WorldWideScience

Sample records for radiation based techniques

  1. Radiation exposure in X-ray-based imaging techniques used in osteoporosis

    Energy Technology Data Exchange (ETDEWEB)

    Damilakis, John [University of Crete, Department of Medical Physics, Faculty of Medicine, P.O. Box 2208, Iraklion, Crete (Greece); Adams, Judith E. [University of Manchester, Imaging Science and Biomedical Engineering, Manchester (United Kingdom); Manchester Royal Infirmary, Radiology Department, Manchester (United Kingdom); Guglielmi, Giuseppe [Scientific Institute Hospital San Giovanni Rotondo, Department of Radiology, San Giovanni Rotondo (Italy); University of Foggia, Foggia (Italy); Link, Thomas M. [University of California, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2010-11-15

    Recent advances in medical X-ray imaging have enabled the development of new techniques capable of assessing not only bone quantity but also structure. This article provides (a) a brief review of the current X-ray methods used for quantitative assessment of the skeleton, (b) data on the levels of radiation exposure associated with these methods and (c) information about radiation safety issues. Radiation doses associated with dual-energy X-ray absorptiometry are very low. However, as with any X-ray imaging technique, each particular examination must always be clinically justified. When an examination is justified, the emphasis must be on dose optimisation of imaging protocols. Dose optimisation is more important for paediatric examinations because children are more vulnerable to radiation than adults. Methods based on multi-detector CT (MDCT) are associated with higher radiation doses. New 3D volumetric hip and spine quantitative computed tomography (QCT) techniques and high-resolution MDCT for evaluation of bone structure deliver doses to patients from 1 to 3 mSv. Low-dose protocols are needed to reduce radiation exposure from these methods and minimise associated health risks. (orig.)

  2. Novel On-wafer Radiation Pattern Measurement Technique for MEMS Actuator Based Reconfigurable Patch Antennas

    Science.gov (United States)

    Simons, Rainee N.

    2002-01-01

    The paper presents a novel on-wafer, antenna far field pattern measurement technique for microelectromechanical systems (MEMS) based reconfigurable patch antennas. The measurement technique significantly reduces the time and the cost associated with the characterization of printed antennas, fabricated on a semiconductor wafer or dielectric substrate. To measure the radiation patterns, the RF probe station is modified to accommodate an open-ended rectangular waveguide as the rotating linearly polarized sampling antenna. The open-ended waveguide is attached through a coaxial rotary joint to a Plexiglas(Trademark) arm and is driven along an arc by a stepper motor. Thus, the spinning open-ended waveguide can sample the relative field intensity of the patch as a function of the angle from bore sight. The experimental results include the measured linearly polarized and circularly polarized radiation patterns for MEMS-based frequency reconfigurable rectangular and polarization reconfigurable nearly square patch antennas, respectively.

  3. Radiation techniques for acromegaly

    Directory of Open Access Journals (Sweden)

    Minniti Giuseppe

    2011-12-01

    Full Text Available Abstract Radiotherapy (RT remains an effective treatment in patients with acromegaly refractory to medical and/or surgical interventions, with durable tumor control and biochemical remission; however, there are still concerns about delayed biochemical effect and potential late toxicity of radiation treatment, especially high rates of hypopituitarism. Stereotactic radiotherapy has been developed as a more accurate technique of irradiation with more precise tumour localization and consequently a reduction in the volume of normal tissue, particularly the brain, irradiated to high radiation doses. Radiation can be delivered in a single fraction by stereotactic radiosurgery (SRS or as fractionated stereotactic radiotherapy (FSRT in which smaller doses are delivered over 5-6 weeks in 25-30 treatments. A review of the recent literature suggests that pituitary irradiation is an effective treatment for acromegaly. Stereotactic techniques for GH-secreting pituitary tumors are discussed with the aim to define the efficacy and potential adverse effects of each of these techniques.

  4. Nanosatellites in LEO and beyond: Advanced Radiation protection techniques for COTS-based spacecraft

    Science.gov (United States)

    Selčan, David; Kirbiš, Gregor; Kramberger, Iztok

    2017-02-01

    This paper presents an approach for implementing radiation protection FDIR (Fault Detection, Isolation and Recovery) techniques designed especially for nanosatellites, capable of ensuring reliable operation in harsh orbits using COTS (Commercial off the Shelf) components. The radiation environment, as encountered by nanosatellites utilizing Flash-based FPGAs in orbits higher than Low Earth Orbit, is analyzed, primarily focusing on SEE (Single Event Effects). In order to assure reliable operation, the FDIR policy is split into two levels: the Low Level FDIR which ensures that no permanent damage occurs to the satellite's electronics, which then allows the use of a High Level FDIR tasked with maintaining high availability. A hierarchical approach, consisting of three types of current limiters in combination with watchdog timers and fault tolerant logic implemented inside a flash-based FPGA is proposed for the Low Level FDIR. The impacts of various radiation-induced faults are analyzed with respect to how the FDIR techniques mitigate them. The proposed current limiters and watchdog timers have been implemented and evaluated for suitability of use with the hierarchical FDIR policy. In order to decrease the impacts on the size and weight footprints, the current limiters were implemented as stacked 3D modules.

  5. Experimental comparison between speckle and grating-based imaging technique using synchrotron radiation X-rays.

    Science.gov (United States)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-08-08

    X-ray phase contrast and dark-field imaging techniques provide important and complementary information that is inaccessible to the conventional absorption contrast imaging. Both grating-based imaging (GBI) and speckle-based imaging (SBI) are able to retrieve multi-modal images using synchrotron as well as lab-based sources. However, no systematic comparison has been made between the two techniques so far. We present an experimental comparison between GBI and SBI techniques with synchrotron radiation X-ray source. Apart from the simple experimental setup, we find SBI does not suffer from the issue of phase unwrapping, which can often be problematic for GBI. In addition, SBI is also superior to GBI since two orthogonal differential phase gradients can be simultaneously extracted by one dimensional scan. The GBI has less stringent requirements for detector pixel size and transverse coherence length when a second or third grating can be used. This study provides the reference for choosing the most suitable technique for diverse imaging applications at synchrotron facility.

  6. Development of Styrene-Grafted Polyurethane by Radiation-Based Techniques

    Directory of Open Access Journals (Sweden)

    Jin-Oh Jeong

    2016-06-01

    Full Text Available Polyurethane (PU is the fifth most common polymer in the general consumer market, following Polypropylene (PP, Polyethylene (PE, Polyvinyl chloride (PVC, and Polystyrene (PS, and the most common polymer for thermosetting resins. In particular, polyurethane has excellent hardness and heat resistance, is a widely used material for electronic products and automotive parts, and can be used to create products of various physical properties, including rigid and flexible foams, films, and fibers. However, the use of polar polymer polyurethane as an impact modifier of non-polar polymers is limited due to poor combustion resistance and impact resistance. In this study, we used gamma irradiation at 25 and 50 kGy to introduce the styrene of hydrophobic monomer on the polyurethane as an impact modifier of the non-polar polymer. To verify grafted styrene, we confirmed the phenyl group of styrene at 690 cm−1 by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR and at 6.4–6.8 ppm by 1H-Nuclear Magnetic Resonance (1H-NMR. Scanning Electron Microscope (SEM, X-ray Photoelectron Spectroscopy (XPS, Thermogravimetric Analysis (TGA and contact angle analysis were also used to confirm styrene introduction. This study has confirmed the possibility of applying high-functional composite through radiation-based techniques.

  7. Numerical analysis of radiation propagation in innovative volumetric receivers based on selective laser melting techniques

    Science.gov (United States)

    Alberti, Fabrizio; Santiago, Sergio; Roccabruna, Mattia; Luque, Salvador; Gonzalez-Aguilar, Jose; Crema, Luigi; Romero, Manuel

    2016-05-01

    Volumetric absorbers constitute one of the key elements in order to achieve high thermal conversion efficiencies in concentrating solar power plants. Regardless of the working fluid or thermodynamic cycle employed, design trends towards higher absorber output temperatures are widespread, which lead to the general need of components of high solar absorptance, high conduction within the receiver material, high internal convection, low radiative and convective heat losses and high mechanical durability. In this context, the use of advanced manufacturing techniques, such as selective laser melting, has allowed for the fabrication of intricate geometries that are capable of fulfilling the previous requirements. This paper presents a parametric design and analysis of the optical performance of volumetric absorbers of variable porosity conducted by means of detailed numerical ray tracing simulations. Sections of variable macroscopic porosity along the absorber depth were constructed by the fractal growth of single-cell structures. Measures of performance analyzed include optical reflection losses from the absorber front and rear faces, penetration of radiation inside the absorber volume, and radiation absorption as a function of absorber depth. The effects of engineering design parameters such as absorber length and wall thickness, material reflectance and porosity distribution on the optical performance of absorbers are discussed, and general design guidelines are given.

  8. Impact of Evolving Radiation Therapy Techniques on Implant-Based Breast Reconstruction.

    Science.gov (United States)

    Muresan, Horatiu; Lam, Gretl; Cooper, Benjamin T; Perez, Carmen A; Hazen, Alexes; Levine, Jamie P; Saadeh, Pierre B; Choi, Mihye; Karp, Nolan S; Ceradini, Daniel J

    2017-06-01

    Patients undergoing implant-based reconstruction in the setting of postmastectomy radiation therapy suffer from increased complications and inferior outcomes compared with those not irradiated, but advances in radiation delivery have allowed for more nuanced therapy. The authors investigated whether these advances impact patient outcomes in implant-based breast reconstruction. Retrospective chart review identified all implant-based reconstructions performed at a single institution from November of 2010 to November of 2013. These data were cross-referenced with a registry of patients undergoing breast irradiation. Patient demographics, treatment characteristics, and outcomes were analyzed. Three hundred twenty-six patients (533 reconstructions) were not irradiated, whereas 83 patients (125 reconstructions) received radiation therapy; mean follow-up was 24.7 months versus 26.0 months (p = 0.49). Overall complication rates were higher in the irradiated group (35.2 percent versus 14.4 percent; p heart and lung dosing, to optimize reconstructive outcomes. Prone positioning significantly decreases the maximum skin dose and trends toward significance in reducing reconstructive complications. With continued study, this may become clinically important. Interdepartmental studies such as this one ensure quality of care. Therapeutic, III.

  9. Interpenetrating polymer networks based on a thermoplastic elastomer, using radiation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Shirodkar, Bhavna D. E-mail: bhavna@student.unsw.edu.au; Burford, Robert

    2001-07-01

    Styrene-butadiene-styrene thermoplastic elastomers can be transformed into Interpenetrating polymer networks using {gamma}-radiation crosslinking. Trimethylol propanetriacrylate was used as the radiation crosslinker for styrene. The study shows that the hardness of the sample increased with radiation dose while the tensile strength remained constant.

  10. Interpenetrating polymer networks based on a thermoplastic elastomer, using radiation techniques

    Science.gov (United States)

    Shirodkar, Bhavna D.; Burford, Robert P.

    2001-07-01

    Styrene-butadiene-styrene thermoplastic elastomers can be transformed into Interpenetrating polymer networks using γ-radiation crosslinking. Trimethylol propanetriacrylate was used as the radiation crosslinker for styrene. The study shows that the hardness of the sample increased with radiation dose while the tensile strength remained constant.

  11. Temperature based daily incoming solar radiation modeling based on gene expression programming, neuro-fuzzy and neural network computing techniques.

    Science.gov (United States)

    Landeras, G.; López, J. J.; Kisi, O.; Shiri, J.

    2012-04-01

    The correct observation/estimation of surface incoming solar radiation (RS) is very important for many agricultural, meteorological and hydrological related applications. While most weather stations are provided with sensors for air temperature detection, the presence of sensors necessary for the detection of solar radiation is not so habitual and the data quality provided by them is sometimes poor. In these cases it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Traditional temperature based solar radiation equations were also included in this study and compared with artificial intelligence based approaches. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SSRMSE), MAE-based skill score (SSMAE) and r2 criterion of Nash and Sutcliffe criteria were used to assess the models' performances. An ANN (a four-input multilayer perceptron with ten neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m-2 d-1 of RMSE). A four-input ANFIS model revealed as an interesting alternative to ANNs (3.14 MJ m-2 d-1 of RMSE). Very limited number of studies has been done on estimation of solar radiation based on ANFIS, and the present one demonstrated the ability of ANFIS to model solar radiation based on temperatures and extraterrestrial radiation. By the way this study demonstrated, for the first time, the ability of GEP models to model solar radiation based on daily atmospheric variables. Despite the accuracy of GEP models was slightly lower than the ANFIS and ANN models the genetic programming models (i.e., GEP) are superior to other artificial intelligence models in giving a simple explicit equation for the

  12. Monte Carlo techniques in radiation therapy

    CERN Document Server

    Verhaegen, Frank

    2013-01-01

    Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. Monte Carlo Techniques in Radiation Therapy explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams. The book-the first of its kind-addresses applications of the Monte Carlo particle transport simulation technique in radiation therapy, mainly focusing on external beam radiotherapy and brachytherapy. It presents the mathematical and technical aspects of the methods in particle transport simulations. The book also discusses the modeling of medical linacs and other irradiation devices; issues specific...

  13. A Population-Based Comparative Effectiveness Study of Radiation Therapy Techniques in Stage III Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Jeremy P. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Murphy, James D. [Department of Radiation Medicine and Applied Science, University of California– San Diego, Moores Cancer Center, La Jolla, California (United States); Hanlon, Alexandra L. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); University of Pennsylvania School of Nursing, Philadelphia, Pennsylvania (United States); Le, Quynh-Thu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Loo, Billy W., E-mail: BWLoo@Stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Diehn, Maximilian, E-mail: diehn@Stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California (United States)

    2014-03-15

    Purpose: Concerns have been raised about the potential for worse treatment outcomes because of dosimetric inaccuracies related to tumor motion and increased toxicity caused by the spread of low-dose radiation to normal tissues in patients with locally advanced non-small cell lung cancer (NSCLC) treated with intensity modulated radiation therapy (IMRT). We therefore performed a population-based comparative effectiveness analysis of IMRT, conventional 3-dimensional conformal radiation therapy (3D-CRT), and 2-dimensional radiation therapy (2D-RT) in stage III NSCLC. Methods and Materials: We used the Surveillance, Epidemiology, and End Results (SEER)-Medicare database to identify a cohort of patients diagnosed with stage III NSCLC from 2002 to 2009 treated with IMRT, 3D-CRT, or 2D-RT. Using Cox regression and propensity score matching, we compared survival and toxicities of these treatments. Results: The proportion of patients treated with IMRT increased from 2% in 2002 to 25% in 2009, and the use of 2D-RT decreased from 32% to 3%. In univariate analysis, IMRT was associated with improved overall survival (OS) (hazard ratio [HR] 0.90, P=.02) and cancer-specific survival (CSS) (HR 0.89, P=.02). After controlling for confounders, IMRT was associated with similar OS (HR 0.94, P=.23) and CSS (HR 0.94, P=.28) compared with 3D-CRT. Both techniques had superior OS compared with 2D-RT. IMRT was associated with similar toxicity risks on multivariate analysis compared with 3D-CRT. Propensity score matched model results were similar to those from adjusted models. Conclusions: In this population-based analysis, IMRT for stage III NSCLC was associated with similar OS and CSS and maintained similar toxicity risks compared with 3D-CRT.

  14. Electrolytic membrane formation of fluoroalkyl polymer using a UV-radiation-based grafting technique and sulfonation

    Energy Technology Data Exchange (ETDEWEB)

    Shironita, Sayoko; Mizoguchi, Satoko; Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Niigata (Japan)

    2011-03-15

    A sulfonated fluoroalkyl graft polymer (FGP) membrane was prepared as a polymer electrolyte. First, the FGP membrane was grafted with styrene under UV irradiation. The grafted FGP was then sulfonated to functionalize it for proton conductivity. The grafting degree of the membrane increased with increasing grafting time during UV irradiation. The proton conductivity of the membrane increased with increasing grafting degree. The swelling ratio was independent of the grafting time, however, the water uptake increased with increasing grafting degree. Based on these results, it was found that the UV-initiated styrene grafting occurred along the membrane thickness direction. Moreover, the membrane was embedded within the glass fibers of the composite. This composite electrolytic membrane had 1.15 times the proton conductivity of a Nafion 117 membrane.

  15. Dosimetric study for cervix carcinoma treatment using intensity modulated radiation therapy (IMRT) compensation based on 3D intracavitary brachytherapy technique.

    Science.gov (United States)

    Yin, Gang; Wang, Pei; Lang, Jinyi; Tian, Yin; Luo, Yangkun; Fan, Zixuan; Tam, Kin Yip

    2016-06-01

    Intensity modulated radiation therapy (IMRT) compensation based on 3D high-dose-rate (HDR) intracavitary brachytherapy (ICBT) boost technique (ICBT + IMRT) has been used in our hospital for advanced cervix carcinoma patients. The purpose of this study was to compare the dosimetric results of the four different boost techniques (the conventional 2D HDR intracavitary brachytherapy [CICBT], 3D optimized HDR intracavitary brachytherapy [OICBT], and IMRT-alone with the applicator in situ). For 30 patients with locally advanced cervical carcinoma, after the completion of external beam radiotherapy (EBRT) for whole pelvic irradiation 45 Gy/25 fractions, five fractions of ICBT + IMRT boost with 6 Gy/fractions for high risk clinical target volume (HRCTV), and 5 Gy/fractions for intermediate risk clinical target volume (IRCTV) were applied. Computed tomography (CT) and magnetic resonance imaging (MRI) scans were acquired using an in situ CT/MRI-compatible applicator. The gross tumor volume (GTV), the high/intermediate-risk clinical target volume (HRCTV/IRCTV), bladder, rectum, and sigmoid were contoured by CT scans. For ICBT + IMRT plan, values of D90, D100 of HRCTV, D90, D100, and V100 of IRCTV significantly increased (p < 0.05) in comparison to OICBT and CICBT. The D2cc values for bladder, rectum, and sigmoid were significantly lower than that of CICBT and IMRT alone. In all patients, the mean rectum V60 Gy values generated from ICBT + IMRT and OICBT techniques were very similar but for bladder and sigmoid, the V60 Gy values generated from ICBT + IMRT were higher than that of OICBT. For the ICBT + IMRT plan, the standard deviations (SD) of D90 and D2cc were found to be lower than other three treatment plans. The ICBT + IMRT technique not only provides good target coverage but also maintains low doses (D2cc) to the OAR. ICBT + IMRT is an optional technique to boost parametrial region or tumor of large size and irregular shape when intracavitary/interstitial brachytherapy

  16. Insights into metals in individual fine particles from municipal solid waste using synchrotron radiation-based micro-analytical techniques

    Institute of Scientific and Technical Information of China (English)

    Yumin Zhu; Hua Zhang; Liming Shao; Pinjing He

    2015-01-01

    Excessive inter-contamination with heavy metals hampers the application of biological treatment products derived from mixed or mechanically-sorted municipal solid waste (MSW).In this study,we investigated fine particles of <2 mm,which are small fractions in MSW but constitute a significant component of the total heavy metal content,using bulk detection techniques.A total of 17 individual fine particles were evaluated using synchrotron radiation-based micro-X-ray fluorescence and micro-X-ray diffraction.We also discussed the association,speciation and source apportionment of heavy metals.Metals were found to exist in a diffuse distribution with heterogeneous intensities and intense hot-spots of <10 μm within the fine particles.Zn-Cu,Pb-Fe and Fe-Mn-Cr had significant correlations in terms of spatial distribution.The overlapped enrichment,spatial association,and the mineral phases of metals revealed the potential sources of fine particles from size-reduced waste fractions (such as scraps of organic wastes or ceramics) or from the importation of other particles.The diverse sources of heavy metal pollutants within the fine particles suggested that separate collection and treatment of the biodegradable waste fraction (such as food waste) is a preferable means of facilitating the beneficial utilization of the stabilized products.

  17. Role of radiation dating technique - one example

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Shigueo [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Etchevarne, Carlos A. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Fac. de Filosofia e Ciencias Humanas. Dept. Antropologia e Etnologia; Cano, Nilo F.; Munita, C.S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2012-07-01

    Full text: The great majority of archaeological or geological dating technique is based on radiation effect. The so called radioactivity method uses radioactive decays of elements. This is the case of the well known radiocarbon or carbon-14 method. Also the method of relating daughter nucleus to decaying nucleus, as in K-40/Ar-40, Th- 230/U-234, etc. Here we will concentrate in the method based on energy deposition in a solid by radiation from the disintegration of U-series and Th-series. {beta}-rays emitted by the decay of K-40 into Ca-40 (80%) and Ar-40 (11%) also contributes. The role of {alpha}, {beta} and {gamma} radiation emitted by radionuclides in the U-238 and Th-232 series and of {beta} rays from the decay of K-40, all of them in the soil irradiate anything in their course. For dating, we can have sediments as well as potteries produced by ancient people and became buried. The important process consists in transferring a fraction of the energy of radiation to the solid, mainly liberating electrons from valence band to conduction band and from there to traps. In many case the energy of the radiation is used to create defects which in turn create energy levels (traps) in the forbidden gap (or energy gap). There are three ways to recover the energy stored in the solid: (1) by emission of light optically stimulated (OSL), (2) by emission of light thermally stimulated (TL), (3) by microwave absorption (EPR or ESR). Using these techniques among several applications, we will present one to find the first settlers in the northeaster region of Brazil. (author)

  18. Insights into metals in individual fine particles from municipal solid waste using synchrotron radiation-based micro-analytical techniques.

    Science.gov (United States)

    Zhu, Yumin; Zhang, Hua; Shao, Liming; He, Pinjing

    2015-01-01

    Excessive inter-contamination with heavy metals hampers the application of biological treatment products derived from mixed or mechanically-sorted municipal solid waste (MSW). In this study, we investigated fine particles of radiation-based micro-X-ray fluorescence and micro-X-ray diffraction. We also discussed the association, speciation and source apportionment of heavy metals. Metals were found to exist in a diffuse distribution with heterogeneous intensities and intense hot-spots of waste fractions (such as scraps of organic wastes or ceramics) or from the importation of other particles. The diverse sources of heavy metal pollutants within the fine particles suggested that separate collection and treatment of the biodegradable waste fraction (such as food waste) is a preferable means of facilitating the beneficial utilization of the stabilized products.

  19. An Accurate Technique for Calculation of Radiation From Printed Reflectarrays

    DEFF Research Database (Denmark)

    Zhou, Min; Sorensen, Stig B.; Jorgensen, Erik

    2011-01-01

    The accuracy of various techniques for calculating the radiation from printed reflectarrays is examined, and an improved technique based on the equivalent currents approach is proposed. The equivalent currents are found from a continuous plane wave spectrum calculated by use of the spectral dyadic...

  20. Estimation of global solar radiation using an artificial neural network based on an interpolation technique in southeast China

    Science.gov (United States)

    Zou, Ling; Wang, Lunche; Lin, Aiwen; Zhu, Hongji; Peng, Yuling; Zhao, Zhenzhen

    2016-08-01

    Solar radiation plays important roles in energy application, vegetation growth and climate change. Empirical relations and machine-learning methods have been widely used to estimate global solar radiation (GSR) in recent years. An artificial neural network (ANN) based on spatial interpolation is developed to estimate GSR in southeast China. The improved Bristow-Campbell (IBC) model and the improved Ångström-Prescott (IA-P) model are compared with the ANN model to explore the best model in solar radiation modeling. Daily meteorological parameters, such as sunshine duration hours, mean temperature, maximum temperature, minimum temperature, relative humidity, precipitation, air pressure, water vapor pressure, and wind speed, along with station-measured GSR and a daily surface GSR dataset over China obtained from the Data Assimilation and Modeling Center for Tibetan Multi-spheres (DAM), are used to predict GSR and to validate the models in this work. The ANN model with the network of 9-17-1 provides better accuracy than the two improved empirical models in GSR estimation. The root-mean-square error (RMSE), mean bias error (MBE), and determination coefficient (R2) are 2.65 MJ m-2, -0.94 MJ m-2, and 0.68 in the IA-P model; 2.19 MJ m-2, 1.11 MJ m-2, and 0.83 in the IBC model; 1.34 MJ m-2, -0.11 MJ m-2, and 0.91 in the ANN model, respectively. The regional monthly mean GSR in the measured dataset, DAM dataset, and ANN model is analyzed. The RMSE (RMSE %) is 1.07 MJ m-2 (8.91%) and the MBE (MBE %) is -0.62 MJ m-2 (-5.21%) between the measured and ANN-estimated GSR. The statistical errors of RMSE (RMSE %) are 0.91 MJ m-2 (7.28%) and those of MBE (MBE %) are -0.15 MJ m-2 (-1.20%) between DAM and ANN-modeled GSR. The correlation coefficients and R2 are larger than 0.95. The regional mean GSR is 12.58 MJ m-2. The lowest GSR is observed in the northwest area, and it increases from northwest to southeast. The annual mean GSR decreases by 0.02 MJ m-2 decade-1 over the entire

  1. Application of synchrotron-radiation-based x-ray microprobe techniques for the analysis of recombination activity of metals precipitated at Si/SiGe misfit dislocations

    Energy Technology Data Exchange (ETDEWEB)

    Vyvenko, O F [University of California, LBNL, 1 Cyclotron Rd, Berkeley, CA 94720 (United States); Buonassisi, T [University of California, LBNL, 1 Cyclotron Rd, Berkeley, CA 94720 (United States); Istratov, A A [University of California, LBNL, 1 Cyclotron Rd, Berkeley, CA 94720 (United States); Weber, E R [University of California, LBNL, 1 Cyclotron Rd, Berkeley, CA 94720 (United States); Kittler, M [IHP, Im Technologiepark 25, D-15236 Frankfurt (Oder) (Germany); Seifert, W [IHP, Im Technologiepark 25, D-15236 Frankfurt (Oder) (Germany)

    2002-12-09

    In this study we report application of synchrotron-radiation-based x-ray microprobe techniques (the x-ray-beam-induced current (XBIC) and x-ray fluorescence ({mu}-XRF) methods) to the analysis of the recombination activity and space distribution of copper and iron in the vicinity of dislocations in silicon/silicon-germanium structures. A combination of these two techniques enables one to study the chemical nature of the defects and impurities and their recombination activity in situ and to map metal clusters with a micron-scale resolution. XRF analysis revealed that copper formed clearly distinguishable precipitates along the misfit dislocations. A proportional dependence between the XBIC contrast and the number of copper atoms in the precipitates was established. In hydrogen-passivated iron-contaminated samples we observed clusters of iron precipitates which had no recombination activity detectable by the XBIC technique as well as iron clusters which were not completely passivated.

  2. Synchrotron Radiation Lithography and MEMS Technique at NSRL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Two beamlines and stations for soft X-ray lithography and hard X-ray lithography at NSRL are presented. Synchrotron radiation lithography (SRL) and mask techniques are developed, and the micro-electro-mechanical systems (MEMS) techniques are also investigated at NSRL. In this paper, some results based on SRL and MEMS techniques are reported, and sub-micron and high aspect ratio microstructures are given. Some micro-devices, such as microreactors are fabricated at NSRL.

  3. New radiation techniques in gynecological cancer.

    Science.gov (United States)

    Ahamad, A; Jhingran, A

    2004-01-01

    Radiation therapy has been a major therapeutic modality for eradicating malignant tumors over the past century. In fact, it was not long after the discovery of radium that the first woman with cervical cancer underwent intracavitary brachytherapy. Progress in the way that this cytotoxic agent is manipulated and delivered has seen an explosive growth over the past two decades with technological developments in physics, computing capabilities, and imaging. Although radiation oncologists are educated in and familiar with the wealth of new revolutionary techniques, it is not easy for other key members of the team to keep up with the rapid progress and its significance. However, to fully exploit these enormous gains and to communicate effectively, medical and gynecological oncologists are expected to be aware of state-of-the-art radiation oncology. Here, we elucidate and illustrate contemporary techniques in radiation oncology, with particular attention paid to the external beam radiotherapy used for adjuvant and primary definitive management of malignancies of the female pelvis.

  4. Mass Spectrometric and Synchrotron Radiation based techniques for the identification and distribution of painting materials in samples from paints of Josep Maria Sert

    Directory of Open Access Journals (Sweden)

    Lluveras-Tenorio Anna

    2012-05-01

    Full Text Available Abstract Background Establishing the distribution of materials in paintings and that of their degradation products by imaging techniques is fundamental to understand the painting technique and can improve our knowledge on the conservation status of the painting. The combined use of chromatographic-mass spectrometric techniques, such as GC/MS or Py/GC/MS, and the chemical mapping of functional groups by imaging SR FTIR in transmission mode on thin sections and SR XRD line scans will be presented as a suitable approach to have a detailed characterisation of the materials in a paint sample, assuring their localisation in the sample build-up. This analytical approach has been used to study samples from Catalan paintings by Josep Maria Sert y Badía (20th century, a muralist achieving international recognition whose canvases adorned international buildings. Results The pigments used by the painter as well as the organic materials used as binders and varnishes could be identified by means of conventional techniques. The distribution of these materials by means of Synchrotron Radiation based techniques allowed to establish the mixtures used by the painter depending on the purpose. Conclusions Results show the suitability of the combined use of SR μFTIR and SR μXRD mapping and conventional techniques to unequivocally identify all the materials present in the sample and their localization in the sample build-up. This kind of approach becomes indispensable to solve the challenge of micro heterogeneous samples. The complementary interpretation of the data obtained with all the different techniques allowed the characterization of both organic and inorganic materials in the samples layer by layer as well as to establish the painting techniques used by Sert in the works-of-art under study.

  5. Study and application of X radiation sampling technique

    Institute of Scientific and Technical Information of China (English)

    葛良全; 章晔; 等

    1996-01-01

    The physical bases of a X radiation sampling technique are investigated.Three technical problems of unevenness,matrix and heterogeneous mineralization effects,are considered and successfully resolved.This new technique was appled to three sites of Au,Sn and Cu deposits(representing higher,medial and lower atomic number minerals)in different exploration stages in China and satisfactory results are obtained.

  6. Development of Radiation Technique for Environmental Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myun Joo; Kuk, Il Hiun; Jin, Joon Ha (and others)

    2007-02-15

    The purpose of this research is to development of technologies for 1) the removal of toxic organic chemicals in sewage sludges and the volume reduction of the sewage sludge 2) the recycling/reuse of sewage sludge 3) the reconvey of resource from fishery waste by using radiation technologies. This research project focused on the study of treatment, disposal, and recycling/reuse of sewage sludge by radiation technology, and recovery of highly value-added resources from the wastes. As basic studies with a radiation technology, an enhancement of dewaterbilities of sewage sludge, development of dewatering conditioner, reduction of trace toxic organic chemicals, and the toxicities of the byproducts were studied. Based on the basic experimental results, we developed the pilot-scale system with the continuous e-beam and dewatering unit and the advanced treatment system with the use of carbon source recovered from sewage sludge.

  7. Particle fluence measurements by activation technique for radiation damage studies

    CERN Document Server

    León-Florián, E; Furetta, C; Leroy, Claude

    1995-01-01

    High-level radiation environment can produce radiation damage in detectors and their associate electronic components. The establishment of a correlation between damage, irradiation level and absorbed dose requires a precise measurement of the fluence of particles causing the damage. The activation technique is frequently used for performing particle fluence measurements. A review of this technique is presented.

  8. Characterization of a degraded cadmium yellow (CdS) pigment in an oil painting by means of synchrotron radiation based X-ray techniques.

    Science.gov (United States)

    Van der Snickt, Geert; Dik, Joris; Cotte, Marine; Janssens, Koen; Jaroszewicz, Jakub; De Nolf, Wout; Groenewegen, Jasper; Van der Loeff, Luuk

    2009-04-01

    On several paintings of James Ensor (1860-1949), a gradual fading of originally bright yellow areas, painted with the pigment cadmium yellow (CdS), is observed. Additionally, in some areas exposed to light, the formation of small white-colored globules on top of the original paint surface is observed. In this paper the chemical transformation leading to the color change and to the formation of the globules is elucidated. Microscopic X-ray absorption near-edge spectroscopy (mu-XANES) experiments show that sulfur, originally present in sulfidic form (S(2-)), is oxidized during the transformation to the sulfate form (S(6+)). Upon formation (at or immediately below the surface), the highly soluble cadmium sulfate is assumed to be transported to the surface in solution and reprecipitates there, forming the whitish globules. The presence of cadmium sulfate (CdSO(4).2H(2)O) and ammonium cadmium sulfate [(NH(4))(2)Cd(SO(4))(2)] at the surface is confirmed by microscopic X-ray diffraction measurements, where the latter salt is suspected to result from a secondary reaction of cadmium sulfate with ammonia. Measurements performed on cross sections reveal that the oxidation front has penetrated into the yellow paint down to ca. 1-2 microm. The morphology and elemental distribution of the paint and degradation product were examined by means of scanning electron microscopy equipped with an energy-dispersive spectrometer (SEM-EDS) and synchrotron radiation based micro-X-ray fluorescence spectrometry (SR micro-XRF). In addition, ultraviolet-induced visible fluorescence photography (UIVFP) revealed itself to be a straightforward technique for documenting the occurrence of this specific kind of degradation on a macroscale by painting conservators.

  9. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jinhong; Lee, Seung Sik; Bai, Hyounwoo; An, Byung Chull; Lee, Eun Mi; Lee, Jae Taek; Kim, Mi Ja

    2010-12-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Isolation and identification of radiation induced basI gene; Determination of stresses sensitivities by transformating basI gene into arabidopsis; Isolation and identification of radiation induced chaperon proteins (PaAhpC and yPrxII) from Pseudomonas and yeast, and structural and functional analysis of the proteins; Determination of oxidative and heat resistance by transformating PaAhpC; Isolation and identification of maysin and its derivatives from centipedgrass; Investigation of enhancement technique for improving maysin and its derivatives production using radiation; Investigation of removing undesirable color in maysin and its derivatives using radiation; Determination of the effect of radiation on physiological functions of centipedgrass extracts; Identification of H{sub 2}O{sub 2} removing enzyme in radiation irradiated plant (Spinach); Determination of the effects of centipedgrass extracts on anti-obesity and anti-cancer activities.

  10. Analysis of Far-Field Radiation from Apertures Using Monte Carlo Integration Technique

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Fakharian

    2014-12-01

    Full Text Available An integration technique based on the use of Monte Carlo Integration (MCI is proposed for the analysis of the electromagnetic radiation from apertures. The technique that can be applied to the calculation of the aperture antenna radiation patterns is the equivalence principle followed by physical optics, which can then be used to compute far-field antenna radiation patterns. However, this technique is often complex mathematically, because it requires integration over the closed surface. This paper presents an extremely simple formulation to calculate the far-fields from some types of aperture radiators by using MCI technique. The accuracy and effectiveness of this technique are demonstrated in three cases of radiation from the apertures and results are compared with the solutions using FE simulation and Gaussian quadrature rules.

  11. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Lee, Seung Sik; Bai, Hyounwoo; Singh, Sudhir; Lee, Eun Mi; Hong, Sung Hyun; Park, Chul Hong; Srilatha, B.; Kim, Mi Ja; Lee, Ohchul

    2012-01-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Development of a technique for radiation tissue and cell culture for Erigeron breviscapus (Vant.) Hand. Mazz.; Identification and functional analysis of AtTDX (chaperone and peroxidase activities); Functional analysis of radiation(gamma ray, electron beam, and proton beam) induced chaperon protein activities (AtTDX); Determine the action mechanism of yPrx2; Development of transgenic plant with bas I gene from Arabidopsis; Development of transgenic plant with EoP gene from centipedegrass; Identification of radiation induced multi functional compounds from Aloe; Determination of the effects of radiation on removing undesirable color and physiological activities (Schizandra chinensis baillon, centipedegrass); Determine the action mechanism of transgenic plant with 2-Cys Prx for heat stress resistance; Determination of the effects of centipedegrass extracts on anti-cancer activities; Functional analysis of centipedegrass extracts (anti-virus effects)

  12. Equipment for measuring radiation. Part 3. Technique of measuring radiation

    Energy Technology Data Exchange (ETDEWEB)

    Radwanowski, L.J.

    1979-01-01

    Difficulties are noted in measuring the effects of radiation because of the excessively low energy of the measured fields. In nature there are different magnetic-dynamic and magnetic-hydrodynamic generators which are sources of very low intensity which changes in time. The equipment of measurements is examined in the example of one of the generators, underground water current. The apparatus is described in detail for measuring the intensity of the electromagnetic SHF field. Under the underground water currents a change is observed in the intensity of the electromagnetic field. The possibilities are also examined of direct measurement of ultrasonic elastic fluctuations caused by the underground current, as well as the possibility of recording other physical fields (spontaneous polarization, soil temperature). A study was made of the effect of the underground water current on the occurrence of physical, chemical and biological processes: photochemical reactions, reactions of metal oxidation, Golomb effect (change in the rate of sedimentation of argillaceous particles in water under the influence of a biofield), change in air humidity and soil water content, change in intensity of the magnetic field, Hall effect, change in luminescence of certain organisms or the luminophore released by them. Basic plans are presented of certain measurement and recording devices.

  13. Selective Chemical-Lithographic Reaction Techniques Using Radiation Technology for Biological Application

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Kwan Woo; Kim, Keo Su; Kim, Hyun Jung; Kim, Hee Suk; Lee, Mi Jin [Sogang University, Seoul (Korea, Republic of)

    2010-05-15

    This report, titled 'selective Chemical-Lithographic Reaction Techniques Using Radiation Technology for Biological Application' contains a research summary, 1) development of selective reaction technology using irradiation of electron beams, 2) preparation of functional surfaces using selective radiation technology on carbon-based nanomaterials, and 3) development of bio-applicable biochips using combinatorial surface modification

  14. Development of Plant Application Technique of Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jae Sung; Lim, Yong Taek (and others)

    2007-07-15

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources.

  15. Overview of novel techniques for radiation protection and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, Stefano, E-mail: stefano.agosteo@polimi.i [Politecnico of Milano, Dipartimento di Energia, Sezione di Ingegneria Nucleare - CeSNEF, via Ponzio 34/3, 20133 Milano (Italy); INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2010-12-15

    Generally, the main approaches for assessing the radiation protection (RP) quantities in neutron fields are: i) the use of an instrument with a response to the protection quantity quasi-independent of energy; ii) neutron spectrometry; iii) microdosimetry. The techniques based on the first approach include rem-meters, superheated emulsions and the electronic personal dosemeters. Passive rem-meters have recently been developed for assessing the ambient dose equivalent in pulsed neutron fields around particle accelerators for hadrontherapy and research. Most of these instruments are characterised by a response extended to high-energies (up to a few GeV). An example is given by the GSI-ball, which employs a pair of LiF TLDs as a thermal neutron detector. It is likely that passive instruments will play a fundamental role also for monitoring the neutron fields generated by ultra-high intensity lasers, where the duration of a single pulse is of the order of hundreds femtoseconds. Arrays of tissue-equivalent proportional counters (TEPCs) of a millimetric/sub-millimetric physical size have been developed both for assessing the quality of therapeutic radiation beams and for estimating the RP quantities in low-intensity fields, which may limit the use of conventional microdosemeters. Very satisfactory results were obtained with GEM-based TEPCs and gas microstrip detectors (GMDs). Moreover, mini-TEPCs have been constructed and tested for measuring the quality of hadrontherapy beams (BNCT included). Silicon microdosemeters have also been demonstrated to be very promising for characterizing proton and ion beams for radiation therapy and for estimating the occurrence of single event effects in space applications.

  16. Applications of synchrotron radiation techniques to materials science 4

    Energy Technology Data Exchange (ETDEWEB)

    Mini, S.M. [ed.] [Northern Illinois Univ., DeKalb, IL (United States)]|[Argonne National Lab., IL (United States); Stock, S.R. [ed.] [Georgia Inst. of Tech., Atlanta, GA (United States); Perry, D.L. [ed.] [Lawrence Berkeley National Lab., CA (United States); Terminello, L.J. [ed.] [Lawrence Livermore National Lab., CA (United States)

    1998-12-31

    As more synchrotron facilities are constructed and go online both in the US and in other countries, even more applications of synchrotron radiation will be realized. Both basic and applied research possibilities are manifold, including studies of materials mentioned below and those that are yet to be discovered. Also, the combination of synchrotron-based spectroscopic techniques with ever increasing high-resolution microscopy allows researchers to study very small domains of materials in an attempt to understand their chemical and electronic properties. This is especially important in the areas of composites and other related materials involving material bonding interfaces. The topics covered in this symposium include surfaces, interfaces, electronic materials, metal oxides, solar cells, thin films, carbides, polymers, alloys, nanoparticles, and graphitic materials. Results reported at this symposium relate recent advances in X-ray absorption and scattering, imaging, tomography, microscopy, and topography methods.

  17. Physics of nuclear radiations concepts, techniques and applications

    CERN Document Server

    Rangacharyulu, Chary

    2013-01-01

    Physics of Nuclear Radiations: Concepts, Techniques and Applications makes the physics of nuclear radiations accessible to students with a basic background in physics and mathematics. Rather than convince students one way or the other about the hazards of nuclear radiations, the text empowers them with tools to calculate and assess nuclear radiations and their impact. It discusses the meaning behind mathematical formulae as well as the areas in which the equations can be applied. After reviewing the physics preliminaries, the author addresses the growth and decay of nuclear radiations, the stability of nuclei or particles against radioactive transformations, and the behavior of heavy charged particles, electrons, photons, and neutrons. He then presents the nomenclature and physics reasoning of dosimetry, covers typical nuclear facilities (such as medical x-ray machines and particle accelerators), and describes the physics principles of diverse detectors. The book also discusses methods for measuring energy a...

  18. Comparison of a new noncoplanar intensity-modulated radiation therapy technique for craniospinal irradiation with 3 coplanar techniques

    DEFF Research Database (Denmark)

    Hansen, Anders T; Lukacova, Slavka; Lassen-Ramshad, Yasmin A.;

    2015-01-01

    patient using the noncoplanar IMRT-based technique, a coplanar IMRT-based technique, and a coplanar volumetric-modulated arch therapy (VMAT) technique. Dosimetry data for all patients were compared with the corresponding data from the conventional treatment plans. The new noncoplanar IMRT technique......When standard conformal x-ray technique for craniospinal irradiation is used, it is a challenge to achieve satisfactory dose coverage of the target including the area of the cribriform plate, while sparing organs at risk. We present a new intensity-modulated radiation therapy (IMRT), noncoplanar...... technique, for delivering irradiation to the cranial part and compare it with 3 other techniques and previously published results. A total of 13 patients who had previously received craniospinal irradiation with standard conformal x-ray technique were reviewed. New treatment plans were generated for each...

  19. Development and application of the analyzer-based imaging technique with hard synchrotron radiation; Developpement et application d'une technique d'imagerie par rayonnement synchrotron basee sur l'utilisation d'un cristal analyseur

    Energy Technology Data Exchange (ETDEWEB)

    Coan, P

    2006-07-15

    The objective of this thesis is twofold: from one side the application of the analyser-based X-ray phase contrast imaging to study cartilage, bone and bone implants using ESRF synchrotron radiation sources and on the other to contribute to the development of the phase contrast techniques from the theoretical and experimental point of view. Several human samples have been studied in vitro using the analyser based imaging (ABI) technique. Examination included projection and computed tomography imaging and 3-dimensional volume rendering of hip, big toe and ankle articular joints. X-ray ABI images have been critically compared with those obtained with conventional techniques, including radiography, computed tomography, ultrasound, magnetic resonance and histology, the latter taken as gold standard. Results show that only ABI imaging was able to either visualize or correctly estimate the early pathological status of the cartilage. The status of the bone ingrowth in sheep implants have also been examined in vitro: ABI images permitted to correctly distinguish between good and incomplete bone healing. Pioneering in-vivo ABI on guinea pigs were also successfully performed, confirming the possible use of the technique to follow up the progression of joint diseases, the bone/metal ingrowth and the efficacy of drugs treatments. As part of the development of the phase contrast techniques, two objectives have been reached. First, it has been experimentally demonstrated for the first time that the ABI and the propagation based imaging (PBI) can be combined to create images with original features (hybrid imaging, HI). Secondly, it has been proposed and experimentally tested a new simplified set-up capable to produce images with properties similar to those obtained with the ABI technique or HI. Finally, both the ABI and the HI have been theoretically studied with an innovative, wave-based simulation program, which was able to correctly reproduce experimental results. (author)

  20. Study on Production of Useful Metabolites by Development of Advanced Cell Culture Techniques Using Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, J. H.; Lee, S. S.; Shyamkumar, B.; An, B. C.; Moon, Y. R.; Lee, E. M.; Lee, M. H.

    2009-02-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes 1) Development of a technique for radiation tissue and cell culture, 2) Database construction for radiation response in plants and radiation effects, 3) Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Establishment of a tissue culture system (Rubus sp., Lithospermum erythrorhizon, and Rhodiola rosea); characterization of radiation activated gene expression from cultivated bokbunja (Rubus sp.) and Synechocystis sp., identification of gamma-ray induced color change in plants; identification of sensitivity to gamma-ray from Omija (Schisandra chinensis) extract; identification of the response of thylakoid proteins to gamma-ray in spinach and Arabidopsis; identification of gamma-ray induced gene relating to pigment metabolism; characterization of different NPQ changes to gamma-irradiated plants; verification of the effects of rare earth element including anti-bacterial and anti-fungal properties and as a growth enhancer; identification of changes in the growth of gamma-irradiated Synechocystis; and investigation of liquid cell culture conditions from Rhodiola rosea

  1. Application of multileaf collimator in breast cancer radiation techniques

    Science.gov (United States)

    Janiszewska, Marzena; Dupla, Dorota; Nowakowski, Grzegorz

    2004-07-01

    Modern radiation therapy tools allow a precise delivery of a high dose to a target area (so-called planning target volume -- PTV) and spare, at the same time, critical organs in the vicinity of cancerous lesions. One of the tools of conformal therapy is a multi-leaf collimator, which provides the opportunity to optimally adjust the therapeutic field to the tumor area. More difficult areas for radiation therapy include: mamma, after BCT, and chest after mammectomy with regional lymph nodes. The objective of the study is to present technical and physical aspects of breast carcinoma irradiation when applying a multi-leaf collimator. The following techniques were applied: (a) the isocentric technique of tangent fields (from two to four) for the mamma after BCT; (b) the method of a common isocenter, for the areas of mamma and for regional lymph nodes; (c) the technique of complementary photon + electron fields, for the area of chest after mammectomy and lymph nodes. The presented techniques were implemented as standard procedures in the preparation of breast carcinoma radiation treatment in the Lower Silesian Oncology Center.

  2. Arduino based radiation survey meter

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Nur Aira Abd, E-mail: nur-aira@nm.gov.my; Lombigit, Lojius; Abdullah, Nor Arymaswati; Azman, Azraf; Dolah, Taufik; Jaafar, Zainudin; Mohamad, Glam Hadzir Patai; Ramli, Abd Aziz Mhd; Zain, Rasif Mohd; Said, Fazila; Khalid, Mohd Ashhar; Taat, Muhamad Zahidee [Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Muzakkir, Amir [Sinaran Utama Teknologi Sdn Bhd, 43650, Bandar Baru Bangi, Selangor (Malaysia)

    2016-01-22

    This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr{sup −1}). Conversion factor (CF) value for conversion of CPM to μSvhr{sup −1} determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The survey meter measurement results are found to be linear for dose rates below 3500 µSv/hr.

  3. Arduino based radiation survey meter

    Science.gov (United States)

    Rahman, Nur Aira Abd; Lombigit, Lojius; Abdullah, Nor Arymaswati; Azman, Azraf; Dolah, Taufik; Muzakkir, Amir; Jaafar, Zainudin; Mohamad, Glam Hadzir Patai; Ramli, Abd Aziz Mhd; Zain, Rasif Mohd; Said, Fazila; Khalid, Mohd Ashhar; Taat, Muhamad Zahidee

    2016-01-01

    This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr-1). Conversion factor (CF) value for conversion of CPM to μSvhr-1 determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The survey meter measurement results are found to be linear for dose rates below 3500 µSv/hr.

  4. Impacts of radiation management techniques on the North Atlantic Oscillation

    Science.gov (United States)

    Adakudlu, Muralidhar; Helge Otterå, Odd; Tjiputra, Jerry; Muri, Helene; Grini, Alf; Schulz, Michael

    2017-04-01

    The effectiveness of various climate engineering techniques in limiting the global warming signal to reasonable levels has been the topic of state-of-the-art research on climate change. Using an Earth system model, we show that these techniques have the potential to bring down the high CO2 concentration climate in RCP8.5 to a moderate climate similar to RCP4.5 in terms of global temperature. Nevertheless, their influence on the regional aspects of atmospheric circulation is not clear. The regional circulation patterns in the atmosphere are largely characterized by the natural variability modes, such as the North Atlantic Oscillation (NAO). In this study, we assess the impacts of three radiation managment techniques, namely, Stratospheric Aerosol Injection (SAI), Marine Sky Brightening (MSB) and Cirrus Cloud Thinning (CCT), on the structure and features of the NAO. The results indicate an east-northeastward shift as well as intensification of the NAO spatial pattern in the global warming scenarios of RCP4.5 and RCP8.5, with the signal being most intense in the latter. The climate engineering forcings when applied to the RCP8.5 case tend to reduce the strength of the NAO with little impact on its position. The CCT case appears to have the maximum effect on the NAO signal. The patterns of cloud radiative forcing, expressed as the difference between net radiative forcing at TOA under average conditions and clear sky conditions, reveal a northeastward shift of the radiative heating in the north Atlantic region. This implies a possible link between the changes in the NAO signal and the cloud radiative forcing.

  5. High pressure x-ray diffraction techniques with synchrotron radiation

    Institute of Scientific and Technical Information of China (English)

    刘景

    2016-01-01

    This article summarizes the developments of experimental techniques for high pressure x-ray diffraction (XRD) in diamond anvil cells (DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, time-resolved diffraction with dynamic DAC and development of modulated heating techniques are briefl y introduced. The current status of the high pressure beamline at BSRF (Beijing Synchrotron Radiation Facility) and some results are also presented.

  6. Recent Developments in Three Dimensional Radiation Transport Using the Green's Function Technique

    Science.gov (United States)

    Rockell, Candice; Tweed, John; Blattnig, Steve R.; Mertens, Christopher J.

    2010-01-01

    In the future, astronauts will be sent into space for longer durations of time compared to previous missions. The increased risk of exposure to dangerous radiation, such as Galactic Cosmic Rays and Solar Particle Events, is of great concern. Consequently, steps must be taken to ensure astronaut safety by providing adequate shielding. In order to better determine and verify shielding requirements, an accurate and efficient radiation transport code based on a fully three dimensional radiation transport model using the Green's function technique is being developed

  7. PET-Based Thoracic Radiation Oncology.

    Science.gov (United States)

    Simone, Charles B; Houshmand, Sina; Kalbasi, Anusha; Salavati, Ali; Alavi, Abass

    2016-07-01

    Fluorodeoxyglucose-PET is increasingly being integrated into multiple aspects of oncology. PET/computed tomography (PET/CT) has become especially important in radiation oncology. With the increasing use of advanced techniques like intensity-modulated radiation therapy and proton therapy, PET/CT scans have played critical roles in the target delineation of tumors for radiation oncologists delivering conformal treatment techniques. Use of PET/CT is well established in lung cancer and several other thoracic malignancies. This article details the current uses of PET/CT in thoracic radiation oncology with a focus on lung cancer and describes expected future roles of PET/CT for thoracic tumors.

  8. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jin Hong; Lee, Seung Sik; Kim, Jae Sung; An, Byung Chull; Moon, Yu Ran; Lee, Eun Mi; Lee, Min Hee; Lee, Jae Tack [KAERI, Daejeon (Korea, Republic of)

    2010-02-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes 1) Development of a technique for radiation tissue and cell culture, 2) Database construction for radiation response in plants and radiation effects, 3) Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: mass culture of the adventitious roots of mountain ginseng (Panax ginseng C. A. Meyer) roots using rare earth elements in bioreactor: characterization of a transcription factor EoP gene from centipedegrass and the transcription regulation of LexA from Synechocystis sp PCC6803 and E. coli: identification of gamma-ray induced hydrogenase synthesis in hox gene transformed E. coli: transformation and the selection of the EoP transgene from Arabidopsis, rice and lettuce: Identification of the maysin and maysin derivatives in centipedegrass: characterization of gamma-ray induced color change in Taxus cuspidata: verification of the expression of antioxidant proteins (POD, APX and CAT) to gamma-ray in Arabidopsis: comparison of the response of the expression level to gamma-ray or H{sub 2}O{sub 2} in Arabidopsis; verification of the responses and effects to gamma-ray from plants (analysis of NPQ and ROS levels): the development method for rapidly enhancing maysin content of centipede grass; establishment of mass culture system for red beet

  9. Role and trends of radiation techniques in the agricultural research and practice

    Energy Technology Data Exchange (ETDEWEB)

    Simon, J. (' Marcius 15' MTSZ MULTIRADIACIO, Hernad (Hungary))

    1983-09-01

    The major results, development trends and the fields of application of radiation techniques are summarized and classified based on the magnitude of doses and dose rates. Low irradiation doses of low-energy radiations are used to stimulate plant and animal growth or progagation. Tracer techniques are applied to special fields in veterinary science, agrochemistry, plant and environmental protection. Irradiation doses of some hundred Grays can cause mutations beneficial in plant improvement and radiodisinfestation of insect parasites. For radappertization, an effective tool of food preservation, high irradiation doses are needed. The problems of irradiation and those of irradiation equipment are outlined including management problems as well.

  10. Technique to Predict Ultraviolet Radiation Embrittlement of Polymers in Space

    Science.gov (United States)

    1996-01-01

    In the low-Earth-orbit environment, solar ultraviolet (UV) radiation embrittles polymer materials through bond breaking and crosslinking. This UV embrittlement increases the surface hardness of the polymer. Before the durability of polymer materials in the low- Earth-orbit environment can be predicted, the extent of UV embrittlement needs to be determined. However, traditional techniques for measuring the microhardness of materials cannot be employed to measure changes in the hardness of UV-embrittled surfaces because traditional techniques measure bulk hardness and are not sensitive enough to surface changes. A unique technique was used at the NASA Lewis Research Center to quantify polymer surface damage that had been induced by UV radiation. The technique uses an atomic force microscope (AFM) to measure surface microhardness. An atomic force microscope measures the repulsive forces between the atoms in a microscopic cantilevered tip and the atoms on the surface of a sample. Typically, an atomic force microscope produces a topographic image of a surface by monitoring the movement of the tip over features of the surface. The force applied to the cantilevered tip, and the indention of the tip into the surface, can be measured. The relationship between force and distance of indentation, the quantity force/distance (newtons/meter), provides a measure of the surface hardness. Under identical operating conditions, direct comparisons of surface hardness values can be made.

  11. Readout techniques and radiation damage of undoped cesium iodide

    Energy Technology Data Exchange (ETDEWEB)

    Woody, C.L.; Levy, P.W.; Kierstead, J.A.; Skwarnicki, T.; Sobolewski, Z.; Goldberg, M.; Horwitz, N.; Souder, P.; Anderson, D.F. (Brookhaven National Lab., Upton, NY (USA); Syracuse Univ., NY (USA). Dept. of Physics; Fermi National Accelerator Lab., Batavia, IL (USA))

    1989-01-01

    Several readout techniques for undoped CsI have been studied which utilize the fast scintillation component for speed, and the high photon yield for good energy resolution. Quantum yields have been measured for samples up to 30 cm in length using photomultiplier tubes, wavelength shifters, and silicon photodiodes. A study has also been made of the scintillation properties of undoped CsI. It is found that the light output and decay time of the 310 nm fast component increases and the emission spectrum shifts to longer wavelengths at lower temperatures. The effects on the optical transmission and scintillation light output due to radiation damage from {sup 60}Co gamma rays has been measured for doses up to {approximately}10{sup 6} rad. It is found that the radiation resistance of undoped CsI is substantially higher than has been reported for thallium doped CsI. 16 refs., 11 figs., 3 tabs.

  12. Salvage interstitial brachytherapy based on computed tomography for recurrent cervical cancer after radical hysterectomy and adjuvant radiation therapy: case presentations and introduction of the technique.

    Science.gov (United States)

    Liu, Zhong-Shan; Guo, Jie; Zhao, Yang-Zhi; Lin, Xia; Chen, Bin; Zhang, Ming; Li, Jiang-Ming; Ren, Xiao-Jun; Zhang, Bing-Ya; Wang, Tie-Jun

    2016-10-01

    Locally recurring cervical cancer after surgery and adjuvant radiotherapy remains a major therapeutic challenge. This paper presents a new therapeutic technique for such patients: interstitial brachytherapy (BT) guided by real-time three-dimensional (3D) computed tomography (CT). Sixteen patients with recurrent cervical cancer after radical surgery and adjuvant external-beam radiotherapy (EBRT) were included in this study. These patients underwent high-dose-rate (HDR) interstitial BT with free-hand placement of metal needles guided by real-time 3D-CT. Six Gy in 6 fractions were prescribed for the high-risk clinical target volume (HR-CTV). D90 and D100 for HR-CTV of BT, and the cumulative D2cc for the bladder, rectum, and sigmoid, including previous EBRT and present BT were analyzed. Treatment-related complications and 3-month tumor-response rates were investigated. The mean D90 value for HR-CTV was 52.5 ± 3.3 Gy. The cumulative D2cc for the bladder, rectum, and sigmoid were 85.6 ± 5.8, 71.6 ± 6.4, and 69.6 ± 5.9 Gy, respectively. The mean number of needles was 6.1 ± 1.5, with an average depth of 3.5 ± 0.9 cm for each application. Interstitial BT was associated with minor complications and passable tumor-response rate. Interstitial BT guided by real-time 3D-CT for recurrent cervical cancer results in good dose-volume histogram (DVH) parameters. The current technique may be clinically feasible. However, long-term clinical outcomes should be further investigated.

  13. Probing Radiation Damage in Plutonium Alloys with Multiple Measurement Techniques

    Energy Technology Data Exchange (ETDEWEB)

    McCall, S K; Fluss, M J; Chung, B W

    2010-04-21

    A material subjected to radiation damage will usually experience changes in its physical properties. Measuring these changes in the physical properties provides a basis to study radiation damage in a material which is important for a variety of real world applications from reactor materials to semiconducting devices. When investigating radiation damage, the relative sensitivity of any given property can vary considerably based on the concentration and type of damage present as well as external parameters such as the temperature and starting material composition. By measuring multiple physical properties, these differing sensitivities can be leveraged to provide greater insight into the different aspects of radiation damage accumulation, thereby providing a broader understanding of the mechanisms involved. In this report, self-damage from {alpha}-particle decay in Pu is investigated by measuring two different properties: magnetic susceptibility and resistivity. The results suggest that while the first annealing stage obeys second order chemical kinetics, the primary mechanism is not the recombination of vacancy-interstitial close pairs.

  14. Application of Neuro-Fuzzy Techniques for Solar Radiation

    OpenAIRE

    W. A. Rahoma; U. A. Rahoma; A. H. Hassan

    2011-01-01

    Problem statement: The prediction is very useful in solar energy applications because it permits to estimate solar data for locations where measurements are not available. The developed artificial intelligence models predict the solar radiation time series more effectively compared to the conventional procedures based on the clearness index. Approach: The forecasting ability of some models could be further enhanced with the use of additional meteorological parameters. After having simulated m...

  15. High pressure x-ray diffraction techniques with synchrotron radiation

    Science.gov (United States)

    Jing, Liu

    2016-07-01

    This article summarizes the developments of experimental techniques for high pressure x-ray diffraction (XRD) in diamond anvil cells (DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, time-resolved diffraction with dynamic DAC and development of modulated heating techniques are briefly introduced. The current status of the high pressure beamline at BSRF (Beijing Synchrotron Radiation Facility) and some results are also presented. Project supported by the National Natural Science Foundation of China (Grant Nos. 10875142, 11079040, and 11075175). The 4W2 beamline of BSRF was supported by the Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N20, KJCX2-SW-N03, and SYGNS04).

  16. Wavelet Based Image Denoising Technique

    Directory of Open Access Journals (Sweden)

    Sachin D Ruikar

    2011-03-01

    Full Text Available This paper proposes different approaches of wavelet based image denoising methods. The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. Wavelet algorithms are useful tool for signal processing such as image compression and denoising. Multi wavelets can be considered as an extension of scalar wavelets. The main aim is to modify the wavelet coefficients in the new basis, the noise can be removed from the data. In this paper, we extend the existing technique and providing a comprehensive evaluation of the proposed method. Results based on different noise, such as Gaussian, Poisson’s, Salt and Pepper, and Speckle performed in this paper. A signal to noise ratio as a measure of the quality of denoising was preferred.

  17. Chitosan-containing hydrogel wound dressings prepared by radiation technique

    Science.gov (United States)

    Mozalewska, Wiktoria; Czechowska-Biskup, Renata; Olejnik, Alicja K.; Wach, Radoslaw A.; Ulański, Piotr; Rosiak, Janusz M.

    2017-05-01

    The aim of the study was to develop an antimicrobial hydrogel wound dressing by means of radiation-initiated crosslinking of hydrophilic polymers, i.e. by well-established technology comprising gel manufacturing and its sterilization in one process. The approach included admixture of chitosan of relatively low molecular weight dissolved in lactic acid (LA) into the initial regular components of the conventional hydrogel dressing based on poly(N-vinyl pyrrolidone) (PVP) and agar. Molecular weight of chitosan was regulated by radiation-initiated degradation in the range of 39-132 kg mol-1. Optimum total concentration of LA in the resultant hydrogel dressing was evaluated as 0.05 mol dm-3, that is ca. 0.5%. Presence of LA in the system influenced essential radiation and technological parameters of hydrogel manufacturing. The setting temperature of the pre-hydrogel mixture, resulting from agar ability to congeal, was reduced with LA concentration, yet remained significantly above the room temperature. 0.5% of chitosan was effectively dissolved in aqueous solution of lactic acid due to its pH (lower than 5.5). Radiation parameters of PVP crosslinking in the presence of LA, as determined with generalized Charlesby-Pinner equation, were reflected in slight reduction of the maximum gel fraction and increase in gelation dose and in the factor comparing yields of scission to crosslinking. Nevertheless, essentially physical characteristics of the hydrogel was not affected, except for somewhat increased water uptake capacity, what in turn improves functionality of the dressing as extensive exudate for the wound can be efficiently absorbed. Preliminary microbiological studies showed antimicrobial character of the chitosan-containing hydrogel towards Gram-positive bacterial strain.

  18. Advanced radiation measurement techniques in diagnostic radiology and molecular imaging.

    Science.gov (United States)

    Del Guerra, Alberto; Belcari, Nicola; Llacer, Gabriela Llosa; Marcatili, Sara; Moehrs, Sascha; Panetta, Daniele

    2008-01-01

    This paper reports some technological advances recently achieved in the fields of micro-CT and small animal PET instrumentation. It highlights a balance between image-quality improvement and dose reduction. Most of the recent accomplishments in these fields are due to the use of novel imaging sensors such as CMOS-based X-ray detectors and silicon photomultipliers (SiPM). Some of the research projects carried out at the University of Pisa for the development of such advanced radiation imaging technology are also described.

  19. Assessing a new gene expression analysis technique for radiation biodosimetry applications

    Energy Technology Data Exchange (ETDEWEB)

    Manning, Grainne; Kabacik, Sylwia; Finnon, Paul; Paillier, Francois; Bouffler, Simon [Cancer Genetics and Cytogenetics, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Health Protection Agency, Chilton, Didcot, Oxfordshire OX11 ORQ (United Kingdom); Badie, Christophe, E-mail: christophe.badie@hpa.org.uk [Cancer Genetics and Cytogenetics, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Health Protection Agency, Chilton, Didcot, Oxfordshire OX11 ORQ (United Kingdom)

    2011-09-15

    The response to any radiation accident or incident involving actual or potential ionising radiation exposure requires accurate and rapid assessment of the doses received by individuals. The techniques available today for biodosimetry purposes are not fully adapted to rapid high-throughput measurements of exposures in large numbers of individuals. A recently emerging technique is based on gene expression analysis, as there are a number of genes which are radiation responsive in a dose-dependent manner. The present work aimed to assess a new technique which allows the detection of the level of expression of up to 800 genes without need of enzymatic reactions. In order to do so, human peripheral blood was exposed ex vivo to a range of x-ray doses from 5 mGy to 4 Gy of x-rays and the transcriptional expression of five radiation-responsive genes PHPT1, PUMA, CCNG1, DDB2 and MDM2 was studied by both the nCounter Digital Analyzer and Multiplex Quantitative Real-Time Polymerase Chain Reaction (MQRT-PCR) as the benchmark technology. Results from both techniques showed good correlation for all genes with R{sup 2} values ranging between 0.8160 and 0.9754. The reproducibility of the nCounter Digital Analyzer was also assessed in independent biological replicates and proved to be good. Although the slopes of the correlation of results obtained by the techniques suggest that MQRT-PCR is more sensitive than the nCounter Digital Analyzer, the nCounter Digital Analyzer provides sensitive and reliable data on modifications in gene expression in human blood exposed to radiation without enzymatic amplification of RNA prior to analysis.

  20. Development of radiation-induced mutation techniques and functional genomics studies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sub; Kang, Si Yong; Kim, Jin Baek [KAERI, Daejeon (Korea, Republic of); and others

    2012-01-15

    This project has been performed to develop plant genetic resources using radiation (gamma-rays, ion-beam, space environments), to conduct functional genomics studies with mutant resources, and to develop new radiation plant breeding techniques using various radiation sources during 3 years. In the first section, we developed flower genetic resources, functional crop resources, and bio-industrial plant resources. In the second section, we cloned several mutated genes and studied mechanisms of gene expression and genetic diversity of mutations induced by gamma-rays. In the third section, we developed new plant breeding techniques using gamma-phytotron, heavy ion-beam, and space environments. Based on these results, a total of 8 cultivars containing Chrysanthemum, Hibiscus, kenaf, rice, and soybean were applied for plant variety protection (PVP) and a total of 4 cultivars were registered for PVP. Also, license agreement for the dwarf type Hibiscus mutant 'Ggoma' was conducted with Supro co. and the manufacturing technology for natural antioxidant pear-grape vinegar was transferred into Enzenic co. Also, 8 gene sequences, such as F3'H and LDOX genes associated with flower color in Chrysanthemum and EPSPS gene from Korean lawn grass, were registered in the database of National Center for Biotechnology Information (NCBI). In the future study, we will develop new radiation mutation breeding techniques through the mutation spectrum induced by various radiation sources, the studies for mechanism of the cellular response to radiation, and the comparative{center_dot}structural{center_dot}functional genomics studies for useful traits.

  1. Radiative damping in plasma-based accelerators

    Science.gov (United States)

    Kostyukov, I. Yu.; Nerush, E. N.; Litvak, A. G.

