10. Speed Controlled Belt Conveyors: Drives and Mechanical Considerations

    Directory of Open Access Journals (Sweden)

    BEBIC, M. Z.

    2018-02-01

    Full Text Available The paper presents variable speed belt conveyor system where the reference speed is changed in order to achieve improved energy efficiency of operation. The recorded measurements show that belt tension varies within the same limits as under constant speed operation. These results introduce a new insight of the present state of the art in variable speed belt conveyor drives. The system is realized with remote control from the control center on an open pit mine. The structure of the multi-motor drive system of a single conveyor, as well as of the network-based control system distributed among belt conveyor stations and the control center are shown. Speed control of a belt conveyor system is organized to provide better utilization of the available material cross section on the belt and reduced electrical energy consumption of the drive. The experimental results obtained on the system prove that, under existing constraints, the applied algorithm has not introduced additional stress to the belt or mechanical assemblies during acceleration and deceleration processes, while providing higher energy efficiency of operation.

  11. Timing belt in power transmission and conveying system

    Directory of Open Access Journals (Sweden)

    Domek Grzegorz

    2018-01-01

    Full Text Available This paper presents the problem of phenomena occurring at the contact of a timing belt and a pulley. Depending on a belt size range these phenomena differ significantly. There is no indication as to what solutions are optimal for drive belts. The analysis of the coupling process and performance tests have shown that the drive belt should have a cord of very good mechanical properties and its raceway side should be made from the material of a low friction coefficient against the pulley material. A flat belt in power transmission and conveying systems cooperates with several elements consisting of timing pulleys, tensioners or guiding rails. In gear with timing belts they depend strongly on characteristics of the process as well as the type of friction. In recent constructions, producers of timing belts are very much concerned about achieving as much slippery surface as possible. The work describes the problem of friction on different surfaces as well as its influence on gear lifetime. Research results confirm that on many surfaces bigger coefficient of friction is expected.

  12. Wave-Particle Interactions Involving Correlated Electron Bursts and Whistler Chorus in Earth's Radiation Belts

    Science.gov (United States)

    Echterling, N.; Schriver, D.; Roeder, J. L.; Fennell, J. F.

    2017-12-01

    During the recovery phase of substorm plasma injections, the Van Allen Probes commonly observe events of quasi-periodic energetic electron bursts correlating with simultaneously detected upper-band, whistler-mode chorus emissions. These electron bursts exhibit narrow ranges of pitch angles (75-80° and 100-105°) and energies (20-40 keV). Electron cyclotron harmonic (ECH) emissions are also commonly detected, but typically do not display correlation with the electron bursts. To examine sources of free energy and the generation of these wave emissions, an observed electron velocity distribution on January 13, 2013 is used as the starting condition for a particle in cell (PIC) simulation. Effects of temperature anisotropy (perpendicular temperature greater than parallel temperature), the presence of a loss cone and a cold electron population on the generation of whistler and ECH waves are examined to understand wave generation and nonlinear interactions with the particle population. These nonlinear interactions produce energy diffusion along with strong pitch angle scattering into the loss cone on the order of milliseconds, which is faster than a typical bounce period of seconds. To examine the quasi-periodic nature of the electron bursts, a loss-cone recycling technique is implemented to model the effects of the periodic emptying of the loss cone and electron injection on the growth of whistler and ECH waves. The results of the simulations are compared to the Van Allen Probe observations to determine electron acceleration, heating and transport in Earth's radiation belts due to wave-particle interactions.

  13. Structure of the Kaoko Belt, Namibia: progressive evolution of a classic transpressional orogen

    Science.gov (United States)

    Goscombe, Ben; Hand, Martin; Gray, David

    2003-07-01

    The Kaoko Belt portion of the Damara Orogen, Namibia, is the deeply eroded core of a sinistral transpressional orogen that has half-flower structure geometry centred on the major, 4-5-km-wide Purros Mylonite Zone. Formed between the Congo Craton in the east and Rio De La Plata Craton in Brazil, the Kaoko Belt represents the northern coastal arm of a triple junction within the Pan-African Orogenic System. Consisting of reworked Archaean, Palaeoproterozoic and Mesoproterozoic basement and a cover of Neoproterozoic Damara Sequence, the Kaoko Belt can be sub-divided structurally into three parallel NNW-trending zones. The Eastern Kaoko Zone comprises sub-greenschist facies shelf carbonates that have been uprightly folded. The Central Kaoko Zone contains a slope and deep basin facies succession that has experienced intense deformation, including pervasive reworking of basement into large-scale east-vergent nappes. The Western Kaoko Zone is predominantly deep basin facies of high metamorphic grade intruded by numerous granites. It has experienced intense wrench-style deformation with formation of upright isoclines and steep, crustal-scale shear zones. The Kaoko Belt evolved through three distinct phases of a protracted Pan-African Orogeny in the late Neoproterozoic to Cambrian. (1) An early Thermal Phase (M 1) was responsible for pervasive partial melting and granite emplacement in the Western Kaoko Zone from 656 Ma. (2) The Transpressional Phase produced the geometry of the belt by progressive sinistral shearing between 580 and 550 Ma. Deformation was continuously progressive through two stages and involved both temporal and spatial migration of deformation outwards towards the margin. The early strike-slip Wrench-Stage produced a high-strain L-S fabric by sub-horizontal transport. Deformation became progressively more transpressive, with high-angle convergence and flattening strains during the Convergent-Stage. In this stage, strike-slip movements evolved through

  14. The Hawaii trails project: comet-hunting in the main asteroid belt

    Science.gov (United States)

    Hsieh, H. H.

    2009-10-01

    Context: The mysterious solar system object 133P/(7968) Elst-Pizarro is dynamically asteroidal, yet displays recurrent comet-like dust emission. Two scenarios were hypothesized to explain this unusual behavior: 1) 133P is a classical comet from the outer solar system that has evolved onto a main-belt orbit or 2) 133P is a dynamically ordinary main-belt asteroid on which subsurface ice has recently been exposed. If 1) is correct, the expected rarity of a dynamical transition onto an asteroidal orbit implies that 133P could be alone in the main belt. In contrast, if 2) is correct, other icy main-belt objects should exist and could also exhibit cometary activity. Aims: Believing 133P to be a dynamically ordinary, yet icy main-belt asteroid, I set out to test the primary prediction of the hypothesis: that 133P-like objects should be common and could be found by an appropriately designed observational survey. Methods: I conducted just such a survey - the Hawaii Trails Project - of selected main-belt asteroids in a search for objects displaying cometary activity. Optical observations were made of targets selected from among the Themis, Koronis, and Veritas asteroid families, the Karin asteroid cluster, and low-inclination, kilometer-scale outer-belt asteroids, using the Lulin 1.0 m, small and moderate aperture research telescope system (SMARTS) 1.0 m, University of Hawaii 2.2 m, southern astrophysical research (SOAR) 4.1 m, Gemini North 8.1 m, Subaru 8.2 m, and Keck I 10 m telescopes. Results: I made 657 observations of 599 asteroids, discovering one active object now known as 176P/LINEAR, leading to the identification of the new cometary class of main-belt comets (MBCs). These results suggest that there could be ~100 currently active MBCs among low-inclination, kilometer-scale outer-belt asteroids. Physically and statistically, MBC activity is consistent with initiation by meter-sized impactors. The estimated rate of impacts and sizes of resulting active sites, however

  15. The Port Isabel Fold Belt: Salt enhanced Neogene Gravitational Spreading in the East Breaks, Western Gulf of Mexico

    Science.gov (United States)

    Lebit, Hermann; Clavaud, Marie; Whitehead, Sam; Opdyke, Scott; Luneburg, Catalina

    2017-04-01

    The Port Isabel fold belt is situated at the northwestern corner of the deep water Gulf of Mexico where the regional E-W trending Texas-Louisiana shelf bends into the NNE-SSW trend of the East Mexico Shelf. The fold belt forms an allochthonous wedge that ramps up from West to East with its front occupied by shallow salt complexes (local canopies). It is assumed that the belt predominantly comprises Oligocene siliciclastic sequences which reveal eastward facing folds and thrusts with a NE-SW regional trend. The structural architecture of the fold belt is very well imaged on recently processed 3D seismic volumes. Crystal III is a wide-azimuth survey acquired in 2011 and reprocessed in 2016 leveraging newly developed state-of-the-art technology. 3D deghosting, directional designature and multi-model 3D SRME resulted in broader frequency spectrum. The new image benefits from unique implementation of FWI, combined with classic tomographic updates. Seismically transparent zones indicating over-pressured shales are limited to the core of anticlines or to the footwall of internal thrust. Mobile shales associated with diapirs are absent in the study area. In contrast, salt is mobile and apparently forms the major decollement of the PIFB as indicated by remnant salt preferentially located in triangles along the major thrusts and fault intersections or at the core of anticlines. Shallow salt diapirs seam to root in the fold belt, while lacking evidence for salt feeders being connected to the deep salt underlying the Mesozoic to Paleogene substratum of the fold belt. Towards the WNW the fold belt is transient into a extensional regime, characterized by roll-over structures associated with deep reaching normal faults which form ultra-deep mini basins filled with Neogene deposits. Kinematic restorations confirm the simultaneous evolution of the deep mini basins and the outboard fold belt. This resembles a gravitational spreading system with the extensional tectonics of the deep

  16. Seat belt and mobile phone use among vehicle drivers in the city of Doha, Qatar: an observational study.

    Science.gov (United States)

    Mahfoud, Ziyad R; Cheema, Sohaila; Alrouh, Hekmat; Al-Thani, Mohammed Hamad; Al-Thani, Al Anoud Mohammed; Mamtani, Ravinder

    2015-09-22

    In Qatar traffic injuries and fatalities are of serious concern. Mobile phone use whilst driving has been associated with increased risk of vehicular collisions and injuries. Seat belt use has been demonstrated to save lives and reduce the severity of road traffic injuries. Whereas previously published studies may have looked at all front passengers, this study aims to obtain reliable estimates of the prevalence of seat belt and mobile phone use among vehicle drivers in the city of Doha, Qatar. Additionally, we aim to investigate the association of these behaviors with other variables namely gender, time of the day and type of vehicle. An observational study on 2,011 vehicles was conducted in 2013. Data were collected at ten sites within Doha city over a two-week period. Two trained observers surveyed each car and recorded observations on a data collection form adapted from a form used in a 2012 Oklahoma observational study. Associations were assessed using the Chi-squared test or Fisher's exact test. A p-value of .05 or less was considered statistically significant. Overall, 1,463 (72.7 %) drivers were found using a seat belt (95 % CI: 70.8-74.7 %) and 150 (7.5 %) their mobile phones (95 % CI: 6.3-8.6 %) during the observation period. Mobile phone use was significantly associated with not using a seat belt and driving a sport utility vehicle. Significantly lower rates of seat belt use were observed in the early morning and late afternoon. No gender differences were observed. Seatbelt use in Doha was found to be similar to countries in the region but lower than those in western countries. Also, studies from other high-income locations, reported lower rates of mobile phone use while driving than in Doha. Despite road traffic crashes being one of the leading causes of death in Qatar, three out of 10 drivers in Doha, Qatar, do not use a seat belt and about one in 12 use a mobile phone while driving. More efforts, in the form of awareness campaigns and increased law

  17. Compliance with Seat Belt Use in Makurdi, Nigeria: An ...

    African Journals Online (AJOL)

    Background: Seat belts are designed to reduce injuries due to road crash among vehicle occupants. Aims: This study aims to determine the availability of seat belt in vehicles and compliance with seat belt use among vehicle occupants. Materials and methods: This was a 24‑h direct observational study of seat belt usage ...

  18. Seat-belt wearing and driving behavior: an instrumented-vehicle study.

    Science.gov (United States)

    Janssen, W

    1994-04-01

    Less-than-expected fatality reductions after seat-belt legislation has been introduced in a jurisdiction may be explained in terms of selective recruitment of parts of the driving population and/or behavioral adaptation by beginning belt users. The present investigation has compared the relative merits of these two hypotheses at the level of individual driver behavior. In the initial study the driving behavior of groups of habitual wearers and nonwearers of the belt was compared. Nonwearers made two trips, one with the belt on and one without the belt. Habitual wearers drove belted only. The main part of the experiment was a 105 km freeway route. Two additional tasks of a somewhat more critical nature, a double lane-change manoeuvre and the performance of a braking manoeuvre in front of a fixed obstacle, were performed after the freeway trips. Factor analysis on 39 variables describing driving behavior on the road and during the additional tasks resulted in five factors. One of these, the factor describing the distribution of driving speed on the freeway, differentiated between nonwearers and wearers (thus yielding support for the selective recruitment hypothesis) as well as between wearing and not wearing the belt by the same drivers (thus yielding support for the behavioral adaptation hypothesis). In the follow-up study the original wearers and nonwearers were assigned to one of four experimental treatments: (i) the promise by the experimenter of a considerable incentive for not having a culpable motor vehicle accident over a period of a year. Half the habitual wearer subjects were assigned to this condition. The expectation was that this group would become more careful in their driving; (ii) a control group, consisting of the remaining habitual wearers; (iii) the agreement between the experimenter and the subject that the latter would buckle up in everyday driving for the year to come--half the habitual nonwearer subjects were assigned to this condition; (iv) a

  19. Checking the compatibility of the cold Kuiper belt with a planetary instability migration model

    Science.gov (United States)

    Gomes, Rodney; Nesvorný, David; Morbidelli, Alessandro; Deienno, Rogerio; Nogueira, Erica

    2018-05-01

    The origin of the orbital structure of the cold component of the Kuiper belt is still a hot subject of investigation. Several features of the solar system suggest that the giant planets underwent a phase of global dynamical instability, but the actual dynamical evolution of the planets during the instability is still debated. To explain the structure of the cold Kuiper belt, Nesvorny (2015, AJ 150,68) argued for a "soft" instability, during which Neptune never achieved a very eccentric orbit. Here we investigate the possibility of a more violent instability, from an initially more compact fully resonant configuration of 5 giant planets. We show that the orbital structure of the cold Kuiper belt can be reproduced quite well provided that the cold population formed in situ, with an outer edge between 44 - 45 au and never had a large mass.

  20. Enclosed belts in the ascendancy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-03-15

    Although there will always be a place for traditional overland belt conveyors, enclosed belt systems are increasingly being specified where environmental protection assumes high priority or where there is a need to protect material from the weather. The article reports on recent conveyor projects such as: an MRC cable Belt in a 6.4 km system to carry coal in the Appalachian Mountains; a $40 m contract awarded to FL Smidth to supply an integrated coal handling system to LILIAMA in Vietnam and other contracts to handle coal for India's Coastal Gujarat Power; and a contract awarded to Bateman Engineered Technologies to supply a 7 km Japan Pipe Conveyor for a coal power station in Brazil. 3 photos.

  1. A positive correlation between energetic electron butterfly distributions and magnetosonic waves in the radiation belt slot region

    International Nuclear Information System (INIS)

    Yang, Chang; Su, Z.; Xiao, F.; Zheng, H.

    2017-01-01

    Energetic (hundreds of keV) electrons in the radiation belt slot region have been found to exhibit the butterfly pitch angle distributions. Resonant interactions with magnetosonic and whistler-mode waves are two potential mechanisms for the formation of these peculiar distributions. Here we perform a statistical study of energetic electron pitch angle distribution characteristics measured by Van Allen Probes in the slot region during a three-year period from May 2013 to May 2016. Our results show that electron butterfly distributions are closely related to magnetosonic waves rather than to whistlermode waves. Both electron butterfly distributions and magnetosonic waves occur more frequently at the geomagnetically active times than at the quiet times. In a statistical sense, more distinct butterfly distributions usually correspond to magnetosonic waves with larger amplitudes and vice versa. The averaged magnetosonic wave amplitude is less than 5 pT in the case of normal and flat-top distributions with a butterfly index BI = 1 but reaches ~ 35–95 pT in the case of distinct butterfly distributions with BI > 1:3. For magnetosonic waves with amplitudes > 50 pT, the occurrence rate of butterfly distribution is above 80%. Our study suggests that energetic electron butterfly distributions in the slot region are primarily caused by magnetosonic waves.

  2. Intelligent Belt Conveyor Monitoring and Control

    NARCIS (Netherlands)

    Pang, Y.

    2010-01-01

    Belt conveyors have been used worldwide in continuous material transport for about 250 years. Traditional inspection and monitoring of large-scale belt conveyors focus on individual critical components and response to catastrophic system failures. To prevent operational problems caused by the lack

  3. Handbook Timing Belts Principles, Calculations, Applications

    CERN Document Server

    Perneder, Raimund

    2012-01-01

    Timing belts offer a broad range of innovative drivetrain solutions; they allow low-backlash operation in robot systems, they are widely used in automated processes and industrial handling involving highly dynamic start-up loads, they are low-maintenance solutions for continuous operation applications, and they can guarantee exact positioning at high operating speeds. Based on his years of professional experience, the author has developed concise guidelines for the dimensioning of timing belt drives and presents proven examples from the fields of power transmission, transport and linear transfer technology. He offers definitive support for dealing with and compensating for adverse operating conditions and belt damage, as well as advice on drive optimization and guidelines for the design of drivetrain details and supporting systems. All market-standard timing belts are listed as brand neutral. Readers will discover an extensive bibliography with information on the various manufacturers and their websites. This...

  4. Energetic electrons in the inner belt in 1968

    Energy Technology Data Exchange (ETDEWEB)

    West, Jr, H I; Buck, R M [California Univ., Livermore (USA). Lawrence Livermore Lab.

    1976-07-01

    Pitch-angle data were obtained by the Lawrence Livermore Laboratory's scanning, magnetic electron spectrometer on OGO 5 during its traversals of the inner belt in 1968. Data from the five lowest-energy channels 79 to 822 keV, were analyzed. The inner-belt electron injection following two storm periods was observed; the first was the mild storm of 11 June and the second the more intense storms of 31 October and 1 November. Comparisons with other data indicate that only a small Starfish residual (at > 1 MeV) still remained in the heart of the inner belt; hence, the results are indicative of the normal inner belt. The data are discussed in terms of current ideas regarding the source and loss of particles in the inner belt.

  5. Operation of radiation monitoring system in radwaste form test facility

    International Nuclear Information System (INIS)

    Ryu, Young Gerl; Kim, Ki Hong; Lee, Jae Won; Kwac, Koung Kil

    1998-08-01

    RWFTF (RadWaste Form Test Facility) must have a secure radiation monitoring system (RMS) because of having a hot-cell capable of handling high radioactive materials. And then in controlled radiation zone, which is hot-cell and its maintenance and operation / control room, area dose rate, radioactivities in air-bone particulates and stack, and surface contamination are monitored continuously. For the effective management such as higher utilization, maintenance and repair, the status of this radiation monitoring system, the operation and characteristics of all kinds of detectors and other parts of composing this system, and signal treatment and its evaluation were described in this technical report. And to obtain the accuracy detection results and its higher confidence level, the procedure such as maintenance, functional check and system calibration were established and appended to help the operation of RMS. (author). 6 tabs., 30 figs

  6. Belt design central to conveyor performance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-15

    While a conveyor system comprises a complex range of components, it is the belt design which ultimately dictates its core performance and reliability. The complexity of modern systems can be seen by the recent contract awarded to ThyssenKrupp Foerdertechnik (TKF) to supply systems for a new steel plant (including a coking plant and a power plant) to be built in Sepetiba Bay in Brazil. Phoenix has designed the Phoenotec system to protect steel cord conveyor belts. Fenner Dunlop has developed Fenaplast belting with nylon or polyester load-bearing warp and weft yarns for good impact resistance. 2 photos.

  7. Geography of the asteroid belt

    Science.gov (United States)

    Zellner, B. H.

    1978-01-01

    The CSM classification serves as the starting point on the geography of the asteroid belt. Raw data on asteroid types are corrected for observational biases (against dark objects, for instance) to derive the distribution of types throughout the belt. Recent work on family members indicates that dynamical families have a true physical relationship, presumably indicating common origin in the breakup of a parent asteroid.

  8. The Lufilian arc and Irumide belt of Zambia: Results of a geotraverse across their intersection

    Science.gov (United States)

    Daly, M. C.; Chakraborty, S. K.; Kasolo, P.; Musiwa, M.; Mumba, P.; Naidu, B.; Namateba, C.; Ngambi, O.; Coward, M. P.

    The Kibaran aged Irumide belt and the Pan African aged Lufilian arc intersect in central Zambia. The Irumide belt is a thrust belt comprising northwesterly verging structures in the north, upright structures in the central zone and southeasterly verging structures in the south. Tectonic transport, as deduced from regional stretching lineations, changes across the central upright zone. To the north of this zone, movement is to the northwest; to the south of the zone, movement is to the southeast. This divergence of structures about a central upright zone is recognized throughout the belt. The Lufilian arc comprises a northeasterly verging thrust belt involving large basement thrust sheets forming domal culimations throughoutregion. These thrusts climb up-section towards the northeast and have telescoped the Katangan stratigraphy. In the Copperbelt area of the arc, the Irumide and Lufilian structures are separated by a marked unconformity. However in the Mubalashi area, south of the Copperbelt, there is aa coincidence of strike of Lufilian and Irumide structures which, in the past, has made their separation difficult. The structures can be separated on the basis of stretching lineations associated with the deformation. In the ENE striking Lufilian structures stretching lineations are seen to be sub-horizontal, suggesting a lateral ramp relationship to the main Lufilian deformation. Similar striking Irumide structures have a steeply plunging down dip lineation. The intersection of these two belts represents the junction of two different tectonic systems operating in Africa during the Late Proterozoic.

  9. Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Zhang, Yanwen [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering

    2016-09-20

    This is the final report of the NEUP project “Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms.” This project started on July 1, 2012 and was successfully completed on June 30, 2016. This report provides an overview of the main achievements, results and findings through the duration of the project. Additional details can be found in the main body of this report and in the individual Quarterly Reports and associated Deliverables of this project, which have been uploaded in PICS-NE. The objective of this research was to advance understanding and develop validated models on the effects of self-radiation from beta and alpha decay on the response of used nuclear fuel and nuclear waste forms during high-temperature interim storage and long-term permanent disposition. To achieve this objective, model used-fuel materials and model waste form materials were identified, fabricated, and studied.

  10. Klippen Belt, Flysch Belt and Inner Western Carpathian Paleogene Basin Relations in the Northern Slovakia by Magnetotelluric Imaging

    Czech Academy of Sciences Publication Activity Database

    Majcin, D.; Bezák, V.; Klanica, Radek; Vozár, J.; Pek, Josef; Bilčík, D.; Telecký, Josef

    (2018) ISSN 0033-4553 Institutional support: RVO:67985530 Keywords : magnetotellurics * Western Carpathians * Klippen Belt * Flysch Belt * Inner Carpathian Paleogene Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 1.591, year: 2016

  11. THE FRAGMENTATION OF MAGNETIZED, MASSIVE STAR-FORMING CORES WITH RADIATIVE FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Andrew T.; McKee, Christopher F. [Department of Physics, University of California, Berkeley, Berkeley, CA 94720 (United States); Cunningham, Andrew J. [Lawrence Livermore National Laboratory, P.O. Box 808, L-23, Livermore, CA 94550 (United States); Klein, Richard I. [Department of Astronomy, University of California, Berkeley, Berkeley, CA 94720 (United States); Krumholz, Mark R., E-mail: atmyers@berkeley.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2013-04-01

    We present a set of three-dimensional, radiation-magnetohydrodynamic calculations of the gravitational collapse of massive (300 M{sub Sun }), star-forming molecular cloud cores. We show that the combined effects of magnetic fields and radiative feedback strongly suppress core fragmentation, leading to the production of single-star systems rather than small clusters. We find that the two processes are efficient at suppressing fragmentation in different regimes, with the feedback most effective in the dense, central region and the magnetic field most effective in more diffuse, outer regions. Thus, the combination of the two is much more effective at suppressing fragmentation than either one considered in isolation. Our work suggests that typical massive cores, which have mass-to-flux ratios of about 2 relative to critical, likely form a single-star system, but that cores with weaker fields may form a small star cluster. This result helps us understand why the observed relationship between the core mass function and the stellar initial mass function holds even for {approx}100 M{sub Sun} cores with many thermal Jeans masses of material. We also demonstrate that a {approx}40 AU Keplerian disk is able to form in our simulations, despite the braking effect caused by the strong magnetic field.

  12. Command and Data Handling Flight Software test framework: A Radiation Belt Storm Probes practice

    Science.gov (United States)

    Hill, T. A.; Reid, W. M.; Wortman, K. A.

    During the Radiation Belt Storm Probes (RBSP) mission, a test framework was developed by the Embedded Applications Group in the Space Department at the Johns Hopkins Applied Physics Laboratory (APL). The test framework is implemented for verification of the Command and Data Handling (C& DH) Flight Software. The RBSP C& DH Flight Software consists of applications developed for use with Goddard Space Flight Center's core Flight Executive (cFE) architecture. The test framework's initial concept originated with tests developed for verification of the Autonomy rules that execute with the Autonomy Engine application of the RBSP C& DH Flight Software. The test framework was adopted and expanded for system and requirements verification of the RBSP C& DH Flight Software. During the evolution of the RBSP C& DH Flight Software test framework design, a set of script conventions and a script library were developed. The script conventions and library eased integration of system and requirements verification tests into a comprehensive automated test suite. The comprehensive test suite is currently being used to verify releases of the RBSP C& DH Flight Software. In addition to providing the details and benefits of the test framework, the discussion will include several lessons learned throughout the verification process of RBSP C& DH Flight Software. Our next mission, Solar Probe Plus (SPP), will use the cFE architecture for the C& DH Flight Software. SPP also plans to use the same ground system as RBSP. Many of the RBSP C& DH Flight Software applications are reusable on the SPP mission, therefore there is potential for test design and test framework reuse for system and requirements verification.

  13. 14 CFR 125.211 - Seat and safety belts.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Seat and safety belts. 125.211 Section 125... Requirements § 125.211 Seat and safety belts. (a) No person may operate an airplane unless there are available... the airplane who is at least 2 years old; and (2) An approved safety belt for separate use by each...

  14. Radiation effects in glass waste forms for high-level waste and plutonium disposal

    International Nuclear Information System (INIS)

    Weber, W.J.; Ewing, R.C.

    1997-01-01

    A key challenge in the permanent disposal of high-level waste (HLW), plutonium residues/scraps, and excess weapons plutonium in glass waste forms is the development of predictive models of long-term performance that are based on a sound scientific understanding of relevant phenomena. Radiation effects from β-decay and α-decay can impact the performance of glasses for HLW and Pu disposition through the interactions of the α-particles, β-particles, recoil nuclei, and γ-rays with the atoms in the glass. Recently, a scientific panel convened under the auspices of the DOE Council on Materials Science to assess the current state of understanding, identify important scientific issues, and recommend directions for research in the area of radiation effects in glasses for HLW and Pu disposition. The overall finding of the panel was that there is a critical lack of systematic understanding on radiation effects in glasses at the atomic, microscopic, and macroscopic levels. The current state of understanding on radiation effects in glass waste forms and critical scientific issues are presented

  15. Belt Conveyor Dynamic Characteristics and Influential Factors

    Directory of Open Access Journals (Sweden)

    Junxia Li

    2018-01-01

    Full Text Available This paper uses the Kelvin-Voigt viscoelastic model to establish the continuous dynamic equations for tail hammer tension belt conveyors. The viscoelastic continuity equations are solved using the generalized coordinate method. We analyze various factors influencing longitudinal vibration of the belt conveyor by simulation and propose a control strategy to limit the vibration. The proposed approach and control strategy were verified by several experimental researches and cases. The proposed approach provides improved accuracy for dynamic design of belt conveyors.

  16. Apparatus for measuring the nuclear radiation of a sequence of radioactive samples

    International Nuclear Information System (INIS)

    Lohr, W.; Berthold, F.; Allington, R.W.

    1977-01-01

    To measure the nuclear radiation of a sequence of radioactive samples, magazines that hold sample containers are removably positioned in shuttles, some of which are driven step-by-step by a toothed belt that engates racks on the sides of the shuttles from one compartment to another through a measuring station, with the shuttles that are being driven by the belt driving other shuttles not in engagement with the belt at that time. In the measuring station, the sample containers are released from the magazines one at a time through openings in their bottoms and lowered by a reciprocable support to a position adjacent to a radiation detector for the measurement, after which they are raised by the support to the magazine and the shuttle is driven one more step to the next position. 8 figures

  17. Policy implications with regard to controllable forms of natural background radiation

    International Nuclear Information System (INIS)

    Heijningen, R.J.J. van; Bartels, J.H.M.; Ackers, J.G.; Hogeweg, B.; Rijn, H.T.U. de; Walle, F.B. de

    1988-04-01

    The RENA (Regulable forms of Natural Background radiation) has started in order to broaden the technical-scientific insights in the domain of the natural background radiation and to continue the SAWORA-study. With regard to the policy implications it has appeared to be desirable to define more detailed the environment-protectional economical and governmental aspects and to consider their mutual relationships in order to prepare a coherent programme which is directed at policy actions to be undertaken as well as at the supporting study needed. (author). 34 refs.; 3 figs.; 11 tabs

  18. Factors controlling the evolution of the Perdido Fold Belt, northwestern Gulf of Mexico, determined from numerical models

    Science.gov (United States)

    Gradmann, Sofie; Beaumont, Christopher; Albertz, Markus

    2009-04-01

    The Perdido Fold Belt (PFB) is a prominent salt-cored deep water structure in the northwestern Gulf of Mexico. It is characterized by symmetric, kink-banded folds of a ˜4.5 km thick prekinematic layer and its vicinity to the extensive Sigsbee Salt Canopy. We use 2-D finite element numerical models to study the evolution of the PFB as a gravity-driven fold belt both in a local context and in the context of the larger-scale passive margin, influenced by adjacent allochthonous salt structures. We show that parameters such as overburden strength, salt geometry, or salt viscosity determine timing, extent, and location of the modeled fold belt. Simplified models of the Gulf of Mexico show that toe-of-slope folding is a viable mechanism to develop diapirs in the deep salt basin and to delay folding of the distal overburden. In this scenario, the PFB likely represents the terminal folding of a much larger, diachronously formed fold belt system.

  19. Laser radiography forming bremsstrahlung radiation to image an object

    Science.gov (United States)

    Perry, Michael D.; Sefcik, Joseph A.

    2004-01-13

    A method of imaging an object by generating laser pulses with a short-pulse, high-power laser. When the laser pulse strikes a conductive target, bremsstrahlung radiation is generated such that hard ballistic high-energy electrons are formed to penetrate an object. A detector on the opposite side of the object detects these electrons. Since laser pulses are used to form the hard x-rays, multiple pulses can be used to image an object in motion, such as an exploding or compressing object, by using time gated detectors. Furthermore, the laser pulses can be directed down different tubes using mirrors and filters so that each laser pulse will image a different portion of the object.