    2012-11-01

    The electrons accelerated in a plasma-based accelerator undergo betatron oscillations and emit synchrotron radiation. The energy loss to synchrotron radiation may seriously affect electron acceleration. The electron dynamics under combined influence of the constant accelerating force and the classical radiation reaction force is studied. It is shown that electron acceleration cannot be limited by radiation reaction. If initially the accelerating force was stronger than the radiation reaction force, then the electron acceleration is unlimited. Otherwise the electron is decelerated by radiative damping up to a certain instant of time and then accelerated without limits. It is shown that regardless of the initial conditions the infinite-time asymptotic behavior of an electron is governed by a self-similar solution providing that the radiative damping becomes exactly equal to 2/3 of the accelerating force. The relative energy spread induced by the radiative damping decreases with time in the infinite-time limit. The multistage schemes operating in the asymptotic acceleration regime when electron dynamics is determined by the radiation reaction are discussed.

  2. Development of food preservation and processing techniques by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Yook, Hong Sun; Lee, Ju Woon and others

    1999-03-01

    Development of food preservation and processing techniques by radiation was performed. Gamma irradiation at 2-10 kGy is considered to be an effective method to control pathogenic bacteria in species including Escherichia coli O157:H7. Gamma irradiation at 5 kGy completely eliminated pathogenic bacteria in beef. Gamma irradiation at such doses and subsequent storage at less than 4 deg C could ensure hygienic quality and prolong the microbiological shelf-life resulting from the reduction of spoilage microorganisms. Gamma irradiation on pre-rigor beef shortens the aging-period, improves tenderness and enhances the beef quality. And, a new beef processing method using gamma irradiation, such as in the low salt sausage and hygienic beef patty was developed. Safety tests of gamma-irradiated meats(beefs: 0-5 kGy; porks: 0-30 kGy) in areas such as genotoxicity, acute toxicity, four-week oral toxicity, rat hepato carcinogenesis and the anti oxidative defense system, were not affected by gamma irradiation. To pre-establish an alternative technique to the toxic fumigant, methyl bromide, which is the current quarantine measure of agricultural products for export and import, some selected agricultural products, such as chestnuts, acorns, red beans and mung beans, were subjected to a preliminary study to confirm the comparative effects of gamma irradiation and MBr fumigant on their disinfestation and quality, thereby preparing the basic data for the practical approach.Current fumigation(MBr) was perfect in its disinfecting capability, but it caused detrimental effects on the physical quality of agricultural produce. However, irradiation doses suitable for controlling pests did not induce any significant changes in the quality of the products. (author)

  3. Development of food preservation and processing techniques by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Yook, Hong Sun; Lee, Ju Woon and others

    2000-03-01

    Development of food preservation and processing techniques by radiation was performed. Gamm irradiation at 5 kGy completely eliminated pathogenic bacteria in pork and chicken meats. Gamma irradiation at such doses and subsequent storage at less than 4 deg C could ensure hygienic quality and prolong the microbiological shelf-life resulting from the reduction of spoilage microorganisms. Pork loin ham with desirable color was also developed without using of sodium nitrite that is known as a carcinogen. Safety tests of gamma-irradiated meats in areas such as genotoxicity, acute toxicity, four-week oral toxicity, rat hepatocarcinogenesis and the antioxidative defense system, were not affected by gamma irradiation. Gamma irradiation at about 1 kGy completely eliminated the parasites in foods and drinking water. In the study of quarantine treatment of apple and pear for export by gamma irradiation, current fumigation(MBr) was perfect in its disinfesting capability, but it caused detrimental effects on the physical quality of apple and pear. However, irradiation doses at 1-3 kGy was suitable for controlling pests and did not induce any significant changes in the quality of the products. The result of the survey to assess the public understanding indicated that the irradiated food had somewhat negative impression to general public. Therefore, it is necessary to establish a public education and information program by using mass communication and by constructing communication system to obtain the enhanced impression from the general public.

  4. Hypofractionation does not increase radiation pneumonitis risk with modern conformal radiation delivery techniques

    DEFF Research Database (Denmark)

    Vogelius, Ivan R; Westerly, David C; Cannon, George M

    2010-01-01

    To study the interaction between radiation dose distribution and hypofractionated radiotherapy with respect to the risk of radiation pneumonitis (RP) estimated from normal tissue complication probability (NTCP) models.......To study the interaction between radiation dose distribution and hypofractionated radiotherapy with respect to the risk of radiation pneumonitis (RP) estimated from normal tissue complication probability (NTCP) models....

  5. Nontraditional manufacturing technique-Nano machining technique based on SPM

    Institute of Scientific and Technical Information of China (English)

    DONG; Shen; YAN; Yongda; SUN; Tao; LIANG; Yingchun; CHENG

    2004-01-01

    Nano machining based on SPM is a novel, nontraditional advanced manufacturing technique. There are three main machining methods based on SPM, i.e.single atom manipulation, surface modification using physical or chemical actions and mechanical scratching. The current development of this technique is summarized. Based on the analysis of mechanical scratching mechanism, a 5 μm micro inflation hole is fabricated on the surface of inertial confinement fusion (ICF) target. The processing technique is optimized. The machining properties of brittle material, single crystal Ge, are investigated. A micro machining system combining SPM and a high accuracy stage is developed. Some 2D and 3D microstructures are fabricated using the system. This method has broad applications in the field of nano machining.

  6. Probing droplets on superhydrophobic surfaces by synchrotron radiation scattering techniques

    KAUST Repository

    Accardo, Angelo

    2014-06-10

    Droplets on artificially structured superhydrophobic surfaces represent quasi contact-free sample environments which can be probed by X-ray microbeams and nanobeams in the absence of obstructing walls. This review will discuss basic surface wettability concepts and introduce the technology of structuring surfaces. Quasi contact-free droplets are compared with contact-free droplets; processes related to deposition and evaporation on solid surfaces are discussed. Droplet coalescence based on the electrowetting effect allows the probing of short-time mixing and reaction processes. The review will show for several materials of biological interest that structural processes related to conformational changes, nucleation and assembly during droplet evaporation can be spatially and temporally resolved by raster-scan diffraction techniques. Orientational ordering of anisotropic materials deposited during solidification at pinning sites facilitates the interpretation of structural data. 2014 International Union of Crystallography.

  7. How Can Synchrotron Radiation Techniques Be Applied for Detecting Microstructures in Amorphous Alloys?

    Directory of Open Access Journals (Sweden)

    Gu-Qing Guo

    2015-11-01

    Full Text Available In this work, how synchrotron radiation techniques can be applied for detecting the microstructure in metallic glass (MG is studied. The unit cells are the basic structural units in crystals, though it has been suggested that the co-existence of various clusters may be the universal structural feature in MG. Therefore, it is a challenge to detect microstructures of MG even at the short-range scale by directly using synchrotron radiation techniques, such as X-ray diffraction and X-ray absorption methods. Here, a feasible scheme is developed where some state-of-the-art synchrotron radiation-based experiments can be combined with simulations to investigate the microstructure in MG. By studying a typical MG composition (Zr70Pd30, it is found that various clusters do co-exist in its microstructure, and icosahedral-like clusters are the popular structural units. This is the structural origin where there is precipitation of an icosahedral quasicrystalline phase prior to phase transformation from glass to crystal when heating Zr70Pd30 MG.

  8. Monolithic active pixel radiation detector with shielding techniques

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  9. Monolithic active pixel radiation detector with shielding techniques

    Science.gov (United States)

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  10. Combustion study with synchrotron radiation single photon ionization technique

    Institute of Scientific and Technical Information of China (English)

    YANG Rui; WANG Jing; HUANG Chaoqun; YANG Bin; WEI Lixia; SHAN Xiaobin; SHENG Liusi; ZHANG Yunwu; QI Fei

    2005-01-01

    Here we report a combustion endstation at National Synchrotron Radiation Laboratory (NSRL) and some primary experimental results. Synchrotron radiation can provide the tunable vacuum ultraviolet (VUV) photon with the high intensity and the good collimation. VUV photoionization is a single-photon ionization process. Combined with molecular-beam mass spectrometry (MBMS), the VUV single-photon ionization can be applied to detect the combustion products, especially the intermediates and free radicals produced from combustion process. This method is proved to be a powerful tool for combustion study, which could be helpful for developing combustion kinetic models and understanding the mechanism of combustion reactions.

  11. Bases en technique du vide

    CERN Document Server

    Rouviere, Nelly

    2017-01-01

    Cette seconde édition, 20 ans après la première, devrait continuer à aider les techniciens pour la réalisation de leur système de vide. La technologie du vide est utilisée, à présent, dans de nombreux domaines très différents les uns des autres et avec des matériels très fiables. Or, elle est souvent bien peu étudiée, de plus, c'est une discipline où le savoir-faire prend tout son sens. Malheureusement la transmission par des ingénieurs et techniciens expérimentés ne se fait plus ou trop rapidement. La technologie du vide fait appel à la physique, à la chimie, à la mécanique, à la métallurgie, au dessin industriel, à l'électronique, à la thermique, etc. Cette discipline demande donc de maîtriser des techniques de domaines très divers, et ce n'est pas chose facile. Chaque installation est en soi un cas particulier avec ses besoins, sa façon de traiter les matériaux et celle d'utiliser les matériels. Les systèmes de vide sont parfois copiés d'un laboratoire à un autre et le...

  12. Nuclear Technology Series. Course 20: Radiation Monitoring Techniques (Radiochemical).

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  13. Probing droplets on superhydrophobic surfaces by synchrotron radiation scattering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Accardo, Angelo [Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163 (Italy); Di Fabrizio, Enzo [KAUST (King Abdullah University of Science and Technology), Jeddah (Saudi Arabia); BIONEM Lab at University Magna Graecia, Campus Salvatore Venuta, Viale Europa 88100, Germaneto-Catanzaro (Italy); Limongi, Tania [KAUST (King Abdullah University of Science and Technology), Jeddah (Saudi Arabia); Marinaro, Giovanni [Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163 (Italy); European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex (France); Riekel, Christian, E-mail: riekel@esrf.fr [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex (France)

    2014-06-10

    A comprehensive review about the use of micro- and nanostructured superhydrophobic surfaces as a tool for in situ X-ray scattering investigations of soft matter and biological materials. Droplets on artificially structured superhydrophobic surfaces represent quasi contact-free sample environments which can be probed by X-ray microbeams and nanobeams in the absence of obstructing walls. This review will discuss basic surface wettability concepts and introduce the technology of structuring surfaces. Quasi contact-free droplets are compared with contact-free droplets; processes related to deposition and evaporation on solid surfaces are discussed. Droplet coalescence based on the electrowetting effect allows the probing of short-time mixing and reaction processes. The review will show for several materials of biological interest that structural processes related to conformational changes, nucleation and assembly during droplet evaporation can be spatially and temporally resolved by raster-scan diffraction techniques. Orientational ordering of anisotropic materials deposited during solidification at pinning sites facilitates the interpretation of structural data.

  14. [Past, present and near future of techniques in radiation oncology].

    Science.gov (United States)

    Gérard, J-P; Thariat, J; Giraud, P; Cosset, J-M

    2010-07-01

    Since the discovery of X-rays, the goal of radiotherapy has been to deliver an optimal dose in the target volume and the lowest possible dose in the normal tissues. The history of radiotherapy can be divided in three periods. The Kilovoltage era (1900-1939) where only superficial and radiosensitive tumours could be controlled, the Megavoltage era (1950-1995) where Telecobalt and linear accelerators could deliver high doses in all parts of the body. Radiotherapy has since been playing an important curative and conservative role for most cancers. The Computer-Assisted Radiotherapy era (1995-2010) now provides the capacity to optimise the dose distribution in three dimensions. Dose is better conformed to the target volume and organ at risk are better preserved. intensity modulated radio-therapy (IMRT) allows to "shape" concave isodoses and to spare the parotids when irradiating oropharyngeal tumours. Moving targets (lung, liver etc.) are efficiently irradiated using "on-line tracking" and "image-guided radiotherapy". Stereotactic irradiation, first initiated for brain lesions, is now performed for extra-cranial tumours and due to its millimetric precision opens the way back to hypo-fractionated treatments. The next period, already ongoing, is Hadrontherapy with protons and soon helium or carbon ions techniques. In a multidisciplinary strategy, progress in radiotherapy is based on a global approach of the patient and tailored/personalized well targeted treatment of the tumour.

  15. Biological Bases of Space Radiation Risk

    Science.gov (United States)

    1997-01-01

    In this session, Session JP4, the discussion focuses on the following topics: Hematopoiesis Dynamics in Irradiated Mammals, Mathematical Modeling; Estimating Health Risks in Space from Galactic Cosmic Rays; Failure of Heavy Ions to Affect Physiological Integrity of the Corneal Endothelial Monolayer; Application of an Unbiased Two-Gel CDNA Library Screening Method to Expression Monitoring of Genes in Irradiated Versus Control Cells; Detection of Radiation-Induced DNA Strand Breaks in Mammalian Cells By Enzymatic Post-Labeling; Evaluation of Bleomycin-Induced Chromosome Aberrations Under Microgravity Conditions in Human Lymphocytes, Using "Fish" Techniques; Technical Description of the Space Exposure Biology Assembly Seba on ISS; and Cytogenetic Research in Biological Dosimetry.

  16. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress

    Science.gov (United States)

    Schooneveld, E. M.; Pietropaolo, A.; Andreani, C.; Perelli Cippo, E.; Rhodes, N. J.; Senesi, R.; Tardocchi, M.; Gorini, G.

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.

  17. Radiation protection optimisation techniques and their application in industry

    Energy Technology Data Exchange (ETDEWEB)

    Lefaure, C

    1996-12-31

    Since the International Commission on Radiation Protection (ICRP) recommendation 60, the optimisation principle appears to be the core of the radiation protection system. In practice applying it, means implementing an approach both predictive and evolutionary - that relies essentially on a prudent and responsible state of mind. the formal expression of this process, called optimization procedure, implies and indispensable tool for its implementation: the system of monetary values for the unit of collective dose. During the last few years, feed ALARA principle means that a global work management approach must be adopted, considering together all factors contributing to radiation dose. In the nuclear field, the ALARA approach appears to be more successful when implemented in the framework of a managerial approach through structure ALARA programmes. Outside the nuclear industry it is necessary to clearly define priorities through generic optimisation studies and ALARA audits. At the international level much efforts remain to be done to expand efficiently the ALARA process to internal exposure as well as to public exposure. (author) 2 graphs, 5 figs., 3 tabs.

  18. Intensity modulated radiation therapy for squamous cell carcinoma of the vulva: Treatment technique and outcomes

    Directory of Open Access Journals (Sweden)

    Yuan James Rao, MD

    2017-04-01

    Conclusions: IMRT for vulvar cancer is associated with high rates of LRC in the postoperative setting and limited radiation-related toxicity. Durable LRC of disease after definitive IMRT remains challenging, and several refinements to our treatment technique are suggested.

  19. Computer-based and web-based radiation safety training

    Energy Technology Data Exchange (ETDEWEB)

    Owen, C., LLNL

    1998-03-01

    The traditional approach to delivering radiation safety training has been to provide a stand-up lecture of the topic, with the possible aid of video, and to repeat the same material periodically. New approaches to meeting training requirements are needed to address the advent of flexible work hours and telecommuting, and to better accommodate individuals learning at their own pace. Computer- based and web-based radiation safety training can provide this alternative. Computer-based and web- based training is an interactive form of learning that the student controls, resulting in enhanced and focused learning at a time most often chosen by the student.

  20. Web based Measurement System for Solar Radiation

    Directory of Open Access Journals (Sweden)

    Shachi Awasthi

    2012-06-01

    Full Text Available We present in this paper, the principles of the measurement system for solar radiation, and our implementation using Web based data logging concept. The photocurrent produced by Silicon PN junction is used as a solar radiation transducer, to make it more viable we have used commercially available solar panels as our transducers. Using a silicon solar cell as sensor, a low cost solar radiometer can be constructed. The photocurrent produced by solar cell is electronically tailored to be measured and stored by our web based data acquisition and monitoring system. Measurement using real solar cell array gives a good measure of actual producible energy by solar arrays. Our portable instrument can be used in remote sites and substitutes the solar monitor and integrator, Current data of solar radiation can be monitored using Ethernet interface available in all PC, Laptops. We store the data into a secure digital card which can be retrieved to plot and analyse the data. We have developed system hardware and software based on ATmega32 AVR Microcontrollers and ENC28J60 Ethernet PHY and MAC network interface chip by Microchip. So the global irradiance data are obtained after correction using the instantaneous measurement of ambient temperature which allows us to calculate the junction temperature and consequently improve the precision of measurement of our data acquisition system.

  1. Web based Measurement System for Solar Radiation

    Directory of Open Access Journals (Sweden)

    Shachi Awasthi

    2012-06-01

    Full Text Available We present in this paper, the principles of themeasurement system for solar radiation, and ourimplementation using Web based data loggingconcept.The photocurrent produced by Silicon PNjunction is used as a solar radiation transducer, tomake it more viable we have used commerciallyavailable solar panels as our transducers. Using asilicon solar cell as sensor, a low cost solarradiometer can be constructed. The photocurrentproduced by solar cell is electronically tailored to bemeasured and stored by our web based dataacquisition and monitoring system. Measurementusing real solar cell array gives a good measure ofactual producible energy by solar arrays. Ourportable instrument can be used in remote sites andsubstitutes the solar monitor and integrator,Current data of solar radiation can be monitoredusing Ethernet interface available in all PC,Laptops. We store the data into a secure digital cardwhich can be retrieved to plot and analyse the data.We have developed system hardware andsoftware based on ATmega32 AVR Microcontrollersand ENC28J60 Ethernet PHY and MAC networkinterface chip by Microchip.So the global irradiance data are obtained aftercorrection using the instantaneous measurement ofambient temperature which allows us to calculatethe junction temperature and consequently improvethe precision of measurement of our dataacquisition system

  2. Sterilization techniques without heating (ultraviolet ray, radiation and ozone)

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hitoshi (Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment)

    1991-01-01

    The recent demand of consumers for processed foods is characterized by the intention for health and nature, besides, the demand for low sweetness, salt reduction, no additive and freshness becomes strong. In view of the control of microorganisms in products, all these become the negative factors. Accordingly, in order to overcome them, it is urgently desired to develop new technology or to improve conventional methods. As to heating sterilization, the uniform temperature treatment to the inside of foods is difficult, and it cannot be applied to perishables. The high temperature sterilization above 120degC causes the change in nutrition composition and physical properties. Ultraviolet ray and ozone can be used for the sterilization of food surface and powder and liquid foods. Radiation treatment can be applied to packed foods and frozen foods as well as food surface. The principle and the fields of application of ultraviolet ray sterilization, radiation sterilization and ozone sterilization are reported. In the mechanism of these methods, the action to DNA and oxidation are common. (K.I.).

  3. Plasma scattering of electromagnetic radiation theory and measurement techniques

    CERN Document Server

    Froula, Dustin H; Luhmann, Neville C Jr; Sheffield, John

    2011-01-01

    This work presents one of the most powerful methods of plasma diagnosis in exquisite detail to guide researchers in the theory and measurement techniques of light scattering in plasmas. Light scattering in plasmas is essential in the research and development of fusion energy, environmental solutions, and electronics.Referred to as the "Bible" by researchers the work encompasses fusion and industrial applications essential in plasma research. It is the only comprehensive resource specific to the plasma scattering technique. It provides a wide-range of experimental examples and discussion of the

  4. A technique for estimating the probability of radiation-stimulated failures of integrated microcircuits in low-intensity radiation fields: Application to the Spektr-R spacecraft

    Science.gov (United States)

    Popov, V. D.; Khamidullina, N. M.

    2006-10-01

    In developing radio-electronic devices (RED) of spacecraft operating in the fields of ionizing radiation in space, one of the most important problems is the correct estimation of their radiation tolerance. The “weakest link” in the element base of onboard microelectronic devices under radiation effect is the integrated microcircuits (IMC), especially of large scale (LSI) and very large scale (VLSI) degree of integration. The main characteristic of IMC, which is taken into account when making decisions on using some particular type of IMC in the onboard RED, is the probability of non-failure operation (NFO) at the end of the spacecraft’s lifetime. It should be noted that, until now, the NFO has been calculated only from the reliability characteristics, disregarding the radiation effect. This paper presents the so-called “reliability” approach to determination of radiation tolerance of IMC, which allows one to estimate the probability of non-failure operation of various types of IMC with due account of radiation-stimulated dose failures. The described technique is applied to RED onboard the Spektr-R spacecraft to be launched in 2007.

  5. Development of the laser absorption radiation thermometry technique to measure thermal diffusivity in addition to temperature

    Science.gov (United States)

    Levick, Andrew; Lobato, Killian; Edwards, Gordon

    2003-01-01

    A comparative technique based on photothermal radiometry has been developed to measure thermal diffusivity of semi-infinite targets with arbitrary geometry. The technique exploits the principle that the frequency response of the temperature modulation induced by a periodic modulated heating source (in this case a laser spot) scales with thermal diffusivity. To demonstrate this technique, a photothermal radiometer has been developed, which detects modulated thermal radiance at a wavelength of 2 μm due to a small temperature modulation induced on the target surface by a modulated erbium fiber laser of power 1 W. Two frequency responses were measured for platinum and oxidized Inconel 600 targets (the frequency response is a scan of the amplitude of the modulated thermal radiance over laser modulation frequency). Scaling the two responses with respect to frequency gives a ratio of thermal diffusivities Dplatinum/DInconel of 4.45(33) which compares with a literature value of 4.46(50). The aim is to combine this technique with laser absorption radiation thermometry to produce multithermal property instrument for measuring "industrial" targets.

  6. PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Zaidi, Habib [Geneva University Hospital, Division of Nuclear Medicine, Geneva 4 (Switzerland); Geneva University, Geneva Neuroscience Center, Geneva (Switzerland); El Naqa, Issam [Washington University School of Medicine, Department of Radiation Oncology, St. Louis, MO (United States)

    2010-11-15

    Historically, anatomical CT and MR images were used to delineate the gross tumour volumes (GTVs) for radiotherapy treatment planning. The capabilities offered by modern radiation therapy units and the widespread availability of combined PET/CT scanners stimulated the development of biological PET imaging-guided radiation therapy treatment planning with the aim to produce highly conformal radiation dose distribution to the tumour. One of the most difficult issues facing PET-based treatment planning is the accurate delineation of target regions from typical blurred and noisy functional images. The major problems encountered are image segmentation and imperfect system response function. Image segmentation is defined as the process of classifying the voxels of an image into a set of distinct classes. The difficulty in PET image segmentation is compounded by the low spatial resolution and high noise characteristics of PET images. Despite the difficulties and known limitations, several image segmentation approaches have been proposed and used in the clinical setting including thresholding, edge detection, region growing, clustering, stochastic models, deformable models, classifiers and several other approaches. A detailed description of the various approaches proposed in the literature is reviewed. Moreover, we also briefly discuss some important considerations and limitations of the widely used techniques to guide practitioners in the field of radiation oncology. The strategies followed for validation and comparative assessment of various PET segmentation approaches are described. Future opportunities and the current challenges facing the adoption of PET-guided delineation of target volumes and its role in basic and clinical research are also addressed. (orig.)

  7. Nonlinear Ultrasonic Techniques to Monitor Radiation Damage in RPV and Internal Components

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Laurence [Georgia Inst. of Technology, Atlanta, GA (United States); Kim, Jin-Yeon [Georgia Inst. of Technology, Atlanta, GA (United States); Qu, Jisnmin [Northwestern Univ., Evanston, IL (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wall, Joe [Electric Power Research Inst. (EPRI), Knoxville, TN (United States)

    2015-11-02

    The objective of this research is to demonstrate that nonlinear ultrasonics (NLU) can be used to directly and quantitatively measure the remaining life in radiation damaged reactor pressure vessel (RPV) and internal components. Specific damage types to be monitored are irradiation embrittlement and irradiation assisted stress corrosion cracking (IASCC). Our vision is to develop a technique that allows operators to assess damage by making a limited number of NLU measurements in strategically selected critical reactor components during regularly scheduled outages. This measured data can then be used to determine the current condition of these key components, from which remaining useful life can be predicted. Methods to unambiguously characterize radiation related damage in reactor internals and RPVs remain elusive. NLU technology has demonstrated great potential to be used as a material sensor – a sensor that can continuously monitor a material’s damage state. The physical effect being monitored by NLU is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave. The degree of nonlinearity is quantified with the acoustic nonlinearity parameter, β, which is an absolute, measurable material constant. Recent research has demonstrated that nonlinear ultrasound can be used to characterize material state and changes in microscale characteristics such as internal stress states, precipitate formation and dislocation densities. Radiation damage reduces the fracture toughness of RPV steels and internals, and can leave them susceptible to IASCC, which may in turn limit the lifetimes of some operating reactors. The ability to characterize radiation damage in the RPV and internals will enable nuclear operators to set operation time thresholds for vessels and prescribe and schedule replacement activities for core internals. Such a capability will allow a more clear definition of reactor safety margins. The research consists of three tasks: (1

  8. Individual patient information to select patients for different radiation techniques

    NARCIS (Netherlands)

    Quik, E. H.; Feenstra, T. L.; Postmus, D.; Slotman, B. J.; Leemans, C. R.; Krabbe, P. F. M.; Langendijk, J. A.

    2016-01-01

    Background and purpose: Proton therapy is an emerging technique in radiotherapy which results in less dose to the normal tissues with similar target dose than photon therapy, the current standard. Patient-level simulation models support better decision making on which patients would benefit most. Ma

  9. Diffuse scattering measurements with synchrotron radiation: Instrumentation and techniques

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, E.; Georgopoulos, P.

    1985-12-01

    The analysis of diffuse scattering from single crystalline specimens in the reflection mode has generally been acknowledged as a very powerful means of obtaining structural information on local atomic arrangements in disordered alloys, intermetallics and ceramics. However, owing to the low intensities encountered and the large number of measurements required for such an analysis, experiments have been extremely time consuming and few have been attempted. Synchrotron radiation makes it possible to conduct such experiments in a matter of hours and much higher quality data can be obtained than in the laboratory. This paper describes the experimental procedures and methods applied to a study of Al-Cu age hardening alloys conducted at the Cornell Synchrotron Source (CHESS). (orig.).

  10. Graph based techniques for tag cloud generation

    DEFF Research Database (Denmark)

    Leginus, Martin; Dolog, Peter; Lage, Ricardo Gomes

    2013-01-01

    Tag cloud is one of the navigation aids for exploring documents. Tag cloud also link documents through the user defined terms. We explore various graph based techniques to improve the tag cloud generation. Moreover, we introduce relevance measures based on underlying data such as ratings or citat......Tag cloud is one of the navigation aids for exploring documents. Tag cloud also link documents through the user defined terms. We explore various graph based techniques to improve the tag cloud generation. Moreover, we introduce relevance measures based on underlying data such as ratings...

  11. An introduction to synchrotron radiation techniques and applications

    CERN Document Server

    Willmott, Philip

    2011-01-01

    This book introduces the reader to the basic concepts of the generation and manipulation of synchrotron light, its interaction with matter, and the application of synchrotron light in the “classical” techniques, while including some of the most modern technological developments. As much as possible, complicated mathematical derivations and formulas are avoided. A more heuristic approach is adopted, whereby the general physical reasoning behind the equations is highlighted.

  12. Laser-heating-based active optics for synchrotron radiation applications

    CERN Document Server

    Yang, Fugui; Zhang, Xiaowei

    2016-01-01

    Active optics has attracted considerable interest from researchers in synchrotron radiation facilities, because of its capacity for x-ray wavefront correction. Here, we report a novel and efficient technique for correcting or modulating a mirror surface profile based on laser-heating-induced thermal expansion. An experimental study of the characteristics of the surface thermal deformation response indicates that the power of a milliwatt laser yields a bump height as low as sub-nanometer scale, and that variation of the spot size modulates the response function width effectively. In addition, the capacity of the laser-heating technique for free-form surface modulation is demonstrated via a surface correction experiment. The developed method is a promising new approach towards effective x-ray active optics coupled with at-wavelength metrology techniques.

  13. A simulation study investigating a radiation detector utilizing the prompt gamma range verification technique for proton radiotherapy

    Science.gov (United States)

    Lau, Andrew David

    Proton therapy has shown to be a viable therapy for radiation oncology applications. The advantages of using protons as compared to photons in the treatments of diseases with radiation are numerous including the ability to deliver overall lower amounts of lethal radiation doses to the patient. This advantage is due to the fundamental interaction mechanism of the incident therapeutic protons with the patient, which produces a characteristic dose-distribution unique only to protons. Unlike photons, the entire proton beam is absorbed within the patent and the dose-distribution's maximum occurs near the end of the proton's path. Protons deliver less dose on the skin and intervening tissues, tighter dose conformality to the disease site, as well as no dose past the target volume, sparring healthy tissue distally in the patient. Current research in proton therapy is geared towards minimizing proton range uncertainty and monitoring in-vivo the location of the proton's path. Monitoring the beam's path serves also to verify which healthy structures/tissues were irradiated and whether the target volume has met the prescription dose. Among the many techniques used for in-vivo proton monitoring, the technique based on the emitted secondary particles, specifically the Prompt Gamma (PG) method, can be used for clinical implementation. This work focuses on developing a radiation detector system for using the PG method by investigating the characterizing the secondary particle field emitted from plastic and water phantoms as well as a radiation detector based on glass materials that exploits the Cherenkov phenomenon.

  14. Image and Radiation Power Analysis Techniques for Determining Electron temperature, Liner Areal Density, and Radiated Energy in MagLIF Experiments

    Science.gov (United States)

    Evans, Matthew; Knapp, Patrick; Gomez, Matthew; Hansen, Stephanie; McBride, Ryan; MacPherson, L. Armon; Gourdain, Pierre

    2016-10-01

    We describe techniques developed to analyze filtered Time Integrated Pinhole Camera (TIPC) images to determine the axially resolved electron temperature and liner areal density at stagnation in MagLIF experiments conducted on the Z machine at Sandia National Laboratories. X-ray power detectors are analyzed to determine the absolute radiated energy. The TIPC images are co-registered using intensity based similarities. This technique is shown to provide accurate registration without the use of fiducial markings. A filtered 6-channel PCD array was used to record the radiated power at photon energies >1 keV. A model for the x-ray emission is used with the data set to perform Bayesian parameter estimation to simultaneously determine the electron temperature, liner areal density and x-ray yield with uncertainties via χ2 minimization.

  15. Radiation technique to determine early peopling of Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Shigueo; Ayta, Walter E.F.; Callata, Henry J.C.; Farias, Thiago M.B.; Gennari, Roseli F. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Fisica. Dept. de Fisica Nuclear], e-mail: lacifid@dfn.if.usp.br; Etchevarne, Carlos A. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Fac. de Filosofia e Ciencias Humanas. Dept. de Antropologia e Etnologia], e-mail: etchvrn@ufba.br

    2009-07-01

    Peopling American Continent and in particular of Brazil has been subject of research for a long time. With the results of dating of several pertinent materials many theories have been proposed. In Brazil, there is a National Park (Serra da Capivara Park) which is worldwide known due to thousands of wall paintings, most of them in rockshelters. N. Guidon, head of the Serra da Capivara National Park, found charcoal pellets in several archaeological sites and they were dated by radiocarbon technique. Ages ranging from 6 to 48 ka have been found. In one of the shelter a thin white covering was found that was proved to be calcite. This calcite was dated by Thermoluminescence and Electron Paramagnetic Resonance techniques and ages of 35 to 36 ka were obtained. In 2007, thin calcite covering wall paintings found in Iraquara County, Bahia state, has been dated. Ages of 50 ka have been obtained. The proposal of this work is that the early settlers crossed Atlantic Ocean from westernmost point of African Continent to easternmost point in Brazil more than 50000 years ago. The theory here proposed is possible once the distance between these two points is less than 3000 km distance far shorter than from Siberia to South America as proposed by other researchers.(author)

  16. ROENTGEN: case-based reasoning and radiation therapy planning.

    Science.gov (United States)

    Berger, J.

    1992-01-01

    ROENTGEN is a design assistant for radiation therapy planning which uses case-based reasoning, an artificial intelligence technique. It learns both from specific problem-solving experiences and from direct instruction from the user. The first sort of learning is the normal case-based method of storing problem solutions so that they can be reused. The second sort is necessary because ROENTGEN does not, initially, have an internal model of the physics of its problem domain. This dependence on explicit user instruction brings to the forefront representational questions regarding indexing, failure definition, failure explanation and repair. This paper presents the techniques used by ROENTGEN in its knowledge acquisition and design activities. PMID:1482869

  17. First Ex-Vivo Validation of a Radioguided Surgery Technique with beta- Radiation

    CERN Document Server

    Camillocci, E Solfaroli; Bocci, V; Carollo, A; Chiodi, G; Colandrea, M; Collamati, F; Cremonesi, M; Donnarumma, R; Ferrari, M E; Ferroli, P; Ghielmetti, F; Grana, C M; Marafini, M; Morganti, S; Terracciano, C Mancini; Patanè, M; Pedroli, G; Pollo, B; Recchia, L; Russomando, A; Toppi, M; Traini, G; Faccini, R

    2016-01-01

    Purpose: A radio-guided surgery technique with beta- -emitting radio-tracers was suggested to overcome the effect of the large penetration of gamma radiation. The feasibility studies in the case of brain tumors and abdominal neuro-endocrine tumors were based on simulations starting from PET images with several underlying assumptions. This paper reports, as proof-of-principle of this technique, an ex-vivo test on a meningioma patient. This test allowed to validate the whole chain, from the evaluation of the SUV of the tumor, to the assumptions on the bio-distribution and the signal detection. Methods: A patient affected by meningioma was administered 300 MBq of 90Y-DOTATOC. Several samples extracted from the meningioma and the nearby Dura Mater were analyzed with a beta- probe designed specifically for this radio-guided surgery technique. The observed signals were compared both with the evaluation from the histology and with the Monte Carlo simulation. Results: we obtained a large signal on the bulk tumor (105...

  18. Biologically based multistage modeling of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of

  19. Application of virtual reality technique to a radiation protection training program

    Energy Technology Data Exchange (ETDEWEB)

    Hajek, Brian K. [Ohio State Univ., Columbus (United States); Kang, Ki Doo [KOrea Hydro and Nuclear Power Co., Taejon (Korea, Republic of); Shin, Yoo Jin [Kwangwoon Univ., Seoul (Korea, Republic of); Lee, Yon Sik [Kunsan National Univ., Kunsan (Korea, Republic of)

    2003-07-01

    Using an Internet Virtual Reality (IVR) technique, a 3-dimensional (3-D) model for the radiation controlled area in a nuclear power plant was developed, and a feasibility study to develop a computational program to estimate radiation dose was performed. For this purpose, a pilot model with a dynamic function and bi-directional communication was developed. This model was enhanced from the existing 3-D single-directional communication. In this pilot model, a plant visitor needs to first pass a series of security checks. If the visitor enters the controlled area and approaches a radiation hazard area, alarms with a warning lamp will be initiated automatically. Throughout the test to connect this model from both domestic and international sites in various time zones, it has proven to perform well. Therefore, this model can be applied to broad fields as radiation protection procedures or radiation protection training with photographic data, and on-line dose assessment programs.

  20. Development of a technique for environmental treatment by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myun Joo; Jin, J. H.; Jung, Y. D. and others

    2000-04-01

    This study was carried out for the development of pilot plant which can produce industrial water from effluent of sewage treatment plant by irradiation. As a basic study, the characteristics on decomposition of organic compounds, decoloration and sterilization of bacteria were evaluated. An additive mainly composed by sponge type of TiO{sub 2} was developed for reduction of irradiation dose and enhancement of removal efficiency of organic compounds. The optimum pilot plant was composed of sysem with gamma irradiation/ozone/additive/ion exchange. The effluent with BOD 20 ppm, COD 25 ppm and color 25 ADMI could be treated to less than 5 ppm and 5 ADMI under the irradiation of 5 kGy. The disinfection of microorganism also could be done perfectively under the same irradiation. A small amount of heavy metal ions and inorganic ions, nitrogen, contained in effluent were removed by ion exchanger. From the operation of pilot plant it could be concluded that irradiation technique can be a good method for the produce of industrial water from effluent.

  1. Optimized digital filtering techniques for radiation detection with HPGe detectors

    Science.gov (United States)

    Salathe, Marco; Kihm, Thomas

    2016-02-01

    This paper describes state-of-the-art digital filtering techniques that are part of GEANA, an automatic data analysis software used for the GERDA experiment. The discussed filters include a novel, nonlinear correction method for ballistic deficits, which is combined with one of three shaping filters: a pseudo-Gaussian, a modified trapezoidal, or a modified cusp filter. The performance of the filters is demonstrated with a 762 g Broad Energy Germanium (BEGe) detector, produced by Canberra, that measures γ-ray lines from radioactive sources in an energy range between 59.5 and 2614.5 keV. At 1332.5 keV, together with the ballistic deficit correction method, all filters produce a comparable energy resolution of ~1.61 keV FWHM. This value is superior to those measured by the manufacturer and those found in publications with detectors of a similar design and mass. At 59.5 keV, the modified cusp filter without a ballistic deficit correction produced the best result, with an energy resolution of 0.46 keV. It is observed that the loss in resolution by using a constant shaping time over the entire energy range is small when using the ballistic deficit correction method.

  2. Optimized digital filtering techniques for radiation detection with HPGe detectors

    CERN Document Server

    Salathe, M

    2015-01-01

    This paper describes state-of-the-art digital filtering techniques that are part of the tool kit GEANA which is used as a fast automatic data validation tool for the GERDA experiment. The discussed filters include a novel, nonlinear correction method for ballistic deficits, which is combined with one of three shaping filters: the pseudo-Gaussian, a modified trapezoidal, or a modified cusp filter. The performance of the filters is demonstrated using a 762 g high purity germanium detector that measures gamma-ray lines from radioactive sources in an energy range between 59 and 2615 keV. The modified cusp filter was found to be most optimal for individual gamma-ray lines. Furthermore, it was observed, that even though, the shaping time that minimizes the energy resolution is energy dependent, the loss in resolution by using a constant shaping time over the entire energy range is small, i.e. less than 32 eV for the pseudo-Gaussian filter. This together with good energy resolutions, e.g. 1.59 keV at 1333 keV, this ...

  3. Monte Carlo techniques for time-dependent radiative transfer in 3-D supernovae

    CERN Document Server

    Lucy, L B

    2004-01-01

    Monte Carlo techniques based on indivisible energy packets are described for computing light curves and spectra for 3-D supernovae. The radiative transfer is time-dependent and includes all effects of O(v/c). Monte Carlo quantization is achieved by discretizing the initial distribution of 56Ni into radioactive pellets. Each pellet decays with the emission of a single energy packet comprising gamma-ray photons representing one line from either the 56Ni or the 56Co decay spectrum. Subsequently, these energy packets propagate through the homologously-expanding ejecta with appropriate changes in the nature of their contained energy as they undergo Compton scatterings and pure absorptions. The 3-D code is tested by applying it to a spherically-symmetric SN in which the transfer of optical radiation is treated with a grey absorption coefficient. This 1-D problem is separately solved using Castor's co-moving frame moment equations. Satisfactory agreement is obtained. The Monte Carlo code is a platform onto which mor...

  4. Preparation of Poly Acrylic Acid-Poly Acrylamide Composite Nanogels by Radiation Technique

    Directory of Open Access Journals (Sweden)

    Parisa Ghorbaniazar

    2015-06-01

    Full Text Available Purpose: Nanogel, a nanoparticle prepared from a cross-linked hydrophilic polymer network, has many biomedical applications. A radiation technique has recently been introduced as one of the appropriate methods for the preparation of polymeric nanogels due to its additive-free initiation and easy control procedure. Methods: We have investigated the formation of nano-sized polymeric gels, based on the radiation-induced inter- and intra-molecular cross-linking of the inter-polymer complex (IPC of polyacrylamide (PAAm and polyacrylic acide (PAAc. Results: The results indicated that the prepared polymeric complex composed of PAAm and PAAc was converted into nanogel by irradiation under different doses (1, 3, 5 and 7 kGy. This was due to inter- and intra-molecular cross-linking at the range of 446-930 nm as characterized by the photon correlation spectroscopy method. Increasing the irradiation dose reduced the size of nanoparticles to 3 kGy; however, the higher doses increased the size and size distribution. Scanning electron microscopy images indicated the nanogel formation in the reported size by particle size and showed the microcapsule structure of the prepared nanogels. Biocompatibility of nanogels were assessed and proved by MTT assay. Conclusion: It was concluded that low dose irradiation can be successfully applied for nanometre-ranged hydrogel.

  5. A Shape Based Image Search Technique

    Directory of Open Access Journals (Sweden)

    Aratrika Sarkar

    2014-08-01

    Full Text Available This paper describes an interactive application we have developed based on shaped-based image retrieval technique. The key concepts described in the project are, imatching of images based on contour matching; iimatching of images based on edge matching; iiimatching of images based on pixel matching of colours. Further, the application facilitates the matching of images invariant of transformations like i translation ; ii rotation; iii scaling. The key factor of the system is, the system shows the percentage unmatched of the image uploaded with respect to the images already existing in the database graphically, whereas, the integrity of the system lies on the unique matching techniques used for optimum result. This increases the accuracy of the system. For example, when a user uploads an image say, an image of a mango leaf, then the application shows all mango leaves present in the database as well other leaves matching the colour and shape of the mango leaf uploaded.

  6. SAR IMAGE ENHANCEMENT BASED ON BEAM SHARPENING TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    LIYong; ZI-IANGKun-hui; ZHUDai-yin; ZHUZhao-da

    2004-01-01

    A major problem encountered in enhancing SAR image is the total loss of phase information and the unknown parameters of imaging system. The beam sharpening technique, combined with synthetic aperture radiation pattern estimation provides an approach to process this kind of data to achieve higher apparent resolution. Based on the criterion of minimizing the expected quadratic estimation error, an optimum FIR filter with a symmetrical structure is designed whose coefficients depend on the azimuth response of local isolated prominent points because this response can be approximately regarded as the synthetic aperture radiation pattern of the imaging system. The point target simulation shows that the angular resolution is improved by a ratio of almost two to one. The processing results of a live SAR image demonstrate the validity of the method.

  7. The use of synchrotron radiation techniques in the characterization of strained semiconductor heterostructures and thin films [review article

    Science.gov (United States)

    Lamberti, C.

    2004-05-01

    In the last couple of decades, high-performance electronic and optoelectronic devices based on semiconductor heterostructures have been required to obtain increasingly strict and well-defined performances, needing a detailed control, at the atomic level, of the structural composition of the buried interfaces. This goal has been achieved by an improvement of the epitaxial growth techniques and by the parallel use of increasingly sophisticated characterization techniques. Among them, a leading role has been certainly played by those exploiting synchrotron radiation (SR) sources. In fact synchrotron radiation has distinct advantages as a photon source, notably high brilliance and continuous energy spectrum; by using the latter characteristic atomic selectivity can be obtained and this is of fundamental help to investigate the structural environment of atoms present only in a few angstrom (Å) thick interface layers of heterostructures. The third generation synchrotron radiation sources have allowed to reach the limit of measuring a monolayer of material, corresponding to about 10 14 atoms/cm 2. Since, in the last decade, the use of intentionally strained heterostructures has greatly enhanced the performance of electrical and electro-optical semiconductor, a particular attention will be devoted to intentionally strained superlattices. First the effect of strain on the band lineups alignments in strained heterostructures will be discussed deeply. Then the attention will be focused on to review the most important results obtained by several groups in the characterization of semiconductor heterostructures using the following structural SR techniques: (i) X-ray absorption-based techniques such as EXAFS, polarization-dependent EXAFS, surface EXAFS and NEXAFS (or XANES); (ii) X-ray diffraction-based techniques such as high-resolution XRD, grazing incidence XRD, XRD reciprocal space maps, X-ray standing waves and diffraction anomalous fine structure (DAFS); (iii

  8. Assessment of Haar Wavelet-Quasilinearization Technique in Heat Convection-Radiation Equations

    Directory of Open Access Journals (Sweden)

    Umer Saeed

    2014-01-01

    Full Text Available We showed that solutions by the Haar wavelet-quasilinearization technique for the two problems, namely, (i temperature distribution equation in lumped system of combined convection-radiation in a slab made of materials with variable thermal conductivity and (ii cooling of a lumped system by combined convection and radiation are strongly reliable and also more accurate than the other numerical methods and are in good agreement with exact solution. According to the Haar wavelet-quasilinearization technique, we convert the nonlinear heat transfer equation to linear discretized equation with the help of quasilinearization technique and apply the Haar wavelet method at each iteration of quasilinearization technique to get the solution. The main aim of present work is to show the reliability of the Haar wavelet-quasilinearization technique for heat transfer equations.

  9. PET-based radiation therapy planning.

    Science.gov (United States)

    Speirs, Christina K; Grigsby, Perry W; Huang, Jiayi; Thorstad, Wade L; Parikh, Parag J; Robinson, Clifford G; Bradley, Jeffrey D

    2015-01-01

    In this review, we review the literature on the use of PET in radiation treatment planning, with an emphasis on describing our institutional methodology (where applicable). This discussion is intended to provide other radiation oncologists with methodological details on the use of PET imaging for treatment planning in radiation oncology, or other oncologists with an introduction to the use of PET in planning radiation therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Patient-size-dependent radiation dose optimisation technique for abdominal CT examinations.

    Science.gov (United States)

    Ngaile, J E; Msaki, P; Kazema, R

    2012-01-01

    Since patient doses from computed tomography (CT) are relatively high, risk-benefit analysis requires dose to patients and image quality be optimised. The aim of this study was to develop a patient-dependent optimisation technique that uses patient diameter to select a combination of CT scanning parameters that minimise dose delivered to patients undergoing abdominal CT examinations. The study was performed using cylindrical phantoms of diameters ranging from 16 to 40 cm in order to establish the relationship between image degradation, CT scanning techniques, patient dose and patient size from two CT scanners. These relationships were established by scanning the phantoms using standard scanning technique followed by selected combinations of scanning parameters. The image noises through phantom images were determined using region of interest software available in both scanners. The energy depositions to the X-ray detector through phantoms were determined from measurements of CT dose index in air corrected for attenuation of the phantom materials. The results demonstrate that exposure settings (milliampere seconds) could be reduced by up to 82 % for smaller phantom relative to standard milliampere seconds, while detector signal could be reduced by up to 93 % for smaller phantom relative to energy depositions required when scanned using standard scanning protocols. It was further revealed that the use of the object-specific scanning parameters on studies performed with phantom of different diameters could reduce the incident radiation to small size object by up to 86 % to obtain the same image quality required for standard adult object. In view of the earlier mentioned fact, substantial dose saving from small-sized adults and children patients undergoing abdomen CT examinations could be achieved through optimal adjustment of CT scanning technique based on the patient transverse diameter.

  11. IMAGE ANALYSIS BASED ON EDGE DETECTION TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K-means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model,gray level l, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image.

  12. Rapid Tooling Technique Based on Stereolithograph Prototype

    Institute of Scientific and Technical Information of China (English)

    丁浩; 狄平; 顾伟生; 朱世根

    2001-01-01

    Rapid tooling technique based on the sterelithograph prototype is investigated. The epoxy tooling technological process was elucidated. It is analyzed in detail that the epoxy resin formula is easy to cast, curing process, and release agents. The transitional plaster model is also proposed. The mold to encrust mutual.inductors with epoxy and mold to inject plastic soapboxes was made with the technique The tooling needs very little time and cost, for the process is only to achieve the nice replica of the prototype. It is benefit for the trial and small batch of production.

  13. Language Based Techniques for Systems Biology

    DEFF Research Database (Denmark)

    Pilegaard, Henrik

    on the π calculus fragment of BioAmbients. In both cases the analyses compute very precise estimates of the temporal structure of the underlying pathways; hence they are applicable across a family of widely used bio-ware languages that descend from Milner’s Calculus of Communicating Systems. The presented...... calculi have similarly been used for the study of bio-chemical reactive systems. In this dissertation it is argued that techniques rooted in the theory and practice of programming languages, language based techniques if you will, constitute a strong basis for the investigation of models of biological...

  14. Wavelet-based technique for target segmentation

    Science.gov (United States)

    Sadjadi, Firooz A.

    1995-07-01

    Segmentation of targets embedded in clutter obtained by IR imaging sensors is one of the challenging problems in automatic target recognition (ATR). In this paper a new texture-based segmentation technique is presented that uses the statistics of 2D wavelet decomposition components of the lcoal sections of the image. A measure of statistical similarity is then used to segment the image and separate the target from the background. This technique is applied on a set of real sequential IR imagery and has shown to produce a high degree of segmentation accuracy across varying ranges.

  15. High-resolution texture imaging with hard synchrotron radiation in the moving area detector technique

    CERN Document Server

    Wcislak, L; Klein, H; Garbe, U; Schneider, J R

    2003-01-01

    The orientation distribution of crystallites in polycrystalline materials (called texture) is usually measured by polycrystal X-ray diffraction by 'step-scanning' the sample in angular intervals in the order of 1 deg. This technique is not suited to fully exploit the low angular divergence of hard synchrotron radiation in the order of 'milliradian'. Hence, step-scanning was replaced by a continuous 'sweeping' technique using a continuously shifted area detector. In order to avoid overlapping from different reflections (hkl) a Bragg-angle slit was introduced. The 'moving-detector' technique can be applied to obtain images of orientation as well as of location distributions of crystallites in polycrystalline samples. It is suitable for imaging continuous 'orientation density' distribution functions as well as of 'grain-resolved' textures. The excellent features of high-energy synchrotron radiation combined with the moving area detector technique will be illustrated with several examples including very sharp def...

  16. Review of measurement techniques for the neutron radiative-capture process

    Energy Technology Data Exchange (ETDEWEB)

    Poenitz, W.P.

    1981-07-01

    The experimental techniques applied in measurements of the neutron capture process are reviewed. The emphasis is on measurement techniques used in neutron capture cross section measurements. The activation technique applied mainly in earlier work has still its use in some cases, specifically for measurements of technologically important cross sections (/sup 238/U and /sup 232/Th) with high accuracy. Three major prompt neutron radioactive capture detection techniques have evolved: the total gamma radiation energy detection technique (mainly with large liquid scintillation detectors), the gamma-energy proportional detectors (with proportional counters or Moxon-Rae detectors), and the pulse-height weighting technique. These measurement techniques are generally applicable, however, shortcomings limit the achievable accuracy to a approx. = 5 to 15% uncertainty level.

  17. Carbohydrate based materials for gamma radiation shielding

    Science.gov (United States)

    Tabbakh, F.; Babaee, V.; Naghsh-Nezhad, Z.

    2015-05-01

    Due to the limitation in using lead as a shielding material for its toxic properties and limitation in abundance, price or non-flexibility of other commonly used materials, finding new shielding materials and compounds is strongly required. In this conceptual study carbohydrate based compounds were considered as new shielding materials. The simulation of radiation attenuation is performed using MCNP and Geant4 with a good agreement in the results. It is found that, the thickness of 2 mm of the proposed compound may reduce up to 5% and 50% of 1 MeV and 35 keV gamma-rays respectively in comparison with 15% and 100% for the same thickness of lead.

  18. Hypofractionation does not increase radiation pneumonitis risk with modern conformal radiation delivery techniques

    Energy Technology Data Exchange (ETDEWEB)

    Vogelius, Ivan S.; Westerly, David C.; Cannon, George M.; Bentzen, Soeren M. (Dept. of Human Oncology, Univ. of Wisconsin School of Medicine and Public Health, Madison, WI (United States)), E-mail: bentzen@humonc.wisc.edu

    2010-10-15

    Purpose. To study the interaction between radiation dose distribution and hypofractionated radiotherapy with respect to the risk of radiation pneumonitis (RP) estimated from normal tissue complication probability (NTCP) models. Material and methods. Eighteen non-small cell lung cancer patients previously treated with helical tomotherapy were selected. For each patient a 3D-conformal plan (3D-CRT) plan was produced in addition to the delivered plan. The standard fractionation schedule was set to 60 Gy in 30 fractions. Iso-efficacy comparisons with hypofractionation were performed by changing the fractionation and the physical prescription dose while keeping the equivalent tumor dose in 2 Gy fractions constant. The risk of developing RP after radiotherapy was estimated using the Mean Equivalent Lung Dose in 2-Gy fractions (MELD2) NTCP model with alpha/beta=4 Gy for the residual lung. Overall treatment time was kept constant. Results. The mean risk of clinical RP after standard fractionation was 7.6% for Tomotherapy (range: 2.8-15.9%) and 9.2% for 3D-CRT (range 3.2-20.2%). Changing to 20 fractions, the Tomotherapy plans became slightly less toxic if the tumor alpha/beta ratio, (alpha/beta)T, was 7 Gy (mean RP risk 7.5%, range 2.8-16%) while the 3D-CRT plans became marginally more toxic (mean RP risk 9.8%, range 3.2-21%). If (alpha/beta)T was 13 Gy, the mean estimated risk of RP is 7.9% for Tomotherapy (range: 2.8-17%) and 10% for 3D-CRT (range 3.2-22%). Conclusion. Modern highly conformal dose distributions are radiobiologically more forgiving with respect to hypofractionation, even for a normal tissue endpoint where alpha/beta is lower than for the tumor in question.

  19. A direct technique to fabricate an intraoral shield for unilateral head and neck radiation.

    Science.gov (United States)

    Khan, Zafrulla; Abdel-Azim, Tamer

    2014-09-01

    A radiation oncologist may ask the prosthodontist to fabricate an intraoral shield when ipsilateral fields are used for patients with head and neck cancer. A technique for its fabrication is described that can be accomplished with materials and equipment that are readily available in the dental office. Baseplate wax is used intraorally to fabricate a pattern, which is duplicated with irreversible hydrocolloid material. Autopolymerizing acrylic resin is then used to make the shield. This simple technique can be completed in a single visit.

  20. An interative solution of an integral equation for radiative transfer by using variational technique

    Science.gov (United States)

    Yoshikawa, K. K.

    1973-01-01

    An effective iterative technique is introduced to solve a nonlinear integral equation frequently associated with radiative transfer problems. The problem is formulated in such a way that each step of an iterative sequence requires the solution of a linear integral equation. The advantage of a previously introduced variational technique which utilizes a stepwise constant trial function is exploited to cope with the nonlinear problem. The method is simple and straightforward. Rapid convergence is obtained by employing a linear interpolation of the iterative solutions. Using absorption coefficients of the Milne-Eddington type, which are applicable to some planetary atmospheric radiation problems. Solutions are found in terms of temperature and radiative flux. These solutions are presented numerically and show excellent agreement with other numerical solutions.

  1. Monochromator-Based Absolute Calibration of a Standard Radiation Thermometer

    Science.gov (United States)

    Mantilla, J. M.; Hernanz, M. L.; Campos, J.; Martín, M. J.; Pons, A.; del Campo, D.

    2014-04-01

    Centro Español de Metrología (CEM) is disseminating the International Temperature Scale (ITS-90), at high temperatures, by using the fixed points of Ag and Cu and a standard radiation thermometer. However, the future mise-en-pratique for the definition of the kelvin ( MeP-K) will include the dissemination of the kelvin by primary methods and by indirect approximations capable of exceptionally low uncertainties or increased reliability. Primary radiometry is, at present, able to achieve uncertainties competitive with the ITS-90 above the silver point with one of the possible techniques the calibration for radiance responsivity of an imaging radiometer (radiance method). In order to carry out this calibration, IO-CSIC (Spanish Designated Institute for luminous intensity and luminous flux) has collaborated with CEM, allowing traceability to its cryogenic radiometer. A monochromator integrating sphere-based spectral comparator facility has been used to calibrate one of the CEM standard radiation thermometers. The absolute calibrated standard radiation thermometer has been used to determine the temperatures of the fixed points of Cu, Co-C, Pt-C, and Re-C. The results obtained are 1357.80 K, 1597.10 K, 2011.66 K, and 2747.64 K, respectively, with uncertainties ranging from 0.4 K to 1.1 K.

  2. Measurements of diversity gain and radiation efficiency of the eleven antenna by using different measurement techniques

    DEFF Research Database (Denmark)

    Yang, Jian; Pivnenko, Sergey; Laitinen, Tommi

    2010-01-01

    This paper presents measurement results of diversity gain and radiation efficiency by using three different measurement techniques: reverberation chamber, spherical near-field anechoic chamber, and multi-probe anechoic chamber. The results are measured over a large 2–8 GHz bandwidth which...

  3. Study of Phase Reconstruction Techniques applied to Smith-Purcell Radiation Measurements

    CERN Document Server

    Delerue, Nicolas; Bezshyyko, Oleg; Khodnevych, Vitalii

    2015-01-01

    Measurements of coherent radiation at accelerators typically give the absolute value of the beam profile Fourier transform but not its phase. Phase reconstruction techniques such as Hilbert transform or Kramers Kronig reconstruction are used to recover such phase. We report a study of the performances of these methods and how to optimize the reconstructed profiles.

  4. Study of Phase Reconstruction Techniques applied to Smith-Purcell Radiation Measurements

    CERN Document Server

    Delerue, Nicolas; Vieille-Grosjean, Mélissa; Bezshyyko, Oleg; Khodnevych, Vitalii

    2014-01-01

    Measurements of coherent radiation at accelerators typically give the absolute value of the beam profile Fourier transform but not its phase. Phase reconstruction techniques such as Hilbert transform or Kramers Kronig reconstruction are used to recover such phase. We report a study of the performances of these methods and how to optimize the reconstructed profiles.

  5. AN IMAGE-ANALYSIS TECHNIQUE FOR DETECTION OF RADIATION-INDUCED DNA FRAGMENTATION AFTER CHEF ELECTROPHORESIS

    NARCIS (Netherlands)

    ROSEMANN, M; KANON, B; KONINGS, AWT; KAMPINGA, HH

    1993-01-01

    CHEF-electrophoresis was used as a technique to detect radiation-induced DNA breakage with special emphasis to biological relevant X-ray doses (0-10 Gy). Fluorescence detection of DNA-fragments using a sensitive image analysis system was directly compared with conventional scintillation counting of

  6. MATRIX BASED INDEXING TECHNIQUE FOR VIDEO DATA

    Directory of Open Access Journals (Sweden)

    Devarj Saravanan

    2013-01-01

    Full Text Available Due to increasing the usage of media, the utilization of video play central role as it supports various applications. Video is the particular media which contains complex collection of objects like audio, motion, text, color and picture. Due to the rapid growth of this information video indexing process is mandatory for fast and effective retrieval. Many current indexing techniques fails to extract the needed image from the stored data set, based on the users query. Urgent attention in the field of video indexing and image retrieval is the need of the hour. Here a new matrix based indexing technique for image retrieval has been proposed. The proposed method provide better result, experimental results prove this.

  7. Interactive early warning technique based on SVDD

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    After reviewing current researches on early warning,it is found that"bad" data of some systems is not easy to obtain,which makes methods proposed by these researches unsuitable for monitored systems.An interactive early warning technique based on SVDD(support vector data description)is proposed to adopt"good" data as samples to overcome the difficulty in obtaining the"bad"data.The process consists of two parts:(1)A hypersphere is fitted on"good"data using SVDD.If the data object are outside the hypersphere,it would be taken as"suspicious";(2)A group of experts would decide whether the suspicious data is"bad"or"good",early warning messages would be issued according to the decisions.And the detailed process of implementation is proposed.At last,an experiment based on data of a macroeconomic system is conducted to verify the proposed technique.

  8. MATRIX BASED INDEXING TECHNIQUE FOR VIDEO DATA

    OpenAIRE

    2013-01-01

    Due to increasing the usage of media, the utilization of video play central role as it supports various applications. Video is the particular media which contains complex collection of objects like audio, motion, text, color and picture. Due to the rapid growth of this information video indexing process is mandatory for fast and effective retrieval. Many current indexing techniques fails to extract the needed image from the stored data set, based on the users query. Urgent attention in the fi...

  9. HybridArc: A novel radiation therapy technique combining optimized dynamic arcs and intensity modulation

    Energy Technology Data Exchange (ETDEWEB)

    Robar, James L., E-mail: james.robar@cdha.nshealth.ca [Department of Radiation Oncology, Dalhousie University, Halifax (Canada); Department of Physics and Atmospheric Science, Dalhousie University, Halifax (Canada); Thomas, Christopher [Department of Radiation Oncology, Dalhousie University, Halifax (Canada)

    2012-01-01

    This investigation focuses on possible dosimetric and efficiency advantages of HybridArc-a novel treatment planning approach combining optimized dynamic arcs with intensity-modulated radiation therapy (IMRT) beams. Application of this technique to two disparate sites, complex cranial tumors, and prostate was examined. HybridArc plans were compared with either dynamic conformal arc (DCA) or IMRT plans to determine whether HybridArc offers a synergy through combination of these 2 techniques. Plans were compared with regard to target volume dose conformity, target volume dose homogeneity, sparing of proximal organs at risk, normal tissue sparing, and monitor unit (MU) efficiency. For cranial cases, HybridArc produced significantly improved dose conformity compared with both DCA and IMRT but did not improve sparing of the brainstem or optic chiasm. For prostate cases, conformity was improved compared with DCA but not IMRT. Compared with IMRT, the dose homogeneity in the planning target volume was improved, and the maximum doses received by the bladder and rectum were reduced. Both arc-based techniques distribute peripheral dose over larger volumes of normal tissue compared with IMRT, whereas HybridArc involved slightly greater volumes of normal tissues compared with DCA. Compared with IMRT, cranial cases required 38% more MUs, whereas for prostate cases, MUs were reduced by 7%. For cranial cases, HybridArc improves dose conformity to the target. For prostate cases, dose conformity and homogeneity are improved compared with DCA and IMRT, respectively. Compared with IMRT, whether required MUs increase or decrease with HybridArc was site-dependent.

  10. electromagnetic radiation exposure from cellular base station

    African Journals Online (AJOL)

    eobe

    2DEPARTMENT OF ELECTRICAL/ELECTRONIC ENGINEERING, FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA, ... electronic apparatus radiate electromagnetic energy ..... [11] Randerson, James, “Research fails to detect short-.

  11. Multiview video codec based on KTA techniques

    Science.gov (United States)

    Seo, Jungdong; Kim, Donghyun; Ryu, Seungchul; Sohn, Kwanghoon

    2011-03-01

    Multi-view video coding (MVC) is a video coding standard developed by MPEG and VCEG for multi-view video. It showed average PSNR gain of 1.5dB compared with view-independent coding by H.264/AVC. However, because resolutions of multi-view video are getting higher for more realistic 3D effect, high performance video codec is needed. MVC adopted hierarchical B-picture structure and inter-view prediction as core techniques. The hierarchical B-picture structure removes the temporal redundancy, and the inter-view prediction reduces the inter-view redundancy by compensated prediction from the reconstructed neighboring views. Nevertheless, MVC has inherent limitation in coding efficiency, because it is based on H.264/AVC. To overcome the limit, an enhanced video codec for multi-view video based on Key Technology Area (KTA) is proposed. KTA is a high efficiency video codec by Video Coding Expert Group (VCEG), and it was carried out for coding efficiency beyond H.264/AVC. The KTA software showed better coding gain than H.264/AVC by using additional coding techniques. The techniques and the inter-view prediction are implemented into the proposed codec, which showed high coding gain compared with the view-independent coding result by KTA. The results presents that the inter-view prediction can achieve higher efficiency in a multi-view video codec based on a high performance video codec such as HEVC.

  12. A novel technique of unilateral percutaneous kyphoplasty achieves effective biomechanical strength and reduces radiation exposure

    Science.gov (United States)

    Zhuang, Yan; Yang, Lei; Li, Haijun; Ren, Yajun; Cao, Xiaojian

    2016-01-01

    Purpose: To develop a novel technique of percutaneous kyphoplasty (PKP) with effective biomechanical strength and lower radiation exposure. Methods: Thirty fresh lumbar vertebrae isolated from six hogs were decalcified and compressed to induce osteoporotic vertebral compression fractures. Kyphoplasty was performed using three different techniques (ten for each group): conventional unilateral approach (group A), conventional bilateral approach (group B) and novel unilateral approach (group C). Biomechanical indexes including Yield load and stiffness were tested before and after kyphoplasty. The anterior height of each vertebral body (AHVB) was measured before compression, after compression and after kyphoplasty. Frequency of C-arm use and volume of bone cement were also recorded in the process. Results: Compared with group A, our novel technique in group C can significantly improve the recovery of AHVB after compression fractures. However, there was no statistical difference between group B and group C. Values of Yield load in both group B and group C were statistically higher than that in group A, however, no significant difference was found between group B and C. Statistical results of stiffness were similar to Yield load. Regarding volume of bone cement and radiation exposure, the novel technique in group C needed more bone cement and fluoroscopy use than in group A but less than in group B. Conclusions: This novel device makes unilateral kyphoplasty feasible, safe and effective. In the premise of guaranteed biomechanical strength, the new technique significantly reduces risk of radiation exposure in kyphoplasty. PMID:27158403

  13. Risk of Second Cancers According to Radiation Therapy Technique and Modality in Prostate Cancer Survivors

    Energy Technology Data Exchange (ETDEWEB)

    Berrington de Gonzalez, Amy, E-mail: berringtona@mail.nih.gov [Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Wong, Jeannette; Kleinerman, Ruth; Kim, Clara; Morton, Lindsay [Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Bekelman, Justin E. [Department of Radiation Oncology, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2015-02-01

    Purpose: Radiation therapy (RT) techniques for prostate cancer are evolving rapidly, but the impact of these changes on risk of second cancers, which are an uncommon but serious consequence of RT, are uncertain. We conducted a comprehensive assessment of risks of second cancer according to RT technique (>10 MV vs ≤10 MV and 3-dimensional [3D] vs 2D RT) and modality (external beam RT, brachytherapy, and combined modes) in a large cohort of prostate cancer patients. Methods and Materials: The cohort was constructed using the Surveillance Epidemiology and End Results-Medicare database. We included cases of prostate cancer diagnosed in patients 66 to 84 years of age from 1992 to 2004 and followed through 2009. We used Poisson regression analysis to compare rates of second cancer across RT groups with adjustment for age, follow-up, chemotherapy, hormone therapy, and comorbidities. Analyses of second solid cancers were based on the number of 5-year survivors (n=38,733), and analyses of leukemia were based on number of 2-year survivors (n=52,515) to account for the minimum latency period for radiation-related cancer. Results: During an average of 4.4 years' follow-up among 5-year prostate cancer survivors (2DRT = 5.5 years; 3DRT = 3.9 years; and brachytherapy = 2.7 years), 2933 second solid cancers were diagnosed. There were no significant differences in second solid cancer rates overall between 3DRT and 2DRT patients (relative risk [RR] = 1.00, 95% confidence interval [CI]: 0.91-1.09), but second rectal cancer rates were significantly lower after 3DRT (RR = 0.59, 95% CI: 0.40-0.88). Rates of second solid cancers for higher- and lower-energy RT were similar overall (RR = 0.97, 95% CI: 0.89-1.06), as were rates for site-specific cancers. There were significant reductions in colon cancer and leukemia rates in the first decade after brachytherapy compared to those after external beam RT. Conclusions: Advanced treatment planning may have reduced rectal

  14. Spectral radiative kernel technique and the spectrally-resolved longwave feedbacks in the CMIP3 and CMIP5 experiments

    Science.gov (United States)

    Huang, Xianglei; Chen, Xiuhong; Soden, Brian; Liu, Xu

    2015-04-01

    Radiative feedback is normally discussed in terms of Watts per square meter per K, i.e., the change of broadband flux due to the change of certain climate variable in response to 1K change in global-mean surface temperature. However, the radiative feedback has an intrinsic dimension of spectrum and spectral radiative feedback can be defined in terms of Watts per square meter per K per frequency (or per wavelength). A set of all-sky and clear-sky longwave (LW) spectral radiative kernels (SRK) are constructed using a recently developed spectral flux simulator based on the PCRTM (Principal-Component-based Radiative Transfer Model). The LW spectral radiative kernels are validated against the benchmark partial radiative perturbation method. The LW broadband feedbacks derived using this SRK method are consistent with the published results using the broadband radiative kernels. The SRK is then applied to 12 GCMs in CMIP3 archives and 12 GCMs in CMIP5 archives to derive the spectrally resolved Planck, lapse rate, and LW water vapor feedbacks. The inter-model spreads of the spectral lapse-rate feedbacks among the CMIP3 models are noticeably different than those among the CMIP5 models. In contrast, the inter-model spread of spectral LW water vapor feedbacks changes little from the CMIP3 to CMIP5 simulations, when the specific humidity is used as the state variable. Spatially the far-IR band is more responsible for the changes in lapse-rate feedbacks from the CMIP3 to CMIP5 than the window band. When relative humidity (RH) is used as state variable, virtually all GCMs have little broadband RH feedbacks as shown in Held & Shell (2012). However, the RH feedbacks can be significantly non-zero over different LW spectral regions and the spectral details of such RH feedbacks vary significantly from one GCM to the other. Finally an interpretation based on a one-layer atmospheric model is presented to illustrate under what statistical circumstances the linear technique can be applied

  15. Radiation Tolerant, FPGA-Based SmallSat Computer System

    Science.gov (United States)

    LaMeres, Brock J.; Crum, Gary A.; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Radiation Tolerant, FPGA-based SmallSat Computer System (RadSat) computing platform exploits a commercial off-the-shelf (COTS) Field Programmable Gate Array (FPGA) with real-time partial reconfiguration to provide increased performance, power efficiency and radiation tolerance at a fraction of the cost of existing radiation hardened computing solutions. This technology is ideal for small spacecraft that require state-of-the-art on-board processing in harsh radiation environments but where using radiation hardened processors is cost prohibitive.