  20. Determining heterogeneous deformation for granitic rocks in the northern thrust in Wadi Mubarak belt, Eastern Desert, Egypt

    Science.gov (United States)

    Kassem, Osama M. K.

    2011-05-01

    Finite-strain was studied in the mylonitic granitic and metasedimentary rocks in the northern thrust in Wadi Mubarak belt to show a relationship to nappe contacts between the old granitic and metavolcano-sedimentary rocks and to shed light on the heterogeneous deformation for the northern thrust in Wadi Mubarak belt. We used the Rf/ϕ and Fry methods on feldspar porphyroclasts, quartz and mafic grains from 7 old granitic and 7 metasedimentary samples in the northern thrust in Wadi Mubarak belt. The finite-strain data shows that old granitic rocks were moderate to highly deformed and axial ratios in the XZ section range from 3.05 to 7.10 for granitic and metasedimentary rocks. The long axes (X) of the finite-strain ellipsoids trend W/WNW and E/ENE in the northern thrust in Wadi Mubarak belt. Furthermore, the short axes (Z) are subvertical associated with a subhorizontal foliation. The value of strain magnitudes mainly constants towards the tectonic contacts between the mylonitic granite and metavolcano-sedimentary rocks. The data indicate oblate strain symmetry (flattening strain) in the mylonitic granite rocks. It is suggested that the accumulation of finite strain was formed before or/and during nappe contacts. The penetrative subhorizontal foliation is subparallel to the tectonic contacts with the overlying nappes and foliation was formed during nappe thrusting.

  1. On-conveyor belt determination of ash in coal

    International Nuclear Information System (INIS)

    Sowerby, B.; Lim, C.S.; Abernethy, D.A.; Liu, Y.; Maguire, P.A.

    1997-01-01

    A laboratory feasibility study has been carried out on new and advanced neutron and gamma-ray analysis systems for the direct on-conveyor belt analysis of ash in coal without the need for sample by-lines. Such an analysis system could deliver the combined advantages of a direct on-conveyor configuration with new and accurate analysis techniques. An industry survey of 18 coal companies carried out in early 1996 indicated that accurate on-belt ash analysis is of the highest priority. Subsequent laboratory work has focussed on the investigation of methods with the potential for improving the accuracy of ash content measurement relative to existing on-belt ash analysers, the most widely-used of which are based on dual energy gamma-ray transmission (DUET), which is sensitive to variations in ash composition. The current work indicates that on-belt neutron/gamma-ray techniques combined with advanced spectral analysis techniques show promise for development into an on-belt ash analysis system which is significantly less sensitive to composition changes than DUET and which analyses a much larger proportion of coal on the belt, thus eliminating some key sources of analysis error

  2. 36 CFR 1004.15 - Safety belts.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Safety belts. 1004.15 Section 1004.15 Parks, Forests, and Public Property PRESIDIO TRUST VEHICLES AND TRAFFIC SAFETY § 1004.15 Safety... administered by the Presidio Trust will have the safety belt or child restraint system properly fastened at all...

  3. NASA's Van Allen Probes RBSP-ECT and NSF's FIREBIRD Data Products and Access to Them: An Insider's Outlook on the Inner and Outer Belts.

    Science.gov (United States)

    Smith, S. S.; Spence, H. E.; Geoffrey, R.; Klumpar, D. M.

    2017-12-01

    In this poster, we present a summary of access to data products Radiation Belt Storm Probes - Energetic Particle Composition, and Thermal plasma (RBSP-ECT) suite of NASA's Van Allen Probes mission. The RBSP-ECT science investigation (http://rbsp-ect.sr.unh.edu) measures comprehensively the near-Earth charged particle environment in order to understand the processes that control the acceleration, global distribution, and variability of radiation belt electrons and ions. RBSP-ECT data products derive from the three instrument elements that comprise the suite, which collectively covers the broad energies that define the source and seed populations, the core radiation belts, and also their highest energy ultra-relativistic extensions. These RBSP-ECT instruments include, from lowest to highest energies: the Helium, Oxygen, Proton, and Electron (HOPE) sensor, the Magnetic Electron and Ion Spectrometer (MagEIS), and the Relativistic Electron and Proton Telescope (REPT). We provide a brief overview of their principles of operation, as well as a description of the Level 1-3 data products that the HOPE, MagEIS, and REPT instruments produce, both separately and together. We provide a summary of how to access these RBSP-ECT data products at our Science Operation Center and Science Data Center (http://www.rbsp-ect.lanl.gov/rbsp_ect.php ) as well as caveats for their use. In addition, we also provide a summary of access to the data products from NSF's CubeSat mission called Focused Investigation of Relativistic Electron Burst: Intensity, Range, and Dynamics (FIREBIRD). The dual CubeSat FIREBIRD missions provide data on energetic radiation belt electrons precipitating into the atmosphere at low altitudes, which complements and is contemporary with RBSP-ECT measurements. We provide a similar summary of how to access these data (https://ssel.montana.edu/firebird2.html). Finally, in the spirit of efficiently and effectively promoting and encouraging new collaborations, we present a

  4. Nano-optical conveyor belt, part I: Theory.

    Science.gov (United States)

    Hansen, Paul; Zheng, Yuxin; Ryan, Jason; Hesselink, Lambertus

    2014-06-11

    We propose a method for peristaltic transport of nanoparticles using the optical force field over a nanostructured surface. Nanostructures may be designed to produce strong near-field hot spots when illuminated. The hot spots function as optical traps, separately addressable by their resonant wavelengths and polarizations. By activating closely packed traps sequentially, nanoparticles may be handed off between adjacent traps in a peristaltic fashion. A linear repeating structure of three separately addressable traps forms a "nano-optical conveyor belt"; a unit cell with four separately addressable traps permits controlled peristaltic transport in the plane. Using specifically designed activation sequences allows particle sorting.

  5. Mesin Pemindah Bahan : Studi Prestasi Belt Conveyor Hubungannya Dengan Ukuran Butiran Dan Tingkat Kelembaban Bahan Curah ( Batubara ), Panjang Belt 7,6 Meter ; Lebar 32 Centimeter

    OpenAIRE

    Nugroho, Rio

    2011-01-01

    Banyak industri yang menggunakan belt conveyor sebagai alat transportasi material, sebab punya banyak keuntungan. Sehingga, untuk meningkatkan performansi belt conveyor tersebut perlu dilakukan pengidentifikasian prestasi belt conveyor. Identifikasi dilakukan dengan material transfer batubara. Yang akan diamati adalah pengaruh ukuran butiran material dan tingkat kelembaban terhadap kapasitas transfer belt conveyor. Dari pengujian didapatkan kapasitas transfer terbesar adalah material batubar...

  6. Paleomagnetic analysis of curved thrust belts reproduced by physical models

    Science.gov (United States)

    Costa, Elisabetta; Speranza, Fabio

    2003-12-01

    This paper presents a new methodology for studying the evolution of curved mountain belts by means of paleomagnetic analyses performed on analogue models. Eleven models were designed aimed at reproducing various tectonic settings in thin-skinned tectonics. Our models analyze in particular those features reported in the literature as possible causes for peculiar rotational patterns in the outermost as well as in the more internal fronts. In all the models the sedimentary cover was reproduced by frictional low-cohesion materials (sand and glass micro-beads), which detached either on frictional or on viscous layers. These latter were reproduced in the models by silicone. The sand forming the models has been previously mixed with magnetite-dominated powder. Before deformation, the models were magnetized by means of two permanent magnets generating within each model a quasi-linear magnetic field of intensity variable between 20 and 100 mT. After deformation, the models were cut into closely spaced vertical sections and sampled by means of 1×1-cm Plexiglas cylinders at several locations along curved fronts. Care was taken to collect paleomagnetic samples only within virtually undeformed thrust sheets, avoiding zones affected by pervasive shear. Afterwards, the natural remanent magnetization of these samples was measured, and alternating field demagnetization was used to isolate the principal components. The characteristic components of magnetization isolated were used to estimate the vertical-axis rotations occurring during model deformation. We find that indenters pushing into deforming belts from behind form non-rotational curved outer fronts. The more internal fronts show oroclinal-type rotations of a smaller magnitude than that expected for a perfect orocline. Lateral symmetrical obstacles in the foreland colliding with forward propagating belts produce non-rotational outer curved fronts as well, whereas in between and inside the obstacles a perfect orocline forms

  7. Wearing an abdominal belt increases diastolic blood pressure.

    Science.gov (United States)

    Rafacz, W; McGill, S M

    1996-09-01

    The purpose of this study was to determine the effect of wearing an abdominal belt on blood pressure (systolic and diastolic) and heart rate during a variety of tasks. The belt was typical of the elastic type with suspenders and Velcro tabs for cinching the belt snug. The tasks performed included sitting at rest, sitting with the torso inclined forward at 45 degrees, standing with the torso inclined forward at 45 degrees (with and without holding an 11-kg weight), a trunk axial rotation task, and squat lifting. Blood pressure was monitored noninvasively with a FINAPRES blood pressure monitor. Twenty healthy men performed each task with and without the abdominal belt. Although no significant increases in mean systolic blood pressure or heart rate were found, there was a significant increase in diastolic blood pressure in all conditions. All people considering wearing an abdominal belt should also consider the risks and liability associated with the additional cardiovascular load, particularly heart attack and stroke.

  8. Study on a metal pushing V-belt type CVT. Numerical analysis for belt tension distribution in brands of a ring at steady state; Kinzoku V belt wo mochiita CVT ni kansuru kenkyu. Sekiso belt (steel ring) no dendo kiko kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, T; Kuwabara, S [Doshisha University, Kyoto (Japan); Kanehara, S [Honda Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    The power transmitting mechanisms for laminated belts were studied to analyze belt tension in each band of the ring of metal V-belts. A numerical model consisting of linear springs and frictional elements was proposed. The present model was experimentally proved. It is revealed based on the numerical results that each band shares the ring tension equally when the coefficients of friction for bands and a pulley are the same while the first band must support more when the coefficients of friction between two bands are lower than that between a saddle surface of the block and the inner band. 4 refs., 9 figs.

  9. An Effective Belt Conveyor for Underground Ore Transportation Systems

    Science.gov (United States)

    Krol, Robert; Kawalec, Witold; Gladysiewicz, Lech

    2017-12-01

    Raw material transportation generates a substantial share of costs in the mining industry. Mining companies are therefore determined to improve the effectiveness of their transportation system, focusing on solutions that increase both its energy efficiency and reliability while keeping maintenance costs low. In the underground copper ore operations in Poland’s KGHM mines vast and complex belt conveyor systems have been used for horizontal haulage of the run-of-mine ore from mining departments to shafts. Basing upon a long-time experience in the field of analysing, testing, designing and computing of belt conveyor equipment with regard to specific operational conditions, the improvements to the standard design of an underground belt conveyor for ore transportation have been proposed. As the key elements of a belt conveyor, the energy-efficient conveyor belt and optimised carrying idlers have been developed for the new generation of underground conveyors. The proposed solutions were tested individually on the specially constructed test stands in the laboratory and in the experimental belt conveyor that was built up with the use of prototype parts and commissioned for the regular ore haulage in a mining department in the KGHM underground mine “Lubin”. Its work was monitored and the recorded operational parameters (loadings, stresses and strains, energy dissipation, belt tracking) were compared with those previously collected on a reference (standard) conveyor. These in-situ measurements have proved that the proposed solutions will return with significant energy savings and lower maintenance costs. Calculations made on the basis of measurement results in the specialized belt conveyor designing software allow to estimate the possible savings if the modernized conveyors supersede the standard ones in a large belt conveying system.

  10. The effects of radiation on intermediate-level waste forms. Task 3 characterization of radioactive waste forms a series of final reports (1985-89) no. 10

    International Nuclear Information System (INIS)

    Wilding, C.R.; Phillips, D.C.; Burnay, S.G.; Spindler, W.E.; Lyon, C.E.; Winter, J.A.

    1991-01-01

    The purpose of this programme was to determine the effects of radiation on the properties of intermediate-level waste forms relevant to their storage and disposal. It had two overall aims: to provide immediate data on the effect of radiation on important European ILW waste forms through accelerated laboratory tests; and to develop an understanding of the degradation processes so that long-term, low dose rate effects can be predicted with confidence from short-term, high dose rate experiments. The programme included cement waste forms containing inorganic wastes, organic matrix waste forms, and cement waste forms containing a substantial component of organic waste. Irradiations were carried out by external gamma sources and by the incorporation of alpha emitters, such as 238 Pu. Irradiated materials included matrix materials, simulated waste forms and real waste forms. 2 figs.; 3 tabs.; 8 refs

  11. Modeling and energy efficiency optimization of belt conveyors

    International Nuclear Information System (INIS)

    Zhang, Shirong; Xia, Xiaohua

    2011-01-01

    Highlights: → We take optimization approach to improve operation efficiency of belt conveyors. → An analytical energy model, originating from ISO 5048, is proposed. → Then an off-line and an on-line parameter estimation schemes are investigated. → In a case study, six optimization problems are formulated with solutions in simulation. - Abstract: The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment and operation levels. Specifically, variable speed control, an equipment level intervention, is recommended to improve operation efficiency of belt conveyors. However, the current implementations mostly focus on lower level control loops without operational considerations at the system level. This paper intends to take a model based optimization approach to improve the efficiency of belt conveyors at the operational level. An analytical energy model, originating from ISO 5048, is firstly proposed, which lumps all the parameters into four coefficients. Subsequently, both an off-line and an on-line parameter estimation schemes are applied to identify the new energy model, respectively. Simulation results are presented for the estimates of the four coefficients. Finally, optimization is done to achieve the best operation efficiency of belt conveyors under various constraints. Six optimization problems of a typical belt conveyor system are formulated, respectively, with solutions in simulation for a case study.

  12. "Abomination"--life as a Bible belt gay.

    Science.gov (United States)

    Barton, Bernadette

    2010-01-01

    Drawing on observation, autoethnography, and audio-taped interviews, this article explores the religious backgrounds and experiences of Bible Belt gays. In the Bible Belt, Christianity is not confined to Sunday worship. Christian crosses, messages, paraphernalia, music, news, and attitudes permeate everyday settings. Consequently, Christian fundamentalist dogma about homosexuality-that homosexuals are bad, diseased, perverse, sinful, other, and inferior-is cumulatively bolstered within a variety of other social institutions and environments in the Bible Belt. Of the 46 lesbians and gay men interviewed for this study (age 18-74 years), most describe living through spirit-crushing experiences of isolation, abuse, and self-loathing. This article argues that the geographic region of the Bible Belt intersects with religious-based homophobia. Informants explained that negative social attitudes about homosexuality caused a range of harmful consequences in their lives including the fear of going to hell, depression, low self-esteem, and feelings of worthlessness.

  13. Earthquake activity along the Himalayan orogenic belt

    Science.gov (United States)

    Bai, L.; Mori, J. J.

    2017-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  14. Gravity inferred subsurface structure of Gadwal Schist belt, Andhra

    Indian Academy of Sciences (India)

    Detailed gravity data collected across the Gadwal schist belt in the state of Andhra Pradesh show an 8.4 mgal residual gravity anomaly associated with meta-sediments/volcanics of the linear NNW-SSE trending schist belt that shows metamorphism from green schist to amphibolite facies. This schist belt is flanked on either ...

  15. Using haptic feedback to increase seat belt use : traffic tech.

    Science.gov (United States)

    2011-07-01

    The legacy of research on increasing seat belt use has : focused on enactment of seat belt legislation, public education, : high-visibility police enforcement, and seat belt : reminder systems. Several behavioral programs have : produced large, susta...

  16. Average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit

    Directory of Open Access Journals (Sweden)

    R. Kataoka

    2008-06-01

    Full Text Available We report average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit (GEO. It is found that seven of top ten extreme events at GEO during solar cycle 23 are associated with the magnetosphere inflation during the storm recovery phase as caused by the large-scale solar wind structure of very low dynamic pressure (<1.0 nPa during rapid speed decrease from very high (>650 km/s to typical (400–500 km/s in a few days. For the seven events, the solar wind parameters, geomagnetic activity indices, and relativistic electron flux and geomagnetic field at GEO are superposed at the local noon period of GOES satellites to investigate the physical cause. The average profiles support the "double inflation" mechanism that the rarefaction of the solar wind and subsequent magnetosphere inflation are one of the best conditions to produce the extreme flux enhancement at GEO because of the excellent magnetic confinement of relativistic electrons by reducing the drift loss of trapped electrons at dayside magnetopause.

  17. Seat belt injuries and sigmoid colon trauma.

    OpenAIRE

    Eltahir, E M; Hamilton, D

    1997-01-01

    Colonic seat belt injuries are rare but carry higher mortality rates than small bowel injuries. The case of a 44 year old man is described who had severe sigmoid colon compression injury from his seat belt a few days after a road traffic accident.

  18. A comparison of muscle activation between back squats and belt squats.

    Science.gov (United States)

    Evans, Thomas W; McLester, Cherilyn N; Howard, Jonathan H; McLester, John R; Calloway, Jimmy P

    2017-06-08

    A machine belt squat is a piece of equipment designed to allow the performance of squats while loading weight on the lifter's hips using a belt. The purpose of this investigation was to determine if belt squats differ from back squats in activation of the primary movers, and to determine the predictive capabilities of back squat load, training status, and anthropometric data on belt squat load. Thirty-one participants (16 males and 15 females) completed anthropometric measurements, a demographic questionnaire, a familiarization visit, and two testing visits, completing a 5 repetition maximum test for back squat and belt squat. Surface electromyography was used to measure muscle activation for the left and right vastus medialis (VMO), vastus lateralis (VLO), rectus femoris (RF), and gluteus maximus (GM). Comparison of muscle activation between the two exercises showed significant differences in the left GM (back squat: 0.84 ± 0.45, belt squat: 0.69 ± 0.22, p=0.015) and right GM (back squat: 0.86 ± 0.45, belt squat: 0.71 ± 0.29, p=0.004). Regression analysis computed significant prediction equations for belt squat load for general population, males, females, and advanced lifters. Overall, results indicate that belt squats may significantly differ in GM activation from back squats. Back squat load, as well as other variables, may be effective in accurately estimating appropriate belt squat load. These findings may help to more appropriately program for training with machine belt squats as a back squat alternative.

  19. PRESENTDAY STRESS STATE OF THE SHANXI TECTONIC BELT

    Directory of Open Access Journals (Sweden)

    Wang Kaiying

    2012-01-01

    Full Text Available The Shanxi tectonic belt is a historically earthquakeabundant area. For the majority of strong earthquakes in this area, the distribution of earthquake foci was controlled by the N–S oriented local structures on the tectonic belt. Studies of the present stress state of the Shanxi tectonic belt can contribute to the understanding of the relationship between strong earthquakes’ occurrence and their structural distribution and also facilitate assessments of regional seismic danger and determination of the regions wherein strong earthquakes may occur in future. Using the Cataclastic Analysis Method (CAM, we performed stress inversion based on the focal mechanism data of earthquakes which took place in the Shanxi tectonic belt from 1967 to 2010. Our results show that orientations of the maximum principal compressive stress axis of the Shanxi tectonic belt might have been variable before and after the 2001 Kunlun MS=8.1 strong earthquake, with two different superior trends of the NW–SE and NE–SW orientation in different periods. When the maximum principal compressive stress axis is oriented in the NE–SW direction, the pattern of the space distribution of the seismic events in the Shanxi tectonic belt shows a trend of their concentration in the N–S oriented tectonic segments. At the same time, the stress state is registered as horizontal shearing and horizontal extension in the N–S and NE–SW oriented local segments in turn. When the maximum principal compressive stress axis is NW–SE oriented, the stress state of the N–S and NE–SW oriented tectonic segments is primarily registered as horizontal shearing. Estimations of plunges of stress axes show that seismicity in the Shanxi belt  corresponds primarily to the activity of lowangle faults, and highangle stress sites are located in the NE–SW oriented extensional tectonic segments of the Shanxi belt. This indicates that the stress change of the Shanxi belt is

  20. Analysis of Fault Spacing in Thrust-Belt Wedges Using Numerical Modeling

    Science.gov (United States)

    Regensburger, P. V.; Ito, G.

    2017-12-01

    Numerical modeling is invaluable in studying the mechanical processes governing the evolution of geologic features such as thrust-belt wedges. The mechanisms controlling thrust fault spacing in wedges is not well understood. Our numerical model treats the thrust belt as a visco-elastic-plastic continuum and uses a finite-difference, marker-in-cell method to solve for conservation of mass and momentum. From these conservation laws, stress is calculated and Byerlee's law is used to determine the shear stress required for a fault to form. Each model consists of a layer of crust, initially 3-km-thick, carried on top of a basal décollement, which moves at a constant speed towards a rigid backstop. A series of models were run with varied material properties, focusing on the angle of basal friction at the décollement, the angle of friction within the crust, and the cohesion of the crust. We investigate how these properties affected the spacing between thrusts that have the most time-integrated history of slip and therefore have the greatest effect on the large-scale undulations in surface topography. The surface position of these faults, which extend through most of the crustal layer, are identifiable as local maxima in positive curvature of surface topography. Tracking the temporal evolution of faults, we find that thrust blocks are widest when they first form at the front of the wedge and then they tend to contract over time as more crustal material is carried to the wedge. Within each model, thrust blocks form with similar initial widths, but individual thrust blocks develop differently and may approach an asymptotic width over time. The median of thrust block widths across the whole wedge tends to decrease with time. Median fault spacing shows a positive correlation with both wedge cohesion and internal friction. In contrast, median fault spacing exhibits a negative correlation at small angles of basal friction (laws that can be used to predict fault spacing in

  1. Seat Belt Use Intention among Brazilian Undergraduate Students

    OpenAIRE

    TORQUATO, RENATA; FRANCO, CLÁUDIO M. A; BIANCHI, ALESSANDRA

    2012-01-01

    The objectives of this study were to explore self-reported seat belt use and group differences in different scenarios in a Brazilian sample and research the variables related to it. 120 college students answered a questionnaire with variables from the theory of planned behavior in order to evaluate the intention of seat belt use among car occupants. Results indicated that attitude and intention were the variables that most contributed to explaining seat belt use. Intention was highly correlat...

  2. Asteroid Family Associations of Main-Belt Comets

    Science.gov (United States)

    Hsieh, Henry H.; Novakovic, Bojan; Kim, Yoonyoung; Brasser, Ramon

    2016-10-01

    We present a population-level analysis of the asteroid family associations of known main-belt comets or main-belt comet candidates (which, to date, have largely just been analyzed on individual bases as they have been discovered). In addition to family associations that have already been reported in the literature, we have identified dynamical relationships between 324P/La Sagra and the Alauda family, P/2015 X6 (PANSTARRS) and the Aeolia family, and P/2016 G1 (PANSTARRS) and the Adeona family. We will discuss the overall implications of these family associations, particularly as they pertain to the hypothesis that members of primitive asteroid family members may be more susceptible to producing observable sublimation-driven dust emission activity, and thus becoming main-belt comets. We will also discuss the significance of other dynamical and physical properties of a family or sub-family as they relate to the likelihood of that family containing one or more currently active main-belt comets.

  3. Energy-saving belt conveyors installed in Polish collieries

    Directory of Open Access Journals (Sweden)

    Jerzy ANTONIAK

    2010-01-01

    Full Text Available An important problem of reducing energy consumption and dioxide emissions in the stage of construction and operation of mine belt conveyors is connected with their broad use in the industry. However, this notion is related to a reduction of electric energy consumption for conveyor drive and for production of conveyor components and assemblies (belts, rollers, load-bearing structure etc.. An essential role is played by an increased life of belt conveyors assemblies and components, principally belts. A reduced electric energy consumption results in a decreased CO2 emissions, e.g. hard coal – fired power station issues 0.28 kg CO2 per production of 1 kWh, in to answer production of 1 t steel accounts for 3.2 t CO2 emissions. The subject-matter presented in the paper concerning energy-saving in the horizontally and inclined mine belt conveyors installed in a Polish colliery – Anna, Jankowice and Marcel, has a big economic significance and it is important from the point of view of environmental protection.

  4. Geochemical evidence for Paleozoic crustal growth and tectonic conversion in the Northern Beishan Orogenic Belt, southern Central Asian Orogenic Belt

    Science.gov (United States)

    Yuan, Yu; Zong, Keqing; He, Zhenyu; Klemd, Reiner; Jiang, Hongying; Zhang, Wen; Liu, Yongsheng; Hu, Zhaochu; Zhang, Zeming

    2018-03-01

    The Beishan Orogenic Belt is located in the central southernmost part of the Central Asian Orogenic Belt (CAOB), which plays a key role in understanding the formation and evolution of the CAOB. Granitoids are the documents of crustal and tectonic evolution in orogenic belts. However, little is known regarding the petrogenesis and geodynamic setting of the widely distributed Paleozoic granitoids in the Northern Beishan Orogenic Belt (NBOB). The present study reveals significant differences concerning the petrogenesis and tectonic setting of early and late Paleozoic granitoids from the NBOB. The early Paleozoic granitoids from the 446-430 Ma Hongliuxia granite complex of the Mazongshan unit and the 466-428 Ma Shibanjing complex of the Hanshan unit show classic I-type granite affinities as revealed by the relative enrichment of LILEs and LREEs, pronounced depletions of Nb, Ta and Ti and the abundant presence of hornblende. Furthermore, they are characterized by strongly variable zircon εHf(t) values between - 16.7 and + 12.8 and evolved plagioclase Sr isotopic compositions of 0.7145-0.7253, indicating the involvement of both juvenile and ancient continental crust in the magma source. Thus, we propose that the early Paleozoic granitoids in the NBOB were generated in a subduction-related continental arc setting. In contrast, the late Paleozoic 330-281 Ma granitoids from the Shuangjingzi complex of the Hanshan unit exhibit positive zircon εHf(t) values between + 5.8 and + 13.2 and relatively depleted plagioclase Sr isotopic compositions of 0.7037-0.7072, indicating that they were mainly formed by remelting of juvenile crust. Thus, an intra-plate extensional setting is proposed to have occurred during formation of the late Paleozoic granitoids. Therefore, between the early and late Paleozoic, the magma sources of the NBOB granitoids converted from the reworking of both juvenile and ancient crusts during a subduction-induced compressional setting to the remelting of

  5. Regional magnetic anomalies, crustal strength, and the location of the northern Cordilleran fold-and-thrust belt

    Science.gov (United States)

    Saltus, R.W.; Hudson, T.L.

    2007-01-01

    The northern Cordilleran fold-and-thrust belt in Canada and Alaska is at the boundary between the broad continental margin mobile belt and the stable North American craton. The fold-and-thrust belt is marked by several significant changes in geometry: cratonward extensions in the central Yukon Territory and northeastern Alaska are separated by marginward re-entrants. These geometric features of the Cordilleran mobile belt are controlled by relations between lithospheric strength and compressional tectonic forces developed along the continental margin. Regional magnetic anomalies indicate deep thermal and compositional characteristics that contribute to variations in crustal strength. Our detailed analysis of one such anomaly, the North Slope deep magnetic high, helps to explain the geometry of the fold-and-thrust front in northern Alaska. This large magnetic anomaly is inferred to reflect voluminous mafic magmatism in an old (Devonian?) extensional domain. The presence of massive amounts of malic material in the lower crust implies geochemical depletion of the underlying upper mantle, which serves to strengthen the lithosphere against thermal erosion by upper mantle convection. We infer that deep-source magnetic highs are an important indicator of strong lower crust and upper mantle. This stronger lithosphere forms buttresses that play an important role in the structural development of the northern Cordilleran fold-and-thrust belt. ?? 2007 The Geological Society of America.

  6. Preliminary analysis of accelerated space flight ionizing radiation testing

    Science.gov (United States)

    Wilson, J. W.; Stock, L. V.; Carter, D. J.; Chang, C. K.

    1982-01-01

    A preliminary analysis shows that radiation dose equivalent to 30 years in the geosynchronous environment can be accumulated in a typical composite material exposed to space for 2 years or less onboard a spacecraft orbiting from perigee of 300 km out to the peak of the inner electron belt (approximately 2750 km). Future work to determine spacecraft orbits better tailored to materials accelerated testing is indicated. It is predicted that a range of 10 to the 9th power to 10 to the 10th power rads would be accumulated in 3-6 mil thick epoxy/graphite exposed by a test spacecraft orbiting in the inner electron belt. This dose is equivalent to the accumulated dose that this material would be expected to have after 30 years in a geosynchronous orbit. It is anticipated that material specimens would be brought back to Earth after 2 years in the radiation environment so that space radiation effects on materials could be analyzed by laboratory methods.

  7. SMALL MAIN-BELT ASTEROID SPECTROSCOPIC SURVEY, PHASE II

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains visible-wavelength (0.435-0.925 micron) spectra for 1341 main-belt asteroids observed during the second phase of the Small Main-belt Asteroid...

  8. Jupiter radiation belt models (July 1974)

    International Nuclear Information System (INIS)

    Divine, N.

    1974-01-01

    Flux profiles which were derived from data returned by Pioneer 10 during Jupiter encounter, form the basis for a new set of numerical models for the energy spectra of electrons and protons in Jupiter's inner magnetosphere

  9. Characteristic of the radiation field in low earth orbit and in deep space

    International Nuclear Information System (INIS)

    Reitz, Guenther

    2008-01-01

    The radiation exposure in space by cosmic radiation can be reduced through careful mission planning and constructive measures as example the provision of a radiation shelter, but it cannot be completely avoided. The reason for that are the extreme high energies of particles in this field and the herewith connected high penetration depth in matter. For missions outside the magnetosphere ionizing radiation is recognized as the key factor through its impact on crew health and performance. In absence of sporadic solar particle events the radiation exposure in Low Earth orbit (LEO) inside Spacecraft is determined by the galactic cosmic radiation (protons and heavier ions) and by the protons inside the South Atlantic Anomaly (SAA), an area where the radiation belt comes closer to the earth surface due to a displacement of the magnetic dipole axes from the Earth's center. In addition there is an albedo source of neutrons produced as interaction products of the primary galactic particles with the atoms of the earth atmosphere. Outside the spacecraft the dose is dominated by the electrons of the horns of the radiation belt located at about 60 latitude in Polar Regions. The radiation field has spatial and temporal variations in dependence of the Earth magnetic field and the solar cycle. The complexity of the radiation field inside a spacecraft is further increased through the interaction of the high energy components with the spacecraft shielding material and with the body of the astronauts. In interplanetary missions the radiation belt will be crossed in a couple of minutes and therefore its contribution to their radiation exposure is quite small, but subsequently the protection by the Earth magnetic field is lost, leaving only shielding measures as exposure reduction means. The report intends to describe the radiation field in space, the interaction of the particles with the magnetic field and shielding material and give some numbers on the radiation exposure in low earth

  10. Characteristic of the radiation field in low Earth orbit and in deep space.

    Science.gov (United States)

    Reitz, Guenther

    2008-01-01

    The radiation exposure in space by cosmic radiation can be reduced through careful mission planning and constructive measures as example the provision of a radiation shelter, but it cannot be completely avoided. The reason for that are the extreme high energies of particles in this field and the herewith connected high penetration depth in matter. For missions outside the magnetosphere ionizing radiation is recognized as the key factor through its impact on crew health and performance. In absence of sporadic solar particle events the radiation exposure in Low Earth orbit (LEO) inside Spacecraft is determined by the galactic cosmic radiation (protons and heavier ions) and by the protons inside the South Atlantic Anomaly (SAA), an area where the radiation belt comes closer to the earth surface due to a displacement of the magnetic dipole axes from the Earth's center. In addition there is an albedo source of neutrons produced as interaction products of the primary galactic particles with the atoms of the earth atmosphere. Outside the spacecraft the dose is dominated by the electrons of the horns of the radiation belt located at about 60" latitude in Polar Regions. The radiation field has spatial and temporal variations in dependence of the Earth magnetic field and the solar cycle. The complexity of the radiation field inside a spacecraft is further increased through the interaction of the high energy components with the spacecraft shielding material and with the body of the astronauts. In interplanetary missions the radiation belt will be crossed in a couple of minutes and therefore its contribution to their radiation exposure is quite small, but subsequently the protection by the Earth magnetic field is lost, leaving only shielding measures as exposure reduction means. The report intends to describe the radiation field in space, the interaction of the particles with the magnetic field and shielding material and give some numbers on the radiation exposure in low earth

  11. Kanfenggou UHP Metamorphic Fragment in Eastern Qinling Orogen and Its Relationship to Dabie-Sulu UHP and HP Metamorphic Belts, Central China

    Institute of Scientific and Technical Information of China (English)

    Suo Shutian; Zhong Zengqiu; Zhou Hanwen; You Zhendong

    2003-01-01

    In the Central Orogenic Belt, China, two UHP metamorphic belts are discriminated mainly based on a detailed structural analysis of the Kanfenggou UHP metamorphic fragment exposed in the eastern Qinling orogen, and together with previous regional structural, petrological and geochronological data at the scale of the orogenic domain. The first one corresponds to the South Altun-North QaidamNorth Qinling UHP metamorphic belt. The other is the Dabie-Sulu UHP and HP metamorphic belts. The two UHP metamorphic belts are separated by a series of tectonic slices composed by the Qinling rock group, Danfeng rock group and Liuling or Foziling rock group etc. respectively, and are different in age of the peak UHP metamorphism and geodynamic implications for continental deep subduction and collision. Regional field and petrological relationships suggest that the Kanfenggou UHP metamorphic fragment that contains a large volume of the coesite- and microdiamond-bearing eclogite lenses is compatible with the structures recognized in the South Altun and North Qaidam UHP metamorphic fragments exposed in the western part of China, thereby forming a large UHP metamorphic belt up to 1 000 km long along the orogen strike. This UHP metamorphic belt represents an intercontinental deep subduction and collision belt between the Yangtze and Sino-Korean cratons, occurred during the Paleozoic. On the other hand, the well-constrained Dabie-Sulu UHP and HP metamorphic belts occurred mainly during Triassic time (250-220 Ma), and were produced by the intrucontinental deep subduction and collision within the Yangtze craton. The Kanfenggou UHP metamorphic fragment does not appear to link with the Dabie-Sulu UHP and HP metamorphic belts along the orogen. There is no reason to assume the two UHP metamorphic belts us a single giant deep subduction and collision zone in the Central Orogenic Belt situated between the Yangtze and Sino-Korean cratons. Therefore, any dynamic model for the orogen must account

  12. Continuing scearch for a new type charging belt

    International Nuclear Information System (INIS)

    Jones, N.L.

    1995-01-01

    The EN Tandem accelerator at Oak Ridge National Laboratory (ORNL) operates to support a varied program of atomic physics research. As such, the demands on the accelerator often require a range of operation from ∼0.38 to 7.0 MV on the terminal, with low ripple and long term steady state operation. The standard charging belts obtained from the manufacture have generally given acceptable performance, but it is reasonable that modem manufacturing techniques and materials could increase belt lifetimes and improve accelerator performance, particularly voltage ripple. A new belt of significantly different construction from that of the conventional belts was specified, purchased, and installed in 1993. After 2800 hours of use at voltages from 0.38 to 5.8 MV, it was removed from the accelerator in early August 1995

  13. Transfer points of belt conveyors operating with unfavorable bulk

    Energy Technology Data Exchange (ETDEWEB)

    Goehring, H [Technische Universitaet, Dresden (German Democratic Republic)

    1989-06-01

    Describes design of belt conveyor chutes that transfer bulk of surface mines from one conveyor to another. Conveyor belt velocity is a significant parameter. Unfavorable chute design may lead to bulk flow congestion, bulk velocity losses etc. The bulk flow process is analyzed, bulk flow velocities, belt inclinations and bulk feeding from 2 conveyors into one chute are taken into account. Conventional chutes have parabolic belt impact walls. An improved version with divided impact walls is proposed that maintains a relatively high bulk velocity, reduces friction at chute walls and decreases wear and dirt build-up. Design of the improved chute is explained. It is built to adapt to existing structures without major modifications. The angle between 2 belt conveyors can be up to 90 degrees, the best bulk transfer is noted at conveyor angles below 60 degrees. Various graphs and schemes are provided. 6 refs.

  14. Non-linear belt transient analysis. A hybrid model for numerical belt conveyor simulation

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, A. [Scientific Solutions, Inc., Aurora, CO (United States)

    2008-07-01

    Frictional and rolling losses along a running conveyor are discussed due to their important influence on wave propagation during starting and stopping. Hybrid friction models allow belt rubber losses and material flexing to be included in the initial tension calculations prior to any dynamic analysis. Once running tensions are defined, a numerical integration method using non-linear stiffness gradients is used to generate transient forces during starting and stopping. A modified Euler integration technique is used to simulate the entire starting and stopping cycle in less than 0.1 seconds. The procedure enables a faster scrutiny of unforeseen conveyor design issues such as low belt tension zones and high forces at drives. (orig.)

  15. Selection of Belt Conveyors Drive Units Number by Technical –Economical Analysis

    OpenAIRE

    Despodov, Zoran; Mijalkovski, Stojance; Adjiski, Vancho; Panov, Zoran

    2014-01-01

    In this paper is presented a methodology for selection of belt conveyor drive units number by technical - economical analysis of their parameters. Belt Conveyors with follow drive arrangement will be considered: one, two, three and four drive units. In the technical - economical analysis are including: Tension forces, Power of belt conveyor, Costs for belt, Costs for power and reducers, Total cost for belt conveyor system.

  16. Triple junction orogeny: tectonic evolution of the Pan-African Northern Damara Belt, Namibia

    Science.gov (United States)

    Lehmann, Jérémie; Saalmann, Kerstin; Naydenov, Kalin V.; Milani, Lorenzo; Charlesworth, Eugene G.; Kinnaird, Judith A.; Frei, Dirk; Kramers, Jan D.; Zwingmann, Horst

    2014-05-01

    front in weak metasedimentary rocks during SE-directed indentation of a rigid Paleoproterozoic basement. In the central and southern parts of the Northern Damara Belt, D3 is mostly expressed by km-scale local Type I fold interference patterns formed by the refolding of D2 upright synclines as well as bending around a steep axis of the D2 refolded folds and steep S2 multilayer. In the western part however, where the two orthogonal trends of the Damara and Kaoko-Gariep Belts meet, D3 is described in literature as sinistral shearing along reactivated steep S2 planes that is associated with steep-hinge folds with steep NE-striking axial planes. Our new ages indicate that D3 lasted from ~513 Ma to ~460 Ma throughout the entire Northern Damara Belt. These results document for the first time a regional-scale early Pan-African N-S shortening event of uncertain geotectonic significance. They furthermore indicate that two competing orthogonal collisional systems have contributed in resolving instabilities at the triple orogenic junction over a period in the order of ~100 m.y. and could therefore account for the assembly of the three cratons. The E-W convergence was preponderant in strength and pre-dates the NW-SE one, the latter being associated with localized sinistral shearing along the Kaoko Belt interface in the westernmost Northern Damara Belt.

  17. Green operations of belt conveyors by means of speed control

    NARCIS (Netherlands)

    He, D.; Pang, Y.; Lodewijks, G.

    2017-01-01

    Belt conveyors can be partially loaded due to the variation of bulk material flow loaded onto the conveyor. Speed control attempts to reduce the belt conveyor energy consumption and to enable the green operations of belt conveyors. Current research of speed control rarely takes the conveyor dynamics

  18. Radiation effects in glass and glass-ceramic waste forms for the immobilization of CANDU UO2 fuel reprocessing waste

    International Nuclear Information System (INIS)

    Tait, J.C.

    1993-05-01

    AECL has investigated three waste forms for the immobilization of high-level liquid wastes that would arise if used CANDU fuels were reprocessed at some time in the future to remove fissile materials for the fabrication of new power reactor fuel. These waste forms are borosilicate glasses, aluminosilicate glasses and titanosilicate glass-ceramics. This report discusses the potential effects of alpha, beta and gamma radiation on the releases of radionuclides from these waste forms as a result of aqueous corrosion by groundwaters that would be present in an underground waste disposal vault. The report discusses solid-state damage caused by radiation-induced atomic displacements in the waste forms as well as irradiation of groundwater solutions (radiolysis), and their potential effects on waste-form corrosion and radionuclide release. The current literature on radiation effects on borosilicate glasses and in ceramics is briefly reviewed, as are potential radiation effects on specialized waste forms for the immobilization of 129 I, 85 Kr and 14 C. (author). 104 refs., 9 tabs., 5 figs

  19. MACRO MODEL OF SEAT BELT USE BY CAR DRIVERS AND PASSENGERS

    Directory of Open Access Journals (Sweden)

    Kazimierz JAMROZ

    2013-12-01

    Full Text Available The article presents some problems of seat belt use by car drivers and passengers. It looks in particular at seat belt use and effectiveness in selected countries. Next, factors of seat belt use are presented and methodology of model development. A macro model of seat belt use is presented based on data from around fifty countries from different continents.

  20. Surviving radiation in space

    International Nuclear Information System (INIS)

    Coates, A.

    1990-01-01

    Radiation damage to communications, navigation and weather satellites is common and caused by high energy charged particles, mainly protons and electrons, from the Earth's Van Allen belts. The combined release and radiation effects satellite (CRRES), recently launched by the United States, will allow scientists to create far more realistic computer models of satellite radiation damage than has been the case to date. It is hoped that information thus received will allow satellite builders to protect these essential structures in future. The second aim of the CCRES mission is to study the effect of releasing artificially charged particles into the magnetosphere and the ionosphere. Spacecraft design engineers will benefit from the results produced by the CCRES mission. (UK)

  1. Generation of Nonlinear Electric Field Bursts in the Outer Radiation Belt through Electrons Trapping by Oblique Whistler Waves

    Science.gov (United States)

    Agapitov, Oleksiy; Drake, James; Mozer, Forrest

    2016-04-01

    Huge numbers of different nonlinear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on board the Van Allen Probes. A large part of the observed non-linear structures are associated with whistler waves and some of them can be directly driven by whistlers. The parameters favorable for the generation of TDS were studied experimentally as well as making use of 2-D particle-in-cell (PIC) simulations for the system with inhomogeneous magnetic field. It is shown that an outward propagating front of whistlers and hot electrons amplifies oblique whistlers which collapse into regions of intense parallel electric field with properties consistent with recent observations of TDS from the Van Allen Probe satellites. Oblique whistlers seed the parallel electric fields that are driven by the beams. The resulting parallel electric fields trap and heat the precipitating electrons. These electrons drive spikes of intense parallel electric field with characteristics similar to the TDSs seen in the VAP data. The decoupling of the whistler wave and the nonlinear electrostatic component is shown in PIC simulation in the inhomogeneous magnetic field system. These effects are observed by the Van Allen Probes in the radiation belts. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.

  2. Geological evolution of the Neoproterozoic Bemarivo Belt, northern Madagascar

    Science.gov (United States)

    Thomas, Ronald J.; De Waele, B.; Schofield, D.I.; Goodenough, K.M.; Horstwood, M.; Tucker, R.; Bauer, W.; Annells, R.; Howard, K. J.; Walsh, G.; Rabarimanana, M.; Rafahatelo, J.-M.; Ralison, A.V.; Randriamananjara, T.

    2009-01-01

    The broadly east-west trending, Late Neoproterozoic Bemarivo Belt in northern Madagascar has been re-surveyed at 1:100 000 scale as part of a large multi-disciplinary World Bank-sponsored project. The work included acquisition of 14 U-Pb zircon dates and whole-rock major and trace element geochemical data of representative rocks. The belt has previously been modelled as a juvenile Neoproterozoic arc and our findings broadly support that model. The integrated datasets indicate that the Bemarivo Belt is separated by a major ductile shear zone into northern and southern "terranes", each with different lithostratigraphy and ages. However, both formed as Neoproterozoic arc/marginal basin assemblages that were translated southwards over the north-south trending domains of "cratonic" Madagascar, during the main collisional phase of the East African Orogeny at ca. 540 Ma. The older, southern terrane consists of a sequence of high-grade paragneisses (Sahantaha Group), which were derived from a Palaeoproterozoic source and formed a marginal sequence to the Archaean cratons to the south. These rocks are intruded by an extensive suite of arc-generated metamorphosed plutonic rocks, known as the Antsirabe Nord Suite. Four samples from this suite yielded U-Pb SHRIMP ages at ca. 750 Ma. The northern terrane consists of three groups of metamorphosed supracrustal rocks, including a possible Archaean sequence (Betsiaka Group: maximum depositional age approximately 2477 Ma) and two volcano-sedimentary sequences (high-grade Milanoa Group: maximum depositional age approximately 750 Ma; low grade Daraina Group: extrusive age = 720-740 Ma). These supracrustal rocks are intruded by another suite of arc-generated metamorphosed plutonic rocks, known as the Manambato Suite, 4 samples of which gave U-Pb SHRIMP ages between 705 and 718 Ma. Whole-rock geochemical data confirm the calc-alkaline, arc-related nature of the plutonic rocks. The volcanic rocks of the Daraina and Milanoa groups also

  3. Optimal control of operation efficiency of belt conveyor systems

    International Nuclear Information System (INIS)

    Zhang, Shirong; Xia, Xiaohua

    2010-01-01

    The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment or operation levels. Switching control and variable speed control are proposed in literature to improve energy efficiency of belt conveyors. The current implementations mostly focus on lower level control loops or an individual belt conveyor without operational considerations at the system level. In this paper, an optimal switching control and a variable speed drive (VSD) based optimal control are proposed to improve the energy efficiency of belt conveyor systems at the operational level, where time-of-use (TOU) tariff, ramp rate of belt speed and other system constraints are considered. A coal conveying system in a coal-fired power plant is taken as a case study, where great saving of energy cost is achieved by the two optimal control strategies. Moreover, considerable energy saving resulting from VSD based optimal control is also proved by the case study.

  4. Optimal control of operation efficiency of belt conveyor systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shirong [Department of Automation, Wuhan University, Wuhan 430072 (China); Xia, Xiaohua [Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria 0002 (South Africa)

    2010-06-15

    The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment or operation levels. Switching control and variable speed control are proposed in literature to improve energy efficiency of belt conveyors. The current implementations mostly focus on lower level control loops or an individual belt conveyor without operational considerations at the system level. In this paper, an optimal switching control and a variable speed drive (VSD) based optimal control are proposed to improve the energy efficiency of belt conveyor systems at the operational level, where time-of-use (TOU) tariff, ramp rate of belt speed and other system constraints are considered. A coal conveying system in a coal-fired power plant is taken as a case study, where great saving of energy cost is achieved by the two optimal control strategies. Moreover, considerable energy saving resulting from VSD based optimal control is also proved by the case study. (author)

  5. Belt conveyor dynamics in transient operation for speed control

    OpenAIRE

    He, D.; Pang, Y.; Lodewijks, G.

    2016-01-01

    Belt conveyors play an important role in continuous dry bulk material transport, especially at the mining industry. Speed control is expected to reduce the energy consumption of belt conveyors. Transient operation is the operation of increasing or decreasing conveyor speed for speed control. According to literature review, current research rarely takes the conveyor dynamics in transient operation into account. However, in belt conveyor speed control, the conveyor dynamic behaviors are signifi...

  6. Deconstructing the conveyor belt.

    Science.gov (United States)

    Lozier, M Susan

    2010-06-18

    For the past several decades, oceanographers have embraced the dominant paradigm that the ocean's meridional overturning circulation operates like a conveyor belt, transporting cold waters equatorward at depth and warm waters poleward at the surface. Within this paradigm, the conveyor, driven by changes in deepwater production at high latitudes, moves deep waters and their attendant properties continuously along western boundary currents and returns surface waters unimpeded to deepwater formation sites. A number of studies conducted over the past few years have challenged this paradigm by revealing the vital role of the ocean's eddy and wind fields in establishing the structure and variability of the ocean's overturning. Here, we review those studies and discuss how they have collectively changed our view of the simple conveyor-belt model.

  7. Design of belt conveyors in bulk terminal applications. Part II

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, P J; Ramos, C M

    1986-04-01

    The main design parameters used for belt conveyors in harbour applications are discussed. Conveyor belting including the carcass, belt cover, belt tension and speed, and safety factors, idlers, conveyor pulleys, motors, fluid couplings and drive arrangements are considered. Technical factors are briefly outlined for the designer to consider to achieve minimum acceptable component service life. A method is discussed to reduce coal degradation investigated using a test chute designed for the purpose of minimizing sized coal degradation at transfer points in the refurbishing of the Durban Coal Terminal. 24 references.

  8. Health Monitoring for Coated Steel Belts in an Elevator System

    Directory of Open Access Journals (Sweden)

    Huaming Lei

    2012-01-01

    Full Text Available This paper presents a method of health monitoring for coated steel belts in an elevator system by measuring the electrical resistance of the ropes embedded in the belt. A model on resistance change caused by fretting wear and stress fatigue has been established. Temperature and reciprocating cycles are also taken into consideration when determining the potential strength degradation of the belts. It is proved by experiments that the method could effectively estimate the health degradation of the most dangerous section as well as other ones along the whole belts.

  9. IDENTIFYING COLLISIONAL FAMILIES IN THE KUIPER BELT

    International Nuclear Information System (INIS)

    Marcus, Robert A.; Ragozzine, Darin; Murray-Clay, Ruth A.; Holman, Matthew J.

    2011-01-01

    The identification and characterization of numerous collisional families-clusters of bodies with a common collisional origin-in the asteroid belt has added greatly to the understanding of asteroid belt formation and evolution. More recent study has also led to an appreciation of physical processes that had previously been neglected (e.g., the Yarkovsky effect). Collisions have certainly played an important role in the evolution of the Kuiper Belt as well, though only one collisional family has been identified in that region to date, around the dwarf planet Haumea. In this paper, we combine insights into collisional families from numerical simulations with the current observational constraints on the dynamical structure of the Kuiper Belt to investigate the ideal sizes and locations for identifying collisional families. We find that larger progenitors (r ∼ 500 km) result in more easily identifiable families, given the difficulty in identifying fragments of smaller progenitors in magnitude-limited surveys, despite their larger spread and less frequent occurrence. However, even these families do not stand out well from the background. Identifying families as statistical overdensities is much easier than characterizing families by distinguishing individual members from interlopers. Such identification seems promising, provided the background population is well known. In either case, families will also be much easier to study where the background population is small, i.e., at high inclinations. Overall, our results indicate that entirely different techniques for identifying families will be needed for the Kuiper Belt, and we provide some suggestions.

  10. REPEATING FAST RADIO BURSTS FROM HIGHLY MAGNETIZED PULSARS TRAVELING THROUGH ASTEROID BELTS

    International Nuclear Information System (INIS)

    Dai, Z. G.; Wang, J. S.; Huang, Y. F.; Wu, X. F.

    2016-01-01

    Very recently, Spitler et al. and Scholz et al. reported their detections of 16 additional bright bursts in the direction of the fast radio burst (FRB) 121102. This repeating FRB is inconsistent with all of the catastrophic event models put forward previously for hypothetically non-repeating FRBs. Here, we propose a different model, in which highly magnetized pulsars travel through the asteroid belts of other stars. We show that a repeating FRB could originate from such a pulsar encountering a large number of asteroids in the belt. During each pulsar-asteroid impact, an electric field induced outside of the asteroid has such a large component parallel to the stellar magnetic field that electrons are torn off the asteroidal surface and accelerated to ultra-relativistic energies instantaneously. The subsequent movement of these electrons along magnetic field lines will cause coherent curvature radiation, which can account for all of the properties of an FRB. In addition, this model can self-consistently explain the typical duration, luminosity, and repetitive rate of the 17 bursts of FRB 121102. The predicted occurrence rate of repeating FRB sources may imply that our model would be testable in the next few years.

  11. REPEATING FAST RADIO BURSTS FROM HIGHLY MAGNETIZED PULSARS TRAVELING THROUGH ASTEROID BELTS

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Z. G.; Wang, J. S.; Huang, Y. F. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wu, X. F., E-mail: dzg@nju.edu.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-09-20

    Very recently, Spitler et al. and Scholz et al. reported their detections of 16 additional bright bursts in the direction of the fast radio burst (FRB) 121102. This repeating FRB is inconsistent with all of the catastrophic event models put forward previously for hypothetically non-repeating FRBs. Here, we propose a different model, in which highly magnetized pulsars travel through the asteroid belts of other stars. We show that a repeating FRB could originate from such a pulsar encountering a large number of asteroids in the belt. During each pulsar-asteroid impact, an electric field induced outside of the asteroid has such a large component parallel to the stellar magnetic field that electrons are torn off the asteroidal surface and accelerated to ultra-relativistic energies instantaneously. The subsequent movement of these electrons along magnetic field lines will cause coherent curvature radiation, which can account for all of the properties of an FRB. In addition, this model can self-consistently explain the typical duration, luminosity, and repetitive rate of the 17 bursts of FRB 121102. The predicted occurrence rate of repeating FRB sources may imply that our model would be testable in the next few years.

  12. BAOBAB (Big And Outrageously Bold Asteroid Belt) Project

    Science.gov (United States)

    Mcfadden, L. A.; Thomas, C. A; Englander, J. A.; Ruesch, O.; Hosseini, S.; Goossens, S. J.; Mazarico, E. M.; Schmerr, N.

    2017-01-01

    One of the intriguing results of NASA's Dawn mission is the composition and structure of the Main Asteroid Belt's only known dwarf planet, Ceres [1]. It has a top layer of dehydrated clays and salts [2] and an icy-rocky mantle [3,4]. It is widely known that the asteroid belt failed to accrete as a planet by resonances between the Sun and Jupiter. About 20-30 asteroids >100 km diameter are probably differentiated protoplanets [5]. 1) how many more and which ones are fragments of protoplanets? 2) How many and which ones are primordial rubble piles left over from condensation of the solar nebula? 3) How would we go about gaining better and more complete characterization of the mass, interior structure and composition of the Main Belt asteroid population? 4) What is the relationship between asteroids and ocean worlds? Bulk parameters such as the mass, density, and porosity, are important to characterize the structure of any celestial body, and for asteroids in particular, they can shed light on the conditions in the early solar system. Asteroid density estimates exist but currently they are often based on assumed properties of taxonomic classes, or through astronomical survey data where interactions with asteroids are weak at best resulting in large measurement uncertainty. We only have direct density estimates from spacecraft encounters for a few asteroids at this time. Knowledge of the asteroids is significant not only to understand their role in solar system workings, but also to assess their potential as space resources, as impact hazards on Earth, or even as harboring life forms. And for the distant future, we want to know if the idea put forth in a contest sponsored by Physics Today, to surface the asteroids into highly reflecting, polished surfaces and use them as a massively segmented mirror for astrophysical exploration [6], is feasible.

  13. Detachments in Shale: Controlling Characteristics on Fold-Thrust Belt Style

    Science.gov (United States)

    Hansberry, Rowan; King, Ros; Collins, Alan; Morley, Chris

    2013-04-01

    (e.g. Platt, 1986; Bilotti and Shaw, 2005; Morley, 2007). Therefore, through a mixture of field observations, sample analysis and theoretical analysis it will be possible to determine a full range of shale detachment parameters and their impact on the structural style of fold-thrust belts across a variety of settings. Recent work in Muak Lek, central Thailand has focused on a structural investigation of fold-thrust belt deformation of a passive margin sequence as a result of continent-continent collision during the Triassic Indosinian Orogeny. Exceptional outcropping of the detachment lithology is accessible in the Siam City Cement quarry allowing construction of sections detailing the deformational style across the detachment itself. The detachment forms complex, 3-dimensional duplex-like structures creating egg-carton geometries enveloping foliation surfaces in the zones of most intense strain. Up section strain decreases to discrete thrust imbricates of decametre scale. Samples of limestone and secondary calcite were collected through the sections for oxygen stable isotopes analysis which show a distinct pattern of isotopic fractionation across the main thrust and into the detachment. Results from this study give insights into the nature of shale detachments and the control on fold-thrust belt development.

  14. Coal belt options

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-03-15

    Whether moving coal long distances overland or short distances in-plant, belt conveyors will always be in demand. The article reports on recent systems developments and applications by Beumer, Horizon Conveyor Equipment, Conveyor Dynamics, Doppelmayr Transport Technology, Enclosed Bulk Systems, ContiTech and Bateman Engineered Technologies. 2 photos.

  15. A Parametric Energy Model for Energy Management of Long Belt Conveyors

    Directory of Open Access Journals (Sweden)

    Tebello Mathaba

    2015-12-01

    Full Text Available As electricity prices continue to rise, the increasing need for energy management requires better understanding of models for energy-consuming applications, such as conveyor belts. Conveyor belts are used in a wide range of industries, including power generation, mining and mineral processing. Conveyor technological advances are leading to increasingly long conveyor belts being commissioned. Thus, the energy consumption of each individual belt conveyor unit is becoming increasingly significant. This paper proposes a generic energy model for belt conveyors with long troughed belts. The model has a two-parameter power equation, and it uses a partial differential equation to capture the variable amount of material mass per unit length throughout the belt length. Verification results show that the power consumption calculations of the newly proposed simpler model are consistent with those of a known non-linear model with an error of less than 4%. The online parameter identification set-up of the model is proposed. Simulations indicate that the parameters can be identified successfully from data with up to 15% measurement noise. Results show that the proposed model gives better predictions of the power consumed and material delivered by a long conveyor belt than the steady-state models in the current literature.

  16. RATIONALE FOR CENTERING CAPACITY OF REDISIGNED BELT CONVEYOR DRUMS

    Directory of Open Access Journals (Sweden)

    V. V. Suglobov

    2016-02-01

    Full Text Available Purpose. In the study is necessary: 1 to justify aligning drums of a new design of belt conveyors; 2 to develop a method for calculating and determining the rational design parameters of drums depending on the technical parameters of the conveyor belt (the length of the conveyor, belt width, the performance of the conveyor, the diameter of the drive and tension drums, etc.; 3 to carry out pilot studies of efficiency conveyor belt in a production environment in order to determine the magnitude of dynamic loads and a comparative evaluation of the effectiveness of the centering ability of conventional and new designs of drums. Methodology. To substantiate the effectiveness of the centering ability of the drums of a new design by the authors developed a mathematical model of interaction of the tape with the drum. Mathematical simulation of tape reels with new design comes to drawing up a differential equation of the belt based on the dynamic component and restoring force. This model allowed us to estimate the movement of the tape in the transverse direction based on the calculated additional dynamic loads and forces on the investigated centering a conveyor belt with given specifications. For the first time the technique of calculating and determining the rational parameters of the drums, which allows determining the design parameters of the centering portions, depending on the mechanical properties and geometric parameters of the tape. Findings. With the help of mathematical modeling the scientifically substantiated effect of centering the ability of the new design of the drum, which ensures stable tape running along the longitudinal axis of the conveyor. The authors made the following conclusions: 1 the mathematical model of interaction with the new belt design of the drum, which allowed to describe the belt in the transverse direction in view of additional dynamic loads and renewable power was developed; 2 the method of calculation and

  17. Energy saving for belt conveyors by speed control

    NARCIS (Netherlands)

    He, D.

    2017-01-01

    Belt conveyors are widely used in bulk solids handling and conveying systems. Considering the extensive use of belt conveyors, their operations involve a large amount of energy. Taking the relevant economic and social challenges into account, there is a strong demand for lowering the energy

  18. Angle stations in or for endless conveyor belts

    Science.gov (United States)

    Steel, Alan

    1987-04-07

    In an angle station for an endless conveyor belt, there are presented to each incoming run of the belt stationary curved guide members (18, 19) of the shape of a major segment of a right-circular cylinder and having in the part-cylindrical portion (16 or 17) thereof rectangular openings (15) arranged in parallel and helical paths and through which project small freely-rotatable rollers (14), the continuously-changing segments of the curved surfaces of which projecting through said openings (15) are in attitude to change the direction of travel of the belt (13) through 90.degree. during passage of the belt about the part-cylindrical portion (16 or 17) of the guide member (18 or 19). The rectangular openings (15) are arranged with their longer edges lengthwise of the diagonals representing the mean of the helix but with those of a plurality of the rows nearest to each end of the part-cylindrical portion (16 or 17) slightly out of axial symmetry with said diagonals, being slightly inclined in a direction about the intersections (40) of the diagonals of the main portion of the openings, to provide a "toe-in" attitude in relation to the line of run of the endless conveyor belt.

  19. Morphotectonics of the central Muertos thrust belt and Muertos Trough (northeastern Caribbean)

    Science.gov (United States)

    Granja, Bruna J.L.; ten Brink, Uri S.; Carbó-Gorosabel, Andrés; Muñoz-Martín, A.; Gomez, Ballesteros M.