  16. Biological Bases for Radiation Adaptive Responses in the Lung

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Bobby R. [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States); Lin, Yong [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States); Wilder, Julie [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States); Belinsky, Steven [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States)

    2015-03-01

    Our main research objective was to determine the biological bases for low-dose, radiation-induced adaptive responses in the lung and use the knowledge gained to produce an improved risk model for radiation-induced lung cancer that accounts for activated natural protection, genetic influences, and the role of epigenetic regulation (epiregulation). Currently, low-dose radiation risk assessment is based on the linear-no-threshold hypothesis which now is known to be unsupported by a large volume of data.

  17. Knowledge-based techniques in software engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jairam, B.N.; Agarwal, A.; Emrich, M.L.

    1988-05-04

    Recent trends in software engineering research focus on the incorporation of AI techniques. The feasibility of an overlap between AI and software engineering is examined. The benefits of merging the two fields are highlighted. The long-term goal is to automate the software development process. Some projects being undertaken towards the attainment of this goal are presented as examples. Finally, research on the Oak Ridge Reservation aimed at developing a knowledge-based software project management aid is presented. 25 refs., 1 tab.

  18. Synchrotron radiation X-ray powder diffraction techniques applied in hydrogen storage materials - A review

    Directory of Open Access Journals (Sweden)

    Honghui Cheng

    2017-02-01

    Full Text Available Synchrotron radiation is an advanced collimated light source with high intensity. It has particular advantages in structural characterization of materials on the atomic or molecular scale. Synchrotron radiation X-ray powder diffraction (SR-XRPD has been successfully exploited to various areas of hydrogen storage materials. In the paper, we will give a brief introduction on hydrogen storage materials, X-ray powder diffraction (XRPD, and synchrotron radiation light source. The applications of ex situ and in situ time-resolved SR-XRPD in hydrogen storage materials, are reviewed in detail. Future trends and proposals in the applications of the advanced XRPD techniques in hydrogen storage materials are also discussed.

  19. VUV synchrotron radiation: a new activation technique for tandem mass spectrometry.

    Science.gov (United States)

    Milosavljević, Aleksandar R; Nicolas, Christophe; Gil, Jean-Francois; Canon, Francis; Réfrégiers, Matthieu; Nahon, Laurent; Giuliani, Alexandre

    2012-03-01

    A novel experimental technique for tandem mass spectrometry and ion spectroscopy of electrosprayed ions using vacuum-ultraviolet (VUV) synchrotron radiation is presented. Photon activation of trapped precursor ions has been performed by coupling a commercial linear quadrupole ion trap (Thermo scientific LTQ XL), equipped with the electrosprayed ions source, to the DESIRS beamline at the SOLEIL synchrotron radiation facility. The obtained results include, for the first time on biopolymers, photodetachment spectroscopy using monochromated synchrotron radiation of multi-charged anions and the single photon ionization of large charge-selected polycations. The high efficiency and signal-to-noise ratio achieved by the present set-up open up possibilities of using synchrotron light as a new controllable activation method in tandem mass spectrometry of biopolymers and VUV-photon spectroscopy of large biological ions.

  20. Paediatric cardiac computed tomography: a review of imaging techniques and radiation dose consideration

    Energy Technology Data Exchange (ETDEWEB)

    Young, Carolyn; Taylor, Andrew M. [UCL, Institute of Child Health, Cardiorespiratory Unit, London (United Kingdom); Great Ormond Street Hospital for Children, Cardiorespiratory Unit, London (United Kingdom); Owens, Catherine M. [UCL, Institute of Child Health, Cardiorespiratory Unit, London (United Kingdom)

    2011-03-15

    The significant challenges involved in imaging the heart in small children (<15 kg) have been addressed by, and partially resolved with improvement in temporal and spatial resolution secondary to the advent of new multi-detector CT technology. This has enabled both retrospective and prospective ECG-gated imaging in children even at high heart rates (over 100 bpm) without the need for beta blockers. Recent studies have highlighted that the radiation burden associated with cardiac CT can be reduced using prospective ECG-gating. Our experience shows that the resultant dose reduction can be optimised to a level equivalent to that of a non-gated study. This article reviews the different aspects of ECG-gating and the preferred technique for cardiac imaging in the young child (<15 kg). We summarize our evidenced based recommendations for readers, referencing recent articles and using our in house data, protocols and dose measurements discussing the various methods available for dose calculations and their inherent bias. (orig.)

  1. Recoil separators for radiative capture using radioactive ion beams. Recent advances and detection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Chris [TRIUMF, Vancouver, BC (Canada); Greife, Uwe; Hager, Ulrike [Colorado School of Mines, Golden, CO (United States)

    2014-06-15

    Radiative capture reactions involving the fusion of hydrogen or helium are ubiquitous in the stellar history of the universe, and are some of the most important reactions in the processes that govern nucleosynthesis and energy generation in both static and explosive scenarios. However, radiative capture reactions pose some of the most difficult experimental challenges due to extremely small cross sections. With the advent of recoil separators and techniques in inverse kinematics, it is now possible to measure radiative capture reactions on very short-lived radioactive nuclei, and in the presence of high experimental backgrounds. In this paper we review the experimental needs for making measurements of astrophysical importance on radiative capture reactions. We also review some of the important historical advances in the field of recoil separators as well as describe current techniques and performance milestones, including descriptions of some of the separators most recently working at radioactive ion beam facilities, such as DRAGON at TRIUMF and the DRS at the Holifield Radioactive Ion Beam Facility. We will also summarize some of the scientific highlight measurements at the RIB facilities. (orig.)

  2. Artificial Intelligence based technique for BTS placement

    Science.gov (United States)

    Alenoghena, C. O.; Emagbetere, J. O.; Aibinu, A. M.

    2013-12-01

    The increase of the base transceiver station (BTS) in most urban areas can be traced to the drive by network providers to meet demand for coverage and capacity. In traditional network planning, the final decision of BTS placement is taken by a team of radio planners, this decision is not fool proof against regulatory requirements. In this paper, an intelligent based algorithm for optimal BTS site placement has been proposed. The proposed technique takes into consideration neighbour and regulation considerations objectively while determining cell site. The application will lead to a quantitatively unbiased evaluated decision making process in BTS placement. An experimental data of a 2km by 3km territory was simulated for testing the new algorithm, results obtained show a 100% performance of the neighbour constrained algorithm in BTS placement optimization. Results on the application of GA with neighbourhood constraint indicate that the choices of location can be unbiased and optimization of facility placement for network design can be carried out.

  3. Adequate image quality with reduced radiation dose in prospectively triggered coronary CTA compared with retrospective techniques

    Energy Technology Data Exchange (ETDEWEB)

    Arnoldi, Elisabeth; Johnson, Thorsten R.; Rist, Carsten; Wintersperger, Bernd J.; Sommer, Wieland H.; Becker, Christoph R.; Reiser, Maximilian F.; Nikolaou, Konstantin [Ludwig-Maximilians University, Department of Clinical Radiology, University Hospitals Munich - Grosshadern Campus, Munich (Germany); Becker, Alexander [Ludwig-Maximilians University, Department of Medicine I, University Hospitals Munich - Grosshadern Campus, Munich (Germany)

    2009-09-15

    The goal of our study was to compare a prospective triggering (PT) CT technique with retrospectively gated (RG) CT techniques in coronary computed tomographic angiograms (CCTA) with respect to image quality and radiation dose. Sixty consecutive patients were enrolled. CCTAs using the RG technique were obtained with a dual-source 64-slice CT system in 40 patients, using ECG-triggered tube current modulation, with either a broad pulsing window at 30-80% of the RR interval (group RGb, 20 patients, heart rate > 70 bpm) or a small pulsing window at 70% (group RGs, 20 patients, heart rate < 70 bpm). The other 20 patients underwent CCTA using the PT technique on a 128-slice CT system (group PT, heart rate < 70 bpm). All images were evaluated by two observers for quality on a three-point scale, with 1 being excellent and 3 being insufficient. The effective radiation dose was calculated for each patient. The average image quality score was 1.5 {+-} 0.6 for PT, 1.35 {+-} 0.5 for RGs and 1.65 {+-} 0.5 for RGb. The mean effective dose for RGb was 9 {+-} 4 mSv, for RGs 7 {+-} 3 mSv and for PT 3 {+-} 1 mSv. This represents a 57% dose reduction for PT compared with RGs and a 67% dose reduction for PT compared with RGb. In conclusion, in selected patients CCTA with the PT technique offers adequate image quality with a significantly lower radiation dose compared with CCTA using RG techniques. (orig.)

  4. Influence of different treatment techniques on radiation dose to the LAD coronary artery

    Directory of Open Access Journals (Sweden)

    Molls Michael

    2007-06-01

    Full Text Available Abstract Background The purpose of this proof-of-principle study was to test the ability of an intensity-modulated radiotherapy (IMRT technique to reduce the radiation dose to the heart plus the left ventricle and a coronary artery. Radiation-induced heart disease might be a serious complication in long-term cancer survivors. Methods Planning CT scans from 6 female patients were available. They were part of a previous study of mediastinal IMRT for target volumes used in lymphoma treatment that included 8 patients and represent all cases where the left anterior descending coronary artery (LAD could be contoured. We compared 6 MV AP/PA opposed fields to a 3D conformal 4-field technique and an optimised 7-field step-and-shoot IMRT technique and evaluated DVH's for several structures. The planning system was BrainSCAN 5.21 (BrainLAB, Heimstetten, Germany. Results IMRT maintained target volume coverage but resulted in better dose reduction to the heart, left ventricle and LAD than the other techniques. Selective dose reduction could be accomplished, although not to the degree initially attempted. The median LAD dose was approximately 50% lower with IMRT. In 5 out of 6 patients, IMRT was the best technique with regard to heart sparing. Conclusion IMRT techniques are able to reduce the radiation dose to the heart. In addition to dose reduction to whole heart, individualised dose distributions can be created, which spare, e.g., one ventricle plus one of the coronary arteries. Certain patients with well-defined vessel pathology might profit from an approach of general heart sparing with further selective dose reduction, accounting for the individual aspects of pre-existing damage.

  5. Development a high-resolution radiation dosimetry system based on Fricke solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vedelago, J. [Laboratorio de Investigaciones e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Laboratorio 448 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina); Mattea, F. [Universidad Nacional de Cordoba, Facultad de Ciencias Quimicas, Departamento de Quimica Organica, Ciudad Universitaria, 5000 Cordoba (Argentina); Valente, M., E-mail: josevedelago@gmail.com [Instituto de Fisica E. Gaviola, Oficina 102 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2014-08-15

    Due to the growing complexity of modern medical procedures involving the use of ionizing radiation, dosimetry by non-conventional techniques is one of the research areas in the field of greatest interest nowadays. Tissue-equivalent high-resolution dosimetry systems capable of attaining continuous dose mapping are required. In this scenario, Fricke gel dosimetry is a very promising option for in-phantom dose measurements in complex radiation techniques. Implementation of this technique requires dedicated instruments capable of measuring and performing the immediate in situ analysis of the acquired data at the radiation facility. The versatility of Fricke gel dosimetry in different applications depending on the chemical and isotopic composition of the dosimeter extends its application to different high performance conventional and non-conventional radiation procedures involving diverse types of radiation treatments and also radiation diagnosis procedures. This work presents an integral dosimetry system, based on Fricke gel solutions and their analysis by optical techniques, aiming for an increase in the precision on dose determinations. The chemical synthesis and dosimeter preparation were accomplished at LIIFAMIRx facilities, following the procedures and protocols described in previous works. Additionally, specific instrumentation for optical sample analysis was completely designed and constructed at LIIFAMIRx facilities. The main outcome of this work was the development of a methodology that improves the integral dose determination performance by the pre-irradiation of Fricke gel dosimeters. (author)

  6. RADIATION PERFORMANCE OF GAN AND INAS/GAAS QUANTUM DOT BASED DEVICES SUBJECTED TO NEUTRON RADIATION

    Directory of Open Access Journals (Sweden)

    Dhiyauddin Ahmad Fauzi

    2017-05-01

    Full Text Available In addition to their useful optoelectronics functions, gallium nitride (GaN and quantum dots (QDs based structures are also known for their radiation hardness properties. With demands on such semiconductor material structures, it is important to investigate the differences in reliability and radiation hardness properties of these two devices. For this purpose, three sets of GaN light-emitting diode (LED and InAs/GaAs dot-in-a well (DWELL samples were irradiated with thermal neutron of fluence ranging from 3×1013 to 6×1014 neutron/cm2 in PUSPATI TRIGA research reactor. The radiation performances for each device were evaluated based on the current-voltage (I-V and capacitance-voltage (C-V electrical characterisation method. Results suggested that the GaN based sample is less susceptible to electrical changes due to the thermal neutron radiation effects compared to the QD based sample.

  7. Block-Based Compressed Sensing for Neutron Radiation Image Using WDFB

    Directory of Open Access Journals (Sweden)

    Wei Jin

    2015-01-01

    Full Text Available An ideal compression method for neutron radiation image should have high compression ratio while keeping more details of the original image. Compressed sensing (CS, which can break through the restrictions of sampling theorem, is likely to offer an efficient compression scheme for the neutron radiation image. Combining wavelet transform with directional filter banks, a novel nonredundant multiscale geometry analysis transform named Wavelet Directional Filter Banks (WDFB is constructed and applied to represent neutron radiation image sparsely. Then, the block-based CS technique is introduced and a high performance CS scheme for neutron radiation image is proposed. By performing two-step iterative shrinkage algorithm the problem of L1 norm minimization is solved to reconstruct neutron radiation image from random measurements. The experiment results demonstrate that the scheme not only improves the quality of reconstructed image obviously but also retains more details of original image.

  8. Radiative Transport Based Flame Volume Reconstruction from Videos.

    Science.gov (United States)

    Shen, Liang; Zhu, Dengming; Nadeem, Saad; Wang, Zhaoqi; Kaufman, Arie E

    2017-06-06

    We introduce a novel approach for flame volume reconstruction from videos using inexpensive charge-coupled device (CCD) consumer cameras. The approach includes an economical data capture technique using inexpensive CCD cameras. Leveraging the smear feature of the CCD chip, we present a technique for synchronizing CCD cameras while capturing flame videos from different views. Our reconstruction is based on the radiative transport equation which enables complex phenomena such as emission, extinction, and scattering to be used in the rendering process. Both the color intensity and temperature reconstructions are implemented using the CUDA parallel computing framework, which provides real-time performance and allows visualization of reconstruction results after every iteration. We present the results of our approach using real captured data and physically-based simulated data. Finally, we also compare our approach against the other state-of-the-art flame volume reconstruction methods and demonstrate the efficacy and efficiency of our approach in four different applications: (1) rendering of reconstructed flames in virtual environments, (2) rendering of reconstructed flames in augmented reality, (3) flame stylization, and (4) reconstruction of other semitransparent phenomena.

  9. On piecewise interpolation techniques for estimating solar radiation missing values in Kedah

    Energy Technology Data Exchange (ETDEWEB)

    Saaban, Azizan; Zainudin, Lutfi [School of Science Quantitative, UUMCAS, Universiti Utara Malaysia, 06010 Sintok, Kedah (Malaysia); Bakar, Mohd Nazari Abu [Faculty of Applied Science, Universiti Teknologi MARA, 02600 Arau, Perlis (Malaysia)

    2014-12-04

    This paper discusses the use of piecewise interpolation method based on cubic Ball and Bézier curves representation to estimate the missing value of solar radiation in Kedah. An hourly solar radiation dataset is collected at Alor Setar Meteorology Station that is taken from Malaysian Meteorology Deparment. The piecewise cubic Ball and Bézier functions that interpolate the data points are defined on each hourly intervals of solar radiation measurement and is obtained by prescribing first order derivatives at the starts and ends of the intervals. We compare the performance of our proposed method with existing methods using Root Mean Squared Error (RMSE) and Coefficient of Detemination (CoD) which is based on missing values simulation datasets. The results show that our method is outperformed the other previous methods.

  10. Reconstruction techniques of erythemal UV-radiation and future UV predictions

    Science.gov (United States)

    Wagner, J. E.; Rieder, H. E.; Simic, S.; Weihs, P.

    2009-04-01

    Since the discovery of anthropogenic ozone depletion more than 30 year ago, the scientific community has shown an increasing interest in UV-B radiation and started to monitor UV-radiation. However, difficulties involved in the routine operation and maintenance of the instruments have limited the length of reliable data records to about two decades. Further the number of places where they were measured, resulting in a set of observations too short and too sparse for a good understanding of past UV changes. Moreover state of the art climate models do not calculate future scenarios of UV-doses. Therefore detailed information about past and future UV-trends are lacking. Reconstruction techniques are indispensable to derive long-term time series of UV-radiation and fill this gap. Apart from the astronomical parameters, like solar zenith angle and sun-earth-distance, UV radiation is strongly influenced by clouds, ozone and surface albedo. We developed and evaluated a reconstruction technique for UV-doses that first calculates the UV-doses under clear-sky condition and afterwards applies corrections in order to take cloud effects into account. Since the input parameters cloud cover, total ozone column and surface albedo are available from the Regional Climate Model (REMO), we applied our reconstruction technique also for future scenarios using REMO data as input. Hence we are able to derive a seamless UV long-term time series from the past to the future. Our method was applied for the high alpine station Hoher Sonnblick (3108m) situated in Austrian Alps.

  11. A BCCD-based dosimeter for mixed radiation fields

    Science.gov (United States)

    Pierschel, M.; Ehwald, K.-E.; Heinemann, B.; Januschewski, F.; Schmitz, T.; Schröder, O.

    1993-03-01

    The development of a personal dosimeter based on a BCCD-detector for mixed neutron and gamma radiation in the energy range from thermal energy to 20 MeV for neutrons respectively 30 keV to a few MeV for gammas will be presented. The detector has to give information on the total radiation dose, D, and on the radiation quality. Both peaces of information are required to determine the directional dose equivalent. The basic radiation physics requirements for the detector as well as a concept of a buried channel CCD-matrix for radiation applications including the technology process will be described. A two dimensional device simulation package was used for both optimization of the charge storage nodes including free charge transfer and the basic electronic processes depending on radiation interaction with silicon.

  12. Breast cancer regional radiation fields for supraclavicular and axillary lymph node treatment: is a posterior axillary boost field technique optimal?

    Science.gov (United States)

    Wang, Xiaochun; Yu, Tse Kuan; Salehpour, Mohammad; Zhang, Sean X; Sun, Tzouh Liang; Buchholz, Thomas A

    2009-05-01

    To assess whether using an anterior oblique supraclavicular (SCV) field with a posterior axillary boost (PAB) field is an optimal technique for targeting axillary (AX) lymph nodes compared with two computed tomography (CT)-based techniques: (1) an SCV field with an anterior boost field and (2) intensity-modulated radiotherapy (IMRT). Ten patients with CT simulation data treated with postmastectomy radiation that included an SCV field were selected for the study. Supraclavicular nodes and AX Level I-III nodes within the SCV field were contoured and defined as the treatment target. Plans using the three techniques were generated and evaluated for each patient. The anterior axillary boost field and IMRT resulted in superior dose coverage compared with PAB. Namely, treatment volumes that received 105%, 80%, and 30% of prescribed dose for IMRT plans were significantly less than those for the anterior axillary boost plans, which were significantly less than PAB. For PAB and anterior axillary boost plans, there was a linear correlation between treatment volume receiving 105% of prescribed dose and maximum target depth. Furthermore, the IMRT technique resulted in better lung sparing and dose conformity to the target than anterior axillary boost, which again was significantly better than PAB. The maximum cord dose for IMRT was small, but higher than for the other two techniques. More monitor units were required to deliver the IMRT plan than the PAB plan, which was more than the anterior axillary boost plan. The PAB technique is not optimal for treatment of AX lymph nodes in an SCV field. We conclude that CT treatment planning with dose optimization around delineated target volumes should become standard for radiation treatments of supraclavicular and AX lymph nodes.

  13. A simulation technique for 3D MR-guided acoustic radiation force imaging

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Allison, E-mail: apayne@ucair.med.utah.edu [Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah 84112 (United States); Bever, Josh de [Department of Computer Science, University of Utah, Salt Lake City, Utah 84112 (United States); Farrer, Alexis [Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112 (United States); Coats, Brittany [Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Parker, Dennis L. [Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah 84108 (United States); Christensen, Douglas A. [Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112 and Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-02-15

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  14. Variance reduction technique in a beta radiation beam using an extrapolation chamber.

    Science.gov (United States)

    Polo, Ivón Oramas; Souza Santos, William; de Lara Antonio, Patrícia; Caldas, Linda V E

    2017-10-01

    This paper aims to show how the variance reduction technique "Geometry splitting/Russian roulette" improves the statistical error and reduces uncertainties in the determination of the absorbed dose rate in tissue using an extrapolation chamber for beta radiation. The results show that the use of this technique can increase the number of events in the chamber cavity leading to a closer approximation of simulation result with the physical problem. There was a good agreement among the experimental measurements, the certificate of manufacture and the simulation results of the absorbed dose rate values and uncertainties. The absorbed dose rate variation coefficient using the variance reduction technique "Geometry splitting/Russian roulette" was 2.85%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Plasma panel-based radiation detectors

    CERN Document Server

    Friedman, Peter; Beene, James; Benhammou, Yan; Ben-Moshe, Meny; Bentefour, Hassan; Chapman, J W; Etzion, Erez; Ferretti, Claudio; Levin, Daniel; Silver, Yiftah; Varner, Robert; Weaverdyck, Curtis; Zhou, Bing; 10.1002/jsid.151

    2013-01-01

    The plasma panel sensor (PPS) is a gaseous micropattern radiation detector under current development. It has many operational and fabrication principles common to plasma display panels. It comprises a dense matrix of small, gas plasma discharge cells within a hermetically sealed panel. As in plasma display panels, it uses nonreactive, intrinsically radiation-hard materials such as glass substrates, refractory metal electrodes, and mostly inert gas mixtures. We are developing these devices primarily as thin, low-mass detectors with gas gaps from a few hundred microns to a few millimeters. The PPS is a high gain, inherently digital device with the potential for fast response times, fine position resolution (<50-mm RMS) and low cost. In this paper, we report on prototype PPS experimental results in detecting betas, protons, and cosmic muons, and we extrapolate on the PPS potential for applications including the detection of alphas, heavy ions at low-to-medium energy, thermal neutrons, and X-rays.

  16. Computer Based Radiation Protection- A New Cd-Rom

    Energy Technology Data Exchange (ETDEWEB)

    Geringer, T.; Bammer, M.; Ablber, M.

    2004-07-01

    Within the next few years, there'll be a lot of new challenges required from radiation protection. According to EU regulation[1] and the new austrian radiation protection law [2] regular additional training are requested. Patients protection in diagnostic and therapeutic usage of ionising radiation gains also more and more importance.[3] Not really surprisingly, the general population is definitely highly aware of the risks coming with the usage of radionuclides and x-rays in medicine. Furthermore, the nuclear power plant in Temelin, near the austrian border initiated a lively discussion about risks, necessity and use of ionising radiation in medicine and industry. It turned out to be a really hard job handling these topics in public. A brilliant didactics based on independent information and viewpoints was required. ARC Seibersdorf Research GmbH, represented by the department of medical technical applications and the radiation protection academy, developed an interactive CD-ROM covering several applications: Basics on radiation protection for medical and technical personnel ; preparation for a radiation protection training. Repetition of the main topics for graduates of a radiation protection training. Basics on radiation protection and emergency management for medical staff as well as for the general public. (Author)

  17. Strong Correlation among Three Biodosimetry Techniques Following Exposures to Ionizing Radiation

    Science.gov (United States)

    Kang, Chang-Mo; Yun, Hyun Jin; Kim, Hanna; Kim, Cha Soon

    2016-01-01

    Three in vitro dose calibration curves for biodosimetry such as dicentric chromosome assay, fluorescence in situ hybridization (FISH) assay for translocation, and micronuclei (MNs) in binucleated cell assay were established after exposure to ionizing radiation. Peripheral blood lymphocyte samples obtained from healthy donors were irradiated with 60Co source at a dose rate of 0.5 Gy/min to doses of 0.1–6 Gy. The results from three in vitro dose calibration curves for biodosimetry were analyzed to understand the relationship among biodosimetry assay techniques. Our comparison demonstrates that there is a very strong positive correlation among the dicentric assay, FISH, and MNs analysis, and these three biodosimetry assays strongly support the in vitro dose reconstruction and the emergency preparedness of public or occupational radiation overexposure. PMID:28217287

  18. Radiations from GSM Base Stations and its Biological Effects on ...

    African Journals Online (AJOL)

    Michael Horsfall

    The levels of radiofrequency (RF) radiations around the base stations were found .... of Turk's solution (Glacial Acetic Acid tinted with ... dissolved in distilled, 40% formaldehyde) is balanced .... agencies in different countries have come up with.

  19. Climate variation based on temperature and solar radiation data ...

    African Journals Online (AJOL)

    Climate variation based on temperature and solar radiation data over a 29 year period in ... are to a large extent being negatively impacted by climate change. ... In addition, the concentration of carbon dioxide over Malawi within the same ...

  20. Nuclear and radiation techniques - state of art and development trends; Techniki jadrowe i radiacyjne - stan obecny oraz kierunki rozwoju

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, A.G. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1995-12-31

    The state of art and development trends of nuclear and radiation techniques in Poland and worldwide have been presented. Among them the radiometric gages, radiation technologies, radiotracer methods and measuring systems for pipeline and vessels, brightness control have been described and their applications in industry, agriculture, health and environment protection have been shown and discussed. 35 refs, 1 fig.

  1. Global VTEC-modelling in near real-time based on space geodetic techniques, adapted B-spline expansions and Kalman-filtering including observations of the Sun's radiation

    Science.gov (United States)

    Börger, Klaus; Schmidt, Michael; Dettmering, Denise; Limberger, Marco; Erdogan, Eren; Seitz, Florian; Brandert, Sylvia; Görres, Barbara; Kersten, Wilhelm; Bothmer, Volker; Hinrichs, Johannes; Venzmer, Malte; Mrotzek, Niclas

    2016-04-01

    Today, the observations of space geodetic techniques are usually available with a rather low latency which applies to space missions observing the solar terrestrial environment, too. Therefore, we can use all these measurements in near real-time to compute and to provide ionosphere information, e.g. the vertical total electron content (VTEC). GSSAC and BGIC support a project aiming at a service for providing ionosphere information. This project is called OPTIMAP, meaning "Operational Tool for Ionosphere Mapping and Prediction"; the scientific work is mainly done by the German Geodetic Research Institute of the Technical University Munich (DGFI-TUM) and the Institute for Astrophysics of the University of Goettingen (IAG). The OPTIMAP strategy for providing ionosphere target quantities of high quality, such as VTEC or the electron density, includes mathematical approaches and tools allowing for the model adaptation to the real observational scenario as a significant improvement w.r.t. the traditional well-established methods. For example, OPTIMAP combines different observation types such as GNSS (GPS, GLONASS), Satellite Altimetry (Jason-2), DORIS as well as radio-occultation measurements (FORMOSAT#3/COSMIC). All these observations run into a Kalman-filter to compute global ionosphere maps, i.e. VTEC, for the current instant of time and as a forecast for a couple of subsequent days. Mathematically, the global VTEC is set up as a series expansion in terms of two-dimensional basis functions defined as tensor products of trigonometric B-splines for longitude and polynomial B-splines for latitude. Compared to the classical spherical harmonics, B-splines have a localizing character and, therefore, can handle an inhomogeneous data distribution properly. Finally, B-splines enable a so-called multi-resolution-representation (MRR) enabling the combination of global and regional modelling approaches. In addition to the geodetic measurements, Sun observations are pre

  2. RADIATION PROTECTION – AN ISSUE OF KNOWLEDGE AND TECHNIQUE IN DENTAL OFFICES

    Directory of Open Access Journals (Sweden)

    Mariana CONSTANTINIUC

    2016-06-01

    Full Text Available Radiological examination is indispensable in current dental practice. Lately, dentists have become not only the beneficiaries of radiographic investigations required for diagnosis, but also their authors, as many dental offices have been authorized to have X-ray machines and carry out radiological activity. This is why dentists who perform dental X-rays have the legal and moral obligation to possess thorough theoretical and practical knowledge about the radiological technique and also about their own and patients’ radiation protection. This study investigates to what extent medical practitioners providing dental radiology services know and apply the technical norms for work and patient protection

  3. CANDU in-reactor quantitative visual-based inspection techniques

    Science.gov (United States)

    Rochefort, P. A.

    2009-02-01

    This paper describes two separate visual-based inspection procedures used at CANDU nuclear power generating stations. The techniques are quantitative in nature and are delivered and operated in highly radioactive environments with access that is restrictive, and in one case is submerged. Visual-based inspections at stations are typically qualitative in nature. For example a video system will be used to search for a missing component, inspect for a broken fixture, or locate areas of excessive corrosion in a pipe. In contrast, the methods described here are used to measure characteristic component dimensions that in one case ensure ongoing safe operation of the reactor and in the other support reactor refurbishment. CANDU reactors are Pressurized Heavy Water Reactors (PHWR). The reactor vessel is a horizontal cylindrical low-pressure calandria tank approximately 6 m in diameter and length, containing heavy water as a neutron moderator. Inside the calandria, 380 horizontal fuel channels (FC) are supported at each end by integral end-shields. Each FC holds 12 fuel bundles. The heavy water primary heat transport water flows through the FC pressure tube, removing the heat from the fuel bundles and delivering it to the steam generator. The general design of the reactor governs both the type of measurements that are required and the methods to perform the measurements. The first inspection procedure is a method to remotely measure the gap between FC and other in-core horizontal components. The technique involves delivering vertically a module with a high-radiation-resistant camera and lighting into the core of a shutdown but fuelled reactor. The measurement is done using a line-of-sight technique between the components. Compensation for image perspective and viewing elevation to the measurement is required. The second inspection procedure measures flaws within the reactor's end shield FC calandria tube rolled joint area. The FC calandria tube (the outer shell of the FC) is

  4. Automatic online adaptive radiation therapy techniques for targets with significant shape change: a feasibility study.

    Science.gov (United States)

    Court, Laurence E; Tishler, Roy B; Petit, Joshua; Cormack, Robert; Chin, Lee

    2006-05-21

    This work looks at the feasibility of an online adaptive radiation therapy concept that would detect the daily position and shape of the patient, and would then correct the daily treatment to account for any changes compared with planning position. In particular, it looks at the possibility of developing algorithms to correct for large complicated shape change. For co-planar beams, the dose in an axial plane is approximately associated with the positions of a single multi-leaf collimator (MLC) pair. We start with a primary plan, and automatically generate several secondary plans with gantry angles offset by regular increments. MLC sequences for each plan are calculated keeping monitor units (MUs) and number of segments constant for a given beam (fluences are different). Bulk registration (3D) of planning and daily CT images gives global shifts. Slice-by-slice (2D) registration gives local shifts and rotations about the longitudinal axis for each axial slice. The daily MLC sequence is then created for each axial slice/MLC leaf pair combination, by taking the MLC positions from the pre-calculated plan with the nearest rotation, and shifting using a beam's-eye-view calculation to account for local linear shifts. A planning study was carried out using two head and neck region MR images of a healthy volunteer which were contoured to simulate a base-of-tongue treatment: one with the head straight (used to simulate the planning image) and the other with the head tilted to the left (the daily image). Head and neck treatment was chosen to evaluate this technique because of its challenging nature, with varying internal and external contours, and multiple degrees of freedom. Shape change was significant: on a slice-by-slice basis, local rotations in the daily image varied from 2 to 31 degrees, and local shifts ranged from -0.2 to 0.5 cm and -0.4 to 0.0 cm in right-left and posterior-anterior directions, respectively. The adapted treatment gave reasonable target coverage (100

  5. Synchrotron radiation microtomography of musical instruments: a non-destructive monitoring technique for insect infestations

    Directory of Open Access Journals (Sweden)

    Beatrice Bentivoglio-Ravasio

    2011-08-01

    Full Text Available X-ray computed tomography is becoming a common technique for the structural analysis of samples of cultural relevance, providing luthiers, art historians, conservators and restorators with a unique tool for the characterization of musical instruments. Synchrotron-radiation phase-contrast microtomography is an ideal technique for the non-destructive 3D analysis of samples where small lowabsorbing details such as larvae and eggs can be detected. We report results from the first feasibility studies performed at the Elettra synchrotron laboratory, where the 1494 organ by Lorenzo Gusnasco da Pavia has been studied. Together with important information about the structural conditions, the presence of xylophages could be detected and characterized.

  6. International perspectives on quality assurance and new techniques in radiation medicine: outcomes of an IAEA conference.

    Science.gov (United States)

    Shortt, Ken; Davidsson, Lena; Hendry, Jolyon; Dondi, Maurizio; Andreo, Pedro

    2008-01-01

    The International Atomic Energy Agency organized an international conference called, "Quality Assurance and New Techniques in Radiation Medicine" (QANTRM). It dealt with quality assurance (QA) in all aspects of radiation medicine (diagnostic radiology, nuclear medicine, and radiotherapy) at the international level. Participants discussed QA issues pertaining to the implementation of new technologies and the need for education and staff training. The advantage of developing a comprehensive and harmonized approach to QA covering both the technical and the managerial issues was emphasized to ensure the optimization of benefits to patient safety and effectiveness. The necessary coupling between medical radiation imaging and radiotherapy was stressed, particularly for advanced technologies. However, the need for a more systematic approach to the adoption of advanced technologies was underscored by a report on failures in intensity-modulated radiotherapy dosimetry auditing tests in the United States, which could imply inadequate implementation of QA for these new technologies. A plenary session addressed the socioeconomic impact of introducing advanced technologies in resource-limited settings. How shall the dual gaps, one in access to basic medical services and the other in access to high-quality modern technology, be addressed?

  7. Physicians' knowledge about ionizing radiation and radiological imaging techniques: a cross-sectional survey.

    Science.gov (United States)

    Yucel, Aylin; Alyesil, Cansu; Sim, Saadet

    2011-06-01

    Radiological examinations are critical for the evaluation of many disorders in daily practice. To determine the knowledge of ionizing radiation and radiological imaging techniques among physicians of various grades. A cross-sectional survey was carried out of 55 physicians with a mean age of 35.7 ± 6.0 years (age range 25-52 years) in a university hospital. A questionnaire which tested physicians' information about ionizing radiation and their risks was distributed by medical school students. Among the participants, 32 (58.2%) were consultants and 23 (41.8%) were residents. The mean score was 68.2 ± 11.1 (range 37.8-91.8) out of 100. Consultants' points were lower than residents (p = 0.040). Consultants had significantly higher frequency of incorrect answer than residents in the question about 'whether CT scan increases lifetime cancer risk' (p = 0.036). Medical practices in years do not enhance the level of the awareness regarding the ionizing radiation.

  8. A new on-board imaging treatment technique for palliative and emergency treatments in radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Held, Mareike

    2016-03-23

    This dissertation focuses on the use of on-board imaging systems as the basis for treatment planning, presenting an additional application for on-board images. A clinical workflow is developed to simulate, plan, and deliver a simple radiation oncology treatment rapidly, using 3D patient scans. The work focuses on an on-line dose planning and delivery process based on on-board images entirely performed with the patient set up on the treatment couch of the linear accelerator. This potentially reduces the time between patient simulation and treatment to about 30 minutes. The basis for correct dose calculation is the accurate image gray scale to tissue density calibration. The gray scale, which is defined in CT Numbers, is dependent on the energy spectrum of the beam. Therefore, an understanding of the physics characteristics of each on-board system is required to evaluate the impact on image quality, especially regarding the underlying cause of image noise, contrast, and non-uniformity. Modern on-board imaging systems, including kV and megavoltage (MV) cone beam (CB) CT as well as MV CT, are characterized in terms of image quality and stability. A library of phantom and patient CT images is used to evaluate the dose calculation accuracy for the on-board images. The dose calculation objective is to stay within 5% local dose differences compared to standard kV CT dose planning. The objective is met in many treatment cases. However, dose calculation accuracy depends on the anatomical treatment site. While on-board CT-based treatments of the head and extremities are predictable within 5% on all systems, lung tissue and air cavities may create local dose discrepancies of more than 5%. The image quality varies between the tested units. Consequently, the CT number-to-density calibration is defined independently for each system. In case of some imaging systems, the CT numbers of the images are dependent on the protocol used for on-board imaging, which defines the imaging dose

  9. Radiative budget and cloud radiative effect over the Atlantic from ship-based observations

    Directory of Open Access Journals (Sweden)

    J. Kalisch

    2012-10-01

    Full Text Available The aim of this study is to determine cloud-type resolved cloud radiative budgets and cloud radiative effects from surface measurements of broadband radiative fluxes over the Atlantic Ocean. Furthermore, based on simultaneous observations of the state of the cloudy atmosphere, a radiative closure study has been performed by means of the ECHAM5 single column model in order to identify the model's ability to realistically reproduce the effects of clouds on the climate system.

    An extensive database of radiative and atmospheric measurements has been established along five meridional cruises of the German research icebreaker Polarstern. Besides pyranometer and pyrgeometer for downward broadband solar and thermal radiative fluxes, a sky imager and a microwave radiometer have been utilized to determine cloud fraction and cloud type on the one hand and temperature and humidity profiles as well as liquid water path for warm non-precipitating clouds on the other hand.

    Averaged over all cruise tracks, we obtain a total net (solar + thermal radiative flux of 144 W m−2 that is dominated by the solar component. In general, the solar contribution is large for cirrus clouds and small for stratus clouds. No significant meridional dependencies were found for the surface radiation budgets and cloud effects. The strongest surface longwave cloud effects were shown in the presence of low level clouds. Clouds with a high optical density induce strong negative solar radiative effects under high solar altitudes. The mean surface net cloud radiative effect is −33 W m−2.

    For the purpose of quickly estimating the mean surface longwave, shortwave and net cloud effects in moderate, subtropical and tropical climate regimes, a new parameterisation was created, considering the total cloud amount and the solar zenith angle.

    The ECHAM5 single column model provides a surface net cloud effect that is more

  10. A theoretical approach to room acoustic simulations based on a radiative transfer model

    DEFF Research Database (Denmark)

    Ruiz-Navarro, Juan-Miguel; Jacobsen, Finn; Escolano, José

    2010-01-01

    A theoretical approach to room acoustic simulations based on a radiative transfer model is developed by adapting the classical radiative transfer theory from optics to acoustics. The proposed acoustic radiative transfer model expands classical geometrical room acoustic modeling algorithms...... by incorporating a propagation medium that absorbs and scatters radiation, handling both diffuse and non-diffuse reflections on boundaries and objects in the room. The main scope of this model is to provide a proper foundation for a wide number of room acoustic simulation models, in order to establish and unify...... their principles. It is shown that this room acoustic modeling technique establishes the basis of two recently proposed algorithms, the acoustic diffusion equation and the room acoustic rendering equation. Both methods are derived in detail using an analytical approximation and a simplified integral equation...

  11. Compact THz radiation source based on photocathode RF gun

    Institute of Scientific and Technical Information of China (English)

    URAKAWA; JunJi

    2011-01-01

    Terahertz (THz) science and technology have already become the research highlight at present. In this paper, we put forward a proposal to generate THz radiation at tens of MW peak power. As a result of the ultrafast laser and the high accelerating field of photocathode RF gun, we can generate and accelerate an electron beam to several MeV, of which the bunch length is less than sub-ps. When the short electron bunches are injected into the wiggler, THz radiation based on Coherent Synchrotron Radiation could be achieved with tens of MW peak power. The whole THz FEL facility can be scaled to the size of a tabletop.

  12. Radiation treatment for the right naris in a pediatric anesthesia patient using an adaptive oral airway technique

    Energy Technology Data Exchange (ETDEWEB)

    Sponseller, Patricia, E-mail: sponselp@uw.edu; Pelly, Nicole; Trister, Andrew; Ford, Eric; Ermoian, Ralph

    2015-10-01

    Radiation therapy for pediatric patients often includes the use of intravenous anesthesia with supplemental oxygen delivered via the nasal cannula. Here, we describe the use of an adaptive anesthesia technique for electron irradiation of the right naris in a preschool-aged patient treated under anesthesia. The need for an intranasal bolus plug precluded the use of standard oxygen supplementation. This novel technique required the multidisciplinary expertise of anesthesiologists, radiation therapists, medical dosimetrists, medical physicists, and radiation oncologists to ensure a safe and reproducible treatment course.

  13. Synchrotron radiation measurement of multiphase fluid saturations in porous media: Experimental technique and error analysis

    Science.gov (United States)

    Tuck, David M.; Bierck, Barnes R.; Jaffé, Peter R.

    1998-06-01

    Multiphase flow in porous media is an important research topic. In situ, nondestructive experimental methods for studying multiphase flow are important for improving our understanding and the theory. Rapid changes in fluid saturation, characteristic of immiscible displacement, are difficult to measure accurately using gamma rays due to practical restrictions on source strength. Our objective is to describe a synchrotron radiation technique for rapid, nondestructive saturation measurements of multiple fluids in porous media, and to present a precision and accuracy analysis of the technique. Synchrotron radiation provides a high intensity, inherently collimated photon beam of tunable energy which can yield accurate measurements of fluid saturation in just one second. Measurements were obtained with precision of ±0.01 or better for tetrachloroethylene (PCE) in a 2.5 cm thick glass-bead porous medium using a counting time of 1 s. The normal distribution was shown to provide acceptable confidence limits for PCE saturation changes. Sources of error include heat load on the monochromator, periodic movement of the source beam, and errors in stepping-motor positioning system. Hypodermic needles pushed into the medium to inject PCE changed porosity in a region approximately ±1 mm of the injection point. Improved mass balance between the known and measured PCE injection volumes was obtained when appropriate corrections were applied to calibration values near the injection point.

  14. Dynamics-based Nondestructive Structural Monitoring Techniques

    Science.gov (United States)

    2012-06-21

    in the practice of non- destructive evaluation ( NDE ) and structural health monitoring (SHM). Guided wave techniques have several advantages over...conventional bulk wave ultrasonic NDE /SHM techniques. Some of these advantages are outlined in Table I. However, in addition to the advantages of...PVDF transducers for SHM applications with controlled guided wave modes and frequencies [7]. Wilcox used EMATs with circular coils in a guided wave

  15. Evaluation of blackbody radiation emitted by arbitrarily shaped bodies using the source model technique.

    Science.gov (United States)

    Sister, Ilya; Leviatan, Yehuda; Schächter, Levi

    2017-06-12

    Planck's famous blackbody radiation law was derived under the assumption that the dimensions of the radiating body are significantly larger than the radiated wavelengths. What is unique about Planck's formula is the fact that it is independent of the exact loss mechanism and the geometry. Therefore, for a long period of time, it was regarded as a fundamental property of all materials. Deviations from its predictions were attributed to imperfections and referred to as the emissivity of the specific body, a quantity which was always assumed to be smaller than unity. Recent studies showed that the emission spectrum is affected by the geometry of the body and in fact, in a limited frequency range, the emitted spectrum may exceed Planck's prediction provided the typical size of the body is of the same order of magnitude as the emitted wavelength. For the investigation of the blackbody radiation from an arbitrarily shaped body, we developed a code which incorporates the fluctuation-dissipation theorem (FDT) and the source model technique (SMT). The former determines the correlation between the quasi-microscopic current densities in the body and the latter is used to solve the electromagnetic problem numerically. In this study we present the essence of combining the two concepts. We verify the validity of our code by comparing its results obtained for the case of a sphere against analytic results and discuss how the accuracy of the solution is assessed in the general case. Finally, we illustrate several configurations in which the emitted spectrum exceeds Planck's prediction as well as cases in which the geometrical resonances of the body are revealed.

  16. DCT-based cyber defense techniques

    Science.gov (United States)

    Amsalem, Yaron; Puzanov, Anton; Bedinerman, Anton; Kutcher, Maxim; Hadar, Ofer

    2015-09-01

    With the increasing popularity of video streaming services and multimedia sharing via social networks, there is a need to protect the multimedia from malicious use. An attacker may use steganography and watermarking techniques to embed malicious content, in order to attack the end user. Most of the attack algorithms are robust to basic image processing techniques such as filtering, compression, noise addition, etc. Hence, in this article two novel, real-time, defense techniques are proposed: Smart threshold and anomaly correction. Both techniques operate at the DCT domain, and are applicable for JPEG images and H.264 I-Frames. The defense performance was evaluated against a highly robust attack, and the perceptual quality degradation was measured by the well-known PSNR and SSIM quality assessment metrics. A set of defense techniques is suggested for improving the defense efficiency. For the most aggressive attack configuration, the combination of all the defense techniques results in 80% protection against cyber-attacks with PSNR of 25.74 db.

  17. Network-based real-time radiation monitoring system in Synchrotron Radiation Research Center.

    Science.gov (United States)

    Sheu, R J; Wang, J P; Chen, C R; Liu, J; Chang, F D; Jiang, S H

    2003-10-01

    The real-time radiation monitoring system (RMS) in the Synchrotron Radiation Research Center (SRRC) has been upgraded significantly during the past years. The new framework of the RMS is built on the popular network technology, including Ethernet hardware connections and Web-based software interfaces. It features virtually no distance limitations, flexible and scalable equipment connections, faster response time, remote diagnosis, easy maintenance, as well as many graphic user interface software tools. This paper briefly describes the radiation environment in SRRC and presents the system configuration, basic functions, and some operational results of this real-time RMS. Besides the control of radiation exposures, it has been demonstrated that a variety of valuable information or correlations could be extracted from the measured radiation levels delivered by the RMS, including the changes of operating conditions, beam loss pattern, radiation skyshine, and so on. The real-time RMS can be conveniently accessed either using the dedicated client program or World Wide Web interface. The address of the Web site is http:// www-rms.srrc.gov.tw.

  18. Nasal base narrowing: the combined alar base excision technique.

    Science.gov (United States)

    Foda, Hossam M T

    2007-01-01

    To evaluate the role of the combined alar base excision technique in narrowing the nasal base and correcting excessive alar flare. The study included 60 cases presenting with a wide nasal base and excessive alar flaring. The surgical procedure combined an external alar wedge resection with an internal vestibular floor excision. All cases were followed up for a mean of 32 (range, 12-144) months. Nasal tip modification and correction of any preexisting caudal septal deformities were always completed before the nasal base narrowing. The mean width of the external alar wedge excised was 7.2 (range, 4-11) mm, whereas the mean width of the sill excision was 3.1 (range, 2-7) mm. Completing the internal excision first resulted in a more conservative external resection, thus avoiding any blunting of the alar-facial crease. No cases of postoperative bleeding, infection, or keloid formation were encountered, and the external alar wedge excision healed with an inconspicuous scar that was well hidden in the depth of the alar-facial crease. Finally, the risk of notching of the alar rim, which can occur at the junction of the external and internal excisions, was significantly reduced by adopting a 2-layered closure of the vestibular floor (P = .01). The combined alar base excision resulted in effective narrowing of the nasal base with elimination of excessive alar flare. Commonly feared complications, such as blunting of the alar-facial crease or notching of the alar rim, were avoided by using simple modifications in the technique of excision and closure.

  19. Comparison of different breast planning techniques and algorithms for radiation therapy treatment.

    Science.gov (United States)

    Borges, C; Cunha, G; Monteiro-Grillo, I; Vaz, P; Teixeira, N

    2014-03-01

    This work aims at investigating the impact of treating breast cancer using different radiation therapy (RT) techniques--forwardly-planned intensity-modulated, f-IMRT, inversely-planned IMRT and dynamic conformal arc (DCART) RT--and their effects on the whole-breast irradiation and in the undesirable irradiation of the surrounding healthy tissues. Two algorithms of iPlan BrainLAB treatment planning system were compared: Pencil Beam Convolution (PBC) and commercial Monte Carlo (iMC). Seven left-sided breast patients submitted to breast-conserving surgery were enrolled in the study. For each patient, four RT techniques--f-IMRT, IMRT using 2-fields and 5-fields (IMRT2 and IMRT5, respectively) and DCART - were applied. The dose distributions in the planned target volume (PTV) and the dose to the organs at risk (OAR) were compared analyzing dose-volume histograms; further statistical analysis was performed using IBM SPSS v20 software. For PBC, all techniques provided adequate coverage of the PTV. However, statistically significant dose differences were observed between the techniques, in the PTV, OAR and also in the pattern of dose distribution spreading into normal tissues. IMRT5 and DCART spread low doses into greater volumes of normal tissue, right breast, right lung and heart than tangential techniques. However, IMRT5 plans improved distributions for the PTV, exhibiting better conformity and homogeneity in target and reduced high dose percentages in ipsilateral OAR. DCART did not present advantages over any of the techniques investigated. Differences were also found comparing the calculation algorithms: PBC estimated higher doses for the PTV, ipsilateral lung and heart than the iMC algorithm predicted.

  20. A Comparative Study of Three Vibration Based Damage Assessment Techniques

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A.

    Three different vibration based damage assessment techniques have been compared. One of the techniques uses the ratios between changes in experimentally and theoretically estimated natural frequencies, respectively, to locate a damage. The second technique relies on updating of an FEM based...

  1. Flood alert system based on bayesian techniques

    Science.gov (United States)

    Gulliver, Z.; Herrero, J.; Viesca, C.; Polo, M. J.

    2012-04-01

    The problem of floods in the Mediterranean regions is closely linked to the occurrence of torrential storms in dry regions, where even the water supply relies on adequate water management. Like other Mediterranean basins in Southern Spain, the Guadalhorce River Basin is a medium sized watershed (3856 km2) where recurrent yearly floods occur , mainly in autumn and spring periods, driven by cold front phenomena. The torrential character of the precipitation in such small basins, with a concentration time of less than 12 hours, produces flash flood events with catastrophic effects over the city of Malaga (600000 inhabitants). From this fact arises the need for specific alert tools which can forecast these kinds of phenomena. Bayesian networks (BN) have been emerging in the last decade as a very useful and reliable computational tool for water resources and for the decision making process. The joint use of Artificial Neural Networks (ANN) and BN have served us to recognize and simulate the two different types of hydrological behaviour in the basin: natural and regulated. This led to the establishment of causal relationships between precipitation, discharge from upstream reservoirs, and water levels at a gauging station. It was seen that a recurrent ANN model working at an hourly scale, considering daily precipitation and the two previous hourly values of reservoir discharge and water level, could provide R2 values of 0.86. BN's results slightly improve this fit, but contribute with uncertainty to the prediction. In our current work to Design a Weather Warning Service based on Bayesian techniques the first steps were carried out through an analysis of the correlations between the water level and rainfall at certain representative points in the basin, along with the upstream reservoir discharge. The lower correlation found between precipitation and water level emphasizes the highly regulated condition of the stream. The autocorrelations of the variables were also

  2. Larynx-sparing techniques using intensity-modulated radiation therapy for oropharyngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bar Ad, Voichita, E-mail: voichita.bar-ad@jeffersonhospital.org [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Lin, Haibo [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Hwang, Wei-Ting [Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA (United States); Deville, Curtiland [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Dutta, Pinaki R. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA (United States); Tochner, Zelig; Both, Stefan [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States)

    2012-01-01

    The purpose of the current study was to explore whether the laryngeal dose can be reduced by using 2 intensity-modulated radiation therapy (IMRT) techniques: whole-neck field IMRT technique (WF-IMRT) vs. junctioned IMRT (J-IMRT). The effect on planning target volumes (PTVs) coverage and laryngeal sparing was evaluated. WF-IMRT technique consisted of a single IMRT plan, including the primary tumor and the superior and inferior neck to the level of the clavicular heads. The larynx was defined as an organ at risk extending superiorly to cover the arytenoid cartilages and inferiorly to include the cricoid cartilage. The J-IMRT technique consisted of an IMRT plan for the primary tumor and the superior neck, matched to conventional antero-posterior opposing lower neck fields at the level of the thyroid notch. A central block was used for the anterior lower neck field at the level of the larynx to restrict the dose to the larynx. Ten oropharyngeal cancer cases were analyzed. Both the primary site and bilateral regional lymphatics were included in the radiotherapy targets. The averaged V95 for the PTV57.6 was 99.2% for the WF-IMRT technique compared with 97.4% (p = 0.02) for J-IMRT. The averaged V95 for the PTV64 was 99.9% for the WF-IMRT technique compared with 98.9% (p = 0.02) for J-IMRT and the averaged V95 for the PT70 was 100.0% for WF-IMRT technique compared with 99.5% (p = 0.04) for J-IMRT. The averaged mean laryngeal dose was 18 Gy with both techniques. The averaged mean doses within the matchline volumes were 69.3 Gy for WF-MRT and 66.2 Gy for J-IMRT (p = 0.03). The WF-IMRT technique appears to offer an optimal coverage of the target volumes and a mean dose to the larynx similar with J-IMRT and should be further evaluated in clinical trials.

  3. Larynx-sparing techniques using intensity-modulated radiation therapy for oropharyngeal cancer.

    Science.gov (United States)

    Bar Ad, Voichita; Lin, Haibo; Hwang, Wei-Ting; Deville, Curtiland; Dutta, Pinaki R; Tochner, Zelig; Both, Stefan

    2012-01-01

    The purpose of the current study was to explore whether the laryngeal dose can be reduced by using 2 intensity-modulated radiation therapy (IMRT) techniques: whole-neck field IMRT technique (WF-IMRT) vs. junctioned IMRT (J-IMRT). The effect on planning target volumes (PTVs) coverage and laryngeal sparing was evaluated. WF-IMRT technique consisted of a single IMRT plan, including the primary tumor and the superior and inferior neck to the level of the clavicular heads. The larynx was defined as an organ at risk extending superiorly to cover the arytenoid cartilages and inferiorly to include the cricoid cartilage. The J-IMRT technique consisted of an IMRT plan for the primary tumor and the superior neck, matched to conventional antero-posterior opposing lower neck fields at the level of the thyroid notch. A central block was used for the anterior lower neck field at the level of the larynx to restrict the dose to the larynx. Ten oropharyngeal cancer cases were analyzed. Both the primary site and bilateral regional lymphatics were included in the radiotherapy targets. The averaged V95 for the PTV57.6 was 99.2% for the WF-IMRT technique compared with 97.4% (p = 0.02) for J-IMRT. The averaged V95 for the PTV64 was 99.9% for the WF-IMRT technique compared with 98.9% (p = 0.02) for J-IMRT and the averaged V95 for the PT70 was 100.0% for WF-IMRT technique compared with 99.5% (p = 0.04) for J-IMRT. The averaged mean laryngeal dose was 18 Gy with both techniques. The averaged mean doses within the matchline volumes were 69.3 Gy for WF-MRT and 66.2 Gy for J-IMRT (p = 0.03). The WF-IMRT technique appears to offer an optimal coverage of the target volumes and a mean dose to the larynx similar with J-IMRT and should be further evaluated in clinical trials.

  4. Skull base tumours part I: Imaging technique, anatomy and anterior skull base tumours

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Alexandra [Instituto Portugues de Oncologia Francisco Gentil, Centro de Lisboa, Servico de Radiologia, Rua Professor Lima Basto, 1093 Lisboa Codex (Portugal)], E-mail: borgesalexandra@clix.pt

    2008-06-15

    Advances in cross-sectional imaging, surgical technique and adjuvant treatment have largely contributed to ameliorate the prognosis, lessen the morbidity and mortality of patients with skull base tumours and to the growing medical investment in the management of these patients. Because clinical assessment of the skull base is limited, cross-sectional imaging became indispensable in the diagnosis, treatment planning and follow-up of patients with suspected skull base pathology and the radiologist is increasingly responsible for the fate of these patients. This review will focus on the advances in imaging technique; contribution to patient's management and on the imaging features of the most common tumours affecting the anterior skull base. Emphasis is given to a systematic approach to skull base pathology based upon an anatomic division taking into account the major tissue constituents in each skull base compartment. The most relevant information that should be conveyed to surgeons and radiation oncologists involved in patient's management will be discussed.

  5. Efficient Compression of Far Field Matrices in Multipole Algorithms based on Spherical Harmonics and Radiating Modes

    Directory of Open Access Journals (Sweden)

    A. Schroeder

    2012-09-01

    Full Text Available This paper proposes a compression of far field matrices in the fast multipole method and its multilevel extension for electromagnetic problems. The compression is based on a spherical harmonic representation of radiation patterns in conjunction with a radiating mode expression of the surface current. The method is applied to study near field effects and the far field of an antenna placed on a ship surface. Furthermore, the electromagnetic scattering of an electrically large plate is investigated. It is demonstrated, that the proposed technique leads to a significant memory saving, making multipole algorithms even more efficient without compromising the accuracy.

  6. Adaptive radiation therapy for bladder cancer: a review of adaptive techniques used in clinical practice.

    Science.gov (United States)

    Kibrom, Awet Z; Knight, Kellie A

    2015-12-01

    Significant changes in the shape, size and position of the bladder during radiotherapy (RT) treatment for bladder cancer have been correlated with high local failure rates; typically due to geographical misses. To account for this, large margins are added around the target volumes in conventional RT; however, this increases the volume of healthy tissue irradiation. The availability of cone beam computed tomography (CBCT) has not only allowed in-room volumetric imaging of the bladder, but also the development of adaptive radiotherapy (ART) for modification of plans to patient-specific changes. The aim of this review is to: (1) identify and explain the different ART techniques being used in clinical practice and (2) compare and contrast these different ART techniques to conventional RT in terms of target coverage and dose to healthy tissue: A literature search was conducted using EMBASE, MEDLINE and Scopus with the key words 'bladder, adaptive, radiotherapy/radiation therapy'. 11 studies were obtained that compared different adaptive RT techniques to conventional RT in terms of target volume coverage and healthy tissue sparing. All studies showed superior target volume coverage and/or healthy tissue sparing in adaptive RT compared to conventional RT. Cross-study comparison between different adaptive techniques could not be made due to the difference in protocols used in different studies. However, one study found daily re-optimisation of plans to be superior to plan of the day technique. The use of adaptive RT for bladder cancer is promising. Further study is required to assess adaptive RT versus conventional RT in terms of local control and long-term toxicity.

  7. Radiation Hardening by Software Techniques on FPGAs: Flight Experiment Evaluation and Results

    Science.gov (United States)

    Schmidt, Andrew G.; Flatley, Thomas

    2017-01-01

    We present our work on implementing Radiation Hardening by Software (RHBSW) techniques on the Xilinx Virtex5 FPGAs PowerPC 440 processors on the SpaceCube 2.0 platform. The techniques have been matured and tested through simulation modeling, fault emulation, laser fault injection and now in a flight experiment, as part of the Space Test Program- Houston 4-ISS SpaceCube Experiment 2.0 (STP-H4-ISE 2.0). This work leverages concepts such as heartbeat monitoring, control flow assertions, and checkpointing, commonly used in the High Performance Computing industry, and adapts them for use in remote sensing embedded systems. These techniques are extremely low overhead (typically software, remotely uploading the new experiment to the ISS SpaceCube 2.0 platform, and conducting the experiment continuously for 16 days before the platform was decommissioned. The experiment was conducted on two PowerPCs embedded within the Virtex5 FPGA devices and the experiment collected 19,400 checkpoints, processed 253,482 status messages, and incurred 0 faults. These results are highly encouraging and future work is looking into longer duration testing as part of the STP-H5 flight experiment.

  8. Ground-based monitoring of solar radiation in Moldova

    Science.gov (United States)

    Aculinin, Alexandr; Smicov, Vladimir

    2010-05-01

    Integrated measurements of solar radiation in Kishinev, Moldova have been started by Atmospheric Research Group (ARG) at the Institute of Applied Physics from 2003. Direct, diffuse and total components of solar and atmospheric long-wave radiation are measured by using of the radiometric complex at the ground-based solar radiation monitoring station. Measurements are fulfilled at the stationary and moving platforms equipped with the set of 9 broadband solar radiation sensors overlapping wavelength range from UV-B to IR. Detailed description of the station can be found at the site http://arg.phys.asm.md. Ground station is placed in an urban environment of Kishinev city (47.00N; 28.56E). Summary of observation data acquired at the station in the course of short-term period from 2004 to 2009 are presented below. Solar radiation measurements were fulfilled by using CM11(280-3000 nm) and CH1 sensors (Kipp&Zonen). In the course of a year maximum and minimum of monthly sums of total radiation was ~706.4 MJm-2 in June and ~82.1MJm-2 in December, respectively. Monthly sums of direct solar radiation (on horizontal plane) show the maximum and minimum values of the order ~456.9 MJm-2 in July and ~25.5MJm-2 in December, respectively. In an average, within a year should be marked the predominance of direct radiation over the scattered radiation, 51% and 49%, respectively. In the course of a year, the percentage contribution of the direct radiation into the total radiation is ~55-65% from May to September. In the remaining months, the percentage contribution decreases and takes the minimum value of ~ 28% in December. In an average, annual sum of total solar radiation is ~4679.9 MJm-2. For the period from April to September accounts for ~76% of the annual amount of total radiation. Annual sum of sunshine duration accounts for ~2149 hours, which is of ~ 48% from the possible sunshine duration. In an average, within a year maximum and minimum of sunshine duration is ~ 304 hours in

  9. Application of new radiation detection techniques at the Paul Scherrer Institut, especially at the spallation neutron source

    CERN Document Server

    Lehmann, E; Williams, T; Pralong, C

    1999-01-01

    The demands on modern irradiation detection systems are diverse, encompassing spatial resolution, dynamic range, sensitivity and reproducibility. Nevertheless, there are two important new methods which can satisfy most of these demands in several applications: camera based systems and imaging plates. Imaging plates have primarily been used as gamma- and beta-sensitive detectors in biology and medicine, but are now available also as neutron sensitive systems. These methods are ideally suited for applications in neutron radiography because of their high sensitivity, linearity and digital output. Image processing, quantification of the image data and automated pattern recognition can easily be performed using modern software tools. The imaging plate system at PSI is shared between groups in reactor physics, radiation protection, biology, proton therapy and nuclear medicine. The collected experience from these different interests establishes the basis for a most effective application of this technique. The utilis...

  10. A CORBA server for the Radiation Hybrid DataBase.

    Science.gov (United States)

    Rodriguez-Tomé, P; Helgesen, C; Lijnzaad, P; Jungfer, K

    1997-01-01

    Modern biology depends on a wide range of software interacting with a large number of data sources, varying both in size, complexity and structure. The range of important databases in molecular biology and genetics makes it crucial to overcome the problems which this multiplicity presents. At EMBL-EBI we have started to use CORBA technology to support interoperability between a variety of databases, as well as to facilitate the integration of tools that access these databases. Within the Radiation Hybrid DataBase project we are confronted daily with the interoperation and linking issues. In this paper we present a CORBA infrastructure implemented to access the Radiation Hybrid DataBase.

  11. Radiation Hardened 10BASE-T Ethernet Physical Layer (PHY)

    Science.gov (United States)

    Lin, Michael R. (Inventor); Petrick, David J. (Inventor); Ballou, Kevin M. (Inventor); Espinosa, Daniel C. (Inventor); James, Edward F. (Inventor); Kliesner, Matthew A. (Inventor)

    2017-01-01

    Embodiments may provide a radiation hardened 10BASE-T Ethernet interface circuit suitable for space flight and in compliance with the IEEE 802.3 standard for Ethernet. The various embodiments may provide a 10BASE-T Ethernet interface circuit, comprising a field programmable gate array (FPGA), a transmitter circuit connected to the FPGA, a receiver circuit connected to the FPGA, and a transformer connected to the transmitter circuit and the receiver circuit. In the various embodiments, the FPGA, transmitter circuit, receiver circuit, and transformer may be radiation hardened.

  12. Preliminary survey on site-adaptation techniques for satellite-derived and reanalysis solar radiation datasets

    Energy Technology Data Exchange (ETDEWEB)

    Polo, J.; Wilbert, S.; Ruiz-Arias, J. A.; Meyer, R.; Gueymard, C.; Súri, M.; Martín, L.; Mieslinger, T.; Blanc, P.; Grant, I.; Boland, J.; Ineichen, P.; Remund, J.; Escobar, R.; Troccoli, A.; Sengupta, M.; Nielsen, K. P.; Renne, D.; Geuder, N.; Cebecauer, T.

    2016-07-01

    At any site, the bankability of a projected solar power plant largely depends on the accuracy and general quality of the solar radiation data generated during the solar resource assessment phase. The term 'site adaptation' has recently started to be used in the framework of solar energy projects to refer to the improvement that can be achieved in satellite-derived solar irradiance and model data when short-term local ground measurements are used to correct systematic errors and bias in the original dataset. This contribution presents a preliminary survey of different possible techniques that can improve long-term satellite-derived and model-derived solar radiation data through the use of short-term on-site ground measurements. The possible approaches that are reported here may be applied in different ways, depending on the origin and characteristics of the uncertainties in the modeled data. This work, which is the first step of a forthcoming in-depth assessment of methodologies for site adaptation, has been done within the framework of the International Energy Agency Solar Heating and Cooling Programme Task 46 'Solar Resource Assessment and Forecasting.'

  13. COMPARISON OF THE PERIPHERAL DOSES FROM DIFFERENT IMRT TECHNIQUES FOR PEDIATRIC HEAD AND NECK RADIATION THERAPY.

    Science.gov (United States)

    Toyota, Masahiko; Saigo, Yasumasa; Higuchi, Kenta; Fujimura, Takuya; Koriyama, Chihaya; Yoshiura, Takashi; Akiba, Suminori

    2017-02-25

    Intensity-modulated radiation therapy (IMRT) can deliver high and homogeneous doses to the target area while limiting doses to organs at risk. We used a pediatric phantom to simulate the treatment of a head and neck tumor in a child. The peripheral doses were examined for three different IMRT techniques [dynamic multileaf collimator (DMLC), segmental multileaf collimator (SMLC) and volumetric modulated arc therapy (VMAT)]. Peripheral doses were evaluated taking thyroid, breast, ovary and testis as the points of interest. Doses were determined using a radio-photoluminescence glass dosemeter, and the COMPASS system was used for three-dimensional dose evaluation. VMAT achieved the lowest peripheral doses because it had the highest monitor unit efficiency. However, doses in the vicinity of the irradiated field, i.e. the thyroid, could be relatively high, depending on the VMAT collimator angle. DMLC and SMLC had a large area of relatively high peripheral doses in the breast region.

  14. Mobile Phone Base Station Radiation Study for Addressing Public Concern

    Directory of Open Access Journals (Sweden)

    Aiman Ismail

    2010-01-01

    Full Text Available Problem statement: The proliferation of mobile phone base stations had increased concerns from the public on the radio frequency radiation hazards that might come from them. The world wide public concern involved health risk due to radio frequency radiation. In Malaysia also public interest has increased, although it is not as intense as probably in other parts of the world, but had also resulted in tearing down of a few base stations. Due to this growing concern, a study was conducted to evaluate the radio frequency radiation levels near several mobile phone base stations in two major cities in Malaysia. Approach: Measurements in terms of electric field strength, power density and specific absorption rate were made to check the exposure level at public locations. Broadband meter were first used to survey the sites near the base stations. From the survey, spots with relatively higher readings will be further investigated using narrow band measurements. The measured values were then compared with the recommended international maximum permissible exposure limit. Results: The study showed that the measured values were found to be less than 1% of the maximum permissible exposure. Conclusion: The amount of radio frequency radiation from the selected base stations in the two major cities are adhering to the international limits although the physical radio base station infrastructures spawning out everywhere in these areas may give the reverse impression.

  15. Development of a model web-based system to support a statewide quality consortium in radiation oncology.

    Science.gov (United States)

    Moran, Jean M; Feng, Mary; Benedetti, Lisa A; Marsh, Robin; Griffith, Kent A; Matuszak, Martha M; Hess, Michael; McMullen, Matthew; Fisher, Jennifer H; Nurushev, Teamour; Grubb, Margaret; Gardner, Stephen; Nielsen, Daniel; Jagsi, Reshma; Hayman, James A; Pierce, Lori J

    A database in which patient data are compiled allows analytic opportunities for continuous improvements in treatment quality and comparative effectiveness research. We describe the development of a novel, web-based system that supports the collection of complex radiation treatment planning information from centers that use diverse techniques, software, and hardware for radiation oncology care in a statewide quality collaborative, the Michigan Radiation Oncology Quality Consortium (MROQC). The MROQC database seeks to enable assessment of physician- and patient-reported outcomes and quality improvement as a function of treatment planning and delivery techniques for breast and lung cancer patients. We created tools to collect anonymized data based on all plans. The MROQC system representing 24 institutions has been successfully deployed in the state of Michigan. Since 2012, dose-volume histogram and Digital Imaging and Communications in Medicine-radiation therapy plan data and information on simulation, planning, and delivery techniques have been collected. Audits indicated >90% accurate data submission and spurred refinements to data collection methodology. This model web-based system captures detailed, high-quality radiation therapy dosimetry data along with patient- and physician-reported outcomes and clinical data for a radiation therapy collaborative quality initiative. The collaborative nature of the project has been integral to its success. Our methodology can be applied to setting up analogous consortiums and databases. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  16. Development of Ultraviolet (UV) Radiation Protective Fabric Using Combined Electrospinning and Electrospraying Technique

    Science.gov (United States)

    Sinha, Mukesh Kumar; Das, B. R.; Kumar, Kamal; Kishore, Brij; Prasad, N. Eswara

    2017-03-01

    The article reports a novel technique for functionization of nanoweb to develop ultraviolet (UV) radiation protective fabric. UV radiation protection effect is produced by combination of electrospinning and electrospraying technique. A nanofibrous web of polyvinylidene difluoride (PVDF) coated on polypropylene nonwoven fabric is produced by latest nanospider technology. Subsequently, web is functionalized by titanium dioxide (TiO2). The developed web is characterized for evaluation of surface morphology and other functional properties; mechanical, chemical, crystalline and thermal. An optimal (judicious) nanofibre spinning condition is achieved and established. The produced web is uniformly coated by defect free functional nanofibres in a continuous form of useable textile structural membrane for ultraviolet (UV) protective clothing. This research initiative succeeds in preparation and optimization of various nanowebs for UV protection. Field Emission Scanning Electron Microscope (FESEM) result reveals that PVDF webs photo-degradative behavior is non-accelerated, as compared to normal polymeric grade fibres. Functionalization with TiO2 has enhanced the photo-stability of webs. The ultraviolet protection factor of functionalized and non-functionalized nanowebs empirically evaluated to be 65 and 24 respectively. The developed coated layer could be exploited for developing various defence, para-military and civilian UV protective light weight clothing (tent, covers and shelter segments, combat suit, snow bound camouflaging nets). This research therefore, is conducted in an attempt to develop a scientific understanding of PVDF fibre coated webs for photo-degradation and applications for defence protective textiles. This technological research in laboratory scale could be translated into bulk productionization.

  17. Development of Ultraviolet (UV) Radiation Protective Fabric Using Combined Electrospinning and Electrospraying Technique

    Science.gov (United States)

    Sinha, Mukesh Kumar; Das, B. R.; Kumar, Kamal; Kishore, Brij; Prasad, N. Eswara

    2017-06-01

    The article reports a novel technique for functionization of nanoweb to develop ultraviolet (UV) radiation protective fabric. UV radiation protection effect is produced by combination of electrospinning and electrospraying technique. A nanofibrous web of polyvinylidene difluoride (PVDF) coated on polypropylene nonwoven fabric is produced by latest nanospider technology. Subsequently, web is functionalized by titanium dioxide (TiO2). The developed web is characterized for evaluation of surface morphology and other functional properties; mechanical, chemical, crystalline and thermal. An optimal (judicious) nanofibre spinning condition is achieved and established. The produced web is uniformly coated by defect free functional nanofibres in a continuous form of useable textile structural membrane for ultraviolet (UV) protective clothing. This research initiative succeeds in preparation and optimization of various nanowebs for UV protection. Field Emission Scanning Electron Microscope (FESEM) result reveals that PVDF webs photo-degradative behavior is non-accelerated, as compared to normal polymeric grade fibres. Functionalization with TiO2 has enhanced the photo-stability of webs. The ultraviolet protection factor of functionalized and non-functionalized nanowebs empirically evaluated to be 65 and 24 respectively. The developed coated layer could be exploited for developing various defence, para-military and civilian UV protective light weight clothing (tent, covers and shelter segments, combat suit, snow bound camouflaging nets). This research therefore, is conducted in an attempt to develop a scientific understanding of PVDF fibre coated webs for photo-degradation and applications for defence protective textiles. This technological research in laboratory scale could be translated into bulk productionization.

  18. Path Based Mapping Technique for Robots

    Directory of Open Access Journals (Sweden)

    Amiraj Dhawan

    2013-05-01

    Full Text Available The purpose of this paper is to explore a new way of autonomous mapping. Current systems using perception techniques like LAZER or SONAR use probabilistic methods and have a drawback of allowing considerable uncertainty in the mapping process. Our approach is to break down the environment, specifically indoor, into reachable areas and objects, separated by boundaries, and identifying their shape, to render various navigable paths around them. This is a novel method to do away with uncertainties, as far as possible, at the cost of temporal efficiency. Also this system demands only minimum and cheap hardware, as it relies on only Infra-Red sensors to do the job.

  19. PIE: A Dynamic Failure-Based Technique

    Science.gov (United States)

    Voas, Jeffrey M.

    1990-01-01

    This paper presents a dynamic technique for statistically estimating three program characteristics that affect a program's computational behavior: (1) the probability that a particular section of a program is executed, (2) the probability that the particular section affects the data state, and (3) the probability that a data state produced by that section has an effect on program output. These three characteristics can be used to predict whether faults are likely to be uncovered by software testing. Index Terms: Software testing, data state, fault, failure, testability. 1 Introduction

  20. A novel technique for extracting clouds base height using ground based imaging

    Directory of Open Access Journals (Sweden)

    E. Hirsch

    2011-01-01

    Full Text Available The height of a cloud in the atmospheric column is a key parameter in its characterization. Several remote sensing techniques (passive and active, either ground-based or on space-borne platforms and in-situ measurements are routinely used in order to estimate top and base heights of clouds. In this article we present a novel method that combines thermal imaging from the ground and sounded wind profile in order to derive the cloud base height. This method is independent of cloud types, making it efficient for both low boundary layer and high clouds. In addition, using thermal imaging ensures extraction of clouds' features during daytime as well as at nighttime. The proposed technique was validated by comparison to active sounding by ceilometers (which is a standard ground based method, to lifted condensation level (LCL calculations, and to MODIS products obtained from space. As all passive remote sensing techniques, the proposed method extracts only the height of the lowest cloud layer, thus upper cloud layers are not detected. Nevertheless, the information derived from this method can be complementary to space-borne cloud top measurements when deep-convective clouds are present. Unlike techniques such as LCL, this method is not limited to boundary layer clouds, and can extract the cloud base height at any level, as long as sufficient thermal contrast exists between the radiative temperatures of the cloud and its surrounding air parcel. Another advantage of the proposed method is its simplicity and modest power needs, making it particularly suitable for field measurements and deployment at remote locations. Our method can be further simplified for use with visible CCD or CMOS camera (although nighttime clouds will not be observed.

  1. Comparison of Vibration-Based Damage Assessment Techniques

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A.

    1995-01-01

    Three different vibration-based damage assessment techniques have been compared. One of the techniques uses the ratios between changes in experimentally and theoretically estimated natural frequencies, respectively, to locate a damage. The second technique relies on updating of a finite element m...

  2. Functional proteomic analysis revealed ground-base ion radiations cannot reflect biological effects of space radiations of rice

    Science.gov (United States)

    Wang, Wei; Sun, Yeqing; Zhao, Qian; Han, Lu

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects. Radiobiological studies during space flights are unrepeatable due to the variable space radiation environment, ground-base ion radiations are usually performed to simulate of the space biological effect. Spaceflights present a low-dose rate (0.1˜~0.3mGy/day) radiation environment inside aerocrafts while ground-base ion radiations present a much higher dose rate (100˜~500mGy/min). Whether ground-base ion radiation can reflect effects of space radiation is worth of evaluation. In this research, we compared the functional proteomic profiles of rice plants between on-ground simulated HZE particle radiation and spaceflight treatments. Three independent ground-base seed ionizing radiation experiments with different cumulative doses (dose range: 2˜~20000mGy) and different liner energy transfer (LET) values (13.3˜~500keV/μμm) and two independent seed spaceflight experiments onboard Chinese 20th satellite and SZ-6 spacecraft were carried out. Alterations in the proteome were analyzed by two-dimensional difference gel electrophoresis (2-D DIGE) with MALDI-TOF/TOF mass spectrometry identifications. 45 and 59 proteins showed significant (pmetabolic process, protein folding and phosphorylation. The results implied that ground-base radiations cannot truly reflect effects of spaceflight radiations, ground-base radiation was a kind of indirect effect to rice causing oxidation and metabolism stresses, but space radiation was a kind of direct effect leading to macromolecule (DNA and protein) damage and signal pathway disorders. This functional proteomic analysis work might provide a new evaluation method for further on-ground simulated HZE radiation experiments.

  3. An acoustic-array based structural health monitoring technique for wind turbine blades

    Science.gov (United States)

    Aizawa, Kai; Poozesh, Peyman; Niezrecki, Christopher; Baqersad, Javad; Inalpolat, Murat; Heilmann, Gunnar

    2015-04-01

    This paper proposes a non-contact measurement technique for health monitoring of wind turbine blades using acoustic beamforming techniques. The technique works by mounting an audio speaker inside a wind turbine blade and observing the sound radiated from the blade to identify damage within the structure. The main hypothesis for the structural damage detection is that the structural damage (cracks, edge splits, holes etc.) on the surface of a composite wind turbine blade results in changes in the sound radiation characteristics of the structure. Preliminary measurements were carried out on two separate test specimens, namely a composite box and a section of a wind turbine blade to validate the methodology. The rectangular shaped composite box and the turbine blade contained holes with different dimensions and line cracks. An acoustic microphone array with 62 microphones was used to measure the sound radiation from both structures when the speaker was located inside the box and also inside the blade segment. A phased array beamforming technique and CLEAN-based subtraction of point spread function from a reference (CLSPR) were employed to locate the different damage types on both the composite box and the wind turbine blade. The same experiment was repeated by using a commercially available 48-channel acoustic ring array to compare the test results. It was shown that both the acoustic beamforming and the CLSPR techniques can be used to identify the damage in the test structures with sufficiently high fidelity.

  4. Patient size and x-ray technique factors in head computed tomography examinations. I. Radiation doses.

    Science.gov (United States)

    Huda, Walter; Lieberman, Kristin A; Chang, Jack; Roskopf, Marsha L

    2004-03-01

    We investigated how patient age, size and composition, together with the choice of x-ray technique factors, affect radiation doses in head computed tomography (CT) examinations. Head size dimensions, cross-sectional areas, and mean Hounsfield unit (HU) values were obtained from head CT images of 127 patients. For radiation dosimetry purposes patients were modeled as uniform cylinders of water. Dose computations were performed for 18 x 7 mm sections, scanned at a constant 340 mAs, for x-ray tube voltages ranging from 80 to 140 kV. Values of mean section dose, energy imparted, and effective dose were computed for patients ranging from the newborn to adults. There was a rapid growth of head size over the first two years, followed by a more modest increase of head size until the age of 18 or so. Newborns have a mean HU value of about 50 that monotonically increases with age over the first two decades of life. Average adult A-P and lateral dimensions were 186+/-8 mm and 147+/-8 mm, respectively, with an average HU value of 209+/-40. An infant head was found to be equivalent to a water cylinder with a radius of approximately 60 mm, whereas an adult head had an equivalent radius 50% greater. Adult males head dimensions are about 5% larger than for females, and their average x-ray attenuation is approximately 20 HU greater. For adult examinations performed at 120 kV, typical values were 32 mGy for the mean section dose, 105 mJ for the total energy imparted, and 0.64 mSv for the effective dose. Increasing the x-ray tube voltage from 80 to 140 kV increases patient doses by about a factor of 5. For the same technique factors, mean section doses in infants are 35% higher than in adults. Energy imparted for adults is 50% higher than for infants, but infant effective doses are four times higher than for adults. CT doses need to take into account patient age, head size, and composition as well as the selected x-ray technique factors.

  5. The base line problem in DLTS technique

    OpenAIRE

    G. Couturier; Thabti, A.; Barrière, A.S.

    1989-01-01

    This paper describes a solution to suppress the base line problem in DLTS spectroscopy using a lock-in amplifier. The method has been used to characterize deep levels in a GaAs Schottky diode. Comparison with the classical method based on the use of a capacitance meter in the differential mode is established. The electric field dependence of the DLTS signal in a weakly doped semiconductor is also reported and proves the efficiency of the method. Finally, the data process is discussed.

  6. Progress Toward an Updated National Solar Radiation Data Base

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, S.; Anderberg, M.; George, R.; Marion, W.; Myers, D.; Renne, D.; Beckman, W.; DeGaetano, A.; Gueymard, C.; Perez, R.; Plantico, M.; Stackhouse, P.; Vignola, F.

    2005-01-01

    Progress is reported on an updated National Solar Radiation Database (NSRDB). Focus on this year's work was on preparing a test-year database for evaluating several solar radiation models that could be used to replace the METSTAT model used in the original 1961-1990 NSRDB. That model is no longer compatible with cloud observations reported by the National Weather Service. We have also included a satellite-based model that will increase the spatial resolution of solar radiation for GIS or mapping applications. Work also included development of improved estimates for aerosols, water vapor, and ozone. High-quality solar measurements were obtained for 33 sites near National Weather Service stations, and model runs were completed for test years 1999 and 2000.

  7. Prototype Biology-Based Radiation Risk Module Project

    Science.gov (United States)

    Terrier, Douglas; Clayton, Ronald G.; Patel, Zarana; Hu, Shaowen; Huff, Janice

    2015-01-01

    Biological effects of space radiation and risk mitigation are strategic knowledge gaps for the Evolvable Mars Campaign. The current epidemiology-based NASA Space Cancer Risk (NSCR) model contains large uncertainties (HAT #6.5a) due to lack of information on the radiobiology of galactic cosmic rays (GCR) and lack of human data. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. Our proposed study will compare DNA damage, histological, and cell kinetic parameters after irradiation in normal 2D human cells versus 3D tissue models, and it will use a multi-scale computational model (CHASTE) to investigate various biological processes that may contribute to carcinogenesis, including radiation-induced cellular signaling pathways. This cross-disciplinary work, with biological validation of an evolvable mathematical computational model, will help reduce uncertainties within NSCR and aid risk mitigation for radiation-induced carcinogenesis.

  8. Monochromator-Based Absolute Calibration of Radiation Thermometers

    Science.gov (United States)

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Hartmann, J.

    2011-08-01

    A monochromator integrating-sphere-based spectral comparator facility has been developed to calibrate standard radiation thermometers in terms of the absolute spectral radiance responsivity, traceable to the PTB cryogenic radiometer. The absolute responsivity calibration has been improved using a 75 W xenon lamp with a reflective mirror and imaging optics to a relative standard uncertainty at the peak wavelength of approximately 0.17 % ( k = 1). Via a relative measurement of the out-of-band responsivity, the spectral responsivity of radiation thermometers can be fully characterized. To verify the calibration accuracy, the absolutely calibrated radiation thermometer is used to measure Au and Cu freezing-point temperatures and then to compare the obtained results with the values obtained by absolute methods, resulting in T - T 90 values of +52 mK and -50 mK for the gold and copper fixed points, respectively.

  9. The signature-based radiation-scanning approach to standoff detection of improvised explosive devices.

    Science.gov (United States)

    Brewer, R L; Dunn, W L; Heider, S; Matthew, C; Yang, X

    2012-07-01

    The signature-based radiation-scanning technique for detection of improvised explosive devices is described. The technique seeks to detect nitrogen-rich chemical explosives present in a target. The technology compares a set of "signatures" obtained from a test target to a collection of "templates", sets of signatures for a target that contain an explosive in a specific configuration. Interrogation of nitrogen-rich fertilizer samples, which serve as surrogates for explosives, is shown experimentally to be able to discriminate samples of 3.8L and larger.

  10. An Authentication Technique Based on Classification

    Institute of Scientific and Technical Information of China (English)

    李钢; 杨杰

    2004-01-01

    We present a novel watermarking approach based on classification for authentication, in which a watermark is embedded into the host image. When the marked image is modified, the extracted watermark is also different to the original watermark, and different kinds of modification lead to different extracted watermarks. In this paper, different kinds of modification are considered as classes, and we used classification algorithm to recognize the modifications with high probability. Simulation results show that the proposed method is potential and effective.

  11. Digital holographic interferometry: a novel optical calorimetry technique for radiation dosimetry.

    Science.gov (United States)

    Cavan, Alicia; Meyer, Juergen

    2014-02-01

    To develop and demonstrate the proof-of-principle of a novel optical calorimetry method to determine radiation absorbed dose in a transparent medium. The calorimetric property of water is measured during irradiation by means of an interferometer, which detects temperature-induced changes in the refractive index that can be mathematically related to absorbed dose. The proposed method uses a technique called digital holographic interferometry (DHI), which comprises an optical laser interferometer setup and consecutive physical reconstruction of the recorded wave fronts by means of the Fresnel transform. This paper describes the conceptual framework and provides the mathematical basis for DHI dosimetry. Dose distributions from a high dose rate Brachytherapy source were measured by a prototype optical setup to demonstrate the feasibility of the approach. The developed DHI dosimeter successfully determined absorbed dose distributions in water in the region adjacent to a high dose rate Brachytherapy source. A temperature change of 0.0381 K across a distance of 6.8 mm near the source was measured, corresponding to a dose of 159.3 Gy. The standard deviation in a typical measurement set was ± 3.45 Gy (corresponding to an uncertainty in the temperature value of ± 8.3 × 10(-4) K). The relative dose fall off was in agreement with treatment planning system modeled data. First results with a prototype optical setup and a Brachytherapy source demonstrate the proof-of-principle of the approach. The prototype achieves high spatial resolution of approximately 3 × 10(-4) m. The general approach is fundamentally independent of the radiation type and energy. The sensitivity range determined indicates that the method is predominantly suitable for high dose rate applications. Further work is required to determine absolute dose in all three dimensions.

  12. Digital holographic interferometry: A novel optical calorimetry technique for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cavan, Alicia, E-mail: alicia.cavan@cdhb.health.nz [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand and Christchurch Hospital, Private Bag 4710, Christchurch 8140 (New Zealand); Meyer, Juergen, E-mail: juergen@uw.edu [Department of Radiation Oncology, University of Washington, 1959 Northeast Pacific Street, Box 356043, Seattle, Washington 98195 (United States)

    2014-02-15

    Purpose: To develop and demonstrate the proof-of-principle of a novel optical calorimetry method to determine radiation absorbed dose in a transparent medium. Methods: The calorimetric property of water is measured during irradiation by means of an interferometer, which detects temperature-induced changes in the refractive index that can be mathematically related to absorbed dose. The proposed method uses a technique called digital holographic interferometry (DHI), which comprises an optical laser interferometer setup and consecutive physical reconstruction of the recorded wave fronts by means of the Fresnel transform. This paper describes the conceptual framework and provides the mathematical basis for DHI dosimetry. Dose distributions from a high dose rate Brachytherapy source were measured by a prototype optical setup to demonstrate the feasibility of the approach. Results: The developed DHI dosimeter successfully determined absorbed dose distributions in water in the region adjacent to a high dose rate Brachytherapy source. A temperature change of 0.0381 K across a distance of 6.8 mm near the source was measured, corresponding to a dose of 159.3 Gy. The standard deviation in a typical measurement set was ±3.45 Gy (corresponding to an uncertainty in the temperature value of ±8.3 × 10{sup −4} K). The relative dose fall off was in agreement with treatment planning system modeled data. Conclusions: First results with a prototype optical setup and a Brachytherapy source demonstrate the proof-of-principle of the approach. The prototype achieves high spatial resolution of approximately 3 × 10{sup −5} m. The general approach is fundamentally independent of the radiation type and energy. The sensitivity range determined indicates that the method is predominantly suitable for high dose rate applications. Further work is required to determine absolute dose in all three dimensions.

  13. Characterization of 3D printing techniques: Toward patient specific quality assurance spine-shaped phantom for stereotactic body radiation therapy.

    Science.gov (United States)

    Kim, Min-Joo; Lee, Seu-Ran; Lee, Min-Young; Sohn, Jason W; Yun, Hyong Geon; Choi, Joon Yong; Jeon, Sang Won; Suh, Tae Suk

    2017-01-01

    Development and comparison of spine-shaped phantoms generated by two different 3D-printing technologies, digital light processing (DLP) and Polyjet has been purposed to utilize in patient-specific quality assurance (QA) of stereotactic body radiation treatment. The developed 3D-printed spine QA phantom consisted of an acrylic body phantom and a 3D-printed spine shaped object. DLP and Polyjet 3D printers using a high-density acrylic polymer were employed to produce spine-shaped phantoms based on CT images. Image fusion was performed to evaluate the reproducibility of our phantom, and the Hounsfield units (HUs) were measured based on each CT image. Two different intensity-modulated radiotherapy plans based on both CT phantom image sets from the two printed spine-shaped phantoms with acrylic body phantoms were designed to deliver 16 Gy dose to the planning target volume (PTV) and were compared for target coverage and normal organ-sparing. Image fusion demonstrated good reproducibility of the developed phantom. The HU values of the DLP- and Polyjet-printed spine vertebrae differed by 54.3 on average. The PTV Dmax dose for the DLP-generated phantom was about 1.488 Gy higher than that for the Polyjet-generated phantom. The organs at risk received a lower dose for the 3D printed spine-shaped phantom image using the DLP technique than for the phantom image using the Polyjet technique. Despite using the same material for printing the spine-shaped phantom, these phantoms generated by different 3D printing techniques, DLP and Polyjet, showed different HU values and these differently appearing HU values according to the printing technique could be an extra consideration for developing the 3D printed spine-shaped phantom depending on the patient's age and the density of the spinal bone. Therefore, the 3D printing technique and materials should be carefully chosen by taking into account the condition of the patient in order to accurately produce 3D printed patient-specific QA

  14. Huffman-based code compression techniques for embedded processors

    KAUST Repository

    Bonny, Mohamed Talal

    2010-09-01

    The size of embedded software is increasing at a rapid pace. It is often challenging and time consuming to fit an amount of required software functionality within a given hardware resource budget. Code compression is a means to alleviate the problem by providing substantial savings in terms of code size. In this article we introduce a novel and efficient hardware-supported compression technique that is based on Huffman Coding. Our technique reduces the size of the generated decoding table, which takes a large portion of the memory. It combines our previous techniques, Instruction Splitting Technique and Instruction Re-encoding Technique into new one called Combined Compression Technique to improve the final compression ratio by taking advantage of both previous techniques. The instruction Splitting Technique is instruction set architecture (ISA)-independent. It splits the instructions into portions of varying size (called patterns) before Huffman coding is applied. This technique improves the final compression ratio by more than 20% compared to other known schemes based on Huffman Coding. The average compression ratios achieved using this technique are 48% and 50% for ARM and MIPS, respectively. The Instruction Re-encoding Technique is ISA-dependent. It investigates the benefits of reencoding unused bits (we call them reencodable bits) in the instruction format for a specific application to improve the compression ratio. Reencoding those bits can reduce the size of decoding tables by up to 40%. Using this technique, we improve the final compression ratios in comparison to the first technique to 46% and 45% for ARM and MIPS, respectively (including all overhead that incurs). The Combined Compression Technique improves the compression ratio to 45% and 42% for ARM and MIPS, respectively. In our compression technique, we have conducted evaluations using a representative set of applications and we have applied each technique to two major embedded processor architectures

  15. Repeat Whole Brain Radiation Therapy with a Simultaneous Infield Boost: A Novel Technique for Reirradiation

    Directory of Open Access Journals (Sweden)

    William A. Hall

    2014-01-01

    Full Text Available The treatment of patients who experience intracranial progression after whole brain radiation therapy (WBRT is a clinical challenge. Novel radiation therapy delivery technologies are being applied with the objective of improving tumor and symptom control in these patients. The purpose of this study is to describe the clinical outcomes of the application of a novel technology to deliver repeat WBRT with volume modulated arc therapy (VMAT and a simultaneous infield boost (WB-SIB to gross disease. A total of 16 patients were initially treated with WBRT between 2000 and 2008 and then experienced intracranial progression, were treated using repeat WB-SIB, and were analyzed. The median dose for the first course of WBRT was 35 Gy (range: 30–50.4 Gy. Median time between the initial course of WBRT and repeat WB-SIB was 11.3 months. The median dose at reirradiation was 20 Gy to the whole brain with a median boost dose of 30 Gy to gross disease. A total of 2 patients demonstrated radiographic disease progression after treatment. The median overall survival (OS time from initial diagnosis of brain metastases was 18.9 months (range: 7.1–66.6 (95% CI: 0.8–36.9. The median OS time after initiation of reirradiation for all patients was 2.7 months (range: 0.46–14.46 (95% CI: 1.3–8.7. Only 3 patients experienced CTCAE grade 3 fatigue. No other patients experienced any ≥ CTCAE grade 3 toxicity. This analysis reports the result of a novel RT delivery technique for the treatment of patients with recurrent brain metastases. Side effects were manageable and comparable to other conventional repeat WBRT series. Repeat WB-SIB using the VMAT RT delivery technology is feasible and appears to have acceptable short-term acute toxicity. These results may provide a foundation for further exploration of the WB-SIB technique for repeat WBRT in future prospective clinical trials.

  16. FDI and Accommodation Using NN Based Techniques

    Science.gov (United States)

    Garcia, Ramon Ferreiro; de Miguel Catoira, Alberto; Sanz, Beatriz Ferreiro

    Massive application of dynamic backpropagation neural networks is used on closed loop control FDI (fault detection and isolation) tasks. The process dynamics is mapped by means of a trained backpropagation NN to be applied on residual generation. Process supervision is then applied to discriminate faults on process sensors, and process plant parameters. A rule based expert system is used to implement the decision making task and the corresponding solution in terms of faults accommodation and/or reconfiguration. Results show an efficient and robust FDI system which could be used as the core of an SCADA or alternatively as a complement supervision tool operating in parallel with the SCADA when applied on a heat exchanger.

  17. Segmentation of Color Images Based on Different Segmentation Techniques

    Directory of Open Access Journals (Sweden)

    Purnashti Bhosale

    2013-03-01

    Full Text Available In this paper, we propose an Color image segmentation algorithm based on different segmentation techniques. We recognize the background objects such as the sky, ground, and trees etc based on the color and texture information using various methods of segmentation. The study of segmentation techniques by using different threshold methods such as global and local techniques and they are compared with one another so as to choose the best technique for threshold segmentation. Further segmentation is done by using clustering method and Graph cut method to improve the results of segmentation.

  18. Earthquake Analysis of Structure by Base Isolation Technique in SAP

    OpenAIRE

    T. Subramani; J. Jothi

    2014-01-01

    This paper presents an overview of the present state of base isolation techniques with special emphasis and a brief on other techniques developed world over for mitigating earthquake forces on the structures. The dynamic analysis procedure for isolated structures is briefly explained. The provisions of FEMA 450 for base isolated structures are highlighted. The effects of base isolation on structures located on soft soils and near active faults are given in brief. Simple case s...

  19. Radiation dose rate map interpolation in nuclear plants using neural networks and virtual reality techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mol, Antonio Carlos A., E-mail: mol@ien.gov.br [Comissao Nacional de Energia Nuclear, Instituto de Engenharia Nuclear Rua Helio de Almeida, 75, Ilha do Fundao, P.O. Box 68550, 21941-906 Rio de Janeiro, RJ (Brazil); Instituto Nacional de Ciencia e Tecnologia de Reatores Nucleares Inovadores/CNPq (Brazil); Pereira, Claudio Marcio N.A., E-mail: cmnap@ien.gov.br [Comissao Nacional de Energia Nuclear, Instituto de Engenharia Nuclear Rua Helio de Almeida, 75, Ilha do Fundao, P.O. Box 68550, 21941-906 Rio de Janeiro, RJ (Brazil); Instituto Nacional de Ciencia e Tecnologia de Reatores Nucleares Inovadores/CNPq (Brazil); Freitas, Victor Goncalves G. [Universidade Federal do Rio de Janeiro, Programa de Engenharia Nuclear, Rio de Janeiro, RJ (Brazil); Jorge, Carlos Alexandre F., E-mail: calexandre@ien.gov.br [Comissao Nacional de Energia Nuclear, Instituto de Engenharia Nuclear Rua Helio de Almeida, 75, Ilha do Fundao, P.O. Box 68550, 21941-906 Rio de Janeiro, RJ (Brazil)

    2011-02-15

    This paper reports the most recent development results of a simulation tool for assessment of radiation dose exposition by nuclear plant's personnel, using artificial intelligence and virtual reality technologies. The main purpose of this tool is to support training of nuclear plants' personnel, to optimize working tasks for minimisation of received dose. A finer grid of measurement points was considered within the nuclear plant's room, for different power operating conditions. Further, an intelligent system was developed, based on neural networks, to interpolate dose rate values among measured points. The intelligent dose prediction system is thus able to improve the simulation of dose received by personnel. This work describes the improvements implemented in this simulation tool.

  20. Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.B. [Oak Ridge Inst. for Science and Education, TN (United States); Aydogan, B. [Univ. of Florida, Gainesville, FL (United States)

    1999-01-01

    In the development of new radiopharmaceuticals, animal studies are typically performed to get a first approximation of the expected radiation dose in humans. This study evaluates the performance of some commonly used data extrapolation techniques to predict residence times in humans using data collected from animals. Residence times were calculated using animal and human data, and distributions of ratios of the animal results to human results were constructed for each extrapolation method. Four methods using animal data to predict human residence times were examined: (1) using no extrapolation, (2) using relative organ mass extrapolation, (3) using physiological time extrapolation, and (4) using a combination of the mass and time methods. The residence time ratios were found to be log normally distributed for the nonextrapolated and extrapolated data sets. The use of relative organ mass extrapolation yielded no statistically significant change in the geometric mean or variance of the residence time ratios as compared to using no extrapolation. Physiologic time extrapolation yielded a statistically significant improvement (p < 0.01, paired t test) in the geometric mean of the residence time ratio from 0.5 to 0.8. Combining mass and time methods did not significantly improve the results of using time extrapolation alone. 63 refs., 4 figs., 3 tabs.

  1. Comparison of techniques for morphologic evaluation of glycerol-preserved human skim subjected to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bringel, Fabiana de A. [Faculty of Humanities, Economic and Health Sciences of Araguaina ITPAC (FAHESA/ITPAC/TO) Araguaina, TO (Brazil); Isaac, Cesar [Faculty of Medicine, University of Sao Paulo (FMUSP/SP) Sao Paulo, SP (Brazil); Herson, Marisa R., E-mail: marisah@vifm.org [Tissue Bank of Victoria, Victoria (Australia); Freitas, Anderson Z. de; Martinho Junior, Antonio C.; Mathor, Monica B., E-mail: azanardi@ipen.br, E-mail: mathor@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Radiation Technology Centre; Oliveira, Sergio F. de [Institute of Biomedical Sciences, University of Sao Paulo (ICB-USP/SP), SP (Brazil)

    2011-07-01

    Extensive skin lesions expose the body to damaging agents, which makes spontaneous regeneration difficult and, in many cases, leads patient to death. In such cases, if there are no donating areas for auto graft, allografts can be used. In this type of graft, tissue is processed in tissue banks, where it can be subjected to radiosterilization. According to in vitro studies, gamma radiation, in doses higher than 25 kGy, causes breakdown of collagen I fibrils in the skin preserved in glycerol at 85% and this change influences fibroblast migration and deposition of new collagen. In order to assess if the alterations observed in vitro, would compromise in vivo use, transplants of human tissue, irradiated or not, were performed in Nude mice. After the surgery the skins of the mice was subjected to macroscopic analysis on the 3{sup rd}, 7{sup th}, 21{sup st} and 90{sup th} days; optical coherence tomography on the 90{sup th} day and histological assay on the 3{sup rd}, 7{sup th}, 21{sup st} days to compare the results of the repair process among the techniques, considering that the OCT allows in vivo and not destructive morphological analysis. According to the results obtained through OCT it was possible to observe a more organized repair process in the animals which received irradiated grafts (25 and 50 kGy) if compared to unirradiated grafts. It was not possible to observe such phenomena through macroscopic or histological evaluation. (author)

  2. Dental CT: examination technique, radiation load and anatomy; Dental-CT: Untersuchungstechnik, Strahlenbelastung und Anatomie

    Energy Technology Data Exchange (ETDEWEB)

    Lenglinger, F.X.; Muhr, T. [AKH Wels (Austria). Inst. fuer Radiologie; Krennmair, G. [Praxis fuer Zahn-, Mund- und Kieferheilkunde und Implantologie, Marchtrenk (Austria)

    1999-12-01

    Traditionally oral surgeons and dentists have evaluated the jaws using intraoral films and panoramic radiographs. The involvement of radiologists has been limited. In the past few years dedicated CT-software-programs developed to evaluate dental implant patients have provided a new look at the jaws. The complex anatomy is described and identified on human skulls and on axial, panoramic, and cross-sectional images. With this anatomic description Dental-CT-scans are used to demonstrate the anatomy of maxilla and the mandible. An overview of the technique of Dental-CT is provided, furthermore the radiation dose of different organs is explained. Suggestions to reduce these doses by simple modifications of the recommended protocols are given. (orig.) [German] Die Einfuehrung im Bereich der Computertomographiesoftware (Dental-CT) ermoeglicht dem Radiologen zusaetzlich zu den ueblichen, von den Zahnaerzten durchgefuehrten Roentgenuntersuchungen eine ueberlagerungs- und verzerrungsfreie Darstellung des Ober- und Unterkiefers. In der Implantologie ist mit dieser Darstellung eine exakte Planung moeglich. Weiterhin haben sich Duennschicht-CT-Untersuchungen auch bei der Abklaerung von Zysten, Tumoren, Frakturen, tiefen Parodontitiden und retinierten Zaehnen bewaehrt. In dieser Zeit wird ein Ueberblick ueber die Anatomie, die Untersuchungstechnik des Dental-CT und die auftretende Strahlenbelastung gegeben. Basierend auf rezente Literaturangaben kann eine Reduktion der absorbierten Dosis bei gleichbleibender Bildqualitaet durch einfache Protokollmodifikationen erzielt werden. (orig.)

  3. Preparation of a newly microbial polymer using ionizing radiation technique and its conductivity

    Energy Technology Data Exchange (ETDEWEB)

    KIm, Hwa Jung; Song, Aram; Kim, Dong Ho; Park, Hae Jun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup (Korea, Republic of)

    2016-11-15

    Extracellular polymeric substance (EPS) is produced by microorganisms for a variety of purpose in response to environmental stresses. The EPS are heterogeneous mixture composed dominantly of polysaccharides and proteins, with nucleic acid and lipid as minor constituents. Application of a bacterial EPS is in mostly bioremediation in environment and it applied to pharmaceutical industries including indwelling medical devices. Furthermore, the EPS studies have mostly been performed in the only level of bacterial culture system. In this study, we have first investigated the structural modification of EPS using ionizing radiation technique. The extracted EPS solution from bacterial culture step was exposed to gamma-irradiation at room temperature. Especially, the EPS was given irradiation at various ranges of 0, 2, 10 and 30 kGy from {sup 60}Co gamma-ray source. The structural property and surface morphology were characterized by using Fourier-transform infrared (FTIR) and field emission-scanning electron microscopy (FE-SEM). Also, the conductivity of EPS was determined by using the Van der PauW method, and the polymeric substances turned out to have semi-conductivity (about 5.38*10{sup -7})

  4. Determination of High-Frequency Current Distribution Using EMTP-Based Transmission Line Models with Resulting Radiated Electromagnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Mork, B; Nelson, R; Kirkendall, B; Stenvig, N

    2009-11-30

    Application of BPL technologies to existing overhead high-voltage power lines would benefit greatly from improved simulation tools capable of predicting performance - such as the electromagnetic fields radiated from such lines. Existing EMTP-based frequency-dependent line models are attractive since their parameters are derived from physical design dimensions which are easily obtained. However, to calculate the radiated electromagnetic fields, detailed current distributions need to be determined. This paper presents a method of using EMTP line models to determine the current distribution on the lines, as well as a technique for using these current distributions to determine the radiated electromagnetic fields.

  5. Gamma radiation effects on siloxane-based additive manufactured structures

    Science.gov (United States)

    Schmalzer, Andrew M.; Cady, Carl M.; Geller, Drew; Ortiz-Acosta, Denisse; Zocco, Adam T.; Stull, Jamie; Labouriau, Andrea

    2017-01-01

    Siloxane-basedadditive manufactured structures prepared by the direct ink write (DIW) technology were exposed to ionizing irradiation in order to gauge radiolysis effects on structure-property relationships. These well-defined 3-D structures were subjected to moderate doses of gamma irradiation in an inert atmosphere and characterized by a suite of experimental methods. Changes in thermal, chemical, microstructure, and mechanical properties were evaluated by DSC, TGA, FT-IR, mass spectroscopy, EPR, solvent swelling, SEM, and uniaxial compressive load techniques. Our results demonstrated that 3-D structures made from aromatic-free siloxane resins exhibited hardening after being exposed to gamma radiation. This effect was accompanied by gas evolution, decreasing in crystallization levels, decreasing in solvent swelling and damage to the microstructure. Furthermore, long-lived radiation-induced radicals were not detected by EPR methods. Our results are consistent with cross-link formation being the dominant degradation mechanism over chain scission reactions. On the other hand, 3-D structures made from high phenyl content siloxane resins showed little radiation damage as evidenced by low off gassing.

  6. Array-based techniques for fingerprinting medicinal herbs

    Directory of Open Access Journals (Sweden)

    Xue Charlie

    2011-05-01

    Full Text Available Abstract Poor quality control of medicinal herbs has led to instances of toxicity, poisoning and even deaths. The fundamental step in quality control of herbal medicine is accurate identification of herbs. Array-based techniques have recently been adapted to authenticate or identify herbal plants. This article reviews the current array-based techniques, eg oligonucleotides microarrays, gene-based probe microarrays, Suppression Subtractive Hybridization (SSH-based arrays, Diversity Array Technology (DArT and Subtracted Diversity Array (SDA. We further compare these techniques according to important parameters such as markers, polymorphism rates, restriction enzymes and sample type. The applicability of the array-based methods for fingerprinting depends on the availability of genomics and genetics of the species to be fingerprinted. For the species with few genome sequence information but high polymorphism rates, SDA techniques are particularly recommended because they require less labour and lower material cost.

  7. Inverter-based circuit design techniques for low supply voltages

    CERN Document Server

    Palani, Rakesh Kumar

    2017-01-01

    This book describes intuitive analog design approaches using digital inverters, providing filter architectures and circuit techniques enabling high performance analog circuit design. The authors provide process, supply voltage and temperature (PVT) variation-tolerant design techniques for inverter based circuits. They also discuss various analog design techniques for lower technology nodes and lower power supply, which can be used for designing high performance systems-on-chip.    .

  8. A framework for automated contour quality assurance in radiation therapy including adaptive techniques

    Science.gov (United States)

    Altman, M. B.; Kavanaugh, J. A.; Wooten, H. O.; Green, O. L.; DeWees, T. A.; Gay, H.; Thorstad, W. L.; Li, H.; Mutic, S.

    2015-07-01

    Contouring of targets and normal tissues is one of the largest sources of variability in radiation therapy treatment plans. Contours thus require a time intensive and error-prone quality assurance (QA) evaluation, limitations which also impair the facilitation of adaptive radiotherapy (ART). Here, an automated system for contour QA is developed using historical data (the ‘knowledge base’). A pilot study was performed with a knowledge base derived from 9 contours each from 29 head-and-neck treatment plans. Size, shape, relative position, and other clinically-relevant metrics and heuristically derived rules are determined. Metrics are extracted from input patient data and compared against rules determined from the knowledge base; a computer-learning component allows metrics to evolve with more input data, including patient specific data for ART. Nine additional plans containing 42 unique contouring errors were analyzed. 40/42 errors were detected as were 9 false positives. The results of this study imply knowledge-based contour QA could potentially enhance the safety and effectiveness of RT treatment plans as well as increase the efficiency of the treatment planning process, reducing labor and the cost of therapy for patients.

  9. The use of continuous improvement techniques: A survey-based ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology ... The use of continuous improvement techniques: A survey-based study of current practices ... Prior research has focused mainly on the effect of continuous improvement practices ...

  10. Application of the planar-scanning technique to the near-field dosimetry of millimeter-wave radiators.

    Science.gov (United States)

    Zhao, Jianxun; Lu, Hongmin; Deng, Jun

    2015-02-01

    The planar-scanning technique was applied to the experimental measurement of the electric field and power flux density (PFD) in the exposure area close to the millimeter-wave (MMW) radiator. In the near-field region, the field and PFD were calculated from the plane-wave spectrum of the field sampled on a scan plane far from the radiator. The measurement resolution was improved by reducing the spatial interval between the field samples to a fraction of half the wavelength and implementing multiple iterations of the fast Fourier transform. With the reference to the results from the numerical calculation, an experimental evaluation of the planar-scanning measurement was made for a 50 GHz radiator. Placing the probe 1 to 3 wavelengths from the aperture of the radiator, the direct measurement gave the near-field data with significant differences from the numerical results. The planar-scanning measurement placed the probe 9 wavelengths away from the aperture and effectively reduced the maximum and averaged differences in the near-field data by 70.6% and 65.5%, respectively. Applied to the dosimetry of an open-ended waveguide and a choke ring antenna for 60 GHz exposure, the technique proved useful to the measurement of the PFD in the near-field exposure area of MMW radiators.

  11. Measuring instruments and challenges in radiation-protection measuring techniques; Messgeraete und Herausforderungen in der Strahlenschutzmesstechnik

    Energy Technology Data Exchange (ETDEWEB)

    Hupe, Oliver [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe ' Photonendosimetrie'

    2013-06-15

    After a description of the different types of radiation detectors the application of these detectors for dosimetry are discussed, whereby personnel dosemeters and stationary dosemeters are considered. (HSI)

  12. Optimization of Radiation Therapy Techniques for Prostate Cancer With Prostate-Rectum Spacers: A Systematic Review

    Energy Technology Data Exchange (ETDEWEB)

    Mok, Gary [Department of Radiation Oncology, Geneva University Hospital, Geneva (Switzerland); Department of Radiation Oncology, Centre Intégré de Cancérologie de Laval, Centre de Santé et de Services Sociaux de Laval, Laval, Québec (Canada); Department of Radiology, Radiation Oncology, and Nuclear Medicine, Centre Hospitalier Universitaire de Montréal, Montréal, Québec (Canada); Benz, Eileen [Department of Radiation Oncology, Geneva University Hospital, Geneva (Switzerland); Vallee, Jean-Paul [Department of Radiology, Geneva University Hospital, Geneva (Switzerland); Miralbell, Raymond [Department of Radiation Oncology, Geneva University Hospital, Geneva (Switzerland); Zilli, Thomas, E-mail: Thomas.Zilli@hcuge.ch [Department of Radiation Oncology, Geneva University Hospital, Geneva (Switzerland)

    2014-10-01

    Dose-escalated radiation therapy for localized prostate cancer improves disease control but is also associated with worse rectal toxicity. A spacer placed between the prostate and rectum can be used to displace the anterior rectal wall outside of the high-dose radiation regions and potentially minimize radiation-induced rectal toxicity. This systematic review focuses on the published data regarding the different types of commercially available prostate-rectum spacers. Dosimetric results and preliminary clinical data using prostate-rectum spacers in patients with localized prostate cancer treated by curative radiation therapy are compared and discussed.

  13. The evaluation of properties for radiation therapy techniques with flattening filter-free beam and usefulness of time and economy to a patient with the radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Jang Hyeon; Won, Hui Su; Hong, Joo Wan; Chang, Nam Jun; Park, Jin Hong [Dept. of Radiation Oncology, Seoul national university Bundang hospital, Sungnam (Korea, Republic of)

    2014-12-15

    The aim of this study was to appraise properties for radiation therapy techniques and effectiveness of time and economy to a patient in the case of applying flattening filter-free (3F) and flattening filter (2F) beam to the radiation therapy. Alderson rando phantom was scanned for computed tomography image. Treatment plans for intensity modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT) and stereotactic body radiation therapy (SBRT) with 3F and 2F beam were designed for prostate cancer. To evaluate the differences between the 3F and 2F beam, total monitor units (MUs), beam on time (BOT) and gantry rotation time (GRT) were used and measured with TrueBeam{sup TM} STx and Surveillance And Measurement (SAM) 940 detector was used for photoneutron emitted by using 3F and 2F. To assess temporal and economical aspect for a patient, total treatment periods and medical fees were estimated. In using 3F beam, total MUs in IMRT plan increased the highest up to 34.0% and in the test of BOT, GRT and photoneutron, the values in SBRT plan decreased the lowest 39.8, 38.6 and 48.1%, respectively. In the temporal and economical aspect, there were no differences between 3F and 2F beam in all of plans and the results showed that 10 days and 169,560 won was lowest in SBRT plan. According as the results, total MUs increased by using 3F beam than 2F beam but BOT, GRT and photoneutron decreased. From above the results, using 3F beam can decrease intra-fraction setup error and risk of radiation-induced secondary malignancy. But, using 3F beam did not make the benefits of temporal and economical aspect for a patient with the radiation therapy.

  14. The detection of bulk explosives using nuclear-based techniques

    Energy Technology Data Exchange (ETDEWEB)

    Morgado, R.E.; Gozani, T.; Seher, C.C.

    1988-01-01

    In 1986 we presented a rationale for the detection of bulk explosives based on nuclear techniques that addressed the requirements of civil aviation security in the airport environment. Since then, efforts have intensified to implement a system based on thermal neutron activation (TNA), with new work developing in fast neutron and energetic photon reactions. In this paper we will describe these techniques and present new results from laboratory and airport testing. Based on preliminary results, we contended in our earlier paper that nuclear-based techniques did provide sufficiently penetrating probes and distinguishable detectable reaction products to achieve the FAA operational goals; new data have supported this contention. The status of nuclear-based techniques for the detection of bulk explosives presently under investigation by the US Federal Aviation Administration (FAA) is reviewed. These include thermal neutron activation (TNA), fast neutron activation (FNA), the associated particle technique, nuclear resonance absorption, and photoneutron activation. The results of comprehensive airport testing of the TNA system performed during 1987-88 are summarized. From a technical point of view, nuclear-based techniques now represent the most comprehensive and feasible approach for meeting the operational criteria of detection, false alarms, and throughput. 9 refs., 5 figs., 2 tabs.

  15. High-dose neutron induced radiation swelling simulated by heavy ion irradiation and its microscopic study with positron annihilation technique

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    70 MeV-carbon-ion irradiation is used to simulate the radiation swelling induced by neutron irradiation of 3.2×1022 n·cm-2 in domestically-made 316 austenitic stainless steels modified by a 20%-cold-working and Ti-adding from room temperature to 802°C. The created swelling is microscopically examined by the positron annihilation lifetime technique. A radiation swelling peak is observed at 580°C and the corresponding void has an average diameter of 0.7nm which is hardly probed by macroscopic methods.

  16. Review of personal monitoring techniques for the measurement of absorbed dose from external beta and low energy photon radiation

    DEFF Research Database (Denmark)

    Christensen, Poul

    1986-01-01

    The techniques available at present for personal monitoring of doses from external beta and low energy photon radiation are reviewed. The performance of currently used dosimetry systems is compared with that recommended internationally, and developments for improving the actual performance...... materials and detector/filter geometry. Improvements in the energy and angular response of dosemeters for the measurements of doses from beta and low energy photon radiation can be achieved essentially through two different approaches: either by using thin detectors or multi-element dosemeters...

  17. Risk of whole body radiation exposure and protective measures in fluoroscopically guided interventional techniques: a prospective evaluation

    Directory of Open Access Journals (Sweden)

    Rivera Jose

    2003-08-01

    Full Text Available Abstract Background Fluoroscopic guidance is frequently utilized in interventional pain management. The major purpose of fluoroscopy is correct needle placement to ensure target specificity and accurate delivery of the injectate. Radiation exposure may be associated with risks to physician, patient and personnel. While there have been many studies evaluating the risk of radiation exposure and techniques to reduce this risk in the upper part of the body, the literature is scant in evaluating the risk of radiation exposure in the lower part of the body. Methods Radiation exposure risk to the physician was evaluated in 1156 patients undergoing interventional procedures under fluoroscopy by 3 physicians. Monitoring of scattered radiation exposure in the upper and lower body, inside and outside the lead apron was carried out. Results The average exposure per procedure was 12.0 ± 9.8 seconds, 9.0 ± 0.37 seconds, and 7.5 ± 1.27 seconds in Groups I, II, and III respectively. Scatter radiation exposure ranged from a low of 3.7 ± 0.29 seconds for caudal/interlaminar epidurals to 61.0 ± 9.0 seconds for discography. Inside the apron, over the thyroid collar on the neck, the scatter radiation exposure was 68 mREM in Group I consisting of 201 patients who had a total of 330 procedures with an average of 0.2060 mREM per procedure and 25 mREM in Group II consisting of 446 patients who had a total of 662 procedures with average of 0.0378 mREM per procedure. The scatter radiation exposure was 0 mREM in Group III consisting of 509 patients who had a total 827 procedures. Increased levels of exposures were observed in Groups I and II compared to Group III, and Group I compared to Group II. Groin exposure showed 0 mREM exposure in Groups I and II and 15 mREM in Group III. Scatter radiation exposure for groin outside the apron in Group I was 1260 mREM and per procedure was 3.8182 mREM. In Group II the scatter radiation exposure was 400 mREM and with 0.6042 m

  18. Temperature-based estimation of global solar radiation using soft computing methodologies

    Science.gov (United States)

    Mohammadi, Kasra; Shamshirband, Shahaboddin; Danesh, Amir Seyed; Abdullah, Mohd Shahidan; Zamani, Mazdak

    2016-07-01

    Precise knowledge of solar radiation is indeed essential in different technological and scientific applications of solar energy. Temperature-based estimation of global solar radiation would be appealing owing to broad availability of measured air temperatures. In this study, the potentials of soft computing techniques are evaluated to estimate daily horizontal global solar radiation (DHGSR) from measured maximum, minimum, and average air temperatures ( T max, T min, and T avg) in an Iranian city. For this purpose, a comparative evaluation between three methodologies of adaptive neuro-fuzzy inference system (ANFIS), radial basis function support vector regression (SVR-rbf), and polynomial basis function support vector regression (SVR-poly) is performed. Five combinations of T max, T min, and T avg are served as inputs to develop ANFIS, SVR-rbf, and SVR-poly models. The attained results show that all ANFIS, SVR-rbf, and SVR-poly models provide favorable accuracy. Based upon all techniques, the higher accuracies are achieved by models (5) using T max- T min and T max as inputs. According to the statistical results, SVR-rbf outperforms SVR-poly and ANFIS. For SVR-rbf (5), the mean absolute bias error, root mean square error, and correlation coefficient are 1.1931 MJ/m2, 2.0716 MJ/m2, and 0.9380, respectively. The survey results approve that SVR-rbf can be used efficiently to estimate DHGSR from air temperatures.

  19. Reduction in radiation dose with reconstruction technique in the brain perfusion CT

    Science.gov (United States)

    Kim, H. J.; Lee, H. K.; Song, H.; Ju, M. S.; Dong, K. R.; Chung, W. K.; Cho, M. S.; Cho, J. H.

    2011-12-01

    The principal objective of this study was to verify the utility of the reconstruction imaging technique in the brain perfusion computed tomography (PCT) scan by assessing reductions in the radiation dose and analyzing the generated images. The setting used for image acquisition had a detector coverage of 40 mm, a helical thickness of 0.625 mm, a helical shuttle mode scan type and a rotation time of 0.5 s as the image parameters used for the brain PCT scan. Additionally, a phantom experiment and an animal experiment were carried out. In the phantom and animal experiments, noise was measured in the scanning with the tube voltage fixed at 80 kVp (kilovolt peak) and the level of the adaptive statistical iterative reconstruction (ASIR) was changed from 0% to 100% at 10% intervals. The standard deviation of the CT coefficient was measured three times to calculate the mean value. In the phantom and animal experiments, the absorbed dose was measured 10 times under the same conditions as the ones for noise measurement before the mean value was calculated. In the animal experiment, pencil-type and CT-dedicated ionization chambers were inserted into the central portion of pig heads for measurement. In the phantom study, as the level of the ASIR changed from 0% to 100% under identical scanning conditions, the noise value and dose were proportionally reduced. In our animal experiment, the noise value was lowest when the ASIR level was 50%, unlike in the phantom study. The dose was reduced as in the phantom study.

  20. Evaluation of clipping based iterative PAPR reduction techniques for FBMC systems.

    Science.gov (United States)

    Kollár, Zsolt; Varga, Lajos; Horváth, Bálint; Bakki, Péter; Bitó, János

    2014-01-01

    This paper investigates filter bankmulticarrier (FBMC), a multicarrier modulation technique exhibiting an extremely low adjacent channel leakage ratio (ACLR) compared to conventional orthogonal frequency division multiplexing (OFDM) technique. The low ACLR of the transmitted FBMC signal makes it especially favorable in cognitive radio applications, where strict requirements are posed on out-of-band radiation. Large dynamic range resulting in high peak-to-average power ratio (PAPR) is characteristic of all sorts of multicarrier signals. The advantageous spectral properties of the high-PAPR FBMC signal are significantly degraded if nonlinearities are present in the transceiver chain. Spectral regrowth may appear, causing harmful interference in the neighboring frequency bands. This paper presents novel clipping based PAPR reduction techniques, evaluated and compared by simulations and measurements, with an emphasis on spectral aspects. The paper gives an overall comparison of PAPR reduction techniques, focusing on the reduction of the dynamic range of FBMC signals without increasing out-of-band radiation. An overview is presented on transmitter oriented techniques employing baseband clipping, which can maintain the system performance with a desired bit error rate (BER).

  1. Effect of different processing techniques on Indonesian Roselle (Hibiscus radiates seed constituents

    Directory of Open Access Journals (Sweden)

    Abdalbasit Adam Mariod

    2013-12-01

    Full Text Available   Background. Roselle seeds are waste that is left behind during processing of roselle for juices or other roselle related products. Disposing of waste is highly undesirable both economically and environmentally. Roselle seeds contain high amount of protein, crude fibers, fats, and carbohydrates.The objective of this study was to determine the effect of different processing techniques  (roasting using oven/microwave, and boiling on In- donesian roselle (Hibiscus radiates seed constituents. Methods.Three treatments were carried out to prepare the samples:The seeds were roasted at 130 and 150°C for 30 min (HOR, microwave roasting for 10, 20 and 30 min HMR10, HMR20, HMR30 of roselle seeds. Hibiscus seeds (3×200 g were put into boiling tap water (100°C (HB in a 500 ml beaker on magnetic stirred hot plate at a ratio of 1:4 seed: water for 40 min until the pieces were  well cooked and tender. Proximate chemical analysis was determined following the standard methods of the Association of Official Analytical Chemists. Hibiscus different samples were analysed in triplicate and the results were reported as means. Total  carbohydrate content was calculated from the difference. The fatty acids of the oil samples were analysed using gas chromatography (Shimadzu, GC-2010A series, Shimadzu, Tokyo, Japan equipped with a flame ionization detector and a BPX70 capillary column of  30 m × 0.32 mm i.d. (SGE, Melbourne, Australia. The tocopherol content of the oil samples was measured by HPLC (Cecil  Instruments Ltd., Cambridge, England. Results.  Proximate composition of untreated, roasted and boiled hibiscus seeds showed that, roasting and boiling temperatures can increase fat and fiber content, microwave and boiling showed higher fat content when compared with oven roasting treatment. Protein content of HU was significantly lower (p HMR > HOR. Protein content of HB, HMR and HOR increased significantly as com- pared with HU. The carbohydrate values of

  2. Progress on an Updated National Solar Radiation Data Base: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, S.; Anderberg, M.; George, R.; Marion, W.; Myers, D.; Renne, D.; Beckman, W.; DeGaetano, A.; Gueymard, C.; Perez, R.; Plantico, M.; Stackhouse, P.; Vignola, F.

    2004-03-01

    In 1992, The National Renewable Energy Laboratory (NREL) released the 1961-1990 National Solar Radiation Data Base (NSRDB), a 30-year set of hourly solar radiation data. In April 2003, NREL convened a meeting of experts to investigate issues concerning a proposed update of the NSRDB. The panel determined that an important difficulty posed by the update was the shift from manual to automated cloud observations at National Weather Service stations in the United States. The solar model used in the original NSRDB relied heavily on the methodology and resolution of the manual cloud observations. The meeting participants recommended that NREL produce a plan for creating an update using currently available meteorological observations and satellite imagery. This paper describes current progress toward a plan for an updated NSRDB.

  3. Simulation of transition radiation based beam imaging from tilted targets

    Science.gov (United States)

    Sukhikh, L. G.; Kube, G.; Potylitsyn, A. P.

    2017-03-01

    Transverse beam profile diagnostics in linear electron accelerators is usually based on direct imaging of a beam spot via visible transition radiation. In this case the fundamental resolution limit is determined by radiation diffraction in the optical system. A method to measure beam sizes beyond the diffraction limit is to perform imaging dominated by a single-particle function (SPF), i.e. when the recorded image is dominated not by the transverse beam profile but by the image function of a point source (single electron). Knowledge of the SPF for an experimental setup allows one to extract the transverse beam size from an SPF dominated image. This paper presents an approach that allows one to calculate two-dimensional SPF dominated beam images, taking into account the target inclination angle and the depth-of-field effect. In conclusion, a simple fit function for beam size determination in the case under consideration is proposed and its applicability is tested under various conditions.

  4. FPGA-based prototype of portable environmental radiation monitor

    Energy Technology Data Exchange (ETDEWEB)

    Benahmed, A.; Elkarch, H. [CNESTEN -Centre National de l' Energie des Sciences et Techniques Nucleaires (Morocco)

    2015-07-01

    This new portable radiological environmental monitor consists of 2 main components, Gamma ionization chamber and a FPGA-based electronic enclosure linked to convivial software for treatment and analyzing. The HPIC ion chamber is the heart of this radiation measurement system and is running in range from 0 to 100 mR/h, so that the sensitivity at the output is 20 mV/μR/h, with a nearly flat energy response from 0,07 to 10 MEV. This paper presents a contribution for developing a new nuclear measurement data acquisition system based on Cyclone III FPGA Starter Kit ALTERA, and a user-friendly software to run real-time control and data processing. It was developed to substitute the older radiation monitor RSS-112 PIC installed in CNESTEN's Laboratory in order to improve some of its functionalities related to acquisition time and data memory capacity. As for the associated acquisition software, it was conceived under the virtual LabView platform from National Instrument, and offers a variety of system setup for radiation environmental monitoring. It gives choice to display both the statistical data and the dose rate. Statistical data shows a summary of current data, current time/date and dose integrator values, and the dose rate displays the current dose rate in large numbers for viewing from a distance as well as the date and time. The prototype version of this new instrument and its data processing software has been successfully tested and validated for viewing and monitoring the environmental radiation of Moroccan nuclear center. (authors)

  5. Detection of ionizing radiations by studying ceramic tiles materials using thermoluminescence technique

    Science.gov (United States)

    Mandavia, H. C.; Murthy, K. V. R.; Purohit, R. U.

    2017-05-01

    Natural background radiation comes from two primary sources: cosmic radiation and terrestrial sources. Our natural environment has both livings and non-livings like - Sun, Moon, Sky, Air, Water, Soil, Rivers, Mountains, Forests, besides plants and animals. The worldwide average background dose for a human being is about 2.4 millisievert (mSv) per year. This exposure is mostly from cosmic radiation and natural radionuclides in the environment. The Earth, and all living things on it, are constantly bombarded by radiation from outer space. This radiation primarily consists of positively charged ions from protons to iron and larger nuclei derived sources outside our solar system. This radiation interacts with atoms in the atmosphere to create secondary radiation, including X-rays, muons, protons, alpha particles, pions, electrons, and neutrons. The present study discusses the utility of ceramic tiles as radiation dosimeters in case of nuclear fallout. Many flooring materials most of them are in natural form are used to manufacture floor tiles for household flooring purpose. Many natural minerals are used as the raw materials required for the manufacturing ceramic ware. The following minerals are used to manufacturing the ceramic tiles i.e. Quartz, Feldspar, Zircon, Talc, Grog, Alumina oxide, etc. Most of the minerals are from Indian mines of Gujarat and Rajasthan states, some of are imported from Russian subcontinent. The present paper reports the thermoluminescence dosimetry Study of Feldspar and Quartz minerals collected from the ceramic tiles manufacturing unit, Morbi. The main basis in the Thermoluminescence Dosimetry (TLD) is that TL output is directly proportional to the radiation dose received by the phosphor and hence provides the means of estimating unknown radiations from environment.

  6. Anti-radiation vaccine: Immunologically-based Prophylaxis of Acute Toxic Radiation Syndromes Associated with Long-term Space Flight

    Science.gov (United States)

    Popov, Dmitri; Maliev, Vecheslav; Jones, Jeffrey; Casey, Rachael C.

    2007-01-01

    functional conditions of impacted cells/organisms. The administration of an experimental anti-radiation vaccine may provide an immunologically based, adjunct method of prevention or prophylaxis against clinical ARS. The administration of experimental anti-radiation serum (ARS) and the use of the blood dialysis methods, such as immune plasma-sorption, may assist in the clearance of radiation-specific toxins and may enhance established strategies for the mitigation of the biological effects leading to ARS, and should be evaluated for use on exploration-class space missions.