    2009-01-01

    Multibeam bathymetry data acquired during the 2005 Spanish R/V Hesp??rides cruise and reprocessed multichannel seismic profiles provide the basis for the analysis of the morphology and deformation in the central Muertos Trough and Muertos thrust belt. The Muertos Trough is an elongated basin developed where the Venezuelan Basin crust is thrusted under the Muertos fold-and-thrust belt. Structural variations along the Muertos Trough are suggested to be a consequence of the overburden of the asymmetrical thrust belt and by the variable nature of the Venezuelan Basin crust along the margin. The insular slope can be divided into three east-west trending slope provinces with high lateral variability which correspond to different accretion stages: 1) The lower slope is composed of an active sequence of imbricate thrust slices and closed fold axes, which form short and narrow accretionary ridges and elongated slope basins; 2) The middle slope shows a less active imbricate structure resulting in lower superficial deformation and bigger slope basins; 3) The upper slope comprises the talus region and extended terraces burying an island arc basement and an inactive imbricate structure. The talus region is characterized by a dense drainage network that transports turbidite flows from the islands and their surrounding carbonate platform areas to the slope basins and sometimes to the trough. In the survey area the accommodation of the ongoing east-west differential motion between the Hispaniola and the Puerto Rico-Virgin Islands blocks takes place by means of diffuse deformation. The asymmetrical development of the thrust belt is not related to the geological conditions in the foreland, but rather may be caused by variations in the geometry and movement of the backstop. The map-view curves of the thrust belt and the symmetry of the recesses suggest a main north-south convergence along the Muertos margin. The western end of the Investigator Fault Zone comprises a broad band of

  20. Seat-belt message and the law?

    Science.gov (United States)

    Sengupta, S K; Patil, N G; Law, G

    1989-09-01

    This paper attempts to draw together available information on the use of seat belts, one of the most important safety devices for a person in a car. Considering the high rate of mortality and morbidity due to road traffic accidents in Papua New Guinea the authors strongly feel that seat-belt usage should be made compulsory. When one looks at the history of the implementation of such a successful countermeasure in other countries it seems that legislation is the only answer.

  1. Galileo Measurements of the Jovian Electron Radiation Environment

    Science.gov (United States)

    Garrett, H. B.; Jun, I.; Ratliff, J. M.; Evans, R. W.; Clough, G. A.; McEntire, R. W.

    2003-12-01

    The Galileo spacecraft Energetic Particle Detector (EPD) has been used to map Jupiter's trapped electron radiation in the jovian equatorial plane for the range 8 to 16 Jupiter radii (1 jovian radius = 71,400 km). The electron count rates from the instrument were averaged into 10-minute intervals over the energy range 0.2 MeV to 11 MeV to form an extensive database of observations of the jovian radiation belts between Jupiter orbit insertion (JOI) in 1995 and end of mission in 2003. These data were then used to provide differential flux estimates in the jovian equatorial plane as a function of radial distance (organized by magnetic L-shell position). These estimates provide the basis for an omni-directional, equatorial model of the jovian electron radiation environment. The comparison of these results with the original Divine model of jovian electron radiation and their implications for missions to Jupiter will be discussed. In particular, it was found that the electron dose predictions for a representative mission to Europa were about a factor of 2 lower than the Divine model estimates over the range of 100 to 1000 mils (2.54 to 25.4 mm) of aluminum shielding, but exceeded the Divine model by about 50% for thicker shielding for the assumed Europa orbiter trajectories. The findings are a significant step forward in understanding jovian electron radiation and represent a valuable tool for estimating the radiation environment to which jovian science and engineering hardware will be exposed.

  2. Magnetic refrigeration apparatus with belt of ferro or paramagnetic material

    Science.gov (United States)

    Barclay, John A.; Stewart, Walter F.; Henke, Michael D.; Kalash, Kenneth E.

    1987-01-01

    A magnetic refrigerator operating in the 12 to 77K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

  3. Measured pulse width of sonoluminescence flashes in the form of resonance radiation

    Science.gov (United States)

    Giri, Asis; Arakeri, Vijay H.

    1998-09-01

    Recent studies have shown that the measured flash widths from single and multibubble sonoluminescence are in subnanosecond or even picosecond regime. Here, we provide conclusive evidence for the existence of nanosecond multibubble sonoluminescence. This has become possible by our ability to find a medium from which exclusive sodium D line resonance radiation as a form of sonoluminescence is possible. The measured flash width of this emission is found to be in the range of tens of nanoseconds and is sensitively dependent on experimental parameters. Our finding is important since all the earlier pulse width measurements have been limited to emission with the physical source or species responsible for observed optical radiation not being clearly identified. We propose that the presently observed resonance radiation is from ``soft'' bubble collapse as analyzed by V. Kamath et al. [J. Acoust. Soc. Am. 94, 248 (1993)].

  4. Investigation of microscopic radiation damage in waste forms using ODNMR and AEM techniques. 1998 annual progress report

    International Nuclear Information System (INIS)

    Liu, G.

    1998-01-01

    'This project seeks to understand the microscopic effects of radiation damage in nuclear waste forms. The authors approach to this challenge encompasses studies of crystals and glass containing short-lived alpha- and beta-emitting actinides with electron microscopy, laser spectroscopy, and computational modeling and simulation. Much of the initial effort has focused on alpha-decay induced microscopic damage in 17-year old samples of crystalline yttrium and lutetium orthophosphates and thorium dioxide that initially contained ∼1% of the alpha-emitting isotope Cm-244 (18.1 y half life) or the beta-emitting isotope Bk-249 (0.88 y half life). Studies will also be conducted on borosilicate glasses that contain Cm-244 or Am-241, respectively. The goal is to gain clear insight into accumulated radiation damage and the influence of aging on such damage, which are critical factors in the long-term performance of high-level nuclear waste forms. Amorphization previously has been thought to be the most important effect of radiation damage in crystalline and ceramic materials. The studies show that for alpha-emitting actinide ions in certain crystalline phosphates, amorphization is not a significant effect of radiation damage. Instead, formation of microscopic cavities (bubbles) is an important consequence of alpha-decay events. This amorphization-resistant property makes orthophosphates a very attractive high level nuclear waste form. However, aggregation and mobilization of cavities (bubbles) might increase the leach rate of radionuclides and influence the long-term stability of the waste forms. Further research is needed before the authors can draw a final conclusion on the long-term effects of radiation damage in high level waste forms.'

  5. Magmatic formations in the Okhotsk--Chukotka volcanogenic belt

    Energy Technology Data Exchange (ETDEWEB)

    Osipov, A.P.

    1976-05-01

    The relationship between the Okhotsk-Chukotka volcanogenic belt of Northeast USSR and the stage of evolution of magnetism and tectonic development of the region are examined. Recognizing the associations of effusive and intrusive rocks that are typical of the southern part of the volcanogenic belt and that are joined together by some characteristic features, a basic plan is presented for examination of the problem of magnetic formations. On the basis of the distinctive characteristics of epigeosynclinal tectonic development of the territory and the sequence of formation of the magmatic rocks within it, three main groups: volcanic, coleanoplutonic, and plutonic, can be distinguished; and a general scheme of development of these types in space and time within the volcanogenic belt can be developed. According to this scheme, four main stages can be recognized in the Mesozoic and Cenozoic magmatic evolution of the Okhotsk-Chukotka belt. This scheme of classification takes into consideration the factor of the structural development of this tectonomagmatic element.

  6. Radiation effects in glass and glass-ceramic waste forms for the immobilization of CANDU UO{sub 2} fuel reprocessing waste

    Energy Technology Data Exchange (ETDEWEB)

    Tait, J C

    1993-05-01

    AECL has investigated three waste forms for the immobilization of high-level liquid wastes that would arise if used CANDU fuels were reprocessed at some time in the future to remove fissile materials for the fabrication of new power reactor fuel. These waste forms are borosilicate glasses, aluminosilicate glasses and titanosilicate glass-ceramics. This report discusses the potential effects of alpha, beta and gamma radiation on the releases of radionuclides from these waste forms as a result of aqueous corrosion by groundwaters that would be present in an underground waste disposal vault. The report discusses solid-state damage caused by radiation-induced atomic displacements in the waste forms as well as irradiation of groundwater solutions (radiolysis), and their potential effects on waste-form corrosion and radionuclide release. The current literature on radiation effects on borosilicate glasses and in ceramics is briefly reviewed, as are potential radiation effects on specialized waste forms for the immobilization of {sup 129}I, {sup 85}Kr and {sup 14}C. (author). 104 refs., 9 tabs., 5 figs.

  7. New Quality Standards of Testing Idlers for Highly Effective Belt Conveyors

    Science.gov (United States)

    Król, Robert; Gladysiewicz, Lech; Kaszuba, Damian; Kisielewski, Waldemar

    2017-12-01

    The paper presents result of research and analyses carried out into the belt conveyors idlers’ rotational resistance which is one of the key factor indicating the quality of idlers. Moreover, idlers’ rotational resistance is important factor in total resistance to motion of belt conveyor. The evaluation of the technical condition of belt conveyor idlers is carried out in accordance with actual national and international standards which determine the methodology of measurements and acceptable values of measured idlers’ parameters. Requirements defined by the standards, which determine the suitability of idlers to a specific application, despite the development of knowledge on idlers and quality of presently manufactured idlers maintain the same level of parameters values over long periods of time. Nowadays the need to implement new, efficient and economically justified solution for belt conveyor transportation systems characterized by long routes and energy-efficiency is often discussed as one of goals in belt conveyors’ future. One of the basic conditions for achieving this goal is to use only carefully selected idlers with low rotational resistance under the full range of operational loads and high durability. Due to this it is necessary to develop new guidelines for evaluation of the technical condition of belt conveyor idlers in accordance with actual standards and perfecting of existing and development of new methods of idlers testing. The changes in particular should concern updating of values of parameters used for evaluation of the technical condition of belt conveyor idlers in relation to belt conveyors’ operational challenges and growing demands in terms of belt conveyors’ energy efficiency.

  8. The Stability of the Conveyor Belt Pontoon

    Directory of Open Access Journals (Sweden)

    Jiří PODEŠVA

    2011-06-01

    Full Text Available To lead the conveyor belt transport cross water area the pontoon are used to support the carrying structure of the belts. The accident can happen when the pontoon turnover. For this reason the pontoon stability is investigated. The stability is described by the Reed’s diagram. This can be constructed analytically or via numerical modeling. Both methods are described in the paper.

  9. Development of Abdominal Compression Belt and Evaluation of the Efficiency for the Reduction of Respiratory Motion in SBRT

    International Nuclear Information System (INIS)

    Hwang, Seon Bung; Kim, Il Hwan; Kim, Woong; Im, Hyeong Seo; Gang, Jin Mook; Jeong, Seong Min; Kim, Gi Hwan; Lee, Ah Ram; Cho, Yura

    2011-01-01

    It's essential to minimize the tumor motion and identify the exact location of the lesions to achieve the improvement in radiation therapy efficiency during SBRT. In this study, we made the established compression belt to reduce respiratory motion and evaluated the usefulness of clinical application in SBRT. We analyzed the merits and demerits of the established compression belt to reduce the respiratory motion and improved the reproducibility and precision in use. To evaluate the usefulness of improved compression belt for respiratory motion reduction in SBRT, firstly, we reviewed the spiral CT images acquired in inspiration and expiration states of 8 lung cancer cases, respectively, and analyzed the three dimensional tumor motion related to respiration. To evaluate isodose distribution, secondly, we also made the special phantom using EBT2 film (Gafchronic, ISP, USA) and we prepared the robot (Cartesian Robot-2 Axis, FARARCM4H, Samsung Mechatronics, Korea) to reproduce three dimensional tumor motion. And analysis was made for isodose curves and two dimensional isodose profiles with reproducibility of respiratory motion on the basis of CT images. A respiratory motion reduction compression belt (Velcro type) that has convenient use and good reproducibility was developed. The moving differences of three dimensional tumor motion of lung cancer cases analyzed by CT images were mean 3.2 mm, 4.3 mm and 13 mm each in LR, AP and CC directions. The result of characteristic change in dose distribution using the phantom and rectangular coordinates robot showed that the distortion of isodose has great differences, mean length was 4.2 mm; the differences were 8.0% and 16.8% each for cranio-caudal and 8.1% and 10.9% each for left-right directions in underdose below the prescribed dose. In this study, we could develop the convenient and efficient compression belt that can make the organs' motion minimize. With this compression belt, we confirmed that underdose due to respiration

  10. Development of Abdominal Compression Belt and Evaluation of the Efficiency for the Reduction of Respiratory Motion in SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seon Bung; Kim, Il Hwan; Kim, Woong; Im, Hyeong Seo; Gang, Jin Mook; Jeong, Seong Min; Kim, Gi Hwan; Lee, Ah Ram [Dept. of Radiation and Oncology, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Cho, Yura [Dept. of Cyberknife, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-03-15

    It's essential to minimize the tumor motion and identify the exact location of the lesions to achieve the improvement in radiation therapy efficiency during SBRT. In this study, we made the established compression belt to reduce respiratory motion and evaluated the usefulness of clinical application in SBRT. We analyzed the merits and demerits of the established compression belt to reduce the respiratory motion and improved the reproducibility and precision in use. To evaluate the usefulness of improved compression belt for respiratory motion reduction in SBRT, firstly, we reviewed the spiral CT images acquired in inspiration and expiration states of 8 lung cancer cases, respectively, and analyzed the three dimensional tumor motion related to respiration. To evaluate isodose distribution, secondly, we also made the special phantom using EBT2 film (Gafchronic, ISP, USA) and we prepared the robot (Cartesian Robot-2 Axis, FARARCM4H, Samsung Mechatronics, Korea) to reproduce three dimensional tumor motion. And analysis was made for isodose curves and two dimensional isodose profiles with reproducibility of respiratory motion on the basis of CT images. A respiratory motion reduction compression belt (Velcro type) that has convenient use and good reproducibility was developed. The moving differences of three dimensional tumor motion of lung cancer cases analyzed by CT images were mean 3.2 mm, 4.3 mm and 13 mm each in LR, AP and CC directions. The result of characteristic change in dose distribution using the phantom and rectangular coordinates robot showed that the distortion of isodose has great differences, mean length was 4.2 mm; the differences were 8.0% and 16.8% each for cranio-caudal and 8.1% and 10.9% each for left-right directions in underdose below the prescribed dose. In this study, we could develop the convenient and efficient compression belt that can make the organs' motion minimize. With this compression belt, we confirmed that underdose due to

  11. Space Radiation Environment Prediction for VLSI microelectronics devices onboard a LEO Satellite using OMERE-Trad Software

    Science.gov (United States)

    Sajid, Muhammad

    This tutorial/survey paper presents the assessment/determination of level of hazard/threat to emerging microelectronics devices in Low Earth Orbit (LEO) space radiation environment with perigee at 300 Km, apogee at 600Km altitude having different orbital inclinations to predict the reliability of onboard Bulk Built-In Current Sensor (BBICS) fabricated in 350nm technology node at OptMA Lab. UFMG Brazil. In this context, the various parameters for space radiation environment have been analyzed to characterize the ionizing radiation environment effects on proposed BBICS. The Space radiation environment has been modeled in the form of particles trapped in Van-Allen radiation belts(RBs), Energetic Solar Particles Events (ESPE) and Galactic Cosmic Rays (GCR) where as its potential effects on Device- Under-Test (DUT) has been predicted in terms of Total Ionizing Dose (TID), Single-Event Effects (SEE) and Displacement Damage Dose (DDD). Finally, the required mitigation techniques including necessary shielding requirements to avoid undesirable effects of radiation environment at device level has been estimated /determined with assumed standard thickness of Aluminum shielding. In order to evaluate space radiation environment and analyze energetic particles effects on BBICS, OMERE toolkit developed by TRAD was utilized.

  12. Performance approximation of pick-to-belt orderpicking systems

    NARCIS (Netherlands)

    M.B.M. de Koster (René)

    1994-01-01

    textabstractIn this paper, an approximation method is discussed for the analysis of pick-to-belt orderpicking systems. The aim of the approximation method is to provide an instrument for obtaining rapid insight in the performance of designs of pick-to-belt orderpicking systems. It can be used to

  13. Ambient Response Analysis of the Great Belt Bridge

    DEFF Research Database (Denmark)

    Brincker, Rune; Frandsen, Jeanette B.; Andersen, Palle

    2000-01-01

    In this paper an ambient response analysis of the Great Belt Bridge is presented. The Great Belt Bridge is one of the largest suspension bridges in the world, and the analysis was carried out in order to investigate the possibilities of estimating reliable damping values from the ambient response...

  14. Overland conveyors. Cable or trough belt for 100 km transport haulage

    Energy Technology Data Exchange (ETDEWEB)

    Maton, A.E. [Maton Engineering Pty. Ltd., Orange Grove, WA (Australia)

    2009-07-01

    With the advances in belt conveyor technology today systems of 100 kilometres length are increasingly being considered. This article provides a comparison of two concepts for a 100 kilometre system of five 20 kilometre flights based on trough belt and cable belt technology. (orig.)

  15. Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer

    International Nuclear Information System (INIS)

    Ito, Kota; Miura, Atsushi; Iizuka, Hideo; Toshiyoshi, Hiroshi

    2015-01-01

    Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics

  16. Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Kota, E-mail: kotaito@mosk.tytlabs.co.jp [Toyota Central Research and Development Laboratories, Nagakute, Aichi 480-1192 (Japan); Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Miura, Atsushi; Iizuka, Hideo [Toyota Central Research and Development Laboratories, Nagakute, Aichi 480-1192 (Japan); Toshiyoshi, Hiroshi [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2015-02-23

    Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics.

  17. Potential applications of radiation formed PVA/PVP hydrogel patches

    International Nuclear Information System (INIS)

    Zein, Z.; Hill, D.J.T.; Whittaker, A.K.

    2003-01-01

    It has been shown that radiation induced-polymerization and crosslinking is a very convenient method to produce hydrogels. The process is free of catalyst or initiator, which are mostly toxic, easy to control and allows sterilization simultaneously. In this sense, poly(vinyl alcohol) (PVA)/polyvinylpyrrolidone (PVP) hydrogel patches have been prepared by subjecting the polymer aqueous solutions to γ -irradiation. Under the action of ionizing radiation, the mechanism of hydrogel formation may be simplified into two main stages; formation of free radicals and their intermolecular combination. The five-line ESR spectra found following irradiation of PVP (powder) at 77 K and annealing up to 250 K suggests that free-radicals are mainly localized at tertiary carbon atoms. While for PVA, as the major component of the four-line ESR spectra at 77 K was a triplet and this was the only species observed at 298 K, so most radicals were formed through hydrogen abstraction from tertiary carbon atoms. If radicals localized on different molecular chains combine, new covalent bonds are formed. When a sufficiently high number of crosslinks form, an insoluble network (gel) appears. It was observed that the gel fraction for PVA/PVP hydrogels increased with increasing irradiation dose and it seems that the gel fraction never reaches 100%. This implies that upon irradiation of PVA/PVP aqueous solutions, chain scission also accompanies crosslinking. Based on a toxicity test, it was found that none of this chain scission products produce detectable toxicity. The physico-chemical and mechanical properties of the PVA/PVP hydrogel obtained by irradiation of PVA/PVP (8.0 %wt / 4.8 %wt) solution with a crosslinking dose of 25 kGy were shown to yield properties most suitable for ideal wound covering. Additionally, as the hydrogel has a high water content and a relatively moderate water diffusion coefficient, it offers potential for transdermal drug delivery systems as well as for cosmetic

  18. The Caucasian-Arabian segment of the Alpine-Himalayan collisional belt: Geology, volcanism and neotectonics

    Directory of Open Access Journals (Sweden)

    E. Sharkov

    2015-07-01

    Full Text Available The Caucasian-Arabian belt is part of the huge late Cenozoic Alpine-Himalayan orogenic belt formed by collision of continental plates. The belt consists of two domains: the Caucasian-Arabian Syntaxis (CAS in the south and the EW-striking Greater Caucasus in the north. The CAS marks a zone of the indentation of the Arabian plate into the southern East European Craton. The Greater Caucasus Range is located in the south of the Eurasian plate; it was tectonically uplifted along the Main Caucasian Fault (MCF, which is, in turn, a part of a megafault extended over a great distance from the Kopetdag Mts. to the Tornquist-Teisseyre Trans-European Suture Zone. The Caucasus Mts. are bounded by the Black Sea from the west and by the Caspian Sea from the east. The SN-striking CAS is characterized by a large geophysical isostatic anomaly suggesting presence of mantle plume head. A 500 km long belt of late Cenozoic volcanism in the CAS extends from the eastern Anatolia to the Lesser and Greater Caucasus ranges. This belt hosts two different types of volcanic rocks: (1 plume-type intraplate basaltic plateaus and (2 suprasubduction-type calc-alkaline and shoshonite-latite volcanic rocks. As the CAS lacks signatures of subduction zones and is characterized by relatively shallow earthquakes (50–60 km, we suggest that the “suprasubduction-type” magmas were derived by interaction between mantle plume head and crustal material. Those hybrid melts were originated under conditions of collision-related deformation. During the late Cenozoic, the width of the CAS reduced to ca. 400 km due to tectonic “diffluence” of crustal material provided by the continuing Arabia-Eurasia collision.

  19. Characteristics of the cold-water belt formed off Soya Warm Current

    Science.gov (United States)

    Ishizu, Miho; Kitade, Yujiro; Matsuyama, Masaji

    2008-12-01

    We examined the data obtained by acoustic Doppler current profiler, conductivity-temperature-depth profiler, and expendable bathythermograph observations, which were collected in the summers of 2000, 2001, and 2002, to clarify the characteristics of the cold-water belt (CWB), i.e., lower-temperature water than the surrounding water extending from the southwest coast of Sakhalin along the offshore side of Soya Warm Current (SWC) and to confirm one of the formation mechanisms of the CWB as suggested by our previous study, i.e., the upwelling due to the convergence of bottom Ekman transport off the SWC region. The CWB was observed at about 30 km off the coast, having a thickness of 14 m and a minimum temperature of 12°C at the sea surface. The CWB does not have the specific water mass, but is constituted of three representative water types off the northeast coast of Hokkaido in summer, i.e., SWC water, Fresh Surface Okhotsk Sea Water, and Okhotsk Sea Intermediate Water. In a comparison of the horizontal distributions of current and temperature, the CWB region is found to be advected to the southeast at an average of 40 ± 29% of the maximum current velocity of the SWC. The pumping speed due to the convergence of the bottom Ekman transport is estimated as (1.5-3.0) × 10-4 m s-1. We examined the mixing ratio of the CWB, and the results implied that the water mass of the CWB is advected southeastward and mixes with a water mass upwelling in a different region off SWC.

  20. Interaction of ring current and radiation belt protons with ducted plasmaspheric hiss. 2. Time evolution of the distribution function

    Science.gov (United States)

    Kozyra, J. U.; Rasmussen, C. E.; Miller, R. H.; Villalon, E.

    1995-11-01

    The evolution of the bounce-averaged ring current/radiation belt proton distribution is simulated during resonant interactions with ducted plasmaspheric hiss. The plasmaspheric hiss is assumed to be generated by ring current electrons and to be damped by the energetic protons. Thus energy is transferred between energetic electrons and protons using the plasmaspheric hiss as a mediary. The problem is not solved self-consistently. During the simulation period, interactions with ring current electrons (not represented in the model) are assumed to maintain the wave amplitudes in the presence of damping by the energetic protons, allowing the wave spectrum to be held fixed. Diffusion coefficients in pitch angle, cross pitch angle/energy, and energy were previously calculated by Kozyra et al. (1994) and are adopted for the present study. The simulation treats the energy range, E>=80 keV, within which the wave diffusion operates on a shorter timescale than other proton loss processes (i.e., Coulomb drag and charge exchange). These other loss processes are not included in the simulation. An interesting result of the simulation is that energy diffusion maximizes at moderate pitch angles near the edge of the atmospheric loss cone. Over the simulation period, diffusion in energy creates an order of magnitude enhancement in the bounce-averaged proton distribution function at moderate pitch angles. The loss cone is nearly empty because scattering of particles at small pitch angles is weak. The bounce-averaged flux distribution, mapped to ionospheric heights, results in elevated locally mirroring proton fluxes. OGO 5 observed order of magnitude enhancements in locally mirroring energetic protons at altitudes between 350 and 1300 km and invariant latitudes between 50° and 60° (Lundblad and Soraas, 1978). The proton distributions were highly anisotropic in pitch angle with nearly empty loss cones. The similarity between the observed distributions and those resulting from this

  1. Thermal electron acceleration by electric field spikes in the outer radiation belt: generation of field-aligned pitch angle distributions

    Science.gov (United States)

    Vasko, I.; Agapitov, O. V.; Mozer, F.; Artemyev, A.

    2015-12-01

    Van Allen Probes observations in the outer radiation belt have demonstrated an abundance non-linear electrostatic stucture called Time Domain Structures (TDS). One of the type of TDS is electrostatic electron-acoustic double layers (DL). Observed DLs are frequently accompanied by field-aligned (bi-directional) pitch angle distributions (PAD) of electrons with energies from hundred eVs up to several keV (rarely up to tens of keV). We perform numerical simulations of the DL interaction with thermal electrons making use of the test particle approach. DL parameters assumed in the simulations are adopted from observations. We show that DLs accelerate thermal electrons parallel to the magnetic field via the electrostatic Fermi mechanism, i.e. due to reflections from DL potential humps. Due to this interaction some fraction of electrons is scattered into the loss cone. The electron energy gain is larger for larger DL scalar potential amplitudes and higher propagation velocities. In addition to the Fermi mechanism electrons can be trapped by DLs in their generation region and accelerated due to transport to higher latitudes. Both mechanisms result in formation of field-aligned PADs for electrons with energies comparable to those found in observations. The Fermi mechanism provides field-aligned PADs for <1 keV electrons, while the trapping mechanism extends field-aligned PADs to higher energy electrons.

  2. Belt Conveyor Dynamic Characteristics and Influential Factors

    OpenAIRE

    Li, Junxia; Pang, Xiaoxu

    2018-01-01

    This paper uses the Kelvin-Voigt viscoelastic model to establish the continuous dynamic equations for tail hammer tension belt conveyors. The viscoelastic continuity equations are solved using the generalized coordinate method. We analyze various factors influencing longitudinal vibration of the belt conveyor by simulation and propose a control strategy to limit the vibration. The proposed approach and control strategy were verified by several experimental researches and cases. The proposed a...

  3. 30 CFR 14.22 - Test for flame resistance of conveyor belts.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test for flame resistance of conveyor belts. 14..., EVALUATION, AND APPROVAL OF MINING PRODUCTS REQUIREMENTS FOR THE APPROVAL OF FLAME-RESISTANT CONVEYOR BELTS Technical Requirements § 14.22 Test for flame resistance of conveyor belts. (a) Test procedures. The test...

  4. SLH Timing Belt Powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Abe

    2014-04-09

    The main goal of this proposal was to develop and test a novel powertrain solution for the SLH hydroEngine, a low-cost, efficient low-head hydropower technology. Nearly two-thirds of U.S. renewable electricity is produced by hydropower (EIA 2010). According to the U.S. Department of Energy; this amount could be increased by 50% with small hydropower plants, often using already-existing dams (Hall 2004). There are more than 80,000 existing dams, and of these, less than 4% generate power (Blankinship 2009). In addition, there are over 800 irrigation districts in the U.S., many with multiple, non-power, low-head drops. These existing, non-power dams and irrigation drops could be retrofitted to produce distributed, baseload, renewable energy with appropriate technology. The problem is that most existing dams are low-head, or less than 30 feet in height (Ragon 2009). Only about 2% of the available low-head hydropower resource in the U.S. has been developed, leaving more than 70 GW of annual mean potential low-head capacity untapped (Hall 2004). Natel Energy, Inc. is developing a low-head hydropower turbine that operates efficiently at heads less than 6 meters and is cost-effective for deployment across multiple low-head structures. Because of the unique racetrack-like path taken by the prime-movers in the SLH, a flexible powertrain is required. Historically, the only viable technological solution was roller chain. Despite the having the ability to easily attach blades, roller chain is characterized by significant drawbacks, including high cost, wear, and vibration from chordal action. Advanced carbon- fiber-reinforced timing belts have been recently developed which, coupled with a novel belt attachment system developed by Natel Energy, result in a large reduction in moving parts, reduced mass and cost, and elimination of chordal action for increased fatigue life. The work done in this project affirmatively addressed each of the following 3 major uncertainties concerning

  5. Security Belt for Wireless Implantable Medical Devices.

    Science.gov (United States)

    Kulaç, Selman

    2017-09-19

    In this study, a new protective design compatible with existing non-secure systems was proposed, since it is focused on the secure communication of wireless IMD systems in all transmissions. This new protector is an external wearable device and appears to be a belt fitted around for the patients IMD implanted. However, in order to provide effective full duplex transmissions and physical layer security, some sophisticated transceiver antennas have been placed on the belt. In this approach, beam-focused multi-antennas in optimal positions on the belt are randomly switched when transmissions to the IMD are performed and multi-jammer switching with MRC combining or majority-rule based receiving techniques are applied when transmissions from the IMD are carried out. This approach can also reduce the power consumption of the IMDs and contribute to the prolongation of the IMD's battery life.

  6. The use of seat belts and contributing factors : an international comparison.

    NARCIS (Netherlands)

    Mäkinen, T. Wittink, R.D. & Hagenzieker, M.P.

    1991-01-01

    The purpose of this study was to define factors that contribute to the use or non-use of seat belts. Legislation prescribing compulsory seat belt usage is one of the most important factors. Promotion of the use of seat belts without this legislation is very difficult and time-consuming. So far, the

  7. Central and Eastern European Countries Focus on the Silk Road Economic Belt

    Directory of Open Access Journals (Sweden)

    GEORGE CORNEL DUMITRESCU

    2015-05-01

    Full Text Available The Silk Road Economic Belt, a strategic priority of the Chinese foreign policy in 2015, draws the attention to the countries of Central and Eastern Europe through the multiple benefits that it displays (investments, economic growth, trade between the countries along its corridors, job creation, infrastructure development, the strategic importance of being part of a grandiose multi-continental project. Among these benefits an important one is represented by the opportunities of Chinese investments in infrastructure, since the EU is suffering from a credit restraint. Also, The Silk Road Economic Belt could lead to a potential increase in the bilateral trade. Analyzing the literature in the field and the various official information available online, this paper aims to depict the Chinese project form the Eastern European perspective, identifying local priorities, conflicting interests, possible infrastructure projects, routes, focusing on two strategic countries in the region: Romania and Serbia, both displaying advantages and disadvantages.

  8. Late Permian rivers draining the uplifted Cape Fold Belt: magnetostratigraphy and detrital thermochronology of Karoo Basin sediments

    Science.gov (United States)

    Tohver, E.; Schmieder, M.; Arosio, R.; Lanci, L.; Jourdan, F.; Wilson, A.; Ratcliffe, K.; Payenberg, T.; Flint, S.

    2017-12-01

    The Cape Fold Belt and Karoo Basin of southern Africa formed during the Permian orogeny that affected the 13,000 km southern margin of the Gondwanan continent. In this report, we synthesize new and recent magnetostratigraphic and geochronologic data to establish a chronostratigraphic framework for Karoo Basin sedimentation for comparison with the thermal/exhumation history of the Cape Fold Belt. The source-sink model is evaluated using new data from detrital muscovite and zircon from 2 km composite section of fluvial sandstone and mudstones deposited at ca.275 - 260 Ma. Coherent age populations of detrital zircon grains indicate rapid incorporation of contemporary volcanic ashbeds into the sedimentary record. In contrast, cooling age distributions of detrital muscovite are typically ca. 5 - 10 Ma older than the age of deposition; similar lag times are observed from modern sediments in active mountain belts. Trace element geochemical signatures demonstrate a clear shift towards crustal recycling via headland erosion in the Beaufort Group relative to the underlying Ecca Group. These observations pinpoint the age of uplift for the Cape Fold Belt, which began to function as the major sediment source for the foreland Karoo Basin with the deposition of the uppermost Ecca Group and basal Beaufort Group.