  7. SU-E-QI-12: Morphometry Based Measurements of the Structural Response to Whole Brain Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, D; Castillo, R; Castillo, E; Guerrero, T [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Purpose: Although state of the art radiation therapy techniques for treating intracranial malignancies have eliminated acute brain injury, cognitive impairment occurs in 50–90% of patients who survive >6mo post irradiation. Quantitative characterization of therapy response is needed to facilitate therapeutic strategies to minimize radiation induced cognitive impairment [1]. Deformation based morphometry techniques [2, 3] are presented as a quantitative imaging biomarker of therapy response in patients receiving whole brain radiation for treating medulloblastoma. Methods: Post-irradiation magnetic resonance imaging (MRI) data sets were retrospectively analyzed in N=15 patients, >60 MR image datasets. As seen in Fig 1(a), volume changes at multiple time points post-irradiation were quantitatively measured in the cerebrum and ventricles with respect to pre-irradiation MRI. A high resolution image Template, was registered to the pre-irradiation MRI of each patient to create a brain atlas for the cerebrum, cerebellum, and ventricles. Skull stripped images for each patient were registered to the initial pre-treatment scan. Average volume changes in the labeled regions were measured using the determinant of the displacement field Jacobian. Results: Longitudinal measurements, Fig 1(b-c), show a negative correlation p=.06, of the cerebral volume change with the time interval from irradiation. A corresponding positive correlation, p=.01, between ventricular volume change and time interval from irradiation is seen. One sample t-test for correlations were computed using a Spearman method. An average decrease in cerebral volume, p=.08, and increase in ventricular volume, p<.001, was observed. The radiation dose was seen directly proportional to the induced volume changes in the cerebrum, r=−.44, p<.001, Fig 1(d). Conclusion: Results indicate that morphometric monitoring of brain tissue volume changes may potentially be used to quantitatively assess toxicity and response to

  8. The effect of radiation damage on optical and scintillation properties of BGO crystals grown by the LTG Cz technique

    CERN Document Server

    Gusev, V A; Kupriyanov, I N; Kuznecov, G N; Shlegel, V N; Antsygin, V D; Vasiliev, Y V

    2002-01-01

    BGO crystals grown by the low-thermal-gradient Czochralski technique (LTG Cz) exhibit two distinct types of behavior upon radiation damage and recovery. The crystals termed as of L-type remain colorless after gamma-radiation doses as high as 10 Mrad. As the irradiation dose increases the scintillation light output shows a weak monotonous degradation to 15-25%, saturating at around several hundreds krad doses. The crystals termed as of N-type attain yellow coloration after irradiation. The light output drops abruptly for 35-50% as early as after 1 krad and does not change further on. The present work is devoted to the study of radiation damage effects, self-recovery, optically stimulated recovery and thermo-stimulated current in the L- and N-type BGO crystals produced by LTG Cz.

  9. Performance Analyses of the Radio Orbital Angular Momentum Steering Technique Based on Ka-Band Antenna

    Directory of Open Access Journals (Sweden)

    Mingtuan Lin

    2017-01-01

    Full Text Available The misalignment in the orbital angular momentum- (OAM- based system would distort the radiation patterns of twisted beams carrying OAM, consequently making the OAM-based communication infeasible. To tackle the misalignment problem, a radio OAM steering technique based on a uniform circular array (UCA is illustrated. Subsequently, simulations are conducted to explore the influence of the OAM steering on the OAM mode quality and transmission performance. Furthermore, UCAs working at Ka-band with formulated feeding networks are designed and fabricated to analyze the performance of the OAM steering. The influences of OAM steering on mode quality and orthogonality are then evaluated in the experiment. Overall, the analyses of OAM steering technique are beneficial for the development of radio OAM study.

  10. Coronary CT angiography for acute chest pain triage: Techniques for radiation exposure reduction; 128 vs. 64 multidetector CT

    Energy Technology Data Exchange (ETDEWEB)

    Goitein, Orly; Eshet, Yael; Konen, Eli (Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, and the Sackler Faculty of Medicine, Tel Aviv Univ., Tel Aviv (Israel)), email: orly.goitein@sheba.health.gov.il; Matetzky, Shlomi (Heart Inst., Sheba Medical Center, Tel Hashomer, and the Sackler Faculty of Medicine, Tel Aviv Univ., Tel Aviv (Israel)); Goitein, David (Surgery C, Sheba Medical Center, Tel Hashomer, and the Sackler Faculty of Medicine, Tel Aviv Univ., Tel Aviv (Israel)); Hamdan, Ashraf; Di Segni, Elio (Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, and the Sackler Faculty of Medicine, Tel Aviv Univ., Tel Aviv (Israel); Heart Inst., Sheba Medical Center, Tel Hashomer, and the Sackler Faculty of Medicine, Tel Aviv Univ., Tel Aviv (Israel))

    2011-10-15

    Background. Coronary CT angiography (CCTA) is used daily in acute chest pain triage, although exposing patients to significant radiation dosage. CCTA using prospective ECG gating (PG CCTA) enables significant radiation reduction Purpose. To determine whether the routine use of 128 vs. 64 multidetector CT (MDCT) can increase the proportion of patients scanned using PG CCTA technique, lowering radiation exposure, without decreasing image quality. Material and Methods. The study comprised 232 patients, 116 consecutive patients scanned using 128 MDCT (mean age 49 years, 79 men, BMI 28) and 116 consecutive patients (mean age 50 years, 75 men, BMI 28) which were scanned using 64 MDCT. PG CCTA was performed whenever technically permissible by each type of scanner: 64 MDCT = stable heart rate (HR) <60/min and weight <110 kg; 128 MDCT = stable HR < 70/min and weight <140 kg. All coronary segments were evaluated for image quality using a visual scale of 1-5. An estimated radiation dose was recorded. Results. PC CCTA was performed in 84% and 49% of the 128 and 64 MDCT groups, respectively (P < 0.0001). Average image quality score were 4.6 +- 0.3 and 4.7 +- 0.1 for the 128 and 64 MDCT, respectively (P = 0.08). The mean radiation dose exposure was 6.2 +- 4.8 mSv and 10.4 +- 7.5 mSv for the 128 and 64 MDCT, respectively (P = 0.008). Conclusion. The 128 MDCT scanner enables utilization of PG CCTA technique in a greater proportion of patients, thereby decreasing the related radiation significantly, without hampering image quality

  11. Power system stabilizers based on modern control techniques

    Energy Technology Data Exchange (ETDEWEB)

    Malik, O.P.; Chen, G.P.; Zhang, Y.; El-Metwally, K. [Calgary Univ., AB (Canada). Dept. of Electrical and Computer Engineering

    1994-12-31

    Developments in digital technology have made it feasible to develop and implement improved controllers based on sophisticated control techniques. Power system stabilizers based on adaptive control, fuzzy logic and artificial networks are being developed. Each of these control techniques possesses unique features and strengths. In this paper, the relative performance of power systems stabilizers based on adaptive control, fuzzy logic and neural network, both in simulation studies and real time tests on a physical model of a power system, is presented and compared to that of a fixed parameter conventional power system stabilizer. (author) 16 refs., 45 figs., 3 tabs.

  12. An Improved Particle Swarm Optimization Algorithm Based on Ensemble Technique

    Institute of Scientific and Technical Information of China (English)

    SHI Yan; HUANG Cong-ming

    2006-01-01

    An improved particle swarm optimization (PSO) algorithm based on ensemble technique is presented. The algorithm combines some previous best positions (pbest) of the particles to get an ensemble position (Epbest), which is used to replace the global best position (gbest). It is compared with the standard PSO algorithm invented by Kennedy and Eberhart and some improved PSO algorithms based on three different benchmark functions. The simulation results show that the improved PSO based on ensemble technique can get better solutions than the standard PSO and some other improved algorithms under all test cases.

  13. Efficient Plant Supervision Strategy Using NN Based Techniques

    Science.gov (United States)

    Garcia, Ramon Ferreiro; Rolle, Jose Luis Calvo; Castelo, Francisco Javier Perez

    Most of non-linear type one and type two control systems suffers from lack of detectability when model based techniques are applied on FDI (fault detection and isolation) tasks. In general, all types of processes suffer from lack of detectability also due to the ambiguity to discriminate the process, sensors and actuators in order to isolate any given fault. This work deals with a strategy to detect and isolate faults which include massive neural networks based functional approximation procedures associated to recursive rule based techniques applied to a parity space approach.

  14. An Agent Communication Framework Based on XML and SOAP Technique

    Institute of Scientific and Technical Information of China (English)

    李晓瑜

    2009-01-01

    This thesis introducing XML technology and SOAP technology,present an agent communication fi-amework based on XML and SOAP technique,and analyze the principle,architecture,function and benefit of it. At the end, based on KQML communication primitive lan- guages.

  15. Decomposition Techniques and Effective Algorithms in Reliability-Based Optimization

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1995-01-01

    The common problem of an extensive number of limit state function calculations in the various formulations and applications of reliability-based optimization is treated. It is suggested to use a formulation based on decomposition techniques so the nested two-level optimization problem can be solved...

  16. Data Mining and Neural Network Techniques in Case Based System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper first puts forward a case-based system framework basedon data mining techniques. Then the paper examines the possibility of using neural n etworks as a method of retrieval in such a case-based system. In this system we propose data mining algorithms to discover case knowledge and other algorithms.

  17. Simulation-based optimization parametric optimization techniques and reinforcement learning

    CERN Document Server

    Gosavi, Abhijit

    2003-01-01

    Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduces the evolving area of simulation-based optimization. The book's objective is two-fold: (1) It examines the mathematical governing principles of simulation-based optimization, thereby providing the reader with the ability to model relevant real-life problems using these techniques. (2) It outlines the computational technology underlying these methods. Taken together these two aspects demonstrate that the mathematical and computational methods discussed in this book do work. Broadly speaking, the book has two parts: (1) parametric (static) optimization and (2) control (dynamic) optimization. Some of the book's special features are: *An accessible introduction to reinforcement learning and parametric-optimization techniques. *A step-by-step description of several algorithms of simulation-based optimization. *A clear and simple introduction to the methodology of neural networks. *A gentle introduction to converg...

  18. A Hough Transform based Technique for Text Segmentation

    CERN Document Server

    Saha, Satadal; Nasipuri, Mita; Basu, Dipak Kr

    2010-01-01

    Text segmentation is an inherent part of an OCR system irrespective of the domain of application of it. The OCR system contains a segmentation module where the text lines, words and ultimately the characters must be segmented properly for its successful recognition. The present work implements a Hough transform based technique for line and word segmentation from digitized images. The proposed technique is applied not only on the document image dataset but also on dataset for business card reader system and license plate recognition system. For standardization of the performance of the system the technique is also applied on public domain dataset published in the website by CMATER, Jadavpur University. The document images consist of multi-script printed and hand written text lines with variety in script and line spacing in single document image. The technique performs quite satisfactorily when applied on mobile camera captured business card images with low resolution. The usefulness of the technique is verifie...

  19. Diamond based detectors for high temperature, high radiation environments

    Science.gov (United States)

    Metcalfe, A.; Fern, G. R.; Hobson, P. R.; Smith, D. R.; Lefeuvre, G.; Saenger, R.

    2017-01-01

    Single crystal CVD diamond has many desirable properties as a radiation detector; exceptional radiation hardness and physical hardness, chemical inertness, low Z (close to human tissue, good for dosimetry and transmission mode applications), wide bandgap (high temperature operation with low noise and solar blind), an intrinsic pathway to fast neutron detection through the 12C(n,α)9Be reaction. This combination of radiation hardness, temperature tolerance and ability to detect mixed radiation types with a single sensor makes diamond particularly attractive as a detector material for harsh environments such as nuclear power station monitoring (fission and fusion) and oil well logging. Effective exploitation of these properties requires the development of a metallisation scheme to give contacts that remain stable over extended periods at elevated temperatures (up to 250°C in this instance). Due to the cost of the primary detector material, computational modelling is essential to best utilise the available processing methods for optimising sensor response through geometry and conversion media configurations and to fully interpret experimental data. Monte Carlo simulations of our diamond based sensor have been developed, using MCNP6 and FLUKA2011, assessing the sensor performance in terms of spectral response and overall efficiency as a function of the detector and converter geometry. Sensors with varying metallisation schemes for high temperature operation have been fabricated at Brunel University London and by Micron Semiconductor Limited. These sensors have been tested under a varied set of conditions including irradiation with fast neutrons and alpha particles at high temperatures. The presented study indicates that viable metallisation schemes for high temperature contacts have been successfully developed and the modelling results, supported by preliminary experimental data from partners, indicate that the simulations provide a reasonable representation of

  20. The signature-based radiation-scanning approach to standoff detection of improvised explosive devices

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, R.L.; Dunn, W.L. [Department of Mechanical and Nuclear Engineering, Kansas State University, 3002 Rathbone Hall, Manhattan, KS 66506-5205 (United States); Heider, S., E-mail: s79a81@ksu.edu [Department of Mechanical and Nuclear Engineering, Kansas State University, 3002 Rathbone Hall, Manhattan, KS 66506-5205 (United States); Matthew, C.; Yang, X. [Department of Mechanical and Nuclear Engineering, Kansas State University, 3002 Rathbone Hall, Manhattan, KS 66506-5205 (United States)

    2012-07-15

    The signature-based radiation-scanning technique for detection of improvised explosive devices is described. The technique seeks to detect nitrogen-rich chemical explosives present in a target. The technology compares a set of 'signatures' obtained from a test target to a collection of 'templates', sets of signatures for a target that contain an explosive in a specific configuration. Interrogation of nitrogen-rich fertilizer samples, which serve as surrogates for explosives, is shown experimentally to be able to discriminate samples of 3.8 L and larger. - Highlights: Black-Right-Pointing-Pointer Signature-based radiation-scanning techniques applied to detection of explosives. Black-Right-Pointing-Pointer Nitrogen-rich fertilizer samples served as surrogate explosive samples. Black-Right-Pointing-Pointer Signatures of a target compared to collections of templates of surrogate explosives. Black-Right-Pointing-Pointer Figure-of-merit determined for neutron and neutron-induced gamma-ray signatures. Black-Right-Pointing-Pointer Discrimination of surrogate explosive from inert samples of 3.8 L and larger.

  1. Application of mass spectrometry based electronic nose and chemometrics for fingerprinting radiation treatment

    Science.gov (United States)

    Gupta, Sumit; Variyar, Prasad S.; Sharma, Arun

    2015-01-01

    Volatile compounds were isolated from apples and grapes employing solid phase micro extraction (SPME) and subsequently analyzed by GC/MS equipped with a transfer line without stationary phase. Single peak obtained was integrated to obtain total mass spectrum of the volatile fraction of samples. A data matrix having relative abundance of all mass-to-charge ratios was subjected to principal component analysis (PCA) and linear discriminant analysis (LDA) to identify radiation treatment. PCA results suggested that there is sufficient variability between control and irradiated samples to build classification models based on supervised techniques. LDA successfully aided in segregating control from irradiated samples at all doses (0.1, 0.25, 0.5, 1.0, 1.5, 2.0 kGy). SPME-MS with chemometrics was successfully demonstrated as simple screening method for radiation treatment.

  2. Memory Based Machine Intelligence Techniques in VLSI hardware

    OpenAIRE

    James, Alex Pappachen

    2012-01-01

    We briefly introduce the memory based approaches to emulate machine intelligence in VLSI hardware, describing the challenges and advantages. Implementation of artificial intelligence techniques in VLSI hardware is a practical and difficult problem. Deep architectures, hierarchical temporal memories and memory networks are some of the contemporary approaches in this area of research. The techniques attempt to emulate low level intelligence tasks and aim at providing scalable solutions to high ...

  3. Bond strength with custom base indirect bonding techniques.

    Science.gov (United States)

    Klocke, Arndt; Shi, Jianmin; Kahl-Nieke, Bärbel; Bismayer, Ulrich

    2003-04-01

    Different types of adhesives for indirect bonding techniques have been introduced recently. But there is limited information regarding bond strength with these new materials. In this in vitro investigation, stainless steel brackets were bonded to 100 permanent bovine incisors using the Thomas technique, the modified Thomas technique, and light-cured direct bonding for a control group. The following five groups of 20 teeth each were formed: (1) modified Thomas technique with thermally cured base composite (Therma Cure) and chemically cured sealant (Maximum Cure), (2) Thomas technique with thermally cured base composite (Therma Cure) and chemically cured sealant (Custom I Q), (3) Thomas technique with light-cured base composite (Transbond XT) and chemically cured sealant (Sondhi Rapid Set), (4) modified Thomas technique with chemically cured base adhesive (Phase II) and chemically cured sealant (Maximum Cure), and (5) control group directly bonded with light-cured adhesive (Transbond XT). Mean bond strengths in groups 3, 4, and 5 were 14.99 +/- 2.85, 15.41 +/- 3.21, and 13.88 +/- 2.33 MPa, respectively, and these groups were not significantly different from each other. Groups 1 (mean bond strength 7.28 +/- 4.88 MPa) and 2 (mean bond strength 7.07 +/- 4.11 MPa) showed significantly lower bond strengths than groups 3, 4, and 5 and a higher probability of bond failure. Both the original (group 2) and the modified (group 1) Thomas technique were able to achieve bond strengths comparable to the light-cured direct bonded control group.

  4. Memory Based Machine Intelligence Techniques in VLSI hardware

    CERN Document Server

    James, Alex Pappachen

    2012-01-01

    We briefly introduce the memory based approaches to emulate machine intelligence in VLSI hardware, describing the challenges and advantages. Implementation of artificial intelligence techniques in VLSI hardware is a practical and difficult problem. Deep architectures, hierarchical temporal memories and memory networks are some of the contemporary approaches in this area of research. The techniques attempt to emulate low level intelligence tasks and aim at providing scalable solutions to high level intelligence problems such as sparse coding and contextual processing.

  5. Image analysis techniques associated with automatic data base generation.

    Science.gov (United States)

    Bond, A. D.; Ramapriyan, H. K.; Atkinson, R. J.; Hodges, B. C.; Thomas, D. T.

    1973-01-01

    This paper considers some basic problems relating to automatic data base generation from imagery, the primary emphasis being on fast and efficient automatic extraction of relevant pictorial information. Among the techniques discussed are recursive implementations of some particular types of filters which are much faster than FFT implementations, a 'sequential similarity detection' technique of implementing matched filters, and sequential linear classification of multispectral imagery. Several applications of the above techniques are presented including enhancement of underwater, aerial and radiographic imagery, detection and reconstruction of particular types of features in images, automatic picture registration and classification of multiband aerial photographs to generate thematic land use maps.

  6. MPPT Technique Based on Current and Temperature Measurements

    Directory of Open Access Journals (Sweden)

    Eduardo Moreira Vicente

    2015-01-01

    Full Text Available This paper presents a new maximum power point tracking (MPPT method based on the measurement of temperature and short-circuit current, in a simple and efficient approach. These measurements, which can precisely define the maximum power point (MPP, have not been used together in other existing techniques. The temperature is measured with a low cost sensor and the solar irradiance is estimated through the relationship of the measured short-circuit current and its reference. Fast tracking speed and stable steady-state operation are advantages of this technique, which presents higher performance when compared to other well-known techniques.

  7. Review of personal monitoring techniques for the measurement of absorbed dose from external beta and low energy photon radiation

    DEFF Research Database (Denmark)

    Christensen, Poul

    1986-01-01

    The techniques available at present for personal monitoring of doses from external beta and low energy photon radiation are reviewed. The performance of currently used dosimetry systems is compared with that recommended internationally, and developments for improving the actual performance...... are outlined. The subjects dealt with compromise: the quantity to be measured, the required accuracy of measurement, calibration procedures, and dosemeter design including the main parameters influencing the energy and angular response of the dosemeter, such as detector thickness, filter thickness, dosemeter...

  8. Approximate calculational techniques for radiation protection applications (collection of papers presented at the November 1985 American Nuclear Society meeting)

    Energy Technology Data Exchange (ETDEWEB)

    Rice, A.F.; Roussin, R.W. (comps.)

    1986-09-01

    Although radiation protection principles are, on the whole, well understood and a whole series of computer codes exist for their solution, it is felt that there is a need for practical, approximate techniques to be used by the practicing nuclear engineer for a variety of applications. Within the context of approximate techniques, the papers presented cover a broad overview of specific problems, for example, skyshine and penetration analysis, with applications extending from general nuclear reactor design to spent fuel storage and fusion. Separate abstracts have been prepared for individual papers.

  9. Radiative transfer solutions for coupled atmosphere ocean systems using the matrix operator technique

    Science.gov (United States)

    Hollstein, André; Fischer, Jürgen

    2012-05-01

    Accurate radiative transfer models are the key tools for the understanding of radiative transfer processes in the atmosphere and ocean, and for the development of remote sensing algorithms. The widely used scalar approximation of radiative transfer can lead to errors in calculated top of atmosphere radiances. We show results with errors in the order of±8% for atmosphere ocean systems with case one waters. Variations in sea water salinity and temperature can lead to variations in the signal of similar magnitude. Therefore, we enhanced our scalar radiative transfer model MOMO, which is in use at Freie Universität Berlin, to treat these effects as accurately as possible. We describe our one-dimensional vector radiative transfer model for an atmosphere ocean system with a rough interface. We describe the matrix operator scheme and the bio-optical model for case one waters. We discuss some effects of neglecting polarization in radiative transfer calculations and effects of salinity changes for top of atmosphere radiances. Results are shown for the channels of the satellite instruments MERIS and OLCI from 412.5 nm to 900 nm.

  10. Evaluation of Clipping Based Iterative PAPR Reduction Techniques for FBMC Systems

    Directory of Open Access Journals (Sweden)

    Zsolt Kollár

    2014-01-01

    to conventional orthogonal frequency division multiplexing (OFDM technique. The low ACLR of the transmitted FBMC signal makes it especially favorable in cognitive radio applications, where strict requirements are posed on out-of-band radiation. Large dynamic range resulting in high peak-to-average power ratio (PAPR is characteristic of all sorts of multicarrier signals. The advantageous spectral properties of the high-PAPR FBMC signal are significantly degraded if nonlinearities are present in the transceiver chain. Spectral regrowth may appear, causing harmful interference in the neighboring frequency bands. This paper presents novel clipping based PAPR reduction techniques, evaluated and compared by simulations and measurements, with an emphasis on spectral aspects. The paper gives an overall comparison of PAPR reduction techniques, focusing on the reduction of the dynamic range of FBMC signals without increasing out-of-band radiation. An overview is presented on transmitter oriented techniques employing baseband clipping, which can maintain the system performance with a desired bit error rate (BER.

  11. Runtime Monitoring Technique to handle Tautology based SQL Injection Attacks

    Directory of Open Access Journals (Sweden)

    Ramya Dharam

    2015-05-01

    Full Text Available Software systems, like web applications, are often used to provide reliable online services such as banking, shopping, social networking, etc., to users. The increasing use of such systems has led to a high need for assuring confidentiality, integrity, and availability of user data. SQL Injection Attacks (SQLIAs is one of the major security threats to web applications. It allows attackers to get unauthorized access to the back-end database consisting of confidential user information. In this paper we present and evaluate a Runtime Monitoring Technique to detect and prevent tautology based SQLIAs in web applications. Our technique monitors the behavior of the application during its post- deployment to identify all the tautology based SQLIAs. A framework called Runtime Monitoring Framework, that implements our technique, is used in the development of runtime monitors. The framework uses two pre-deployment testing techniques, such as basis-path and data-flow to identify a minimal set of all legal/valid execution paths of the application. Runtime monitors are then developed and integrated to perform runtime monitoring of the application, during its post-deployment for the identified valid/legal execution paths. For evaluation we targeted a subject application with a large number of both legitimate inputs and illegitimate tautology based inputs, and measured the performance of the proposed technique. The results of our study show that runtime monitor developed for the application was successfully able to detect all the tautology based attacks without generating any false positives.

  12. Laser-based direct-write techniques for cell printing.

    Science.gov (United States)

    Schiele, Nathan R; Corr, David T; Huang, Yong; Raof, Nurazhani Abdul; Xie, Yubing; Chrisey, Douglas B

    2010-09-01

    Fabrication of cellular constructs with spatial control of cell location (+/-5 microm) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing.

  13. Laser-based direct-write techniques for cell printing

    Energy Technology Data Exchange (ETDEWEB)

    Schiele, Nathan R; Corr, David T [Biomedical Engineering Department, Rensselaer Polytechnic Institute, Troy, NY (United States); Huang Yong [Department of Mechanical Engineering, Clemson University, Clemson, SC (United States); Raof, Nurazhani Abdul; Xie Yubing [College of Nanoscale Science and Engineering, University at Albany, SUNY, Albany, NY (United States); Chrisey, Douglas B, E-mail: schien@rpi.ed, E-mail: chrisd@rpi.ed [Material Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, NY (United States)

    2010-09-15

    Fabrication of cellular constructs with spatial control of cell location ({+-}5 {mu}m) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing. (topical review)

  14. PCA Based Rapid and Real Time Face Recognition Technique

    Directory of Open Access Journals (Sweden)

    T R Chandrashekar

    2013-12-01

    Full Text Available Economical and efficient that is used in various applications is face Biometric which has been a popular form biometric system. Face recognition system is being a topic of research for last few decades. Several techniques are proposed to improve the performance of face recognition system. Accuracy is tested against intensity, distance from camera, and pose variance. Multiple face recognition is another subtopic which is under research now a day. Speed at which the technique works is a parameter under consideration to evaluate a technique. As an example a support vector machine performs really well for face recognition but the computational efficiency degrades significantly with increase in number of classes. Eigen Face technique produces quality features for face recognition but the accuracy is proved to be comparatively less to many other techniques. With increase in use of core processors in personal computers and application demanding speed in processing and multiple face detection and recognition system (for example an entry detection system in shopping mall or an industry, demand for such systems are cumulative as there is a need for automated systems worldwide. In this paper we propose a novel system of face recognition developed with C# .Net that can detect multiple faces and can recognize the faces parallel by utilizing the system resources and the core processors. The system is built around Haar Cascade based face detection and PCA based face recognition system with C#.Net. Parallel library designed for .Net is used to aide to high speed detection and recognition of the real time faces. Analysis of the performance of the proposed technique with some of the conventional techniques reveals that the proposed technique is not only accurate, but also is fast in comparison to other techniques.

  15. Preliminary study of an angiographic and angio-tomographic technique based on K-edge filters

    Energy Technology Data Exchange (ETDEWEB)

    Golosio, Bruno; Brunetti, Antonio [Dipartimento POLCOMING, Istituto di Matematica e Fisica, Università di Sassari, 07100 Sassari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari (Italy); Oliva, Piernicola; Carpinelli, Massimo [Dipartimento di Chimica e Farmacia, Università di Sassari, 07100 Sassari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari (Italy); Luca Masala, Giovanni [Dipartimento di Chimica e Farmacia, Università di Sassari, 07100 Sassari (Italy); Meloni, Francesco [Unità operativa di Diagnostica per immagini Asl n. 1, Ospedale Civile SS Annunziata, 07100 Sassari (Italy); Battista Meloni, Giovanni [Istituto di Scienze Radiologiche, Università di Sassari, 07100 Sassari (Italy)

    2013-08-14

    Digital Subtraction Angiography is commonly affected by artifacts due to the patient movements during the acquisition of the images without and with the contrast medium. This paper presents a preliminary study on an angiographic and angio-tomographic technique based on the quasi-simultaneous acquisition of two images, obtained using two different filters at the exit of an X-ray tube. One of the two filters (K-edge filter) contains the same chemical element used as a contrast agent (gadolinium in this study). This filter absorbs more radiation with energy just above the so called K-edge energy of gadolinium than the radiation with energy just below it. The other filter (an aluminium filter in this study) is simply used to suppress the low-energy contribution to the spectrum. Using proper calibration curves, the two images are combined to obtain an image of the contrast agent distribution. In the angio-tomographic application of the proposed technique two images, corresponding to the two filter types, are acquired for each viewing angle of the tomographic scan. From the two tomographic reconstructions, it is possible to obtain a three-dimensional map of the contrast agent distribution. The technique was tested on a sample consisting of a rat skull placed inside a container filled with water. Six small cylinders with 4.7 mm internal diameter containing the contrast medium at different concentrations were placed inside the skull. In the plain angiographic application of the technique, five out of six cylinders were visible, with gadolinium concentration down to 0.96%. In the angio-tomographic application, all six cylinders were visible, with gadolinium concentration down to 0.49%. This preliminary study shows that the proposed technique can provide images of the contrast medium at low concentration without most of the artifacts that are present in images produced by conventional techniques. The results encourage further investigation on the feasibility of a clinical

  16. A Knowledge—Based Specification Technique for Protocol Development

    Institute of Scientific and Technical Information of China (English)

    张尧学; 史美林; 等

    1993-01-01

    is paper proposes a knowledge-based specification technique(KST)for protocol development.This technique semi-automatically translates a protocol described in an informal description(natural languages or graphs)into one described in forml specifications(Estells and SDL).The translation processes are suported by knowledge stored in the knowledge base.This paper discusses the concept,the specification control mechanism of KST and the rules and algorithms for production of FSM's which is the basis of Estelle and SDL.

  17. A fast Stokes inversion technique based on quadratic regression

    Science.gov (United States)

    Teng, Fei; Deng, Yuan-Yong

    2016-05-01

    Stokes inversion calculation is a key process in resolving polarization information on radiation from the Sun and obtaining the associated vector magnetic fields. Even in the cases of simple local thermodynamic equilibrium (LTE) and where the Milne-Eddington approximation is valid, the inversion problem may not be easy to solve. The initial values for the iterations are important in handling the case with multiple minima. In this paper, we develop a fast inversion technique without iterations. The time taken for computation is only 1/100 the time that the iterative algorithm takes. In addition, it can provide available initial values even in cases with lower spectral resolutions. This strategy is useful for a filter-type Stokes spectrograph, such as SDO/HMI and the developed two-dimensional real-time spectrograph (2DS).

  18. [Evidence based medicine and high performance irradiation techniques: endometrial cancer].

    Science.gov (United States)

    Jouglar, E; Barillot, I

    2014-10-01

    Radiation oncology is a field in which many technologic improvements have been made over the past decades. External beam radiotherapy has evolved from treatment fields planned on X-rays to 3-dimensional planning with fusion with MRI's and PET images. Recently, intensity-modulated radiotherapy has been tested for many cancer localizations, and its role in the treatment of gynecologic cancers is still under evaluation. Potential benefits are well known: decrease of treatment toxicity, improvement of efficacy through better dose delivery. But the implementation of this technique requires a careful target and organs at risk delineation. The goal of this review is to evaluate the use of intensity-modulated radiotherapy in endometrial cancers with respect of dosimetric and clinical studies to date. In addition, challenges and perspectives of intensity-modulated radiotherapy integration are discussed. Copyright © 2014 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  19. A radiation-hardened SOI-based FPGA

    Institute of Scientific and Technical Information of China (English)

    Han Xiaowei; Gao Jiantou; Wang Jian; Li Ming; Liu Guizhai; Zhang Feng; Guo Xufeng; Stanley L.Chen; Liu Zhongli; Yu Fang; Zhao Kai; Wu Lihua; Zhao Yan; Li Yan; Zhang Qianli; Chen Liang; Zhang Guoquan; Li Jianzhong; Yang Bo

    2011-01-01

    A radiation-hardened SRAM-based field programmable gate array VS 1000 is designed and fabricated with a 0.5 μm partial-depletion silicon-on-insulator logic process at the CETC 58th Institute.The new logic cell (LC),with a multi-mode based on 3-input look-up-table (LUT),increases logic density about 12% compared to a traditional 4-input LUT.The logic block (LB),consisting of 2 LCs,can be used in two functional modes:LUT mode and distributed read access memory mode.The hierarchical routing channel block and switch block can significantly improve the flexibility and routability of the routing resource.The VS1000 uses a CQFP208 package and contains 392 reconfigurable LCs,112 reconfigurable user I/Os and IEEE 1149.1 compatible with boundaryscan logic for testing and programming.The function test results indicate that the hardware and software cooperate successfully and the VS 1000 works correctly.Moreover,the radiation test results indicate that the VS 1000 chip has total dose tolerance of 100 krad(Si),a dose rate survivability of 1.5 × 1011 rad(Si)/s and a neutron fluence immunity of 1 × 1014 n/cm2.

  20. A radiation-hardened SOI-based FPGA

    Science.gov (United States)

    Xiaowei, Han; Lihua, Wu; Yan, Zhao; Yan, Li; Qianli, Zhang; Liang, Chen; Guoquan, Zhang; Jianzhong, Li; Bo, Yang; Jiantou, Gao; Jian, Wang; Ming, Li; Guizhai, Liu; Feng, Zhang; Xufeng, Guo; Chen, Stanley L.; Zhongli, Liu; Fang, Yu; Kai, Zhao

    2011-07-01

    A radiation-hardened SRAM-based field programmable gate array VS1000 is designed and fabricated with a 0.5 μm partial-depletion silicon-on-insulator logic process at the CETC 58th Institute. The new logic cell (LC), with a multi-mode based on 3-input look-up-table (LUT), increases logic density about 12% compared to a traditional 4-input LUT The logic block (LB), consisting of 2 LCs, can be used in two functional modes: LUT mode and distributed read access memory mode. The hierarchical routing channel block and switch block can significantly improve the flexibility and routability of the routing resource. The VS1000 uses a CQFP208 package and contains 392 reconfigurable LCs, 112 reconfigurable user I/Os and IEEE 1149.1 compatible with boundary-scan logic for testing and programming. The function test results indicate that the hardware and software cooperate successfully and the VS1000 works correctly. Moreover, the radiation test results indicate that the VS1000 chip has total dose tolerance of 100 krad(Si), a dose rate survivability of 1.5 × 1011 rad(Si)/s and a neutron fluence immunity of 1 × 1014 n/cm2.

  1. Fault Based Techniques for Testing Boolean Expressions: A Survey

    CERN Document Server

    Badhera, Usha; Taruna, S

    2012-01-01

    Boolean expressions are major focus of specifications and they are very much prone to introduction of faults, this survey presents various fault based testing techniques. It identifies that the techniques differ in their fault detection capabilities and generation of test suite. The various techniques like Cause effect graph, meaningful impact strategy, Branch Operator Strategy (BOR), BOR+MI, MUMCUT, Modified Condition/ Decision Coverage (MCDC) has been considered. This survey describes the basic algorithms and fault categories used by these strategies for evaluating their performance. Finally, it contains short summaries of the papers that use Boolean expressions used to specify the requirements for detecting faults. These techniques have been empirically evaluated by various researchers on a simplified safety related real time control system.

  2. Least-squares based iterative multipath super-resolution technique

    CERN Document Server

    Nam, Wooseok

    2011-01-01

    In this paper, we study the problem of multipath channel estimation for direct sequence spread spectrum signals. To resolve multipath components arriving within a short interval, we propose a new algorithm called the least-squares based iterative multipath super-resolution (LIMS). Compared to conventional super-resolution techniques, such as the multiple signal classification (MUSIC) and the estimation of signal parameters via rotation invariance techniques (ESPRIT), our algorithm has several appealing features. In particular, even in critical situations where the conventional super-resolution techniques are not very powerful due to limited data or the correlation between path coefficients, the LIMS algorithm can produce successful results. In addition, due to its iterative nature, the LIMS algorithm is suitable for recursive multipath tracking, whereas the conventional super-resolution techniques may not be. Through numerical simulations, we show that the LIMS algorithm can resolve the first arrival path amo...

  3. Comparative study of four advanced 3d-conformal radiation therapy treatment planning techniques for head and neck cancer.

    Science.gov (United States)

    Herrassi, Mohamed Yassine; Bentayeb, Farida; Malisan, Maria Rosa

    2013-04-01

    For the head-and-neck cancer bilateral irradiation, intensity-modulated radiation therapy (IMRT) is the most reported technique as it enables both target dose coverage and organ-at-risk (OAR) sparing. However, during the last 20 years, three-dimensional conformal radiotherapy (3DCRT) techniques have been introduced, which are tailored to improve the classic shrinking field technique, as regards both planning target volume (PTV) dose conformality and sparing of OAR's, such as parotid glands and spinal cord. In this study, we tested experimentally in a sample of 13 patients, four of these advanced 3DCRT techniques, all using photon beams only and a unique isocentre, namely Bellinzona, Forward-Planned Multisegments (FPMS), ConPas, and field-in-field (FIF) techniques. Statistical analysis of the main dosimetric parameters of PTV and OAR's DVH's as well as of homogeneity and conformity indexes was carried out in order to compare the performance of each technique. The results show that the PTV dose coverage is adequate for all the techniques, with the FPMS techniques providing the highest value for D95%; on the other hand, the best sparing of parotid glands is achieved using the FIF and ConPas techniques, with a mean dose of 26 Gy to parotid glands for a PTV prescription dose of 54 Gy. After taking into account both PTV coverage and parotid sparing, the best global performance was achieved by the FIF technique with results comparable to that of IMRT plans. This technique can be proposed as a valid alternative when IMRT equipment is not available or patient is not suitable for IMRT treatment.

  4. Theory of edge radiation

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni; Schneidmiller, Evgeni; Yurkov, Mikhail

    2008-01-01

    We formulate a complete theory of Edge Radiation based on a novel method relying on Fourier Optics techniques. Similar types of radiation like Transition Undulator Radiation are addressed in the framework of the same formalism. Special attention is payed in discussing the validity of approximations upon which the theory is built. Our study makes consistent use of both similarity techniques and comparisons with numerical results from simulation. We discuss both near and far zone. Physical understanding of many asymptotes is discussed. Based on the solution of the field equation with a tensor Green's function technique, we also discuss an analytical model to describe the presence of a vacuum chamber. In particular, explicit calculations for a circular vacuum chamber are reported. Finally, we consider the use of Edge Radiation as a tool for electron beam diagnostics. We discuss Coherent Edge Radiation, Extraction of Edge Radiation by a mirror, and other issues becoming important at high electron energy and long ...

  5. Diagnosis of TIG welding based on ultraviolet radiation

    Institute of Scientific and Technical Information of China (English)

    Li Zhiyong; Gu Xiaoyan; Wang Bao

    2009-01-01

    Through collecting the radiation of tungsten inert gas (TIG) welding arc, the radiation distribution in ultraviolet zone is analyzed in order to study the variation rule of ultraviolet radiation versus welding condition. The explanation for the variation is also provided bused on spectral radiation theory of arc light. Furthermore, through analysis of disturbanee factors, the integral intensity signal of radiation in ultraviolet zone is applied for diagnosis of welding process. The spectral signal of ultraviolet radiation can reflect the disturbance factors and welding conditions, which can be used for online diagnosis of welding process.

  6. Ticor-based scintillation detectors for detection of mixed radiation

    CERN Document Server

    Litvinov, L A; Kolner, V B; Ryzhikov, V D; Volkov, V G; Tarasov, V A; Zelenskaya, O V

    2002-01-01

    Detection of mixed radiation of thermal neutrons and gamma-rays have been realized using a new ceramic material based on small-crystalline long-wave scintillator alpha-Al sub 2 O sub 3 :Ti (Ticor) and lithium fluoride. Characteristics are presented for scintillators with Si-PIN-PD type photoreceivers and PMT under sup 2 sup 3 sup 9 Pu alpha-particles, sup 2 sup 0 sup 7 Bi internal conversion electrons,as well as sup 2 sup 4 sup 1 Am and sup 1 sup 3 sup 7 Cs gamma-quanta. Detection efficiency of thermal neutron is estimated for composite materials based on Ticor and lithium fluoride.

  7. Non Radiation Hardened Microprocessors in Spaced Based Remote Sensing Systems

    Science.gov (United States)

    Decoursey, Robert J.; Estes, Robert F.; Melton, Ryan

    2006-01-01

    The CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) mission is a comprehensive suite of active and passive sensors including a 20Hz 230mj Nd:YAG lidar, a visible wavelength Earth-looking camera and an imaging infrared radiometer. CALIPSO flies in formation with the Earth Observing System Post-Meridian (EOS PM) train, provides continuous, near-simultaneous measurements and is a planned 3 year mission. CALIPSO was launched into a 98 degree sun synchronous Earth orbit in April of 2006 to study clouds and aerosols and acquires over 5 gigabytes of data every 24 hours. The ground track of one CALIPSO orbit as well as high and low intensity South Atlantic Anomaly outlines is shown. CALIPSO passes through the SAA several times each day. Spaced based remote sensing systems that include multiple instruments and/or instruments such as lidar generate large volumes of data and require robust real-time hardware and software mechanisms and high throughput processors. Due to onboard storage restrictions and telemetry downlink limitations these systems must pre-process and reduce the data before sending it to the ground. This onboard processing and realtime requirement load may mean that newer more powerful processors are needed even though acceptable radiation-hardened versions have not yet been released. CALIPSO's single board computer payload controller processor is actually a set of four (4) voting non-radiation hardened COTS Power PC 603r's built on a single width VME card by General Dynamics Advanced Information Systems (GDAIS). Significant radiation concerns for CALIPSO and other Low Earth Orbit (LEO) satellites include the South Atlantic Anomaly (SAA), the north and south poles and strong solar events. Over much of South America and extending into the South Atlantic Ocean the Van Allen radiation belts dip to just 200-800km and spacecraft entering this area are subjected to high energy protons and experience higher than normal Single Event Upset

  8. A Novel Nanofabrication Technique of Silicon-Based Nanostructures

    Science.gov (United States)

    Meng, Lingkuan; He, Xiaobin; Gao, Jianfeng; Li, Junjie; Wei, Yayi; Yan, Jiang

    2016-11-01

    A novel nanofabrication technique which can produce highly controlled silicon-based nanostructures in wafer scale has been proposed using a simple amorphous silicon (α-Si) material as an etch mask. SiO2 nanostructures directly fabricated can serve as nanotemplates to transfer into the underlying substrates such as silicon, germanium, transistor gate, or other dielectric materials to form electrically functional nanostructures and devices. In this paper, two typical silicon-based nanostructures such as nanoline and nanofin have been successfully fabricated by this technique, demonstrating excellent etch performance. In addition, silicon nanostructures fabricated above can be further trimmed to less than 10 nm by combing with assisted post-treatment methods. The novel nanofabrication technique will be expected a new emerging technology with low process complexity and good compatibility with existing silicon integrated circuit and is an important step towards the easy fabrication of a wide variety of nanoelectronics, biosensors, and optoelectronic devices.

  9. Membrane-based microextraction techniques in analytical chemistry: A review.

    Science.gov (United States)

    Carasek, Eduardo; Merib, Josias

    2015-06-23

    The use of membrane-based sample preparation techniques in analytical chemistry has gained growing attention from the scientific community since the development of miniaturized sample preparation procedures in the 1990s. The use of membranes makes the microextraction procedures more stable, allowing the determination of analytes in complex and "dirty" samples. This review describes some characteristics of classical membrane-based microextraction techniques (membrane-protected solid-phase microextraction, hollow-fiber liquid-phase microextraction and hollow-fiber renewal liquid membrane) as well as some alternative configurations (thin film and electromembrane extraction) used successfully for the determination of different analytes in a large variety of matrices, some critical points regarding each technique are highlighted.

  10. Radiation dosimetry

    CERN Document Server

    Hine, Gerald J; Hine, Gerald J

    1956-01-01

    Radiation Dosimetry focuses on the advancements, processes, technologies, techniques, and principles involved in radiation dosimetry, including counters and calibration and standardization techniques. The selection first offers information on radiation units and the theory of ionization dosimetry and interaction of radiation with matter. Topics include quantities derivable from roentgens, determination of dose in roentgens, ionization dosimetry of high-energy photons and corpuscular radiations, and heavy charged particles. The text then examines the biological and medical effects of radiation,

  11. Finite element analysis of osteoporosis models based on synchrotron radiation

    Science.gov (United States)

    Xu, W.; Xu, J.; Zhao, J.; Sun, J.

    2016-04-01

    With growing pressure of social aging, China has to face the increasing population of osteoporosis patients as well as the whole world. Recently synchrotron radiation has become an essential tool for biomedical exploration with advantage of high resolution and high stability. In order to study characteristic changes in different stages of primary osteoporosis, this research focused on the different periods of osteoporosis of rats based on synchrotron radiation. Both bone histomorphometry analysis and finite element analysis were then carried on according to the reconstructed three dimensional models. Finally, the changes of bone tissue in different periods were compared quantitatively. Histomorphometry analysis showed that the structure of the trabecular in osteoporosis degraded as the bone volume decreased. For femurs, the bone volume fraction (Bone volume/ Total volume, BV/TV) decreased from 69% to 43%. That led to the increase of the thickness of trabecular separation (from 45.05μ m to 97.09μ m) and the reduction of the number of trabecular (from 7.99 mm-1 to 5.97mm-1). Simulation of various mechanical tests with finite element analysis (FEA) indicated that, with the exacerbation of osteoporosis, the bones' ability of resistance to compression, bending and torsion gradually became weaker. The compression stiffness of femurs decreased from 1770.96 Fμ m-1 to 697.41 Fμ m-1, the bending and torsion stiffness were from 1390.80 Fμ m-1 to 566.11 Fμ m-1 and from 2957.28N.m/o to 691.31 N.m/o respectively, indicated the decrease of bone strength, and it matched the histomorphometry analysis. This study suggested that FEA and synchrotron radiation were excellent methods for analysing bone strength conbined with histomorphometry analysis.

  12. Reevaluation of a Radiation Risk Coefficient Based on a Review of the DDREF of Radiation Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Urabe, I.

    2004-07-01

    On the basis of the consideration of the dose rate effectiveness of radiation exposure a sigmoid curve was fitted to the solid cancer dose response by A-bomb survivors. Since the variation of the ERR of solid cancer mortality could be represented by the sigmoid function, the DDREF of 10 was obtained by using the ERR per Sv around the weighted dose of 0.9 Sv (inflection point of the sigmoid curve) and 0.1 Sv (dose limit per 5 year or emergency) of the curve fitted. Though this might be large than the present value, the DDREF obtained here could be supported by the results of the studies in experimental human cells and animals conducting over wide dose and dose rate range such as acute, protracted and chronic exposure, which gave dose rate effectiveness factors from about 1 to 10 or more. Furthermore, it was quite possible that the higher DDREF would be explained by the acquirement of abilities of reducing the effects by radiation exposures. Based on these discussion, it has become clear that applying the DDREF of 10 yields a nominal value of 1x 10''-2 Sv for the probability of induced fatal caner in a population. And the annual mortality risk of 1x10''-5/y corresponding to the exposure of 1 mSv/y, which was on the order of the external annual background doses, was considered to be reasonable because it was well known that incidences below the risk of 1x10''-5/y were the events that the people did not show much concern about protective actions for mitigating the detriment in the society. (Author) 15 refs.

  13. Influence of ionizing radiation on the mechanical properties of BisGMA/TEGDMA based experimental resin

    Science.gov (United States)

    LMP, Campos; Boaro, LC; LKG, Santos; Parra, DF; Lugão, AB

    2015-10-01

    Dental restorative composites are activated by visible light and the polymerization process, known as direct technique, is initiated by absorbing light in a specific wavelength range (450-500 nm). However this technique presented some disadvantages. If light is not inserted correctly, layers uncured can cause countless damage to restoration, especially with regard to mechanical properties. A clinical alternative used to reduce the shortcomings of direct application is the use of composite resins for indirect application. These composites are adaptations of resins prepared for direct use, with differences mainly in the healing process. Besides the traditional photoactivation, indirect application composites may be submitted to particular curing conditions, such as a slow curing rate, heating, vacuum, and inert-gas pressure leading to an oxygen-free environment. However few studies have been conducted on the process of post-curing by ionizing radiation at low doses. On this sense the purpose of this study was to evaluate possible interactions of ionizing radiation in the post-curing process of the experimental composites based on BisGMA/TEGDMA filled with silica Aerosil OX-50 silanized. Characterization of the experimental composites was performed by thermogravimetry analysis, infrared spectroscopy, elastic modulus and flexural strength. Statistical analysis of results was calculated by one-way ANOVA/Tukey's test. Cross-linking of the polymeric matrix caused by ionizing radiation, influenced the thermal stability of irradiated specimens. FTIR analysis showed that the ionizing radiation induced a post-cure reaction in the specimens. The irradiation dose influenced directly the mechanical properties that showed a strong positive correlation between flexural strength and irradiation and between modulus strength and irradiation.

  14. Image encryption techniques based on the fractional Fourier transform

    Science.gov (United States)

    Hennelly, B. M.; Sheridan, J. T.

    2003-11-01

    The fractional Fourier transform, (FRT), is a generalisation of the Fourier transform which allows domains of mixed spatial frequency and spatial information to be examined. A number of method have recently been proposed in the literature for the encryption of two dimensional information using optical systems based on the FRT. Typically, these methods require random phase screen keys to decrypt the data, which must be stored at the receiver and must be carefully aligned with the received encrypted data. We have proposed a new technique based on a random shifting or Jigsaw transformation. This method does not require the use of phase keys. The image is encrypted by juxtaposition of sections of the image in various FRT domains. The new method has been compared numerically with existing methods and shows comparable or superior robustness to blind decryption. An optical implementation is also proposed and the sensitivity of the various encryption keys to blind decryption is quantified. We also present a second image encryption technique, which is based on a recently proposed method of optical phase retrieval using the optical FRT and one of its discrete counterparts. Numerical simulations of the new algorithm indicates that the sensitivity of the keys is much greater than any of the techniques currently available. In fact the sensitivity appears to be so high that optical implementation, based on existing optical signal processing technology, may be impossible. However, the technique has been shown to be a powerful method of 2-D image data encryption.

  15. Full-duplex MIMO system based on antenna cancellation technique

    DEFF Research Database (Denmark)

    Foroozanfard, Ehsan; Franek, Ondrej; Tatomirescu, Alexandru

    2014-01-01

    The performance of an antenna cancellation technique for a multiple-input– multiple-output (MIMO) full-duplex system that is based on null-steering beamforming and antenna polarization diversity is investigated. A practical implementation of a symmetric antenna topology comprising three dual-pola...

  16. Laser-plasma-based Space Radiation Reproduction in the Laboratory

    Science.gov (United States)

    Hidding, B.; Karger, O.; Königstein, T.; Pretzler, G.; Manahan, G. G.; McKenna, P.; Gray, R.; Wilson, R.; Wiggins, S. M.; Welsh, G. H.; Beaton, A.; Delinikolas, P.; Jaroszynski, D. A.; Rosenzweig, J. B.; Karmakar, A.; Ferlet-Cavrois, V.; Costantino, A.; Muschitiello, M.; Daly, E.

    2017-01-01

    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions. PMID:28176862

  17. Laser-plasma-based Space Radiation Reproduction in the Laboratory.

    Science.gov (United States)

    Hidding, B; Karger, O; Königstein, T; Pretzler, G; Manahan, G G; McKenna, P; Gray, R; Wilson, R; Wiggins, S M; Welsh, G H; Beaton, A; Delinikolas, P; Jaroszynski, D A; Rosenzweig, J B; Karmakar, A; Ferlet-Cavrois, V; Costantino, A; Muschitiello, M; Daly, E

    2017-02-08

    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions.

  18. Advanced data readout technique for Multianode Position Sensitive Photomultiplier Tube applicable in radiation imaging detectors

    Science.gov (United States)

    Popov, V.

    2011-01-01

    Most of the best performing PSPMT tubes from Hamamatsu and Burle are designed with a pad-matrix anode layout. However, for obtaining a high resolution, a small-sized anode photomultiplier tubes are preferable; these tubes may have 64, 256 or 1024 anodes per tube. If the tubes are used in array to get a larger area detector, the number of analog channels may range from hundreds to thousands. Multichannel analog readout requires special electronics ICs, ASICs etc., which are attached to multichannel DAQ system. As a result, the data file and data processing time will be increased. Therefore, this readout could not be performed in a small project. Usually, most of radiation imaging applications allow the use of analog data processing in front-end electronics, significantly reducing the number of the detector's output lines to data acquisition without reducing the image quality. The idea of pad-matrix decoupling circuit with gain correction was invented and intensively tested in JLab. Several versions of PSPMT readout electronics were produced and studied. All developments were done and optimized specifically for radiation imaging projects. They covered high resolution SPECT, high speed PET, fast neutron imaging, and single tube and multi tube array systems. This paper presents and discusses the summary of the observed results in readout electronics evaluation with different PSPMTs and radiation imaging systems, as well as the advantages and limitations of the developed approach to radiation imaging detectors readout.

  19. Radiation dose reduction in computed tomography-guided lung interventions using an iterative reconstruction technique

    Energy Technology Data Exchange (ETDEWEB)

    Chang, D.H.; Hiss, S.; Borggrefe, J.; Bunck, A.C.; Maintz, D.; Hackenbroch, M. [Cologne University Hospital (Germany). Dept. of Radiology; Mueller, D. [Clinical Science Philips Healthcare GmbH, Munich (Germany). Clinical Science; Hellmich, M. [Cologne University Hospital (Germany). Inst. of Medical Statistics, Informatics and Epidemiology

    2015-10-15

    To compare the radiation doses and image qualities of computed tomography (CT)-guided interventions using a standard-dose CT (SDCT) protocol with filtered back projection and a low-dose CT (LDCT) protocol with both filtered back projection and iterative reconstruction. Image quality and radiation doses (dose-length product and CT dose index) were retrospectively reviewed for 130 patients who underwent CT-guided lung interventions. SDCT at 120 kVp and automatic mA modulation and LDCT at 100 kVp and a fixed exposure were each performed for 65 patients. Image quality was objectively evaluated as the contrast-to-noise ratio and subjectively by two radiologists for noise impression, sharpness, artifacts and diagnostic acceptability on a four-point scale. The groups did not significantly differ in terms of diagnostic acceptability and complication rate. LDCT yielded a median 68.6 % reduction in the radiation dose relative to SDCT. In the LDCT group, iterative reconstruction was superior to filtered back projection in terms of noise reduction and subjective image quality. The groups did not differ in terms of beam hardening artifacts. LDCT was feasible for all procedures and yielded a more than two-thirds reduction in radiation exposure while maintaining overall diagnostic acceptability, safety and precision. The iterative reconstruction algorithm is preferable according to the objective and subjective image quality analyses.

  20. Comparison of x-radiation doses between conventional and rare earth panoramic radiographic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Skoczylas, L.J.; Preece, J.W.; Langlais, R.P.; McDavid, W.D.; Waggener, R.G. (Univ. of Michigan School of Dentistry, Ann Arbor (USA))

    1989-12-01

    The radiation dose to radiobiologically critical organs at various anatomic sites in a phantom was compared with the use of rare earth screen/film combinations and calcium tungstate screen/film combinations. Rare earth screens and films produced a reduction in dose up to 40% to 50% depending on the anatomic site.

  1. Video multiple watermarking technique based on image interlacing using DWT.

    Science.gov (United States)

    Ibrahim, Mohamed M; Abdel Kader, Neamat S; Zorkany, M

    2014-01-01

    Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT) is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video) are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth.

  2. Face Veins Based MCMT Technique for Personal Identification

    Directory of Open Access Journals (Sweden)

    Kamta Nath Mishra

    2015-08-01

    Full Text Available Face veins based personal identification is a challenging task in the field of identity verification of a person. It is because many other techniques are not identifying the uniqueness of a person in the universe. This research paper finds the uniqueness of a person on the basis of face veins based technique. In this paper five different persons face veins images have been used with different rotation angles (left/right 900 to 2700 and 3150 . For each person, eight different images at different rotations were used and for each of these images the same minimum cost minutiae tree (MCMT is obtained. Here, Prim‟s or Kruskal‟s algorithm is used for finding the MCMT from a minutiae graph. The MCMT is traversed in pre-order to generate the unique string of vertices and edge lengths. We deviated the edge lengths of each MCMT by five pixels in positive and negative directions for robustness testing. It is observed in our experiments that the traversed string which consists of vertices and edge lengths of MCMT is unique for each person and this unique sequence is correctly identifying a person with an accuracy of above 95%. Further, we have compared the performance of our proposed technique with other standard techniques and it is observed that the proposed technique is giving the promising result.

  3. The Real-Time Image Processing Technique Based on DSP

    Institute of Scientific and Technical Information of China (English)

    QI Chang; CHEN Yue-hua; HUANG Tian-shu

    2005-01-01

    This paper proposes a novel real-time image processing technique based on digital singnal processor (DSP). At the aspect of wavelet transform(WT) algorithm, the technique uses algorithm of second generation wavelet transform-lifting scheme WT that has low calculation complexity property for the 2-D image data processing. Since the processing effect of lifting scheme WT for 1-D data is better than the effect of it for 2-D data obviously, this paper proposes a reformative processing method: Transform 2-D image data to 1-D data sequence by linearization method, then process the 1-D data sequence by algorithm of lifting scheme WT. The method changes the image convolution mode,which based on the cross filtering of rows and columns. At the aspect of hardware realization, the technique optimizes the program structure of DSP to exert the operation power with the in-chip memorizer of DSP. The experiment results show that the real-time image processing technique proposed in this paper can meet the real-time requirement of video-image transmitting in the video surveillance system of electric power. So the technique is a feasible and efficient DSP solution.

  4. Radiofrequency radiation injures trees around mobile phone base stations.

    Science.gov (United States)

    Waldmann-Selsam, Cornelia; Balmori-de la Puente, Alfonso; Breunig, Helmut; Balmori, Alfonso

    2016-12-01

    In the last two decades, the deployment of phone masts around the world has taken place and, for many years, there has been a discussion in the scientific community about the possible environmental impact from mobile phone base stations. Trees have several advantages over animals as experimental subjects and the aim of this study was to verify whether there is a connection between unusual (generally unilateral) tree damage and radiofrequency exposure. To achieve this, a detailed long-term (2006-2015) field monitoring study was performed in the cities of Bamberg and Hallstadt (Germany). During monitoring, observations and photographic recordings of unusual or unexplainable tree damage were taken, alongside the measurement of electromagnetic radiation. In 2015 measurements of RF-EMF (Radiofrequency Electromagnetic Fields) were carried out. A polygon spanning both cities was chosen as the study site, where 144 measurements of the radiofrequency of electromagnetic fields were taken at a height of 1.5m in streets and parks at different locations. By interpolation of the 144 measurement points, we were able to compile an electromagnetic map of the power flux density in Bamberg and Hallstadt. We selected 60 damaged trees, in addition to 30 randomly selected trees and 30 trees in low radiation areas (n=120) in this polygon. The measurements of all trees revealed significant differences between the damaged side facing a phone mast and the opposite side, as well as differences between the exposed side of damaged trees and all other groups of trees in both sides. Thus, we found that side differences in measured values of power flux density corresponded to side differences in damage. The 30 selected trees in low radiation areas (no visual contact to any phone mast and power flux density under 50μW/m(2)) showed no damage. Statistical analysis demonstrated that electromagnetic radiation from mobile phone masts is harmful for trees. These results are consistent with the fact

  5. Simulation of transition radiation based beam imaging from tilted targets

    Directory of Open Access Journals (Sweden)

    L. G. Sukhikh

    2017-03-01

    Full Text Available Transverse beam profile diagnostics in linear electron accelerators is usually based on direct imaging of a beam spot via visible transition radiation. In this case the fundamental resolution limit is determined by radiation diffraction in the optical system. A method to measure beam sizes beyond the diffraction limit is to perform imaging dominated by a single-particle function (SPF, i.e. when the recorded image is dominated not by the transverse beam profile but by the image function of a point source (single electron. Knowledge of the SPF for an experimental setup allows one to extract the transverse beam size from an SPF dominated image. This paper presents an approach that allows one to calculate two-dimensional SPF dominated beam images, taking into account the target inclination angle and the depth-of-field effect. In conclusion, a simple fit function for beam size determination in the case under consideration is proposed and its applicability is tested under various conditions.

  6. Ionizing radiation and a wood-based biorefinery

    Science.gov (United States)

    Driscoll, Mark S.; Stipanovic, Arthur J.; Cheng, Kun; Barber, Vincent A.; Manning, Mellony; Smith, Jennifer L.; Sundar, Smith

    2014-01-01

    Woody biomass is widely available around the world. Cellulose is the major structural component of woody biomass and is the most abundant polymer synthesized by nature, with hemicellulose and lignin being second and third. Despite this great abundance, woody biomass has seen limited application outside of the paper and lumber industries. Its use as a feedstock for fuels and chemicals has been limited because of its highly crystalline structure, inaccessible morphology, and limited solubility (recalcitrance). Any economic use of woody biomass for the production of fuels and chemicals requires a "pretreatment" process to enhance the accessibility of the biomass to enzymes and/or chemical reagents. Electron beams (EB), X-rays, and gamma rays produce ions in a material which can then initiate chemical reactions and cleavage of chemical bonds. Such ionizing radiation predominantly scissions and degrades or depolymerizes both cellulose and hemicelluloses, less is known about its effects on lignin. This paper discusses how ionizing radiation can be used to make a wood-based biorefinery more environmentally friendly and profitable for its operators.

  7. Immobilization, stabilization and patterning techniques for enzyme based sensor systems.

    Energy Technology Data Exchange (ETDEWEB)

    Flounders, A.W.; Carichner, S.C.; Singh, A.K.; Volponi, J.V.; Schoeniger, J.S.; Wally, K.

    1997-01-01

    Sandia National Laboratories has recently opened the Chemical and Radiation Detection Laboratory (CRDL) in Livermore CA to address the detection needs of a variety of government agencies (e.g., Department of Energy, Environmental Protection Agency, Department of Agriculture) as well as provide a fertile environment for the cooperative development of new industrial technologies. This laboratory consolidates a variety of existing chemical and radiation detection efforts and enables Sandia to expand into the novel area of biochemically based sensors. One aspect of this biosensor effort is further development and optimization of enzyme modified field effect transistors (EnFETs). Recent work has focused upon covalent attachment of enzymes to silicon dioxide and silicon nitride surfaces for EnFET fabrication. They are also investigating methods to pattern immobilized proteins; a critical component for development of array-based sensor systems. Novel enzyme stabilization procedures are key to patterning immobilized enzyme layers while maintaining enzyme activity. Results related to maximized enzyme loading, optimized enzyme activity and fluorescent imaging of patterned surfaces will be presented.

  8. Rock Burst Intensity Classification Based on the Radiated Energy with Damage Intensity at Jinping II Hydropower Station, China

    Science.gov (United States)

    Chen, Bing-Rui; Feng, Xia-Ting; Li, Qing-Peng; Luo, Ru-Zhou; Li, Shaojun

    2015-01-01

    Based on the radiated energy of 133 rock bursts monitored by a microseismic technique at the Jinping II hydropower station, in Sichuan province, China, we analyzed the advantages and disadvantages of qualitative classification methods for the rock burst intensity. Then, we investigated the characteristics, magnitude, and laws of the radiated energy, as well as the relationship between the rock burst radiated energy and intensity. Then, we selected the energy as an evaluation index for the rock burst intensity classification, and proposed a new rock burst intensity quantitative classification method, which utilized the hierarchical clustering analysis technique with the complete-linkage method. Next, we created a new set of criteria for the quantitative classification of the rock burst intensity based on radiated energy and surrounding rock damage severity. The new criteria classified the rock burst intensity into five levels: extremely intense, intense, moderate, weak, and none, and the common logarithms of the radiated energy of each level were >7 lg( E/J), >4 lg( E/J) and 2 lg( E/J) and 1 lg( E/J) and <2 lg( E/J), and <1 lg( E/J), respectively. Finally, we investigated the factors influencing the classification, and verified its feasibility and applicability via several practical rock burst examples.

  9. Radiation Techniques for Increasing Local Control in the Non-Surgical Management of Rectal Cancer

    DEFF Research Database (Denmark)

    Appelt, Ane L.; Jakobsen, Anders

    2015-01-01

    , particularly in cases with small tumours and limited local disease. This report discusses several radiotherapy techniques for tumour boosting, focusing on technical challenges and clinical experiences with each technique. Specifically, external beam radiotherapy, brachytherapy and contact X-ray treatment...... for dose escalation are considered. Ultimately, no technique provides definitive advantage over others, and the choice in clinical practice will have to depend on the patient population treated as well as the technical capabilities of the treating department....

  10. Time scaling with efficient time-propagation techniques for atoms and molecules in pulsed radiation fields

    CERN Document Server

    Hamido, Aliou; Madroñero, Javier; Mota-Furtado, Francisca; O'Mahony, Patrick; Frapiccini, Ana Laura; Piraux, Bernard

    2011-01-01

    We present an ab initio approach to solve the time-dependent Schr\\"odinger equation to treat electron and photon impact multiple ionization of atoms or molecules. It combines the already known time scaled coordinate method with a new high order time propagator based on a predictor-corrector scheme. In order to exploit in an optimal way the main advantage of the time scaled coordinate method namely that the scaled wave packet stays confined and evolves smoothly towards a stationary state the modulus square of which being directly proportional to the electron energy spectra in each ionization channel, we show that the scaled bound states should be subtracted from the total scaled wave packet. In addition, our detailed investigations suggest that multi-resolution techniques like for instance, wavelets are the most appropriate ones to represent spatially the scaled wave packet. The approach is illustrated in the case of the interaction of an one-dimensional model atom as well as atomic hydrogen with a strong osci...

  11. Reducing the Cost of Proton Radiation Therapy: The Feasibility of a Streamlined Treatment Technique for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Newhauser, Wayne D., E-mail: newhauser@lsu.edu [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803 (United States); Department of Physics, Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Zhang, Rui [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803 (United States); Department of Physics, Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Departments of Radiation Physics and Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030 (United States); Jones, Timothy G. [Departments of Radiation Physics and Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030 (United States); Department of Physics, Abilene Christian University, ACU Box 27963, Abilene, TX 79699 (United States); Giebeler, Annelise; Taddei, Phillip J. [Departments of Radiation Physics and Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030 (United States); Stewart, Robert D. [Department of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356043, Seattle, WA 98195 (United States); Lee, Andrew [Departments of Radiation Physics and Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); Vassiliev, Oleg [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803 (United States); Department of Physics, Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States)

    2015-04-24

    Proton radiation therapy is an effective modality for cancer treatments, but the cost of proton therapy is much higher compared to conventional radiotherapy and this presents a formidable barrier to most clinical practices that wish to offer proton therapy. Little attention in literature has been paid to the costs associated with collimators, range compensators and hypofractionation. The objective of this study was to evaluate the feasibility of cost-saving modifications to the present standard of care for proton treatments for prostate cancer. In particular, we quantified the dosimetric impact of a treatment technique in which custom fabricated collimators were replaced with a multileaf collimator (MLC) and the custom range compensators (RC) were eliminated. The dosimetric impacts of these modifications were assessed for 10 patients with a commercial treatment planning system (TPS) and confirmed with corresponding Monte Carlo simulations. We assessed the impact on lifetime risks of radiogenic second cancers using detailed dose reconstructions and predictive dose-risk models based on epidemiologic data. We also performed illustrative calculations, using an isoeffect model, to examine the potential for hypofractionation. Specifically, we bracketed plausible intervals of proton fraction size and total treatment dose that were equivalent to a conventional photon treatment of 79.2 Gy in 44 fractions. Our results revealed that eliminating the RC and using an MLC had negligible effect on predicted dose distributions and second cancer risks. Even modest hypofractionation strategies can yield substantial cost savings. Together, our results suggest that it is feasible to modify the standard of care to increase treatment efficiency, reduce treatment costs to patients and insurers, while preserving high treatment quality.

  12. Reducing the Cost of Proton Radiation Therapy: The Feasibility of a Streamlined Treatment Technique for Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Wayne D. Newhauser

    2015-04-01

    Full Text Available Proton radiation therapy is an effective modality for cancer treatments, but the cost of proton therapy is much higher compared to conventional radiotherapy and this presents a formidable barrier to most clinical practices that wish to offer proton therapy. Little attention in literature has been paid to the costs associated with collimators, range compensators and hypofractionation. The objective of this study was to evaluate the feasibility of cost-saving modifications to the present standard of care for proton treatments for prostate cancer. In particular, we quantified the dosimetric impact of a treatment technique in which custom fabricated collimators were replaced with a multileaf collimator (MLC and the custom range compensators (RC were eliminated. The dosimetric impacts of these modifications were assessed for 10 patients with a commercial treatment planning system (TPS and confirmed with corresponding Monte Carlo simulations. We assessed the impact on lifetime risks of radiogenic second cancers using detailed dose reconstructions and predictive dose-risk models based on epidemiologic data. We also performed illustrative calculations, using an isoeffect model, to examine the potential for hypofractionation. Specifically, we bracketed plausible intervals of proton fraction size and total treatment dose that were equivalent to a conventional photon treatment of 79.2 Gy in 44 fractions. Our results revealed that eliminating the RC and using an MLC had negligible effect on predicted dose distributions and second cancer risks. Even modest hypofractionation strategies can yield substantial cost savings. Together, our results suggest that it is feasible to modify the standard of care to increase treatment efficiency, reduce treatment costs to patients and insurers, while preserving high treatment quality.

  13. Fundamental research on a cerenkov radiation sensor based on optical glass for detecting beta-rays

    Science.gov (United States)

    Kim, Jae Seok; Jang, Kyoung Won; Shin, Sang Hun; Jeon, Dayeong; Hong, Seunghan; Sim, Hyeok In; Kim, Seon Geun; Yoo, Wook Jae; Lee, Bongsoo; Moon, Joo Hyun; Park, Byung Gi

    2015-01-01

    In this study, a Cerenkov radiation sensor for detecting low-energy beta-particles was fabricated using various Cerenkov radiators such as an aerogel and CaF2-, SiO2-, and Al2O3-based optical glasses. Because the Cerenkov threshold energy (CTE) is determined by the refractive index of the Cerenkov radiator, the intensity of Cerenkov radiation varies according to the refractive indices of the Cerenkov radiators. Therefore, we measured the intensities of Cerenkov radiation induced by beta-particles generated from a radioactive isotope as a function of the refractive indices of the Cerenkov radiators. Also, the electron fluxes were calculated for various Cerenkov radiators by using a Monte Carlo N-Particle extended transport code (MCNPX) to determine the relationship between the intensities of the Cerenkov radiation and the electron fluxes.

  14. Proposing a Wiki-Based Technique for Collaborative Essay Writing

    Directory of Open Access Journals (Sweden)

    Mabel Ortiz Navarrete

    2014-10-01

    Full Text Available This paper aims at proposing a technique for students learning English as a foreign language when they collaboratively write an argumentative essay in a wiki environment. A wiki environment and collaborative work play an important role within the academic writing task. Nevertheless, an appropriate and systematic work assignment is required in order to make use of both. In this paper the proposed technique when writing a collaborative essay mainly attempts to provide the most effective way to enhance equal participation among group members by taking as a base computer mediated collaboration. Within this context, the students’ role is clearly defined and individual and collaborative tasks are explained.

  15. Knowledge based systems advanced concepts, techniques and applications

    CERN Document Server

    1997-01-01

    The field of knowledge-based systems (KBS) has expanded enormously during the last years, and many important techniques and tools are currently available. Applications of KBS range from medicine to engineering and aerospace.This book provides a selected set of state-of-the-art contributions that present advanced techniques, tools and applications. These contributions have been prepared by a group of eminent researchers and professionals in the field.The theoretical topics covered include: knowledge acquisition, machine learning, genetic algorithms, knowledge management and processing under unc

  16. Line Search-Based Inverse Lithography Technique for Mask Design

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    2012-01-01

    Full Text Available As feature size is much smaller than the wavelength of illumination source of lithography equipments, resolution enhancement technology (RET has been increasingly relied upon to minimize image distortions. In advanced process nodes, pixelated mask becomes essential for RET to achieve an acceptable resolution. In this paper, we investigate the problem of pixelated binary mask design in a partially coherent imaging system. Similar to previous approaches, the mask design problem is formulated as a nonlinear program and is solved by gradient-based search. Our contributions are four novel techniques to achieve significantly better image quality. First, to transform the original bound-constrained formulation to an unconstrained optimization problem, we propose a new noncyclic transformation of mask variables to replace the wellknown cyclic one. As our transformation is monotonic, it enables a better control in flipping pixels. Second, based on this new transformation, we propose a highly efficient line search-based heuristic technique to solve the resulting unconstrained optimization. Third, to simplify the optimization, instead of using discretization regularization penalty technique, we directly round the optimized gray mask into binary mask for pattern error evaluation. Forth, we introduce a jump technique in order to jump out of local minimum and continue the search.

  17. Thermal radiation effects on MHD convecture flow over a vertical porous plate embedded in a porous medium by perturbation technique

    Directory of Open Access Journals (Sweden)

    S. Sivasankaran

    2013-03-01

    Full Text Available This paper analyzes the influence of thermal radiation on the problem of unsteady magneto-convection flow of an electrically conducting fluid past a semi-infinite vertical porous plate embedded in a porous medium with time dependent suction. Perturbation technique is applied to transform the non-linear coupled governing partial differential equations in dimensionless form into a system of ordinary differential equations. The resulting equations are solved analytically and the solutions for the velocity and temperature fields are obtained. For different values of the flow parameters, the values for Nusselt number and skin-friction co-efficient are calculated. It is observed that the increase in the radiation parameter implies the decrease in the boundary layer thickness and enhances the rate of heat transfer. The velocity decreases as the existence of magnetic field becomes stronger.

  18. A Survey on Statistical Based Single Channel Speech Enhancement Techniques

    Directory of Open Access Journals (Sweden)

    Sunnydayal. V

    2014-11-01

    Full Text Available Speech enhancement is a long standing problem with various applications like hearing aids, automatic recognition and coding of speech signals. Single channel speech enhancement technique is used for enhancement of the speech degraded by additive background noises. The background noise can have an adverse impact on our ability to converse without hindrance or smoothly in very noisy environments, such as busy streets, in a car or cockpit of an airplane. Such type of noises can affect quality and intelligibility of speech. This is a survey paper and its object is to provide an overview of speech enhancement algorithms so that enhance the noisy speech signal which is corrupted by additive noise. The algorithms are mainly based on statistical based approaches. Different estimators are compared. Challenges and Opportunities of speech enhancement are also discussed. This paper helps in choosing the best statistical based technique for speech enhancement

  19. An Observed Voting System Based On Biometric Technique

    Directory of Open Access Journals (Sweden)

    B. Devikiruba

    2015-08-01

    Full Text Available ABSTRACT This article describes a computational framework which can run almost on every computer connected to an IP based network to study biometric techniques. This paper discusses with a system protecting confidential information puts strong security demands on the identification. Biometry provides us with a user-friendly method for this identification and is becoming a competitor for current identification mechanisms. The experimentation section focuses on biometric verification specifically based on fingerprints. This article should be read as a warning to those thinking of using methods of identification without first examine the technical opportunities for compromising mechanisms and the associated legal consequences. The development is based on the java language that easily improves software packages that is useful to test new control techniques.

  20. Radiation treatment of materials - elaboration bases of radiation technology; Obrobka radiacyjna materialow - zasady opracowywania technologii

    Energy Technology Data Exchange (ETDEWEB)

    Panta, P.P. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1997-10-01

    The basic rules in design of radiation technologies have been presented and discussed. The recommendations for achieving of assigned goal in respect of obliged regulations have been done and explained on the example of radiation technology of adhesive materials and glue production.

  1. Response of Silicon-Based Linear Energy Transfer Spectrometers: Implication for Radiation Risk Assessment in Space Flights

    Science.gov (United States)

    Badhwar, G. D.; O'Neill, P. M.

    2001-01-01

    There is considerable interest in developing silicon-based telescopes because of their compactness and low power requirements. Three such telescopes have been flown on board the Space Shuttle to measure the linear energy transfer spectra of trapped, galactic cosmic ray, and solar energetic particles. Dosimeters based on single silicon detectors have also been flown on the Mir orbital station. A comparison of the absorbed dose and radiation quality factors calculated from these telescopes with that estimated from measurements made with a tissue equivalent proportional counter show differences which need to be fully understood if these telescopes are to be used for astronaut radiation risk assessments. Instrument performance is complicated by a variety of factors. A Monte Carlo-based technique was developed to model the behavior of both single element detectors in a proton beam, and the performance of a two-element, wide-angle telescope, in the trapped belt proton field inside the Space Shuttle. The technique is based on: (1) radiation transport intranuclear-evaporation model that takes into account the charge and angular distribution of target fragments, (2) Landau-Vavilov distribution of energy deposition allowing for electron escape, (3) true detector geometry of the telescope, (4) coincidence and discriminator settings, (5) spacecraft shielding geometry, and (6) the external space radiation environment, including albedo protons. The value of such detailed modeling and its implications in astronaut risk assessment is addressed. c2001 Elsevier Science B.V. All rights reserved.

  2. Radiation-hard/high-speed array-based optical engine

    Science.gov (United States)

    Gan, K. K.; Buchholz, P.; Heidbrink, S.; Kagan, H. P.; Kass, R. D.; Moore, J.; Smith, D. S.; Vogt, M.; Ziolkowski, M.

    2016-12-01

    We have designed and fabricated a compact array-based optical engine for transmitting data at 10 Gb/s. The device consists of a 4-channel ASIC driving a VCSEL (Vertical Cavity Surface Emitting Laser) array in an optical package. The ASIC is designed using only core transistors in a 65 nm CMOS process to enhance the radiation-hardness. The ASIC contains an 8-bit DAC to control the bias and modulation currents of the individual channels in the VCSEL array. The DAC settings are stored in SEU (single event upset) tolerant registers. Several devices were irradiated with 24 GeV/c protons and the performance of the devices is satisfactory after the irradiation.

  3. Intrinsic Radiation in Lutetium Based PET Detector: Advantages and Disadvantages

    CERN Document Server

    Wei, Qingyang

    2015-01-01

    Lutetium (Lu) based scintillators such as LSO and LYSO, are widely used in modern PET detectors due to their high stopping power for 511 keV gamma rays, high light yield and short decay time. However, 2.6% of naturally occurring Lu is 176Lu, a long-lived radioactive element including a beta decay and three major simultaneous gamma decays. This phenomenon introduces random events to PET systems that affects the system performance. On the other hand, the advantages of intrinsic radiation of 176Lu (IRL) continues to be exploited. In this paper, research literatures about IRL in PET detectors are reviewed. Details about the adverse effects of IRL to PET and their solutions, as well as the useful applications are presented and discussed.

  4. Multivariate discrimination technique based on the Bayesian theory

    Institute of Scientific and Technical Information of China (English)

    JIN Ping; PAN Chang-zhou; XIAO Wei-guo

    2007-01-01

    A multivariate discrimination technique was established based on the Bayesian theory. Using this technique, P/S ratios of different types (e.g., Pn/Sn, Pn/Lg, Pg/Sn or Pg/Lg) measured within different frequency bands and from different stations were combined together to discriminate seismic events in Central Asia. Major advantages of the Bayesian approach are that the probability to be an explosion for any unknown event can be directly calculated given the measurements of a group of discriminants, and at the same time correlations among these discriminants can be fully taken into account. It was proved theoretically that the Bayesian technique would be optimal and its discriminating performance would be better than that of any individual discriminant as well as better than that yielded by the linear combination approach ignoring correlations among discriminants. This conclusion was also validated in this paper by applying the Bayesian approach to the above-mentioned observed data.

  5. RANKINGTHEREFACTORING TECHNIQUES BASED ON THE INTERNAL QUALITY ATTRIBUTES

    Directory of Open Access Journals (Sweden)

    Sultan Alshehri

    2014-01-01

    Full Text Available The analytic hierarchy process (AHP has been applied in many fields and especially to complex engineering problems and applications. The AHP is capable of structuring decision problems and finding mathematically determined judgments built on knowledge and experience. This suggests that AHP should prove useful in agile software development where complex decisions occur routinely. In this paper, the AHP is used to rank the refactoring techniques based on the internal code quality attributes. XP encourages applying the refactoring where the code smells bad. However, refactoring may consume more time and efforts.So, to maximize the benefits of the refactoring in less time and effort, AHP has been applied to achieve this purpose. It was found that ranking the refactoring techniques helped the XP team to focus on the technique that improve the code and the XP development process in general.

  6. Plenary panel 1: The scientific bases of radiation protection. Non-targeted effects of ionising radiation - Implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Salomaa, S. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-07-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (L.N.T.) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (authors)

  7. Quality keeping and upgrading technique on delivery of raw fodder and so forth by using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Ryoei; Tanaka, Osamu; Uegaki, Ryuichi; Ando, Sada; Akiyama, Fumiaki; Yamada, Akio [National Grassland Research Inst., Nishinasuno, Tochigi (Japan)

    1998-02-01

    As most of aerobic bacteria, anaerobic spore bacteria, molds and yeasts died owing to 8 to 16 kGy of {gamma}-ray irradiation, it was found that butyric acid fermentation and aerobic putrefaction in silage did not form. As the lactobacilli bringing good fermentation quality died as well at such radiation dose, on a case of a mixed silage using the dregs, in which lactic acid was present, quality of its fermentation was good. And, many informations on changes in fatty quality and yeast activity in the silage formed by irradiation could also be obtained. As the dregs had a large difference in physical and chemical components, quality after preparation of the silage was not uniform. Materials suitable for {gamma}-ray irradiation and radiation dose suitable for each material was found to be clarified. (G.K.)

  8. MEMS-Based Power Generation Techniques for Implantable Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Jonathan Lueke

    2011-01-01

    Full Text Available Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.

  9. Human exposition to non ionizing electromagnetic radiations. Legislation and base stations measurements

    Directory of Open Access Journals (Sweden)

    Alonso Alonso Alonso

    2004-12-01

    Full Text Available This work deals about measurement procedures of non-ionizing radiations and their recorded levels in practice. The analyzed radiation sources cover the most common broadcasting media such as AM and FM transmissions and the GSM mobile telephony base stations. These sources currently radiate locations with high density of population. Spanish radiation level regulations are briefly described and some possible improvements are pointed out. The measurement results are discussed.

  10. Stereotactic body radiation therapy (SBRT) for adrenal metastases. A feasibility study of advanced techniques with modulated photons and protons

    Energy Technology Data Exchange (ETDEWEB)

    Mancosu, Pietro; Navarria, Piera; Tozzi, Angelo; Castiglioni, Simona; Clerici, Elena; Reggiori, Giacomo; Lobefalo, Francesca [Istituto Clinico Humanitas, Rozzano-Milan (Italy). Dept. of Radiation Oncology; Fogliata, Antonella; Cozzi, Luca [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland). Medical Physics Unit; Scorsetti, Marta

    2011-04-15

    Purpose: To compare advanced treatment techniques with photons and protons as a stereotactic body radiation therapy (SBRT) for adrenal glands metastases. Materials and Methods: Planning computer tomographic (CT) scans of 10 patients were selected. A total dose of 45 Gy in 7.5 Gy fractions was prescribed. Organs at risk (OAR) were liver and kidneys. Dose-volume metrics were defined to quantify quality of plans assessing target coverage and sparing of organs at risk. Plans for RapidArc, intensity-modulated radiotherapy (IMRT), dynamic conformal arcs, 3D conformal static fields, and intensity modulated protons were compared. The main planning objective for the clinical target volume (CTV) was to cover 100% of the volume with 95% (V{sub 95%} = 100%) and to keep the maximum dose below 107% of the prescribed dose (V{sub 107%} = 0%). Planning objective for planning target volume (PTV) was V{sub 95%} > 80%. For kidneys, the general planning objective was V{sub 15Gy} < 35% and for liver V{sub 15Gy} < (liver volume-700 cm{sup 3}). Results: All techniques achieved the minimum and maximum dose objective for CTV and PTV, D{sub 5-95%} ranged from 1 Gy (protons) to 1.6 Gy (conformal static fields) on CTV. Maximal organ at risk sparing was achieved by protons. RapidArc presented the second lowest dose bath (V{sub 10Gy} and integral dose) after protons and the best conformality together with IMRT. Conclusions: Stereotactic body radiation therapy (SBRT) to adrenal glands metastases is achievable with several advanced techniques with either photons or protons. The intensity modulated approaches using either static fields, dynamic arcs or protons are superior to the other conformal solutions. For their simplicity, IMRT or RapidArc should be considered as the first option radiation treatment for those patients not eligible for proton treatment. (orig.)

  11. Chorus wave-normal statistics in the Earth's radiation belts from ray tracing technique

    Directory of Open Access Journals (Sweden)

    H. Breuillard

    2012-08-01

    Full Text Available Discrete ELF/VLF (Extremely Low Frequency/Very Low Frequency chorus emissions are one of the most intense electromagnetic plasma waves observed in radiation belts and in the outer terrestrial magnetosphere. These waves play a crucial role in the dynamics of radiation belts, and are responsible for the loss and the acceleration of energetic electrons. The objective of our study is to reconstruct the realistic distribution of chorus wave-normals in radiation belts for all magnetic latitudes. To achieve this aim, the data from the electric and magnetic field measurements onboard Cluster satellite are used to determine the wave-vector distribution of the chorus signal around the equator region. Then the propagation of such a wave packet is modeled using three-dimensional ray tracing technique, which employs K. Rönnmark's WHAMP to solve hot plasma dispersion relation along the wave packet trajectory. The observed chorus wave distributions close to waves source are first fitted to form the initial conditions which then propagate numerically through the inner magnetosphere in the frame of the WKB approximation. Ray tracing technique allows one to reconstruct wave packet properties (electric and magnetic fields, width of the wave packet in k-space, etc. along the propagation path. The calculations show the spatial spreading of the signal energy due to propagation in the inhomogeneous and anisotropic magnetized plasma. Comparison of wave-normal distribution obtained from ray tracing technique with Cluster observations up to 40° latitude demonstrates the reliability of our approach and applied numerical schemes.

  12. An Efficient Image Compression Technique Based on Arithmetic Coding

    Directory of Open Access Journals (Sweden)

    Prof. Rajendra Kumar Patel

    2012-12-01

    Full Text Available The rapid growth of digital imaging applications, including desktop publishing, multimedia, teleconferencing, and high visual definition has increased the need for effective and standardized image compression techniques. Digital Images play a very important role for describing the detailed information. The key obstacle for many applications is the vast amount of data required to represent a digital image directly. The various processes of digitizing the images to obtain it in the best quality for the more clear and accurate information leads to the requirement of more storage space and better storage and accessing mechanism in the form of hardware or software. In this paper we concentrate mainly on the above flaw so that we reduce the space with best quality image compression. State-ofthe-art techniques can compress typical images from 1/10 to 1/50 their uncompressed size without visibly affecting image quality. From our study I observe that there is a need of good image compression technique which provides better reduction technique in terms of storage and quality. Arithmetic coding is the best way to reducing encoding data. So in this paper we propose arithmetic coding with walsh transformation based image compression technique which is an efficient way of reduction

  13. SMS Spam Filtering Technique Based on Artificial Immune System

    Directory of Open Access Journals (Sweden)

    Tarek M Mahmoud

    2012-03-01

    Full Text Available The Short Message Service (SMS have an important economic impact for end users and service providers. Spam is a serious universal problem that causes problems for almost all users. Several studies have been presented, including implementations of spam filters that prevent spam from reaching their destination. Nave Bayesian algorithm is one of the most effective approaches used in filtering techniques. The computational power of smart phones are increasing, making increasingly possible to perform spam filtering at these devices as a mobile agent application, leading to better personalization and effectiveness. The challenge of filtering SMS spam is that the short messages often consist of few words composed of abbreviations and idioms. In this paper, we propose an anti-spam technique based on Artificial Immune System (AIS for filtering SMS spam messages. The proposed technique utilizes a set of some features that can be used as inputs to spam detection model. The idea is to classify message using trained dataset that contains Phone Numbers, Spam Words, and Detectors. Our proposed technique utilizes a double collection of bulk SMS messages Spam and Ham in the training process. We state a set of stages that help us to build dataset such as tokenizer, stop word filter, and training process. Experimental results presented in this paper are based on iPhone Operating System (iOS. The results applied to the testing messages show that the proposed system can classify the SMS spam and ham with accurate compared with Nave Bayesian algorithm.

  14. Characterization techniques for graphene-based materials in catalysis

    Directory of Open Access Journals (Sweden)

    Maocong Hu

    2017-06-01

    Full Text Available Graphene-based materials have been studied in a wide range of applications including catalysis due to the outstanding electronic, thermal, and mechanical properties. The unprecedented features of graphene-based catalysts, which are believed to be responsible for their superior performance, have been characterized by many techniques. In this article, we comprehensively summarized the characterization methods covering bulk and surface structure analysis, chemisorption ability determination, and reaction mechanism investigation. We reviewed the advantages/disadvantages of different techniques including Raman spectroscopy, X-ray photoelectron spectroscopy (XPS, Fourier transform infrared spectroscopy (FTIR and Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS, X-Ray diffraction (XRD, X-ray absorption near edge structure (XANES and X-ray absorption fine structure (XAFS, atomic force microscopy (AFM, scanning electron microscopy (SEM, transmission electron microscopy (TEM, high-resolution transmission electron microscopy (HRTEM, ultraviolet-visible spectroscopy (UV-vis, X-ray fluorescence (XRF, inductively coupled plasma mass spectrometry (ICP, thermogravimetric analysis (TGA, Brunauer–Emmett–Teller (BET, and scanning tunneling microscopy (STM. The application of temperature-programmed reduction (TPR, CO chemisorption, and NH3/CO2-temperature-programmed desorption (TPD was also briefly introduced. Finally, we discussed the challenges and provided possible suggestions on choosing characterization techniques. This review provides key information to catalysis community to adopt suitable characterization techniques for their research.

  15. IMPROVING DISPLACEMENT SIGNAL-TO-NOISE RATIO FOR LOW-SIGNAL RADIATION FORCE ELASTICITY IMAGING USING BAYESIAN TECHNIQUES

    Science.gov (United States)

    Dumont, Douglas M.; Walsh, Kristy M.; Byram, Brett C.

    2017-01-01

    Radiation force-based elasticity imaging is currently being investigated as a possible diagnostic modality for a number of clinical tasks, including liver fibrosis staging and the characterization of cardiovascular tissue. In this study, we evaluate the relationship between peak displacement magnitude and image quality and propose using a Bayesian estimator to overcome the challenge of obtaining viable data in low displacement signal environments. Displacement data quality were quantified for two common radiation force-based applications, acoustic radiation force impulse imaging, which measures the displacement within the region of excitation, and shear wave elasticity imaging, which measures displacements outside the region of excitation. Performance as a function of peak displacement magnitude for acoustic radiation force impulse imaging was assessed in simulations and lesion phantoms by quantifying signal-to-noise ratio (SNR) and contrast-to-noise ratio for varying peak displacement magnitudes. Overall performance for shear wave elasticity imaging was assessed in ex vivo chicken breast samples by measuring the displacement SNR as a function of distance from the excitation source. The results show that for any given displacement magnitude level, the Bayesian estimator can increase the SNR by approximately 9 dB over normalized cross-correlation and the contrast-to-noise ratio by a factor of two. We conclude from the results that a Bayesian estimator may be useful for increasing data quality in SNR-limited imaging environments. PMID:27157861

  16. Earthquake Analysis of Structure by Base Isolation Technique in SAP

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-06-01

    Full Text Available This paper presents an overview of the present state of base isolation techniques with special emphasis and a brief on other techniques developed world over for mitigating earthquake forces on the structures. The dynamic analysis procedure for isolated structures is briefly explained. The provisions of FEMA 450 for base isolated structures are highlighted. The effects of base isolation on structures located on soft soils and near active faults are given in brief. Simple case study on natural base isolation using naturally available soils is presented. Also, the future areas of research are indicated. Earthquakes are one of nature IS greatest hazards; throughout historic time they have caused significant loss offline and severe damage to property, especially to man-made structures. On the other hand, earthquakes provide architects and engineers with a number of important design criteria foreign to the normal design process. From well established procedures reviewed by many researchers, seismic isolation may be used to provide an effective solution for a wide range of seismic design problems. The application of the base isolation techniques to protect structures against damage from earthquake attacks has been considered as one of the most effective approaches and has gained increasing acceptance during the last two decades. This is because base isolation limits the effects of the earthquake attack, a flexible base largely decoupling the structure from the ground motion, and the structural response accelerations are usually less than the ground acceleration. In general, the increase of additional viscous damping in the structure may reduce displacement and acceleration responses of the structure. This study also seeks to evaluate the effects of additional damping on the seismic response when compared with structures without additional damping for the different ground motions.

  17. Finding Within Cluster Dense Regions Using Distance Based Technique

    Directory of Open Access Journals (Sweden)

    Wesam Ashour

    2012-03-01

    Full Text Available One of the main categories in Data Clustering is density based clustering. Density based clustering techniques like DBSCAN are attractive because they can find arbitrary shaped clusters along with noisy outlier. The main weakness of the traditional density based algorithms like DBSCAN is clustering the different density level data sets. DBSCAN calculations done according to given parameters applied to all points in a data set, while densities of the data set clusters may be totally different. The proposed algorithm overcomes this weakness of the traditional density based algorithms. The algorithm starts with partitioning the data within a cluster to units based on a user parameter and compute the density for each unit separately. Consequently, the algorithm compares the results and merges neighboring units with closer approximate density values to become a new cluster. The experimental results of the simulation show that the proposed algorithm gives good results in finding clusters for different density cluster data set.

  18. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between v...

  19. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...

  20. Gabor-based fusion technique for Optical Coherence Microscopy.

    Science.gov (United States)

    Rolland, Jannick P; Meemon, Panomsak; Murali, Supraja; Thompson, Kevin P; Lee, Kye-sung

    2010-02-15

    We recently reported on an Optical Coherence Microscopy technique, whose innovation intrinsically builds on a recently reported - 2 microm invariant lateral resolution by design throughout a 2 mm cubic full-field of view - liquid-lens-based dynamic focusing optical probe [Murali et al., Optics Letters 34, 145-147, 2009]. We shall report in this paper on the image acquisition enabled by this optical probe when combined with an automatic data fusion method developed and described here to produce an in-focus high resolution image throughout the imaging depth of the sample. An African frog tadpole (Xenopus laevis) was imaged with the novel probe and the Gabor-based fusion technique, demonstrating subcellular resolution in a 0.5 mm (lateral) x 0.5 mm (axial) without the need, for the first time, for x-y translation stages, depth scanning, high-cost adaptive optics, or manual intervention. In vivo images of human skin are also presented.

  1. Clustering economies based on multiple criteria decision making techniques

    OpenAIRE

    2011-01-01

    One of the primary concerns on many countries is to determine different important factors affecting economic growth. In this paper, we study some factors such as unemployment rate, inflation ratio, population growth, average annual income, etc to cluster different countries. The proposed model of this paper uses analytical hierarchy process (AHP) to prioritize the criteria and then uses a K-mean technique to cluster 59 countries based on the ranked criteria into four groups. The first group i...

  2. Ultrabroadband Phased-Array Receivers Based on Optical Techniques

    Science.gov (United States)

    2016-02-26

    AFRL-AFOSR-VA-TR-2016-0121 Ultrabroadband Phased-array Receivers Based on Optical Techniques Christopher Schuetz UNIVERSITY OF DELAWARE Final Report...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Delaware 210 Hullihen Hall Newark, DE 19716 8. PERFORMING ORGANIZATION...Rev. 8/98) Prescribed by ANSI Std . Z39.18 Adobe Professional 7.0 Reset INSTRUCTIONS FOR COMPLETING SF 298 1. REPORT DATE. Full publication date

  3. Dependence of achievable plan quality on treatment technique and planning goal refinement: a head-and-neck intensity modulated radiation therapy application.

    Science.gov (United States)

    Qi, X Sharon; Ruan, Dan; Lee, Steve P; Pham, Andrew; Kupelian, Patrick; Low, Daniel A; Steinberg, Michael; Demarco, John

    2015-03-15

    To develop a practical workflow for retrospectively analyzing target and normal tissue dose-volume endpoints for various intensity modulated radiation therapy (IMRT) delivery techniques; to develop technique-specific planning goals to improve plan consistency and quality when feasible. A total of 165 consecutive head-and-neck patients from our patient registry were selected and retrospectively analyzed. All IMRT plans were generated using the same dose-volume guidelines for TomoTherapy (Tomo, Accuray), TrueBeam (TB, Varian) using fixed-field IMRT (TB_IMRT) or RAPIDARC (TB_RAPIDARC), or Siemens Oncor (Siemens_IMRT, Siemens). A MATLAB-based dose-volume extraction and analysis tool was developed to export dosimetric endpoints for each patient. With a fair stratification of patient cohort, the variation of achieved dosimetric endpoints was analyzed among different treatment techniques. Upon identification of statistically significant variations, technique-specific planning goals were derived from dynamically accumulated institutional data. Retrospective analysis showed that although all techniques yielded comparable target coverage, the doses to the critical structures differed. The maximum cord doses were 34.1 ± 2.6, 42.7 ± 2.1, 43.3 ± 2.0, and 45.1 ± 1.6 Gy for Tomo, TB_IMRT, TB_RAPIDARC, and Siemens_IMRT plans, respectively. Analyses of variance showed significant differences for the maximum cord doses but no significant differences for other selected structures among the investigated IMRT delivery techniques. Subsequently, a refined technique-specific dose-volume guideline for maximum cord dose was derived at a confidence level of 95%. The dosimetric plans that failed the refined technique-specific planning goals were reoptimized according to the refined constraints. We observed better cord sparing with minimal variations for the target coverage and other organ at risk sparing for the Tomo cases, and higher parotid doses for C-arm linear accelerator-based IMRT

  4. Multipactor radiation analysis within a waveguide region based on a frequency-domain representation of the dynamics of charged particles.

    Science.gov (United States)

    Gimeno, B; Sorolla, E; Anza, S; Vicente, C; Gil, J; Pérez, A M; Boria, V E; Pérez-Soler, F J; Quesada, F; Alvarez, A; Raboso, D

    2009-04-01

    A technique for the accurate computation of the electromagnetic fields radiated by a charged particle moving within a parallel-plate waveguide is presented. Based on a transformation of the time-varying current density of the particle into a time-harmonic current density, this technique allows the evaluation of the radiated electromagnetic fields both in the frequency and time domains, as well as in the near- and far-field regions. For this purpose, several accelerated versions of the parallel-plate Green's function in the frequency domain have been considered. The theory has been successfully applied to the multipactor discharge occurring within a two metal-plates region. The proposed formulation has been tested with a particle-in-cell code based on the finite-difference time-domain method, obtaining good agreement.

  5. Comparative analysis of affinity-based 5-hydroxymethylation enrichment techniques

    Science.gov (United States)

    Thomson, John P.; Hunter, Jennifer M.; Nestor, Colm E.; Dunican, Donncha S.; Terranova, Rémi; Moggs, Jonathan G.; Meehan, Richard R.

    2013-01-01

    The epigenetic modification of 5-hydroxymethylcytosine (5hmC) is receiving great attention due to its potential role in DNA methylation reprogramming and as a cell state identifier. Given this interest, it is important to identify reliable and cost-effective methods for the enrichment of 5hmC marked DNA for downstream analysis. We tested three commonly used affinity-based enrichment techniques; (i) antibody, (ii) chemical capture and (iii) protein affinity enrichment and assessed their ability to accurately and reproducibly report 5hmC profiles in mouse tissues containing high (brain) and lower (liver) levels of 5hmC. The protein-affinity technique is a poor reporter of 5hmC profiles, delivering 5hmC patterns that are incompatible with other methods. Both antibody and chemical capture-based techniques generate highly similar genome-wide patterns for 5hmC, which are independently validated by standard quantitative PCR (qPCR) and glucosyl-sensitive restriction enzyme digestion (gRES-qPCR). Both antibody and chemical capture generated profiles reproducibly link to unique chromatin modification profiles associated with 5hmC. However, there appears to be a slight bias of the antibody to bind to regions of DNA rich in simple repeats. Ultimately, the increased specificity observed with chemical capture-based approaches makes this an attractive method for the analysis of locus-specific or genome-wide patterns of 5hmC. PMID:24214958

  6. Low-dose phase-based X-ray imaging techniques for in situ soft tissue engineering assessments.

    Science.gov (United States)

    Izadifar, Zohreh; Honaramooz, Ali; Wiebe, Sheldon; Belev, George; Chen, Xiongbiao; Chapman, Dean

    2016-03-01

    In tissue engineering, non-invasive imaging of biomaterial scaffolds and tissues in living systems is essential to longitudinal animal studies for assessments without interrupting the repair process. Conventional X-ray imaging is inadequate for use in soft tissue engineering due to the limited absorption difference between the soft tissue and biomaterial scaffolds. X-ray phase-based imaging techniques that derive contrast from refraction or phase effects rather than absorption can provide the necessary contrast to see low-density biomaterial scaffolds and tissues in large living systems. This paper explores and compares three synchrotron phase-based X-ray imaging techniques-computed tomography (CT)-diffraction enhanced imaging (DEI), -analyzer based imaging (ABI), and -phase contrast imaging (PCI)-for visualization and characterization of low-density biomaterial scaffolds and tissues in situ for non-invasive soft tissue engineering assessments. Intact pig joints implanted with polycaprolactone scaffolds were used as the model to assess and compare the imaging techniques in terms of different qualitative and quantitative criteria. For long-term in vivo live animal imaging, different strategies for reducing the imaging radiation dose and scan time-reduced number of CT projections, region of interest, and low resolution imaging-were examined with the presented phase-based imaging techniques. The results demonstrated promising capabilities of the phase-based techniques for visualization of biomaterial scaffolds and soft tissues in situ. The low-dose imaging strategies were illustrated effective for reducing the radiation dose to levels appropriate for live animal imaging. The comparison among the imaging techniques suggested that CT-DEI has the highest efficiency in retaining image contrast at considerably low radiation doses.

  7. Efficient techniques for wave-based sound propagation in interactive applications

    Science.gov (United States)

    Mehra, Ravish

    Sound propagation techniques model the effect of the environment on sound waves and predict their behavior from point of emission at the source to the final point of arrival at the listener. Sound is a pressure wave produced by mechanical vibration of a surface that propagates through a medium such as air or water, and the problem of sound propagation can be formulated mathematically as a second-order partial differential equation called the wave equation. Accurate techniques based on solving the wave equation, also called the wave-based techniques, are too expensive computationally and memory-wise. Therefore, these techniques face many challenges in terms of their applicability in interactive applications including sound propagation in large environments, time-varying source and listener directivity, and high simulation cost for mid-frequencies. In this dissertation, we propose a set of efficient wave-based sound propagation techniques that solve these three challenges and enable the use of wave-based sound propagation in interactive applications. Firstly, we propose a novel equivalent source technique for interactive wave-based sound propagation in large scenes spanning hundreds of meters. It is based on the equivalent source theory used for solving radiation and scattering problems in acoustics and electromagnetics. Instead of using a volumetric or surface-based approach, this technique takes an object-centric approach to sound propagation. The proposed equivalent source technique generates realistic acoustic effects and takes orders of magnitude less runtime memory compared to prior wave-based techniques. Secondly, we present an efficient framework for handling time-varying source and listener directivity for interactive wave-based sound propagation. The source directivity is represented as a linear combination of elementary spherical harmonic sources. This spherical harmonic-based representation of source directivity can support analytical, data

  8. Comparing Four Touch-Based Interaction Techniques for an Image-Based Audience Response System

    NARCIS (Netherlands)

    Jorritsma, Wiard; Prins, Jonatan T.; van Ooijen, Peter M. A.

    2015-01-01

    This study aimed to determine the most appropriate touch-based interaction technique for I2Vote, an image-based audience response system for radiology education in which users need to accurately mark a target on a medical image. Four plausible techniques were identified: land-on, take-off, zoom-poin

  9. User Identification Detector Based on Power of R Technique

    Institute of Scientific and Technical Information of China (English)

    WANG Chun-jiang; YU Quan; LIU Yuan-an

    2005-01-01

    To avoid the inaccurate estimation of the active user's number and the corresponding performance degradation, a novel POR-based User Identification Detector (UID) is proposed for the Code Division Multiple Access (CDMA) systems. The new detector adopts the Power of R (POR) technique and the Multiple Signal Classification (MUSIC) method, which does not require the estimation of active users' number, and obtains lower false alarm probability than the subspace-based UID in the multipath channels. However, from our analysis, increasing the order m does not improve the performance. Therefore, when m is one, the performance of the new detector is maximal.

  10. NEW VERSATILE CAMERA CALIBRATION TECHNIQUE BASED ON LINEAR RECTIFICATION

    Institute of Scientific and Technical Information of China (English)

    Pan Feng; Wang Xuanyin

    2004-01-01

    A new versatile camera calibration technique for machine vision using off-the-shelf cameras is described. Aimed at the large distortion of the off-the-shelf cameras, a new camera distortion rectification technology based on line-rectification is proposed. A full-camera-distortion model is introduced and a linear algorithm is provided to obtain the solution. After the camera rectification intrinsic and extrinsic parameters are obtained based on the relationship between the homograph and absolute conic. This technology needs neither a high-accuracy three-dimensional calibration block, nor a complicated translation or rotation platform. Both simulations and experiments show that this method is effective and robust.

  11. Modification of biodegradable polymers by radiation crosslinking technique with polyfunctional monomers

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Fumio E-mail: yoshii@taka.jaeri.go.jp; Suhartini, Meri; Nagasawa, Naotsugu; Mitomo, Hiroshi; Kume, Tamikazu

    2003-08-01

    Poly({epsilon}-caprolactone) (PCL) and poly(butylene succinate-co-adipate) (PBSA) were electron beam-irradiated in the presence of five different polyfunctional monomers at ambient temperature. Trimethallyl isocyanurate (TMAIC) has been found to greatly enhance the radiation crosslinking of PCL and PBSA. It was pointed out that the optimum yield of gel fraction can be achieved when the polymers were irradiated at a dose of 50 kGy in the presence of 1% TMAIC. High gel fraction largely improves heat stability of PBSA, while biodegradability evaluated by soil burial test of the crosslinked polymers is slightly retarded, however they are effectively destroyed with a slightly smaller rate.

  12. Modification of biodegradable polymers by radiation crosslinking technique with polyfunctional monomers

    Science.gov (United States)

    Yoshii, Fumio; Suhartini, Meri; Nagasawa, Naotsugu; Mitomo, Hiroshi; Kume, Tamikazu

    2003-08-01

    Poly(ɛ-caprolactone) (PCL) and poly(butylene succinate-co-adipate) (PBSA) were electron beam-irradiated in the presence of five different polyfunctional monomers at ambient temperature. Trimethallyl isocyanurate (TMAIC) has been found to greatly enhance the radiation crosslinking of PCL and PBSA. It was pointed out that the optimum yield of gel fraction can be achieved when the polymers were irradiated at a dose of 50 kGy in the presence of 1% TMAIC. High gel fraction largely improves heat stability of PBSA, while biodegradability evaluated by soil burial test of the crosslinked polymers is slightly retarded, however they are effectively destroyed with a slightly smaller rate.

  13. Reverse Monte Carlo studies of CeO2 using neutron and synchrotron radiation techniques

    Science.gov (United States)

    Clark, Adam H.; Marchbank, Huw R.; Hyde, Timothy I.; Playford, Helen Y.; Tucker, Matthew G.; Sankar, Gopinathan

    2017-03-01

    A reverse Monte Carlo analysis method was employed to extract the structure of CeO2 from Neutron total scattering (comprising both neutron diffraction (ND) and pair-distribution functions (PDF) and Ce L3- and K-edge EXAFS data. Here it is shown that there is a noticeable difference between using short ranged x-ray absorption spectroscopy data and using medium-long range PDF and ND data in regards to the disorder of the cerium atoms. This illustrates the importance of considering multiple length scales and radiation sources.

  14. A Different Web-Based Geocoding Service Using Fuzzy Techniques

    Science.gov (United States)

    Pahlavani, P.; Abbaspour, R. A.; Zare Zadiny, A.

    2015-12-01

    Geocoding - the process of finding position based on descriptive data such as address or postal code - is considered as one of the most commonly used spatial analyses. Many online map providers such as Google Maps, Bing Maps and Yahoo Maps present geocoding as one of their basic capabilities. Despite the diversity of geocoding services, users usually face some limitations when they use available online geocoding services. In existing geocoding services, proximity and nearness concept is not modelled appropriately as well as these services search address only by address matching based on descriptive data. In addition there are also some limitations in display searching results. Resolving these limitations can enhance efficiency of the existing geocoding services. This paper proposes the idea of integrating fuzzy technique with geocoding process to resolve these limitations. In order to implement the proposed method, a web-based system is designed. In proposed method, nearness to places is defined by fuzzy membership functions and multiple fuzzy distance maps are created. Then these fuzzy distance maps are integrated using fuzzy overlay technique for obtain the results. Proposed methods provides different capabilities for users such as ability to search multi-part addresses, searching places based on their location, non-point representation of results as well as displaying search results based on their priority.

  15. A DIFFERENT WEB-BASED GEOCODING SERVICE USING FUZZY TECHNIQUES

    Directory of Open Access Journals (Sweden)

    P. Pahlavani

    2015-12-01

    Full Text Available Geocoding – the process of finding position based on descriptive data such as address or postal code - is considered as one of the most commonly used spatial analyses. Many online map providers such as Google Maps, Bing Maps and Yahoo Maps present geocoding as one of their basic capabilities. Despite the diversity of geocoding services, users usually face some limitations when they use available online geocoding services. In existing geocoding services, proximity and nearness concept is not modelled appropriately as well as these services search address only by address matching based on descriptive data. In addition there are also some limitations in display searching results. Resolving these limitations can enhance efficiency of the existing geocoding services. This paper proposes the idea of integrating fuzzy technique with geocoding process to resolve these limitations. In order to implement the proposed method, a web-based system is designed. In proposed method, nearness to places is defined by fuzzy membership functions and multiple fuzzy distance maps are created. Then these fuzzy distance maps are integrated using fuzzy overlay technique for obtain the results. Proposed methods provides different capabilities for users such as ability to search multi-part addresses, searching places based on their location, non-point representation of results as well as displaying search results based on their priority.

  16. Toward an Improved Understanding of the Tropical Energy Budget Using TRMM-based Atmospheric Radiative Heating Products

    Science.gov (United States)

    L'Ecuyer, T.; McGarragh, G.; Ellis, T.; Stephens, G.; Olson, W.; Grecu, M.; Shie, C.; Jiang, X.; Waliser, D.; Li, J.; Tian, B.

    2008-05-01

    It is widely recognized that clouds and precipitation exert a profound influence on the propagation of radiation through the Earth's atmosphere. In fact, feedbacks between clouds, radiation, and precipitation represent one of the most important unresolved factors inhibiting our ability to predict the consequences of global climate change. Since its launch in late 1997, the Tropical Rainfall Measuring Mission (TRMM) has collected more than a decade of rainfall measurements that now form the gold standard of satellite-based precipitation estimates. Although not as widely advertised, the instruments aboard TRMM are also well-suited to the problem of characterizing the distribution of atmospheric heating in the tropics and a series of algorithms have recently been developed for estimating profiles of radiative and latent heating from these measurements. This presentation will describe a new multi-sensor tropical radiative heating product derived primarily from TRMM observations. Extensive evaluation of the products using a combination of ground and satellite-based observations is used to place the dataset in the context of existing techniques for quantifying atmospheric radiative heating. Highlights of several recent applications of the dataset will be presented that illustrate its utility for observation-based analysis of energy and water cycle variability on seasonal to inter-annual timescales and evaluating the representation of these processes in numerical models. Emphasis will be placed on the problem of understanding the impacts of clouds and precipitation on atmospheric heating on large spatial scales, one of the primary benefits of satellite observations like those provided by TRMM.

  17. A new technique in brachytherapy for the putting in operation of the radiation protection principle named ''ALARA': the P.D.R. (acronym for Pulsed Dose Rate); Une nouvelle technique en curietherapie pour la mise en oeuvre du principe de radioprotection dit ''ALARA'': le PDR

    Energy Technology Data Exchange (ETDEWEB)

    Hoffstetter, S.; Aletti, P.; Bellut, F.; Peiffert, D. [Centre Alexis-Vautrin, 54 - Vandoeuvre-les-Nancy (France)

    1998-07-01

    This article presents successively the different techniques of brachytherapy and gives the radiation doses received in 1995 at the beginning of the use of the projector of iridium source and in 1997 with its partial utilization. On this base, an estimation of the number of applications using this type of apparatus and then a reduction of doses received is equally proposed. (N.C.)

  18. Microfluidic Approaches to Synchrotron Radiation-Based Fourier Transform Infrared (SR-FTIR) Spectral Microscopy of Living Biosystems

    OpenAIRE

    Loutherback, K; Birarda, G; Chen, L.; Holman, HYN

    2016-01-01

    © 2016 Bentham Science Publishers.A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great pro...

  19. Nasal base narrowing: the alar flap advancement technique.

    Science.gov (United States)

    Ismail, Ahmed Soliman

    2011-01-01

    To evaluate the role of creating an alar-based advancement flap in narrowing the nasal base and correcting excessive alar flare. Case series with chart review. This is a retrospective record review study. The study included 35 cases presenting with a wide nasal base and excessive alar flaring. The surgical procedure combined the alar base reduction with alar flare excision by creating a single laterally based alar flap. Any caudal septal deformities and any nasal tip modification procedures were corrected before the nasal base narrowing. The mean follow-up period was 23 months. The mean alar flap narrowing was 6.3 mm, whereas the mean width of sill narrowing was 2.9 mm. This single laterally based advancement alar flap resulted in a more conservative external resection, thus avoiding alar wedge overresection or blunting of the alar-facial crease. No cases of postoperative bleeding, infection, or keloid were encountered, and the external alar wedge excision healed with no apparent scar that was hidden in the depth of the alar-facial crease. The risk of notching of the alar rim at the sill incision is reduced by adopting a 2-layer closure of the vestibular floor. The alar base advancement flap is an effective technique in narrowing both the nasal base and excessive alar flare. It adopts a single skin excision to correct the 2 deformities while commonly feared complications were avoided.

  20. Performance Based Novel Techniques for Semantic Web Mining

    Directory of Open Access Journals (Sweden)

    Mahendra Thakur

    2012-01-01

    Full Text Available The explosive growth in the size and use of the World Wide Web continuously creates new great challenges and needs. The need for predicting the users preferences in order to expedite and improve the browsing though a site can be achieved through personalizing of the websites. Most of the research efforts in web personalization correspond to the evolution of extensive research in web usage mining, i.e. the exploitation of the navigational patterns of the web site visitors. When a personalization system relies solely on usage-based results, however, valuable information conceptually related to what is finally recommended may be missed. Moreover, the structural properties of the web site are often disregarded. In this paper, we propose novel techniques that use the content semantics and the structural properties of a web site in order to improve the effectiveness of web personalization. In the first part of our work we present standing for Semantic Web Personalization, a personalization system that integrates usage data with content semantics, expressed in ontology terms, in order to compute semantically enhanced navigational patterns and effectively generate useful recommendations. To the best of our knowledge, our proposed technique is the only semantic web personalization system that may be used by non-semantic web sites. In the second part of our work, we present a novel approach for enhancing the quality of recommendations based on the underlying structure of a web site. We introduce UPR (Usage-based PageRank, a PageRank-style algorithm that relies on the recorded usage data and link analysis techniques. Overall, we demonstrate that our proposed hybrid personalization framework results in more objective and representative predictions than existing techniques.

  1. GIS Based Stereoscopic Visualization Technique for Weather Radar Data

    Science.gov (United States)

    Lim, S.; Jang, B. J.; Lee, K. H.; Lee, C.; Kim, W.

    2014-12-01

    As rainfall characteristic is more quixotic and localized, it is important to provide a prompt and accurate warning for public. To monitor localized heavy rainfall, a reliable disaster monitoring system with advanced remote observation technology and high-precision display system is needed. To advance even more accurate weather monitoring using weather radar, there have been growing concerns regarding the real-time changes of mapping radar observations on geographical coordinate systems along with the visualization and display methods of radar data based on spatial interpolation techniques and geographical information system (GIS). Currently, the method of simultaneously displaying GIS and radar data is widely used to synchronize the radar and ground systems accurately, and the method of displaying radar data in the 2D GIS coordinate system has been extensively used as the display method for providing weather information from weather radar. This paper proposes a realistic 3D weather radar data display technique with higher spatiotemporal resolution, which is based on the integration of 3D image processing and GIS interaction. This method is focused on stereoscopic visualization, while conventional radar image display works are based on flat or two-dimensional interpretation. Furthermore, using the proposed technique, the atmospheric change at each moment can be observed three-dimensionally at various geological locations simultaneously. Simulation results indicate that 3D display of weather radar data can be performed in real time. One merit of the proposed technique is that it can provide intuitive understanding of the influence of beam blockage by topography. Through an exact matching each 3D modeled radar beam with 3D GIS map, we can find out the terrain masked areas and accordingly it facilitates the precipitation correction from QPE underestimation caused by ground clutter filtering. It can also be expected that more accurate short-term forecasting will be

  2. Immobilization of microbial cell and yeast cell and its application to biomass conversion using radiation techniques

    Science.gov (United States)

    Kaetsu, Isao; Kumakura, Minoru; Fujimura, Takashi; Kasai, Noboru; Tamada, Masao

    The recent results of immobilization of cellulase-producing cells and ethanol-fermentation yeast by radiation were reported. The enzyme of cellulase produced by immobilized cells was used for saccharification of lignocellulosic wastes and immobilized yeast cells were used for fermentation reaction from glucose to ethanol. The wastes such as chaff and bagasse were treated by γ-ray or electron-beam irradiation in the presence of alkali and subsequent mechanical crushing, to form a fine powder less than 50 μm in diameter. On the other hand, Trichoderma reesei as a cellulase-producing microbial cell was immobilized on a fibrous carrier having a specific porous structure and cultured to produce cellulase. The enzymatic saccharification of the pretreated waste was carried out using the produced cellulase. The enhanced fermentation process to produce ethanol from glucose with the immobilized yeast by radiation was also studied. The ethanol productivity of immobilized growing yeast cells thus obtained was thirteen times that of free yeast cells in a 1:1 volume of liquid medium to immobilized yeast cells.

  3. Response of ionization chamber based pocket dosimeter to beta radiation.

    Science.gov (United States)

    Kumar, Munish; Gupta, Anil; Pradhan, S M; Bakshi, A K; Chougaonkar, M P; Babu, D A R

    2013-12-01

    Quantitative estimate of the response of ionization chamber based pocket dosimeters (DRDs) to various beta sources was performed. It has been established that the ionization chamber based pocket dosimeters do not respond to beta particles having energy (Emax)1 MeV, the DRDs exhibit measureable response and the values are ~8%, ~14% and ~27% per mSv for natural uranium, (90)Sr/(90)Y and (106)Ru/(106)Rh beta sources respectively. As the energy of the beta particles increases, the response also increases. The response of DRDs to beta particles having energy>1 MeV arises due to the fact that the thickness of the chamber walls is less than the maximum range of beta particles. This may also be one of the reasons for disparity between doses measured with passive/legal dosimeters (TLDs) and DRDs in those situations in which radiation workers are exposed to mixed field of gamma photons and beta particles especially at uranium processing plants, nuclear (power and research) reactors, waste management facilities and fuel reprocessing plants etc. The paper provides the reason (technical) for disparity between the doses recorded by TLDs and DRDs in mixed field of photons and beta particles.

  4. Laser image denoising technique based on multi-fractal theory

    Science.gov (United States)

    Du, Lin; Sun, Huayan; Tian, Weiqing; Wang, Shuai

    2014-02-01

    The noise of laser images is complex, which includes additive noise and multiplicative noise. Considering the features of laser images, the basic processing capacity and defects of the common algorithm, this paper introduces the fractal theory into the research of laser image denoising. The research of laser image denoising is implemented mainly through the analysis of the singularity exponent of each pixel in fractal space and the feature of multi-fractal spectrum. According to the quantitative and qualitative evaluation of the processed image, the laser image processing technique based on fractal theory not only effectively removes the complicated noise of the laser images obtained by range-gated laser active imaging system, but can also maintains the detail information when implementing the image denoising processing. For different laser images, multi-fractal denoising technique can increase SNR of the laser image at least 1~2dB compared with other denoising techniques, which basically meet the needs of the laser image denoising technique.

  5. Regression based peak load forecasting using a transformation technique

    Energy Technology Data Exchange (ETDEWEB)

    Haida, Takeshi; Muto, Shoichi (Tokyo Electric Power Co. (Japan). Computer and Communication Research Center)

    1994-11-01

    This paper presents a regression based daily peak load forecasting method with a transformation technique. In order to forecast the load precisely through a year, the authors should consider seasonal load change, annual load growth and the latest daily load change. To deal with these characteristics in the load forecasting, a transformation technique is presented. This technique consists of a transformation function with translation and reflection methods. The transformation function is estimated with the previous year's data points, in order that the function converts the data points into a set of new data points with preserving the shape of temperature-load relationships in the previous year. Then, the function is slightly translated so that the transformed data points will fit the shape of temperature-load relationships in the year. Finally, multivariate regression analysis with the latest daily loads and weather observations estimates the forecasting model. Large forecasting errors caused by the weather-load nonlinear characteristic in the transitional seasons such as spring and fall are reduced. Performance of the technique which is verified with simulations on actual load data of Tokyo Electric Power Company is also described.

  6. Application of red and near infrared emission from rare earth ions for radiation measurements based on optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Takada, E.; Hosono, Y.; Takahashi, H.; Nakazawa, M. [Univ. of Tokyo (Japan). Dept. of Quantum Engineering and Systems Science; Kakuta, T. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan); Yamazaki, M. [Sumita Optical Glass, Inc., Urawa, Saitama (Japan)

    1998-06-01

    When optical fiber radiation measurements are applied for a high dose rate area, there has been a problem of radiation induced loss in the optical fibers. In this study, red and near infrared (IR) fluorescence from rare earth ions has been used to reduce the problem. From continuous measurements using Gd{sub 2}O{sub 2}S:Pr{sup 3+}, the superiority of using long wavelength emission has been shown from the view point of radiation hardness. Linear relation between dose rate and peak counts was confirmed and it shows the possibility of using the long wavelength emission for radiation measurements. For calibration of the radiation induced loss, the Optical Time Domain Reflectometry (OTDR) technique has been applied. It has been shown that this method can broaden the dose rate limit of the optical fiber based measurements. Also, glass samples doped with rare-earth ions have been made and irradiated by gamma rays. Emission at longer wavelength than 700 nm has been observed for Eu{sup 3+} ions doped into silica, fluorophosphate and ZBLAN glass samples. Considering that it is easy to make silica glass and to connect it to usual silica glass optical fiber, silica glass doped with Eu{sup 3+} is thought to be the most promising material for new scintillating fibers with high radiation resistivity.

  7. Radiation dose exposure for lumbar spine epidural steroid injections: a comparison of conventional fluoroscopy data and CT fluoroscopy techniques.

    Science.gov (United States)

    Hoang, Jenny K; Yoshizumi, Terry T; Toncheva, Greta; Gray, Linda; Gafton, Andreia R; Huh, Billy K; Eastwood, James D; Lascola, Christopher D; Hurwitz, Lynne M

    2011-10-01

    The purpose of this article is to compare the radiation dose of conventional fluoroscopy-guided lumbar epidural steroid injections (ESIs) and CT fluoroscopy (CTF)-guided lumbar ESI using both clinical data and anthropomorphic phantoms. We performed a retrospective review of dose parameters for 14 conventional fluoroscopy ESI procedures performed by one proceduralist and 42 CTF-guided ESIs performed by three proceduralists (14 each). By use of imaging techniques similar to those for our clinical cohorts, a commercially available anthropomorphic male phantom with metal oxide semiconductor field effect transistor detectors was scanned to obtain absorbed organ doses for conventional fluoroscopy-guided and CTF-guided ESIs. Effective dose (ED) was calculated from measured organ doses. The mean conventional fluoroscopy time for ESI was 37 seconds, and the mean procedural CTF time was 4.7 seconds. Calculated ED for conventional fluoroscopy was 0.85 mSv compared with 0.45 mSv for CTF. The greatest contribution to the radiation dose from CTF-guided ESI came from the planning lumbar spine CT scan, which had an ED of 2.90 mSv when z-axis ranged from L2 to S1. This resulted in a total ED for CTF-guided ESI (lumbar spine CT scan plus CTF) of 3.35 mSv. The ED for the CTF-guided ESI was almost half that of conventional fluoroscopy because of the shorter fluoroscopy time. However, the overall radiation dose for CTF-guided ESIs can be up to four times higher when a full diagnostic lumbar CT scan is performed as part of the procedure. Radiation dose reduction for CTF-guided ESI is best achieved by minimizing the dose from the preliminary planning lumbar spine CT scan.

  8. MDCT arthrography of the hip: value of the adaptive statistical iterative reconstruction technique and potential for radiation dose reduction.

    Science.gov (United States)

    Tobalem, Frank; Dugert, Eric; Verdun, Francis R; Dunet, Vincent; Ott, Julien G; Rudiger, Hannes A; Cherix, Stephane; Meuli, Reto; Becce, Fabio

    2014-12-01

    The purpose of this article is to assess the effect of the adaptive statistical iterative reconstruction (ASIR) technique on image quality in hip MDCT arthrography and to evaluate its potential for reducing radiation dose. Thirty-seven patients examined with hip MDCT arthrography were prospectively randomized into three different protocols: one with a regular dose (volume CT dose index [CTDIvol], 38.4 mGy) and two with a reduced dose (CTDIvol, 24.6 or 15.4 mGy). Images were reconstructed using filtered back projection (FBP) and four increasing percentages of ASIR (30%, 50%, 70%, and 90%). Image noise and contrast-to-noise ratio (CNR) were measured. Two musculoskeletal radiologists independently evaluated several anatomic structures and image quality parameters using a 4-point scale. They also jointly assessed acetabular labrum tears and articular cartilage lesions. With decreasing radiation dose level, image noise statistically significantly increased (p=0.0009) and CNR statistically significantly decreased (p=0.001). We also found a statistically significant reduction in noise (p=0.0001) and increase in CNR (p≤0.003) with increasing percentage of ASIR; in addition, we noted statistically significant increases in image quality scores for the labrum and cartilage, subchondral bone, overall diagnostic quality (up to 50% ASIR), and subjective noise (p≤0.04), and statistically significant reductions for the trabecular bone and muscles (p≤0.03). Regardless of the radiation dose level, there were no statistically significant differences in the detection and characterization of labral tears (n=24; p=1) and cartilage lesions (n=40; p≥0.89) depending on the ASIR percentage. The use of up to 50% ASIR in hip MDCT arthrography helps to reduce radiation dose by approximately 35-60%, while maintaining diagnostic image quality comparable to that of a regular-dose protocol using FBP.

  9. Long-term efficacy of a mini-course in radiation-reducing techniques in invasive cardiology

    Energy Technology Data Exchange (ETDEWEB)

    Kuon, E. [Klinik Fraenkische Schweiz, Ebermannstadt (Germany). Abt. fuer Kardiologie; Empen, K.; Hummel, A.; Doerr, M.; Reffelmann, T.; Felix, S.B. [Ernst-Moritz-Arndt-Universitaet, Greifswald (Germany). Abt. fuer Innere Medizin B; Weitmann, K.; Hoffmann, W. [Ernst-Moritz-Arndt-Universitaet, Greifswald (Germany). Inst. fuer Versorgungsmedizin; Staudt, A. [Helios Kliniken, Schwerin (Germany). Abt. fuer Kardiologie und Angiologie

    2013-08-15

    Purpose: To validate the long-term efficacy of a 90-min. educational mini-course in less-irradiating cardiac interventional techniques. Materials and Methods: Before, two months after, and two years after the mini-course (periods I, II, and III), we analyzed the following radiation dose parameters for ten coronary angiographies (CA), performed by each of 7 cardiologists: total dose-area product (DAP), radiographic and fluoroscopic DAP fractions, number of radiographic frames and runs, and fluoroscopy time. Results: The median patient DAP for periods I, II and III was 31.4, 15.8 and 8.5 Gy x cm{sup 2}, respectively. The long-term effect was related to shorter median fluoroscopy times (180, 172, and 120 s), shorter (57, 52, and 45) and fewer (12, 12, and 10) radiographic runs, consistent collimation and restriction to an adequate image quality. Both radiographic DAP/frame (28.7, 17.0, and 18.4 mGy x cm{sup 2}) and fluoroscopic DAP/second (45.7, 24.2, and 10.0 mGy x cm{sup 2}) decreased significantly. The multivariate linear regression analysis confirmed the increasing efficacy of the mini-course itself (-44.6 and -60.7 %), and revealed a decreasing influence of the interventionalist's experience (-8.6 % and -4.9 % per 1,000 CAs, lifelong performed until the mini-course). The number of CAs performed after the mini-course did not influence the long-term DAP results. Conclusion: The presented educational mini-course allows a significant, long-lasting, and apparently ongoing reduction of patient radiation exposure due to CA. A self-surveillant documentation of relevant radiation parameters is well suited to monitor and improve each operator's individual long-term radiation-reducing efforts. (orig.)

  10. Noninvasive in vivo glucose sensing using an iris based technique

    Science.gov (United States)

    Webb, Anthony J.; Cameron, Brent D.

    2011-03-01

    Physiological glucose monitoring is important aspect in the treatment of individuals afflicted with diabetes mellitus. Although invasive techniques for glucose monitoring are widely available, it would be very beneficial to make such measurements in a noninvasive manner. In this study, a New Zealand White (NZW) rabbit animal model was utilized to evaluate a developed iris-based imaging technique for the in vivo measurement of physiological glucose concentration. The animals were anesthetized with isoflurane and an insulin/dextrose protocol was used to control blood glucose concentration. To further help restrict eye movement, a developed ocular fixation device was used. During the experimental time frame, near infrared illuminated iris images were acquired along with corresponding discrete blood glucose measurements taken with a handheld glucometer. Calibration was performed using an image based Partial Least Squares (PLS) technique. Independent validation was also performed to assess model performance along with Clarke Error Grid Analysis (CEGA). Initial validation results were promising and show that a high percentage of the predicted glucose concentrations are within 20% of the reference values.

  11. IMAGE SEGMENTATION BASED ON MARKOV RANDOM FIELD AND WATERSHED TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    This paper presented a method that incorporates Markov Random Field(MRF), watershed segmentation and merging techniques for performing image segmentation and edge detection tasks. MRF is used to obtain an initial estimate of x regions in the image under process where in MRF model, gray level x, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The process needs an initial segmented result. An initial segmentation is got based on K-means clustering technique and the minimum distance, then the region process in modeled by MRF to obtain an image contains different intensity regions. Starting from this we calculate the gradient values of that image and then employ a watershed technique. When using MRF method it obtains an image that has different intensity regions and has all the edge and region information, then it improves the segmentation result by superimpose closed and an accurate boundary of each region using watershed algorithm. After all pixels of the segmented regions have been processed, a map of primitive region with edges is generated. Finally, a merge process based on averaged mean values is employed. The final segmentation and edge detection result is one closed boundary per actual region in the image.

  12. Development of Innovative Radioactive Isotope Production Techniques at the Pennsylvania State University Radiation Science and Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Amanda M. [Pennsylvania State Univ., State College, PA (United States). Radiation Science and Engineering Center; Heidrich, Brenden [Pennsylvania State Univ., State College, PA (United States). Radiation Science and Engineering Center; Durrant, Chad [Pennsylvania State Univ., State College, PA (United States). Department of mechanical and Nuclear Engineering Center; Bascom, Andrew [Pennsylvania State Univ., State College, PA (United States). Department of mechanical and Nuclear Engineering Center; Unlu, Kenan [Pennsylvania State Univ., State College, PA (United States). Radiation Science and Engineering Center

    2013-08-15

    The Penn State Breazeale Nuclear Reactor (PSBR) at the Radiation Science and Engineering Center (RSEC) has produced radioisotopes for research and commercial purposes since 1956. With the rebirth of the radiochemistry education and research program at the RSEC, the Center stands poised to produce a variety of radioisotopes for research and industrial work that is in line with the mission of the DOE Office of Science, Office of Nuclear Physics, Isotope Development and Production Research and Application Program. The RSEC received funding from the Office of Science in 2010 to improve production techniques and develop new capabilities. Under this program, we improved our existing techniques to provide four radioisotopes (Mn-56, Br-82, Na-24, and Ar-41) to researchers and industry in a safe and efficient manner. The RSEC is also working to develop new innovative techniques to provide isotopes in short supply to researchers and others in the scientific community, specifically Cu-64 and Cu-67. Improving our existing radioisotopes production techniques and investigating new and innovative methods are two of the main initiatives of the radiochemistry research program at the RSEC.

  13. Differentiation of benign from malignant liver masses with Acoustic Radiation Force Impulse technique.

    Science.gov (United States)

    Yu, Hojun; Wilson, Stephanie R

    2011-12-01

    The objective of the study was to determine the performance of Acoustic Radiation Force Impulse (ARFI) imaging to differentiate benign from malignant liver masses, both of hepatocellular origin and metastases, by quantification of their stiffness. This study has institutional review board approval and informed consent. Eighty-nine patients (42 female and 47 male patients) with 105 liver masses had ARFI evaluation on ultrasound, S2000 (Siemens, Mountain View, Calif). Mean age of the patients was 53.67 years (range, 27-83 years). Mean diameter of the masses was 2.77 cm (range, 1.0-13.0 cm). Final diagnoses, confirmed by imaging on contrast-enhanced computed tomography, magnetic resonance, or ultrasound or biopsy, include hepatocellular carcinoma (n = 28), metastasis (n = 13), hemangioma (n = 35), focal nodular hyperplasia (n = 15), focal fat sparing (n = 8), focal fat deposit (n = 4), and adenoma (n = 2). Receiver operating characteristic analysis was performed to evaluate the diagnostic accuracy of the ARFI measurement and to extract the optimal cutoff values in the differentiation of benign from malignant disease. Acoustic Radiation Force Impulse values showed a statistically significant difference between benign (1.73 [SD, 0.8] m/sec) and malignant masses (2.57 [SD, 1.01] m/sec) (P fair accuracy. For differentiation of malignant from benign masses, the sensitivity, specificity, positive predictive value, and negative predictive value were 68% (28/41), 69% (44/64), 58% (28/48), and 77% (44/57), respectively, when 1.9 m/sec was chosen as a cutoff value, reflective of a wide variation of ARFI values in each diagnosis. For differentiation of metastasis from benign masses, sensitivity, specificity, positive predictive value, and NPV were 69% (9/13), 89% (57/64), 56% (9/16), and 93% (57/61), respectively, when 2.72 m/sec was chosen as a cutoff value. Acoustic Radiation Force Impulse measurement may be helpful to differentiate benign masses from metastases, in particular

  14. Effects of solar radiation on collagen-based biomaterials

    Directory of Open Access Journals (Sweden)

    Alina Sionkowska

    2006-01-01

    Full Text Available The effect of solar radiation on collagen and collagen/synthetic polymer blends in the form of thin films and solutions has been studied by UV-VIS and FTIR spectroscopies. Films and solutions of collagen blended with poly(vinyl alcohol (PVA and poly(vinyl pyrrolidone (PVP were irradiated by solar light. It was found that UV-VIS spectra, which characterize collagen, collagen/PVA, and collagen/PVP blended films, were significantly altered by solar radiation. FTIR spectra of collagen, collagen/PVA, and collagen/PVP films showed that after solar irradiation, the positions of Amide A bands were shifted to lower wavenumbers. There was not any significant alteration in the position of Amide I and Amide II bands of collagen and its blends after solar radiation. The effect of solar UV radiation in comparison with artificial UV radiation has been discussed.