  9. Deformation and kinematics of the central Kirthar Fold Belt, Pakistan

    Science.gov (United States)

    Hinsch, Ralph; Hagedorn, Peter; Asmar, Chloé; Nasim, Muhammad; Aamir Rasheed, Muhammad; Kiely, James M.

    2017-04-01

    The Kirthar Fold Belt is part of the lateral mountain belts in Pakistan linking the Himalaya orogeny with the Makran accretionary wedge. This region is deforming very oblique/nearly parallel to the regional plate motion vector. The study area is situated between the prominent Chaman strike-slip fault in the West and the un-deformed foreland (Kirthar Foredeep/Middle Indus Basin) in the East. The Kirthar Fold Belt is subdivided into several crustal blocks/units based on structural orientation and deformation style (e.g. Kallat, Khuzdar, frontal Kirthar). This study uses newly acquired and depth-migrated 2D seismic lines, surface geology observations and Google Earth assessments to construct three balanced cross sections for the frontal part of the fold belt. Further work was done in order to insure the coherency of the built cross-sections by taking a closer look at the regional context inferred from published data, simple analogue modelling, and constructed regional sketch sections. The Khuzdar area and the frontal Kirthar Fold Belt are dominated by folding. Large thrusts with major stratigraphic repetitions are not observed. Furthermore, strike-slip faults in the Khuzdar area are scarce and not observed in the frontal Kirthar Fold Belt. The regional structural elevation rises from the foreland across the Kirthar Fold Belt towards the hinterland (Khuzdar area). These observations indicate that basement-involved deformation is present at depth. The domination of folding indicates a weak decollement below the folds (soft-linked deformation). The fold pattern in the Khuzdar area is complex, whereas the large folds of the central Kirthar Fold Belt trend SSW-NNE to N-S and are best described as large detachment folds that have been slightly uplifted by basement involved transpressive deformation underneath. Towards the foreland, the deformation is apparently more hard-linked and involves fault-propagation folding and a small triangle zone in Cretaceous sediments

  10. Capacity of bone marrow colony forming unit-fibroblasts in vitro from mice with combined radiation-burn injury

    International Nuclear Information System (INIS)

    Chen Xinghua; Luo Chengji; Guo Chaohua; Wang Ping

    1999-01-01

    Objective: To investigate the capacity of bone marrow colony forming unit-fibroblasts (CFU-F) from mice with combined radiation-burn injury. Methods: Mice were treated with 5.0 Gy γ-ray radiation alone, 15% total body surface area (TBSA) III degree burn alone or combined radiation-burn. The numbers of CFU-Fs were assayed by Dexter's method. Results: The numbers of CFU-Fs from mice with radiation and combined radiation-burn injury were significantly decreased, compared with those of controls and mice with burn injury alone (P<0.05-0.01). conclusion: The results reveal that the repairing process of bone marrow stromal cells from mice with radiation injury and combined radiation-burn injury is slow, and the combined radiation-burn injury inflicted on the stromal cells possesses the characteristic of radiation injury

  11. Investigation of microscopic radiation damage in waste forms using ODNMR and AEM techniques. (EMSP Project Final Report)

    International Nuclear Information System (INIS)

    Liu, G.; Luo, J.; Beitz, J.; Li, S.; Williams, C.; Zhorin, V.

    2000-01-01

    This project seeks to understand the microscopic effects of radiation damage in nuclear waste forms. The authors' approach to this challenge encompasses studies of ceramics and glasses containing short-lived alpha- and beta-emitting actinides with electron microscopy, laser and X-ray spectroscopic techniques, and computational modeling and simulations. In order to obtain information on long-term radiation effects on waste forms, much of the effort is to investigate α-decay induced microscopic damage in 18-year old samples of crystalline yttrium and lutetium orthophosphates that initially contained ∼ 1(wt)% of the alpha-emitting isotope 244 Cm (18.1 y half life). Studies also are conducted on borosilicate glasses that contain 244 Cm, 241 Am, or 249 Bk, respectively. The authors attempt to gain clear insights into the properties of radiation-induced structure defects and the consequences of collective defect-environment interactions, which are critical factors in assessing the long-term performance of high-level nuclear waste forms

  12. Investigation of microscopic radiation damage in waste forms using ODNMR and AEM techniques. (EMSP Project Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G.; Luo, J.; Beitz, J.; Li, S.; Williams, C.; Zhorin, V.

    2000-04-21

    This project seeks to understand the microscopic effects of radiation damage in nuclear waste forms. The authors' approach to this challenge encompasses studies of ceramics and glasses containing short-lived alpha- and beta-emitting actinides with electron microscopy, laser and X-ray spectroscopic techniques, and computational modeling and simulations. In order to obtain information on long-term radiation effects on waste forms, much of the effort is to investigate {alpha}-decay induced microscopic damage in 18-year old samples of crystalline yttrium and lutetium orthophosphates that initially contained {approximately} 1(wt)% of the alpha-emitting isotope {sup 244}Cm (18.1 y half life). Studies also are conducted on borosilicate glasses that contain {sup 244}Cm, {sup 241}Am, or {sup 249}Bk, respectively. The authors attempt to gain clear insights into the properties of radiation-induced structure defects and the consequences of collective defect-environment interactions, which are critical factors in assessing the long-term performance of high-level nuclear waste forms.

  13. Astronaut radiation. Will it become a problem?

    International Nuclear Information System (INIS)

    Parker, I.

    1988-01-01

    The U.S. NRCP recommendations to NASA for astronauts' dose limits to deep-body, eyes and skin are discussed in outline in relation to the longer space flights (e.g. space station duties and a manned Mars mission). Cosmic rays, solar flares and trapped Van Allen belt radiation are considered. (U.K.)

  14. Belt conveyor dynamics in transient operation for speed control

    NARCIS (Netherlands)

    He, D.; Pang, Y.; Lodewijks, G.

    2016-01-01

    Belt conveyors play an important role in continuous dry bulk material transport, especially at the mining industry. Speed control is expected to reduce the energy consumption of belt conveyors. Transient operation is the operation of increasing or decreasing conveyor speed for speed control.

  15. SEAT BELT USE AMONG CAR USERS IN MALAYSIA

    Directory of Open Access Journals (Sweden)

    S. KULANTHAYAN

    2004-01-01

    Full Text Available The car is the second (40% most common mode of transportation in Malaysia. In terms of fatal road accidents, car drivers constitute about 9.0% and passengers 13.6% of fatalities. The major cause of car occupants' fatality in such accidents is head injuries, which consist of more than half (56.4% of the fatalities. Thus restraining the head and body, the initial position is the most important injury control strategy for car users. The use of seat belts was deemed one of the most effective ways to reduce road accident fatalities in Malaysia and consequently the mandatory seat belt law was enforced in the early seventies. Therefore, a study on factors influencing the compliance behaviour of seat belt use among cars is needed as to date no such research has been undertaken in Malaysia. A questionnaire study was carried out in Selangor, Malaysia on the compliance behaviour of car occupants in relation to seat belt use. A total of 237 respondents were interviewed and the data analysed using logistic regression method. Six variables were found to be significant at 5 percent level (p<0.05: seating position, location of travel, education level, speeding, night-time driving and enforcement. Compliance with the seat belt law was higher among drivers, educated car users, in the presence of enforcement activities, travelling in city-center areas and car users with a positive attitude towards the risks of speeding and night driving.

  16. LifeSat - Radiation research

    International Nuclear Information System (INIS)

    Nelson, G.A.

    1990-01-01

    Spaceflight crews will be exposed to levels of radiation which exceed those experienced on the ground. In order to reduce the uncertainty in the evaluation of risks it is necessary to validate the responses of biological systems in space under conditions which simulate exposure levels expected during exploration class missions. The LifeSat system provides the experimental capabilities to satisfy these goals. Specifically, LifeSat is capable of long duration flights of up to 60 days, is able to fly directly into trapped radiation belts and in circular or eccentric polar orbits, has the ability to provide artificial gravity and imposes fewer restrictions than the STS on the use of hazardous materials such as chemical fixatives. These features along with reference missions and experiments are discussed with respect to radiation research goals

  17. Plant for treating workpieces with powerful radiation

    International Nuclear Information System (INIS)

    Messerschmied, H.; Martin, W.

    1983-01-01

    The plant for wetting paint using electron beams has a series of chambers along a conveyor belt for accepting painted articles. In order to achieve a continuous process and to save nitrogen to be introduced into the chambers, the chamber are formed by containers open at the top, which are closed from an irradiation station by an endless belt or by a roller bed running synchronously with the containers. (orig./HP) [de

  18. Fabrication and Operation of a Nano-Optical Conveyor Belt.

    Science.gov (United States)

    Ryan, Jason; Zheng, Yuxin; Hansen, Paul; Hesselink, Lambertus

    2015-08-26

    The technique of using focused laser beams to trap and exert forces on small particles has enabled many pivotal discoveries in the nanoscale biological and physical sciences over the past few decades. The progress made in this field invites further study of even smaller systems and at a larger scale, with tools that could be distributed more easily and made more widely available. Unfortunately, the fundamental laws of diffraction limit the minimum size of the focal spot of a laser beam, which makes particles smaller than a half-wavelength in diameter hard to trap and generally prevents an operator from discriminating between particles which are closer together than one half-wavelength. This precludes the optical manipulation of many closely-spaced nanoparticles and limits the resolution of optical-mechanical systems. Furthermore, manipulation using focused beams requires beam-forming or steering optics, which can be very bulky and expensive. To address these limitations in the system scalability of conventional optical trapping our lab has devised an alternative technique which utilizes near-field optics to move particles across a chip. Instead of focusing laser beams in the far-field, the optical near field of plasmonic resonators produces the necessary local optical intensity enhancement to overcome the restrictions of diffraction and manipulate particles at higher resolution. Closely-spaced resonators produce strong optical traps which can be addressed to mediate the hand-off of particles from one to the next in a conveyor-belt-like fashion. Here, we describe how to design and produce a conveyor belt using a gold surface patterned with plasmonic C-shaped resonators and how to operate it with polarized laser light to achieve super-resolution nanoparticle manipulation and transport. The nano-optical conveyor belt chip can be produced using lithography techniques and easily packaged and distributed.

  19. Observations of energetic helium ions in the Earth's radiation belts during a sequence of geomagnetic storms

    International Nuclear Information System (INIS)

    Spjeldvik, W.N.; Fritz, T.A.

    1981-01-01

    Every year a significant number of magnetic storms disturb the earth's magnetosphere and the trapped particle populations. In this paper, we present observations of energetic (MeV) helium ions made with Explorer 45 during a sequence of magnetic storms during June through December of 1972. The first of these storms started on June 17 and had a Dst index excursion to approx.190 gamma, and the MeV helium ions were perturbed primarily beyond 3 earth radii in the equatorial radiation belts with a typical flux increase of an order of magnitude at L = 4. The second storm period took place during August and was associated with very major solar flare activity. Although the Dst extremum was at best 35 gamma less than the June storm, this period can be characterized as irregular (or multi-storm) with strong compression of the magnetosphere and very large (order of magnitude) MeV helium ion flux enhancements down to Lapprox.2. Following this injection the trapped helium ion fluxes showed positive spectral slope with the peak beyond 3.15 MeV at L = 2.5; and at the lowest observable L shells (Lapprox.2--3) little flux decay (tau>100 days) was seen during the rest of the year. Any effects of two subsequent major magnetic storms in September and November were essentially undetectable in the prolonged after-effect of the August solar flare associated MeV helium ion injection. The helium ion radial profile of the phase space density showed a significant negative slope during this period, and we infer that radial diffusion constitutes a significant loss of helium ions on L shells above Lapprox. =4 during the aftermath of the August 1972 magnetic storm

  20. International survey of seat belt use exemptions.

    Science.gov (United States)

    Weiss, H; Sirin, H; Levine, J A; Sauber, E

    2006-08-01

    Substantial evidence of seatbelt efficacy has been shown by several studies, and it is widely recommended that motor vehicle occupants use properly fitted seat belts. However, some (but a heretofore unknown number of) countries with national seat belt laws permit various exemptions which may lower use rates. The aim of this study was to survey the variety of exemptions to national seat belt laws. This investigation relied on identifying respondents from national traffic safety agencies, other governmental and non-governmental organizations, Internet searches, personal contacts, and other sources. Questionnaires were deployed through a web based survey supplemented by email and postal versions. Responses were received from 30 countries of which 28 (93.7%) had a national seat belt law. About two thirds (63.7%) of the 28 national laws applied to both front and back seat passengers. The leading exemption types included vehicles made before a certain year (n = 13), antique vehicles (n = 12), military vehicles (n = 11), buses (n = 9), and emergency vehicles (n = 8). Most responding countries reported one or more specific categories of individuals as exempt including those with medical exemptions (n = 20), taxi drivers (n = 11), police (n = 9), emergency medical personnel (n = 8), physically disabled people (n = 6), and pregnant women (n = 6). Out of 26 responses to the question regarding current level of enforcement, 42.3% felt enforcement was "very good or good" and 57.7% characterized it as "fair or poor". This study represents one of the largest international traffic law surveys reported. Most national seatbelt laws offer perilous exemptions to a broad array of vehicle types and road user groups. These findings, coupled with concern over the level of enforcement in the majority of countries surveyed, suggest that international road safety efforts have a long way to go to improve coverage and enforcement of national seat belt laws.

  1. Sensitivity and Acclimation of Three Canopy-Forming Seaweeds to UVB Radiation and Warming

    KAUST Repository

    Xiao, Xi; de Bettignies, Thibaut; Olsen, Ylva S.; Agusti, Susana; Duarte, Carlos M.; Wernberg, Thomas

    2015-01-01

    Canopy-forming seaweeds, as primary producers and foundation species, provide key ecological services. Their responses to multiple stressors associated with climate change could therefore have important knock-on effects on the functioning of coastal ecosystems. We examined interactive effects of UVB radiation and warming on juveniles of three habitat-forming subtidal seaweeds from Western Australia–Ecklonia radiata, Scytothalia dorycarpa and Sargassum sp. Fronds were incubated for 14 days at 16–30°C with or without UVB radiation and growth, health status, photosynthetic performance, and light absorbance measured. Furthermore, we used empirical models from the metabolic theory of ecology to evaluate the sensitivity of these important seaweeds to ocean warming. Results indicated that responses to UVB and warming were species specific, with Sargassum showing highest tolerance to a broad range of temperatures. Scytothalia was most sensitive to elevated temperature based on the reduced maximum quantum yields of PSII; however, Ecklonia was most sensitive, according to the comparison of activation energy calculated from Arrhenius’ model. UVB radiation caused reduction in the growth, physiological responses and thallus health in all three species. Our findings indicate that Scytothalia was capable of acclimating in response to UVB and increasing its light absorption efficiency in the UV bands, probably by up-regulating synthesis of photoprotective compounds. The other two species did not acclimate over the two weeks of exposure to UVB. Overall, UVB and warming would severely inhibit the growth and photosynthesis of these canopy-forming seaweeds and decrease their coverage. Differences in the sensitivity and acclimation of major seaweed species to temperature and UVB may alter the balance between species in future seaweed communities under climate change.

  2. Sensitivity and Acclimation of Three Canopy-Forming Seaweeds to UVB Radiation and Warming

    KAUST Repository

    Xiao, Xi

    2015-12-02

    Canopy-forming seaweeds, as primary producers and foundation species, provide key ecological services. Their responses to multiple stressors associated with climate change could therefore have important knock-on effects on the functioning of coastal ecosystems. We examined interactive effects of UVB radiation and warming on juveniles of three habitat-forming subtidal seaweeds from Western Australia–Ecklonia radiata, Scytothalia dorycarpa and Sargassum sp. Fronds were incubated for 14 days at 16–30°C with or without UVB radiation and growth, health status, photosynthetic performance, and light absorbance measured. Furthermore, we used empirical models from the metabolic theory of ecology to evaluate the sensitivity of these important seaweeds to ocean warming. Results indicated that responses to UVB and warming were species specific, with Sargassum showing highest tolerance to a broad range of temperatures. Scytothalia was most sensitive to elevated temperature based on the reduced maximum quantum yields of PSII; however, Ecklonia was most sensitive, according to the comparison of activation energy calculated from Arrhenius’ model. UVB radiation caused reduction in the growth, physiological responses and thallus health in all three species. Our findings indicate that Scytothalia was capable of acclimating in response to UVB and increasing its light absorption efficiency in the UV bands, probably by up-regulating synthesis of photoprotective compounds. The other two species did not acclimate over the two weeks of exposure to UVB. Overall, UVB and warming would severely inhibit the growth and photosynthesis of these canopy-forming seaweeds and decrease their coverage. Differences in the sensitivity and acclimation of major seaweed species to temperature and UVB may alter the balance between species in future seaweed communities under climate change.

  3. The Social Construction of the Great Belt Fixed Link

    DEFF Research Database (Denmark)

    Munch, Birgitte

    1994-01-01

    Working paper in Technology Management. Actor Network theory (ANT) used upon the process of negotiating legislation and constructing the Great Belt fixed link.......Working paper in Technology Management. Actor Network theory (ANT) used upon the process of negotiating legislation and constructing the Great Belt fixed link....

  4. U-Pb SHRIMP and Sm-Nd geochronology of the paleoproterozoic Silvania magmatic arc in the neoproproterozoic Brasilia Belt, Goias, Central Brazil

    International Nuclear Information System (INIS)

    Fischel, D.P.; Pimentel, M.M.; Fuck, R.A; Armstrong, R

    2001-01-01

    The Brasilia Belt is a large Neoproterozoic orogen formed along the western margin of the Sao Francisco/Congo Craton in central Brazil. It comprises: (i) a thick Meso-Neoproterozoic metasedimentary/sedimentary pile with eastward tectonic vergence; (ii) a large Neoproterozoic juvenile arc in the west (Goias Magmatic Arc); and (iii) a micro-continent (or exotic sialic terrain) formed by Archean rock units (the Crixas -Goias granitegreenstones) and associated Proterozoic formations (Almeida et al. 1981, Fuck et al. 1993,1994, Pimentel et al. 2000a, b). The sialic basement on which the Brasilia Belt sediments were deposited is poorly understood, despite being well exposed in some areas of Goias and Tocantins. Gneiss and volcano-sedimentary units form most of this basement. Early studies have suggested that these rock units are dominantly Archean ( Danni et al. 1982, Marini et al. 1984). However, recent Sm- Nd isotopic studies have indicated that most of them are Paleoproterozoic (Sato 1998, Pimentel et al. 1999a, 2000b). Granite gneiss to the south and east of the Barro Alto mafic-ultramafic layered complex has been dated at 2128+/- 15 Ma (Correia et al. 1997). Calc-alkaline granite gneiss from Almas-Dianopolis is dated at ca. 2.2-2.45 Ga old (U-Pb SHRIMP on zircon and titanite, Cruz et al. 2000). The latter is probably the western extension of Paleoproterozoic rocks which underlie the San Francisco Craton to the east of the northern part of the Brasilia Belt. In central Goias, a large part of the Brasilia Belt is underlain by high-grade metamorphic rocks known as the Anapolis-Itaucu Complex, together with surrounding greenschist to amphibolite facies Mesoto Neoproterozoic cover metasediments of the Araxa group. These rocks represent the main constituent of the internal zone of the Brasilia Belt (Fuck et al. 1994, Pimentel et al. 2000b). Between the Araxa Group, and the easternmost part of the Anapolis-Itaucu Complex a volcano-sedimentary association known as Silvania

  5. Paired Magmatic-Metallogenic Belts in Myanmar - an Andean Analogue?

    Science.gov (United States)

    Gardiner, Nicholas; Robb, Laurence; Searle, Michael; Morley, Christopher

    2015-04-01

    Myanmar (Burma) is richly endowed in precious and base metals, having one of the most diverse collections of natural resources in SE Asia. Its geological history is dominated by the staged closing of Tethys and the suturing of Gondwana-derived continental fragments onto the South China craton during the Mesozoic-Cenozoic. The country is located at a crucial geologic juncture where the main convergent Tethyan collision zone swings south around the Namche Barwa Eastern Himalayan syntaxis. However, despite recent work, the geological and geodynamic history of Myanmar remains enigmatic. Plate margin processes, magmatism, metasomatism and the genesis of mineral deposits are intricately linked, and there has long been recognized a relationship between the distribution of certain mineral deposit types, and the tectonic settings which favour their genesis. A better knowledge of the regional tectonic evolution of a potential exploration jurisdiction is therefore crucial to understanding its minerals prospectivity. This strong association between tectonics and mineralization can equally be applied in reverse. By mapping out the spatial, and temporal, distribution of presumed co-genetic mineral deposits, coupled with an understanding of their collective metallogenetic origin, a better appreciation of the tectonic evolution of a terrane may be elucidated. Identification and categorization of metallotects within a geodynamically-evolving terrane thus provides a complimentary tool to other methodologies (e.g. geochemical, geochronological, structural, geophysical, stratigraphical), for determining the tectonic history and inferred geodynamic setting of that terrane through time. Myanmar is one such study area where this approach can be undertaken. Here are found two near-parallel magmatic belts, which together contain a significant proportion of that country's mineral wealth of tin, tungsten, copper, gold and silver. Although only a few 100 km's apart, these belts exhibit a

  6. Type QH-200 conveyor-belt nuclear scale

    International Nuclear Information System (INIS)

    Li Shuming; Dong Shiyuan; Li Furong; Wan Zemin

    1991-01-01

    Type QH-200 conveyor-belt nuclear scale is a reliable and on-line device that weighs solids mass flow continuously by γ-ray absorption and scattering. The operation principle and measuring method are described. And some factors influencing the accuracy are discussed. The full scale total weight of type QH-200 nuclear scale is 10 6 t. The result of calibration in the industrial field shows that the accuracy of QH-200 is better than ±1.0% for typical belt loading

  7. The Sino-American belt study: nickel and cobalt exposure, epidemiology, and clinical considerations.

    Science.gov (United States)

    Hamann, Dathan; Hamann, Carsten; Li, Lin-Feng; Xiang, Hailian; Hamann, Kylin; Maibach, Howard; Taylor, James S; Thyssen, Jacob P

    2012-01-01

    Nickel and cobalt are common causes of metal allergy. The objective of this study was to investigate nickel and cobalt exposure in belt buckles by testing 701 belts purchased in China and the United States and to consider the prevalence of nickel allergy and its relevance among Chinese patients. Seven hundred one belt buckles purchased in China and the United States were tested for nickel and cobalt release. Six hundred thirty-one Chinese patients with suspected allergic contact dermatitis were patch tested and interviewed to determine clinical relevance of results. The Chinese and American literature was reviewed to investigate trends in nickel prevalence over the past decades. Sixty percent (n = 219) of belts purchased in China (n = 365) released nickel, and 0.5% (n = 2) released cobalt; 55.7% (n = 187) in the United States (n = 336) released nickel, and 0.9% (n = 3) released cobalt. Belt dermatitis was a significant clinical finding in 34.8% of Chinese nickel-allergic patients. Literature review suggests increasing nickel allergy prevalence in the United States and China. Metallic belt buckles are an important source of nickel exposure to consumers. Belts from lowest socioeconomic vendors were more likely to release nickel. Belts with silver color and dark metallic color were more likely to release nickel and cobalt, respectively. Clinical findings show belt dermatitis in China to be a problem.

  8. Radiation protection for human interplanetary spaceflight and planetary surface operations

    Energy Technology Data Exchange (ETDEWEB)

    Clark, B.C. [Armed Forces Radiobiology Research Inst., Bethesda, MD (United States)]|[DLR Inst. of Aerospace Medicine, Cologne (Germany)]|[NASA, Goddard Space Flight Center, Greenbelt, MD (United States)

    1993-12-31

    Radiation protection issues are reviewed for five categories of radiation exposure during human missions to the moon and Mars: trapped radiation belts, galactic cosmic rays, solar flare particle events, planetary surface emissions, and on-board radiation sources. Relative hazards are dependent upon spacecraft and vehicle configurations, flight trajectories, human susceptibility, shielding effectiveness, monitoring and warning systems, and other factors. Crew cabins, interplanetary mission modules, surface habitats, planetary rovers, and extravehicular mobility units (spacesuits) provide various degrees of protection. Countermeasures that may be taken are reviewed relative to added complexity and risks that they could entail, with suggestions for future research and analysis.

  9. The physical imitation experiments of nuclear belt weight scaler

    International Nuclear Information System (INIS)

    Shi Qicun; Wang Mingqian; Sun Jinhua; Li Zhonghao

    1993-01-01

    The physical imitation experiments of the nuclear belt weight scaler (NBWS) were performed with a coal-loaded belt. The linearity, repetition and long-time stability; of the NBWS were measured. And the influence of pile shape, load bias and the composition of coal on weight calculation were studied

  10. Structural appraisal of the Gadag schist belt from gravity investigations

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    From qualitative analysis of the gravity data, several tectonic features are ... major types of schist belts are identified in the ... Dharwar craton; Gadag schist belt; gravity method; inversion. ..... the Research Associateship of Dr D Himabindu.

  11. Understanding quaternions and the Dirac belt trick

    International Nuclear Information System (INIS)

    Staley, Mark

    2010-01-01

    The Dirac belt trick is often employed in physics classrooms to show that a 2π rotation is not topologically equivalent to the absence of rotation whereas a 4π rotation is, mirroring a key property of quaternions and their isomorphic cousins, spinors. The belt trick can leave the student wondering if a real understanding of quaternions and spinors has been achieved, or if the trick is just an amusing analogy. The goal of this paper is to demystify the belt trick and to show that it suggests an underlying four-dimensional parameter space for rotations that is simply connected. An investigation into the geometry of this four-dimensional space leads directly to the system of quaternions, and to an interpretation of three-dimensional vectors as the generators of rotations in this larger four-dimensional world. The paper also shows why quaternions are the natural extension of complex numbers to four dimensions. The level of the paper is suitable for undergraduate students of physics.

  12. Africa’s Role in Chinese People's Republic Initiative “One Belt and One Road”

    Directory of Open Access Journals (Sweden)

    Кристина Михайловна Михайличенко

    2018-12-01

    Full Text Available The article analyses the role, place and forms of African countries’ participation in the new China’s strategy “One Belt and One Road”. The author describes the existing partnership between China and African countries and their future interaction within the New Silk Road. China’s initiative pays special attention to identification of positive and negative sides of China-Africa cooperation.

  13. RBE of 0,85 MeV neutrons in guinea pigs with intestinal form of radiation sickness

    International Nuclear Information System (INIS)

    Shaporov, V.N.; Sokolova, T.I.; Nasonova, T.A.; Aleshin, S.N.

    1989-01-01

    Relative biological effectiveness (RBE) coefficient of 0.85 MeV neutrons was 1.87 in comparison with 0.66 MeV γ-radiation ( 137 Cs) when estimated by the death rate of guinea pigs with intestinal form of radiation sickness. LD 50/5 was 5.9 and 11.06 respectively. Features of the mortality rate dynamics, clinical picture and pathoanatomical changes are discussed

  14. Aortic ruptures in seat belt wearers.

    Science.gov (United States)

    Arajärvi, E; Santavirta, S; Tolonen, J

    1989-09-01

    Several investigations have indicated that rupture of the thoracic aorta is one of the leading causes of immediate death in victims of road traffic accidents. In Finland in 1983, 92% of front-seat passengers were seat belt wearers on highways and 82% in build-up areas. The mechanisms of rupture of the aorta have been intensively investigated, but the relationship between seat belt wearing and injury mechanisms leading to aortic rupture is still largely unknown. This study comprises 4169 fatally injured victims investigated by the Boards of Traffic Accident Investigation of Insurance Companies during the period 1972 to 1985. Chest injuries were recorded as the main cause of death in 1121 (26.9%) victims, 207 (5.0%) of those victims having worn a seat belt. Aortic ruptures were found at autopsy in 98 victims and the exact information of the location of the aortic tears was available in 68. For a control group, we analyzed 72 randomly chosen unbelted victims who had a fatal aortic rupture in similar accidents. The location of the aortic rupture in unbelted victims was more often in the ascending aorta, especially in drivers, whereas in seat belt wearers the distal descending aorta was statistically more often ruptured, especially in right-front passengers (p less than 0.05). The steering wheel predominated statistically as the part of the car estimated to have caused the injury in unbelted victims (37/72), and some interior part of the car was the most common cause of fatal thoracic impacts in seat belt wearers (48/68) (p less than 0.001). The mechanism of rupture of the aorta in the classic site just distal to the subclavian artery seems to be rapid deceleration, although complex body movements are also responsible in side impact collisions. The main mechanism leading to rupture of the ascending aorta seems to be severe blow to the bony thorax. This also often causes associated thoracic injuries, such as heart rupture and sternal fracture. Injuries in the ascending

  15. The Belt voice: Acoustical measurements and esthetic correlates

    Science.gov (United States)

    Bounous, Barry Urban

    This dissertation explores the esthetic attributes of the Belt voice through spectral acoustical analysis. The process of understanding the nature and safe practice of Belt is just beginning, whereas the understanding of classical singing is well established. The unique nature of the Belt sound provides difficulties for voice teachers attempting to evaluate the quality and appropriateness of a particular sound or performance. This study attempts to provide answers to the question "does Belt conform to a set of measurable esthetic standards?" In answering this question, this paper expands on a previous study of the esthetic attributes of the classical baritone voice (see "Vocal Beauty", NATS Journal 51,1) which also drew some tentative conclusions about the Belt voice but which had an inadequate sample pool of subjects from which to draw. Further, this study demonstrates that it is possible to scientifically investigate the realm of musical esthetics in the singing voice. It is possible to go beyond the "a trained voice compared to an untrained voice" paradigm when evaluating quantitative vocal parameters and actually investigate what truly beautiful voices do. There are functions of sound energy (measured in dB) transference which may affect the nervous system in predictable ways and which can be measured and associated with esthetics. This study does not show consistency in measurements for absolute beauty (taste) even among belt teachers and researchers but does show some markers with varying degrees of importance which may point to a difference between our cognitive learned response to singing and our emotional, more visceral response to sounds. The markers which are significant in determining vocal beauty are: (1) Vibrancy-Characteristics of vibrato including speed, width, and consistency (low variability). (2) Spectral makeup-Ratio of partial strength above the fundamental to the fundamental. (3) Activity of the voice-The quantity of energy being produced. (4

  16. Detection of Chorus Elements and other Wave Signatures Using Geometric Computational Techniques in the Van Allen radiation belts

    Science.gov (United States)

    Sengupta, A.; Kletzing, C.; Howk, R.; Kurth, W. S.

    2017-12-01

    An important goal of the Van Allen Probes mission is to understand wave particle interactions that can energize relativistic electron in the Earth's Van Allen radiation belts. The EMFISIS instrumentation suite provides measurements of wave electric and magnetic fields of wave features such as chorus that participate in these interactions. Geometric signal processing discovers structural relationships, e.g. connectivity across ridge-like features in chorus elements to reveal properties such as dominant angles of the element (frequency sweep rate) and integrated power along the a given chorus element. These techniques disambiguate these wave features against background hiss-like chorus. This enables autonomous discovery of chorus elements across the large volumes of EMFISIS data. At the scale of individual or overlapping chorus elements, topological pattern recognition techniques enable interpretation of chorus microstructure by discovering connectivity and other geometric features within the wave signature of a single chorus element or between overlapping chorus elements. Thus chorus wave features can be quantified and studied at multiple scales of spectral geometry using geometric signal processing techniques. We present recently developed computational techniques that exploit spectral geometry of chorus elements and whistlers to enable large-scale automated discovery, detection and statistical analysis of these events over EMFISIS data. Specifically, we present different case studies across a diverse portfolio of chorus elements and discuss the performance of our algorithms regarding precision of detection as well as interpretation of chorus microstructure. We also provide large-scale statistical analysis on the distribution of dominant sweep rates and other properties of the detected chorus elements.

  17. Multiple loss processes of relativistic electrons outside the heart of outer radiation belt during a storm sudden commencement

    International Nuclear Information System (INIS)

    Yu, J.

    2015-01-01

    By examining the compression-induced changes in the electron phase space density and pitch angle distribution observed by two satellites of Van Allen Probes (RBSP-A/B), we find that the relativistic electrons (>2 MeV) outside the heart of outer radiation belt (L*≥5) undergo multiple losses during a storm sudden commencement. The relativistic electron loss mainly occurs in the field-aligned direction (pitch angle α < 30° or >150°), and the flux decay of the field-aligned electrons is independent of the spatial location variations of the two satellites. However, the relativistic electrons in the pitch angle range of 30°–150° increase (decrease) with the decreasing (increasing) geocentric distance (|ΔL|<0.25) of the RBSP-B (RBSP-A) location, and the electron fluxes in the quasi-perpendicular direction display energy-dispersive oscillations in the Pc5 period range (2–10 min). The relativistic electron loss is confirmed by the decrease of electron phase space density at high-L shell after the magnetospheric compressions, and their loss is associated with the intense plasmaspheric hiss, electromagnetic ion cyclotron (EMIC) waves, relativistic electron precipitation (observed by POES/NOAA satellites at 850 km), and magnetic field fluctuations in the Pc5 band. Finally, the intense EMIC waves and whistler mode hiss jointly cause the rapidly pitch angle scattering loss of the relativistic electrons within 10 h. Moreover, the Pc5 ULF waves also lead to the slowly outward radial diffusion of the relativistic electrons in the high-L region with a negative electron phase space density gradient.

  18. A Study on the International Tourism of Jiangxi Province under the Guidance of One Belt, One Road Strategy

    Directory of Open Access Journals (Sweden)

    Guo Xiaojing

    2016-07-01

    Full Text Available In recent years, with the shift and violent development of economic globalization and sciences and technology, the connection between counties and citizens all over the world has become more and more intimate, so that the international tourism develops quickly and has become one of the important revenue sources gradually. In 2013, China proposed the new strategic thought of One Belt, One Road (the Silk Road Economic Belt and 21st Century Maritime Silk Road. Jiangxi province will bring its local regional superiority to full play under the guidance of the strategic thought, and powerfully cooperate with neighboring provinces and cities, in order to actively participate in the international tourism market and attempt to make its international tourism bigger and stronger. As the national strategic pillar industry, tourism plays an important role in the regional industrial structure adjustment and upgrade. Possessing the characteristics of strong integration, high interactivity and wide expansibility, tourism is the important engine to accelerate the development of urban economy. In September and October of 2013,during the visit of Chinese President Xi Jinping to countries of Central and East Asia, he successively proposed the significant suggestions of the Silk Road Economic Belt and 21st Century Maritime Silk Road, and the two of them were collectively intituled as One Belt, One Road New Strategic Thought. Silk Road Economic Belt covers the integration of the Southeast and Northeast Asian Economy entities which were eventually merged to lead to Europe. 21st Century Maritime Silk Road refers to unite Europe, Asia and Africa at sea in order to form a complete economic belt. Based on the increasingly deepening of economic integration, One Belt, One Road New Strategy is an international strategy which possesses the strategic importance of promoting industry upgrading and accelerating the transformation of economic growth mode for the purpose of mutual

  19. Space weather effects measured in atmospheric radiation on aircraft

    Science.gov (United States)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Wieman, S. R.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, L. D.; Mertens, C. J.; Xu, X.; Wiltberger, M. J.; Wiley, S.; Teets, E.; Shea, M. A.; Smart, D. F.; Jones, J. B. L.; Crowley, G.; Azeem, S. I.; Halford, A. J.

    2016-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Since 2013 Space Environment Technologies (SET) has been conducting observations of the atmospheric radiation environment at aviation altitudes using a small fleet of six instruments. The objective of this work is to improve radiation risk management in air traffic operations. Under the auspices of the Automated Radiation Measurements for Aerospace Safety (ARMAS) and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) projects our team is making dose rate measurements on multiple aircraft flying global routes. Over 174 ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the radiation environment resulting from Galactic Cosmic Rays (GCRs), Solar Energetic Protons (SEPs), and outer radiation belt energetic electrons. The real-time radiation exposure is measured as an absorbed dose rate in silicon and then computed as an ambient dose equivalent rate for reporting dose relevant to radiative-sensitive organs and tissue in units of microsieverts per hour. ARMAS total ionizing absorbed dose is captured on the aircraft, downlinked in real-time, processed on the ground into ambient dose equivalent rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users. Dose rates from flight altitudes up to 56,700 ft. are shown for flights across the planet under a variety of space weather conditions. We discuss several space weather

  20. Effects of a Belt on Intra-Abdominal Pressure during Weight Lifting.

    Science.gov (United States)

    1988-03-01

    potentially injurious b compressive forces on spinal discs during lifting. To investigate the effects of a standard lifting belt on lAP and lifting mechanics... injurious compressive forces on spinal discs during lifting. To investigate the effects of a standard lifting belt on IAP and lifting ! mechanics... weightlifting (7,9). Both olympic and power lifters have used lifting belts for many years, yet virtually no research has been reported which examines

  1. Metallogenic epoch of the Jiapigou gold belt, Jilin Province, China

    Indian Academy of Sciences (India)

    Metallogenic epoch of the Jiapigou gold belt, Jilin Province, China: ... The Jiapigou gold belt is located on the northern margin of the North China Craton, and is one of the ... 29, Xueyuan Road, Beijing 100083, People's Republic of China.

  2. Design study of flat belt CVT for electric vehicles

    Science.gov (United States)

    Kumm, E. L.

    1980-01-01

    A continuously variable transmission (CVT) was studied, using a novel flat belt pulley arrangement which couples the high speed output shaft of an energy storage flywheel to the drive train of an electric vehicle. A specific CVT arrangement was recommended and its components were selected and sized, based on the design requirements of a 1700 KG vehicle. A design layout was prepared and engineering calculations made of component efficiencies and operating life. The transmission efficiency was calculated to be significantly over 90% with the expected vehicle operation. A design consistent with automotive practice for low future production costs was considered, together with maintainability. The technology advancements required to develop the flat belt CVT were identified and an estimate was made of how the size of the flat belt CVT scales to larger and smaller design output torques. The suitability of the flat belt CVT for alternate application to an electric vehicle powered by an electric motor without flywheel and to a hybrid electric vehicle powered by an electric motor with an internal combustion engine was studied.

  3. Race, belief in destiny, and seat belt usage: a pilot study.

    Science.gov (United States)

    Colón, I

    1992-01-01

    A survey of 1063 individuals found that when belief in destiny was statistically controlled, differences in seat belt use by race disappeared. Thus, racial differences in seat belt use are statistically accounted for and might be explained by belief in destiny. Efforts to increase seat belt use should target minority groups rather than include them in broadbrush programs. Further, these efforts should take into account this important difference in motivation. PMID:1585969

  4. MeV proton flux predictions near Saturn's D ring.

    Science.gov (United States)

    Kollmann, P; Roussos, E; Kotova, A; Cooper, J F; Mitchell, D G; Krupp, N; Paranicas, C

    2015-10-01

    Radiation belts of MeV protons have been observed just outward of Saturn's main rings. During the final stages of the mission, the Cassini spacecraft will pass through the gap between the main rings and the planet. Based on how the known radiation belts of Saturn are formed, it is expected that MeV protons will be present in this gap and also bounce through the tenuous D ring right outside the gap. At least one model has suggested that the intensity of MeV protons near the planet could be much larger than in the known belts. We model this inner radiation belt using a technique developed earlier to understand Saturn's known radiation belts. We find that the inner belt is very different from the outer belts in the sense that its intensity is limited by the densities of the D ring and Saturn's upper atmosphere, not by radial diffusion and satellite absorption. The atmospheric density is relatively well constrained by EUV occultations. Based on that we predict an intensity in the gap region that is well below that of the known belts. It is more difficult to do the same for the region magnetically connected to the D ring since its density is poorly constrained. We find that the intensity in this region can be comparable to the known belts. Such intensities pose no hazard to the mission since Cassini would only experience these fluxes on timescales of minutes but might affect scientific measurements by decreasing the signal-to-contamination ratio of instruments.

  5. A minimalistic and optimized conveyor belt for neutral atoms.

    Science.gov (United States)

    Roy, Ritayan; Condylis, Paul C; Prakash, Vindhiya; Sahagun, Daniel; Hessmo, Björn

    2017-10-20

    Here we report of a design and the performance of an optimized micro-fabricated conveyor belt for precise and adiabatic transportation of cold atoms. A theoretical model is presented to determine optimal currents in conductors used for the transportation. We experimentally demonstrate a fast adiabatic transportation of Rubidium ( 87 Rb) cold atoms with minimal loss and heating with as few as three conveyor belt conductors. This novel design of a multilayered conveyor belt structure is fabricated in aluminium nitride (AlN) because of its outstanding thermal and electrical properties. This demonstration would pave a way for a compact and portable quantum device required for quantum information processing and sensors, where precise positioning of cold atoms is desirable.

  6. Design of a nucleonic conveyor belt weighing machine

    International Nuclear Information System (INIS)

    Magal, B.S.; Sunder Singh, V.P.

    1979-01-01

    A brief literature survey of the existing conventional units and the nucleonic belt weigher is made. The design of a 250 ton per hour coal weighing unit working in conjunction with a 24 inch wide belt, running at 350 feet per minute has been attempted and a unit has been built to the above specifications. Caseium-137 line source has been used as an isotope and a 10 litre volume argon filled ionisation chamber has been used as a detector. A line source has been preferred to a point source. The unit is under trial and the accuracy of the same is being evaluated by changing the variables like particle size profile of the material deposited on the belt and sudden changes in loading. Initial trials indicate that an accuracy of +- 1 p.c. can be achieved. (auth.)

  7. Knowledge, attitude and use of seat belt among commercial drivers in Sokoto Metropolis

    Directory of Open Access Journals (Sweden)

    A O Abiola

    2010-01-01

    Conclusion: This study has identified high level of knowledge, positive attitude and reported use of seat belt. It is recommended that public awareness of the safety benefits of seat belts and strong enforcement are necessary to achieve optimal use of seat belt.

  8. A multi points ultrasonic detection method for material flow of belt conveyor

    Science.gov (United States)

    Zhang, Li; He, Rongjun

    2018-03-01

    For big detection error of single point ultrasonic ranging technology used in material flow detection of belt conveyor when coal distributes unevenly or is large, a material flow detection method of belt conveyor is designed based on multi points ultrasonic counter ranging technology. The method can calculate approximate sectional area of material by locating multi points on surfaces of material and belt, in order to get material flow according to running speed of belt conveyor. The test results show that the method has smaller detection error than single point ultrasonic ranging technology under the condition of big coal with uneven distribution.

  9. The behavioral impact of an advertising campaign to promote safety belt use.

    Science.gov (United States)

    Cope, J G; Moy, S S; Grossnickle, W F

    1988-01-01

    Safety belt use was observed at one restaurant during McDonald's "Make It Click" promotional campaign. Following baseline, the program was monitored without intervention. During the final 2 weeks of the campaign an incentive strategy was added providing a large soft drink contingent on safety belt use. Safety belt use did not change from baseline levels before the incentive phase. The rate of belt use increased under contingent reward and declined during follow-up. The effects of a verbal prompt could not be assessed because of the almost nonexistent use of the "Make It Click" stickers throughout the study.

  10. Study on Fuzzy Comprehensive Evaluation Model for the Safety of Mine Belt Conveyor

    Directory of Open Access Journals (Sweden)

    Gong Xiaoyan

    2017-01-01

    Full Text Available To improve the situation of the frequent failures of mine belt conveyor during operation, a model was used to evaluate the safety of mine belt conveyor. Based on the foundation of collecting and analyzing a large quantity of fault information of belt conveyor in the nationwide coal mine, the fault tree model of belt conveyor has been built, then the safety evaluation index system was established by analyzing and removing some secondary indicators. Furthermore, the weighted value of safety evaluation indexs was determined by analytic hierarchy process(AHP, and the single factor fuzzy evaluation matrix was constructed by experts grading method. Additionally, the model was applied in evaluating the security of belt conveyor in Nanliang coal mine. The results shows the security level is recognized to the “general”, which means that this model can be adopted widely in evaluating the safety of mine belt conveyor.

  11. Does unbelted safety requirement affect protection for belted occupants?

    Science.gov (United States)

    Hu, Jingwen; Klinich, Kathleen D; Manary, Miriam A; Flannagan, Carol A C; Narayanaswamy, Prabha; Reed, Matthew P; Andreen, Margaret; Neal, Mark; Lin, Chin-Hsu

    2017-05-29

    Federal regulations in the United States require vehicles to meet occupant performance requirements with unbelted test dummies. Removing the test requirements with unbelted occupants might encourage the deployment of seat belt interlocks and allow restraint optimization to focus on belted occupants. The objective of this study is to compare the performance of restraint systems optimized for belted-only occupants with those optimized for both belted and unbelted occupants using computer simulations and field crash data analyses. In this study, 2 validated finite element (FE) vehicle/occupant models (a midsize sedan and a midsize SUV) were selected. Restraint design optimizations under standardized crash conditions (U.S.-NCAP and FMVSS 208) with and without unbelted requirements were conducted using Hybrid III (HIII) small female and midsize male anthropomorphic test devices (ATDs) in both vehicles on both driver and right front passenger positions. A total of 10 to 12 design parameters were varied in each optimization using a combination of response surface method (RSM) and genetic algorithm. To evaluate the field performance of restraints optimized with and without unbelted requirements, 55 frontal crash conditions covering a greater variety of crash types than those in the standardized crashes were selected. A total of 1,760 FE simulations were conducted for the field performance evaluation. Frontal crashes in the NASS-CDS database from 2002 to 2012 were used to develop injury risk curves and to provide the baseline performance of current restraint system and estimate the injury risk change by removing the unbelted requirement. Unbelted requirements do not affect the optimal seat belt and airbag design parameters in 3 out of 4 vehicle/occupant position conditions, except for the SUV passenger side. Overall, compared to the optimal designs with unbelted requirements, optimal designs without unbelted requirements generated the same or lower total injury risks for

  12. Comparison of radio data and model calculations of Jupiter's synchrotron radition 2. East--west asymmetry in the radiation belts as a functon of Jovian longitude

    International Nuclear Information System (INIS)

    de Pater, I.

    1981-01-01

    On the basis of comparison of radio data and model calculations of Jupiter's synchrotron radiaton the 'hot region' or east--west asymmetry in the planet's radiation belts is proposed to be due to the combined effect of an overabundance of electrons at jovicentric longitudes lambda/sub J/approx.240 0 --360 0 and the existence of a dusk dawn directed electric field over the inner magnetosphere, generated by the wind system in the upper atmosphere. The model calculations were based upon the magnetic field configurations derived from the Pioneer data by Acuna and Ness [1976] (the O 4 model) and Davis, Jones and Smith (quoted in Smith and Gulkis [1979]) (the P 11 (3,2)A model), with an electron distribution derived in the first paper of this series [de Pater, this issue]. We would infer from the calculations that the O 4 model gives a slightly better fit to the data; the relatively large number density at lambda/sub J/approx.240 0 --360 0 , however, might indicate the presence of even higher order moments in the field

  13. Radiations and space flight; Quand les radiations font partie du voyage

    Energy Technology Data Exchange (ETDEWEB)

    Maalouf, M.; Vogin, G.; Foray, N. [Groupe de Radiobiologie, Inserm U836, Institut des Neurosciences, 38 - Grenoble (France); Maalouf [CNES, Dept. des Sciences de la Vie, 75 - Paris (France); Vogin, G. [Laboratoire de Radiobiologie, EA3738, Faculte de Medecine de Lyon Sud, 69- Oullins (France)

    2011-02-15

    A space flight is submitted to 3 main sources of radiation: cosmic radiation (4 protons/cm{sup 2}/s and 10000 times less for the heaviest particles), solar radiation (10{sup 8} protons/cm{sup 2}/s in the solar wind), the Van Allen belt around the earth: the magnetosphere traps particles and at an altitude of 500 km the proton flux can reach 100 protons/cm{sup 2}/s. If we take into account all the spatial missions performed since 1960, we get an average dose of 400 {mu}Gray per day with an average dose rate of 0.28 {mu}Gray/mn. A significant risk of radiation-induced cancer is expected for missions whose duration is over 250 days.The cataract appears to be the most likely non-cancerous health hazard due to the exposition to comic radiation. Its risk appears to have been under-estimated, particularly for doses over 8 mGray. Some studies on astronauts have shown for some a very strong predisposition for radio-induced cancers: during the reparation phase of DNA breaking due to irradiation, multiple new damages are added by the cells themselves that behave abnormally. (A.C.)

  14. Computation of coupled surface radiation and natural convection in an inclined form cavity

    International Nuclear Information System (INIS)

    Amraqui, Samir; Mezrhab, Ahmed; Abid, Cherifa

    2011-01-01

    The present paper is concerned with computation of the radiation-natural convection interactions in an inclined form cavity. The cavity contains two symmetrically identical isothermal blocks and is vented by two opening located in a vertical median axis at the top and the bottom parts of the cavity. Calculations are made by using a finite volume method and an efficient numerical procedure is introduced for calculating the view factors, with shadow effects included. Effects of Rayleigh number Ra and inclination angle φ are investigated for Pr = 0.71 in presence and in absence of the radiation exchange. Results are reported in terms of isotherms, streamlines, local and average Nusselt numbers and mass flow rate. In light of the obtained results, we can conclude that the heat transfer decreases with increasing φ. In addition, the increase of Ra and the taking into account of the radiation exchange produce a considerable increase in the heat transfer.

  15. Investigation of the radiation properties of magnetospheric ELF waves induced by modulated ionospheric heating

    Science.gov (United States)

    Wang, Feng; Ni, Binbin; Zhao, Zhengyu; Zhao, Shufan; Zhao, Guangxin; Wang, Min

    2017-05-01

    Electromagnetic extremely low frequency (ELF) waves play an important role in modulating the Earth's radiation belt electron dynamics. High-frequency (HF) modulated heating of the ionosphere acts as a viable means to generate artificial ELF waves. The artificial ELF waves can reside in two different plasma regions in geo-space by propagating in the ionosphere and penetrating into the magnetosphere. As a consequence, the entire trajectory of ELF wave propagation should be considered to carefully analyze the wave radiation properties resulting from modulated ionospheric heating. We adopt a model of full wave solution to evaluate the Poynting vector of the ELF radiation field in the ionosphere, which can reflect the propagation characteristics of the radiated ELF waves along the background magnetic field and provide the initial condition of waves for ray tracing in the magnetosphere. The results indicate that the induced ELF wave energy forms a collimated beam and the center of the ELF radiation shifts obviously with respect to the ambient magnetic field with the radiation power inversely proportional to the wave frequency. The intensity of ELF wave radiation also shows a weak correlation with the size of the radiation source or its geographical location. Furthermore, the combination of ELF propagation in the ionosphere and magnetosphere is proposed on basis of the characteristics of the ELF radiation field from the upper ionospheric boundary and ray tracing simulations are implemented to reasonably calculate magnetospheric ray paths of ELF waves induced by modulated ionospheric heating.

  16. Low earth orbit radiation dose distribution in a phantom head

    International Nuclear Information System (INIS)

    Konradi, A.; Badhwar, G.D.; Cash, B.L.; Hardy, K.A.

    1992-01-01

    In order to compare analytical methods with data obtained during exposure to space radiation, a phantom head instrumented with a large number of radiation detectors was flown on the Space Shuttle on three occasions: 8 August 1989 (STS-28), 28 February 1990 (STS-36), and 24 April 1990 (STS-31). The objective of this experiment was to obtain a measurement of the inhomogeneity in the dose distribution within a phantom head volume. The orbits of these missions were complementary-STS-28 and STS-36 had high inclination and low altitude, while STS-31 had a low inclination and high altitude. In the cases of STS-28 and STS-36, the main contribution to the radiation dose comes from galactic cosmic rays (GCR) with a minor to negligible part supplied by the inner belt through the South Atlantic Anomaly (SAA), and for STS-28 an even smaller one from a proton enhancement during a solar flare-associated proton event. For STS-31, the inner belt protons dominate and the GCR contribution is almost negligible. The internal dose distribution is consistent with the mass distribution of the orbiter and the self-shielding and physical location of the phantom head. (author)

  17. The ionizing radiation environment of LDEF prerecovery predictions

    Science.gov (United States)

    Watts, John W., Jr.; Derrickson, James H.; Parnell, T. A.; Fishman, G. J.; Harmon, A.; Benton, E. V.; Frank, A. L.; Heinrich, Wolfgang

    1991-01-01

    The Long Duration Exposure Facility (LDEF) was exposed to several sources of ionizing radiation while in orbit. The principal ones were trapped belt protons and electrons, galactic cosmic rays, and albedo particles (protons and neutrons) from the atmosphere. Large solar flares in 1989 may have caused a small contribution. Prior to the recovery of the spacecraft, a number of calculations and estimates were made to predict the radiation exposure of the spacecraft and experiments. These were made to assess whether measurable radiation effects might exist, and to plan the analysis of the large number of radiation measurements available on the LDEF. Calculations and estimates of total dose, particle fluences, linear energy transfer spectra, and induced radioactivity were made. The principal sources of radiation is described, and the preflight predictions are summarized.

  18. Araguaia fold belt, new geochronological data

    International Nuclear Information System (INIS)

    Lafon, J.M.; Macambira, J.B.; Macambira, M.J.B.; Moura, C.A.V.; Souza, A.C.C.

    1990-01-01

    The northern part of the Araguaia Fold Belt (AFB) outcrops in a N-S direction for about 400 km in the state of Tocantins. Dome-like structures occur in this fold belt also in a N-S direction. Both deformation and metamorphism increase from the West to the East. The basement of the AFB consist of Colmeia complex and Cantao gneiss, which crop out mainly in the core of the dome-like structures. The supracrustals rocks of the fold belt belongs to the Baixo Araguaia supergroup which is divided into the lower Estrondo group and the upper Tocantins group. Preliminary Sm-Nd data from the Colmeia complex (Grota Rica dome) gave Archean model ages of 2.8 Ga (TNd sub(DM)) while Rb-Sr data in the same rocks give an age of 2530 ± 200 Ma. In the others dome-like structures, the Rb-Sr systematics gave ages for the Colmeia a complex of 2239 ± 47 Ma (Colmeia structure) and 1972 ± 46 Ma (Lontra structure). These younger ages are believed to represent partial to total isotopic resetting of the Rb-Sr system during the Transamazonian Event. The Rb-Sr studies of the Cantao gneiss gave an age of 1774 ± 31 Ma. (author)

  19. Oroclines - a century of discourse about curved mountain belts (Petrus Peregrinus Medal Lecture)

    Science.gov (United States)

    Van der Voo, Rob

    2014-05-01

    Exactly a century ago, in early 2014, a discussion appeared in the Journal of Geology by William H. Hobbs entitled "Mechanics of formation of arcuate mountains". In it, he notes how the concept of nappes "has now overcome all opposition in Switzerland" and, presumably in other countries just as much. With horizontal transport so central to the nappe concept, this must have paved the way for the idea that emplacement of trust sheets may have involved rotations. Where such rotations form a coherent regional pattern, a curved mountain belt may be the result. While the paper by Hobbs does not mention the word orocline, and while the dynamics of the situation is not yet illuminated, one must give credit to him for his foresights. The term "orocline" was introduced by S. Warren Carey of Tasmania in 1955, as part of a kinematic analysis of rhomb- and triangle-shaped basins and curved mountain belts. When the displacements involved in the analysis are undone, as he did, for instance, in the western Mediterranean, a grand scheme of simple convergent and divergent patterns emerges. Noteworthy is, of course, the fact that this mobilistic analysis preceded plate tectonics by more than a decade. From Carey (although not exactly in his words) we have inherited the definition of orocline, as "a thrust belt or orogen that is curved in map-view due to it having been bent or buckled about a vertical axis of rotation". Because oroclinal bending involves rotations, the declinations of paleomagnetic studies can be utilized to support and quantify them, and early efforts were already made in the 1960's and early 1970's to do so (e.g., Krs in the Carpathians; Ries & Shackleton in Cantabria; Roy, Opdyke & Irving in the Central Appalachians; Packer & Stone in Alaska). Curved mountain belts everywhere were subsequently investigated, and typically shown by paleomagnetists to be of the oroclinal variety. Few curved belts turned out to be curved from the start. Because these studies were

  20. Survival of Listeria monocytogenes on a conveyor belt material with or without antimicrobial additives.

    Science.gov (United States)

    Chaitiemwong, N; Hazeleger, W C; Beumer, R R

    2010-08-15

    Survival of Listeria monocytogenes on a conveyor belt material with or without antimicrobial additives, in the absence or presence of food debris from meat, fish and vegetables and at temperatures of 10, 25 and 37 degrees C was investigated. The pathogen survived best at 10 degrees C, and better at 25 degrees C than at 37 degrees C on both conveyor belt materials. The reduction in the numbers of the pathogen on belt material with antimicrobial additives in the first 6h at 10 degrees C was 0.6 log unit, which was significantly higher (Padditives. Reductions were significantly less (Pfood residue. At 37 degrees C and 20% relative humidity, large decreases in the numbers of the pathogen on both conveyor belt materials during the first 6h were observed. Under these conditions, there was no obvious effect of the antimicrobial substances. However, at 25 degrees C and 10 degrees C and high humidity (60-75% rh), a rapid decrease in bacterial numbers on the belt material with antimicrobial substances was observed. Apparently the reduction in numbers of L. monocytogenes on belt material with antimicrobial additives was greater than on belt material without additives only when the surfaces were wet. Moreover, the presence of food debris neutralized the effect of the antimicrobials. The results suggest that the antimicrobial additives in conveyor belt material could help to reduce numbers of microorganisms on belts at low temperatures when food residues are absent and belts are not rapidly dried. Copyright 2010 Elsevier B.V. All rights reserved.

  1. A Computerized Tomography Study of Vocal Tract Setting in Hyperfunctional Dysphonia and in Belting.

    Science.gov (United States)

    Saldias, Marcelo; Guzman, Marco; Miranda, Gonzalo; Laukkanen, Anne-Maria

    2018-04-03

    Vocal tract setting in hyperfunctional patients is characterized by a high larynx and narrowing of the epilaryngeal and pharyngeal region. Similar observations have been made for various singing styles, eg, belting. The voice quality in belting has been described to be loud, speech like, and high pitched. It is also often described as sounding "pressed" or "tense". The above mentioned has led to the hypothesis that belting may be strenuous to the vocal folds. However, singers and teachers of belting do not regard belting as particularly strenuous. This study investigates possible similarities and differences between hyperfunctional voice production and belting. This study concerns vocal tract setting. Four male patients with hyperfunctional dysphonia and one male contemporary commercial music singer were registered with computerized tomography while phonating on [a:] in their habitual speaking pitch. Additionally, the singer used the pitch G4 in belting. The scannings were studied in sagittal and transversal dimensions by measuring lengths, widths, and areas. Various similarities were found between belting and hyperfunction: high vertical larynx position, small hypopharyngeal width, and epilaryngeal outlet. On the other hand, belting differed from dysphonia (in addition to higher pitch) by a wider lip and jaw opening, and larger volumes of the oral cavity. Belting takes advantage of "megaphone shape" of the vocal tract. Future studies should focus on modeling and simulation to address sound energy transfer. Also, they should consider aerodynamic variables and vocal fold vibration to evaluate the "price of decibels" in these phonation types. Copyright © 2018. Published by Elsevier Inc.

  2. Status of the Galileo interim radiation electron model

    Science.gov (United States)

    Garrett, H. B.; Jun, I.; Ratliff, J. M.; Evans, R. W.; Clough, G. A.; McEntire, R. W.

    2003-04-01

    Measurements of the high energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EPD) were used to develop a new model of Jupiter's trapped electron radiation in the jovian equatorial plane for the range 8 to 16 Jupiter radii (1 jovian radius = 71,400 km). 10-minute averages of these data formed an extensive database of observations of the jovian radiation belts between Jupiter orbit insertion (JOI) in 1995 and 2002. These data were then averaged to provide a differential flux spectrum at 0.174, 0.304, 0.527, 1.5, 2.0, 11.0, and 31 MeV in the jovian equatorial plane as a function of radial distance. This omni-directional, equatorial model was combined with the original Divine model of jovian electron radiation to yield estimates of the out-of-plane radiation environment. That model, referred to here as the Galileo Interim Radiation Electron (or GIRE) model, was then used to calculate the Europa mission dose for an average and a 1-sigma worst-case situation. The prediction of the GIRE model is about a factor of 2 lower than the Divine model estimate over the range of 100 to 1000 mils (2.54 to 25.4 mm) of aluminum shielding, but exceeds the Divine model by about 50% for thicker shielding. The model, the steps leading to its creation, and relevant issues and concerns are discussed. While work remains to be done, the GIRE model clearly represents a significant step forward in the study of the jovian radiation environment, and it is a useful and valuable tool for estimating that environment for future space missions.

  3. Using naturalistic driving data to identify variables associated with infrequent, occasional, and consistent seat belt use.