  15. Smart Radiation Device based on a perovskite manganese oxide

    Science.gov (United States)

    Tachikawa, Sumitaka; Shimazaki, Kazunori; Ohnishi, Akira; Hirosawa, Haruto; Shimakawa, Yuichi; Ochi, Atsushi; Okamoto, Akira; Nakamura, Yasuyuki

    2003-09-01

    A new thermal control material named the Smart Radiation Device (SRD) was studied and improved. An SRD can be used as a variable emittance radiator; it controls the heat radiated to deep space without electrical instruments or mechanical parts, simply by changing emissivity. This device reduces the energy consumption of the on-board electrical heater, and decreases the weight and the cost of the thermal control system on the spacecraft. Three types of SRD were tried in the process of improving optical properties. In order to reduce solar absorptance, we designed and applied multilayer films for SRDs to reflect solar radiation while retaining its infrared radiative properties. In this paper, we introduce the optical properties of the SRD, a space environmental simulation test on ground, and environmental tests in space. In addition, we report the optical properties of the value-added SRD.

  16. Synchrotron radiation X-ray microfluorescence techniques and biological applications

    Indian Academy of Sciences (India)

    R T Lopes; I Lima; G R Pereira; C A Perez

    2011-02-01

    Synchrotron X-ray imaging systems with fluorescence techniques was developed for biomedical researches in Brazilian Synchrotron Laboratory. An X-ray fluorescence microtomography system was implemented to analyse human prostate and breast samples and an X-ray microfluorescence system was implemented to study bone sites of human and animal samples with and without bone disorders.

  17. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Apurva; Stanford Synchrotron Radiation Lightsource; Doeff, Marca M.; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J.; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C.; Conry, Thomas

    2013-04-30

    We describe the use of synchrotron X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) techniques to probe details of intercalation/deintercalation processes in electrode materials for Li ion and Na ion batteries. Both in situ and ex situ experiments are used to understand structural behavior relevant to the operation of devices.

  18. Efficient Identification Using a Prime-Feature-Based Technique

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Haq, Shaiq A.; Valente, Andrea

    2011-01-01

    Identification of authorized train drivers through biometrics is a growing area of interest in locomotive radio remote control systems. The existing technique of password authentication is not very reliable and potentially unauthorized personnel may also operate the system on behalf of the operator....... Fingerprint identification system, implemented on PC/104 based real-time systems, can accurately identify the operator. Traditionally, the uniqueness of a fingerprint is determined by the overall pattern of ridges and valleys as well as the local ridge anomalies e.g., a ridge bifurcation or a ridge ending...... in this paper. The technique involves identifying the most prominent feature of the fingerprint and searching only for that feature in the database to expedite the search process. The proposed architect provides efficient matching process and indexing feature for identification is unique....

  19. An Improved Face Recognition Technique Based on Modular LPCA Approach

    Directory of Open Access Journals (Sweden)

    Mathu S.S. Kumar

    2011-01-01

    Full Text Available Problem statement: A face identification algorithm based on modular localized variation by Eigen Subspace technique, also called modular localized principal component analysis, is presented in this study. Approach: The face imagery was partitioned into smaller sub-divisions from a predefined neighborhood and they were ultimately fused to acquire many sets of features. Since a few of the normal facial features of an individual do not differ even when the pose and illumination may differ, the proposed method manages these variations. Results: The proposed feature selection module has significantly, enhanced the identification precision using standard face databases when compared to conservative and modular PCA techniques. Conclusion: The proposed algorithm, when related with conservative PCA algorithm and modular PCA, has enhanced recognition accuracy for face imagery with illumination, expression and pose variations.

  20. Novel synchrotron based techniques for characterization of energy materials

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, H.F.; Nielsen, S.F.; Olsen, U.L.; Schmidt, S. (Risoe DTU, Materials Research Dept., Roskilde (Denmark)); Wright, J. (European Synchrotron Radiation Facility, Grenoble Cedex (France))

    2008-10-15

    Two synchrotron techniques are reviewed, both based on the use of high energy x-rays, and both applicable to in situ studies of bulk materials. Firstly, 3DXRD microscopy, which enables 3D characterization of the position, morphology, phase, elastic strain and crystallographic orientation of the individual embedded grains in polycrystalline specimens. In favourable cases, hundreds of grains can be studied simultaneously during processing. Secondly, plastic strain tomography: a unique method for determining the plastic strain field within materials during processing the potential applications of these techniques for basic and applied studies of four types of energy materials are discussed: polymer composites for wind turbines, solid oxide fuel cells, hydrogen storage materials and superconducting tapes. Furthermore, progress on new detectors aiming at improving the spatial and temporal resolution of such measurements is described. (au)

  1. New modulation-based watermarking technique for video

    Science.gov (United States)

    Lemma, Aweke; van der Veen, Michiel; Celik, Mehmet

    2006-02-01

    Successful watermarking algorithms have already been developed for various applications ranging from meta-data tagging to forensic tracking. Nevertheless, it is commendable to develop alternative watermarking techniques that provide a broader basis for meeting emerging services, usage models and security threats. To this end, we propose a new multiplicative watermarking technique for video, which is based on the principles of our successful MASK audio watermark. Audio-MASK has embedded the watermark by modulating the short-time envelope of the audio signal and performed detection using a simple envelope detector followed by a SPOMF (symmetrical phase-only matched filter). Video-MASK takes a similar approach and modulates the image luminance envelope. In addition, it incorporates a simple model to account for the luminance sensitivity of the HVS (human visual system). Preliminary tests show algorithms transparency and robustness to lossy compression.

  2. A VIKOR Technique with Applications Based on DEMATEL and ANP

    Science.gov (United States)

    Ou Yang, Yu-Ping; Shieh, How-Ming; Tzeng, Gwo-Hshiung

    In multiple criteria decision making (MCDM) methods, the compromise ranking method (named VIKOR) was introduced as one applicable technique to implement within MCDM. It was developed for multicriteria optimization of complex systems. However, few papers discuss conflicting (competing) criteria with dependence and feedback in the compromise solution method. Therefore, this study proposes and provides applications for a novel model using the VIKOR technique based on DEMATEL and the ANP to solve the problem of conflicting criteria with dependence and feedback. In addition, this research also uses DEMATEL to normalize the unweighted supermatrix of the ANP to suit the real world. An example is also presented to illustrate the proposed method with applications thereof. The results show the proposed method is suitable and effective in real-world applications.

  3. New Intellectual Economized Technique on Electricity Based on DSP

    Institute of Scientific and Technical Information of China (English)

    Chang-ming LI; Tao JI; Ying SUN

    2010-01-01

    In order to resolve the problem of the unbalanced threephase and unstable voltage,intellectual economized technique on electricity based on electromagnetic regulation and control is proposed in this paper.We choose the TMS320LF2407A as the control chip and stepper motor as the executing agency.The equipment controls the movable contact reaching to the assigned position on the magnetic coil quickly and accurately,and outputs the sine-wave voltage steadily along with the network voltage variation though the fuzzy Porpornonal Integral Derivative(PID)control algorithm of integral separation and incremental mode with setting dead area.The principle of work and the key technique on the electromagnetic regulation and control are introduced in detail in this paper.The experiment result gives a proof for all the algorithm mentioned in this paper.

  4. ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment

    Science.gov (United States)

    Quej, Victor H.; Almorox, Javier; Arnaldo, Javier A.; Saito, Laurel

    2017-03-01

    Daily solar radiation is an important variable in many models. In this paper, the accuracy and performance of three soft computing techniques (i.e., adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and support vector machine (SVM) were assessed for predicting daily horizontal global solar radiation from measured meteorological variables in the Yucatán Peninsula, México. Model performance was assessed with statistical indicators such as root mean squared error (RMSE), mean absolute error (MAE) and coefficient of determination (R2). The performance assessment indicates that the SVM technique with requirements of daily maximum and minimum air temperature, extraterrestrial solar radiation and rainfall has better performance than the other techniques and may be a promising alternative to the usual approaches for predicting solar radiation.

  5. Protoplanetary disk fragmentation with varying radiative physics, initial conditions and numerical techniques

    CERN Document Server

    Mayer, Lucio

    2007-01-01

    We review recent results of SPH simulations of gravitational instability in gaseous protoplanetary disks,emphasizing the role of thermodynamics in both isolated and binary systems. Contradictory results appeared in the literature regarding disk fragmentation at tens of AU from the central star are likely due to the different treatment of radiation physics as well as reflecting different initial conditions. Further progress on the subject requires extensive comparisons between different codes with the requirement that the same initial conditions are adopted. It is discussed how the local conditions of the disks undergoing fragmentation at $R < 25$ AU in recent SPH simulations are in rough agreement with the prediction of analytical models, with small differences being likely related to the inability of analytical models to account for the dynamics and thermodynamics of three-dimensional spiral shocks. We report that radically different adaptive hydrodynamical codes, SPH and adaptive mesh refinement (AMR), y...

  6. Synchrotron radiation techniques for the characterization of $Nb_{3}Sn$ superconductors

    CERN Document Server

    Scheuerlein, C; Buta, F; Reichert, H; Thilly, L

    2009-01-01

    The high flux of high energy x-rays that can be provided through state-of-the-art high energy synchrotron beam lines has enabled a variety of new experiments with the highly absorbing Nb3Sn superconductors. We report different experiments with Nb3Sn strands that have been conducted at the ID15 High Energy Scattering beam line of the European Synchrotron Radiation Facility (ESRF). Synchrotron x-ray diffraction has been used in order to monitor phase transformations during in-situ reaction heat treatments prior to Nb3Sn formation, and to monitor Nb3Sn growth. Fast synchrotron micro-tomography was applied to study void growth during the reaction heat treatment of Internal Tin strands. The elastic strain in the different phases of fully reacted Nb3Sn composite conductors can be measured by high resolution x-ray diffraction during in-situ tensile tests.

  7. Advances in treatment techniques: stereotactic body radiation therapy and the spread of hypofractionation.

    Science.gov (United States)

    Kavanagh, Brian D; Miften, Moyed; Rabinovitch, Rachel A

    2011-01-01

    Radiation therapy (RT) is an essential component of the management of many cancers. Traditionally, a course of external bream RT often involved daily treatments for a duration of 6 weeks or longer in some instances. Now, however, emerging clinical evidence indicates that, for some common cancers, the total length of treatment can be substantially shortened, offering convenience to patients and opportunities for resource utilization efficiencies. This trend toward so-called hypofractionated RT has been supported by hypothesis-driven clinical research guided by a combination of radiobiological and clinical insights and technological enhancements. The present review presents the rationale behind and current status of hypofractionation for prostate, breast, and medically inoperable early stage lung cancer.

  8. Sigmoid exclusion: a new technique in the management of radiation-induced fistula.

    Science.gov (United States)

    Aitken, R J; Elliot, M S

    1985-09-01

    Colovesical and colovaginal fistulas following irradiation for pelvic malignancy represent a formidable surgical problem. Although complex surgical procedures to close the fistulas and restore continence have been described, often a defunctioning colostomy with an associated urinary conduit is the only feasible option. Three patients who have successfully undergone an original procedure (sigmoid exclusion) are presented. Sigmoid exclusion restores continence but avoids a permanent stoma. The involved sigmoid colon was isolated on its mesentery ensuring that the area incorporating the fistulas was not disrupted. The ends of the isolated sigmoid colon were closed and bowel continuity then restored by a colorectal or colo-anal anastomosis. Following closure of a temporary colostomy the patients were continent with no ill effects or sepsis from the excluded colon. This procedure has the dual advantage of restoring continence yet avoiding both an urinary conduit and a permanent colostomy, and represents a useful advance in the surgical management of radiation induced colonic fistulas.

  9. A Novel Diagnostics of Ultrashort Electron Bunches Based on Detection of Coherent Radiation from Bunched Electron Beam in an Undulator

    CERN Document Server

    Saldin, Evgeny L; Yurkov, Mikhail V

    2004-01-01

    We propose a new method for measurements of the longitudinal profile of 100 femtosecond electron bunches for X-ray Free Electron Lasers (XFELs). The method is based on detection of coherent undulator radiation produced by modulated electron beam. Seed optical quantum laser is used to produce exact optical replica of ultrashort electron bunches. The replica is generated in apparatus which consists of an input undulator (energy modulator), and output undulator (radiator) separated by a dispersion section. The radiation in the output undulator is excited by the electron bunch modulated at the optical wavelength and rapidly reaches a hundred-MW-level power. We then use the now-standard method of ultrashort laser pulse-shape measurement, a tandem combination of autocorrelator and spectrum (FROG -- frequency resolved optical gating) providing real-time single-shot measurements of the electron bunch structure. The big advantage of proposed technique is that it can be used to determine the slice energy spread and emi...

  10. The study and the realization of radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique; Etude et realisation de detecteurs de rayonnements a base de films de diamant polycristallin elabores par depot chimique en phase vapeur assiste par plasma micro-onde

    Energy Technology Data Exchange (ETDEWEB)

    Jany, Ch

    1998-10-29

    The aim of this work was to develop radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique. The influence of surface treatments, contact technology and diamond growth parameters on the diamond detectors characteristics was investigated in order to optimise the detector response to alpha particles. The first part of the study focused on the electrical behaviour of as-deposited diamond surface, showing a p type conduction and its influence on the leakage current of the device. A surface preparation process was established in order to reduce the leakage current of the device by surface dehydrogenation using an oxidising step. Several methods to form and treat electrical contacts were also investigated showing that the collection efficiency of the device decreases after contact annealing. In the second part, we reported the influence of the diamond deposition parameters on the characteristics of the detectors. The increase of the deposition temperature and/or methane concentration was shown to lead {eta} to decrease. In contrast, {eta} was found to increase with the micro-wave power. The evolution of the diamond detector characteristics results from the variation in sp{sup 2} phases incorporation and in the crystallography quality of the films. These defects increase the leakage current and reduce the carrier mobility and lifetime. Measurements carried out on detectors with different thicknesses showed that the physical properties varies along the growth direction, improving with the film thickness. Finally, the addition of nitrogen (> 10 ppm) in the gas mixture during diamond deposition was found to strongly reduce the collection efficiency of the detectors. To conclude the study, we fabricated and characterised diamond devices which were used for thermal neutron detection and for the intensity and shape measurement of VUV and soft X-ray pulses. (author)

  11. Compatibility of different measurement techniques of global solar radiation and application for long-term observations at Izaña Observatory

    Science.gov (United States)

    Delia García, Rosa; Cuevas, Emilio; García, Omaira Elena; Ramos, Ramón; Romero-Campos, Pedro Miguel; de Ory, Fernado; Cachorro, Victoria Eugenia; de Frutos, Angel

    2017-03-01

    A 1-year inter-comparison of classical and modern radiation and sunshine duration (SD) instruments has been performed at Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain) starting on 17 July 2014. We compare daily global solar radiation (GSRH) records measured with a Kipp & Zonen CM-21 pyranometer, taken in the framework of the Baseline Surface Radiation Network, with those measured with a multifilter rotating shadowband radiometer (MFRSR), a bimetallic pyranometer (PYR) and GSRH estimated from sunshine duration performed by a Campbell-Stokes sunshine recorder (CS) and a Kipp & Zonen sunshine duration sensor (CSD). Given that the BSRN GSRH records passed strict quality controls (based on principles of physical limits and comparison with the LibRadtran model), they have been used as reference in the inter-comparison study. We obtain an overall root mean square error (RMSE) of ˜ 0.9 MJm-2 (4 %) for PYR and MFRSR GSRH, 1.9 (7 %) and 1.2 MJm-2 (5 %) for CS and CSD GSRH, respectively. Factors such as temperature, relative humidity (RH) and the solar zenith angle (SZA) have been shown to moderately affect the GSRH observations. As an application of the methodology developed in this work, we have re-evaluated the GSRH data time series obtained at IZO with two PYRs between 1977 and 1991. Their high consistency and temporal stability have been proved by comparing with GSRH estimates obtained from SD observations. These results demonstrate that (1) the continuous-basis inter-comparison of different GSRH techniques offers important diagnostics for identifying inconsistencies between GSRH data records, and (2) the GSRH measurements performed with classical and more simple instruments are consistent with more modern techniques and, thus, valid to recover GSRH data time series and complete worldwide distributed GSRH data. The inter-comparison and quality assessment of these different techniques have allowed us to obtain a complete and consistent

  12. Feature-based multiresolution techniques for product design

    Institute of Scientific and Technical Information of China (English)

    LEE Sang Hun; LEE Kunwoo

    2006-01-01

    3D computer-aided design (CAD) systems based on feature-based solid modelling technique have been widely spread and used for product design. However, when part models associated with features are used in various downstream applications,simplified models in various levels of detail (LODs) are frequently more desirable than the full details of the parts. In particular,the need for feature-based multiresolution representation of a solid model representing an object at multiple LODs in the feature unit is increasing for engineering tasks. One challenge is to generate valid models at various LODs after an arbitrary rearrangement of features using a certain LOD criterion, because composite Boolean operations consisting of union and subtraction are not commutative. The other challenges are to devise proper topological framework for multiresolution representation, to suggest more reasonable LOD criteria, and to extend applications. This paper surveys the recent research on these issues.

  13. KERMA-based radiation dose management system for real-time patient dose measurement

    Science.gov (United States)

    Kim, Kyo-Tae; Heo, Ye-Ji; Oh, Kyung-Min; Nam, Sang-Hee; Kang, Sang-Sik; Park, Ji-Koon; Song, Yong-Keun; Park, Sung-Kwang

    2016-07-01

    Because systems that reduce radiation exposure during diagnostic procedures must be developed, significant time and financial resources have been invested in constructing radiation dose management systems. In the present study, the characteristics of an existing ionization-based system were compared to those of a system based on the kinetic energy released per unit mass (KERMA). Furthermore, the feasibility of using the KERMA-based system for patient radiation dose management was verified. The ionization-based system corrected the effects resulting from radiation parameter perturbations in general radiography whereas the KERMA-based system did not. Because of this difference, the KERMA-based radiation dose management system might overestimate the patient's radiation dose due to changes in the radiation conditions. Therefore, if a correction factor describing the correlation between the systems is applied to resolve this issue, then a radiation dose management system can be developed that will enable real-time measurement of the patient's radiation exposure and acquisition of diagnostic images.

  14. Web-based tools for quality assurance and radiation protection in diagnostic radiology.

    Science.gov (United States)

    Moores, B M; Charnock, P; Ward, M

    2010-01-01

    Practical and philosophical aspects of radiation protection in diagnostic radiology have changed very little over the past 50 y even though patient doses have continued to rise significantly in this period. This rise has been driven by technological developments, such as multi-slice computed tomography, that have been able to improve diagnostic accuracy but not necessarily provide the same level of risk-benefit to all patients or groups of patients given the dose levels involved. Can practical radiation protection strategies hope to keep abreast of these ongoing developments? A project was started in 1992 in Liverpool that aimed to develop IT driven quality assurance (QA)/radiation protection software tools based upon a modular quality assurance dose data system. One of the modules involved the assessment of the patient entrance surface air kerma (ESAK) for an X-ray examination that was based upon the use of calibrated X-ray tube exposure factors to calculate ESAK as well as collecting appropriate patient details (age, sex, weight, thickness etc). The package also contained modules for logging all necessary equipment performance QA data. This paper will outline the experience gained with this system through its transition from a local application on a stand alone PC within the department to the current web-based approach. Advantages of a web-based approach to delivering such an application as well as centrally storing data originating on many hospital sites will be discussed together with the scientific support processes that can be developed with such a system. This will include local, national and international considerations. The advantages of importing radiographic examination details directly from other electronic storage systems such as a hospital's radiology information system will be presented together with practical outcomes already achieved. This will include the application of statistical techniques to the very large data sets generated. The development

  15. Laser-based flow cytometric analysis of genotoxicity of humans exposed to ionizing radiation during the Chernobyl accident

    Science.gov (United States)

    Jensen, Ronald H.; Bigbee, William L.; Langlois, Richard G.; Grant, Stephen G.; Pleshanov, Pavel G.; Chirkov, Andre A.; Pilinskaya, Maria A.

    1991-05-01

    An analytical technique has been developed that allows laser-based flow cytometric measurement of the frequency of red blood cells that have lost allele-specific expression of a cell surface antigen due to genetic toxicity in bone marrow precursor cells. Previous studies demonstrated a correlation of such effects with the exposure of each individual to mutagenic phenomena, such as ionizing radiation, and the effects can persist for the lifetime of each individual. During the emergency response to the nuclear power plant accidert at Chemobyl, Ukraine, USSR, a number of people were exposed to whole body doses of ioniing radiation. Some of these individuals were tested with this laser-based assay and found to express a dose-dependent increase in the frequency of variant red blood cells that appears to be a persistent biological effect. This effect is similar to that which was previously observed in individuals who were exposed to ionizing radiation at Hiroshima in 1945 because of the A-bomb explosion. All data indicate that this assay might well be used as a biodosimeter to estimate radiation dose and also as an element to be used for estimating the risk of each individual to develop cancer due to radiation exposure.

  16. Radiation response of SiC-based fibers

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States); Kohyama, Akira [Inst. of Advanced Energy, Kyoto (Japan); Snead, L.L. [Oak Ridge National Lab., TN (United States)

    1998-03-01

    The radiation response of a base-line carbide composite (SiC/SiC) made with Nicalon{trademark} CG fiber reinforcement was presented for a broad range of dose and irradiation temperatures. Strength loss in this composite and a similar composite made with Tyranno{trademark} fiber was related to shrinkage and a predicted mass loss in the Nicalon CG or Tyranno fibers. In Table 1, measured relative density and length changes ({Delta}p/p{sub o} and {Delta}L/L{sub o}, respectively) for coated and uncoated fibers irradiated at high doses and temperatures (43 dpa-SiC at 1000 C and 80 dpa-SiC at 800 C) are given. Also given are the relative mass loss changes {Delta}m/m{sub o}, calculated from {Delta}p/p{sub o} and {Delta}L/L{sub o} by the expression {Delta}m/m{sub o} = 3 {Delta}L/L{sub o} + {Delta}p/p{sub o}.

  17. Radiation safety of handheld mobile phones and base stations

    Energy Technology Data Exchange (ETDEWEB)

    Jokela, K.; Leszczynski, D.; Paile, W.; Salomaa, S.; Puranen, L.; Hyysalo, P

    1999-01-01

    The recent expansion of personal telecommunications has led to a rapid increase in the exposure of people to the radio-frequency (RF) radiation. Although the mobile phones are low power devices, the antenna is so close to the head that the local exposure may slightly exceed 2 W/kg, the current exposure limit for the local specific absorption rate SAR for the general public. The increase in the temperature is, however, too small to have any physiological significance. On the basis of experiments with cell cultures it is possible that other biological effects caused by some unknown non-thermal mechanism exist, but thus far there is no conclusive biological or epidemiological evidence to suggest any diseases or adverse physiological changes below the thermal threshold. The use of a mobile phone by a person wearing a pace-maker, is not recommended, if the immunity of the pace-maker has not been assured. The exposure caused by the base stations is in all practical cases well below the power density limits for general public. (author) 118 refs.

  18. Large area radiation detectors based on II VI thin films

    Science.gov (United States)

    Quevedo-Lopez, Manuel

    2015-03-01

    The development of low temperature device technologies that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible, low metal content, sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, neutron/gamma-ray/x-ray detectors, etc. In this talk, our efforts to develop novel CMOS integration schemes, circuits, memory, sensors as well as novel contacts, dielectrics and semiconductors for flexible electronics are presented. In particular, in this presentation we discuss fundamental materials properties including crystalline structure, interfacial reactions, doping, etc. defining performance and reliability of II-VI-based radiation sensors. We investigate the optimal thickness of a semiconductor diode for thin-film solid state thermal neutron detectors. Besides II-VI materials, we also evaluated several diode materials, Si, CdTe,GaAs, C (diamond), and ZnO, and two neutron converter materials,10B and 6LiF. We determine the minimum semiconductor thickness needed to achieve maximum neutron detection efficiency. By keeping the semiconductor thickness to a minimum, gamma rejection is kept as high as possible. In this way, we optimize detector performance for different thin-film semiconductor materials.

  19. Prospective memory rehabilitation based on visual imagery techniques.

    Science.gov (United States)

    Potvin, Marie-Julie; Rouleau, Isabelle; Sénéchal, Geneviève; Giguère, Jean-François

    2011-12-01

    Despite the frequency of prospective memory (PM) problems in the traumatic brain injury (TBI) population, there are only a few rehabilitation programmes that have been specifically designed to address this issue, other than those using external compensatory strategies. In the present study, a PM rehabilitation programme based on visual imagery techniques expected to strengthen the cue-action association was developed. Ten moderate to severe chronic TBI patients learned to create a mental image representing the association between a prospective cue and an intended action within progressively more complex and naturalistic PM tasks. We hypothesised that compared to TBI patients (n = 20) who received a short session of education (control condition), TBI patients in the rehabilitation group would exhibit a greater improvement on the event-based than on the time-based condition of a PM ecological task. Results revealed however that this programme was similarly beneficial for both conditions. TBI patients in the rehabilitation group and their relatives also reported less everyday PM failures following the programme, which suggests generalisation. The PM improvement appears to be specific since results on cognitive control tasks remained similar. Therefore, visual imagery techniques appear to improve PM functioning by strengthening the memory trace of the intentions and inducing an automatic recall of the intentions.

  20. Antimisting kerosene: Base fuel effects, blending and quality control techniques

    Science.gov (United States)

    Yavrouian, A. H.; Ernest, J.; Sarohia, V.

    1984-01-01

    The problems associated with blending of the AMK additive with Jet A, and the base fuel effects on AMK properties are addressed. The results from the evaluation of some of the quality control techniques for AMK are presented. The principal conclusions of this investigation are: significant compositional differences for base fuel (Jet A) within the ASTM specification DI655; higher aromatic content of the base fuel was found to be beneficial for the polymer dissolution at ambient (20 C) temperature; using static mixer technology, the antimisting additive (FM-9) is in-line blended with Jet A, producing AMK which has adequate fire-protection properties 15 to 20 minutes after blending; degradability of freshly blended and equilibrated AMK indicated that maximum degradability is reached after adequate fire protection is obtained; the results of AMK degradability as measured by filter ratio, confirmed previous RAE data that power requirements to decade freshly blended AMK are significantly higher than equilibrated AMK; blending of the additive by using FM-9 concentrate in Jet A produces equilibrated AMK almost instantly; nephelometry offers a simple continuous monitoring capability and is used as a real time quality control device for AMK; and trajectory (jet thurst) and pressure drop tests are useful laboratory techniques for evaluating AMK quality.

  1. Limiting CT radiation dose in children with craniosynostosis: phantom study using model-based iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kaasalainen, Touko; Lampinen, Anniina [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 340, Helsinki (Finland); University of Helsinki, Department of Physics, Helsinki (Finland); Palmu, Kirsi [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 340, Helsinki (Finland); School of Science, Aalto University, Department of Biomedical Engineering and Computational Science, Helsinki (Finland); Reijonen, Vappu; Kortesniemi, Mika [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 340, Helsinki (Finland); Leikola, Junnu [University of Helsinki and Helsinki University Hospital, Department of Plastic Surgery, Helsinki (Finland); Kivisaari, Riku [University of Helsinki and Helsinki University Hospital, Department of Neurosurgery, Helsinki (Finland)

    2015-09-15

    Medical professionals need to exercise particular caution when developing CT scanning protocols for children who require multiple CT studies, such as those with craniosynostosis. To evaluate the utility of ultra-low-dose CT protocols with model-based iterative reconstruction techniques for craniosynostosis imaging. We scanned two pediatric anthropomorphic phantoms with a 64-slice CT scanner using different low-dose protocols for craniosynostosis. We measured organ doses in the head region with metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters. Numerical simulations served to estimate organ and effective doses. We objectively and subjectively evaluated the quality of images produced by adaptive statistical iterative reconstruction (ASiR) 30%, ASiR 50% and Veo (all by GE Healthcare, Waukesha, WI). Image noise and contrast were determined for different tissues. Mean organ dose with the newborn phantom was decreased up to 83% compared to the routine protocol when using ultra-low-dose scanning settings. Similarly, for the 5-year phantom the greatest radiation dose reduction was 88%. The numerical simulations supported the findings with MOSFET measurements. The image quality remained adequate with Veo reconstruction, even at the lowest dose level. Craniosynostosis CT with model-based iterative reconstruction could be performed with a 20-μSv effective dose, corresponding to the radiation exposure of plain skull radiography, without compromising required image quality. (orig.)

  2. Solving radiative transfer problems in highly heterogeneous media via domain decomposition and convergence acceleration techniques.

    Science.gov (United States)

    Previti, Alberto; Furfaro, Roberto; Picca, Paolo; Ganapol, Barry D; Mostacci, Domiziano

    2011-08-01

    This paper deals with finding accurate solutions for photon transport problems in highly heterogeneous media fastly, efficiently and with modest memory resources. We propose an extended version of the analytical discrete ordinates method, coupled with domain decomposition-derived algorithms and non-linear convergence acceleration techniques. Numerical performances are evaluated using a challenging case study available in the literature. A study of accuracy versus computational time and memory requirements is reported for transport calculations that are relevant for remote sensing applications.

  3. Transformer-based design techniques for oscillators and frequency dividers

    CERN Document Server

    Luong, Howard Cam

    2016-01-01

    This book provides in-depth coverage of transformer-based design techniques that enable CMOS oscillators and frequency dividers to achieve state-of-the-art performance.  Design, optimization, and measured performance of oscillators and frequency dividers for different applications are discussed in detail, focusing on not only ultra-low supply voltage but also ultra-wide frequency tuning range and locking range.  This book will be an invaluable reference for anyone working or interested in CMOS radio-frequency or mm-Wave integrated circuits and systems.

  4. Modal Analysis Based on the Random Decrement Technique

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Brincker, Rune

    1998-01-01

    This article describes the work carried out within the project: Modal Analysis Based on the Random Decrement Technique - Application to Civil Engineering Structures. The project is part of the research programme: Dynamics of Structures sponsored by the Danish Technical Research Counsil. The planned...... contents and the requirement for the project prior to its start are described together with thee results obtained during the 3 year period of the project. The project was mainly carried out as a Ph.D project by the first author from September 1994 to August 1997 in cooperation with associate professor Rune...

  5. A Radiation Chemistry Code Based on the Greens Functions of the Diffusion Equation

    Science.gov (United States)

    Plante, Ianik; Wu, Honglu

    2014-01-01

    Ionizing radiation produces several radiolytic species such as.OH, e-aq, and H. when interacting with biological matter. Following their creation, radiolytic species diffuse and chemically react with biological molecules such as DNA. Despite years of research, many questions on the DNA damage by ionizing radiation remains, notably on the indirect effect, i.e. the damage resulting from the reactions of the radiolytic species with DNA. To simulate DNA damage by ionizing radiation, we are developing a step-by-step radiation chemistry code that is based on the Green's functions of the diffusion equation (GFDE), which is able to follow the trajectories of all particles and their reactions with time. In the recent years, simulations based on the GFDE have been used extensively in biochemistry, notably to simulate biochemical networks in time and space and are often used as the "gold standard" to validate diffusion-reaction theories. The exact GFDE for partially diffusion-controlled reactions is difficult to use because of its complex form. Therefore, the radial Green's function, which is much simpler, is often used. Hence, much effort has been devoted to the sampling of the radial Green's functions, for which we have developed a sampling algorithm This algorithm only yields the inter-particle distance vector length after a time step; the sampling of the deviation angle of the inter-particle vector is not taken into consideration. In this work, we show that the radial distribution is predicted by the exact radial Green's function. We also use a technique developed by Clifford et al. to generate the inter-particle vector deviation angles, knowing the inter-particle vector length before and after a time step. The results are compared with those predicted by the exact GFDE and by the analytical angular functions for free diffusion. This first step in the creation of the radiation chemistry code should help the understanding of the contribution of the indirect effect in the

  6. Producing Terahertz Conherent Synchrotron Radiation Based On Hefei Light Source

    CERN Document Server

    De-Rong, Xu; Yan, Shao

    2014-01-01

    This paper theoretically proves that an electron storage ring can generate coherent radiation in THz region using a quick kicker magnet and an ac sextupole magnet. When the vertical chromaticity is modulated by the ac sextupole magnet, the vertical beam collective motion excited by the kicker produces a wavy spatial structure after a number of longitudinal oscillation periods. We calculate the radiation spectral distribution from the wavy bunch in Hefei Light Source(HLS). If we reduce electron energy to 400MeV, it can produce extremely strong coherent synchrotron radiation(CSR) at 0.115THz.

  7. Office-based tracheoesophageal puncture: updates in techniques and outcomes.

    Science.gov (United States)

    Bergeron, Jennifer L; Jamal, Nausheen; Erman, Andrew; Chhetri, Dinesh K

    2014-01-01

    Tracheoesophageal puncture (TEP) is an effective rehabilitation method for postlaryngectomy speech and has already been described as a procedure that is safely performed in the office. We review our long-term experience with office-based TEP over the past 7 years in the largest cohort published to date. A retrospective chart review was performed of all patients who underwent TEP by a single surgeon from 2005 through 2012, including office-based and operating room procedures. Indications for the chosen technique (office versus operating room) and surgical outcomes were evaluated. Fifty-nine patients underwent 72 TEP procedures, with 55 performed in the outpatient setting and 17 performed in the operating room, all without complication. The indications for performing TEPs in the operating room included 2 primary TEPs, 14 due to concomitant procedures requiring general anesthesia, and 1 due to failed attempt at office-based TEP. Nineteen patients with prior rotational or free flap reconstruction successfully underwent office-based TEP. TEP in an office-based setting with immediate voice prosthesis placement continues to be a safe method of voice rehabilitation for postlaryngectomy patients, including those who have previously undergone free flap or rotational flap reconstruction. Office-based TEP is now our primary approach for postlaryngectomy voice rehabilitation. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Nursing-led management of side effects of radiation: evidence-based recommendations for practice

    Directory of Open Access Journals (Sweden)

    Poirier P

    2013-03-01

    Full Text Available Patricia PoirierUniversity of Maine School of Nursing, Orono, ME, USAAbstract: It has been estimated that 50%–60% of patients diagnosed with cancer will receive radiation therapy at some point in their treatment. Although radiation therapy can play a significant role in the cure or control of cancer, and the palliation of symptoms, it also has side effects. Side effects of radiation therapy can interfere with patient quality of life and daily functioning. Severe side effects can lead to delays in treatment, potentially affecting the outcome of treatment. All patients receiving radiation therapy are at risk of fatigue and skin reactions in the area of the body being treated. Other side effects of radiation therapy are specific to the part of the body being treated. Radiation therapy to the head and neck area may cause oral mucositis, dryness, and nutritional deficiencies. Radiation therapy to the chest or lung area may lead to difficulty in swallowing and eating. Radiation therapy to the pelvis frequently causes diarrhea. There are many nursing interventions available to manage the side effects of treatment based on best available evidence and expert opinion. Nurses in all settings are essential in helping patients manage the side effects of treatment and maintain their quality of life. The purpose of this review is to provide nurses with evidence-based recommendations and suggestions for managing common acute side effects of radiation therapy.Keywords: evidence-based practice, radiation therapy, side effects, nursing management

  9. Structural level characterization of base oils using advanced analytical techniques

    KAUST Repository

    Hourani, Nadim

    2015-05-21

    Base oils, blended for finished lubricant formulations, are classified by the American Petroleum Institute into five groups, viz., groups I-V. Groups I-III consist of petroleum based hydrocarbons whereas groups IV and V are made of synthetic polymers. In the present study, five base oil samples belonging to groups I and III were extensively characterized using high performance liquid chromatography (HPLC), comprehensive two-dimensional gas chromatography (GC×GC), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) equipped with atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) sources. First, the capabilities and limitations of each analytical technique were evaluated, and then the availed information was combined to reveal compositional details on the base oil samples studied. HPLC showed the overwhelming presence of saturated over aromatic compounds in all five base oils. A similar trend was further corroborated using GC×GC, which yielded semiquantitative information on the compound classes present in the samples and provided further details on the carbon number distributions within these classes. In addition to chromatography methods, FT-ICR MS supplemented the compositional information on the base oil samples by resolving the aromatics compounds into alkyl- and naphtheno-subtituted families. APCI proved more effective for the ionization of the highly saturated base oil components compared to APPI. Furthermore, for the detailed information on hydrocarbon molecules FT-ICR MS revealed the presence of saturated and aromatic sulfur species in all base oil samples. The results presented herein offer a unique perspective into the detailed molecular structure of base oils typically used to formulate lubricants. © 2015 American Chemical Society.

  10. A Comparative Analysis of Exemplar Based and Wavelet Based Inpainting Technique

    Directory of Open Access Journals (Sweden)

    Vaibhav V Nalawade

    2012-06-01

    Full Text Available Image inpainting is the process of filling in of missing region so as to preserve its overall continuity. Image inpainting is manipulation and modification of an image in a form that is not easily detected. Digital image inpainting is relatively new area of research, but numerous and different approaches to tackle the inpainting problem have been proposed since the concept was first introduced. This paper compares two separate techniques viz, Exemplar based inpainting technique and Wavelet based inpainting technique, each portraying a different set of characteristics. The algorithms analyzed under exemplar technique are large object removal by exemplar based inpainting technique (Criminisi’s and modified exemplar (Cheng. The algorithm analyzed under wavelet is Chen’s visual image inpainting method. A number of examples on real and synthetic images are demonstrated to compare the results of different algorithms using both qualitative and quantitative parameters.

  11. Evolution analysis of EUV radiation from laser-produced tin plasmas based on a radiation hydrodynamics model

    Science.gov (United States)

    Su, M. G.; Min, Q.; Cao, S. Q.; Sun, D. X.; Hayden, P.; O’Sullivan, G.; Dong, C. Z.

    2017-01-01

    One of fundamental aims of extreme ultraviolet (EUV) lithography is to maximize brightness or conversion efficiency of laser energy to radiation at specific wavelengths from laser produced plasmas (LPPs) of specific elements for matching to available multilayer optical systems. Tin LPPs have been chosen for operation at a wavelength of 13.5 nm. For an investigation of EUV radiation of laser-produced tin plasmas, it is crucial to study the related atomic processes and their evolution so as to reliably predict the optimum plasma and experimental conditions. Here, we present a simplified radiation hydrodynamic model based on the fluid dynamic equations and the radiative transfer equation to rapidly investigate the evolution of radiation properties and dynamics in laser-produced tin plasmas. The self-absorption features of EUV spectra measured at an angle of 45° to the direction of plasma expansion have been successfully simulated and explained, and the evolution of some parameters, such as the plasma temperature, ion distribution and density, expansion size and velocity, have also been evaluated. Our results should be useful for further understanding of current research on extreme ultraviolet and soft X-ray source development for applications such as lithography, metrology and biological imaging. PMID:28332621

  12. Long-distance transmission of light in a scintillator-based radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, Jonathan L.; Talbott, Dale V.; Hehlen, Markus P.

    2017-07-11

    Scintillator-based radiation detectors capable of transmitting light indicating the presence of radiation for long distances are disclosed herein. A radiation detector can include a scintillator layer and a light-guide layer. The scintillator layer is configured to produce light upon receiving incident radiation. The light-guide layer is configured to receive light produced by the scintillator layer and either propagate the received light through the radiation detector or absorb the received light and emit light, through fluorescence, that is propagated through the radiation detector. A radiation detector can also include an outer layer partially surrounding the scintillator layer and light-guide layer. The index of refraction of the light-guide layer can be greater than the index of refraction of adjacent layers.

  13. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    CERN Document Server

    Thurman-Keup, R; Hahn, A; Hurh, P; Lorman, E; Lundberg, C; Meyer, T; Miller, D; Pordes, S; Valishev, A

    2011-01-01

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. However, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measur...

  14. Multifunctional, Boron-Foam Based Radiation Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA vision of Space Exploration requires new approaches to radiation shielding. Both Spiral 2 and Spiral 3 concepts are extremely sensitive to weight reduction....

  15. Sensors of absorbed dose of ionizing radiation based on mosfet

    Directory of Open Access Journals (Sweden)

    Perevertaylo V. L.

    2010-10-01

    Full Text Available The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created.

  16. Neutronics experiments, radiation detectors and nuclear techniques development in the EU in support of the TBM design for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Angelone, M., E-mail: maurizio.angelone@enea.it [ENEA UT-FUS C.R. Frascati, via E. Fermi, 45-00044 Frascati (Italy); Fischer, U. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Flammini, D. [ENEA UT-FUS C.R. Frascati, via E. Fermi, 45-00044 Frascati (Italy); Jodlowski, P. [AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Klix, A. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Kodeli, I. [Jožef Stefan Institute, Ljubljana (Slovenia); Kuc, T. [AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Leichtle, D. [Fusion for Energy, C/Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Lilley, S. [Culham Centre for Fusion Energy, Culham, OX14 3DB (United Kingdom); Majerle, M.; Novák, J. [Nuclear Physics Institute of the ASCR, Řež 130, 250 68 Řež (Czech Republic); Ostachowicz, B. [AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Packer, L.W. [Culham Centre for Fusion Energy, Culham, OX14 3DB (United Kingdom); Pillon, M. [ENEA UT-FUS C.R. Frascati, via E. Fermi, 45-00044 Frascati (Italy); Pohorecki, W. [AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Radulović, V. [Jožef Stefan Institute, Ljubljana (Slovenia); Šimečková, E. [Nuclear Physics Institute of the ASCR, Řež 130, 250 68 Řež (Czech Republic); and others

    2015-10-15

    Highlights: • A number of experiments and tests are ongoing to develop detectors and methods for HCLL and HCPM ITER-TBM. • Experiments for measuring gas production relevant to IFMIF are also performed using a cyclotron. • A benchmark experiment with a Cu block is performed to validate copper cross sections. • Experimental techniques to measure tritium in TBM are presented. • Experimental verification of activation cross sections for a Neutron Activation System for TBM is addressed. - Abstract: The development of high quality nuclear data, radiation detectors and instrumentation techniques for fusion technology applications in Europe is supported by Fusion for Energy (F4E) and conducted in a joint and collaborative effort by several European research associations (ENEA, KIT, JSI, NPI, AGH, and CCFE) joined to form the “Consortium on Nuclear Data Studies/Experiments in Support of TBM Activities”. This paper presents the neutronics activities carried out by the Consortium. A selection of available results are presented. Among then a benchmark experiment on a pure copper block to study the Cu cross sections at neutron energies relevant to fusion, the fabrication of prototype neutron detectors able to withstand harsh environment and temperature >200 °C (artificial diamond and self-powered detectors) developed for operating in ITER-TBM as well as measurement of relevant activation and integral gas production cross-sections. The latter measured at neutron energies relevant to IFMIF (>14 MeV) and the development of innovative experimental techniques for tritium measurement in TBM.

  17. ONLINE GRINDING WHEEL WEAR COMPENSATION BY IMAGE BASED MEASURING TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    WAN Daping; HU Dejin; WU Qi; ZHANG Yonghong

    2006-01-01

    Automatic compensation of grinding wheel wear in dry grinding is accomplished by an image based online measurement method. A kind of PC-based charge-coupled device image recognition system is schemed out, which detects the topography changes of the grinding wheel surface. Profile data, which corresponds to the wear and the topography, is measured by using a digital image processing method. The grinding wheel wear is evaluated by analyzing the position deviation of the grinding wheel edge. The online wear compensation is achieved according to the measure results. The precise detection and automatic compensation system is integrated into an open structure CNC curve grinding machine. A practical application is carried out to fulfil the precision curve grinding. The experimental results confirm the benefits of the proposed techniques, and the online detection accuracy is less than 5 μm. The grinding machine provides higher precision according to the in-process grinding wheel error compensation.

  18. On combining Laplacian and optimization-based mesh smoothing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, L.A.

    1997-07-01

    Local mesh smoothing algorithms have been shown to be effective in repairing distorted elements in automatically generated meshes. The simplest such algorithm is Laplacian smoothing, which moves grid points to the geometric center of incident vertices. Unfortunately, this method operates heuristically and can create invalid meshes or elements of worse quality than those contained in the original mesh. In contrast, optimization-based methods are designed to maximize some measure of mesh quality and are very effective at eliminating extremal angles in the mesh. These improvements come at a higher computational cost, however. In this article the author proposes three smoothing techniques that combine a smart variant of Laplacian smoothing with an optimization-based approach. Several numerical experiments are performed that compare the mesh quality and computational cost for each of the methods in two and three dimensions. The author finds that the combined approaches are very cost effective and yield high-quality meshes.

  19. Hash Based Least Significant Bit Technique For Video Steganography

    Directory of Open Access Journals (Sweden)

    Prof. Dr. P. R. Deshmukh ,

    2014-01-01

    Full Text Available The Hash Based Least Significant Bit Technique For Video Steganography deals with hiding secret message or information within a video.Steganography is nothing but the covered writing it includes process that conceals information within other data and also conceals the fact that a secret message is being sent.Steganography is the art of secret communication or the science of invisible communication. In this paper a Hash based least significant bit technique for video steganography has been proposed whose main goal is to embed a secret information in a particular video file and then extract it using a stego key or password. In this Least Significant Bit insertion method is used for steganography so as to embed data in cover video with change in the lower bit.This LSB insertion is not visible.Data hidding is the process of embedding information in a video without changing its perceptual quality. The proposed method involve with two terms that are Peak Signal to Noise Ratio (PSNR and the Mean Square Error (MSE .This two terms measured between the original video files and steganographic video files from all video frames where a distortion is measured using PSNR. A hash function is used to select the particular position for insertion of bits of secret message in LSB bits.

  20. High power THz source based on coherent radiation of picosecond relativistic electron bunch train

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Tunable and compact high power terahertz (THz) radiation based on coherent radiation (CR) of the picosecond relativistic electron bunch train is under development at the Tsinghua accelerator lab. Coherent synchronization radiation (CSR) and coherent transition radiation (CTR) are researched based on an S-band compact electron linac, a bending magnet or a thin foil. The bunch train’s form factors, which are the key factor of THz radiation, are analyzed by the PARMELA simulation. The effects of electron bunch trains under different conditions, such as the bunch number, bunch charges, micro-pulses inter-distance, and accelerating gradient of the gun are investigated separately in this paper. The optimal radiated THz power and spectra should take these factors as a whole into account.

  1. Gallium nitride based thin films for photon and particle radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, Markus

    2012-07-23

    Ionization chambers have been used since the beginning of the 20th century for measuring ionizing radiation and still represent the ''gold standard'' in dosimetry. However, since the sensitivity of the devices is proportional to the detection volume, ionization chambers are not common in numerous medical applications, such as imaging. In these fields, spatially resolved dose information is, beside film-systems, usually measured with scintillators and photo-multipliers, which is a relatively complex and expensive technique. For thus much effort has been focused on the development of novel detection systems in the last decades and especially in the last few years. Examples include germanium or silicon photoconductive detectors, MOSFETs, and PIN-diodes. Although for these systems, miniaturization for spatially resolved detection is possible, they suffer from a range of disadvantages. Characteristics such as poor measurement stability, material degradation, and/or a limited measurement range prevent routine application of these techniques in medical diagnostic devices. This work presents the development and evaluation of gallium nitride (GaN) thin films and heterostructures to validate their application in x-ray detection in the medical regime. Furthermore, the impact of particle radiation on device response was investigated. Although previous publications revealed relatively low energy absorption of GaN, it is possible to achieve very high signal amplification factors inside the material due to an appropriate sensor configuration, which, in turn, compensates the low energy absorption. Thus, gallium nitride can be used as a photo-conductor with ohmic contacts. The conductive volume of the sensor changes in the presence of external radiation, which results in an amplified measurement signal after applying a bias voltage to the device. Experiments revealed a sensitivity of the device between air kerma rates of 1 {mu}Gy/s and 20 mGy/s. In this range

  2. Systematic infrared image quality improvement using deep learning based techniques

    Science.gov (United States)

    Zhang, Huaizhong; Casaseca-de-la-Higuera, Pablo; Luo, Chunbo; Wang, Qi; Kitchin, Matthew; Parmley, Andrew; Monge-Alvarez, Jesus

    2016-10-01

    Infrared thermography (IRT, or thermal video) uses thermographic cameras to detect and record radiation in the longwavelength infrared range of the electromagnetic spectrum. It allows sensing environments beyond the visual perception limitations, and thus has been widely used in many civilian and military applications. Even though current thermal cameras are able to provide high resolution and bit-depth images, there are significant challenges to be addressed in specific applications such as poor contrast, low target signature resolution, etc. This paper addresses quality improvement in IRT images for object recognition. A systematic approach based on image bias correction and deep learning is proposed to increase target signature resolution and optimise the baseline quality of inputs for object recognition. Our main objective is to maximise the useful information on the object to be detected even when the number of pixels on target is adversely small. The experimental results show that our approach can significantly improve target resolution and thus helps making object recognition more efficient in automatic target detection/recognition systems (ATD/R).

  3. Development of a diagnostic technique based on Cherenkov effect for measurements of fast electrons in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Plyusnin, V. V.; Duarte, P.; Fernandes, H.; Silva, C. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Jakubowski, L.; Zebrowski, J.; Malinowski, K.; Rabinski, M.; Sadowski, M. J. [National Centre for Nuclear Research (NCBJ), 7 Andrzeja Soltana Str., 05-400 Otwock (Poland)

    2012-08-15

    A diagnostic technique based on the Cherenkov effect is proposed for detection and characterization of fast (super-thermal and runaway) electrons in fusion devices. The detectors of Cherenkov radiation have been specially designed for measurements in the ISTTOK tokamak. Properties of several materials have been studied to determine the most appropriate one to be used as a radiator of Cherenkov emission in the detector. This technique has enabled the detection of energetic electrons (70 keV and higher) and the determination of their spatial and temporal variations in the ISTTOK discharges. Measurement of hard x-ray emission has also been carried out in experiments for validation of the measuring capabilities of the Cherenkov-type detector and a high correlation was found between the data of both diagnostics. A reasonable agreement was found between experimental data and the results of numerical modeling of the runaway electron generation in ISTTOK.

  4. A technique for synergistic atomic oxygen and vacuum ultraviolet radiation durability evaluation of materials for use in LEO

    Science.gov (United States)

    Rutledge, Sharon K.; Banks, Bruce A.

    1996-01-01

    Material erosion data collected during flight experiments such as the Environmental Oxygen Interaction with Materials (EOIM)-3 and the Long Duration Exposure Facility (LDEF) have raised questions as to the sensitivity of material erosion to levels of atomic oxygen exposure and vacuum ultraviolet (VUV) radiation. The erosion sensitivity of some materials such as FEP Teflon used as a thermal control material on satellites in low Earth orbit (LEO), is particularly important but difficult to determine. This is in large part due to the inability to hold all but one exposure parameter constant during a flight experiment. This is also difficult to perform in a ground based facility, because often the variation of the level of atomic oxygen or VUV radiation also results in a change in the level of the other parameter. A facility has been developed which allows each parameter to be changed almost independently and offer broad area exposure. The resulting samples can be made large enough for mechanical testing. The facility uses an electron cyclotron resonance plasma source to provide the atomic oxygen. A series of glass plates is used to focus the atomic oxygen while filtering the VUV radiation from the plasma source. After filtering, atomic oxygen effective flux levels can still be measured which are as high as 7 x 10(exp 15) atoms/cm(exp 2)-sec which is adequate for accelerated testing. VUV radiation levels after filtering can be as low as 0.3 suns. Additional VUV suns can be added with the use of deuterium lamps which allow the VUV level to be changed while keeping the flux of atomic oxygen constant. This paper discusses the facility, and results from exposure of Kapton and FEP at pre-determined atomic oxygen flux and VUV sun levels.

  5. Determination of whole-body nitrogen and radiation assessment using in vivo prompt gamma activation technique.

    Science.gov (United States)

    Chung, C; Wei, Y Y; Chen, Y Y

    1993-06-01

    Body nitrogen content in the phantom is measured by semiconducting and scintillation spectrometers using in vivo prompt gamma-ray activation analysis technique. The effective dose rate equivalents for sensitive organs and tissues inside the phantom are assessed by dosimetric measurement and neutron transport calculation. The bismuth germanate scintillator is found superior to the germanium semiconducting detector to quantitatively measure the photopeak of the 10.829 MeV prompt gamma-ray emitted from the 14N(n, gamma) reaction. Recommended scanning period for current setup using the BGO detector is 1 h on the modified mobile nuclear reactor. The effective dose equivalents from both neutrons and gamma-rays are estimated around 63 microSv per scan in the phantom test, making it a safe and reliable nuclear analytical method for in vivo body nitrogen measurement.

  6. Determination of whole-body nitrogen and radiation assessment using in vivo prompt gamma activation technique

    Energy Technology Data Exchange (ETDEWEB)

    Chien Chung; Yuanyaw Wei; Yayu Chen (National Tsing Hua Univ., Hsinchu, Taiwan (China). Inst. of Nuclear Science)

    1993-06-01

    Body nitrogen content in the phantom is measured by semiconducting and scintillation spectrometers using in vivo prompt gamma-ray activation analysis technique. The effective dose rate equivalents for sensitive organs and tissues inside the phantom are assessed by dosimetric measurement and neutron transport calculation. The bismuth germanate scintillator is found superior to the germanium semiconducting detector to quantitatively measure the photopeak of the 10.829 MeV prompt gamma-ray emitted from the [sup 14]N(n,[gamma]) reaction. Recommended scanning period for current setup using the BGO detector is 1 h on the modified mobile nuclear reactor. The effective dose equivalents from both neutrons and gamma-rays are estimated around 63 [mu]Sv per scan in the phantom test, making it a safe and reliable nuclear analytical method for in vivo body nitrogen measurement. (author).

  7. Domestic comparison of radiation treatment techniques for breast cancer: 3D-CRT, IMRT and VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bo Ram; Yoon, Myong Geun [Dept. of Bio-convergence Engineering, College of Health Science, Korea University, Seoul (Korea, Republic of); Lee, Sun Young [Dept. of Radiation Oncology, Yusung Sun Medical Center, Daejeon (Korea, Republic of)

    2013-09-15

    The purpose of this study is to compare method in the treatment of breast cancer using dose index. And, it is to find the optimized treatment technique to the patient. The phantom filled with tissue-equivalent material were used simulation and treatment as techniques of 3D-CRT, IMRT, VMAT was planned using Eclipse v10. By using HI(homogeneity index), CI(Conformity index), OE (Organ equivalent dose), EAR(Excess Absolute Risk), were assessed for each treatment plans. HI and CI of 3D-CRT, IMRT, VMAT were calculated 16.89, 11.21, 9.55 and 0.59, 0.61, 0.83. The organ average doses of Lt lung, Rt lung, liver, heart, esophagus, cord, Lt breast, trachea and stomach were 0.01 ∼ 2.02 Gy, 0.36 ∼ 5.01 Gy, 0.25 ∼ 2.49 Gy, 0.14 ∼ 6.92 Gy, 0.03 ∼ 2.02 Gy, 0.01 ∼ 1.06 Gy, 0.25 ∼ 6.08 Gy, 0.08 ∼ 0.59 Gy, 0.01 ∼ 1.34 Gy, respectively. The OED, EAR of the IMRT and VMAT show higher than 3D-CRT. As the result of this study, we could confirm being higher dose index(HI, CI) in IMRT and VMAT than 3D-CRT, but doses of around normal organs was higher IMRT, VMAT than 3D-CRT.

  8. Numerical methods for characterization of synchrotron radiation based on the Wigner function method

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2014-06-01

    Full Text Available Numerical characterization of synchrotron radiation based on the Wigner function method is explored in order to accurately evaluate the light source performance. A number of numerical methods to compute the Wigner functions for typical synchrotron radiation sources such as bending magnets, undulators and wigglers, are presented, which significantly improve the computation efficiency and reduce the total computation time. As a practical example of the numerical characterization, optimization of betatron functions to maximize the brilliance of undulator radiation is discussed.

  9. Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns

    OpenAIRE

    Wu, Yongle; Qu, Meijun; Jiao, Lingxiao; Liu, Yuanan; Ghassemlooy, Zabih

    2016-01-01

    This paper presents a radiation pattern reconfigurable Yagi-Uda antenna based on graphene operating at terahertz frequencies. The antenna can be reconfigured to change the main beam pattern into two or four different radiation directions. The proposed antenna consists of a driven dipole radiation conductor, parasitic strips and embedded graphene. The hybrid graphene-metal implementation enables the antenna to have dynamic surface conductivity, which can be tuned by changing the chemical poten...

  10. An interactive tutorial-based training technique for vertebral morphometry.

    Science.gov (United States)

    Gardner, J C; von Ingersleben, G; Heyano, S L; Chesnut, C H

    2001-01-01

    The purpose of this work was to develop a computer-based procedure for training technologists in vertebral morphometry. The utility of the resulting interactive, tutorial based training method was evaluated in this study. The training program was composed of four steps: (1) review of an online tutorial, (2) review of analyzed spine images, (3) practice in fiducial point placement and (4) testing. During testing, vertebral heights were measured from digital, lateral spine images containing osteoporotic fractures. Inter-observer measurement precision was compared between research technicians, and between technologists and radiologist. The technologists participating in this study had no prior experience in vertebral morphometry. Following completion of the online training program, good inter-observer measurement precision was seen between technologists, showing mean coefficients of variation of 2.33% for anterior, 2.87% for central and 2.65% for posterior vertebral heights. Comparisons between the technicians and radiologist ranged from 2.19% to 3.18%. Slightly better precision values were seen with height measurements compared with height ratios, and with unfractured compared with fractured vertebral bodies. The findings of this study indicate that self-directed, tutorial-based training for spine image analyses is effective, resulting in good inter-observer measurement precision. The interactive tutorial-based approach provides standardized training methods and assures consistency of instructional technique over time.

  11. Enhancing the effectiveness of IST through risk-based techniques

    Energy Technology Data Exchange (ETDEWEB)

    Floyd, S.D.

    1996-12-01

    Current IST requirements were developed mainly through deterministic-based methods. While this approach has resulted in an adequate level of safety and reliability for pumps and valves, insights from probabilistic safety assessments suggest a better safety focus can be achieved at lower costs. That is, some high safety impact pumps and valves are currently not tested under the IST program and should be added, while low safety impact valves could be tested at significantly greater intervals than allowed by the current IST program. The nuclear utility industry, through the Nuclear Energy Institute (NEI), has developed a draft guideline for applying risk-based techniques to focus testing on those pumps and valves with a high safety impact while reducing test frequencies on low safety impact pumps and valves. The guideline is being validated through an industry pilot application program that is being reviewed by the U.S. Nuclear Regulatory Commission. NEI and the ASME maintain a dialogue on the two groups` activities related to risk-based IST. The presenter will provide an overview of the NEI guideline, discuss the methodological approach for applying risk-based technology to IST and provide the status of the industry pilot plant effort.

  12. Recent developments of optically stimulated luminescence materials and techniques for radiation dosimetry and clinical applications

    Directory of Open Access Journals (Sweden)

    Pradhan A

    2008-01-01

    Full Text Available During the last 10 years, optically stimulated luminescence (OSL has emerged as a formidable competitor not only to thermoluminescence dosimetry (TLD but also to several other dosimetry systems. Though a large number of materials have been synthesized and studied for OSL, Al 2 O 3 :C continues to dominate the dosimetric applications. Re-investigations of OSL in BeOindicate that this material might provide an alternative to Al 2 O 3 :C. Study of OSL of electronic components of mobile phones and ID cards appears to have opened up a feasibility of dosimetry and dose reconstruction using the electronic components of gadgets of everyday use in the events of unforeseen situations of radiological accidents, including the event of a dirty bomb by terrorist groups. Among the newly reported materials, a very recent development of NaMgF 3 :Eu 2+ appears fascinating because of its high OSL sensitivity and tolerable tissue equivalence. In clinical dosimetry, an OSL as a passive dosimeter could do all that TLD can do, much faster with a better or at least the same efficiency; and in addition, it provides a possibility of repeated readout unlike TLD, in which all the dose information is lost in a single readout. Of late, OSL has also emerged as a practical real-time dosimeter for in vivo measurements in radiation therapy (for both external beams and brachytherapy and in various diagnostic radiological examinations including mammography and CT dosimetry. For in vivo measurements, a probe of Al 2 O 3 :C of size of a fraction of a millimeter provides the information on both the dose rate and the total dose from the readout of radioluminescence and OSL signals respectively, from the same probe. The availability of OSL dosimeters in various sizes and shapes and their performance characteristics as compared to established dosimeters such as plastic scintillation dosimeters, diode detectors, MOSFET detectors, radiochromic films, etc., shows that OSL may soon become

  13. Design and investigation of planar technology based ultra-wideband antenna with directional radiation patterns

    Science.gov (United States)

    Meena, M. L.; Parmar, Girish; Kumar, Mithilesh

    2016-03-01

    A novel design technique based on planar technology for ultra-wideband (UWB) antennas with different ground shape having directional radiation pattern is being presented here. Firstly, the L-shape corner reflector ground plane antenna is designed with microstrip feed line in order to achieve large bandwidth and directivity. Thereafter, for the further improvement in the directivity as well as for better impedance matching the parabolic-shape ground plane has been introduced. The coaxial feed line is given for the proposed directional antenna in order to achieve better impedance matching with 50 ohm transmission line. The simulation analysis of the antenna is done on CST Microwave Studio software using FR-4 substrate having thickness of 1.6 mm and dielectric constant of 4.4. The simulated result shows a good return loss (S11) with respect to -10 dB. The radiation pattern characteristic, angular width, directivity and bandwidth performance of the antenna have also been compared at different resonant frequencies. The designed antennas exhibit low cost, low reflection coefficient and better directivity in the UWB frequency band.

  14. Design and investigation of planar technology based ultra-wideband antenna with directional radiation patterns

    Energy Technology Data Exchange (ETDEWEB)

    Meena, M. L., E-mail: madan.meena.ece@gamil.com; Parmar, Girish, E-mail: girish-parmar2002@yahoo.com; Kumar, Mithilesh, E-mail: mith-kr@yahoo.com [Department of Electronics Engineering, Rajasthan Technical University, Kota (India)

    2016-03-09

    A novel design technique based on planar technology for ultra-wideband (UWB) antennas with different ground shape having directional radiation pattern is being presented here. Firstly, the L-shape corner reflector ground plane antenna is designed with microstrip feed line in order to achieve large bandwidth and directivity. Thereafter, for the further improvement in the directivity as well as for better impedance matching the parabolic-shape ground plane has been introduced. The coaxial feed line is given for the proposed directional antenna in order to achieve better impedance matching with 50 ohm transmission line. The simulation analysis of the antenna is done on CST Microwave Studio software using FR-4 substrate having thickness of 1.6 mm and dielectric constant of 4.4. The simulated result shows a good return loss (S11) with respect to -10 dB. The radiation pattern characteristic, angular width, directivity and bandwidth performance of the antenna have also been compared at different resonant frequencies. The designed antennas exhibit low cost, low reflection coefficient and better directivity in the UWB frequency band.

  15. PDMS microchannel fabrication technique based on microwire-molding

    Institute of Scientific and Technical Information of China (English)

    JIA YueFei; JIANG JiaHuan; MA XiaoDong; LI Yuan; HUANG HeMing; CAI KunBao; CAI ShaoXi; WU YunPeng

    2008-01-01

    Micro-flow channel is basic functional component of microfluidic chip, and every step-forward of its construction technique has been receiving concern all over the world. This article presents a notcomplicated but flexible method for fabrication of micro-flow channels. This method mainly utilizes the conventional molding capability of polydimethylsiloxane (PDMS) and widespread commercial microwires as templates. We have fabricated out some conventional types of microchannels with different topological shapes, as examples for the demonstration of this flexible fabrication route which was not dependent on the stringent demands of photolithographical or microelectromechanical system (MEMS)techniques. The smooth surface, high-intensity, and high flexibility of the wires made it possible to create many types of topological structures of the two-dimensional or three-dimensional microchannel or channel array. The geometric shape of the cross-section of thus forming microchannel in PDMS was the negative of that of embedded-in microwire, in high-fidelity if suitable measures were taken. Moreover, such a microchannel fabrication process can easily integrate the conductivity and low resistivity of the metal wire to create micro-flow devices that are suitable for the electromagnetic control of liquid or the temperature regulation in the microchannel. Furthermore some preliminary optical analysis was provided for the observation of thus forming rounded microchannel. Based on this molding strategy,we even made some prototypes for functional microflow application, such as microsolenoids chip and temperature control gadgets. And an experiment of forming a droplet in the cross channel further confirmed the feasibility and applicability of this flexible microchannel forming technique.

  16. Assessment of the Accuracy of the Conventional Ray-Tracing Technique: Implications in Remote Sensing and Radiative Transfer Involving Ice Clouds.