    Science.gov (United States)

    Reagan, Ian J; McClafferty, Julie A; Berlin, Sharon P; Hankey, Jonathan M

    2013-01-01

    Seat belt use is one of the most effective countermeasures to reduce traffic fatalities and injuries. The success of efforts to increase use is measured by road side observations and self-report questionnaires. These methods have shortcomings, with the former requiring a binary point estimate and the latter being subjective. The 100-car naturalistic driving study presented a unique opportunity to study seat belt use in that seat belt status was known for every trip each driver made during a 12-month period. Drivers were grouped into infrequent, occasional, or consistent seat belt users based on the frequency of belt use. Analyses were then completed to assess if these groups differed on several measures including personality, demographics, self-reported driving style variables as well as measures from the 100-car study instrumentation suite (average trip speed, trips per day). In addition, detailed analyses of the occasional belt user group were completed to identify factors that were predictive of occasional belt users wearing their belts. The analyses indicated that consistent seat belt users took fewer trips per day, and that increased average trip speed was associated with increased belt use among occasional belt users. The results of this project may help focus messaging efforts to convert occasional and inconsistent seat belt users to consistent users. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Re–Os geochronology of Cu and W–Mo deposits in the Balkhash metallogenic belt, Kazakhstan and its geological significance

    Directory of Open Access Journals (Sweden)

    Xuanhua Chen

    2010-10-01

    Full Text Available The Central Asian metallogenic domain (CAMD is a multi-core metallogenic system controlled by boundary strike-slip fault systems. The Balkhash metallogenic belt in Kazakhstan, in which occur many large and super-large porphyritic Cu–Mo deposits and some quartz vein- and greisen-type W–Mo deposits, is a well-known porphyritic Cu–Mo metallogenic belt in the CAMD. In this paper 11 molybdenite samples from the western segment of the Balkhash metallogenic belt are selected for Re–Os compositional analyses and Re–Os isotopic dating. Molybdenites from the Borly porphyry Cu deposit and the three quartz vein-greisen W–Mo deposits—East Kounrad, Akshatau and Zhanet—all have relatively high Re contents (2712–2772 μg/g for Borly and 2.267–31.50 μg/g for the other three W–Mo deposits, and lower common Os contents (0.670–2.696 ng/g for Borly and 0.0051–0.056 ng/g for the other three. The molybdenites from the Borly porphyry Cu–Mo deposit and the East Kounrad, Zhanet, and Akshatau quartz vein- and greisen-type W–Mo deposits give average model Re–Os ages of 315.9 Ma, 298.0 Ma, 295.0 Ma, and 289.3 Ma respectively. Meanwhile, molybdenites from the East Kounrad, Zhanet, and Akshatau W–Mo deposits give a Re–Os isochron age of 297.9 Ma, with an MSWD value of 0.97. Re–Os dating of the molybdenites indicates that Cu–W–Mo metallogenesis in the western Balkhash metallogenic belt occurred during Late Carboniferous to Early Permian (315.9–289.3 Ma, while the porphyry Cu–Mo deposits formed at ∼316 Ma, and the quartz vein-greisen W–Mo deposits formed at ∼298 Ma. The Re–Os model and isochron ages thus suggest that Late Carboniferous porphyry granitoid and pegmatite magmatism took place during the late Hercynian movement. Compared to the Junggar-East Tianshan porphyry Cu metallogenic belt in northwestern China, the formation of the Cu–Mo metallogenesis in the Balkhash metallogenic belt occurred between that of

  5. Pilot-scale continuous ultrasonic cleaning equipment reduces Listeria monocytogenes levels on conveyor belts.

    Science.gov (United States)

    Tolvanen, Riina; Lundén, Janne; Hörman, Ari; Korkeala, Hannu

    2009-02-01

    Ultrasonic cleaning of a conveyor belt was studied by building a pilot-scale conveyor with an ultrasonic cleaning bath. A piece of the stainless steel conveyor belt was contaminated with meat-based soil and Listeria monocytogenes strains (V1, V3, and B9) and incubated for 72 h to allow bacteria to attach to the conveyor belt surfaces. The effect of ultrasound with a potassium hydroxide-based cleaning detergent was determined by using the cleaning bath at 45 and 50 degrees C for 30 s with and without ultrasound. The detachment of L. monocytogenes from the conveyor belt caused by the ultrasonic treatment was significantly greater at 45 degrees C (independent samples t test, P conveyor belt is effective even with short treatment times.

  6. Complex fold and thrust belt structural styles: Examples from the Greater Juha area of the Papuan Fold and Thrust Belt, Papua New Guinea

    Science.gov (United States)

    Mahoney, Luke; Hill, Kevin; McLaren, Sandra; Hanani, Amanda

    2017-07-01

    The remote and inhospitable Papuan Fold Belt in Papua New Guinea is one of the youngest yet least well-documented fold and thrust belts on Earth. Within the frontal Greater Juha area we have carried out >100 km of geological traverses and associated analyses that have added significantly to the contemporary geological and geophysical dataset. Our structural analysis provides evidence of major inversion, detachment and triangle zone faults within the uplifted Eastern Muller Ranges. We have used the dataset to develop a quasi-3D model for the Greater Juha area, with associated cross-sections revealing that the exposed Cenozoic Darai Limestone is well-constrained with very low shortening of 12.6-21.4% yet structures are elevated up to 7 km above regional. We suggest the inversion of pre-existing rift architecture is the primary influence on the evolution of the area and that structures link to the surface via triangle zones and detachment faults within the incompetent Mesozoic passive-margin sedimentary sequence underlying competent Darai Limestone. Arc-normal oriented structures, dominantly oblique dextral, up-to-the-southeast, are pervasive across a range of scales and are here interpreted to relate at depth to weakened pre-existing basement cross-structures. It is proposed that Palaeozoic basement fabric controlled the structural framework of the basin during Early Mesozoic rifting forming regional-scale accommodation zones and related local-scale transfer structures that are now expressed as regional-scale arc-normal lineaments and local-scale arc-normal structures, respectively. Transfer structures, including complexly breached relay ramps, utilise northeast-southwest striking weaknesses associated with the basement fabric, as a mechanism for accommodating displacement along major northwest-southeast striking normal faults. These structures have subsequently been inverted to form arc-normal oriented zones of tear faulting that accommodate laterally variable

  7. Motivating signage prompts safety belt use among drivers exiting senior communities.

    Science.gov (United States)

    Cox, B S; Cox, A B; Cox, D J

    2000-01-01

    Senior drivers are vulnerable to automobile crashes and subsequent injury and death. Safety belts reduce health risks associated with auto crashes. Therefore, it is important to encourage senior drivers to wear safety belts while driving. Using an AB design, replicated five times, we evaluated the short- and long-term effects of a sign with the message "BUCKLE UP, STAY SAFE" attached to a stop sign at the exits of five different senior communities. Safety belt use was stable during two pretreatment assessments averaged across the five sites and 250 drivers (72% and 68% usage), but significantly increased following installation of these signs (94% usage). Six months after installation of the signs, the effect persisted (88% usage). Use of such signs may be a cost-effective way of promoting safety belt use.

  8. Synthetic approaches to aromatic belts: building up strain in macrocyclic polyarenes.

    Science.gov (United States)

    Eisenberg, David; Shenhar, Roy; Rabinovitz, Mordecai

    2010-08-01

    This tutorial review discusses synthetic strategies towards aromatic belts, defined here as double-stranded conjugated macrocycles, such as [n]cyclacenes, [n]cyclophenacenes, Schlüter belt, and Vögtle belt. Their appeal stems, firstly, from the unique nature of their conjugation, having p orbitals oriented radially rather than perpendicular to the plane of the macrocycle. Secondly, as aromatic belts are model compounds of carbon nanotubes of different chiralities, a synthetic strategy towards the buildup of structural strain in these compounds could finally open a route towards rational chemical synthesis of carbon nanotubes. The elusiveness of these compounds has stimulated fascinating and ingenious synthetic strategies over the last decades. The various strategies are classified here by their approach to the buildup of structural strain, which is the main obstacle in the preparation of these curved polyarenes.

  9. DEFINITION DESIRED MODE ULTRAVIOLET RADIATION, WHICH PREVENT MYCOBACTERIUM TUBERCULOSIS SURVIVAL AND CONVERSION TO L-FORMS

    Directory of Open Access Journals (Sweden)

    Moiseenko TN

    2015-04-01

    Full Text Available Bactericidal effect of ultraviolet (UV rays was first described over 100 years ago. UV was used in hospitals from 1930 and in 1936 was first used to sterilize the air in the operating room. The maximum bactericidal effect occurs in the region 254-257 nm UV wavelength, which is manifested mainly in the destructive-modifying photochemical damage of DNA synthesis. So, UV rays causes an increase in the permeability of the microbial cell membranes to ions environment and coagulation of colloids cytoplasm, resulting in disruption of normal cell development, stopping the reproduction and lysis. In any body there are biochemical mechanisms that could fully or partially restore the damaged original structure of the DNA molecule - fotoreactivation. It's resistant microorganisms consist about 0.01% of the microbial population, but the certain types reach 1-5%. Surviving bacteria can form new colonies with less susceptibility to radiation. Mycobacteria in the course of evolution developed various mechanisms to overcome or inactivation of adverse environmental factors: a special cell wall (waxes, fats, mycolic acid; large metabolic capabilities by which M. tuberculosis able to inactivate various antiseptics and disinfectants; morphological plasticity, which is spontaneous and induced transformation in L-forms with a reversion of virulent original shape. М. tuberculosis more resistant to UV radiation than other bacteria. Materials and methods. We investigated the effectiveness of UV radiation against to M. tuberculosis at distances from the radiator - 70 cm, 140 cm, 210 cm; exposure time 20, 30, 40 and 50 minutes. We used museum strain H37Rv and 3 clinical strains: 1 - strain with preserved sensitivity; 2 - strain with resistance to isoniazid and rifampicin; 3 - strain with resistance to isoniazid, rifampicin and ofloxacin (enhanced resistance. We used radiator - Philips TUV power 30 W (without ozone for up to 6000 hours. Control and irradiated cultures of

  10. Evaluation of emplacement sensors for detecting radiation and volatile organic compounds and for long-term monitoring access tubes for the BWCS

    International Nuclear Information System (INIS)

    Lord, D.L.; Averill, R.H.

    1997-10-01

    This document evaluates sensors for detecting contaminants in the excavated waste generated by the Buried Waste Containment System (BWCS). The Barrier Placement Machine (BPM) removes spoils from under a landfill or plume and places it on a conveyor belt on the left and right sides of the BPM. The spoils will travel down the conveyor belts past assay monitors and be deposited on top of the site being worked. The belts are 5 ft wide and transport approximately 15 ft3 /minute of spoils. This corresponds to a 10 ft per hour BPM advance rate. With a 2 in. spoils height the belt speed would be 3.6 in. per second. The spoils being removed are expected to be open-quotes cleanclose quotes (no radiation or volatile organics above background levels). To ensure that the equipment is not digging through a contaminated area, assay equipment will monitor the spoils for mg radiation and volatile organic compounds (VOCs). The radiation monitors will check for gross radiation indication. Upon detection of radiation levels above a predetermined setpoint, further evaluation will be performed to determine the isotopes present and their quantity. This will require hand held monitors and a remote monitoring station. Simultaneously, VOC monitors will monitor for predetermined volatile/semi-volatile organic compounds. A Fourier-Transform Infrared Spectrometer (FTIR) monitor is recommended for this operation. Specific site requirements and regulations will determine setpoints and operation scenarios. If VOCs are detected, the data will be collected and recorded. A flat panel display will be mounted in the BPM operator''s cab showing the radio nuclide and VOC monitoring data. As the BPM advances, a 3-in. diameter PVC tube will be placed on the bottom of the barrier slot in front of the 12 to 16-in. containment barrier being emplaced

  11. RBE of 0.85 MeV neutrons in Guinea pigs with a cerebral form of radiation sickness

    International Nuclear Information System (INIS)

    Shaporov, V.N.; Sokolova, T.I.; Nasonova, T.A.; Aleshin, S.I.

    1989-01-01

    The RBE coefficient of neutrons (0.85 MeV) was 1.87 in comparison with that of electron radiation (8 MeV) as determined by the death rate of guinea pigs with the cerebral form of radiation sickness. LD 50/1.5 amounted to 43.2 and 80.7 Gy. The dynamics of clinical symptoms at the height of the disease is discussed

  12. Data report: resource ratings of the RARE II tracts in the Idaho-Wyoming-Utah and the central Appalachian thrust belts

    International Nuclear Information System (INIS)

    Voelker, A.H.; Wedow, H.; Oakes, E.; Scheffler, P.K.

    1979-11-01

    The assessment forms contained in this report constitute the data used in two resource assessments described in A Systematic Method for Resource Rating with Two Applications to Potential Wilderness Areas (Voelker et al. 1979). The assessments were performed for two geologic subprovinces containing proposed wilderness areas identified in the Forest Service Roadless Area Review and Evaluation (RARE II) program. The subprovinces studied are the Idaho-Wyoming-Utah thrust belt and the central Appalachians thrust belt. Each assessment form contains location data, resource ratings, and supporting information for a single tract. A unique dual rating that reflects geologic favorability and certainty of resource occurrence is assigned to each resource category evaluated. Individual ratings are synthesized into an overall tract-importance rating. Ratings created by others are included for comparative purposes wherever available. Supporting information consists of commentary and references that explain and document the ratings listed

  13. Tok-Algoma magmatic complex of the Selenga-Stanovoi Superterrain in the Central Asian fold belt: Age and tectonic setting

    Science.gov (United States)

    Kotov, A. B.; Larin, A. M.; Salnikova, E. B.; Velikoslavinskii, S. D.; Sorokin, A. A.; Sorokin, A. P.; Yakovleva, S. Z.; Anisimova, I. V.; Tolmacheva, E. V.

    2012-05-01

    According to the results of U-Pb geochronological investigations, the hornblende subalkali diorite rocks making up the Tok-Algoma Complex in the eastern part of the Selenga-Stanovoi Superterrain of the Central Asian fold belt were formed in the Middle Jurassic rather than in the Middle Archean as was suggested previously. Thus, the age of the regional amphibolite facies metamorphism manifested itself in the Ust'-Gilyui rock sequence of the Stanovoi Complex and that superimposed on granitoids of the Tok-Algoma Complex is Mesozoic rather than Early Precambrian. The geochemical features of the Tok-Algoma granitoids are indicative of the fact that they were formed in the geodynamic setting of the active continental margin or a mature island arc. Hence, it is possible to suggest that the subduction processes along the southern boundary between the Selenga-Stanovoi Superterrain and the Mongolian-Okhotsk ocean basin in the Middle Jurassic resulted in the formation of a magmatic belt of over 500 km in length.

  14. Resolving the planetesimal belt of HR 8799 with ALMA

    Science.gov (United States)

    Booth, Mark; Jordán, Andrés; Casassus, Simon; Hales, Antonio S.; Dent, William R. F.; Faramaz, Virginie; Matrà, Luca; Barkats, Denis; Brahm, Rafael; Cuadra, Jorge

    2016-07-01

    The star HR 8799 hosts one of the largest known debris discs and at least four giant planets. Previous observations have found evidence for a warm belt within the orbits of the planets, a cold planetesimal belt beyond their orbits and a halo of small grains. With the infrared data, it is hard to distinguish the planetesimal belt emission from that of the grains in the halo. With this in mind, the system has been observed with ALMA in band 6 (1.34 mm) using a compact array format. These observations allow the inner edge of the planetesimal belt to be resolved for the first time. A radial distribution of dust grains is fitted to the data using an MCMC method. The disc is best fitted by a broad ring between 145^{+12}_{-12} au and 429^{+37}_{-32} au at an inclination of 40^{+5}_{-6}° and a position angle of 51^{+8}_{-8}°. A disc edge at ˜145 au is too far out to be explained simply by interactions with planet b, requiring either a more complicated dynamical history or an extra planet beyond the orbit of planet b.

  15. Design of dual energy x-ray detector for conveyor belt with steel wire ropes

    Science.gov (United States)

    Dai, Yue; Miao, Changyun; Rong, Feng

    2009-07-01

    A dual energy X-ray detector for conveyor belt with steel wire ropes is researched in the paper. Conveyor belt with steel wire ropes is one of primary transfer equipments in modern production. The traditional test methods like electromagnetic induction principle could not display inner image of steel wire ropes directly. So X-ray detection technology has used to detect the conveyor belt. However the image was not so clear by the interference of the rubber belt. Therefore, the dualenergy X-ray detection technology with subtraction method is developed to numerically remove the rubber belt from radiograph, thus improving the definition of the ropes image. The purpose of this research is to design a dual energy Xray detector that could make the operator easier to found the faulty of the belt. This detection system is composed of Xray source, detector controlled by FPGA chip, PC for running image processing system and so on. With the result of the simulating, this design really improved the capability of the staff to test the conveyor belt.

  16. Seat-belt use still low in Kuwait: self-reported driving behaviours among adult drivers.

    Science.gov (United States)

    Raman, Sudha R; Ottensmeyer, C Andrea; Landry, Michel D; Alfadhli, Jarrah; Procter, Steven; Jacob, Susan; Hamdan, Elham; Bouhaimed, Manal

    2014-01-01

    Kuwait mandated seat-belt use by drivers in 1976 and by front seat passengers in 1994. The study objectives were to identify and estimate current factors associated with seat-belt use and levels of potentially unsafe driving behaviours in Kuwait. In 2010, 741 adults were surveyed regarding driving habits and history. Only 41.6% of drivers reported always using a seat belt. Front seat passenger belt use was more common (30.5%) than rear seat belt use (6.5%). Distracted driving behaviours were common, including mobile phone use ('always' or 'almost always': 51.1%) and texting/SMS (32.4%). Logistic regression indicated that drivers who were young (18-19 years), male, Kuwaiti nationals or non-Kuwaiti Arabs, drove over the speed limit, had traffic violation tickets or >1 car crashes in the last year, were less likely to use seat belts. Targeted initiatives to increase public awareness and to enforce car-safety legislation, including use of seat belts, are necessary to decrease the health burden of car crashes in Kuwait.

  17. A belt charging system for the Vivitron - design, early results

    International Nuclear Information System (INIS)

    Helleboid, J.M.; Gaudiot, G.

    1990-10-01

    A specific belt charging system has been designed, built and assembled for the 35 MV Vivitron. 100 m long belt is used. Together with main features of the design, experimental studies, tests in a pilot machine and the results of the very early tests of the real system are reviewed

  18. Respiratory Belt Transducer Constructed Using a Singing Greeting Card Beeper

    Science.gov (United States)

    Bhaskar, Anand; Subramani, Selvam; Ojha, Rajdeep

    2013-01-01

    An article by Belusic and Zupancic described the construction of a finger pulse sensor using a singing greeting card beeper. These authors felt that this beeper made of piezoelectric material could be easily modified to function as a respiratory belt transducer to monitor respiratory movements. Commercially available respiratory belt transducers,…

  19. The effectiveness of automatic belts in reducing fatality rates in Toyota Cressidas.

    Science.gov (United States)

    Nash, C E

    1989-12-01

    Toyota Cressidas have had motor driven automatic belts since 1981. Their observed use rates have been consistently close to 100%. This paper compares fatality rates in Toyota Cressidas with those in the similar Nissan Maximas (which are equipped with three-point manual belts) using the latest data from the Fatal Accident Reporting System. After making adjustments for differences in the average ages of front seat occupants of the two fleets, the Toyotas have a fatality rate that is about three-quarters that of the Nissans. From this, the fatality-reducing effectiveness for the Toyota automatic belts is estimated to be 40% with an uncertainty of +/- 8%. This effectiveness estimate is consistent with earlier estimates of automatic belt effectiveness.

  20. Fall Protection Characteristics of Safety Belts and Human Impact Tolerance.

    Science.gov (United States)

    Hino, Yasumichi; Ohdo, Katsutoshi; Takahashi, Hiroki

    2014-08-23

    Many fatal accidents due to falls from heights have occurred at construction sites not only in Japan but also in other countries. This study aims to determine the fall prevention performance of two types of safety belts: a body belt 1) , which has been used for more than 40 yr in the Japanese construction industry as a general type of safety equipment for fall accident prevention, and a full harness 2, 3) , which has been used in many other countries. To determine human tolerance for impact trauma, this study discusses features of safety belts with reference 4-9) to relevant studies in the medical science, automobile crash safety, and aircrew safety. For this purpose, simple drop tests were carried out in a virtual workplace to measure impact load, head acceleration, and posture in the experiments, the Hybrid-III pedestrian model 10) was used as a human dummy. Hybrid-III is typically employed in official automobile crash tests (New Car Assessment Program: NCAP) and is currently recognized as a model that faithfully reproduces dynamic responses. Experimental results shows that safety performance strongly depends on both the variety of safety belts used and the shock absorbers attached onto lanyards. These findings indicate that fall prevention equipment, such as safety belts, lanyards, and shock absorbers, must be improved to reduce impact injuries to the human head and body during falls.

  1. THE SURFACE COMPOSITION OF LARGE KUIPER BELT OBJECT 2007 OR10

    International Nuclear Information System (INIS)

    Brown, M. E.; Fraser, W. C.; Burgasser, A. J.

    2011-01-01

    We present photometry and spectra of the large Kuiper belt object 2007 OR10. The data show significant near-infrared absorption features due to water ice. While most objects in the Kuiper belt with water ice absorption this prominent have the optically neutral colors of water ice, 2007 OR10 is among the reddest Kuiper belt objects known. One other large Kuiper belt object-Quaoar-has similar red coloring and water ice absorption, and it is hypothesized that the red coloration of this object is due to irradiation of the small amounts of methane able to be retained on Quaoar. 2007 OR10, though warmer than Quaoar, is in a similar volatile retention regime because it is sufficiently larger that its stronger gravity can still retain methane. We propose, therefore, that the red coloration on 2007 OR10 is also caused by the retention of small amounts of methane. Positive detection of methane on 2007 OR10 will require spectra with higher signal to noise. Models for volatile retention on Kuiper belt objects appear to continue to do an excellent job reproducing all of the available observations.

  2. 49 CFR 571.209 - Standard No. 209; Seat belt assemblies.

    Science.gov (United States)

    2010-10-01

    ... seat belt assembly to fit the user, including such hardware that may be integral with a buckle... the proper use of the assembly, stressing particularly the importance of wearing the assembly snugly... of Standard No. 208. (a)(1) A manual seat belt assembly, which is subject to the requirements of S5.1...

  3. Contrasting Convective Flux Gradients in the U.S. Corn Belt as a Result of Vegetation Land Cover Type

    Science.gov (United States)

    Hiestand, M.

    2017-12-01

    Phenological differences between extensive croplands and remnant forests in the U.S. Corn Belt have been suggested as enhancing spatial gradients of latent and sensible heat fluxes that contribute to the distribution and amounts of convective rainfall on mesoscales. However, the exact magnitude of the intra-seasonal variability in convective fluxes between these two land-cover types has yet to be quantified. Previous work suggesting that non-classical mesoscale circulations operate within the Corn Belt has not involved direct flux observations obtained using the eddy flux covariance technique. This study compares five day running means of daily heat fluxes between two Ameriflux towers (US-Bo1 in Illinois and US-MMS in Indiana) representing rain-fed cropland and remnant forest, respectively for the growing seasons of 1999-2008. Latent heat values normalized to the net radiation show higher rates of evapotranspiration at the forested site than over the cropland during the start of the growing season. However, toward the end of the growing season, latent heat fluxes from the forest decrease and the cropland becomes the dominate source of evapotranspiration. Conversely, croplands dominate sensible heat fluxes at the start of the growing season whereas the remnant forests are associated with strong sensible heat fluxes in late summer. These intra-seasonal spatial differences of latent and sensible heat fluxes across the Corn Belt imply differences in moisture pooling that are suggested as enhancing atmospheric convection during favorable synoptic conditions, especially near the boundaries of these two land cover types. Understanding the physical mechanisms by which the spatial distribution of vegetated land cover can generate contrasting latent and sensible heat fluxes will lay the groundwork for improving mesoscale precipitation forecasts in the Corn Belt, and determining the possible impacts of ongoing land-cover and climate changes there.

  4. Clinical report of one case of intestinal form of acute radiation sickness

    International Nuclear Information System (INIS)

    Yu Changlin; Qiao Jianhui; Luo Weidong; Guo Mei; Wang Danhong; Sun Qiyun; Zhang Shi; Chen Jiankui; Li Xiaobing; Ai Huisheng

    2007-01-01

    Objective: To summarize the irradiation course, estimation of radiation dosage, clinical course, diagnosis and treatment of the patient A in a 60 Co radiation accident on October 21, 2004 in Jining, Shandong Province, China. Methods: According to the simulated test of the scene, chromosome aberration analysis, clinical course and tooth enamel ESR measurement, the total body dose of A was 20-25 Gy and diagnosed as intestinal form of acute radiation sickness. The patient was transferred to our hospital on day 3 post- irradiation, total environmental protection (TEP), antibiotics and emergency HLA-typing from his elder sister were given. On day 7 HLA haplo-identical peripheral blood stem cell transplantation was performed. Results: On day 10 post-transplant (+ 10 d), the counts of WBC began to increase and up to 5.1 x 10 9 /L on + 12 d. Bone marrow feature showed hematopoietic recovery of the three lineage blood cells. Continuous detection of the implantation ratio of donor's cells by STR-PCR showed stable 100% donor-derived chimera. On day 13, severe acute peritonitis and intestinal obstruction occurred; imipenem was much effective to control intestinal bacteria infection. Three days later, hematopoiesis reconstructed rapidly, peritonitis and intestinal obstruction were cured. On day 19, chest X-ray picture and CT scanning suggested that pulmonary mixed infection of bacteria and fungi appeared. The most severe skin irradiation burn damage occurred on day 25 which occupied the 14% of whole body skin surface. The functions of lung, heart and kidney were deteriorated sequentially. On day 30, tracheotomy had to be conducted and respirator was used. The patient died of multiple organ failure (MOF) on day 33. Conclusions: Patient A was exposed to relative well-distributed high dose and high dose rate of irradiation up to 20-25 Gy. This is the first case report of successful HLA haplo-identical peripheral blood stem cell transplantation for intestinal form of acute

  5. Alien Asteroid Belt Compared to our Own

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: Band of Light Comparison This artist's concept illustrates what the night sky might look like from a hypothetical alien planet in a star system with an asteroid belt 25 times as massive as the one in our own solar system (alien system above, ours below; see Figure 1). NASA's Spitzer Space Telescope found evidence for such a belt around the nearby star called HD 69830, when its infrared eyes spotted dust, presumably from asteroids banging together. The telescope did not find any evidence for a planet in the system, but astronomers speculate one or more may be present. The movie begins at dusk on the imaginary world, when HD 69830, like our Sun, has begun to set over the horizon. Time is sped up to show the onset of night and the appearance of a brilliant band of light. This light comes from dust in a massive asteroid belt, which scatters sunlight. In our solar system, anybody observing the skies on a moonless night far from city lights can see the sunlight that is scattered by dust in our asteroid belt. Called zodiacal light and sometimes the 'false dawn,' this light appears as a dim band stretching up from the horizon when the Sun is about to rise or set. The light is faint enough that the disk of our Milky Way galaxy remains the most prominent feature in the sky. (The Milky Way disk is shown perpendicular to the zodiacal light in both pictures.) In contrast, the zodiacal light in the HD 69830 system would be 1,000 times brighter than our own, outshining even the Milky Way.

  6. Alkaline intrusion in a granulite ensemble in the Eastern Ghats belt

    Indian Academy of Sciences (India)

    Alkaline magmatism; Eastern Ghats belt; pull-apart structure; plume tectonics. ... is one of several bodies in the high-grade Eastern Ghats belt, but this one is an ... Geological Studies Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700 ...

  7. TERRAIN TECTONICS OF THE CENTRAL ASIAN FOLDED BELT

    Directory of Open Access Journals (Sweden)

    M. M. Buslov

    2014-01-01

    Full Text Available The terrain analysis concept envisages primarily a possibility of approximation of fragments / terrains of various geodynamic settings which belong to different plates. The terrain analysis can supplement the theory of plate tectonics in solving problems of geodynamics and tectonics of regions of the crust with complex structures. The Central Asian belt is among such complicated regions. Terrain structures occurred as a result of combined movements in the system of 'frontal' and/or oblique subduction – collision. In studies of geological objects, it is required first of all to prove their (vertical and horizontal autochthony in relations to each other and then proceed to paleogeodynamic, paleotectonic and paleogeographic reconstructions. Obviously, such a complex approach needs data to be obtained by a variety of research methods, including those applied to study geologic structures, stratigraphy, paleontology, paleogeography, lithothlogy, geochemistry, geochronology, paleomagnetism etc. Only by correlating such data collected from inter-disciplinary studies of the regions, it is possible to establish reliable characteristics of the geological settings and avoid mistakes and misinterpretations that may be associated with the 'stratigraphic' approach to solutions of both regional and global problems of geodynamics and tectonics of folded areas. The terrain analysis of the Central Asian folded belt suggests that its tectonic structure combines marginal continental rock complexes that were formed by the evolution of two major oceanic plates. One of them is the plate of the Paleo-Asian Ocean. As the analogue of the current Indo-Atlantic segment of Earth, it is characterised by the presence of continental blocks in the composition of the oceanic crust and the formation of oceanic basins resulting from the breakup of Rodinia and Gondvana. In the course of its evolution, super-continents disintegrated, and the blocks were reunited into the Kazakhstan

  8. The Holocene Great Belt connection to the southern Kattegat, Scandinavia

    DEFF Research Database (Denmark)

    Bendixen, Carina; Jensen, Jørn Bo; Boldreel, Lars Ole

    2017-01-01

    Late- and postglacial geological evolution of the southern Kattegat connection to the Great Belt was investigated from high-resolution seismic data and radiocarbon-dated sediment cores in order to elucidate the Ancylus Lake drainage/Littorina Sea transgression. It was found that glacial deposits...... form the acoustic basement and are covered by Lateglacial (LG) marine sediments and postglacial (PG; Holocene) material. The LG deposits form a highstand systems tract, whereas the PG deposits cover a full depositional sequence, consisting of a lowstand systems tract (PG I), transgressive systems tract...... (PG II; subdivided into three parasequences) and finally a highstand systems tract (PG III). PG I sand deposits (11.7–10.8 cal. ka BP) are found in a major western channel and in a secondary eastern channel. PG II (10.8–9.8 cal. ka BP) consists of estuarine and coastal deposits linked to an estuary...

  9. Numerical modeling of water spray suppression of conveyor belt fires in a large-scale tunnel.

    Science.gov (United States)

    Yuan, Liming; Smith, Alex C

    2015-05-01

    Conveyor belt fires in an underground mine pose a serious life threat to miners. Water sprinkler systems are usually used to extinguish underground conveyor belt fires, but because of the complex interaction between conveyor belt fires and mine ventilation airflow, more effective engineering designs are needed for the installation of water sprinkler systems. A computational fluid dynamics (CFD) model was developed to simulate the interaction between the ventilation airflow, the belt flame spread, and the water spray system in a mine entry. The CFD model was calibrated using test results from a large-scale conveyor belt fire suppression experiment. Simulations were conducted using the calibrated CFD model to investigate the effects of sprinkler location, water flow rate, and sprinkler activation temperature on the suppression of conveyor belt fires. The sprinkler location and the activation temperature were found to have a major effect on the suppression of the belt fire, while the water flow rate had a minor effect.

  10. Numerical modeling of water spray suppression of conveyor belt fires in a large-scale tunnel

    Science.gov (United States)

    Yuan, Liming; Smith, Alex C.

    2015-01-01

    Conveyor belt fires in an underground mine pose a serious life threat to miners. Water sprinkler systems are usually used to extinguish underground conveyor belt fires, but because of the complex interaction between conveyor belt fires and mine ventilation airflow, more effective engineering designs are needed for the installation of water sprinkler systems. A computational fluid dynamics (CFD) model was developed to simulate the interaction between the ventilation airflow, the belt flame spread, and the water spray system in a mine entry. The CFD model was calibrated using test results from a large-scale conveyor belt fire suppression experiment. Simulations were conducted using the calibrated CFD model to investigate the effects of sprinkler location, water flow rate, and sprinkler activation temperature on the suppression of conveyor belt fires. The sprinkler location and the activation temperature were found to have a major effect on the suppression of the belt fire, while the water flow rate had a minor effect. PMID:26190905

  11. Radiations and space flight

    International Nuclear Information System (INIS)

    Maalouf, M.; Vogin, G.; Foray, N.; Maalouf; Vogin, G.

    2011-01-01

    A space flight is submitted to 3 main sources of radiation: -) cosmic radiation (4 protons/cm 2 /s and 10000 times less for the heaviest particles), -) solar radiation (10 8 protons/cm 2 /s in the solar wind), -) the Van Allen belt around the earth: the magnetosphere traps particles and at an altitude of 500 km the proton flux can reach 100 protons/cm 2 /s. If we take into account all the spatial missions performed since 1960, we get an average dose of 400 μGray per day with an average dose rate of 0.28 μGray/mn. A significant risk of radiation-induced cancer is expected for missions whose duration is over 250 days.The cataract appears to be the most likely non-cancerous health hazard due to the exposition to comic radiation. Its risk appears to have been under-estimated, particularly for doses over 8 mGray. Some studies on astronauts have shown for some a very strong predisposition for radio-induced cancers: during the reparation phase of DNA breaking due to irradiation, multiple new damages are added by the cells themselves that behave abnormally. (A.C.)

  12. Determining the Relationship of Primary Seat Belt Laws to Minority Ticketing

    Science.gov (United States)

    2011-09-01

    Racial profiling is often raised as an issue when States change their seat belt law from secondary enforcement (i.e., stop only for some other violation) to primary enforcement (i.e., stop for an observed belt law violation alone). Thirteen States ma...

  13. Idealized debris flow in flume with bed driven by a conveyor belt

    Science.gov (United States)

    Ling, Chi-Hai; Chen, Cheng-lung

    1989-01-01

    The generalized viscoplastic fluid (GVF) model is used to derive the theoretical expressions of two-dimensional velocities and surface profile for debris flow established in a flume with bed driven by a conveyor belt. The rheological parameters of the GVF model are evaluated through the comparison of theoretical results with measured data. A slip velocity of the established (steady) nonuniform flow on the moving bed (i.e., the conveyor belt) is observed, and a relation between the slip velocity and the velocity gradient at the bed is derived. Two belts, one rough and the other smooth, were tested. The flow profile in the flume is found to be linear and dependent on the roughness of the belt, but not much on its speed.

  14. Non-cylindrical fold growth in the Zagros fold and thrust belt (Kurdistan, NE-Iraq)

    Science.gov (United States)

    Bartl, Nikolaus; Bretis, Bernhard; Grasemann, Bernhard; Lockhart, Duncan

    2010-05-01

    The Zagros mountains extends over 1800 km from Kurdistan in N-Iraq to the Strait of Hormuz in Iran and is one of the world most promising regions for the future hydrocarbon exploration. The Zagros Mountains started to form as a result of the collision between the Eurasian and Arabian Plates, whose convergence began in the Late Cretaceous as part of the Alpine-Himalayan orogenic system. Geodetic and seismological data document that both plates are still converging and that the fold and thrust belt of the Zagros is actively growing. Extensive hydrocarbon exploration mainly focuses on the antiforms of this fold and thrust belt and therefore the growth history of the folds is of great importance. This work investigates by means of structural field work and quantitative geomorphological techniques the progressive fold growth of the Permam, Bana Bawi- and Safeen- Anticlines located in the NE of the city of Erbil in the Kurdistan region of Northern Iraq. This part of the Zagros fold and thrust belt belongs to the so-called Simply Folded Belt, which is dominated by gentle to open folding. Faults or fault related folds have only minor importance. The mechanical anisotropy of the formations consisting of a succession of relatively competent (massive dolomite and limestone) and incompetent (claystone and siltstone) sediments essentially controls the deformation pattern with open to gentle parallel folding of the competent layers and flexural flow folding of the incompetent layers. The characteristic wavelength of the fold trains is around 10 km. Due to faster erosion of the softer rock layers in the folded sequence, the more competent lithologies form sharp ridges with steeply sloping sides along the eroded flanks of the anticlines. Using an ASTER digital elevation model in combination with geological field data we quantified 250 drainage basins along the different limbs of the subcylindrical Permam, Bana Bawi- and Safeen- Anticlines. Geomorphological indices of the drainage

  15. Vertical displacement during late-collisional escape tectonics (Brasiliano Orogeny) in the Ribeira Belt, São Paulo State, Brazil

    Science.gov (United States)

    Hackspacher, P. C.; Godoy, A. M.

    1999-07-01

    During the Brasiliano-Pan-African Orogeny, West Gondwana formed by collisional processes around the São Francisco-Congo Craton. The Ribeira belt, in southeastern Brazil, resulted from northwestward collision (650-600 Ma), followed by large-scale northeast-southwest dextral strike-slip shear movements related to late-collisional escape tectonics ( ca 600 Ma). In São Paulo State, three groups, also interpreted as terranes, are recognised in the Ribeira Belt, the Embu, Itapira and São Roque Groups. The Embu and Itapira Groups are formed of sillimanite-gneisses, schists and migmatites intruded by Neoproterozoic calc-alkaline granitoids, all thrusted northwestward. The São Roque Group is composed of metasediments and metavolcanics in greenschist-facies. Its deformation indicates a transpressional regime associated with tectonic escape. Sub-alkaline granites were emplaced in shallow levels during this regime. Microstructural studies along the Itu, Moreiras and Taxaquara Shear Zones demonstrate the coexistence of horizontal and vertical displacement components during the transpressional regime. The vertical component is regarded as responsible for the lateral juxtaposition of different crustal levels.

  16. Assessing child belt fit, volume II : effect of restraint configuration, booster seat designs, seating procedure, and belt fit on the dynamic response of the hybrid III 10-year-old ATD in sled tests.

    Science.gov (United States)

    2008-09-01

    A total of 49 dynamic sled tests were performed with the Hybrid III 10YO to examine issues relating to child belt fit. The goals of these tests were to evaluate ATD response to realistic belt geometries and belt fit, develop methods for accurate, rep...

  17. Two-dimensional mathematical model for simulation of the drying process of thick layers of natural materials in a conveyor-belt dryer

    Directory of Open Access Journals (Sweden)

    Salemović Duško R.

    2017-01-01

    Full Text Available This paper presents the mathematical model and numerical analysis of the convective drying process of thick slices of colloidal capillary-porous materials slowly moving through conveyor-belt dryer. A flow of hot moist air was used as drying agent. The drying process has been analyzed in the form of a 2-D mathematical model, in two directions: along the conveyor and perpendicular on it. The mathematical model consists of two non-linear differential equations and one equation with a transcendent character and it is based on the mathematical model developed for drying process in a form of a 1-D thin layer. The appropriate boundary conditions were introduced. The presented model is suitable for the automated control of conveyor-belt dryers. The obtained results with analysis could be useful in predicting the drying kinetics of potato slices and similar natural products.

  18. Attachment of Salmonella serovars and Listeria monocytogenes to stainless steel and plastic conveyor belts.

    Science.gov (United States)

    Veluz, G A; Pitchiah, S; Alvarado, C Z

    2012-08-01

    In poultry industry, cross-contamination due to processing equipment and contact surfaces is very common. This study examined the extent of bacterial attachment to 6 different types and design of conveyor belts: stainless steel-single loop, stainless steel-balance weave, polyurethane with mono-polyester fabric, acetal, polypropylene mesh top, and polypropylene. Clean conveyor belts were immersed separately in either a cocktail of Salmonella serovars (Salmonella Typhimurium and Salmonella Enteritidis) or Listeria monocytogenes strains (Scott A, Brie 1, ATCC 6744) for 1 h at room temperature. Soiled conveyor chips were dipped in poultry rinses contaminated with Salmonella or Listeria cocktail and incubated at 10°C for 48 h. The polyurethane with mono-polyester fabric conveyor belt and chip exhibited a higher (Pconveyor belt attached a lower (Pconveyor belts exhibited stronger bacterial adhesion compared with stainless steel. The result suggests the importance of selecting the design and finishes of conveyor belt materials that are most resistant to bacterial attachment.

  19. An experimental investigation of microalgal dewatering efficiency of belt filter system

    Directory of Open Access Journals (Sweden)

    Anjali Sandip

    2015-11-01

    Full Text Available The objective of this study was to investigate the microalgal dewatering efficiency of a belt filter system for feed concentrations below 10 g dry wt./L. A prototype belt filtration system designed for 50 g dry wt./L microalgal feed concentration was used for this investigation. The highest concentration of microalgal suspension available for testing on the prototype belt filtration system was 6 g dry wt./L obtained from biomass settling tanks at the Lawrence, Kansas domestic wastewater treatment plant. For preparation of feed suspension with concentrations below 10 g dry wt./L, microalgal cultivation was followed by flocculation. A mixed laboratory culture of freshwater species dominated by three eukaryotic green microalgae (Chlorella vulgaris, Scenedesmus sp., and Kirchneriella sp. was cultivated in wastewater effluent. This was followed by flocculation which resulted in a microalgal feed suspension concentration of 4 g dry wt./L. Belt dewatering tests were conducted on microalgal suspensions with feed concentrations of 4 g dry wt./L and 6 g dry wt./L. The maximum microalgal recovery with the belt dewatering system was 46% from the 4 g dry wt./L, and 84% from the 6 g dry wt./L suspensions respectively. The results of this study indicate that microalgal suspension concentrations as low as 6 g dry wt./L can be recovered with a belt filter system improving the overall dewatering efficiency of the system.

  20. Number of conveyor belts optimization regarding to its type and logistical parameters in mining industry

    Directory of Open Access Journals (Sweden)

    Dušan Malindžák

    2008-12-01

    Full Text Available Material transportation by belt conveyers is widely used in many industrial branches including mining plants. Belt conveyingdevelopment during the last year was oriented mainly on construction of belts. The consequence of this is the improvement of itsmanufacture qualities bringing down the costs for their exchange and maintenance.Despite the fact that there are some theoreticalcalculations based on a standards it is common in the industry that the belt is not properly selected or it is overdesigned or number of itstypes is too large what can lead to increased costs for its storage. The paper describes the optimization of number of belt types in miningcompany SIDERIT, s. r. o. Nižná Slaná by the method of modernization and unification of belts under practical skills and projectingbased on theoretical calculations.

  1. Awareness for natural radiation potential zones in Archean Terrain of Chhattisgarh State

    International Nuclear Information System (INIS)

    Diwan, H.D.; Pande, S.K.

    2015-01-01

    In the environment, the natural radiations emitted by rocks and soils containing radioactive minerals, largely affected the human being in various aspects. The Chhattisgarh region characterized by the mineral of natural radiations with their relative distribution found in Granitic rocks of Archean age. Adjacent to Cratonic margins, exposures of outer fringes became suitable sites for radiation spread. It constituting towards the emission of radiation by the intrinsic content of minerals present in the host rock i.e. the terrestrial sources of radiation. The Archean terrain covers the surrounding areas of oval cup shaped sedimentary basin and it lies in the S.O.I. toposheet no. 64 G. H.I.K.L. To locate the marked potential zone for natural radiation, the investigation nearby aquatic component of main river and tributaries of Mahanadi river system is important. The presence of Granitic/ Pegmatite rocks at the boundaries of shield areas became promising areas for radiation generating mineral components. Occurrence in the potential zones expressed as lense shaped deposits or strips in dimension of IX1/2 with few hundred long belt. Presence of weathering of Uraninite minerals content remain yellow orange coloured impressions on the surface. In urban areas the background radiation in form of ionic radiation by the residential dwelling units accredates radiations. It needs awareness for Natural Radiation of under zones (NRPZ) in the region. To ensure the effective awareness programme, the area under consideration of natural radiation should take care of socially sustainable activities and spatio-temporal spread to motivate and implement various safety provisions. The model experiments can be sued from R and D point of view, also to alert the people to provide 'Safety, health and welfare of society'. (author)

  2. The sedimentary dynamics in natural and human-influenced delta channel belts

    NARCIS (Netherlands)

    Hobo, N.

    2015-01-01

    This study investigates the increased anthropogenic influence on the within-channel belt sedimentary dynamics in the Rhine delta. To make this investigation, the sedimentary dynamics within the life-cycle of a single channel belt were reconstructed for three key periods of increasing human impact,

  3. Feasibility of electro-osmotic belt filter dewatering technology at pilot scale

    CSIR Research Space (South Africa)

    Snyman, HG

    2000-01-01

    Full Text Available -air. The technology was found as sensitive to polyelectrolyte dosages as belt presses. The performance of the electro-osmotic belt filter was sensitive to feed rate, but performed well with non-thickened waste activated sludge (0.61% solids), resulting in cake solids...

  4. Study on the application of permanent magnet synchronous motors in underground belt conveyors

    Science.gov (United States)

    Ma, S. H.

    2017-12-01

    This paper analyzes and compares the advantages and disadvantages of several kinds of drive devices of belt conveyors from the angle of energy saving, and summarizes the application advantages and using problems of permanent magnet motor variable frequency drive system in belt conveyors. An example is given to demonstrate the energy saving effect of this system compared with other driving methods. This paper points out the application prospect of permanent magnet motor variable frequency drive system on belt conveyors and other large mining machines in coal mine. This paper is aimed to provide the design direction for the designer and the choice basis for the user on belt conveyor.

  5. Realization methodology for optimal design of steel structures conveyors with hanging belt

    Directory of Open Access Journals (Sweden)

    Boslovyak P.V.

    2016-03-01

    Full Text Available Presents the results of optimum design of metal structures of the fixed conveyor with hanging belt. The analysis results optimum design of steel structures of stationary conveyor with hanging belt.

  6. THE JCMT GOULD BELT SURVEY: DENSE CORE CLUSTERS IN ORION A

    International Nuclear Information System (INIS)

    Lane, J.; Kirk, H.; Johnstone, D.; Mairs, S.; Francesco, J. Di; Sadavoy, S.; Hatchell, J.; Berry, D. S.; Jenness, T.; Hogerheijde, M. R.; Ward-Thompson, D.

    2016-01-01

    The Orion A molecular cloud is one of the most well-studied nearby star-forming regions, and includes regions of both highly clustered and more dispersed star formation across its full extent. Here, we analyze dense, star-forming cores identified in the 850 and 450 μ m SCUBA-2 maps from the JCMT Gould Belt Legacy Survey. We identify dense cores in a uniform manner across the Orion A cloud and analyze their clustering properties. Using two independent lines of analysis, we find evidence that clusters of dense cores tend to be mass segregated, suggesting that stellar clusters may have some amount of primordial mass segregation already imprinted in them at an early stage. We also demonstrate that the dense core clusters have a tendency to be elongated, perhaps indicating a formation mechanism linked to the filamentary structure within molecular clouds.

  7. THE JCMT GOULD BELT SURVEY: DENSE CORE CLUSTERS IN ORION A

    Energy Technology Data Exchange (ETDEWEB)

    Lane, J.; Kirk, H.; Johnstone, D.; Mairs, S.; Francesco, J. Di [NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Sadavoy, S. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Hatchell, J. [Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Berry, D. S. [East Asian Observatory, 660 N. A‘ohōkū Place, University Park, Hilo, Hawaii 96720 (United States); Jenness, T. [Joint Astronomy Centre, 660 N. A‘ohōkū Place, University Park, Hilo, Hawaii 96720 (United States); Hogerheijde, M. R. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Ward-Thompson, D. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, Lancashire, PR1 2HE (United Kingdom); Collaboration: JCMT Gould Belt Survey Team

    2016-12-10

    The Orion A molecular cloud is one of the most well-studied nearby star-forming regions, and includes regions of both highly clustered and more dispersed star formation across its full extent. Here, we analyze dense, star-forming cores identified in the 850 and 450 μ m SCUBA-2 maps from the JCMT Gould Belt Legacy Survey. We identify dense cores in a uniform manner across the Orion A cloud and analyze their clustering properties. Using two independent lines of analysis, we find evidence that clusters of dense cores tend to be mass segregated, suggesting that stellar clusters may have some amount of primordial mass segregation already imprinted in them at an early stage. We also demonstrate that the dense core clusters have a tendency to be elongated, perhaps indicating a formation mechanism linked to the filamentary structure within molecular clouds.

  8. Factors controlling mud accumulation in the Heuksan mud belt off southwestern Korea

    Science.gov (United States)

    Chang, Tae Soo; Ha, Hun Jun; Chun, Seung Soo

    2015-12-01

    The Heuksan mud belt (hereafter HMB) is 20~50 km wide, ~200 km long, and ~50 m thick, having accumulated in the course of the Holocene transgression on the tide-dominated epicontinental shelf southwest of Korea. The internal architecture of the HMB is characterized by offshore prograding clinoforms. Of particular interest are the depositional processes responsible for this anomalously thick mud accumulation within a relatively short period of time. Tidal currents are important in the dispersal of mud in the HMB, although these alone cannot explain such an enormous mud deposit. In order to understand the formative processes of the HMB, a detailed sedimentary facies analysis, including high-resolution grain-size measurements, has been conducted on more than 30 short cores and three long drill cores recovered from the mud belt. Five major mud facies were identified. Of these, mud sequences showing a thickening-thinning trend of alternating silt and clay laminae suggestive of a tidal origin occur dominantly at inner to mid shelf locations. By contrast, internally structureless muds with sharp bases and no bioturbation, which are interpreted of representing fluid-mud deposits, are widespread at mid to outer shelf locations. Wave-generated mud ripples and storm beds on the inner shelf suggest that storm waves in winter resuspend previously deposited mud to form near-bed fluid-mud suspensions with resulting gravity-driven mud transport across the low-gradient outer shelf. This previously not recognized process is probably a major factor controlling depositional processes on the giant mud belt, enabling rapid accumulation and offshore progradation even during transgression, i.e., at times of sea-level rise.

  9. The belt pinch - a high-β tokamak with non-circular cross-section

    International Nuclear Information System (INIS)

    Gruber, O.; Peiry, J.M.; Wilhelm, R.

    1975-10-01

    The stability behaviour of non-circular plasma cross-sections is discussed on the basis of present known theory. Then the technical arrangement and the preionization of the Belt Pinch is described. The following section deals with the establishment of the non-circular equilibrium and summarizes the essential plasma paramters and the used diagnostic methods. The stability properties of the Belt Pinch, lead to a critical q-value. Finnaly, supporting experiments for the future Belt Pinch programm are presented. (orig./GG) [de

  10. PROPOSALS ON IMPROVING THE EXCAVATION, TRANSPORT AND COAL DEPOSIT, USING THE RUBBER CONVEYOR BELT

    Directory of Open Access Journals (Sweden)

    Nicoleta-Maria MIHUT

    2016-05-01

    Full Text Available In this work we make a study of the improvement methods of quantity of material transported by conveyor belt. Determination of discharge of solids entail establish of the parameters of the conveyor belt. As a result, we determine the belt speed who provide maximum discharge of solids materials.

  11. Characteristics of the gait adaptation process due to split-belt treadmill walking under a wide range of right-left speed ratios in humans.

    Science.gov (United States)

    Yokoyama, Hikaru; Sato, Koji; Ogawa, Tetsuya; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Kawashima, Noritaka

    2018-01-01

    The adaptability of human bipedal locomotion has been studied using split-belt treadmill walking. Most of previous studies utilized experimental protocol under remarkably different split ratios (e.g. 1:2, 1:3, or 1:4). While, there is limited research with regard to adaptive process under the small speed ratios. It is important to know the nature of adaptive process under ratio smaller than 1:2, because systematic evaluation of the gait adaptation under small to moderate split ratios would enable us to examine relative contribution of two forms of adaptation (reactive feedback and predictive feedforward control) on gait adaptation. We therefore examined a gait behavior due to on split-belt treadmill adaptation under five belt speed difference conditions (from 1:1.2 to 1:2). Gait parameters related to reactive control (stance time) showed quick adjustments immediately after imposing the split-belt walking in all five speed ratios. Meanwhile, parameters related to predictive control (step length and anterior force) showed a clear pattern of adaptation and subsequent aftereffects except for the 1:1.2 adaptation. Additionally, the 1:1.2 ratio was distinguished from other ratios by cluster analysis based on the relationship between the size of adaptation and the aftereffect. Our findings indicate that the reactive feedback control was involved in all the speed ratios tested and that the extent of reaction was proportionally dependent on the speed ratio of the split-belt. On the contrary, predictive feedforward control was necessary when the ratio of the split-belt was greater. These results enable us to consider how a given split-belt training condition would affect the relative contribution of the two strategies on gait adaptation, which must be considered when developing rehabilitation interventions for stroke patients.

  12. [Use of seat belts and mobile phone while driving in Florence: trend from 2005 to 2009].

    Science.gov (United States)

    Lorini, Chiara; Pellegrino, Elettra; Mannocci, Federico; Allodi, Guendalina; Indiani, Laura; Mersi, Anna; Petrioli, Giuseppe; Santini, Maria Grazia; Garofalo, Giorgio; Bonaccorsi, Guglielmo

    2012-01-01

    to evaluate the trend over time of the use of seat belts by drivers and passengers of cars and vans and the use of hand held mobile phone while driving in Florence from 2005 to 2009. DESIGN, SETTING AND PARTICIPANTS AND MAIN OUTCOME MEASURES: direct observations (58,773 vehicles) have been conducted to detect the use of seat belts by occupants of cars and vans, and the use of mobile phone while driving. It has been carried out correlation analysis between the use of the seat belt by occupants of vehicles and between the simultaneous use of this device and mobile phone while driving.Moreover, it has been carried out time series analysis (ARIMA Box Jenkins) of in the prevalence of the use of seat belts by occupants of vehicles observed, of mobile phone by drivers and the trend of the risk to drive using the mobile phone with unfastened seat belt rather than to drive using the mobile phone with fastened seat belt. seat belts were used on average by 75.7% of drivers, 75.5% of front passengers and 25.1% of rear passengers. The average mobile phone use while driving was 4.5%. Drivers most frequently fasten seat belt if front passengers use it and while they do not use mobile phone. The use of seat belts by drivers and front passengers has not changed over time, whereas the use of mobile phone while driving has significantly increased. The prevalence of using mobile phone with unfastened seat belt rather than to use it with fastened seat belt while driving has significantly decreased over the years, indicating an increase in the use of mobile phone, especially among those who fasten the seat belt. it is necessary to plan and realize stronger interventions in the whole area.

  13. Determination of acceleration for belt conveyor speed control in transient operation

    NARCIS (Netherlands)

    He, D.; Pang, Y.; Lodewijks, G.

    2016-01-01

    Speed control has been found a feasible mean to reduce the energy consumption of belt conveyors. However, the current research has not taken the determination of the acceleration in transient operation into account sufficiently. With respect to the belt tension rating, demanded safety factor and the

  14. Geochronology of the Jequie-Itabuna granulitic belt and of the Contendas-Mirante volcano-sedimentary belt

    International Nuclear Information System (INIS)

    Marinho, Moacyr M.; Barbosa, Johildo S.F.; Sabate, Pierre

    1995-01-01

    The Jequie-Itabuna Granulitic Belt is divided here into the Jequie-Mutuipe-Maracas Domain and the Atlantic Coast Domain. The paper analyzes the geochronological data from the Jequie-Mutuipe-Maracas Domain in two parts: plutonic rocks equilibrated in granulite facies, including the charno-enderbitic rocks from the Laje-Mutuipe region and the charnockitic rocks from the Maracas region; and ortho- and paraderived rocks metamorphosed in granulite facies, with the data obtained from rocks collected at the Jequie quarry and from homogeneous rocks collected at the western outskirts of the Jequirica town. The available geochronological data for the Atlantic Coast Domain is discussed, and due to the lack of petrologic control of the analyzed rocks, the geological significance of the ages between 2.0 and 2.3 is obtained in several line regressions. The paper identifies the following domains within the Contendas-Mirante volcano-sedimentary belt: the the basement dones, the volcano-sedimentary sequence and the intrusive rocks. The basement domes is the domain of the ancient gray gneisses (ca 3.4 Ga), to TTG (tonalite-trondhjemite-granodiorite) terrains and among the different massifs that crop out in the SE sector of the volcano-sedimentary belt, those of Sete Voltas and Boa Vista/Mata Verde have geochronological data available. The volcano-sedimentary sequence is divided into a lower, a middle and an upper unit and its available isotopic data are analyzed. The item referent to the intrusive rocks deals with the following plutons: The Lagoa Morro da Velha granitoid, the Pe da Serra granite, the Rio Jacare sill and the Transamazonian granites. 31 figs., 5 tabs

  15. [Strategy programming for acupuncture development along One-Belt-One-Road countries].

    Science.gov (United States)

    Yang, Yuyang; Shen, Zhixiang; Wu, Zhongchao; Luo, Lu; Liu, Jingyuan; Liu, Baoyan

    2017-04-12

    Acupuncture has been applied in 183 countries and regions and gradually become a name card as TCM spreads across the world. The international influence of which plays a significant role in enhancing TCM development. The laws and regulations of TCM acupuncture along One-Belt-One-Road countries were compared and analyzed in this article. With comprehensive research and analysis, the international development strategy of acupuncture was rationally proposed. Combined with the historical background of China's national initiative One-Belt-One-Road, the acupuncture was taken as a breakthrough to lead the global spreading of TCM culture and Chinese herbs, so as to enhance China's soft strength, which could further create a fine cultural environment for the economic prosperity of One-Belt-One-Road countries. In addition, the strategy selection for China regarding TCM acupuncture development along One-Belt-One-Road countries was proposed, and the suggestive solution and implementation strategy for the essential missions and significant issues were provided.

  16. Adaptive control of dynamic balance in human gait on a split-belt treadmill.

    Science.gov (United States)

    Buurke, Tom J W; Lamoth, Claudine J C; Vervoort, Danique; van der Woude, Lucas H V; den Otter, Rob

    2018-05-17

    Human bipedal gait is inherently unstable and staying upright requires adaptive control of dynamic balance. Little is known about adaptive control of dynamic balance in reaction to long-term, continuous perturbations. We examined how dynamic balance control adapts to a continuous perturbation in gait, by letting people walk faster with one leg than the other on a treadmill with two belts (i.e. split-belt walking). In addition, we assessed whether changes in mediolateral dynamic balance control coincide with changes in energy use during split-belt adaptation. In nine minutes of split-belt gait, mediolateral margins of stability and mediolateral foot roll-off changed during adaptation to the imposed gait asymmetry, especially on the fast side, and returned to baseline during washout. Interestingly, no changes in mediolateral foot placement (i.e. step width) were found during split-belt adaptation. Furthermore, the initial margin of stability and subsequent mediolateral foot roll-off were strongly coupled to maintain mediolateral dynamic balance throughout the gait cycle. Consistent with previous results net metabolic power was reduced during split-belt adaptation, but changes in mediolateral dynamic balance control were not correlated with the reduction of net metabolic power during split-belt adaptation. Overall, this study has shown that a complementary mechanism of relative foot positioning and mediolateral foot roll-off adapts to continuously imposed gait asymmetry to maintain dynamic balance in human bipedal gait. © 2018. Published by The Company of Biologists Ltd.

  17. Start-up of belt conveyors used for haulage of large lumps under difficult climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Drobny, J

    1979-01-01

    Investigations are discussed carried out by the Research and Development Center for Brown Coal in Most, Czechoslovakia into effects of climate, weather and mass of coal lumps on reliability of belt conveyors in surface mines. Dirt buildup on the driving drums reduces friction and increases belt sliding hazards. Belt wear increases. Driving drum diameter, increased by the buildup, negatively influences load distribution among the electric motors of the drive system. In extreme cases belt wear and irregular load distribution cause belt failures. Methods for buildup removal used in Czechoslovakia and methods for protection of the return side of a conveyor are described. Effects of large mass of coal lumps and ice buildup on large lumps on the risk of belt damage (cuts, punctures etc,) are discussed. Recommendations for design of coal transfer points are made. 2 refs.

  18. The effects of seat belt legislation on road traffic injuries.

    Science.gov (United States)

    Trinca, G W; Dooley, B J

    1977-04-01

    The compulsory wearing of seat belts, first introduced in the world in Victoria in 1970, has effectively reduced the number of deaths and injuries by approximately one-third for car occupants involved in motor vehicle crashes. Initially, the legislation did not apply to children under the age of eight years, but in 1975 a further law was introduced banning children from the front seat of any vehicle unless properly harnessed. Seat belts offer the best protection for front seat drivers and passengers involved in frontal impacts, but offer less protection to the recipient of a side impact. Ten per cent of car occupants admitted to hospital after a frontal impact show injuries, mostly minor, directly attibutable to the wearing of seat belts.

  19. Optimal regenerative braking with a push-belt CVT: an experimental study

    NARCIS (Netherlands)

    Berkel, van K.; Hofman, T.; Vroemen, B.G.; Steinbuch, M.

    2010-01-01

    This paper describes the approach and the results of efficiency experiments on a push-belt Continuously Variable Transmission (CVT) in a new hybrid drive train. The hybrid drive train uses the push-belt CVT to charge a flywheel, with the kinetic energy of the vehicle during regenerative braking and

  20. Optimal regenerative braking with a push-belt CVT : an experimental study

    NARCIS (Netherlands)

    van Berkel, K.; Hofman, T.; Vroemen, B.; Steinbuch, M.

    2010-01-01

    This paper describes the approach and the results of efficiency experiments on a push-belt Continuously Variable Transmission (CVT) in a new hybrid drive train. The hybrid drive train uses the push-belt CVT to “charge” a flywheel, with the kinetic energy of the vehicle during regenerative braking