    Science.gov (United States)

    Bi, Lei; Yang, Ping; Liu, Chao; Yi, Bingqi; Baum, Bryan A.; Van Diedenhoven, Bastiaan; Iwabuchi, Hironobu

    2014-01-01

    A fundamental problem in remote sensing and radiative transfer simulations involving ice clouds is the ability to compute accurate optical properties for individual ice particles. While relatively simple and intuitively appealing, the conventional geometric-optics method (CGOM) is used frequently for the solution of light scattering by ice crystals. Due to the approximations in the ray-tracing technique, the CGOM accuracy is not well quantified. The result is that the uncertainties are introduced that can impact many applications. Improvements in the Invariant Imbedding T-matrix method (II-TM) and the Improved Geometric-Optics Method (IGOM) provide a mechanism to assess the aforementioned uncertainties. The results computed by the II-TMþIGOM are considered as a benchmark because the IITM solves Maxwell's equations from first principles and is applicable to particle size parameters ranging into the domain at which the IGOM has reasonable accuracy. To assess the uncertainties with the CGOM in remote sensing and radiative transfer simulations, two independent optical property datasets of hexagonal columns are developed for sensitivity studies by using the CGOM and the II-TMþIGOM, respectively. Ice cloud bulk optical properties obtained from the two datasets are compared and subsequently applied to retrieve the optical thickness and effective diameter from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Additionally, the bulk optical properties are tested in broadband radiative transfer (RT) simulations using the general circulation model (GCM) version of the Rapid Radiative Transfer Model (RRTMG) that is adopted in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM, version 5.1). For MODIS retrievals, the mean bias of uncertainties of applying the CGOM in shortwave bands (0.86 and 2.13 micrometers) can be up to 5% in the optical thickness and as high as 20% in the effective diameter, depending on cloud optical

  17. Couch height–based patient setup for abdominal radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ohira, Shingo [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita (Japan); Ueda, Yoshihiro [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita (Japan); Nishiyama, Kinji [Department of Radiation Oncology, Yao Municipal Hospital, Yao (Japan); Miyazaki, Masayoshi; Isono, Masaru; Tsujii, Katsutomo [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Takashina, Masaaki; Koizumi, Masahiko [Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita (Japan); Kawanabe, Kiyoto [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Teshima, Teruki, E-mail: teshima-te@mc.pref.osaka.jp [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan)

    2016-04-01

    There are 2 methods commonly used for patient positioning in the anterior-posterior (A-P) direction: one is the skin mark patient setup method (SMPS) and the other is the couch height–based patient setup method (CHPS). This study compared the setup accuracy of these 2 methods for abdominal radiation therapy. The enrollment for this study comprised 23 patients with pancreatic cancer. For treatments (539 sessions), patients were set up by using isocenter skin marks and thereafter treatment couch was shifted so that the distance between the isocenter and the upper side of the treatment couch was equal to that indicated on the computed tomographic (CT) image. Setup deviation in the A-P direction for CHPS was measured by matching the spine of the digitally reconstructed radiograph (DRR) of a lateral beam at simulation with that of the corresponding time-integrated electronic portal image. For SMPS with no correction (SMPS/NC), setup deviation was calculated based on the couch-level difference between SMPS and CHPS. SMPS/NC was corrected using 2 off-line correction protocols: no action level (SMPS/NAL) and extended NAL (SMPS/eNAL) protocols. Margins to compensate for deviations were calculated using the Stroom formula. A-P deviation > 5 mm was observed in 17% of SMPS/NC, 4% of SMPS/NAL, and 4% of SMPS/eNAL sessions but only in one CHPS session. For SMPS/NC, 7 patients (30%) showed deviations at an increasing rate of > 0.1 mm/fraction, but for CHPS, no such trend was observed. The standard deviations (SDs) of systematic error (Σ) were 2.6, 1.4, 0.6, and 0.8 mm and the root mean squares of random error (σ) were 2.1, 2.6, 2.7, and 0.9 mm for SMPS/NC, SMPS/NAL, SMPS/eNAL, and CHPS, respectively. Margins to compensate for the deviations were wide for SMPS/NC (6.7 mm), smaller for SMPS/NAL (4.6 mm) and SMPS/eNAL (3.1 mm), and smallest for CHPS (2.2 mm). Achieving better setup with smaller margins, CHPS appears to be a reproducible method for abdominal patient setup.

  18. NVC Based Model for Selecting Effective Requirement Elicitation Technique

    Directory of Open Access Journals (Sweden)

    Md. Rizwan Beg

    2012-10-01

    Full Text Available Requirement Engineering process starts from gathering of requirements i.e.; requirements elicitation. Requirementselicitation (RE is the base building block for a software project and has very high impact onsubsequent design and builds phases as well. Accurately capturing system requirements is the major factorin the failure of most of software projects. Due to the criticality and impact of this phase, it is very importantto perform the requirements elicitation in no less than a perfect manner. One of the most difficult jobsfor elicitor is to select appropriate technique for eliciting the requirement. Interviewing and Interactingstakeholder during Elicitation process is a communication intensive activity involves Verbal and Nonverbalcommunication (NVC. Elicitor should give emphasis to Non-verbal communication along with verbalcommunication so that requirements recorded more efficiently and effectively. In this paper we proposea model in which stakeholders are classified by observing non-verbal communication and use it as a basefor elicitation technique selection. We also propose an efficient plan for requirements elicitation which intendsto overcome on the constraints, faced by elicitor.

  19. Filling-Based Techniques Applied to Object Projection Feature Estimation

    CERN Document Server

    Quesada, Luis

    2012-01-01

    3D motion tracking is a critical task in many computer vision applications. Unsupervised markerless 3D motion tracking systems determine the most relevant object in the screen and then track it by continuously estimating its projection features (center and area) from the edge image and a point inside the relevant object projection (namely, inner point), until the tracking fails. Existing object projection feature estimation techniques are based on ray-casting from the inner point. These techniques present three main drawbacks: when the inner point is surrounded by edges, rays may not reach other relevant areas; as a consequence of that issue, the estimated features may greatly vary depending on the position of the inner point relative to the object projection; and finally, increasing the number of rays being casted and the ray-casting iterations (which would make the results more accurate and stable) increases the processing time to the point the tracking cannot be performed on the fly. In this paper, we anal...

  20. Model-checking techniques based on cumulative residuals.

    Science.gov (United States)

    Lin, D Y; Wei, L J; Ying, Z

    2002-03-01

    Residuals have long been used for graphical and numerical examinations of the adequacy of regression models. Conventional residual analysis based on the plots of raw residuals or their smoothed curves is highly subjective, whereas most numerical goodness-of-fit tests provide little information about the nature of model misspecification. In this paper, we develop objective and informative model-checking techniques by taking the cumulative sums of residuals over certain coordinates (e.g., covariates or fitted values) or by considering some related aggregates of residuals, such as moving sums and moving averages. For a variety of statistical models and data structures, including generalized linear models with independent or dependent observations, the distributions of these stochastic processes tinder the assumed model can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations can be easily generated by computer simulation. Each observed process can then be compared, both graphically and numerically, with a number of realizations from the Gaussian process. Such comparisons enable one to assess objectively whether a trend seen in a residual plot reflects model misspecification or natural variation. The proposed techniques are particularly useful in checking the functional form of a covariate and the link function. Illustrations with several medical studies are provided.

  1. Investigations on landmine detection by neutron-based techniques.

    Science.gov (United States)

    Csikai, J; Dóczi, R; Király, B

    2004-07-01

    Principles and techniques of some neutron-based methods used to identify the antipersonnel landmines (APMs) are discussed. New results have been achieved in the field of neutron reflection, transmission, scattering and reaction techniques. Some conclusions are as follows: The neutron hand-held detector is suitable for the observation of anomaly caused by a DLM2-like sample in different soils with a scanning speed of 1m(2)/1.5 min; the reflection cross section of thermal neutrons rendered the determination of equivalent thickness of different soil components possible; a simple method was developed for the determination of the thermal neutron flux perturbation factor needed for multi-elemental analysis of bulky samples; unfolded spectra of elastically backscattered neutrons using broad-spectrum sources render the identification of APMs possible; the knowledge of leakage spectra of different source neutrons is indispensable for the determination of the differential and integrated reaction rates and through it the dimension of the interrogated volume; the precise determination of the C/O atom fraction requires the investigations on the angular distribution of the 6.13MeV gamma-ray emitted in the (16)O(n,n'gamma) reaction. These results, in addition to the identification of landmines, render the improvement of the non-intrusive neutron methods possible.

  2. Investigations on landmine detection by neutron-based techniques

    Energy Technology Data Exchange (ETDEWEB)

    Csikai, J. E-mail: csikai@delfin.klte.hu; Doczi, R.; Kiraly, B

    2004-07-01

    Principles and techniques of some neutron-based methods used to identify the antipersonnel landmines (APMs) are discussed. New results have been achieved in the field of neutron reflection, transmission, scattering and reaction techniques. Some conclusions are as follows: The neutron hand-held detector is suitable for the observation of anomaly caused by a DLM2-like sample in different soils with a scanning speed of 1 m{sup 2}/1.5 min; the reflection cross section of thermal neutrons rendered the determination of equivalent thickness of different soil components possible; a simple method was developed for the determination of the thermal neutron flux perturbation factor needed for multi-elemental analysis of bulky samples; unfolded spectra of elastically backscattered neutrons using broad-spectrum sources render the identification of APMs possible; the knowledge of leakage spectra of different source neutrons is indispensable for the determination of the differential and integrated reaction rates and through it the dimension of the interrogated volume; the precise determination of the C/O atom fraction requires the investigations on the angular distribution of the 6.13 MeV gamma-ray emitted in the {sup 16}O(n,n'{gamma}) reaction. These results, in addition to the identification of landmines, render the improvement of the non-intrusive neutron methods possible.

  3. A human visual based binarization technique for histological images

    Science.gov (United States)

    Shreyas, Kamath K. M.; Rajendran, Rahul; Panetta, Karen; Agaian, Sos

    2017-05-01

    In the field of vision-based systems for object detection and classification, thresholding is a key pre-processing step. Thresholding is a well-known technique for image segmentation. Segmentation of medical images, such as Computed Axial Tomography (CAT), Magnetic Resonance Imaging (MRI), X-Ray, Phase Contrast Microscopy, and Histological images, present problems like high variability in terms of the human anatomy and variation in modalities. Recent advances made in computer-aided diagnosis of histological images help facilitate detection and classification of diseases. Since most pathology diagnosis depends on the expertise and ability of the pathologist, there is clearly a need for an automated assessment system. Histological images are stained to a specific color to differentiate each component in the tissue. Segmentation and analysis of such images is problematic, as they present high variability in terms of color and cell clusters. This paper presents an adaptive thresholding technique that aims at segmenting cell structures from Haematoxylin and Eosin stained images. The thresholded result can further be used by pathologists to perform effective diagnosis. The effectiveness of the proposed method is analyzed by visually comparing the results to the state of art thresholding methods such as Otsu, Niblack, Sauvola, Bernsen, and Wolf. Computer simulations demonstrate the efficiency of the proposed method in segmenting critical information.

  4. A New Particle Swarm Optimization Based Stock Market Prediction Technique

    Directory of Open Access Journals (Sweden)

    Essam El. Seidy

    2016-04-01

    Full Text Available Over the last years, the average person's interest in the stock market has grown dramatically. This demand has doubled with the advancement of technology that has opened in the International stock market, so that nowadays anybody can own stocks, and use many types of software to perform the aspired profit with minimum risk. Consequently, the analysis and prediction of future values and trends of the financial markets have got more attention, and due to large applications in different business transactions, stock market prediction has become a critical topic of research. In this paper, our earlier presented particle swarm optimization with center of mass technique (PSOCoM is applied to the task of training an adaptive linear combiner to form a new stock market prediction model. This prediction model is used with some common indicators to maximize the return and minimize the risk for the stock market. The experimental results show that the proposed technique is superior than the other PSO based models according to the prediction accuracy.

  5. Detecting Molecular Properties by Various Laser-Based Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hsin, Tse-Ming [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Four different laser-based techniques were applied to study physical and chemical characteristics of biomolecules and dye molecules. These techniques are liole burning spectroscopy, single molecule spectroscopy, time-resolved coherent anti-Stokes Raman spectroscopy and laser-induced fluorescence microscopy. Results from hole burning and single molecule spectroscopy suggested that two antenna states (C708 & C714) of photosystem I from cyanobacterium Synechocystis PCC 6803 are connected by effective energy transfer and the corresponding energy transfer time is ~6 ps. In addition, results from hole burning spectroscopy indicated that the chlorophyll dimer of the C714 state has a large distribution of the dimer geometry. Direct observation of vibrational peaks and evolution of coumarin 153 in the electronic excited state was demonstrated by using the fs/ps CARS, a variation of time-resolved coherent anti-Stokes Raman spectroscopy. In three different solvents, methanol, acetonitrile, and butanol, a vibration peak related to the stretch of the carbonyl group exhibits different relaxation dynamics. Laser-induced fluorescence microscopy, along with the biomimetic containers-liposomes, allows the measurement of the enzymatic activity of individual alkaline phosphatase from bovine intestinal mucosa without potential interferences from glass surfaces. The result showed a wide distribution of the enzyme reactivity. Protein structural variation is one of the major reasons that are responsible for this highly heterogeneous behavior.

  6. Chronology of DIC technique based on the fundamental mathematical modeling and dehydration impact.

    Science.gov (United States)

    Alias, Norma; Saipol, Hafizah Farhah Saipan; Ghani, Asnida Che Abd

    2014-12-01

    A chronology of mathematical models for heat and mass transfer equation is proposed for the prediction of moisture and temperature behavior during drying using DIC (Détente Instantanée Contrôlée) or instant controlled pressure drop technique. DIC technique has the potential as most commonly used dehydration method for high impact food value including the nutrition maintenance and the best possible quality for food storage. The model is governed by the regression model, followed by 2D Fick's and Fourier's parabolic equation and 2D elliptic-parabolic equation in a rectangular slice. The models neglect the effect of shrinkage and radiation effects. The simulations of heat and mass transfer equations with parabolic and elliptic-parabolic types through some numerical methods based on finite difference method (FDM) have been illustrated. Intel®Core™2Duo processors with Linux operating system and C programming language have been considered as a computational platform for the simulation. Qualitative and quantitative differences between DIC technique and the conventional drying methods have been shown as a comparative.

  7. Radiative efficiency of lead iodide based perovskite solar cells

    Science.gov (United States)

    Tvingstedt, Kristofer; Malinkiewicz, Olga; Baumann, Andreas; Deibel, Carsten; Snaith, Henry J.; Dyakonov, Vladimir; Bolink, Henk J.

    2014-08-01

    The maximum efficiency of any solar cell can be evaluated in terms of its corresponding ability to emit light. We herein determine the important figure of merit of radiative efficiency for Methylammonium Lead Iodide perovskite solar cells and, to put in context, relate it to an organic photovoltaic (OPV) model device. We evaluate the reciprocity relation between electroluminescence and photovoltaic quantum efficiency and conclude that the emission from the perovskite devices is dominated by a sharp band-to-band transition that has a radiative efficiency much higher than that of an average OPV device. As a consequence, the perovskite have the benefit of retaining an open circuit voltage ~0.14 V closer to its radiative limit than the OPV cell. Additionally, and in contrast to OPVs, we show that the photoluminescence of the perovskite solar cell is substantially quenched under short circuit conditions in accordance with how an ideal photovoltaic cell should operate.

  8. Evaluation of a measure on the quasi-steady state assumption of Collisional Radiative Models via Intrinsic Low Dimensional Manifold Technique

    CERN Document Server

    Kemaneci, Efe; Graef, Wouter; van Dijk, Jan; Kroesen, Gerrit M W

    2015-01-01

    Collisional and radiative dynamics of a plasma is exposed by so-called Collisional Radiative Models [1] that simplify the chemical kinetics by quasi-steady state assignment on certain types of particles. The assignment is conventionally based on the classification of the plasma species by the ratio of the transport to the local destruction frequencies. We show that the classification is not exact due to the role of the time-dependent local production, and a measure is necessary to confirm the validity of the assignment. The main goal of this study is to evaluate a measure on the quasi-steady state assumptions of these models. Inspired by a chemical reduction technique called Intrinsic Low Dimensional Manifolds [2, 3], an estimate local source is provided at the transport time-scale. This source is a deviation from the quasi-steady state for the particle and its value is assigned as an error of the quasi-steady state assumption. The propagation of this error on the derived quantities is formulated in the Colli...

  9. A Monte Carlo-based radiation safety assessment for astronauts in an environment with confined magnetic field shielding.

    Science.gov (United States)

    Geng, Changran; Tang, Xiaobin; Gong, Chunhui; Guan, Fada; Johns, Jesse; Shu, Diyun; Chen, Da

    2015-12-01

    The active shielding technique has great potential for radiation protection in space exploration because it has the advantage of a significant mass saving compared with the passive shielding technique. This paper demonstrates a Monte Carlo-based approach to evaluating the shielding effectiveness of the active shielding technique using confined magnetic fields (CMFs). The International Commission on Radiological Protection reference anthropomorphic phantom, as well as the toroidal CMF, was modeled using the Monte Carlo toolkit Geant4. The penetrating primary particle fluence, organ-specific dose equivalent, and male effective dose were calculated for particles in galactic cosmic radiation (GCR) and solar particle events (SPEs). Results show that the SPE protons can be easily shielded against, even almost completely deflected, by the toroidal magnetic field. GCR particles can also be more effectively shielded against by increasing the magnetic field strength. Our results also show that the introduction of a structural Al wall in the CMF did not provide additional shielding for GCR; in fact it can weaken the total shielding effect of the CMF. This study demonstrated the feasibility of accurately determining the radiation field inside the environment and evaluating the organ dose equivalents for astronauts under active shielding using the CMF.

  10. An RSS based location estimation technique for cognitive relay networks

    KAUST Repository

    Qaraqe, Khalid A.

    2010-11-01

    In this paper, a received signal strength (RSS) based location estimation method is proposed for a cooperative wireless relay network where the relay is a cognitive radio. We propose a method for the considered cognitive relay network to determine the location of the source using the direct and the relayed signal at the destination. We derive the Cramer-Rao lower bound (CRLB) expressions separately for x and y coordinates of the location estimate. We analyze the effects of cognitive behaviour of the relay on the performance of the proposed method. We also discuss and quantify the reliability of the location estimate using the proposed technique if the source is not stationary. The overall performance of the proposed method is presented through simulations. ©2010 IEEE.

  11. A 3-Level Secure Histogram Based Image Steganography Technique

    Directory of Open Access Journals (Sweden)

    G V Chaitanya

    2013-04-01

    Full Text Available Steganography is an art that involves communication of secret data in an appropriate carrier, eg. images, audio, video, etc. with a goal to hide the very existence of embedded data so as not to arouse an eavesdropper’s suspicion. In this paper, a steganographic technique with high level of security and having a data hiding capacity close to 20% of cover image data has been developed. An adaptive and matched bit replacement method is used based on the sensitivity of Human Visual System (HVS at different intensities. The proposed algorithm ensures that the generated stego image has a PSNR greater than 38.5 and is also resistant to visual attack. A three level security is infused into the algorithm which makes data retrieval from the stego image possible only in case of having all the right keys.

  12. Proposed Arabic Text Steganography Method Based on New Coding Technique

    Directory of Open Access Journals (Sweden)

    Assist. prof. Dr. Suhad M. Kadhem

    2016-09-01

    Full Text Available Steganography is one of the important fields of information security that depend on hiding secret information in a cover media (video, image, audio, text such that un authorized person fails to realize its existence. One of the lossless data compression techniques which are used for a given file that contains many redundant data is run length encoding (RLE. Sometimes the RLE output will be expanded rather than compressed, and this is the main problem of RLE. In this paper we will use a new coding method such that its output will be contains sequence of ones with few zeros, so modified RLE that we proposed in this paper will be suitable for compression, finally we employ the modified RLE output for stenography purpose that based on Unicode and non-printed characters to hide the secret information in an Arabic text.

  13. Clustering economies based on multiple criteria decision making techniques

    Directory of Open Access Journals (Sweden)

    Mansour Momeni

    2011-10-01

    Full Text Available One of the primary concerns on many countries is to determine different important factors affecting economic growth. In this paper, we study some factors such as unemployment rate, inflation ratio, population growth, average annual income, etc to cluster different countries. The proposed model of this paper uses analytical hierarchy process (AHP to prioritize the criteria and then uses a K-mean technique to cluster 59 countries based on the ranked criteria into four groups. The first group includes countries with high standards such as Germany and Japan. In the second cluster, there are some developing countries with relatively good economic growth such as Saudi Arabia and Iran. The third cluster belongs to countries with faster rates of growth compared with the countries located in the second group such as China, India and Mexico. Finally, the fourth cluster includes countries with relatively very low rates of growth such as Jordan, Mali, Niger, etc.

  14. Crop Yield Forecasted Model Based on Time Series Techniques

    Institute of Scientific and Technical Information of China (English)

    Li Hong-ying; Hou Yan-lin; Zhou Yong-juan; Zhao Hui-ming

    2012-01-01

    Traditional studies on potential yield mainly referred to attainable yield: the maximum yield which could be reached by a crop in a given environment. The new concept of crop yield under average climate conditions was defined in this paper, which was affected by advancement of science and technology. Based on the new concept of crop yield, the time series techniques relying on past yield data was employed to set up a forecasting model. The model was tested by using average grain yields of Liaoning Province in China from 1949 to 2005. The testing combined dynamic n-choosing and micro tendency rectification, and an average forecasting error was 1.24%. In the trend line of yield change, and then a yield turning point might occur, in which case the inflexion model was used to solve the problem of yield turn point.

  15. A polarization-based Thomson scattering technique for burning plasmas

    CERN Document Server

    Parke, E; Hartog, D J Den

    2013-01-01

    The traditional Thomson scattering diagnostic is based on measurement of the wavelength spectrum of scattered light, where electron temperature measurements are inferred from thermal broadening of the scattered laser light. At sufficiently high temperatures, especially those predicted for ITER and other burning plasmas, relativistic effects cause a change in the polarization state of the scattered photons. The resulting depolarization of the scattered light is temperature dependent and has been proposed elsewhere as a potential alternative to the traditional spectral decomposition technique. Following similar work, we analytically calculate the degree of polarization for incoherent Thomson scattering. For the first time, we obtain exact results valid for the full range of incident laser polarization states and electron temperatures. While previous work focused only on linear polarization, we show that circularly polarized incident light optimizes the degree of depolarization for a wide range of temperatures r...

  16. Dynamic analysis of granite rockburst based on the PIV technique

    Institute of Scientific and Technical Information of China (English)

    Wang Hongjian; Liu Da’an; Gong Weili; Li Liyun

    2015-01-01

    This paper describes the deep rockburst simulation system to reproduce the granite instantaneous rock-burst process. Based on the PIV (Particle Image Velocimetry) technique, quantitative analysis of a rock-burst, the images of tracer particle, displacement and strain fields can be obtained, and the debris trajectory described. According to the observation of on-site tests, the dynamic rockburst is actually a gas–solid high speed flow process, which is caused by the interaction of rock fragments and surrounding air. With the help of analysis on high speed video and PIV images, the granite rockburst failure process is composed of six stages of platey fragment spalling and debris ejection. Meanwhile, the elastic energy for these six stages has been calculated to study the energy variation. The results indicate that the rockburst process can be summarized as:an initiating stage, intensive developing stage and gradual decay stage. This research will be helpful for our further understanding of the rockburst mechanism.

  17. Hierarchical Spread Spectrum Fingerprinting Scheme Based on the CDMA Technique

    Directory of Open Access Journals (Sweden)

    Kuribayashi Minoru

    2011-01-01

    Full Text Available Abstract Digital fingerprinting is a method to insert user's own ID into digital contents in order to identify illegal users who distribute unauthorized copies. One of the serious problems in a fingerprinting system is the collusion attack such that several users combine their copies of the same content to modify/delete the embedded fingerprints. In this paper, we propose a collusion-resistant fingerprinting scheme based on the CDMA technique. Our fingerprint sequences are orthogonal sequences of DCT basic vectors modulated by PN sequence. In order to increase the number of users, a hierarchical structure is produced by assigning a pair of the fingerprint sequences to a user. Under the assumption that the frequency components of detected sequences modulated by PN sequence follow Gaussian distribution, the design of thresholds and the weighting of parameters are studied to improve the performance. The robustness against collusion attack and the computational costs required for the detection are estimated in our simulation.

  18. Demand Management Based on Model Predictive Control Techniques

    Directory of Open Access Journals (Sweden)

    Yasser A. Davizón

    2014-01-01

    Full Text Available Demand management (DM is the process that helps companies to sell the right product to the right customer, at the right time, and for the right price. Therefore the challenge for any company is to determine how much to sell, at what price, and to which market segment while maximizing its profits. DM also helps managers efficiently allocate undifferentiated units of capacity to the available demand with the goal of maximizing revenue. This paper introduces control system approach to demand management with dynamic pricing (DP using the model predictive control (MPC technique. In addition, we present a proper dynamical system analogy based on active suspension and a stability analysis is provided via the Lyapunov direct method.

  19. Whitelists Based Multiple Filtering Techniques in SCADA Sensor Networks

    Directory of Open Access Journals (Sweden)

    DongHo Kang

    2014-01-01

    Full Text Available Internet of Things (IoT consists of several tiny devices connected together to form a collaborative computing environment. Recently IoT technologies begin to merge with supervisory control and data acquisition (SCADA sensor networks to more efficiently gather and analyze real-time data from sensors in industrial environments. But SCADA sensor networks are becoming more and more vulnerable to cyber-attacks due to increased connectivity. To safely adopt IoT technologies in the SCADA environments, it is important to improve the security of SCADA sensor networks. In this paper we propose a multiple filtering technique based on whitelists to detect illegitimate packets. Our proposed system detects the traffic of network and application protocol attacks with a set of whitelists collected from normal traffic.

  20. A Novel Technique Based on Node Registration in MANETs

    Directory of Open Access Journals (Sweden)

    Rashid Jalal Qureshi

    2012-09-01

    Full Text Available In ad hoc network communication links between the nodes are wireless and each node acts as a router for the other node and packet is forward from one node to other. This type of networks helps in solving challenges and problems that may arise in every day communication. Mobile Ad Hoc Networks is a new field of research and it is particularly useful in situations where network infrastructure is costly. Protecting MANETs from security threats is a challenging task because of the MANETs dynamic topology. Every node in a MANETs is independent and is free to move in any direction, therefore change its connections to other nodes frequently. Due to its decentralized nature different types of attacks can be occur. The aim of this research paper is to investigate different MANETs security attacks and proposed nodes registration based technique by using cryptography functions.

  1. Diagnosis of Dengue Infection Using Conventional and Biosensor Based Techniques

    Directory of Open Access Journals (Sweden)

    Om Parkash

    2015-10-01

    Full Text Available Dengue is an arthropod-borne viral disease caused by four antigenically different serotypes of dengue virus. This disease is considered as a major public health concern around the world. Currently, there is no licensed vaccine or antiviral drug available for the prevention and treatment of dengue disease. Moreover, clinical features of dengue are indistinguishable from other infectious diseases such as malaria, chikungunya, rickettsia and leptospira. Therefore, prompt and accurate laboratory diagnostic test is urgently required for disease confirmation and patient triage. The traditional diagnostic techniques for the dengue virus are viral detection in cell culture, serological testing, and RNA amplification using reverse transcriptase PCR. This paper discusses the conventional laboratory methods used for the diagnosis of dengue during the acute and convalescent phase and highlights the advantages and limitations of these routine laboratory tests. Subsequently, the biosensor based assays developed using various transducers for the detection of dengue are also reviewed.

  2. Theory of edge radiation

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, G.; Kocharyan, V.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2008-08-15

    We formulate a complete theory of Edge Radiation based on a novel method relying on Fourier Optics techniques. Similar types of radiation like Transition UndulatorRadiation are addressed in the framework of the same formalism. Special attention is payed in discussing the validity of approximations upon which the theory is built. Our study makes consistent use of both similarity techniques and comparisons with numerical results from simulation. We discuss both near and far zone. Physical understanding of many asymptotes is discussed. Based on the solution of the field equation with a tensor Green's function technique, we also discuss an analytical model to describe the presence of a vacuum chamber. In particular, explicit calculations for a circular vacuum chamber are reported. Finally, we consider the use of Edge Radiation as a tool for electron beam diagnostics. We discuss Coherent Edge Radiation, Extraction of Edge Radiation by a mirror, and other issues becoming important at high electron energy and long radiation wavelength. Based on this work we also study the impact of Edge Radiation on XFEL setups and we discuss recent results. (orig.)

  3. Astronomical Image Compression Techniques Based on ACC and KLT Coder

    Directory of Open Access Journals (Sweden)

    J. Schindler

    2011-01-01

    Full Text Available This paper deals with a compression of image data in applications in astronomy. Astronomical images have typical specific properties — high grayscale bit depth, size, noise occurrence and special processing algorithms. They belong to the class of scientific images. Their processing and compression is quite different from the classical approach of multimedia image processing. The database of images from BOOTES (Burst Observer and Optical Transient Exploring System has been chosen as a source of the testing signal. BOOTES is a Czech-Spanish robotic telescope for observing AGN (active galactic nuclei and the optical transient of GRB (gamma ray bursts searching. This paper discusses an approach based on an analysis of statistical properties of image data. A comparison of two irrelevancy reduction methods is presented from a scientific (astrometric and photometric point of view. The first method is based on a statistical approach, using the Karhunen-Loeve transform (KLT with uniform quantization in the spectral domain. The second technique is derived from wavelet decomposition with adaptive selection of used prediction coefficients. Finally, the comparison of three redundancy reduction methods is discussed. Multimedia format JPEG2000 and HCOMPRESS, designed especially for astronomical images, are compared with the new Astronomical Context Coder (ACC coder based on adaptive median regression.

  4. Radiation aging of stockpile and space-based microelectronics.

    Energy Technology Data Exchange (ETDEWEB)

    Hembree, Charles Edward; Hjalmarson, Harold Paul

    2004-02-01

    This report describes an LDRD-supported experimental-theoretical collaboration on the enhanced low-dose-rate sensitivity (ELDRS) problem. The experimental work led to a method for elimination of ELDRS, and the theoretical work led to a suite of bimolecular mechanisms that explain ELDRS and is in good agreement with various ELDRS experiments. The model shows that the radiation effects are linear in the limit of very low dose rates. In this limit, the regime of most concern, the model provides a good estimate of the worst-case effects of low dose rate ionizing radiation.

  5. Capacitively Loaded Loop-Based Antennas with Reconfigurable Radiation Patterns

    Directory of Open Access Journals (Sweden)

    Saber Dakhli

    2015-01-01

    Full Text Available A class of metamaterial-inspired antennas having reconfigurable radiation patterns is proposed. They consist of a driven monopole antenna with one- and two-capacitively loaded loop (CLL, near field resonant parasitic elements. Two configurations are studied by considering the state of these CLL elements as being either open or closed configurations. Simulation results explain the design features and demonstrate that the structure can change its beam direction simply by controlling the switched states. Two prototypes with one- and two-CLL elements were fabricated and tested. The measured impedance mismatch and radiation pattern results are presented and compared to the corresponding simulated values.

  6. Ionospheric Plasma Drift Analysis Technique Based On Ray Tracing

    Science.gov (United States)

    Ari, Gizem; Toker, Cenk

    2016-07-01

    Ionospheric drift measurements provide important information about the variability in the ionosphere, which can be used to quantify ionospheric disturbances caused by natural phenomena such as solar, geomagnetic, gravitational and seismic activities. One of the prominent ways for drift measurement depends on instrumentation based measurements, e.g. using an ionosonde. The drift estimation of an ionosonde depends on measuring the Doppler shift on the received signal, where the main cause of Doppler shift is the change in the length of the propagation path of the signal between the transmitter and the receiver. Unfortunately, ionosondes are expensive devices and their installation and maintenance require special care. Furthermore, the ionosonde network over the world or even Europe is not dense enough to obtain a global or continental drift map. In order to overcome the difficulties related to an ionosonde, we propose a technique to perform ionospheric drift estimation based on ray tracing. First, a two dimensional TEC map is constructed by using the IONOLAB-MAP tool which spatially interpolates the VTEC estimates obtained from the EUREF CORS network. Next, a three dimensional electron density profile is generated by inputting the TEC estimates to the IRI-2015 model. Eventually, a close-to-real situation electron density profile is obtained in which ray tracing can be performed. These profiles can be constructed periodically with a period of as low as 30 seconds. By processing two consequent snapshots together and calculating the propagation paths, we estimate the drift measurements over any coordinate of concern. We test our technique by comparing the results to the drift measurements taken at the DPS ionosonde at Pruhonice, Czech Republic. This study is supported by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.

  7. New materials and new techniques for imaging of long wavelength IR radiation

    Science.gov (United States)

    Cross, L. E.

    1990-11-01

    Work on this program was directed towards the preliminary verification of the possibility of a completely new type of long wavelength infrared imaging system. This study proposed to explore the change in polarized reflectance from the pyro-optic surface, making use of the exceptional sensitivity of the newer ellipsometric techniques for reflectance studies. Cardinal advantages for the pyro-optic reflectance method are the following: (1) thermally sensitive film need only be thick enough to support the evanescent wave on reflection, so that pixel volume (mass) can be exceedingly small; (2) films can be mounted upon a critically dehydrated gel substrate which is transparent to visible light but affords near perfect thermal isolation; (3) there is no need for contacts to individual pixel elements as in the pyroelectric imagers; and (4) calculations show that for a film 0.1 micron meter thick, mounted on a silica gel substrate, the thermal efficiency is such that if the thermometric sensitivity of the film is sufficient to detect a temperature change of 1mK then for a system with f(1) optics this could correspond to a temperature difference in the object plane of 0.1K. The studies on this program were in two parts. The first objective was to verify the high values of temperature derivative of refractive index which has been reported in bismuth vanadate BiVO4, molybdenum MoS2, and antimony sulphur iodide SbSI. The second objective was to design and build a compact thermoelectric heater cooler which could be used to impart a known small AC temperature change to explore the detectivity limit for a pyro-optic application.

  8. Development of radiosotopes and radiation sources; developments of activity measurement and evaluation technique of homemade radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Han Yull; Choi, Yun Ho; Byun, Jong In; Lee, Ju Hee; Lee, Sun A. [Mokwon University, Taejeon (Korea)

    2002-04-01

    In this study, we report on the development of the production technique of radioactive sources suitable to precisely calibrate the energy and detection efficiency of the semiconductor gamma detectors. We developed totally 4 calibration sources, {sup 137}Cs and {sup 60}Co producted from HANARO reactor at Korea Atomic Energy Research Institute and {sup 152}Eu, mixed source {sup 154+155}Eu. In order to investigate the special qualities of these calibration sources, the mass absorption coefficients, due to the thickness of source container, were systematically measured. And the absolute detection efficiency curve of the used Ge detector was obtained by using the standardized source {sup 152}Eu. The activity of a mixed source {sup 154+155}Eu is determined with assistant of the resulted detection efficiency curve. As a result, the detection efficiency curve can be determined overall the energy regions from 0 keV to 2000 keV by using this mixed calibration source. The activity of each {sup 137}Cs, {sup 60}Co and {sup 152}Eu is obtained and the uncertainty of each activity is evaluated by root square sums of each uncertainty component arising from the decay parameters, and from the counting statistics, and from the used standard source, and from the fraction of losses to pass out the source and from the sample impurities. Total error was found to be 1.2 % above the ranges of the knee point 150 keV and to be 4.5 % below the regions of the point. 8 refs., 8 figs., 7 tabs. (Author)

  9. Simulated Radiative Transfer DOAS - A new method for improving volcanic SO2 emissions retrievals from ground-based UV-spectroscopic measurements of scattered solar radiation

    Science.gov (United States)

    Kern, C.; Deutschmann, T.; Vogel, L.; Bobrowski, N.; Hoermann, C.; Werner, C. A.; Sutton, A. J.; Elias, T.

    2011-12-01

    Passive Differential Optical Absorption Spectroscopy (DOAS) has become a standard tool for measuring SO2 at volcanoes. More recently, ultra-violet (UV) cameras have also been applied to obtain 2D images of SO2-bearing plumes. Both techniques can be used to derive SO2 emission rates by measuring SO2 column densities, integrating these along the plume cross-section, and multiplying by the wind speed. Recent measurements and model studies have revealed that the dominating source of uncertainty in these techniques often originates from an inaccurate assessment of radiative transfer through the volcanic plume. The typical assumption that all detected radiation is scattered behind the volcanic plume and takes a straight path from there to the instrument is often incorrect. We recently showed that the straight path assumption can lead to column density errors of 50% or more in cases where plumes with high SO2 and aerosol concentrations are measured from several kilometers distance, or where the background atmosphere contains a large amount of scattering aerosols. Both under- and overestimation are possible depending on the atmospheric conditions and geometry during spectral acquisition. Simulated Radiative Transfer (SRT) DOAS is a new evaluation scheme that combines radiative transfer modeling with spectral analysis of passive DOAS measurements in the UV region to derive more accurate SO2 column densities than conventional DOAS retrievals, which in turn leads to considerably more accurate emission rates. A three-dimensional backward Monte Carlo radiative transfer model is used to simulate realistic light paths in and around the volcanic plume containing variable amounts of SO2 and aerosols. An inversion algorithm is then applied to derive the true SO2 column density. For fast processing of large datasets, a linearized algorithm based on lookup tables was developed and tested on a number of example datasets. In some cases, the information content of the spectral data is

  10. TU-F-CAMPUS-J-04: Evaluation of Metal Artifact Reduction Technique for the Radiation Therapy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K; Kuo, H; Ritter, J; Shen, J; Basavatia, A; Yaparpalvi, R; Kalnicki, S [Montefiore Medical Center, Bronx, NY (United States); Tome, W [Montefiore Medical Center, ALBERT EINSTEIN COLLEGE OF MEDICINE, Bronx, NY (United States)

    2015-06-15

    Purpose: To evaluate the feasibility of using a metal artifact reduction technique in depleting metal artifact and its application in improving dose calculation in External Radiation Therapy Planning. Methods: CIRS electron density phantom was scanned with and without steel drill bits placed in some plug holes. Meta artifact reduction software with Metal Deletion Technique (MDT) was used to remove metal artifacts for scanned image with metal. Hounsfield units of electron density plugs from artifact free reference image and MDT processed images were compared. To test the dose calculation improvement after the MDT processed images, clinically approved head and neck plan with manual dental artifact correction was tested. Patient images were exported and processed with MDT and plan was recalculated with new MDT image without manual correction. Dose profiles near the metal artifacts were compared. Results: The MDT used in this study effectively reduced the metal artifact caused by beam hardening and scatter. The windmill around the metal drill was greatly improved with smooth rounded view. Difference of the mean HU in each density plug between reference and MDT images were less than 10 HU in most of the plugs. Dose difference between original plan and MDT images were minimal. Conclusion: Most metal artifact reduction methods were developed for diagnostic improvement purpose. Hence Hounsfield unit accuracy was not rigorously tested before. In our test, MDT effectively eliminated metal artifacts with good HU reproduciblity. However, it can introduce new mild artifacts so the MDT images should be checked with original images.

  11. Progress on an Updated National Solar Radiation Data Base for the United States: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, S.; Anderberg, M.; George, R.; Marion, W.; Myers, D.; Renne, D.; Beckman, W.; DeGaetano, A.; Gueymard, C.; Perez, R.; Plantico, M.; Stackhouse, P.; Vignola, F.

    2005-09-01

    In 1992, The National Renewable Energy Laboratory (NREL) released the 1961-1990 National Solar Radiation Data Base (NSRDB), a 30-year set of hourly solar radiation data. In 2003, NREL undertook an NSRDB update project for the decade of 1991-2000.

  12. Progress on an Updated National Solar Radiation Data Base for the United States

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, S.; Anderberg, M.; George, R.; Marion, W.; Myers, D.; Renne, D.; Beckman, W.; DeGaetano, A.; Gueymard, C.; Perez, R.; Plantico, M.; Stackhouse, P.; Vignola, F.

    2005-01-01

    In 1992, the National Renewable Energy Laboratory (NREL) released the 1961-1990 National Solar Radiation Data Base (NSRDB), a 30-year set of hourly solar radiation data. In 2003, NREL undertook an NSRDB update project for the decade of 1991-2000. This paper describes recent work on the project and evaluation of the test data set.

  13. Advanced Multipath Mitigation Techniques for Satellite-Based Positioning Applications

    Directory of Open Access Journals (Sweden)

    Mohammad Zahidul H. Bhuiyan

    2010-01-01

    Full Text Available Multipath remains a dominant source of ranging errors in Global Navigation Satellite Systems (GNSS, such as the Global Positioning System (GPS or the future European satellite navigation system Galileo. Multipath is generally considered undesirable in the context of GNSS, since the reception of multipath can make significant distortion to the shape of the correlation function used for time delay estimation. However, some wireless communications techniques exploit multipath in order to provide signal diversity though in GNSS, the major challenge is to effectively mitigate the multipath, since we are interested only in the satellite-receiver transit time offset of the Line-Of-Sight (LOS signal for the receiver's position estimate. Therefore, the multipath problem has been approached from several directions in order to mitigate the impact of multipath on navigation receivers, including the development of novel signal processing techniques. In this paper, we propose a maximum likelihood-based technique, namely, the Reduced Search Space Maximum Likelihood (RSSML delay estimator, which is capable of mitigating the multipath effects reasonably well at the expense of increased complexity. The proposed RSSML attempts to compensate the multipath error contribution by performing a nonlinear curve fit on the input correlation function, which finds a perfect match from a set of ideal reference correlation functions with certain amplitude(s, phase(s, and delay(s of the multipath signal. It also incorporates a threshold-based peak detection method, which eventually reduces the code-delay search space significantly. However, the downfall of RSSML is the memory requirement which it uses to store the reference correlation functions. The multipath performance of other delay-tracking methods previously studied for Binary Phase Shift Keying-(BPSK- and Sine Binary Offset Carrier- (SinBOC- modulated signals is also analyzed in closed loop model with the new Composite

  14. An internet based radiation oncology practice management system

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Many operational factors interfere with the workflow and productivity of radiation oncologists and medical physicists in the performance of their daily professional activities. Clinical personnel lack a customized, portable information tool set for effective and efficient control of the widely distributed and multiformatted reports, images and documentation required for direct patient care and the quality management program.

  15. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    Science.gov (United States)

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; Hurh, P.; Lorman, E.; Lundberg, C.; Meyer, T.; Miller, D.; Pordes, S.; Valishev, A.

    2011-09-01

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. However, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics. Work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.

  16. Camera-based independent couch height verification in radiation oncology

    NARCIS (Netherlands)

    Kusters, M.; Louwe, R.J.W.; Biemans-van Kastel, L.; Nieuwenkamp, H.; Zahradnik, R.; Claessen, R.; Seters, R.V.; Huizenga, H.

    2015-01-01

    For specific radiation therapy (RT) treatments, it is advantageous to use the isocenter-to-couch distance (ICD) for initial patient setup.(1) Since sagging of the treatment couch is not properly taken into account by the electronic readout of the treatment machine, this readout cannot be used for in

  17. Climate variation based on temperature and solar radiation data ...

    African Journals Online (AJOL)

    ckaonga

    impacts of recent climate change, from polar terrestrial to tropical marine ... METHODOLOGY. The ambient air temperature and solar radiation data was obtained .... carbon dioxide emissions in Malawi from a number of sources. Mean solar .... climate change: A review of 22 years of recommendations. Biol. Conserv.

  18. Proximity focusing RICH detector based on multilayer silica aerogel radiator

    CERN Document Server

    De Leo, R; Bellunato, T; Calvi, M; Cisbani, E; Cusanno, F; Garibaldi, F; Lagamba, L; Marra, M; Marrone, S; Matteuzzi, C; Musico, P; Nappi, E; Perego, D L; Torrioli, S; Vilardi, I

    2010-01-01

    The performance of a proximity focusing Ring Imaging Cherenkov detector equipped with a radiator of silica aerogel is presented. The aerogel tile used is a monolith with variable index of refraction. Cherenkov photons are detected with high granularity by eight Hamamatsu H9500 flat panel multi anode phototubes.

  19. Research on Dependable Ionizing Radiation Protection based on Model i*

    Directory of Open Access Journals (Sweden)

    Tan Hai

    2013-07-01

    Full Text Available The software’s unreliability mostly attributes to an erroneous analysis on the requirements done at the beginning. In this paper, we apply the tool of i* frame requirement modeling and build early requirement model against ionizing radiation. After finding out possible risks and corresponding solutions during the process of modeling analysis, we propose reasoning models against ionizing radiation. The radiation protection system  with  the  above models  can  figure out  the  purpose  of agents  related  to radiant source and provide normal service even when the environment software system is being interfered. It can serve the ecological and economical society with stability and development.  The model is divided into several sections. Section 1 gives the outline of the dependant software. Section 2 illustrates the  i* frame  technology. Section 3, 4 and 5 cover the topic of dependant security requirement analysis, SD&SR model on ionizing radiation respectively. Section 6 gives the conclusion.

  20. Radiation risk estimation based on measurement error models

    CERN Document Server

    Masiuk, Sergii; Shklyar, Sergiy; Chepurny, Mykola; Likhtarov, Illya

    2017-01-01

    This monograph discusses statistics and risk estimates applied to radiation damage under the presence of measurement errors. The first part covers nonlinear measurement error models, with a particular emphasis on efficiency of regression parameter estimators. In the second part, risk estimation in models with measurement errors is considered. Efficiency of the methods presented is verified using data from radio-epidemiological studies.

  1. A gEUD-based inverse planning technique for HDR prostate brachytherapy: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Giantsoudi, D. [Department of Radiological Sciences, University of Texas Health Sciences Center, San Antonio, Texas 78229 (United States); Department of Radiation Oncology, Francis H. Burr Proton Therapy Center, Boston, Massachusetts 02114 (United States); Baltas, D. [Department of Medical Physics and Engineering, Strahlenklinik, Klinikum Offenbach GmbH, 63069 Offenbach (Germany); Nuclear and Particle Physics Section, Physics Department, University of Athens, 15701 Athens (Greece); Karabis, A. [Pi-Medical Ltd., Athens 10676 (Greece); Mavroidis, P. [Department of Radiological Sciences, University of Texas Health Sciences Center, San Antonio, Texas 78299 and Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, 17176 (Sweden); Zamboglou, N.; Tselis, N. [Strahlenklinik, Klinikum Offenbach GmbH, 63069 Offenbach (Germany); Shi, C. [St. Vincent' s Medical Center, 2800 Main Street, Bridgeport, Connecticut 06606 (United States); Papanikolaou, N. [Department of Radiological Sciences, University of Texas Health Sciences Center, San Antonio, Texas 78299 (United States)

    2013-04-15

    Purpose: The purpose of this work was to study the feasibility of a new inverse planning technique based on the generalized equivalent uniform dose for image-guided high dose rate (HDR) prostate cancer brachytherapy in comparison to conventional dose-volume based optimization. Methods: The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO (Hybrid Inverse Planning Optimization) is compared with alternative plans, which were produced through inverse planning using the generalized equivalent uniform dose (gEUD). All the common dose-volume indices for the prostate and the organs at risk were considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by comparing dose volume histogram and gEUD evaluators. Results: Our results demonstrate the feasibility of gEUD-based inverse planning in HDR brachytherapy implants for prostate. A statistically significant decrease in D{sub 10} or/and final gEUD values for the organs at risk (urethra, bladder, and rectum) was found while improving dose homogeneity or dose conformity of the target volume. Conclusions: Following the promising results of gEUD-based optimization in intensity modulated radiation therapy treatment optimization, as reported in the literature, the implementation of a similar model in HDR brachytherapy treatment plan optimization is suggested by this study. The potential of improved sparing of organs at risk was shown for various gEUD-based optimization parameter protocols, which indicates the ability of this method to adapt to the user's preferences.

  2. Infrared Thermography-based Biophotonics: Integrated Diagnostic Technique for Systemic Reaction Monitoring

    Science.gov (United States)

    Vainer, Boris G.; Morozov, Vitaly V.

    A peculiar branch of biophotonics is a measurement, visualisation and quantitative analysis of infrared (IR) radiation emitted from living object surfaces. Focal plane array (FPA)-based IR cameras make it possible to realize in medicine the so called interventional infrared thermal diagnostics. An integrated technique aimed at the advancement of this new approach in biomedical science and practice is described in the paper. The assembled system includes a high-performance short-wave (2.45-3.05 μm) or long-wave (8-14 μm) IR camera, two laser Doppler flowmeters (LDF) and additional equipment and complementary facilities implementing the monitoring of human cardiovascular status. All these means operate synchronously. It is first ascertained the relationship between infrared thermography (IRT) and LDF data in humans in regard to their systemic cardiovascular reactivity. Blood supply real-time dynamics in a narcotized patient is first visualized and quantitatively represented during surgery in order to observe how the general hyperoxia influences thermoregulatory mechanisms; an abrupt increase in temperature of the upper limb is observed using IRT. It is outlined that the IRT-based integrated technique may act as a take-off runway leading to elaboration of informative new methods directly applicable to medicine and biomedical sciences.

  3. Optimization of stereotactic radiotherapy treatment delivery technique for base-of-skull meningiomas.

    Science.gov (United States)

    Clark, Brenda G; Candish, Charles; Vollans, Emily; Gete, Ermias; Lee, Richard; Martin, Monty; Ma, Roy; McKenzie, Michael

    2008-01-01

    This study compares static conformal field (CF), intensity modulated radiotherapy (IMRT), and dynamic arcs (DA) for the stereotactic radiotherapy of base-of-skull meningiomas. Twenty-one cases of base-of-skull meningioma (median planning target volume [PTV] = 21.3 cm3) previously treated with stereotactic radiotherapy were replanned with each technique. The plans were compared for Radiation Therapy Oncology Group conformity index (CI) and homogeneity index (HI), and doses to normal structures at 6 dose values from 50.4 Gy to 5.6 Gy. The mean CI was 1.75 (CF), 1.75 (DA), and 1.66 (IMRT) (p size of the PTV (Spearman's rho = -0.53, p = 0.01) and at PTV sizes above 25 cm3, the CI (IMRT) was always superior to CI (DA) and CI (CF). At PTV sizes below 25 cm3, there was no significant difference in CI between each technique. There was no significant difference in HI between plans. The total volume of normal tissue receiving 50.4, 44.8, and 5.6 Gy was significantly lower when comparing IMRT to CF and DA plans (p conformity and normal tissue sparing, in particular for the brain stem and ipsilateral temporal lobe.

  4. Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications

    Science.gov (United States)

    Raafat, Amany I.; Eid, Mona; El-Arnaouty, Magda B.

    2012-07-01

    A series of superabsorbent hydrogel based on carboxymethylcellulose (CMC) and polyvinylpyrrolidone (PVP) crosslinked with gamma irradiation have been proposed for agriculture application. The effect of preparation conditions such as feed solution composition and absorbed irradiation dose on the gelation and swelling degree was evaluated. The structure and the morphology of the superabsorbent CMC/PVP hydrogel were characterized using Fourier transform infrared spectroscopy technique (FTIR), and scanning electron microscope (SEM). Effect of ionic strength and cationic and anionic kinds on the swelling behavior of the obtained hydrogel was investigated. Urea as an agrochemical model was loaded onto the obtained hydrogel to provide nitrogen (N) nutrients. The water retention capability and the urea release behavior of the CMC/PVP hydrogels were investigated. It was found that, the obtained CMC/PVP hydrogels have good swelling degree that greatly affected by its composition and absorbed dose. The swelling was also extremely sensitive to the ionic strength and cationic kind. Owing to its considerable slow urea release, good water retention capacity, being economical, and environment-friendly, it might be useful for its application in agriculture field.

  5. Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications

    Energy Technology Data Exchange (ETDEWEB)

    Raafat, Amany I., E-mail: ismaelraafat_a@hotmail.com [Polymer Chemistry Department, National Center for Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo (Egypt); Eid, Mona; El-Arnaouty, Magda B. [Polymer Chemistry Department, National Center for Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo (Egypt)

    2012-07-15

    A series of superabsorbent hydrogel based on carboxymethylcellulose (CMC) and polyvinylpyrrolidone (PVP) crosslinked with gamma irradiation have been proposed for agriculture application. The effect of preparation conditions such as feed solution composition and absorbed irradiation dose on the gelation and swelling degree was evaluated. The structure and the morphology of the superabsorbent CMC/PVP hydrogel were characterized using Fourier transform infrared spectroscopy technique (FTIR), and scanning electron microscope (SEM). Effect of ionic strength and cationic and anionic kinds on the swelling behavior of the obtained hydrogel was investigated. Urea as an agrochemical model was loaded onto the obtained hydrogel to provide nitrogen (N) nutrients. The water retention capability and the urea release behavior of the CMC/PVP hydrogels were investigated. It was found that, the obtained CMC/PVP hydrogels have good swelling degree that greatly affected by its composition and absorbed dose. The swelling was also extremely sensitive to the ionic strength and cationic kind. Owing to its considerable slow urea release, good water retention capacity, being economical, and environment-friendly, it might be useful for its application in agriculture field.

  6. Patient radiation dose of spine X-ray panoramic imaging: Comparison of two techniques based on Monte Carlo mathematical model%基于蒙特卡罗数学模型两种脊柱全景X射线成像技术受检者辐射剂量的对比研究

    Institute of Scientific and Technical Information of China (English)

    金瑞; 曾勇明; 刘先凡

    2015-01-01

    Objective To compare patient radiation dose of two techniques of spine X-ray panoramic imaging under the same image quality.Methods An anthropomorphic phantom was used.The reasonable imaging parameters were found for spine panoramic radiography using Sonialvision safire17 Slot scan with HQ mode.And the panoramic films were obtained with different parameters using GE XR650 DR system.The panoramic images were scored by three experienced radiologists.The imaging parameters with the same score in groups were input into PCXMC 2.0 software to get effective dose(E) and organ dose.Results The reasonable imaging parameters of Slot scan were high quality(HQ) mode, SID 150 cm, 100 kVp, and 2 mAs;and the corresponding parameters of XR650 were SID 200 cm, 100 kVp, and 3.2 mAs.The E of the Slot scan with HQ mode, XR650 with manual mode and XR650 with AEC mode was(0.118 7±0.001 4),(0.0847±0.0008), and (0.1580±0.001 5) mSvrespectively, while the E of XR650 with manual mode was lower than the others(F =3 007.293, P <0.05).The organ dose using XR650 DR with manual mode were lower than that using Slot scan with HQ mode in all samples except breasts(P <0.05);the organ dose using XR650 DR with AEC mode were higher than that using XR650 DR with manual mode and Slot scan with HQ mode for all samples except for thyroid, oesophagus and lungs (P <0.05).Conclusions The radiation doses of both spine X-ray panoramic imaging with manual mode are low, and low dose spine X-ray panoramic imaging can be achieved if reasonable parameters are used.%目的 比较两种脊柱全景X射线成像技术对受检者产生的辐射剂量.方法 使用仿真体模进行实验,摸索出该体模在日本岛津Sonialvision safire17设备Slot scan脊柱全景成像的适宜成像条件,然后在GE Discovery XR650型DR系统上对该体模进行不同曝光条件的DR脊柱全景成像,3位有经验的放射科医生对两种成像技术的图像进行评分,选择图像质量评分均值最接近的

  7. Practical implications for the quality assurance of modulated radiation therapy techniques using point detector arrays.

    Science.gov (United States)

    Kantz, Steffi; Troeller McDermott, Almut; Söhn, Matthias; Reinhardt, Sabine; Belka, Claus; Parodi, Katia; Reiner, Michael

    2017-08-30

    Linac parameters potentially influencing the delivery quality of IMRT and VMAT plans are investigated with respect to threshold ranges, consequently to be considered in a linac based quality assurance procedure. Three commercially available 2D arrays are used to further investigate the influence of the measurement device. Using three commercially available 2D arrays (Mx: MatriXX(evolution) , Oc: Octavius(1500) , Mc: MapCHECK2), simple static measurements, measurements for MLC characterization and dynamic interplay of gantry movement, MLC movement and variable dose rate were performed. The results were evaluated with respect to each single array as well as among each other. Simple static measurements showed different array responses to dose, dose rate and profile homogeneity and revealed instabilities in dose delivery and profile shape during linac ramp up. Using the sweeping gap test, all arrays were able to detect small leaf misalignments down to ±0.1 mm, but this test also demonstrated up to 15% dose deviation due to profile instabilities and fast accelerating leaves during linac ramp up. Tests including gantry rotation showed different stability of gantry mounts for each array. Including gantry movement and dose rate variability, differences compared to static delivery were smaller compared to dose differences when simultaneously controling interplay of gantry movement, leaf movement and dose rate variability. Linac based QA is feasible with the tested commercially available 2D arrays. Limitations of each array and the linac ramp up characteristics should be carefully considered during individual plan generation and regularly checked in linac QA. Especially the dose and dose profile during linac ramp up should be checked regularly, as well as MLC positioning accuracy using a sweeping gap test. Additionally, dynamic interplay tests including various gantry rotation speeds and angles, various leaf speeds and various dose rates should be included. © 2017 The

  8. Parameter tuning of PVD process based on artificial intelligence technique

    Science.gov (United States)

    Norlina, M. S.; Diyana, M. S. Nor; Mazidah, P.; Rusop, M.

    2016-07-01

    In this study, an artificial intelligence technique is proposed to be implemented in the parameter tuning of a PVD process. Due to its previous adaptation in similar optimization problems, genetic algorithm (GA) is selected to optimize the parameter tuning of the RF magnetron sputtering process. The most optimized parameter combination obtained from GA's optimization result is expected to produce the desirable zinc oxide (ZnO) thin film from the sputtering process. The parameters involved in this study were RF power, deposition time and substrate temperature. The algorithm was tested to optimize the 25 datasets of parameter combinations. The results from the computational experiment were then compared with the actual result from the laboratory experiment. Based on the comparison, GA had shown that the algorithm was reliable to optimize the parameter combination before the parameter tuning could be done to the RF magnetron sputtering machine. In order to verify the result of GA, the algorithm was also been compared to other well known optimization algorithms, which were, particle swarm optimization (PSO) and gravitational search algorithm (GSA). The results had shown that GA was reliable in solving this RF magnetron sputtering process parameter tuning problem. GA had shown better accuracy in the optimization based on the fitness evaluation.

  9. The effects of processing techniques on magnesium-based composite

    Science.gov (United States)

    Rodzi, Siti Nur Hazwani Mohamad; Zuhailawati, Hussain

    2016-12-01

    The aim of this study is to investigate the effect of processing techniques on the densification, hardness and compressive strength of Mg alloy and Mg-based composite for biomaterial application. The control sample (pure Mg) and Mg-based composite (Mg-Zn/HAp) were fabricated through mechanical alloying process using high energy planetary mill, whilst another Mg-Zn/HAp composite was fabricated through double step processing (the matrix Mg-Zn alloy was fabricated by planetary mill, subsequently HAp was dispersed by roll mill). As-milled powder was then consolidated by cold press into 10 mm diameter pellet under 400 MPa compaction pressure before being sintered at 300 °C for 1 hour under the flow of argon. The densification of the sintered pellets were then determined by Archimedes principle. Mechanical properties of the sintered pellets were characterized by microhardness and compression test. The results show that the density of the pellets was significantly increased by addition of HAp, but the most optimum density was observed when the sample was fabricated through double step processing (1.8046 g/cm3). Slight increment in hardness and ultimate compressive strength were observed for Mg-Zn/HAp composite that was fabricated through double step processing (58.09 HV, 132.19 MPa), as compared to Mg-Zn/HAp produced through single step processing (47.18 HV, 122.49 MPa).

  10. Electron tomography based on a total variation minimization reconstruction technique

    Energy Technology Data Exchange (ETDEWEB)

    Goris, B., E-mail: bart.goris@ua.ac.be [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van den Broek, W. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Batenburg, K.J. [Centrum Wiskunde and Informatica, Science Park 123, NL-1098XG Amsterdam (Netherlands); Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Heidari Mezerji, H.; Bals, S. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2012-02-15

    The 3D reconstruction of a tilt series for electron tomography is mostly carried out using the weighted backprojection (WBP) algorithm or using one of the iterative algorithms such as the simultaneous iterative reconstruction technique (SIRT). However, it is known that these reconstruction algorithms cannot compensate for the missing wedge. Here, we apply a new reconstruction algorithm for electron tomography, which is based on compressive sensing. This is a field in image processing specialized in finding a sparse solution or a solution with a sparse gradient to a set of ill-posed linear equations. Therefore, it can be applied to electron tomography where the reconstructed objects often have a sparse gradient at the nanoscale. Using a combination of different simulated and experimental datasets, it is shown that missing wedge artefacts are reduced in the final reconstruction. Moreover, it seems that the reconstructed datasets have a higher fidelity and are easier to segment in comparison to reconstructions obtained by more conventional iterative algorithms. -- Highlights: Black-Right-Pointing-Pointer A reconstruction algorithm for electron tomography is investigated based on total variation minimization. Black-Right-Pointing-Pointer Missing wedge artefacts are reduced by this algorithm. Black-Right-Pointing-Pointer The reconstruction is easier to segment. Black-Right-Pointing-Pointer More reliable quantitative information can be obtained.

  11. Damage detection technique by measuring laser-based mechanical impedance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeonseok; Sohn, Hoon [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (Daehak-ro 291, Yuseong-gu, Daejeon 305-701) (Korea, Republic of)

    2014-02-18

    This study proposes a method for measurement of mechanical impedance using noncontact laser ultrasound. The measurement of mechanical impedance has been of great interest in nondestructive testing (NDT) or structural health monitoring (SHM) since mechanical impedance is sensitive even to small-sized structural defects. Conventional impedance measurements, however, have been based on electromechanical impedance (EMI) using contact-type piezoelectric transducers, which show deteriorated performances induced by the effects of a) Curie temperature limitations, b) electromagnetic interference (EMI), c) bonding layers and etc. This study aims to tackle the limitations of conventional EMI measurement by utilizing laser-based mechanical impedance (LMI) measurement. The LMI response, which is equivalent to a steady-state ultrasound response, is generated by shooting the pulse laser beam to the target structure, and is acquired by measuring the out-of-plane velocity using a laser vibrometer. The formation of the LMI response is observed through the thermo-mechanical finite element analysis. The feasibility of applying the LMI technique for damage detection is experimentally verified using a pipe specimen under high temperature environment.

  12. Acellular dermal matrix based nipple reconstruction: A modified technique

    Directory of Open Access Journals (Sweden)

    Raghavan Vidya

    2017-09-01

    Full Text Available Nipple areolar reconstruction (NAR has evolved with the advancement in breast reconstruction and can improve self-esteem and, consequently, patient satisfaction. Although a variety of reconstruction techniques have been described in the literature varying from nipple sharing, local flaps to alloplastic and allograft augmentation, over time, loss of nipple projection remains a major problem. Acellular dermal matrices (ADM have revolutionised breast reconstruction more recently. We discuss the use of ADM to act as a base plate and strut to give support to the base and offer nipple bulk and projection in a primary procedure of NAR with a local clover shaped dermal flap in 5 breasts (4 patients. We used 5-point Likert scales (1 = highly unsatisfied, 5 = highly satisfied to assess patient satisfaction. Median age was 46 years (range: 38–55 years. Nipple projection of 8 mm, 7 mm, and 7 mms were achieved in the unilateral cases and 6 mm in the bilateral case over a median 18 month period. All patients reported at least a 4 on the Likert scale. We had no post-operative complications. It seems that nipple areolar reconstruction [NAR] using ADM can achieve nipple projection which is considered aesthetically pleasing for patients.

  13. Introducing Risk Management Techniques Within Project Based Software Engineering Courses

    Science.gov (United States)

    Port, Daniel; Boehm, Barry

    2002-03-01

    In 1996, USC switched its core two-semester software engineering course from a hypothetical-project, homework-and-exam course based on the Bloom taxonomy of educational objectives (knowledge, comprehension, application, analysis, synthesis, and evaluation). The revised course is a real-client team-project course based on the CRESST model of learning objectives (content understanding, problem solving, collaboration, communication, and self-regulation). We used the CRESST cognitive demands analysis to determine the necessary student skills required for software risk management and the other major project activities, and have been refining the approach over the last 5 years of experience, including revised versions for one-semester undergraduate and graduate project course at Columbia. This paper summarizes our experiences in evolving the risk management aspects of the project course. These have helped us mature more general techniques such as risk-driven specifications, domain-specific simplifier and complicator lists, and the schedule as an independent variable (SAIV) process model. The largely positive results in terms of review of pass / fail rates, client evaluations, product adoption rates, and hiring manager feedback are summarized as well.

  14. Mineral composition of TALDICE aeolian ice core dust by means of synchrotron radiation XAS and XRF techniques

    Science.gov (United States)

    Marcelli, A.; Cibin, G.; Sala, M.; Hampai, D.; Maggi, V.; Marino, F.; Delmonte, B.

    2009-04-01

    In this work we present the first accurate non-destructive comparison of the mineral composition of atmospheric dusts contained in a deep ice core from Antarctica using synchrotron radiation. Different mineral assemblages reaching glaciated areas could be correlated to sources areas starting from the knowledge of the dust composition. In this investigation we demonstrate the possibility to characterize with SR the mineral composition of the dust in order to perform its geochemical characterization and to understand the pattern of the transport and the trajectories of the aerosol. This study has been focused on the elemental characterization and the identification of the iron oxidation state of aeolian Antarctic dust by means of synchrotron radiation X-Ray Fluorescence and X-Ray Absorption Spectroscopy. A set of twelve ice samples from the TALDICE (TD, 72˚ 46'S, 159˚ 04'E, 2316 m a.s.l., mean accumulation rate 80 kg*m-2*yr-1) ice core, corresponding to the warm climatic period, Holocene, and to the cold climatic period, Marine Isotopic Stage 3 (MIS 3) have been measured. To obtain both the elemental composition and the iron oxidation state of the mineral dust we performed experiments on specially prepared samples at the Stanford Synchrotron Radiation Lightsource (SSRL) laboratory in the framework of the Proposal N.3082B. Actually, melted ice samples were filtered and then mineral particles were deposited onto Nuclepore polycarbonate membranes in a 1000 class clean room under a 100 class laminar flow bench for both XRF and XAS experiments. A dedicated HV experimental chamber, that allows performing different type of experimental technique on very low absorber concentration samples was developed and tested in Italy. The original experimental setup, including an in-vacuum sample micromanipulator and a special alignment and docking sample system was installed at the beamline 10-2 at SSRL. For the x-ray detection a 7 mm2 high sensitive Silicon Drift Detector was

  15. Validation techniques of agent based modelling for geospatial simulations

    Science.gov (United States)

    Darvishi, M.; Ahmadi, G.

    2014-10-01

    One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent-based modelling and simulation (ABMS) is a new modelling method comprising of multiple interacting agent. They have been used in the different areas; for instance, geographic information system (GIS), biology, economics, social science and computer science. The emergence of ABM toolkits in GIS software libraries (e.g. ESRI's ArcGIS, OpenMap, GeoTools, etc) for geospatial modelling is an indication of the growing interest of users to use of special capabilities of ABMS. Since ABMS is inherently similar to human cognition, therefore it could be built easily and applicable to wide range applications than a traditional simulation. But a key challenge about ABMS is difficulty in their validation and verification. Because of frequent emergence patterns, strong dynamics in the system and the complex nature of ABMS, it is hard to validate and verify ABMS by conventional validation methods. Therefore, attempt to find appropriate validation techniques for ABM seems to be necessary. In this paper, after reviewing on Principles and Concepts of ABM for and its applications, the validation techniques and challenges of ABM validation are discussed.

  16. Validation techniques of agent based modelling for geospatial simulations

    Directory of Open Access Journals (Sweden)

    M. Darvishi

    2014-10-01

    Full Text Available One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent-based modelling and simulation (ABMS is a new modelling method comprising of multiple interacting agent. They have been used in the different areas; for instance, geographic information system (GIS, biology, economics, social science and computer sci